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Preface

Introduction

Most nontrivial programs involve some form of IPC or Interprocess Communication. This
is a natural effect of the design principle that the better approach is to design an applica-
tion as a group of small pieces that communicate with each other, instead of designing
one huge monolithic program. Historically, applications have been built in the follow-
ing ways:

1. One huge monolithic program that does everything. The various pieces of the
program can be implemented as functions that exchange information as func-
tion parameters, function return values, and global variables.

2. Multiple programs that communicate with each other using some form of IPC.
Many of the standard Unix tools were designed in this fashion, using shell
pipelines {a form of IPC) to pass information from one program to the next.

3. One program comprised of multiple threads that communicate with each other
using some type of IPC. The term IPC describes this communication even
though it is between threads and not between processes.

Combinations of the second two forms of design are also possible: multiple processes,
each consisting of one or more threads, involving cormmunication between the threads
within a given process and between the different processes.

What I have described is distributing the work involved in performing a given
application between multiple processes and perhaps among the threads within a pro-
cess. On a system containing multiple processors (CPUs), multiple processes might be

xiii
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able to run at the same time (on different CPUSs), or the multiple threads of a given pro-
cess might be able to run at the same time. Therefore, distributing an application
among multiple processes or threads might reduce the amount of time required for an
application to perform a given task.

This book describes four different forms of IPC in detail:

1. message passing (pipes, FIFOs, and message queues),

2. synchronization (mutexes, condition variables, read-write locks, file and record
locks, and semaphores),

3. shared memory (anonymous and named), and
4. remote procedure calls {Solaris doors and Sun RPC).

This book does not cover the writing of programs that communicate across a computer
network. This form of communication normally involves what is called the sockets API
(application program interface) using the TCP/IP protocol suite; these topics are cov-
ered in detail in Volume 1 of this series [Stevens 1998].

One could argue that single-host or nonnetworked IPC (the subject of this volume)
should not be used and instead all applications should be written as distributed appli-
cations that run on various hosts across a network. Practically, however, single-host IPC
is often much faster and sometimes simpler than communicating across a network.
Techniques such as shared memory and synchronization are normally available only on
a single host, and may not be used across a network. Experience and history have
shown a need for both nonnetworked IPC (this volume) and IPC across a network
(Volume 1 of this series).

This current volume builds on the foundation of Volume 1 and my other four books,
which are abbreviated throughout this text as follows:

UNPv1: UNTX Network Programming, Volume 1 [Stevens 1998],

APUE: Advanced Programming in the UNIX Environment [Stevens 19921,
TCPv1: TCPAP Hlustrated, Volume 1 [Stevens 19941,

TCPv2: TCP{IP Mustrated, Volume 2 [Wright and Stevens 19951, and
TCPv3: TCP/IP Nustrated, Volume 3 [Stevens 1996].

Although covering IPC in a text with “network programming” in the title might
seem odd, IPC is often used in networked applications. As stated in the Preface of the
1990 edition of UNIX Network Programming, “A requisite for understanding how to
develop software for a network is an understanding of interprocess communication
IPC).”

Changes from the First Edition

This volume is a complete rewrite and expansion of Chapters 3 and 18 from the 1990
edition of UNIX Network Programming. Based on a word count, the material has
expanded by a factor of five. The following are the major changes with this new edi-
tion:
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Readers

In addition to the three forms of “System V IPC” (message queues, semaphores,
and shared memory), the newer Posix functions that implement these three
types of IPC are also covered. (I say more about the Posix family of standards in
Section 1.7.) In the coming years, | expect 2 movement to the Posix IPC func-
tions, which have several advantages over their System V counterparts.

The Posix functions for synchronization are covered: mutex locks, condition
variables, and read—write locks. These can be used to synchronize either threads
or processes and are often used when accessing shared memory.

This volume assumes a Posix threads environment (called “Pthreads”), and
many of the examples are built using multiple threads instead of multiple pro-
cesses.

The coverage of pipes, FIFOs, and record locking focuses on their Posix defini-
tions.

In addition to describing the IPC facilities and showing how to use them, I also
develop implementations of Posix message queues, read-write locks, and Posix
semaphores (all of which can be implemented as user libraries). These imple-
mentations can tie together many different features (e.g., one implementation of
Posix semaphores uses mutexes, condition variables, and memory-mapped 1/0)
and highlight conditions that must often be handled in our applications (such as
race conditions, error handling, memory leaks, and variable-length argument
lists). Understanding an implementation of a certain feature often leads to a
greater knowledge of how to use that feature.

The RPC coverage focuses on the Sun RPC package. 1 precede this with a
description of the new Solaris doors API, which is similar to RPC but on a single
host. This provides an introduction to many of the features that we need to
worry about when calling procedures in another process, without having to
worry about any networking details.

This text can be used either as a tutorial on IPC, or as a reference for experienced pro-
grammers. The book is divided into four main parts:

message passing,
synchronization,
shared memory, and
remote procedure calls

but many readers will probably be interested in specific subsets. Most chapters can be
read independently of others, although Chapter 2 summarizes many features common
to all the Posix IPC functions, Chapter 3 summarizes many features common to all the
System V IPC functions, and Chapter 12 is an introduction to both Posix and System V
shared memory. All readers should read Chapter 1, especially Section 1.6, which
describes some wrapper functions used throughout the text. The Posix IPC chapters are
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independent of the System V IPC chapters, and the chapters on pipes, FIFOs, and record
locking belong to neither camp. The two chapters on RPC are also independent of the
other IPC techniques.

To aid in the use as a reference, a thorough index is provided, along with sum-
maries on the end papers of where to find detailed descriptions of all the functions and
structures. To help those reading topics in a random order, numerous references to
related topics are provided throughout the text.

Source Code and Errata Availability

The source code for all the examples that appear in this book is available from the
author’s home page (listed at the end of this Preface). The best way to learn the IPC
techniques described in this book is to take these programs, modify them, and enhance
them. Actually writing code of this form is the onfy way to reinforce the concepts and
techniques. Numerous exercises are also provided at the end of each chapter, and most
answers are provided in Appendix D.

A current errata for this book is also available from the author’s home page.
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1.1

Infroduction

Introduction

IPC stands for interprocess communication. Traditionally the term describes different
ways of message passing between different processes that are running on some operating
system. This text also describes numerous forms of synchronization, because newer
forms of communication, such as shared memory, require some form of synchronization
to operate.

In the evolution of the Unix operating system over the past 30 years, message pass-
ing has evolved through the following stages:

* Pipes (Chapter 4) were the first widely used form of IPC, available both within
programs and from the shell. The problem with pipes is that they are usable
only between processes that have a common ancestor (i.e., a parent—child rela-
tionship), but this was fixed with the introduction of named pipes or FIFOs (Chap-
ter 4).

« System V message quenes (Chapter 6) were added to Systermn V kernels in the early
1980s. These can be used between related or unrelated processes on a given
host. Although these are still referred to with the “System V" prefix, most ver-
sions of Unix today support them, regardless of whether their heritage is
System V or not.

When describing Unix processes, the term related means the processes have some ancestor
in common. This is another way of saying that these related processes were generated
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from this ancestor by one or mere forks. A commeon example is when a process calls
fork twice, generating two child processes. We then say that these two children are
related. Similarly, each child is related to the parent. With regard to IPC, the parent can
establish some form of IPC before calling fork (a pipe or message queue, for example),
knowing that the two children will inherit this IPC object across the fork, We talk more
about the inheritance of the various IPC objects with Figure 1.6. We must also note that
all Unix processes are theoretically related to the init process, which starts everything
going when a system is bootstrapped. Practically speaking, however, process relation-
ships start with a login shell (called a session) and all the processes generated by that shell.
Chapter 9 of APUE talks about sessions and process relationships in more detail.

Throughout the text, we use indented, parenthetical notes such as this one to describe
implementation details. historical points, and minutiae.

Posix message queues (Chapter 5) were added by the Posix realtime standard
(1003.1b-1993, which we say more about in Section 1.7). These can be used
between related or unrelated processes on a given host.

Remote Procedure Calls (RPCs, which we cover in Part 5) appeared in the
mid-1980s as a way of calling a function on one system (the server) from a pro-
gram on another systemn (the client), and was developed as an alternative to
explicit network programming. Since information is normally passed between
the client and server (the arguments and return values of the function that is
called), and since RPC can be used between a client and server on the same host,
RPC can be considered as another form of message passing.

Looking at the evolution of the various forms of synchronization provided by Unix
is also interesting.

Early programs that needed some form of synchronization (often to prevent
multiple processes from modifying the same file at the same time) used quirks of
the filesystern, some of which we talk about in Section 9.8.

Record locking (Chapter 9) was added to Unix kernels in the early 1980s and then
standardized by Posix.1 in 1988.

System V semaphores (Chapter 11) were added along with System V shared memory
(Chapter 14} at the same time System V message queues were added (early
1980s). Most versions of Unix support these today.

Posix semaphores (Chapter 10) and Posix shared memory (Chapter 13) were also
added by the Posix realtime standard (1003.1b-1993, which we mentioned with
regard to Posix message queues earlier).

Mutexes and condition varigbles (Chapter 7) are two forms of synchronization
defined by the Posix threads standard (1003.1¢-1995). Although these are often
used for synchronization between threads, they can also provide synchroniza-
tion between different processes.

Read—write locks (Chapter 8) are an additional form of synchronization. These
have not yet been standardized by Posix, but probably will be soon.
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1.2 Processes, Threads, and the Sharing of Information

In the traditional Unix programming model, we have multiple processes running on a
system, with each process having its own address space. Information can be shared
between Unix processes in various ways. We summarize these in Figure 1.1.

Process

process

process

process

f

r———-1
I shared |
| MEmOory |

-

Figure 1.1 Three ways to share information between Unix processes.

1. The two processes on the left are sharing some information that resides in a file
in the filesystem. To access this data, cach process must go through the kernel
(e.g., read, write, 1seek, and the like). Some form of synchronization is
required when a file is being updated, both to protect multiple writers from each
other, and to protect one or more readers from a writer.

2. The two processes in the middle are sharing some information that resides
within the kernel. A pipe is an example of this type of sharing, as are System V
message queues and System V semaphores. Each operation to access the shared
information now involves a system call into the kernel.

3. The two processes on the right have a region of shared memory that each pro-
cess can reference. Once the shared memory is set up by each process, the pro-
cesses can access the data in the shared memory without involving the kernel at
all. Some form of synchronization is required by the processes that are sharing
the memory.

Note that nothing restricts any of the IPC techniques that we describe to only two pro-
cesses. Any of the techniques that we describe work with any number of processes. We

show only two processes in Figure 1.1 for simplicity.

Threads

Although the concept of a process within the Unix system has been used for a long time,
the concept of multiple threads within a given process is relatively new. The Posix.1
threads standard (called “Pthreads”) was approved in 1995. From an IPC perspective,
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all the threads within a given process share the same global variables (e.g., the concept
of shared memory is inherent to this model). What we must worry about, however, is
synchronizing access lo this global data among the various threads. Indeed, synchro-
nization, though not explicitly a form of IPC, is used with many forms of IPC to control
access to some shared data.

In this text, we describe IPC belween processes and IPC between threads. We
assume a threads environment and make statements of the form “if the pipe is empty,
the calling thread is blocked in its call to read until some thread writes data to the
pipe”” If your system does not support threads, you can substitute “process” for
“thread"” in this sentence, providing the classic Unix definition of blocking in a read of
an empty pipe. But on a system that supports threads, only the thread that calls read
on an empty pipe is blocked, and the remaining threads in the process can continue to
execute. Writing data to this empty pipe can be done by another thread in the same
process or by some thread in another process.

Appendix B summarizes some of the characteristics of threads and the five basic
Pthread functions that are used throughout this text.

Persistence of IPC Objects

We can define the persistence of any type of IPC as how long an object of that type
remains in existence. Figure 1.2 shows three types of persistence.

process-persistent IPC:
process exists until last process with
IPC object open closes the object

F=7 777 kernel-persistent IPC:
' kernel | > exists until kernel reboots
L JorIPCobjectis explicitly deleted

exists until IPC object is
explicitly deleted

} filesystem-persistent IPC:

Figure 1.2 Persistence of IPC cbjects.

1. A process-persistent IPC object remains in existence until the last process that
holds the object open closes the object. Examples are pipes and FIFOs.

2. A kernel-persistent IPC object remains in existence until the kernel reboots or
until the object is explicitly deleted. Examples are System V message queues,
semaphores, and shared memory. Posix message queues, semaphores, and
shared memory must be at least kernel-persistent, but may be file-
system-persistent, depending on the implementation.
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3. A filesystem-persistent IPC object remains in existence until the object is explicitly
deleted. The object retains its value even if the kernel reboots. Posix message
queues, semaphores, and shared memory have this property, if they are imple-
mented using mapped files (not a requirement).

We must be careful when defining the persistence of an IPC object because it is not
always as it seems. For example, the data within a pipe is maintained within the kernel,
but pipes have process petsistence and not kernel persistence—after the last process
that has the pipe open for reading closes the pipe, the kernel discards all the data and
removes the pipe. Similarly, even though FIFOs have names within the filesystem, they
also have process persistence because all the data in a FIFO is discarded after the last
process that has the FIFO open closes the FIFO.

Figure 1.3 summarizes the persistence of the IPC objects that we describe in this

text.
Type of IPC Persistence
Pipe process
FIFO process
Posix mutex process
Posix condition variable process
Posix read-write lock process
fentd record locking process
Posix message queue kernel
Posix named semaphore kernel
Posix memmory-based semaphore process
Posix shared memeory kernel
System V message queue kernel
System V semaphore kernel
System V shared memory kernel
TCP socket process
UDP socket process
Unix domain socket process

Figure 1.3 Persistence of various types of IPC objects.

Note that no type of IPC has filesystem persistence, but we have mentioned that the
three types of Posix IPC may, depending on the implementation. Obviously, writing
data to a file provides filesystem persistence, but this is normally not used as a form of
IPC. Most forms of IPC are not intended to survive a system reboot, because the pro-
cesses do not survive the reboot. Requiring filesystem persistence would probably
degrade the performance for a given form of IPC, and a common design goal for IPC is
high performance.

Name Spaces

When two unrelated processes use some type of IPC to exchange information between
themselves, the IPC object must have a name or identifier of some form so that one
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process (often a server) can create the IPC object and other processes (often one or more
clients) can specify that same IPC object.

Pipes do not have names (and therefore cannot be used between unrelated pro-
cesses), but FIFOs have a Unix pathname in the filesystem as their identifier (and can
therefore be used between unrelated processes). As we move to other forms of IPC in
the following chapters, we use additional naming conventions. The set of possible
names for a given type of IPC is called its name space. The name space is important,
because with all forms of IPC other than plain pipes, the name is how the client and
server connect with each other to exchange messages.

Figure 1.4 summarizes the naming conventions used by the different forms of IPC.

Name space Identification Fosix.1 .

fo75C A6S to open orpcreate after TPC opened 1996 Unix 98
Pipe (ho name} descriptor . .
FIFO pathname descriptor .
Posix mutex (no name) pthread mutex_t ptr .
Posix condition variable (no name) pthread cond_t ptr .
Posix read—write lock (no name} pthread rwlock_t ptr .
fentl record locking pathname descriptor . .
Fosix message queue Posix IPC name mgd_t value . .
Posix named semaphore Posix TPC name sem_t pointer . .
Posix memory-based semaphore (no name} sem_t pointer . .
Posix shared memeory Posix I'C name descriptor . .
System V message queue key_t key Systern V IPC identifier -
System V semaphore key_t key System V [PC identifier .
System V shared memory key_t key System V IPC identifier .
Doors pathname descriptor
Sun RPC program/ version RPC handle
TCP socket IP addr & TCP port descriptor Jdg .
UDF socket IP addr & UDP port descriptor g .
Unix domain socket pathname descriptor g .

Figure 1.4 Namne spaces for the various forms of TPC.

We also indicate which forms of IPC are standardized by the 1996 version of Posix.1 and
Unix 98, both of which we say more about in Section 1.7. For comparison purposes, we
include three types of sockets, which are described in detail in UNPv1. Note that the
sockets API (application program interface) is being standardized by the Posix.1g work-
ing group and should eventually become part of a future Posix.1 standard.

Even though Posix.1 standardizes semaphores, they are an optional feature. Fig-
ure 1.5 summarizes which features are specified by Posix.1 and Unix 98. Each feature is
mandatory, not defined, or optional. For the optional features, we specify the name of
the constant (e.g., _POSIX_THREADS) that is defined {normally in the <unistd.h>
header) if the feature is supported. Note that Unix 98 isa superset of Posix.1.
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Type of IPC Posix.1 1996 Unix 98

Fipe mandatory mandatory
FIFQ mandatery mandatory
Posix mutex _POSIX THREADS mandatory
Posix condition variable __POSIX_TEREADS mandatory

pmcess—shared mutex/CV | _POSIX_THREAD PROCESS_SHARED mandatory
Posix read—write lock {not defined} mandatory
fentl record locking mandatory mandatory
Posix message queue _POSTX_MESSAGE,_PASSING _XOPEN_REALTIME
Posix semaphores _PDSIX_SEMAPHORES _XCPEN_REALTIME
Posix shared memory _POSTX_SHARED MEMORY OBJECTS | _XOPEN_REALTIME
System V message quene (not defined} mandatory
System V semaphore (not defined) mandatory
System V shared memory (not defined} mandatory
Doors (not defined) (not defined)
Sun RPC (not defined) (not defined)
mmap _POST¥_MAPPED_FILES or mandatory

_PUSTX_SHARED MEMCRY_OBJECTS

Realtime signals _POSIX_REALTIME_SIGNALS _XOPEN_REALTIME

Figure 1.5 Awailability of the various forms of TPC.

Effect of fork, exec, and exit on IPC Objects

We need to understand the effect of the fork, exec, and _exit functions on the vari-
ous forms of IPC that we discuss. (The latter is called by the exit function.) We sum-
marize this in Figure 1.6.

Most of these features are described later in the text, but we need to make a few
points. First, the calling of fork from a multithreaded process becomes messy with
regard to unnamed synchronization variables {mutexes, condition variables, read—write
locks, and memory-based semaphores). Section 6.1 of [Butenhof 1997] provides the
details. We simply note in the table that if these variables reside in shared memory and
are created with the process-shared attribute, then they remain accessible to any thread
of any process with access to that shared memory. Second, the three forms of System V
IPC have no notion of being open or closed. We will see in Figure 6.8 and Exercises 11.1
and 14.1 that all we need to know to access these three forms of IPC is an identifier. So
these three forms of IPC are available to any process that knows the identifier, although
some special handling is indicated for semaphores and shared memory.
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Type of IPC fork exec _exit
Pipes child gets copies of all all open descriptors remain | all open descriptors closed;
and parent’s open descriptors open unless descriptor’s all data remowed from pipe
FIFCs FD_CLOEXEC bit set or FIFO on last close
Posix child gets copies of all all open message queue all open message queue
message parent’s open message descriptors are closed descriptors are closed
queues queue descriptors
System V no effect no effect no effect
message
queues
Posix shared if in shared vanishes unless in shared vanishes unless in shared
mutexes and memory and process- memary that stays open rmemory that stays open
condition shared attribute and process-shared and process-shared
variables attribute attribute
Posix shared if in shared vanishes unless in shared vanishes unless in shared
read-write memory and process- memory that stays open memory that stays open
locks shared attribute and process-shared and process-shared
attribute attribute
Posix shared if in shared vanishes unless in shared vanishes unless in shared
memory-based || memory and process- memory that stays open memory that stays open
semaphores shared attribute and process-shared and process-shared
attribute attribute
Fosix all open in parent remain any open are closed any open are closed
named open in child
semaphores
System V all =emad;j values in child all semadj values carried all semadj values are
semaphores are set to 0 over to new program added to corresponding
semaphore value
fentl locks held by parent are locks are unchanged as all outstanding locks
record not inherited by child long as descriptor remains | owned by process are
locking open unlocked
mmap memory mappings in memery mappings are memery mappings are
memory parent are retained by unmapped unmapped
mappings child
Posix memory mappings in memory mappings are memory mappings are
shared parent are retained by unmapped unmapped
MEMmory child
Systern V attached shared memory attached shared memory attached shared memeory
shared segments remain attached | segments are detached segments are detached
MEmory by child
Daoors child gets copies of all all door descriptors should | all open descriptors closed
parent’s open descriptors be closed because they are
but only parent is a server | created with FD_CLOEXEC
for door invocations on bit set
door descriptors

Figure 1.6 Effect of calling fork, exec, and _exit on IPC.
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Error Handling: Wrapper Functions

In any real-world program, we must check every function call for an error return. Since
terminating on an error is the common case, we can shorten our programs by defining a
wrapper function that performs the actual function call, tests the return value, and termi-
nates on an error. The convention we use is to capitalize the name of the function, as in

Sem_post{ptr);

Our wrapper function is shown in Figure 1.7.

libfwrapunix.c

387 void

388 Sem post{sem_t *sem)

i8% {

390 if {sem_postisem}) == -1)

391 err_sys ("sem_post error");
392 3}

libfwrapunix.c
Figure 1.7 Our wrappet function for the sem_post function.

Whenever you encounter a function name in the text that begins with a capital let-
ter, that is a wrapper function of our own. It calls a function whose name is the
same but begins with the lowercase letter. The wrapper function always terminates
with an error message if an ervor is encountered.

When describing the source code that is presented in the text, we always refer to the
Iowest-level function being called (e.g., sem_post) and not the wrapper function
{e.g., Sem_post). Similarly the index always refers fo the lowest level function
being called, and wnot the wrapper functions.

The format of the source code just shown is used throughout the text. Each nonblank line is
numbered. The text describing portions of the code begins with the starting and ending line
numbers in the left margin. Sometimes the paragraph is preceded by a short descriptive bold
heading, providing a summary statement of the code being described,

The herizontal rules at the beginning and end of the code fragment specify the source code
filename: the file wrapunix. ¢ in the directory 1ib for this example. Since the source code for
all the examples in the text is freely available (see the Preface), you can locate the appropriate
source file. Compiling, running, and especially modifying these programs while reading this
text is an excellent way to learn the concepts of interprocess communications.

Although these wrapper functions might not seem like a big savings, when we dis-
cuss threads in Chapter 7, we will find that the thread functions do not set the standard
Unix errnio variable when an error occurs; instead the errno value is the return value
of the function. This means that every time we call one of the pthread functions, we
must allocate a variable, save the return value in that variable, and then set errno to
this value before calling our err_sys function (Figure C.4). To avoid cluttering the
code with braces, we can use ("s comma operator to combine the assignment into
errno and the call of err_sys into a single statement, as in the following:



12 [ntreduction Chapter 1

int n;

if { (n = pthread_mutex_lock {&ndone mutex}) != 0}
errno = n, err_sys{"pthread mutex lock error®}:

Alternately, we could define a new error function that takes the system’s error number
as an argument. But we can make this piece of code much easier to read as just

Pthread_mutex_lock {(&ndone_mutex) ;

by defining our own wrapper function, shown in Figure 1.8.

7% veid libfwrappthread.c

126 Pthread_mutex lock(pthread mutex_t *mptr)

127 |

128 int n;

129 if ( (n = pthread_mutex_lock(mptr)) == 0}

130 return;

131 errnc = n;

i32 err_sys ("pthread_mutex lock error"}:

133 ) )
libjwrappthread.c

Figure L8 Our wrapper function for pthread mutex_lock.

With careful C coding, we could use macros instead of functions, providing a little run-time
efficiency, but these wrapper functions are rarely, if ever, the performance bottleneck of a pro-
gram.

Our choice of capitalizing the first character of the function name is a compromise. Many
other styles were considered: prefixing the function name with an e (as done on p. 182 of
[Kernighan and Pike 1984]), appending _e to the function name, and so on. Our style seems
the least distracting while still providing a visual indication that some other function is really
being called.

This technique has the side benefit of checking for errors from functions whose error returns
are often ignored: close and pthread_mutex_lock, for example,

Throughout the rest of this book, we use these wrapper functions unless we need to
check for an explicit error and handle it in some form other than terminating the pro-
cess. We do not show the source code for all our wrapper functions, but the code is
freely available (see the Preface).

Unix errno Value

When an error occurs in a Unix function, the global variable errno is set to a positive
value, indicating the type of error, and the function normally returns —1. Our err_sys
function looks at the value of errno and prints the corresponding error message string
{e.g., “Resource temporarily unavailable” if errno equals EAGATN).

The value of errno is set by a function only if an error occurs. Its value is unde-
fined if the function does not return an error. All the positive error values are constants
with an all-uppercase name beginning with E and are normally defined in the
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<gys/errno.h> header. No error has the value of 0.

With multiple threads, each thread must have its own errno variable. Providing a
per-thread errno is handled automatically, although this normally requires telling the
compiler that the program being compiled must be reentrant. Specifying something
like -D_REENTRANT or ~-D_POSIX_C_SCURCE=199506L to the compiler is typically
required. Often the <errno.h> header defines errno as a macro that expands into a
function call when _REENTRANT is defined, referencing a per-thread copy of the error
variable.

Throughout the text, we use phrases of the form “the mg send function returns
EMSGSIZE” as shorthand to mean that the function returns an error (typically a return
value of ~1} with errno set to the specified constant.

Unix Standards

Most activity these days with regard to Unix standardization is being done by Posix and
The Open Group.

Posix is an acronym for “Portable Operating System Interface.” Posix is not a single
standard, but a family of standards being developed by the Institute for Electrical and
Electronics Engineers, Inc.,, normally called the IEEE. The Posix standards are also
being adopted as international standards by ISO (the International Organization for
Standardization} and IEC {the International Electrotechnical Commission), called
ISO/IEC. The Posix standards have gone through the following iterations.

» IEEE 5td 1003.1-1988 (317 pages) was the first of the Posix standards. It specified
the C language interface into a Unix-like kernel covering the following areas: process
primutives (fork, exec, signals, timers), the environment of a process (user IDs, pro-
cess groups), files and directories (all the I/0 functions), terminal I/0, the system
databases {password file and group file), and the tar and cpic archive formats.

The first Posix standard was a trial use version in 1986 known as “IEEEIX.” The name Posix
was suggested by Richard Stallman.

¢ [EEE 5td 1003.1-1990 (356 pages) was next and it was also International Standard
ISO/IEC 9945-1: 1990. Minimal changes were made from the 1988 version to the
1990 version. Appended to the title was “Part 1: System Application Program Inter-
face (APD) [C Languagel” indicating that this standard was the C language APL

¢ IEEE 5td 1003.2-1992 was published in two volumes, totaling about 1300 pages, and
its title contained “Part 2: Shell and Utilities.” This part defines the shell (based on
the System V Bourne shell} and about 100 utilities (programs normally executed
from a shell, from awk and basename to vi and yacc). Throughout this text, we
refer to this standard as Posix.2.
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» IEEE Std 1003.1b-1993 (590 pages) was originally known as IEEE P1003.4. This was
an update to the 1003.1-1990 standard to include the realtime extensions developed
by the P1003.4 working group: file synchronization, asynchrenous I/0O, semaphores,
memory management (mmap and shared memory), execution scheduling, clocks and
timers, and message queues.

» IEEE Std 1003.1, 1996 Edition [IEEE 19961 (743 pages) includes 1003.1-1990 (the base
API), 1003.1b-1993 (realtime extensions), 1003.1c—1995 (Pthreads), and 1003.1i-1995
(technical corrections to 1003.1b). This standard is also called ISO/IEC 9945-1: 1996.
Three chapters on threads were added, along with additional sections on thread syn-
chronization (mutexes and condition variables), thread scheduling, and synchroniza-
tion scheduling. Throughout this text, we refer to this standard as Posix.1.

Over one-quarter of the 743 pages are an appendix titled “Rationale and Notes.” This ratio-
nale contains historical information and reasons why certain features were included or omit-
ted. Often the rationale is as informative as the official standard.

Unfortunately, the IEEE standards are not freely available on the Internet. Ordering informa-
tion is given in the Bibliography entry for [TEEE 159s].

Note that semaphores were defined in the realtime standard, separately from mutexes and
condition variables (which were defined in the Pthreads standard), which accounts for some of
the differences that we see in their APIs.

Finally, note that read--write locks are not (yet) part of any Posix standard. We say more about
this in Chapter 8.

Sometime in the future, a new version of IEEE Std 1003.1 should be printed to
include the P1003.1g standard, the networking APIs (sockets and XTI), which are
described in UNPv1.

The Foreword of the 1996 Posix.1 standard states that ISO/IEC 9945 consists of the
following parts:

* Part 1: System application program interface (API) [C languagel,
¢ Part 2: Shell and utilities, and
* Part 3: System administration (under development).

Parts 1 and 2 are what we call Posix.1 and Posix.2.

Work on all of the Posix standards continues and it is a moving target for any book
that attempts to cover it. The current status of the various Posix standards is available
fromhttp: //www.pasc.org/standing/sdll.html.

The Open Group

The Open Group was formed in 1996 by the consolidation of the X/Open Company
(founded in 1984) and the Open Software Foundation (OSFE, founded in 1988). It is an
international consortium of vendors and end-user customers from industry, govern-
ment, and academia. Their standards have gone through the following iterations:
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* X/Open published the X/Open Portability Guide, Issue 3 (XPG3) in 1989.

* Issue 4 was published in 1992 followed by Issue 4, Version 2 in 1994. This latest ver-
sion was also known as “Spec 1170,” with the magic number 1170 being the sum of
the number of system interfaces (926), the number of headers {70}, and the number
of commands (174). The latest name for this set of specifications is the “X/Open Sin-
gle Unix Specification,” although it is also called “Unix 95.”

* In March 1997, Version 2 of the Single Unix Specification was announced. Products
conforming to this specification can be called “Unix 98,” which is how we refer to
this specification throughout this text. The number of interfaces required by Unix 98
increases from 1170 to 1434, although for a workstation, this jumps to 3030, because
it includes the CDE (Common Desktop Environment), which in turn requires the X
Window System and the Motif user interface. Details are available in [Josey 1997]
and http: / /www.UNIX-systems.org/versicon?2.

Much of the Single Unix Specification is frecly available on the Internet from this URL.

Unix Versions and Fortability

1.8

Most Unix systems today conform to some version of Posix.1 and Posix.2. We use the
qualifier “some” because as updates to Posix occur (e.g., the realtime extensions in 1993
and the Pthreads addition in 1996}, vendors take a year or two (sometimes more} to
incorporate these latest changes.

Historically, most Unix systems show either a Berkeley heritage or a System V her-
itage, but these differences are slowly disappearing as most vendors adopt the Posix
standards. The main differences still existing deal with system administration, one area
that no Posix standard currently addresses.

Throughout this text, we use Solaris 2.6 and Digital Unix 4.0B for most examples.
The reason is that at the time of this writing {late 1997 to early 1998), these were the only
two Unix systems that supported System V IPC, Posix IPC, and Posix threads.

Road Map to IPC Examples in the Text

Three patterns of interaction are used predominantly throughout the text to illustrate
various features:

1. File server: a client-server application in which the client sends the server a
pathname and the server returns the contents of that file to the client.

2. Producer-consumer: one or more threads or processes (producers) place data
into a shared buffer, and one or more threads or processes {consumers) operate
on the data in the shared buffer.
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3. Sequence-number-increment: one or more threads or processes increment a
shared sequence number. Sometimes the sequence number is in a shared file,
and sometimes it is in shared memory.

The first example illustrates the various forms of message passing, whereas the other
two examples illustrate the various types of synchronization and shared memory.

To provide a road map for the different topics that are covered in this text, Figures
1.9, 1.10, and 1.11 summarize the programs that we develop, and the starting figure
number and page number in which the source code appears.

Summary

IPC has traditionally been a messy area in Unix. Various solutions have been imple-
mented, none of which are perfect. Our coverage is divided into four main areas:

1. message passing (pipes, FIFOs, message queues),

2. synchronization {mutexes, condition variables, read-write locks, semaphores),
3. shared memory (anonymous, named), and

4. procedure calls (Solaris doors, Sun RPC).

We consider IPC between multiple threads in a single process, and between multiple
processes.

The persistence of each type of IPC as either can be process-persistent, kernel-
persistent, or filesystem-persistent, based on how long the IPC object stays in existence.
When choosing the type of IPC to use for a given application, we must be aware of the
persistence of that IPC object.

Another feature of each type of IPC is its name space: how IPC objects are identified
by the processes and threads that use the IPC object. Some have no name (pipes,
mutexes, condition variables, read-write locks), some have names in the filesystem
(FIFOs), some have what we describe in Chapter 2 as Posix IPC names, and some have
other types of names (what we describe in Chapter 3 as System V IPC keys or identi-
fiers). Typically, a server creates an IPC object with some name and the clients use that
name to access the IPC object.

Throughout the source code in the text, we use the wrapper functions described in
Section 1.6 to reduce the size of our code, yet still check every function call for an error
return. Qur wrapper functions all begin with a capital letter.

The IEEE Posix standards—Posix.1 defining the basic C interface to Unix and
Posix.2 defining the standard commands—have been the standards that most vendors
are moving toward. The Posix standards, however, are rapidly being absorbed and
expanded by the commercial standards, notably The Open Group’s Unix standards,
such as Unix 98.
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Figure | Page Description
48 47 | Uses two pipes, parent—child
4.15 53 Uses popen and cat
416 55 Uses two FIFOs, parent—child
418 57 Uses two FIFOs, stand-alone server, unrelated client
423 62 | Uses FIFQs, stand-alone iterative server, multiple clients
425 68 | Uses pipe or FIFO: builds records on top of byte stream
69 141 | Uses two System V message queues
6.15 144 | Uses one System V message quele, multiple clients
6.20 148 | Uses one System V message queue per client, multiple clients

15.18 381 | Uses descriptor passing across a door

Figure 1.9 Different versions of the file server client-server examgle.

Figure | Page Description
72 162 | Mutex only, multiple producers, one consumer
76 168 | Mutex and condition variable, multiple producers, one consumer
10.17 236 | Posix named semaphores, one producer, one consumer
10.20 242 | Tosix memory-based semaphores, one producer, one consumer
10.21 243 | Tosix memory-based semaphores, multiple producers, one consuumer
10.24 246 | Posix memory-based semaphores, multiple producers, multiple consumers
10.33 254 | Posix memory-based semaphores, one producer, one consumer: multiple buffers
Figure 1.10 Different versions of the producer—constimer example.
Figure | Page Description
91 194 | Seq#in file, no locking
93 201 | Seg#infile, fentl locking
9.12 215 | Seq#in file, filesystem locking using open
10.19 239 | Seq#in file, Posix named semaphore locking
1210 | 312 | Seq# inmmap shared memory, Posix named semaphore locking
1212 | 314 | Seq# in mmap shared memory, Posix memory-based semaphore locking
1214 316 | Seqg# in 4.4BSD anonymous shared memory, Posix named semaphore locking
1215 316 | Seqg# in SVR4 /dev/zerc shared memory, Posix named semaphore locking
137 334 | Seq# in Posix shared memory, Posix memory-based semaphore locking
A4 487 | Performance measurement: mutex locking between threads
A6 489 | Performance measurement: read-write locking between threads
A39 | 491 | Performance measurement: Posix memory-based semaphore locking between threads
Aa 493 | Performance measurement: Posix named semaphore locking between threads
A42 | 494 | Performance measurement: System V semaphore locking between threads
A45 496 | Performance measurernent: fentl record locking between threads
A4B 499 | Performance measurement: mutex locking between processes

Figure 1.11 Different versions of the sequence-number-increment example.



18  Introduction Chapter 1

Exercises

11 In Figure 1.1 we show two processes accessing a single file. If both processes are just
appending new data to the end of the file (a log file perhaps), what kind of synchronization
is required?

12 Lookat your system’s <errno . h> header and see how it defines errmo.

13  Update Figure 1.5 by noting the features supported by the Unix systems that you use.



2.1

2.2

Posix IPC

Introduction

The three types of IPC,

* Posix message queues (Chapter 5),
* Posix semaphores (Chapter 10), and
* Posix shared memory (Chapter 13)

are collectively referred to as “Posix IPC.” They share some similarities in the functions
that access them, and in the information that describes them. This chapter describes all
these common properties: the pathnames used for identification, the flags specified
when opening or creating, and the access permissions.

A summary of their functions is shown in Figure 2.1.

IPC Names

In Figure 1.4, we noted that the three types of Posix IPC use “Posix IPC names” for their
identification. The first argument to the three functions mqg_cpen, sem_open, and
shm_cpen is such a name, which may or may not be a real pathname in a filesystem.
All that Posix.1 says about these names is:

* It must conform to existing rules for pathnames (must consist of at most
PATH_MAX bytes, including a terminating null byte).

* If it begins with a slash, then different calls to these functions all reference the
same queue. If it does not begin with a slash, the effect is implementation
dependent.

19
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Message Shared
Semaphores
queues memaory
Header <mgueuve . h> | <semaphore.h> | <sys/mman.h>
Functions to create, open, or delete | mg_open sem _open shm_open
mg_close sem close shm_unlink

mqg. unlink sem_unlink

sem_init
sem_destroy

Functions for control operations mg_getattr ftruncate
mgy setattr fstat
Functions for IPC operations mg_send sem_walt nap
mg receive | sem_trywait UTmAa
mg notify sem_post
serm_getvalue

Figure 2.1 Summary of Posix IPC functions.

» The interpretation of additional slashes in the name is implementation defined.

So, for portability, these names must begin with a slash and must not contain any other
slashes. Unfortunately, these rules are inadequate and lead to portability problems.

Solaris 2.6 requires the initial slash but forbids any additional slashes. Assuming a
message queue, it then creates three files in /tmp that begin with .MQ. For example, if
the argument to mg open is /queue.1234, then the three files are
/tmp/ .MQDgueue. 1234, /tmp/.MQLgueue.1234, and /tmp/.MQPqueue.1234,
Digital Unix 4.0B, on the other hand, creates the specified pathname in the filesystem.

The portability problem occurs if we specify a name with only one slash (as the first
character): we must have write permission in that directory, the root directory. For
example, /tmp.1234 abides by the Posix rules and would be OK under Solaris, but
Digital Unix would try to create this file, and unless we have write permission in the
root directory, this attempt would fail. If we specify a name of /tmp/test.1234, this
will succeed on all systems that create an actual file with that name (assuming that the
/tmp directory exists and that we have write permission in that directory, which is nor-
mal for most Unix systems), but fails under Solaris,

To avoid these portability problems we should always #define the name in a
header that is easy to change if we move our application to another system.

This case is one in which the standard tries to be so general (in this case, the realtime standard
was trying to allow message queue, semaphore, and shared memory implementations all
within existing Unix kernels and as stand-alone diskless systemns) that the standard’s solution
is nonportable. Within Posix, this is called “a standard way of being nonstandard.”

Posix.1 defines the three macros

S_TYPEISMQ (buf )
S_TYPEISSEM {buf )
S_TYPEISSHM (buf )
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that take a single argument, a pointer to a stat structure, whose contents are filled in
by the fstat, 1stat, or stat functions. These three macros evaluate to a nonzero
value if the specified IPC object (message queue, semaphore, or shared memory object)
is implemented as a distinct file type and the stat structure references such a file type.
Otherwise, the macros evaluate to 0.

Unfortunately, these macros are of little use, since there is no guarantee that these three types
of IPC are implemented using a distinct file type. Under Solaris 2.6, for example, all three
macros always evaluate to 0.

All the other macros that test for a given file type have names beginning with 8_IS and their

single argument is the st_mode member of a stat. structure. Since these three new macros
have a different argument, their names were changed to begin with 8_ TYPEIS.

px ipc name Function

Another solution to this portability problem is to define cur own function named
px_ipc_name that prefixes the correct directory for the location of Posix IPC names.

#include "unpipc.h”

char *px_ipc_name (const char *name);

Returns: nonnull pointer if OK, NULL on error

This is the notation we use for functions of our own throughout this book that are not standard
system functions: the box around the function prototype and return value is dashed. The
header that is included at the beginning is usually our unpipc. h header (Figure C.1).

The name argument should not contain any slashes. For example, the call

p¥_ipc_name ("testl"}

returns a pointer to the string /testl under Solaris 2.6 or a pointer to the string
/tmp/testl under Digital Unix 4.0B. The memory for the result string is dynamically
allocated and is returned by calling free. Additicnally, the environment variable
PY_I1PC_NAME can override the default directory.

Figure 2.2 shows our implementation of this function.

This may be your first encounter with snprintf. Lots of existing code calls sprint £ instead,
but sprintf cannot check for overflow of the destination buffer. snprint£, on the other
hand, requires that the second argument be the size of the destination buffer, and this buffer
will not be overflowed. Providing input that intentionally overflows a program’s sprintf
buffer has been used for many years by hackers breaking into systems,

snprintf is not yet part of the ANSI C standard but is being considered for a revision of the
standard, currently called C9X. Nevertheless, many vendors are providing it as part of the
standard C library. We use snprintf throughout the text, providing our own version that
just calls sprint £ when it is not provided.
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: libfpx_ipc name.c
1 #include "unpipc.h"
2 char *
3 px_ipc_name{const char *name)
4 {
5 char *dir, *dst, *slash;
& if ( (dst = malloc (PATH MAX)) == NULL)
7 return (MNULL) ;
g /* can override default directory with environment variable */
9 if { (dir = getenv("PX_IPC_NAME")} == NULL)} {
10 #ifdef POSIX_IPC_PREFIX
11 dir = POSTX_TPC_PREFTIX; /* from "config.h" */
12 #else
i3 Gir = "/top/T; /* default */
14 #endif
15 }
16 /* dir must end in a slash */
17 slash = (dir[strlen{dir} - 1] == */') 2 " : njv;
18 soprintf (dst, PATH_MAX, "%s%s%s", dir, slash, name):
19 return (dst}; /* caller can free() this pointer */
20 } . .
lib{px_ipc name.c
Figure 2.2 Our px_ipc name function.
2.3 Creating and Opening IPC Channels

The three functions that create or cpen an IPC object, mg open, sem_cpen, and
shm_open, all take a second argument named oflag that specifies how to open the
requested object. This is similar to the second argument to the standard open function.
The various constants that can be combined to form this argument are shown in Fig-
ure 2.3

Description mg_open sem_open shm_open
read-only O_RDONLY 0 RDONLY
write-only O_WRONLY
read—-write O_RDWR O_RDWR
create if it does not already exist | O_CREAT O_CREAT 0O_CREAT
exclusive create O_EXCIL, O_EXCIL 0_EXCI
nonblocking mode ©_NONBLOCK
truncate if it already exists O_TRUNC

Figure 2.3 Various constants when opening or creating a Posix IPC object.

The first three rows specify how the object is being opened: read-only, write-only, or
read—write. A message queue can be opened in any of the three modes, whereas none
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of these three constants is specified for a semaphore (read and write access is required
for any semaphore operation), and a shared memory object cannot be opened write-

only.

The remaining O_xxx flags in Figure 2.3 are optional.

OC_CREAT

O_EXCL

Create the message queue, semaphore, or shared memory object if it
does mnot already exist. (Also see the O_EXCL flag, which is
described shortly.)

When creating a new message queue, semaphore, or shared mem-
ory object at least one additional argument is required, called wmode.
"This argument specifies the permission bits and is formed as the bit-
wise-OR of the constants shown in Figure 2.4.

Constant | Description

&_IRUSE | userread
&_IWUSE | uscrwrite
S_IRGRF | group read
S_IWGRF | group write
S_IROTH | other read
9_IWOTH | other write

Figure 2.4 mode constants when a new IPC object is created.

These constants are defined in the <sys/stat.h> header. The
specified permission bits are modified by the file mode creation mask
of the process, which can be set by calling the umask function
(pp. 83-85 of APUE) or by using the shell’s umask command.

As with a newly created file, when a new message queue,
semaphore, or shared memory object is created, the user ID is set to
the effective user ID of the process. The group ID of a semaphore or
shared memory object is set to the effective group 1D of the process
or to a system default group ID. The group ID of a new message
queue is set to the effective group ID of the process. (Pages 77-78 of
APUE talk more about the user and group IDs.)

This difference in the setting of the group ID between the three types of Posix
IPC is strange. The group ID of a new file created by open is either the effec-
tive group ID of the process or the group ID of the directory in which the file is
created, but the TPC functions cannot assume that a pathname in the filesystem
is created for an IPC object.

If this flag and O_CREAT are both specified, then the function creates
a new message queue, semaphore, or shared memory object only if
it does not already exist. If it already exists, and if O_CREAT |
O_EXCL is specified, an error of EEXIST is returned.
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The check for the existence of the message queue, semaphore, or
shared memory object and its creation (if it does not already exist)
must be atomic with regard to other processes. We will see two simi-
lar flags for System V IPC in Section 3.4.

This flag makes a message queue nonblocking with regard to a read
on an empty queue or a write to a full queue. We talk about this
more with themg receive and mg_send functions in Section 5.4.

O_NONBLOCK

O_TRUNC If an existing shared memory object is opened read-write, this flag

specifies that the object be truncated to 0 length.

Figure 2.5 shows the actual logic flow for opening an IPC object. We describe what we
mean by the test of the access permissions in Section 2.4. Another way of looking at
Figure 2.5 is shown in Figure 2.6.

OK
start here create new object
T no
-
. yes error return,
system tables full? | —— orr IN—
new object A s
is created 1 ¥
does object no no error return,
3 O_CREAT set ? ——- ’
already exisk ? - - errno = ENOENT
A
yes
P
are both ©_CREAT yes error return,
and O_EXCT. set ? ®  errnc = EEXIST
existing
object is ¢ no
referenced X
are the access no error return,
permissions OK ? errnc = EACCES
b
OK

Figure 25 Logic for vpening or creating an TPC object,

oflag argument Obiject does not exist Object already exists

no special flags
G_CREAT
G_CREAT | G_EXCL

error, errne = ENOENT
OK, creates new object
OK, creates new object

OK, references existing object
OK. references existing object
errof, errnc = EEXIST

Figure 2.6 Logic for creating or opening an IPC object.
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Note that in the middle line of Figure 2.6, the O_ CREAT flag without O_EXCL, we do not
get an indication whether a new entry has been created or whether we are referencing
an existing entry.

IPC Permissions

A new message queue, named semaphore, or shared memory object is created by
me_cpern, sem_cper, of shm_open when the oflag argument contains the O_CREAT
flag. As noted in Figure 2.4, permission bits are associated with each of these forms of
IPC, similar to the permission bits associated with a Unix file.

When an existing message queue, semaphore, or shared memory object is opened
by these same three functions (either O_CREAT is not specified, or O_CREAT is specified
without O_EXCL and the object already exists), permission testing is performed based
on

the permission bits assigned to the IPC object when it was created,
the type of access being requested (0_RDONLY, O_WRONLY, or O_RDWR), and

the effective user ID of the calling process, the effective group ID of the calling
process, and the supplementary group IDs of the process (if supported).

The tests performed by most Unix kernels are as follows:

1. If the effective user ID of the process is 0 (the superuser), access is allowed.

2. If the effective user ID of the process equals the owner ID of the IPC object: if the

appropriate user access permission bit is set, access is allowed, else access is
denied.

By appropriate access permission bif, we mean if the process is opening the IPC
object for reading, the user-read bit must be on. If the process is opening the
IPC object for writing, the user-write bit must be on.

3. If the effective group ID of the process or one of the supplementary group IDs of
the process equals the group ID of the IPC object: if the appropriate group
access permission bit is set, access is allowed, else permission is denied.

4. If the appropriate other access permission bit is set, access is allowed, else per-
mission is denied.

These four steps are tried in sequence in the order listed. Therefore, if the process owns
the IPC cbject (step 2), then access is granted or denied based only on the user access
permissions—the group permissions are never considered. Similarly, if the process
does not own the IPC object, but the process belongs to an appropriate group, then
access is granted or denied based only on the group access permissions—the other per-
missions are not considered.
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We note from Figure 2.3 that sem_open does nol use the 0_RDONLY, O_WRONLY, ot C_RDWR
flag. We note in Section 10.2, however, that some Unix implementations assume O_RDWE, since
any use of a semaphore involves reading and writing the semaphore value.

2.5 Summary

The three types of Posix IPC—message queues, semaphores, and shared memory—are
identified by pathnames. But these may or may not be real pathnames in the filesystem,
and this discrepancy can be a portability problem. The solution that we employ
throughout the text is to use our own px_ipc._name function.

When an IPC object is created or opened, we specify a set of flags that are similar to
those for the open function. When a new TPC object is created, we must specify the per-
missions for the new object, using the same S_xxx constants that are used with open
(Figure 2.4). When an existing IPC object is opened, the permission testing that is per-
formed is the same as when an existing file is opened.

Exercises
21 In what way do the set-user-ID and set-group-ID bits (Section 4.4 of APUE) of a program
that uses Posix IPC affect the permission testing described in Section 2.47

22 When a program opens a Posix IPC object, how can it determine whether a new object was
created or whether it is referencing an existing object?
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System V IPC

Introduction

The three types of IPC,

* System V message queues (Chapter 6),
¢ System V semaphores (Chapter 11), and
¢ System V shared memory (Chapter 14)

are collectively referred to as “System V IPC.” This term is commonly used for these
three IPC facilities, acknowledging their heritage from System V Unix. They share
many similarities in the functions that access them, and in the information that the ker-
nel maintains on themn. This chapter describes all these common properties.

A summary of their functions is shown in Figure 3.1.

P::ﬁiff: Semaphores j\l;a:zfy
Header <sys/msg.h> | <sys/sem.h> | <sys/shm.h>
Function to create or open msgget semget shmget
Function for control operations msgeotl semctl shmetl
Functions for [IPC operations msgsnd semop shmat

msgrcv shmdt

Figure 3.1 Summary of System V IPC functions.

Information on the design and development of the System V IPC functions js hard to find.
[Rochkind 1985] provides the following information: System V message queues, semaphores,
and shared memory were developed in the late 1970s at a branch laboratory of Bell

27
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3.2

Laboratories in Columbus, Ohio, for an internal version of Unix called (nut surprisingly)
"Columbus Unix” or just “CB Unix.” This version of Unix was used for “Operation Support
Systems,” transaction processing systems that automated telephone company administration
and recordkeeping. System V IPC was added to the commercial Unix system with System V
around 1983.

key t Keys and ftok Function

In Figure 1.4, the three types of System V IPC are noted as using key_t values for their
names. The header <sys/types.h> defines the key_t datatype, as an integer, nor-
mally at least a 32-bit integer. These integer values are normally assigned by the ftok
function.

The function ftok converts an existing pathname and an integer identifier into a
key_t value (called an IPC key).

#include <sys/ipc.h>

key_t frok{const char *pathuame, int id):

Returns: IPC key if OK, —1 on error

This function takes information derived from the pathname and the low-order 8 bits of
id, and combines them into an integer IPC key.

This function assumes that for a given application using System V IPC, the server
and clients all agree on a single pathname that has some meaning to the application. Tt
could be the pathname of the server daemon, the pathname of a common data file used
by the server, or some other pathname on the system. If the client and server need only
a single IPC channel between them, an id of one, say, can be used. If multiple IPC chan-
nels are needed, say one from the client to the server and another from the server to the
client, then one channel can use an id of one, and the other an id of two, for example.
Once the pathname and id are agreed on by the client and server, then both can call the
ftok function to convert these into the same IPC key.

Typical implementations of £tok call the stat function and then combine

1. information about the filesystem on which pathname resides (the st_dev mem-
ber of the stat structure),

2. the file's i-node number within the filesystem (the st_ino member of the stat
structure), and

3. the low-order 8 bits of the #d.

The combination of these three values normally produces a 32-bit key. No guarantee
exists that two different pathnames combined with the same, id generate different keys,
because the number of bits of information in the three items just listed (filesystern iden-
tifier, i-node, and id) can be greater than the number of bits in an integer. (See Exer-
cise 3.5.)
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The i-node number is never 0, so most implementations define TPC_PRTIVATE (which we
describe in Section 3.4) to be (.

If the pathname does not exist, or is not accessible to the calling process, ftok
returns —1. Be aware that the file whose pathnarme is used to generate the key must not
be a file that is created and deleted by the server during its existence, since each time it
is created, it can assume a new i-node number that can change the key returned by
ftok to the next caller.

Example

"The program in Figure 3.2 takes a pathname as a command-line argument, calls stat,
calls ftok, and then prints the st_dev and st_inoc members of the stat structure,
and the resulting IPC key. These three values are printed in hexadecimal, so we can eas-
ily see how the IPC key is constructed from these two values and our id of 0x57.

- svipc| ftok.c
1 #include "unpipc.h"
2 int
3 main(int argc, char **argv)
4 {
5 struct stat stat;
6 if {(argc !'= 2)
7 err_guit {("usage: ftck <pathname>");
8 Stat (argv[l], &stat):
9 printf("st_dev: %1x, st_ino: %1x, key: %x\n",
10 {(u_long) stat.st _dev, {(u_long) stat.st_ino,
11 Ftoklargv[l], O0x57));
12 exit(0);
13 } .
svipe/flok.c

Figure 3.2 Obtain and print filesystem information and resulting TPC key.

Executing this under Solaris 2.6 gives us the following:

solaris % ftck fetc/system

st_dev: 800018, st_ino: 4alk, key: 57018alb
sclaris % frok fusr/tmp

st_dev: B00015, st_ino: 10b78, key: 57015b78
svlaris % ftok /home/rstevens/Mall.cut
st_dev: B0001f, st_ino: 3b03, key: 5701fb03

Apparently, the id is in the upper 8 bits, the low-order 12 bits of st_dev in the next
12 bits, and the low-order 12 bits of st_ino in the low-order 12 bits.

Our purpose in showing this example is not to let us count on this combination of
information to form the IPC key, but to let us see how one implementation combines the
pathname and id. Other implementations may do this differently.

FreeBSD uses the lower 8 bits of the id, the lower 8 bits of st_dev, and the lower 16 bits of
st_ino.
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Note that the mapping done by ftok is one-way, since some bits from st_dev and st_ine
are not used. That is, given a key, we cannot determine the pathname that was used to create
the key.

33 ipc perm Structure

The kernel maintains a structure of information for each IPC object, similar to the infor-
mation it maintains for files.

struct ipc_perm {

uid_t uid; /* ovmer’s user id =/

gid_t gid; /* cwner's group id */

uid_t cuid; /¥ creator’s user id */

gid t cgid; /% creator’s group id */

mode_t mode; /% read-write permissions */
ulcng_t  seq; /* slot usage sequence number */
key t key; /* IPC key */

};

This structure, and other manifest constants for the System V IPC functions, are defined
in the <sys/ipc.h> header. We talk about all the members of this structure in this
chapter.

3.4 Creating and Opening IPC Channels

The three get XXX functions that create or open an IPC object (Figure 3.1) all take an
IPC key value, whose type is key_t, and return an integer identifier. This identifier is
not the same as the id argument to the ftok function, as we see shortly. An application
has two choices for the key value that is the first argument to the three get XXX func-
tions:

1. call ftck, passing it a pathname and id, or

2. specify a key of TPC_PRIVATE, which guarantees that a new, unique IPC object
is created.

The sequence of steps is shown in Figure 3.3,

char *pathname_

frok() ]‘*"Gy__

int id t ey
msgget {) int idmtiﬁer |msgct1 (), msgsndi{), msgrcv()
key of 1PC_PRIVATE | S€mget () wisemctl(), semop()
— » shmget () shmctl (), shmat{), shmdt{)
open or create access IPC channel
IPC channel

Figure 3.3 Generating IPC identifiers from IPC keys.
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All three get XXX functions (Figure 3.1} also take an oflag argument that specifies the
read—write permission bits (the mocde member of the ipc_perm structure) for the IPC
object, and whether a new IPC object is being created or an existing one is being refer-
enced. The rules for whether a new IPC object is created or whether an existing one is
referenced are as follows:

 Specifying a key of IPC_PRIVATE guarantees that a unique IPC object is created.
No combinations of pathname and id exist that cause ftok to generate a key value
of TPC_PRIVATE.

s Sctting the TPC_CREAT bit of the oflag argument creates a new entry for the
specified key, if it does not already exist. If an existing entry is found, that entry
is returned.

» Setting both the TPC_CREAT and TPC_EXCL bits of the oflag argument creates a
new entry for the specified key, only if the entry does not already exist. If an
existing entry is found, an error of EEXIST is returned, since the IPC object
already exists.

The combination of TPC_CREAT and TPC_EXCL with regard to IPC objects is
similar to the combination of C_CREAT and O_EXCL with regard to the open
function.

Setting the TPC_EXCL bit, without setting the TPC_CREAT bit, has no meaning.

The actual logic flow for opening an IPC object is shown in Figure 3.4. Figure 3.5 shows
another way of looking at Figure 3.4.

Note that in the middle line of Figure 3.5, the TPC_CREAT flag without TPC_EXCL,
we do not get an indication whether a new entry has been created or whether we are
referencing an existing entry. In most applications, the server creates the IPC object and
specifies either TPC_CREAT (if it does not care whether the object already exists) or
IPC_CREAT | IPC_EXCL (if it needs to check whether the object already exists). The
clients specify neither flag (assuming that the server has already created the object).

The System V IPC functions define their own IPC_xxx constants, instead of using the
0_CREAT and O_FEXCL constants that are used by the standard open function along with the
Posix [PC functions (Figure 2.3).

Also note that the System V IPC functions combine their TPC_xxx constants with the permis-
sion bits (which we describe in the next section) into a single oflag argument. The cpen func-
tion along with the Posix 1PC functions have one argument named offag that specifies the
various 0_xxx flags, and another argument named mode that specifies the permission bits.
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OK
create new entry
start here return identifier
r
= P LYEs 1 9 yes error return,
key TPC_PRIVATE system tables full ? erroo = ENOSEC
new entry es
is created ne ¥
. no no error return,
t? =
does key already exis IPC_CREAT set 7 B o = e
“
yes
a y
are both IPC_CREAT yes error return,
and IPC_EXCL set ? errno = BEXIST
existing
entry is g no
referenced \
are the access no error returmn,
permissions OK ? errnc = EACCES
-
l yes
QK
return identifier
Figure 3.4 Logic for creating or opening an IPC object.
oflag argument key does not exist key already exists
no special flags error, errne = ENCENT | OK, references existing object
1PC_CREAT OK, creates new entry | OK, references existing object
IPC_CREAT | IPC_EXCL OK, creates new entry €rror, errno = EEXIST
Figure 3.5 Logic for creating or upening an IPC channel.
3.5 IPC Permissions

Whenever a new IPC object is created using one of the get XXX functions with the
IPC_CREAT flag, the following information is saved in the ipc_perm structure (Sec-

tion 3.3):

1. Some of the bits in the oflag argument initialize the mode member of the
ipc_perm structure. Figure 3.6 shows the permission bits for the three different
IPC mechanisms. (The notation >> 3 means the value is right shifted 3 bits.)



Section 3.5

IPC Permissions 33

Symbolic values
MNumeri Message Shared .

i wssag Semaphore Description
(octal) queue memory
0400 MSG_R SEM_R SHM_R read by user
0200 MSG_W SEM_A SHM_W write by user
0040 MSG R >» 3 | SEM R >> 3 | SHM_R >> 3 | read by group
0020 MSG_W »>> 3 | SEM & >> 3 | SHM W >> 3 | write by group
0004 MSG R >> 6 | SEM R »> 6 | SHM_R »> 6 | read by others
o002 MSG W »>> 6 | SEMA »> 6 | SHM W >» € | write by others

Figure 3.6 mode values for IPC read-write permissions.

2. The two members cuid and cgid are set to the effective user ID and effective

group 1D of the calling process, respectively. These two members are called the
creator IDs,

The two members uid and gid in the ipc_perm structure are also set to the
effective user ID and effective group ID of the calling process. These two memn-
bers are called the cwner IDs.

The creator IDs npever change, although a process can change the owner IDs by calling
the ct1XXX function for the IPC mechanism with a command of TPC_SET. The three

ct1XXX functions also allow a process to change the permission bits of the mode mem-
ber for the IPC object.

Most implementations define the six constants MSG_R, MSG_W, SEM_R, SEM_A, SHM_R, and
SHM_W shown in Figure 3.6 in the <sys/msg. h>, <sys/sem. h>, and <sys/shm. h> headers.
But these are not required by Unix 98. The suffix & in SEM_A stands for “alter.”

The three get XXX functions do not use the normal Unix file mode creation mask. The permis-
sions of the message queue, semaphore, or shared memory segment are set to exactly what the
function specifies.

Posix IPC does not let the creator of an IPC object change the owner. Nothing is like the
IPC SET command with Posix IPC. But if the Posix IPC name is stored in the filesystem, then
the superuser can change the owner using the chown command.

Two levels of checking are done whenever an IPC object is accessed by any process,
once when the IPC object is opened (the get XXX function) and then each time the IPC
object is used:

1.

Whenever a process establishes access to an existing IPC object with one of the
get XXX functions, an initial check is made that the caller’s oflag argument does
not specify any access bits that are not in the mode member of the ipc_perm
structure. This is the bottom box in Figure 3.4. For example, a server process
can set the mode member for its input message queue so that the group-read
and other-read permission bits are off. Any process that tries to specify an oflag
argument that includes these bits gets an error return from the msgget function.
But this test that is done by the get XXX functions is of little use. It implies that
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the caller knows which permission category it falls into—user, group, or other.
If the creator specifically turns off certain permission bits, and if the caller speci-
fies these bits, the error is detected by the get XXX function. Any process, how-
ever, can totally bypass this check by just specifying an oflag argument of 0 if it
knows that the I'C object already exists.

2. Every IPC operation does a permission test for the process using the operation.
For example, every time a process tries to put a message onto a message queue
with the msgsnd function, the following tests are performed in the order listed.
As soon as a test grants access, no further tests are performed.

a. The superuser is always granted access.

b. If the effective user ID equals either the uid value or the cuid value for the
IPC object, and if the appropriate access bit is on in the mode member for the
IPC object, permission is granted. By “appropriate access bit,” we mean the
read-bit must be set if the caller wants to do a read operation or the IPC
object {receiving a message from a message queue, for example), or the
write-bit must be set for a write operation.

c. If the effective group ID equals either the gid value or the cgid value for
the IPC object, and if the appropriate access bit is on in the mode member for
the IPC object, permission is granted.

d. If none of the above tests are true, the appropriate “other” access bit must be
on in the mode member for the IPC object, for permission to be allowed.

Identifier Reuse

The ipc_perm structure (Section 3.3) also contains a variable named seq, which is a
slot usage sequence number. This is a counter that is maintained by the kernel for every
potential IPC object in the system. Every time an IPC object is removed, the kernel
increments the slot number, cycling it back to zero when it overflows.

What we are describing in this section is the common SVR4 implementation. This implemen-
tation technique is not mandated by Unix 98.

This counter is needed for two reasons. First, consider the file descriptors main-
tained by the kernel for open files. They are small integers, but have meaning only
within a single process—they are process-specific values. If we try to read from file
descriptor 4, say, in a process, this approach works only if that process has a file open on
this descriptor. It has no meaning whatsoever for a file that might be open on file
descriptor 4 in some other unrelated process. System V IPC identifiers, however, are
systemwide and not process-specific.

We obtain an IPC identifier (similar to a file descriptor) from one of the get func-
tions: msgget, semget, and shmget. These identifiers are also integers, but their
meaning applies to all processes. If two unrelated processes, a client and server, for
example, use a single message queue, the message queue identifier returned by the
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megget function must be the same integer value in both processes in order to access the
same message queue, This feature means that a rogue process could try to read a mes-
sage from some other application’s message queue by trying different small integer
identifiers, hoping to find one that is currently in use that allows world read access. If
the potential values for these identifiers were small integers (like file descriptors), then
the probability of finding a valid identifier would be about 1 in 50 (assuming a maxi-
mum of about 50 descriptors per process).

To avoid this problem, the designers of these IPC facilities decided to increase the
possible range of identifier values to include all integers, not just small integers. This
increase is implemented by incrementing the identifier value that is returned to the call-
ing process, by the number of IPC table entries, each time a table entry is reused. For
example, if the system is configured for a maximum of 50 message queues, then the first
time the first message queue table entry in the kernel is used, the identifier returned to
the process is zero. After this message queue is removed and the first table entry is
reused, the identifier returned is 50. The next time, the identifier is 100, and so on.
Since seq is often implemented as an unsigned long integer (see the ipc_perm struc-
ture shown in Section 3.3), it cycles after the table entry has been used 85,899,346 times
@* /50, assuming 32-bit long integers).

A second reason for incrementing the slot usage sequence number is to avoid short
term reuse of the System V IPC identifiers. This helps ensure that a server that prema-
turely terminates and is then restarted, does not reuse an identifier.

As an example of this feature, the program in Figure 3.7 prints the first 10 identifier
values returned by msgget.

svmsg | slot.c

1 #include "unpipc.h”

2 int

3 main(int arge, char **argv}

4 {

5 int i, msgid;

[} for (i = 0; i < 10; i++} {

7 msgid = Msgget (IPC_PRIVATE, SVMSG MODE | IPC CREAT);
8 printf{'mggid = %d\n", msqgid);

9 Megetl (msgid, IPC_RMID, NULL):
1o }
11 exit{0);
12}

sumsg {slot.c

Figure 3.7 Print kernel assigned message queue identifier 10 times ina row.

Each time around the loop msgget creates a message queue, and then msgetl with a
command of IPC_RMID deletes the queue. The constant SVMSG_MCDE is defined in our
unpipc . h header (Figure C.1) and specifies our default permission bits for a System V
message queue. The program’s output is

solaris % slot

megid = 0

msgid = 50
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msgid = 100
magid = 150
msgid = 200
msgid = 250
msgid = 300
msgid = 350
msgid = 400
msgid = 450

3.7

3.8

If we run the program again, we see that this slot usage sequence number is a kernel
variable that persists between processes.

solaris % slot

msgid = 500
msgid = 550
msgid = 600
megid = 650
megid = 700
megid = 750
msgid = &C00
nsgid = B50
megid = 900
msgild = 950

ipcs and ipcrm Programs

Since the three types of System V IPC are not identified by pathnames in the filesystem,
we cannot look at them or remove them using the standard 1s and rm programs.
Instead, two special programs are provided by any system that implements these types
of IPC: ipcs, which prints various pieces of information about the System V IPC fea-
tures, and ipcrm, which removes a System V message queue, semaphore set, or shared
memory segment. The former supports about a dozen command-line options, which
affect which of the three types of IPC is reported and what information is output, and
the latter supports six command-line options. Consult your manual pages for the
details of all these options.

Since System V IPC is not part of Posix, these two commands are not standardized by Posix.2.
But these two commands are part of Unix 98.

Kernel Limits

Most implementations of System V IPC have inherent kernel limits, such as the maxi-
mum number of message queues and the maximum number of semaphores per
semaphore set. We show some typical values for these limits in Figures 6.25, 11.9, and
14.5. These limits are often derived from the original System V implementation.

Section 11.2 of [Bach 1986] and Chapter 8 of [Goodheart and Cox 1944] both describe the
System V implementation of messages, semaphores, and shared memory. Some of these limits
are described therein.
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Unfortunately, these kernel limits are often too small, because many are derived
from their original implementation on a small address system (the 16-bit PDP-11). For-
tunately, most systems allow the administrator to change some or all of these default
limits, but the required steps are different for each flavor of Unix. Most require reboot-
ing the running kernel after changing the values. Unfortunately, some implementations
still use 16-bit integers for some of the limits, providing a hard limit that cannot be
exceeded.

Solaris 2.6, for example, has 20 of these limits. Their current values are printed by
the sysdef command, although the values are printed as 0 if the corresponding kernel
module has not been loaded (i.e., the facility has not yet been used). These may be
changed by placing any of the following statements in the /ete/systemn file, which is
read when the kernel bootstraps.

det. msgays:meginfo_msgseg = value
set msgsys:meginfo_msgssz = value
set msgsys:msginfo_msgtgl = value
set msgays:meginfo_msgmap = value
set msgsys:msginfo_mggmax = value
set msgsys:maginfo_mggmnb = value
set msgsys:meginfo msgmni = wvalue

set. semgys:seminfo_semopm = value
set semgys:seminfo_gemume = value
set semsys:seminfo_semaem = value
set semsys:seminfo_semmap = wvalue
set semsys:seminfo semvmx = wvalue
set semsys:seminfo_semmsl = twnlue
set semsys:seminfo_semmni = vafue
set semsys:seminfo_semmns = value
set semsys:seminfo_gemmnu = wvalue

set shmsys:shminfo_shmmin = value
set shmsys:shminfo shmseg = value
set shmsys:shminfo shmmax = vafue
set ghmsys:shminfo shmmni = value

The last six characters of the name on the left-hand side of the equals sign are the vari-
ables listed in Figures 6.25, 11.9, and 14.5.

With Digital Unix 4.0B, the sysconfig program can query or modify many kernel
parameters and limits. Here is the output of this program with the -g option, which
queries the kernel for the current limits, for the ipe subsystem. We have omitted some
lines unrelated to the System V IPC facility.

alpha % /sbin/sBysconfig -gq ipc
ipc:

nsg-max = 8192

mag-mnb = 16384

msg-mni = 64
msg-tgl = 40
shm-max = 4154304
shm-min = 1
shm-mni = 128
shm-seg = 32
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sem-mni = 16
sem-msl = 25
sem-opm = 10
sem-ume = 10
sem-vmx = 32767
sem—aem = 16384
num-of-sems = 60
Different defaults for these parameters can be specified in the /etc/sysconfigtab
file, which should be maintained using the sysconfigdb program. This file is read
when the system bootstraps.
3.9 Summary

The first argument to the three functions, msgget, semget, and shmget, is a System \%
IPC key. These keys are normally created from a pathname using the system’s ftok
function. The key can also be the special value of TPC_PRIVATE. These three functions
create a new IPC object or open an existing IPC object and return a System V IPC identi-
fier: an integer that is then used to identify the object to the remaining IPC functions.
These integers are not per-process identifiers (like descriptors) but are systemwide iden-
tifiers. These identifiers are also reused by the kernel after some time.

Associated with every System V IPC object is an ipe._perm structure that contains
information such as the owner’s user ID, group ID, read-write permissions, and so on.
One difference between Posix IPC and System V IPC is that this information is always
available for a System V IPC object (by calling one of the three XXXct1 functions with
an argument of TPC_STAT), but access to this information for a Posix IPC object
depends on the implementation. If the Posix IPC object is stored in the filesystem, and
if we know its name in the filesystem, then we can access this same information using
the existing filesystem tools.

When a new System V IPC object is created or an existing object is opened, two
flags are specified to the get XXX function (TPC_CREAT and IPC_EXCL), combined
with nine permission bits.

Undoubtedly, the biggest problem in using System V IPC is that most implementa-
tions have artificial kernel limits on the sizes of these objects, and these limits date back
to their original implementation. These mean that most applications that make heavy
use of System V IPC require that the system administrator modify these kernel limits,
and accomplishing this change differs for each flavor of Unix.

Exercises

3.1 Read about the msgctl function in Section 6.5 and modify the program in Figure 3.7 to
print the seq member of the ipc_perm structure in addition to the assigned identifier.
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3.5

3.6

Immediately after running the program in Figure 3.7, we run a program that creates two
Inessage quettes. Assuming no other message quenes have been used by any other applica-
tions since the kernel was booted, what two values are returned by the kernel as the mes-
sage queue identifiers?

We noted in Section 3.5 that the System V IPC get XXX functions do not use the file mode
creation mask Wrile a test program that creates a FIFO (using the mkfifo function
described in Section 4.6) and a System V message queue, specifying a permission of (octal)
666 for both. Compare the permissions of the resulting FIFO and message queue. Make
certain your shell umask value is nonzero before running this program.

A server wants to create a unique message queue for its clients. Which is preferable—using
some constant pathname (say the server’s executable file) as an argument to ftok, or using
IPC_PRIVATE?

Modify Figure 3.2 to print just the IPC key and pathname. Run the find program to print
all the pathnames on your system and run the output through the program just modified.
How many pathnames map to the same key?

If your system supports the sar program (“system activity reporter”), run the command
sar -m 5 6

This prints the number of message queue operations per second and the number of
semaphore operations per second, sampled every 5 seconds, 6 times.
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4.2

Pipes and FIFOs

Introduction

Pipes are the original form of Unix IPC, dating back to the Third Edition of Unix in 1973
[Salus 1994]. Although useful for many operations, their fundamental limitation is that
they have no name, and can therefore be used only by related processes. This was cor-
rected in System III Unix (1982) with the addition of FIFOs, sometimes called named
pipes. Both pipes and FIFOs are accessed using the normal read and write functions.

Technically, pipes can be used between unrelated processes, given the ability to pass descrip-
tors between processes (which we describe in Section 15.8 of this text as well as Section 14.7 of
UNPv1). But for practical purposes, pipes are normally used between processes that have a
common ancestor.

This chapter describes the creation and use of pipes and FIFOs. We use a simple file
server example and also look at some client—server design issues: how many TPC chan-
nels are needed, iterative versus concurrent servers, and byte streams versus message
interfaces.

A Simple Client-Server Example

The client-server example shown in Figure 4.1 is used throughout this chapter and
Chapter 6 to illustrate pipes, FIFOs, and Systern V message queues.

The client reads a pathname from the standard input and writes it to the IPC chan-
nel. The server reads this pathname from the IPC channel and tries to open the file for
reading. If the server can open the file, the server responds by reading the file and writ-
ing it to the IPC channel; otherwise, the server responds with an error message. The

43
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pathname s_ta‘:_n.. ___pathname .
. client file contents server -
file contents --s———j — e
stdont Or error message

OF £LToT message

Figure 43 Client-server example.

client then reads from the IPC channel, writing what it receives to the standard output.
I the file cannot be read by the server, the client reads an error message from the IPC
channel. Otherwise, the client reads the contents of the file. The two dashed lines
between the client and server in Figure 4.1 are the IPC channel.

Pipes

Pipes are provided with all flavors of Unix. A pipe is created by the pipe function and
provides a one-way (unidirectional) flow of data.

#include <unistd.h>

int pipe(int fdf2]);

Returns: 0 if OK, -1 on error

Two file descriptors are returned: fd{0], which is open for reading, and fdl1], which is
open for writing,.

Some versions of Unix, notably SVR4, provide full-duplex pipes, in which case, both ends are
available for reading and writing. Another way to create a full-duplex IPC channel is with the
socketpair function, described in Scction 14.3 of UNPv1, and this works on most current
Unix systems. The most common use of pipes, however, is with the various shells, in which
case, a half-duplex pipe is adequate.

Posix.1 and Unix 98 require only half-duplex pipes, and we assume so in this chapter.

The S_TSFIFC macro can be used to determine if a descriptor or file is either a pipe
or a FIFO. Its single argument is the st_mode member of the stat structure and the
macro evaluates to true (nonzero) or false (0). For a pipe, this structure is filled in by the
farat function. For a FIFQO, this structure is filled in by the £stat, lstat, or stat
functions.

Figure 4.2 shows how a pipe looks in a single process.

Although a pipe is created by one process, it is rarely used within a single process.
(We show an example of a pipe within a single process in Figure 5.14.) Pipes are typi-
cally used to communicate between two different processes (a parent and child) in the
following way. First, a process (which will be the parent) creates a pipe and then forks
to create a copy of itself, as shown in Figure 4.3.
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process

fifo]

fdi1l

kernel

— flow of data —

Figure 42 A pipe in a single process.

parent child
fork

fafo1 fifo1
fif1]

far1]

kernel

— flow of data —

Figure 4.3 Fipein a single process, immediately after fork.

Next, the parent process closes the read end of one pipe, and the child process closes the
write end of that same pipe. This provides a one-way flow of data between the two pro-

cesses, as shown in Figure 4.4.

parent child

E il

fdio}

faf1i

— flow of data —

Figure 44 Pipe between two processes.

When we enter a command such as

who | sort | 1p

to a Unix shell, the shell performs the steps described previously to create three
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processes with two pipes between them. The shell also duplicates the read end of each
pipe to standard input and the write end of each pipe to standard output. We show this

pipeline in Figure 4.5.

who process sort process 1p process

stdotit stdout

stdin

— flow of data —» -3 flow of data -»

Figure 4.5 Tipes between three processes in a shell pipeline.

All the pipes shown so far have been half-duplex or unidirectional, providing a one-
way flow of data only. When a two-way flow of data is desired, we must create two

pipes and use one for each direction. The actual steps are as follows:

create pipe 1 (fd1{0] and fil1[1]), create pipe 2 { fd2[0] and f2{1]),
fork,

parent closes read end of pipe 1 ( f71[0}),

parent closes write end of pipe 2 ( fd2{1]),

child closes write end of pipe 1 (fd1/1]), and

child closes read end of pipe 2 { fd2[0]).

ARG ol o

We show the code for these steps in Figure 4.8. This generates the pipe arrangement

shown in Figure 4.6.

parent child

Process

— flow of data —

« flow of data «

Figure 4.6 Two pipes to provide a bidirectional flow of data.
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Example

Let us now implement the client-server example described in Section 4.2 using pipes.
The main function creates two pipes and forks a child. The client then runs in the par-
ent process and the server runs in the child process. The first pipe is used to send the
pathname from the client to the server, and the second pipe is used to send the contents
of that file {or an error message) from the server to the client. This setup gives us the
arrangement shown in Figure 4.7.

parent child

stdin thname
pathname ——— ] e
client . server
file contents - 4-pipe -
stdout

or error message file contents or error message

Figure 4.7 Implementation of Figure 4.1 using two pipes.

Realize that in this figure we show the two pipes connecting the two processes, but each
pipe goes through the kernel, as shown previously in Figure 4.6. Therefore, each byte of
data from the client to the server, and vice versa, crosses the user—kernel interface twice:
onge when written to the pipe, and again when read from the pipe.

Figure 4.8 shows our main function for this example.

ipe [ mainpipe.c
1 #include "unpipc.h* pp / P
2 wveid client{int, int}, server(int, int);
3 int
4 main({int arge, char **argv)
5 {
[ int pipel[2], pipe2[2];:
7 pid_t childpid;
8 Pipe(pipel); /* create two pipes */
9 Pipe(pipe2) ;
10 if {( (childpid = Ferk(})) == 0} [ /* child */
11 Close{pipell[l]};
12 Close{pipe2[0]);
13 server (pipel[0], pipe2[1]};
14 exit(0);
15 }
i6 /* parent */
17 Close (pipel [0]);
18 Cleose (pipeZ[1]);
i9% client (pipe2[C], pipell[l]);
20 Waitpid{childpid, NULL, 0); /* wait for child toc terminate */
21 exit (0);
22 } . ..
pipe|mainpipe.c

Figure 4.8 main function for client-server using two pipes.
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Create pipes, fork

Two pipes are created and the six steps that we listed with Figure 4.6 are performed.
The parent calls the client function (Figure 4.9) and the child calls the server func-
tion (Figure 4.10).

waitpid for child

The server (the child) terminates first, when it calls exit after writing the final data
to the pipe. It then becomes a zombie: a process that has terminated, but whose parent is
still running but has not yet waited for the child. When the child terminates, the kernel
also generates a STGCHLD signal for the parent, but the parent does not catch this signal,
and the default action of this signal is to be ignored. Shortly thereafter, the parent’s
client function returns after reading the final data from the pipe. The parent then
calls waitpid to fetch the termination status of the terminated child (the zombie). If
the parent did not call waitpid, but just terminated, the child would be inherited by
the init process, and another SIGCHLD signal would be sent to the init process,
which would then fetch the termination status of the zombie.

The client function is shown in Figure 4.9.

1 #include "unpipc.h" plpe/chent.c
2 void
3 client(int readfd, int writefd)
4 {
5 size t len;
3 ssize t n;
7 char buf f [MAXLINE] ;
8 /* read pathname */
9 Fgets{buff, MAXLINE, stdin);
10 len = strlen(buff); /* fgets{) guarantees null byte at end */
11 if {buff[len - 1] == *\n‘)
iz len--; /* delete newline from fgets() */
13 /* write pathname to IPC channel */
14 Write(writefd, buff, len):
15 /* read from IPC, write to standard cutput */
16 while ( {n = Read(readifd, buff, MAXLINE}) > 0}
17 Write(STDOUT _FILENO, buff, n);
18 }
pipe/client.c

Figured.9 client function for client-server using two pipes.

Read pathname from standard input

The pathname is read from standard input and written to the pipe, after deleting
the newline that is stored by fgets.

Copy from pipe to standard output
The client then reads everything that the server writes to the pipe, writing it to
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standard output. Normally this is the contents of the file, but if the specified pathname
cannot be opened, what the server returns is an error message.

Figure 4.10 shows the server function.

- . pipe/server.c
1 #include "unpipc.h"
2 void
3 server (int readfd, int writefd)
4 (
5 int fd;
[ ssize_t n;
7 char buff [MAXLINE + 1]:
8 /* read pathname from IPC channel */
9 if { {n = Read(readfd, buff, MAXLINE)} == 0}
10 err_quit{"end-cf-file while reading pathname"):
11 buffn] = *\0'; /* null terminate pathname */
1z if ( (fd = open(buff, O RDONLY)}} < 0) (
13 /* errcor: must tell client */
14 snprintf{buff + n, sizecf(buff) - n, ": can‘t open, %s\n".
is strerror(errno));
16 n = strlen(buff);
17 Write{writefd, buff, n):
18 1 else {
19 /* open succeeded: copy file to IPC channel */
20 while { {n = Read(fd, buff, MAXLINE}} > 0}
21 Write(writefd, buff, nj};
22 Clese(£d) ;
23 }
24 }

pipe/server.c
Figure 410 server function for client—server using two pipes.

Read pathname from pipe

The pathname written by the client is read from the pipe and null terminated. Note
that a read on a pipe returns as soon as some data is present; it need not wait for the
requested number of bytes (MAXLINE in this example).

Open file, handle error

The file is opened for reading, and if an error occurs, an error message string is
returned to the client across the pipe. We call the strerror function to return the error
message string corresponding to errno. (Pages 690—691 of UNPv1 talk more about the
strerror function.)

Copy file to pipe
If the open succeeds, the contents of the file are copied to the pipe.

We can see the cutput from the program when the pathname is OK, and when an
eITOr OCCurs.
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scolaris % mainpipe

/etc/inet /ntp.conf a file consisting of troo lines
multicastclient 224.0.1.1

driftfile /etc/inet/ntp.drifc

solaris % mainpipe

/etc/shadow a file we cannot read
/etc/shadow: can‘t open, Permission denied

sclaris % mainpipe

/no/such/file @ nonexistent file
/no/such/file: can‘t cpen, No such file or directory

Full-Duplex Pipes

We mentioned in the previous section that some systems provide full-duplex pipes:
SVR4's pipe function and the socketpair function provided by many kernels. But
what exactly does a full-duplex pipe provide? First, we can think of a half-duplex pipe
as shown in Figure 4.11, a modification of Figure 4.2, which omits the process.

fuli} E—I — half-duplex pipe — ]_re£> f20]

Figure 4.11 Half-duplex pipe.

A full-duplex pipe could be implemented as shown in Figure 4.12. This implies that
only one buffer exists for the pipe and everything written to the pipe (on either descrip-
tor) gets appended to the buffer and any read from the pipe (on either descriptor) just
takes data from the front of the buffer.

write read
Al g— ™ full-duplex pipe E—— ]
read write

Figure 4.12 One possible (incorrect) implementation of a full-duplex pipe.

The problem with this implementation becomes apparent in a program such as Fig-
ure A29. We want two-way communication but we need two independent data
streams, one in each direction. Otherwise, when a process writes data to the full-duplex
pipe and then turns around and issues a read on that pipe, it could read back what it
just wrote.

Figure 4.13 shows the actual implementation of a full-duplex pipe.

write — half-duplex pipe — Tead
I e el fdi01
~eag—| ¢ half-duplex pipe « ite

Figure 413 Actual implementation of a full-duplex pipe.

Here, the full-duplex pipe is constructed from two half-duplex pipes. Anything written
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to fdl1] will be available for reading by fdl0], and anything written to fd[0] will be avail-
able for reading by fd[1].

The program in Figure 4.14 demonstrates that we can use a single full-duplex pipe
for two-way communication.

1 #include "unpipc.hr ptpeffduplex.c
2 int
3 main({int argc, char **argv)
4 (
5 int fd[2], n:
[} char C;
7 pid_t childpid;
8 Pipe(fd): /* assumes a full-duplex pipe {(e.g., SVR4) */
9 if ( (childpid = Fork{}) == C)} { /* child =/
10 sleep({3);
11 if { {n = Read(£d[0], &c, 1)) != 1)
12 err_quit("child: read returned %d", n):
13 printf("child read %$c\n", c):
14 write(fd[C], "c", 1);
15 exit{0);
16 }
17 /* parent */
ig Write{fd[1l], "p"., 1}:
19 if ( {n = Read(fd[l]l, &c, 1)) != 1)
20 err_guit{"parent: read returned %d4d", n);
21 printf {"parent read %c\n", c);:
22 exit({0);
23 }
pipe/fduplex.c

Figure 414 Test a full-duplex pipe for two-way cormunication.

We create a full-duplex pipe and fork. The parent writes the character p to the
pipe, and then reads a character from the pipe. The child sleeps for 3 seconds, reads a
character from the pipe, and then writes the character c to the pipe. The purpose of the
sleep in the child is to allow the parent to call read before the child can call read, to see
whether the parent reads back what it wrote.

If we run this program under Solaris 2.6, which provides full-duplex pipes, we
observe the desired behavior.

gsolaris % fduplex
child read p
parent read c

The character p goes across the half-duplex pipe shown in the top of Figure 4.13, and
the character ¢ goes across the half-duplex pipe shown in the bottom of Figure 4.13.
The parent does not read back what it wrote (the character p).

If we run this program under Digital Unix 4.0B, which by default provides half-
duplex pipes (it also provides full-duplex pipes like SVR4, if different options are speci-
fied at compile time), we see the expected behavior of a half-duplex pipe.
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4.5

alpha % fduplex

read error: Bad file number
alpha % child read p

write error: Bad file number

The parent writes the character p, which the child reads, but then the parent aborts
when it tries to read from fid{1], and the child aborts when it tries to write to fdf0]
(recall Figure 4.11). The error returned by read is ERADF, which means that the
descriptor is not open for reading. Similarly, write returns the same error if its
descriptor is not open for writing.

popen and pclose Functions

As another example of pipes, the standard I/O library provides the popen function that
creates a pipe and initiates another process that either reads from the pipe or writes to
the pipe.

#include <stdio.h>
FILE *popen{const char *command, const char *fype) ;
Returns: file pointer if OK, NULL on error

int pclose(FILE *sfreqm) ;

Returns: termination status of shell or —1 on error

cormmand is a shell command line. It is processed by the sh program (normally a Bourne
shell), so the PATH environment variable is used to locate the command. A pipe is cre-
ated between the calling process and the specified cormmand. The value returned by
popen is a standard I/O FILE pointer that is used for either input or output, depend-
ing on the character string type.

s If type is r, the calling process reads the standard output of the command.
e If type is w, the calling process writes to the standard input of the command.

The pclose function closes a standard 1/0 stream that was created by popen, waits
for the command to terminate, and then returns the termination status of the shell.

Section 14.3 of AFUE provides an implementation of popen and pclose.

Example

Figure 4.15 shows another solution to our client-server example using the popen func-
tion and the Unix cat program,
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ipe mainpopen.c
1 #include "unpipc.h" PR Pop
2 int
3 main{int argc, char **argv)
4 {
5 size_t n;
6 char buff[MAXLINE], command[MAXLINE];
7 FILE *fp;
8 /* read pathname */
9 Fgets{buff, MAXLINE, stdin);
10 n = strlen(buff); /* fgets () guarantees null byte at end */
11 if (buff[n - 1] == '\n’)
1z n--; /* delete newline from fgets{) */
13 snprintf (command, sizeof {command), "cat %s", buff);
14 fp = Popen{command, "r");
15 /* copy from pipe to standard output */
16 while (Fgets(buff, MAXLINE, fp) != NULL)
17 Fputs{buff, stdout};
18 Pclose (Ep);
19 exit (0} ;
20 } . .
pipe/mainpopen.c

Figure 4.15 Client-server using popen.

The pathname is read from standard input, as in Figure 4.9. A command is built
and passed to popen. The output from either the shell or the cat program is copied to
standard output.

One difference between this implementation and the implementation in Figure 4.8
is that now we are dependent on the error message generated by the system’s cat pro-
gram, which is often inadequate. For example, under Solaris 2.6, we get the following
error when trying to read a file that we do not have permission to read:

sclaris % cat fetc/shadow
cat: cannot open /etc/shadow

But under BSD/OS 3.1, we get a more descriptive error when trying to read a similar
file:

bsdi % cat /etc/master.passwd
cat: /etc/master.passwd: cannot open [Permission denied]

Also realize that the call to popen succeeds in such a case, but fgets just returns an
end-of-file the first time it is called. The cat program writes its error message to stan-
dard error, and popen does nothing special with it—only standard output is redirected
to the pipe that jt creates.



54

Pipes and FIFOs Chapter 4

4.6

FIFOs

Pipes have no names, and their biggest disadvantage is that they can be used only
between processes that have a parent process in common. Two unrelated processes can-
not create a pipe between them and use it for [PC (ignoring descriptor passing).

FIFO stands for first in, first out, and a Unix FIFO is similar to a pipe. It is a one-way
(half-duplex) flow of data. But unlike pipes, a FIFO has a pathname associated with it,
allowing unrelated processes to access a single FIFO. FIFOs are also called named pipes.

A FIFQ is created by the mkfifo function.

#include <sys/types.h>
#include <sys/stat.h»

int mkfifo{const char *pathname, mode t mode) ;

Returns: 0if OK, -1 on error

The pathname is a normal Unix pathname, and this is the name of the FIFO.

The mode argument specifies the file permission bits, similar to the second argument
to open. Figure 2.4 shows the six constants from the <sys/stat.h> header used to
specify these bits for a FIFO.

The mkfifo function implies O_CREAT | O_EXCL. That is, it creates a new FIFO or
returns an error of EEXIST if the named FIFO already exists. If the creation of a new
FIFO is not desired, call open instead of mkfifo. To open an existing FIFO or create a
new FIFO if it does not already exist, call mkfifo, check for an error of EEXIST, and if
this occurs, call open instead.

The mkfifo command also creates a FIFO. This can be used from shell scripts or
from the command line.

Once a FIFO is created, it must be opened for reading or writing, using either the
open function, or one of the standard I/O open functions such as fopen. A FIFO must
be opened either read-only or write-only. It must not be opened for read-write, because
a FIFO is half-duplex.

A write to a pipe or FIFO always appends the data, and a read always returns
what is at the beginning of the pipe or FIFQO. If 1seek is called for a pipe or FIFO, the
error ESPIPE is returned.

Example

We now redo our client-server from Figure 4.8 to use two FIFOs instead of two pipes.
Our client and server functions remain the same; all that changes is the main func-
tion, which we show in Figure 4.16.

ipe fmainfifo.c
1 #include "unpipc.h” ppf:’f ﬁf

2 #define FIFO1 "/ftmp/fifo. 1"
3 #define FIFO2 "jtmp/fifo.2"

4 veoid client (int, int), server(int, int);
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5 int

6 main(int argc, char **argv)

7 {

8 int readfd, writefd;

S pid_t chilgpid;

10 /* Create two FIFCg:; OK if they already exist */

11 if ({mkfifo(FIFC1l, FILE MODE) < () && (errno !'= EEXIST))
12 err_sys("can't create %s", FIFOLl};

13 if {({mkfifo(FIFC2, FILE_MCDE} < 0) && (errno != EEXTST)) {
14 unlink{FIFQ1} ;

15 err_sys("can't create %s*, FIFC2);

16 }

17 if { (chilgpid = Fork(}} == 0} { /* chil@ */

18 readfd = Cpen(FIFC1l, O_RDONLY, 0}

19 writefd = Open(FIFCZ2, O WRONLY, 0):

20 server (readfd, writefd);

21 exit (0);

22 }

23 /* parent */

24 writefd = Cpen(FIFOl, O WRONLY, 0};

25 readfd = Open(FIFOZ, O_RDONLY, 0);

26 client (readfd, writefd);

27 Waitpid{childpid, NULL, 0); /* wait for child to terminate */
28 Close (readfd) ;

25 Close (writefd);

30 Unlink (FIFO1) ;

31 Unlink{FIFOZ} ;

32 exit(0);

i3 }

pipe{mainfifo.c

Figure 4.16 main function for our client-server that uses two FIFOs.

Create two FIFOs

10-16 Two FIFOs are created in the /tmp filesystem. If the FIFOs already exist, that is OK.
The FILE_MODE constant is defined in our unpipec . h header (Figure C.1) as

#define FILE_MODE (S_TRUSE | S_IWUSR | S_IRGRP | S_IROTH}
/* default permiggions for new files */

This allows user-read, user-write, group-read, and other-read. These permission bits are
modified by the file mode creation mask of the process.

fork

17-27 We call fork, the child calls our server function (Figure 4.10), and the parent calls
our client function (Figure 4.9). Before executing these calls, the parent opens the first
FIFO for writing and the second FIFO for reading, and the child opens the first FIFQ for
reading and the second FIFO for writing. This is similar to our pipe example, and Fig-
ure 4.17 shows this arrangement.
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parent child

toritefd | writefd |

/tp/fifo.l

— flow of data —»
/tmp/fifo.2

« flow of data «

Figure 4,17 Client-server example using two FIFOs.
The changes from our pipe example to this FIFO example are as follows:

* To create and open a pipe requires one call to pipe. To create and open a FIFO
requires one call to mkfifo followed by a call to open.

* A pipe automatically disappears on its last close. A FIFQ's name is deleted from
the filesystem only by calling unlink.

The benefit in the extra calls required for the FIFO is that a FIFO has a name in the file-
system allowing one process to create a FIFO and another unrelated process to open the
FIFO. This is not possible with a pipe.

Subtle problems can occur with programs that do not use FIFOs correctly. Consider
Figure 4.16: if we swap the order of the two calls to open in the parent, the program
does not work. The reason is that the open of a FIFO for reading blocks if no process
currently has the FIFO open for writing. If we swap the order of these two opens in the
parent, both the parent and the child are opening a FIFO for reading when no process
has the FIFO open for writing, so both block. This is called a deadlock. We discuss this
scenario in the next section.

Example: Unrelated Client and Server

In Figure 4.16, the client and server are still related processes. But we can redo this
example with the client and server unrelated. Figure 4.18 shows the server program.
This program is nearly identical to the server portion of Figure 4.16.

The header £ifo.h is shown in Figure 4.19 and provides the definitions of the two
FIFO names, which both the client and server must know.

Figure 4.20 shows the client program, which is nearly identical to the client portion
of Figure 4.16. Notice that the client, not the server, deletes the FIFQs when done,
because the client performs the last operation on the FIFOs.
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pipe server_main.c

1 #include "fifo.h"
2 veid server{int, int);
3 int
4 main(int argc, char **argv}
51
6 int readfd, writefd;
7 /* create two FIFOs; OK if they already exist */
8 if ((mkfifo(FIF0O1, FILE_MODE) < 0} && (errno != EEXIST))
g9 err_gys("can't create %sg", FIFOQ1l);
i0 if {(wkfifo({FIF02, FILE_MODE} < 0) && (errnoc != EEXTST)) {
11 unlink(FIFC1) ;
12 err_sys("can't create %g", FIF02);
i3 }
14 readfd = Open (FIFOl, CO_RDOMLY, 0):
15 writefd = Open{FIFQZ, CO_WRCNLY, 0}:
16 server (readfd, writefd);
i7 exit (0);
i8 } 3 )
pipe [server_main.c
Figure 4.18 Stand-alone server main function.
ipeffifo.h.c
1 #incluce *unpipc.h" pp !ﬁf
2 #define FIFO1 "ftmp/fifo .1
3 #define FIFO2 "stmp/fifo.2" .
pipe/fifo.h.c
Figure 419 fifo.h header that both the client and server include.
ipefclient_main.c
1 #include  "fifo.h" pipelclient |
2 veld client(int, inkt};
3 int
4 main({int argc, char **argv)
51
[ int readfd, writefd:;
7 writefd = Open(FIFQLl, O_WRONLY, O0);
8 readfd = Open({FIFCZ, O _RDONLY, 0};
] client (readfd, writefq);
10 Cloge(readfd) ;
i1 Clese (writefd) ;
12 Unlink{FIFC1) :
13 Unlink{FIFQ2) ;
14 exit(0);
1% }

pipe/client_main.c
Figure 420 Stand-alone client main function.
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In the case of a pipe or FIFO, where the kernel keeps a reference count of the number of open
descriptors that refet to the pipe or FIFO, either the client or server could call unl ink without
a problem. Even though this function removes the pathname from the filesystem, this does not
affect open descriptors that had previously opened the pathname. But for other forms of 1°C,
such as System V message queucs, no counter exists and if the server were to delete the queue
after writing its final message to the queue, the queue could be gone when the client tries to
read the final message.

To run this client and server, start the server in the background

% server_fifo &

and then start the client. Alternately, we could start only the client and have it invoke
the server by calling fork and then exec. The client could also pass the names of the
two FIFOs to the server as command-line arguments through the exec function, instead
of coding them into a header. But this scenarioc would make the server a child of the
client, in which case, a pipe could just as easily be used.

4.7 Additional Properties of Pipes and FIFOs

We need to describe in more detail some properties of pipes and FIFOs with regard to
their opening, reading, and writing. First, a descriptor can be set nonblocking in two
ways.

1. The O_NONBLOCK flag can be specified when open is called. For example, the
first call to open in Figure 4.20 could be

writefd = Cpen(FIFOL, O _WRONLY | O_NONELOCK, 0);

2, If a descriptor is already open, fentl can be called to enable the 0 _NONBLOCK
flag. This technique must be used with a pipe, since open is not called for a
pipe, and no way exists to specify the 0_NONBLOCK flag in the call to pipe.
When using fentl, we first fetch the current file status flags with the F_GETFL
command, bitwise-OR the O_NONBLOCK flag, and then store the file status flags
with the F_SETFL command:

int flags:

if ( (flags = fcntl{fd, F_GETFL, 0)) < 0)
err sys("F_GETFL error®);

flags |= O_NONELOCK;

if (fcntl(fd, ¥ _SETFL, flags) < 0)
err_sys("F_SETFL error");

Beware of code that you may encounter that simply sets the desired flag,
because this also clears all the other possible file status flags:
/* wrong way to set nonblocking */

if {fentl(fd, F_SETFL, O _NCNBLOCK} < 0)
err_sys("F_SETFL error"}:
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Figure 4.21 shows the effect of the nonblocking flag for the opening of a FIFO and
for the reading of data from an empty pipe or from an empty FIFO.

Current Existing opens Return
operation of pipe or FIFO Blocking (default) C_NONELOCK set

FIFO returns OK returns OK

open FIFO open for writing

read-only FIFO not blocks until FIFO is opened for returns OK
open for writing writing
FIFO returns OK returns OK

open FIFO open for reading

write-only FIFO not blocks until FIFQ is opened for returns an error of ENXTO
open for reading reading
pipe or FIFO blocks until data is in the pipe or | roeturns an arror of EAGAIN

read open for writing FIFQ, or until the pipe or

empty pipe FIFO is no longer open for

or writing

empty FIFO | pipe or FIFO not | read returns 0 (end-of-file) read returns 0 {end-of-file)
open for writing
pipe ar FIFO {see text) {see text)

writeto open for reading

pipeor FIFO | pipe or FIFO not | SIGPIPE generated for thread STGPIFE generated for thread
open for reading

Figure 421 Effect of ©_NONBLOCK flag on pipes and FIFOs.

Note a few additional rules regarding the reading and writing of a pipe or FIFO.

¢ If we ask to read more data than is currently available in the pipe or FIFO, only

the available data is returned. We must be prepared to handle a return value
from read that is less than the requested amount.

If the number of bytes to write is less than or equal to PIPE_RBUF (a Posix limit
that we say more about in Section 4.11), the write is guaranteed to be atormic.
This means that if two processes each write to the same pipe or FIFO at about
the same time, either all the data from the first process is written, followed by all
the data from the second process, or vice versa. The system does not intermix
the data from the two processes. If, however, the number of byies to write is
greater than PTPE_RUF, there is no guarantee that the write operation is
atomic.

Posix.1 requires that PIPE_EUF be at least 512 bytes. Commonly encountered values
range from 1024 for BSD/OS 3.1 to 5120 for Solaris 2.6. We show a program in Sec-
tion 4.11 that prints this value.

The setting of the 0 NONBLOCK flag has no effect on the atomicity of writestoa
pipe or FIFO—atomicity is determined solely by whether the requested number
of bytes is less than or equal to PIPE_BUF. But when a pipe or FIFO is set non-
blocking, the return value from write depends on the number of bytes to write
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and the amount of space currently available in the pipe or FIFO. If the number
of bytes to write is less than or equal to PIPE_BUF:

a. If there is room in the pipe or FIFO for the requested number of bytes, all the
bytes are transferred.

b. If there is not encugh room in the pipe or FIFO for the requested number of
bytes, return is made immediately with an error of EAGAIN. Since the
O_NONBLOCK flag is set, the process does not want to be put to sleep. But the
kernel cannot accept part of the data and still guarantee an atomic write, so
the kernel must return an error and tell the process to try again later.

If the number of bytes to write is greater than PIPE_BUF:

a. If there is room for at least 1 byte in the pipe or FIFO, the kernel transfers
whatever the pipe or FIFO can hold, and that is the return value from
write.

b. If the pipe or FIFO is full, return is made immediately with an error of
EAGATN.

e If we write to a pipe or FIFO that is not open for reading, the SIGPIPE signal
is generated:

a. If the process does not catch or ighore SIGPIPE, the default action of termi-
nating the process is taken.

b. If the process ignores the SIGPIPE signal, or if it catches the signal and
returns from its signal handler, then write returns an error of EPIPE.

STGPIFE is considered a synchronous signal, that is, a signal attributable to one
specific thread, the one that called write. But the easiest way to handle this
signal is to ignore it (set its disposition to SIG_IGN) and let write return an
crror of EPIPE. An application should always detect an etror return from
write, but detecting the termination of a process by SIGPIFE is harder. If the
signal is not caught, we must Iook at the termination status of the process from
the shell to determine that the process was killed by a signal, and which signal.
Section 5.13 of UNPvI talks more about STGPTPE,
4.8 One Server, Multiple Clients

The real advantage of a FIFO is when the server is a long-running process (e.g., a dae-
mon, as described in Chapter 12 of UNPv1) that is unrelated to the client. The daemon
creates a FIFO with a well-known pathname, opens the FIFO for reading, and the client
then starts at some later time, opens the FIFO for writing, and sends its commands or
whatever to the daemon through the FIFO. One-way communication of this form
(client to server) is easy with a FIFO, but it becomes harder if the daemon needs to send
something back to the client. Figure 4.22 shows the technique that we use with our
example.

The server creates a FIFO with a well-known pathname, /tmp/fifo.serv in this
example. The server will read client requests from this FIFO. Each client creates its own
FIFO when it starts, with a pathname containing its process ID. Each client writes its
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1p0-15

16

/tmp/fifo.1234

read-only
client 1 chient 2
PID 1234 PID 9876

Figure 422 One server, multiple clients.

request to the server’s well-known FIFO, and the request contains the client process ID
along with the pathname of the file that the client wants the server to open and send to
the client.

Figure 4.23 shows the server program.
Create well-known FIFO and open for read-only and write-only

The server’s well-known FIFO is created, and it is OK if it already exists. We then
open the FIFO twice, once read-only and once write-only. The readfifo descriptor is
used to read each client request that arrives at the FIFQ, but the dummyfd descriptor is
never used. The reason for opening the FIFO for writing can be seen in Figure 4.21. If
we do not open the FIFO for writing, then each time a client terminates, the FIFO
becomes empty and the server’s read returns 0 to indicate an end-of-file. We would
then have to close the FIFO and call open again with the O_RDONLY flag, and this will
block until the next client request arrives. But if we always have a descriptor for the
FIFO that was opened for writing, read will never return 0 to indicate an end-of-file
when no clients exist. Instead, our server will just block in the call to read, waiting for
the next client request. This trick therefore simplifies our server code and reduces the
number of calls to open for its well-known FIFO.

When the server starts, the first open (with the O_RDONLY flag) blocks until the first
client opens the server’s FIFO write-only (recall Figure 4.21). The second cpen (with
the O_WRONLY flag) then returns immediately, because the FIFQ is already open for
reading.

Read client request

Each client request is a single line consisting of the process I, one space, and then
the pathname. We read this line with our readline function (which we show on p. 79
of UNPv1).
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- - fifoclisert fmainserver.c
1 #include "fifo. h"
Z void gerver (int, inkt});
3 int
4 main{int argc, char **argv)
5
3} int readfifc, writefifo, dummyfd, f4;
7 char *ptr, buff[MAXLINE], fifoname[MAXLINE]:;
8 pid_t pid;
) sglze_t n;
10 /* create server’'s well-known FIFC; OK if already exists */
11 if ((mkfifo(SERV_FIFO, FILE_MODE)}) < 0) && (errno != EEXIST))
12 err sys{"can’t create %s", SERV_FIFO);
13 /* open gerver’s well-known FIFO for reading and writing */
14 readfifo = Open(SERV_FIFQ, CO_RDCNLY, 0};:
15 durmyfd = Open (SERV_FIFO, C_WRONLY, 0): /* never used */
16 while ( {(n = Readline({readfifc, buff, MAXLINE}} > 0) {
17 if (buffn - 1] == ’\n’)
18 n--; /* delete newline from readline() */
1% buff[n] = "\0; /* null terminate pathname */
20 if ( {(ptr = strehri{buff, * )} == NULL) {
21 err_msg("bogus regquest: %s", buff);
22 continue;
23 }
24 *pEr++ = 0; /* null terminate PID, ptr = pathname */
25 pid = atel{buff);
26 snprintf (fifoname, sizeof({fifoname), "/tmp/fifo.%1ad", (long) pid);
27 if { {writefifo = open(fifoname, O_WRONLY, 0})) < 0} {
28 err_msg{"cannct open: %g", fifoname);
29 contlnue;
30 }
31 if { (fd = open(ptr, C_RDONLY}) < 0} {
3z /* errcr: must tell client */
33 snprintf (buff + n, sizecf(buff) - n, ": can’t open, %s\n-",
34 strerror (errno) ) ;
35 n = strlen(ptr);
36 Write(writefifo, ptr, n):
37 Close (writefifo);
38 } else {
39 /* open succeeded: copy file to FIFQ */
40 while ( (n = Read(fd, buff, MAXLINE)}) > 0)
41 Write(writefifo, buff, nj);
42 Close(fd);
43 Close(writefifo);
44 )]
45 1
46 }

fifoctiserv/mainserver.c

Figure 423 FIFQ server that handles multiple clients.
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17-26

27-44

10-14

15-21

22-24

25-31

Parse client’s request

The newline that is normally returned by readline is deleted. This newline is
missing only if the buffer was filled before the newline was encountered, or if the final
line of input was not terminated by a newline. The strchr function returns a pointer
to the first blank in the line, and ptr is incremented to point to the first character of the
pathname that follows. The pathname of the client’s FIFO is constructed from the pro-
cess ID, and the FIFO is opened for write-only by the server.

Open file for client, send file to client’s FIFO

The remainder of the server is similar to our server function from Figure 4.10.
The file is opened and if this fails, an error message is returned to the client across the
FIFO. If the open succeeds, the file is copied to the client’s FIFO. When done, we must
clcse the server’'s end of the client’'s FIFQ, which causes the client's read to return ¢
{(end-of-file). The server does not delete the client’s FIFQ; the client must do so after it
reads the end-of-file from the server.

We show the client program in Figure 4.24.
Create FIFO

The client’s FIFQ is created with the process ID as the final part of the pathname.
Build client request line

The client’s request consists of its process ID, one blank, the pathname for the server
to send to the client, and a newline. This line is built in the array buff, reading the
pathname from the standard input.

Open server’s FIFO and write request

The server’s FIFO is opened and the request is written to the FIFO. If this client is
the first to open this FIFO since the server was started, then this cpen unblocks the
server from its call to open (with the ©_RDONLY flag}.

Read file conlents or error message from server

The server’s reply is read from the FIFO and written to standard output. The
client’s FIFQ is then closed and deleted.

We can start our server in one window and run the client in another window, and it
works as expected. We show only the client interaction.

solaris % mainclient

/etc/shadow a file we cannot read
/etc/shadow: can't open, Permission denied

solaris % mainclient

/ete/inet/ntp.conf a 2-line file
multicastclient 224,0.1.1

driftfile /etc/inet/ntp.drift

We can also interact with the server from the shell, because FIFOs have names in the
filesystem.
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fifoctiserv/mainclient c

1 #include "fifo.h"

2 int

3 main{int argc, char **argv)

4 {

5 int readfifo, writefifo;

6 gize_t len;

7 sgize_t n;

8 char *ptr, fifoname[MANLINE], buff[MAXLINE];

9 pid t pid;

10 /* create FIFO with our PID as part of name */
11 pid = getpid();
12 snprintf (fifoname, sizeof (fifoname}, "/tmp/fifo.%1d", (leng) pid):
13 if ({(mkfifo(fifoname, FILE_MODE) < 0} && {errno = EEXIST)}

14 err_sys("can’'t create %s", fifoname);:

15 /* start buffer with pid and a blank */

i6 anprintf (buff, sizeof (buff), "%1d ", (long) pld);

17 len = strlen{buff};

i8 ptr = buff + len:

19 /* read pathname */

20 Fgets (ptr, MAXLINE - len, stdin);

21 len = strlen{buff): /* fgets|() guarantees null byte at end */
22 /* open FIFO to server and write PID and pathname to FIFC */
23 writefifo = Qpen(SERV_FIFO, O_WRONLY, 0);
24 Write(writefifo, buff, len);

25 /* now open our FIFO: blocks until server cpens for writing */
26 readfifo = Open({fifoname, O_RDONLY, 0);

27 /* read from IPC, write to standard cutput */

28 while ( (n = Read(readfifo, buff, MAXLINE)})} > 0}

29 Write (STDOUT_FILENO, buff, nj);

30 Close{readfifo);
31 Unlink{fifoname);

32 exit (0);
33 1}

fifocliserv/mainclient.c
Figure 4.24 FIFO client that works with the server in Figure 4.23.

sclaris % Pid=$$% process ID of this shell
solaris % mkfifo /tmp/fifo.5pid make the client’s FIFO
solaris % echo "§$Pid /etc/inet/ntp.cont" > /tnp/fifo.serv

solaris % eat < /tmp/fifo.S5Pid and read servet’s reply

multicastelient 224.0.1.1
driftfile /etc/inet/ntp.drift
solarie % rm /tmp/fifo.SP1d

We send our process ID and pathname to the server with one shell command (echc)
and read the server’s reply with another (cat). Any amount of time can occur between
these two commands. Therefore, the server appears to write the file to the FIFO, and
the client later executes cat to read the data from the FIFO, which might make us think
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that the data remains in the FIFO somehow, even when no process has the FIFO open.
This is not what is happening. Indeed, the rule is that when the final close of a pipe or
FIFO occurs, any remaining data in the pipe or FIFO is discarded. What is happening in
our shell example is that after the server reads the request line from the client, the server
blocks in its call to open on the client’s FIFO, because the client (our shell) has not yet
opened the FIFO for reading (recall Figure 4.21). Only when we execute cat sometime
later, which opens the client FIFO for reading, does the server’s call to open for this
FIFO return. This timing also leads to a denial-of-service attack, which we discuss in the
next section.

Using the shell also allows simple testing of the server’s error handling. We can
easily send a line to the server without a process 1D, and we can also send a line to the
server specifying a process ID that does not correspond to a FIFO in the /tmp directory.
For example, if we invoke the client and enter the following lines

solaris % cat > /tmp/fifo.serv
/no/process/id
999999 /invalid/process/id

then the server’s output (in another window) is

solaris % Berver
bogus request: /nc/process/id
cannot open: /tmp/fifo.999999

Atomicity of FIFO writes

Our simple client-server also lets us see why the atomicity property of writes to pipes
and FIFOs is important. Assume that two clients send requests at about the same time
to the server. The first client’s request is the line

1234 /etc/inet/ntp.conf
and the second client’s request is the line

9876 /etc/passwd

If we assume that each client issues one write function call for its request line, and that
each line is less than or equal to PTPE_BUF (which is reasonable, since this limit is usu-
ally between 1024 and 5120 and since pathnames are often limited to 1024 bytes), then
we are guaranteed that the data in the FIFO will be either

1234 /etc/inet/ntp.cont
9876 /etc/passwd

or

9876 /etc/passwd
1234 /etc/inet/ntp.cont

The data in the FIFO will #not be something like

1234 /etc/inet9876 /etc/passwd
/ntp.cont
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FIFOs and NFS

4.9

FIFOs are a form of IPC that can be used on a single host. Although FIFOs have names
in the filesystem, they can be used only on local filesystems, and not on NF5-mounted
filesystems.

solaris % mkfifo /nfs/bedi/usr/rstevens/fifo.temp
mkfifo: I/ error

In this example, the filesystem /nfs/bsdi/usr is the /usr filesystem on the host
bsdi.

Some systems (e.g., BSD/O8) do allow FIFOs to be created on an NFS-mounted file-
system, but data cannot be passed between the two systems through one of these FIFOs.
In this scenario, the FIFQ would be used only as a rendezvous point in the filesystem
between clients and servers on the same host. A process on one host cannot send data to
a process on another host through a FIFO, even though both processes may be able to
open a FIFQ that is accessible to both hosts through NFS.

Iterative versus Concurrent Servers

The server in our simple example from the preceding section is an iferative server. It iter-
ates through the client requests, completely handling each client’s request before pro-
ceeding to the next client. For example, if two clients each send a request to the server
at about the same time-—the first for a 10-megabyte file that takes 10 seconds (say) to
send to the client, and the second for a 10-byte file—the second client must wait at least
10 seconds for the first client to be serviced.

The alternative is a concurrent server. The most common type of concurrent server
under Unix is called a one-child-per-client server, and it has the server call fork to create
a new child each time a client request arrives. The new child handles the client request
to completion, and the multiprogramming features of Unix provide the concurrency of
all the different processes. But there are other techniques that are discussed in detail in
Chapter 27 of UNPvI:

* create a pool of children and service a new client with an idle child,
» create one thread per client, and
e create a pool of threads and service a new client with an idle thread.

Although the discussion in UNPv1 is for network servers, the same techniques apply to
IPC servers whose clients are on the same host.

Denial-of-Service Attacks

We have already mentioned one problem with an iterative server—some clients must
wait longer than expected because they are in line following other clients with Jonger
requests—but another problem exists. Recall our shell example following Figure 4.24
and our discussion of how the server blocks in its call to open for the client FIFO if the
client has not yet opened this FIFO {which did not happen until we executed our cat
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command). This means that a malicious client could tie up the server by sending it a
request line, but never opening its FIFO for reading. This is called a dental-of-service
(DoS) attack. To avoid this, we must be careful when coding the iterative portion of any
server, to note where the server might block, and for how long it might block. One way
to handle the problem is to place a timeout on certain operations, but it is usually sim-
pler to code the server as a concurrent server, instead of as an iterative server, in which
case, this type of denial-of-service attack affects only one child, and not the main server.
Even with a concurrent server, denial-of-service attacks can still occur: a malicious client
could send lots of independent requests, causing the server to reach its limit of child
processes, causing subsequent forks to fail.

Streams and Messages

The examples shown so far, for pipes and FIFOs, have used the stream [/O model,
which is natural for Unix. No record boundaries exist—reads and writes do not exam-
ine the data at all. A process that reads 100 bytes from a FIFO, for example, cannot tell
whether the process that wrote the data into the FIFO did a single write of 100 bytes,
five writes of 20 bytes, two writes of 50 bytes, or some other combination of writes that
totals 100 bytes., One process could also write 55 bytes into the FIFO, followed by
another process writing 45 bytes. The data is a byte stream with no interpretation done
by the system. If any interpretation is desired, the writing process and the reading pro-
cess must agree to it a priori and do it themselves.

Sometimes an application wants to impose some structure on the data being trans-
ferred. This can happen when the data consists of variable-length messages and the
reader must know where the message boundaries are so that it knows when a single
message has been read. The following three techniques are commonly used for this:

1. Special termination sequence in-band: many Unix applications use the newline
character to delineate each message. The writing process appends a newline to
each message, and the reading process reads one line at a time. This is what our
client and server did in Figures 4.23 and 4.24 to separate the client requests. In
general, this requires that any occurrence of the delimiter in the data must be
escaped {that is, somehow flagged as data and not as a delimiter).

Many Internet applications (FTP, SMTF, HTTP, NNTP) use the 2-character
sequence of a carriage return followed by a linefeed (CR/LF) to delineate text
records.

2. Explicit length: each record is preceded by its length. We will use this technique
shortly. This technique is also used by Sun RPC when used with TCT. One
advantage to this technique is that escaping a delimiter that appears in the data
is unnecessary, because the receiver does not need to scan all the data, looking
for the end of each record.

3. One record per connection: the application closes the connection to its peer (its
TCP connection, in the case of a network application, or its [PC connection) to
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indicate the end of a record. This requires a new connection for every record,
but is used with HTTP 1.0.

The standard 1/O library can also be used to read or write a pipe or FIFO. Since the
only way to open a pipe is with the pipe function, which returns an open descriptor,
the standard 1/0 functon fdopen must be used to create a new standard 1/0O stream
that is then associated with this open descriptor. Since a FIFO has a name, it can be
opened using the standard 1/0 fopen function.

More structured messages can also be built, and this capability is provided by both
Posix message queues and System V message queues. We will see that each message
has a length and a priority (System V calls the latter a “type”). The length and priority
are specified by the sender, and after the message is read, both are returned to the
reader. Each message is a record, similar to UDP datagrams (UNPv1).

We can also add more structure to either a pipe or FIFO ourselves. We define a mes-
sage in our mesg . h header, as shown in Figure 4.25.

ipemesg {mesg h
1 #include "unpipc.h® Pip g/ mesg

2 /* Cur own "messages" to use with pipes, FIFOs, and nessage queues. */

3 /* want sizeof {struct mymesg) <= PIPE_BUF */
4 $#define MBXMESGDATA (PIPE_BUF - Z*sizeof (long))

5 /* length of mesg_len and mesg_type */

& #define MESGHDRSIZE (sizeof (struct mymesg) - MAXMESGDATA}

7 struct mymesg (

B long mesg_len; /* #bytes in mesg data, can be 0 */
9 long mesg_type: /* message type, must be > 0 */

10 char mesg data [MAXMESGDATA];

11 3};

12 ssize_t mesg_send{int, struct mymesg *);
13 void Mesg_send{int, struct mymesg *):
14 ssize_t mesg_recv{int, struct mymesg *);
15 ssize_t Mesg_recv(int, struct mymesyg *);

pipemesg [mesg.h
Figure 425 Ourmymesg structure and related definitions.

Each message has a mesg_type, which we define as an integer whose value must be
greater than 0. We ignore the type field for now, but return to it in Chapter 6, when we
describe System V message queues. Each message also has a length, and we allow the
length to be zero. What we are doing with the mymesg structure is to precede each mes-
sage with its length, instead of using newlines to separate the messages. Earlier, we
mentioned two benefits of this design: the receiver need not scan each received byte
looking for the end of the message, and there is no need to escape the delimiter (a new-
line) if it appears in the message.

Figure 4.26 shows a picture of the mymesg structure, and how we use it with pipes,
FIFOs, and System V message queues.
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second argument for write and read
sccond argument for magsnd and msgrev

|<— mesyg len —ﬁ
L

mesg_len |mesg_type mesg_data

System V message: msgbuf (),
used with System V message queucs,
megsnd and megrcov functions

Our messagé mymesg{},
used with pipes and FIFOs,
write and read functions

Figure 4.26 Our mymesg structure.

We define two functions to send and receive messages. Figure 4.27 shows our

mesg_send function, and Figure 4.28 shows our mesg_recv function.

1
2
3
4
5
6

ipemess [mesg_send.c
#include "mesg.h" prpe 8/ Gs
ssize_t
mesg send(int £d, struct mymesg *mptr)
{
return {write{fd, mptr, MESGHDRSIZE + mptr->mesg_len)):

pipemesg [mesg_send.c
Figure 4.27 mesg_send function.
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16

#include "mesg.h" pipemesg [nesg_reco.c
ssize t
mesg recviint fd, struct mymesg *mptr)
{

size t len;

ssize t n;

/* read message header first, to get len of data that follows */
if { (n = Read(fd, mptr, MESGHDRSIZE))} == 0)

return ({(0); /¥ end of file */
else if (n !'= MESGHDRSIZE)

err_cuit ("message header: expected %4, got %d", MESGHDRSIZE, n);:

if ¢ (len = mptr->mesg len) > 0)
if ( {n = Read(fd, mptr->mesg_data, len)) != len)
err quit{'message data: expected %d, got %d", len, n);:
return (len):

}

pipemess [ mesg_recv.c

Figure 4.28 mesg_recv function.
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It now takes two reads for each message, one to read the length, and another to read
the actual message (if the length is greater than 0).

Careful readers may note that mesg_recv checks for all possible errors and terminates if one
occurs. Nevertheless, we still define a wrapper function named Mesg_recv and call it from
our programs, for consistency.

We now change our client and server functions to use the mesg_send and
mesg_recv functions. Figure 4.29 shows our client.

iperesg [ client.c
1 #include "mesg.h" p g
2 void
3 client{int readfd. int writefd)
14 {
5 size_t len;
3} ssize L n;
7 sLruct mymesg mesq;
8 /* read pacthname */
9 Fgets {mesg.mesg _data, MAXMESGDATA, stdin);
i0 len = strlenimesyg.mesg_data);
11 if (mesg.mesg datallen - 1] == r\n‘)
12 len—-: /* delete newline from fgets({) */
13 mesg.mesg_len = len;
14 mesg.mesg_type = 1;
15 /* write pathname te IPC channel */
16 Mesg_send(writefd, &Lmesg):
17 /* read from IPC, write to standard cutput */
18 while ( (n = Mesg_recv{readfd, &mesg)) > 0)
19 Write{STROUT _FILENC, mesg.mesg_data, n);
20 } . .
pipemesg/client.c
Figure 4.29 Our client function that uses messages.
Read pathname, send to server
§-16 The pathname is read from standard input and then sent to the server using
mesg_send.
Read file's contents or error message from server
17-19 The client calls mesg_recv in aloop, reading everything that the server sends back.

By convention, when mesg_recv returns a length of (, this indicates the end of data
from the server. We will see that the server includes the newline in each message that it
sends to the client, so a blank line will have a message length of 1.

Figure 4.30 shows our server.
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B-18

19-26

1 #include "mesg.h" pzpemesg/server.c
2 void
3 server(int readfd, int writefd)
4 ¢
5 FILE *fp;
& ssize_t n:
7 struct mymesg mesg;
8 /* read pathname from IPC channel */
9 mesg.mesg type = 1;
19 if { (n = Mesg recv(readfd, &mesg)) == 0)
11 err_quit("pathname missing*);
12 mesyg.mesg_dataln] = "\0‘; /* null terminate pathname */
13 if { (fp = fopenimesg.mesg data, "r*)) == NULL)
14 /* error: must tell client */
15 snprintf (mesg.mesg_data + n, sizeof (mesg.mesg_data) - n,
16 ": can’'t open, %s\n", strerror{errno));
17 nesg.mesg_len = strlen(mesg.mesg data) ;
18 Mesg_send (writefd, &mesg);
19 } else {
20 /* fopen succeeded: copy file to IPC channel +*/
21 while (Fgets{mesg.mesg_data, MAXMESGDATA, fp) != NULL) {
22 mesg.mesg_len = strlen{mesg.mesg_data);
23 Mesg_sendi{writefd, &mesg);
24 1
25 Fclose({fp);
26 }
27 /* send a CO-length message to signify the end */
28 nesyg.mesg_len = 0;
29 Mesg_send{writefd, &mesg);
30 1}
pipemesg (server.c

Figure 430 Qur server function that uses messages.

Read pathname from IPC channel, open file

The pathname is read from the client. Although the assignment of 1 to mesg_type
appears useless (it is overwritten by mesg_recv in Figure 4.28), we call this same func-
tion when using System V message queues (Figure 6.10), in which case, this assignment
is needed (e.g., Figure 6.13). The standard 1/O function fopen opens the file, which
differs from Figure 4.10, where we called the Unix I/O function open to obtain a
descriptor for the file. The reason we call the standard I/O library here is to call £gets
to read the file one line at a time, and then send each line to the client as a message.

Copy file to client

If the call to fopen succeeds, the file is read using fgets and sent to the client, one
line per message. A message with a length of 0 indicates the end of the file.
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When using either pipes or FIFOs, we could also close the IPC channel to notify the
peer that the end of the input file was encountered. We send back a message with a
length of 0, however, because we will encounter other types of IPC that do not have the
concept of an end-of-file.

The main functions that call our client and server functions do not change at
all. We can use either the pipe version (Figure 4.8) or the FIFO version (Figure 4.16).

Pipe and FIFO Limits
The only system-imposed limits on pipes and FiFOs are

OPEN_MAX the maximum number of descriptors open at any time by a process
(Posix requires that this be at least 16), and

PIFPE_BUF the maximum amount of data that can be written to a pipe or FIFO
atomically (we described this in Section 4.7; Posix requires that this be
at least 512).

The value of OPEN_MAX can be queried by calling the sysconf function, as we show
shortly. Tt can normally be changed from the shell by executing the ulimit command
(Bourne shell and KornShell, as we show shortly) or the 1imit command {C shelD). It
can also be changed from a process by calling the setrlimit function (described in
detail in Section 7.11 of APUE).

The value of PIPE_BUF is often defined in the <1imits.h> header, but it is consid-
ered a pathname variable by Posix. This means that its value can differ, depending on the
pathname that is specified (for a FIFO, since pipes do not have names), because differ-
ent pathnames can end up on different filesystems, and these filesystems might have
different characteristics. The value can therefore be obtained at run time by calling
either pathconf or fpathconf. Figure 4.31 shows an example that prints these two
limits.

1 #include "unpipe.h" pIpEIplpECOI’lf.C
2 int

3 main(int arge, char **argv)

4 {

5 if (argc 1= 2)

6 err_quit{"usage: pipeconf <pathname>"):

7 printf{"PIPE BUF = %1d. OPEN_MAX = %1ld\n",

8 Pathconf (argv[l], _PC_PIPE_BUF), Sysconf(_SC_OPEN_MAX]):

g exit(0}):
10 }

pipefpipeconf.c

Figure 4.31 Determine values of PIPE_EUF and OPEN_MAX at run titme.
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Here are some examples, specifying different filesystems:

sclarig % pipeconf / Solaris 2.6 default values
PIPE BUF = 5120, OPEN_MAX = &4

sclaris % pipeconf shome

PIPE_BUF = 5120, OPEN_MAX = 64

solaris % pipeconf /tmp

PIPE_BUF = 5120, OPEN_MAX 64

alpha % pipeconf / Digital Unix 4.0B default values
PIPE_BUF = 409&, OPEN_MAX = 4096

alpha % pipeconf /usr

PIPE_BUF = 4096, OPEN_MAX = 40%6

We now show how to change the value of OPEN_MAX under Solaris, using the Korn-

Shell.
solaris % ulimie -ns display max # descriptors, soft limit
64
solaris % ulimit -nH display max # descriptors, hard linut
1024
sclaris % ulimit -ns 512 set soft limit to 512
sclaris % pipeconf / verify that change has occurred

PIPE_BUF = 5120, OPEN MAX = 512

Although the value of PIPE_BUF can change for a FIFQ, depending on the underlying file-
system in which the pathname is stored, this should be extremely rare.

Chapter 2 of APUE describes the fpathcont, pathconf, and sysconf functions, which pro-
vide run-time information on certain kernel limits. Posix.1 defines 12 constants that begin with
_PC__ and 52 that begin with _sc_. Digital Unix 4.0B and Solaris 2.6 both extend the latter,
defining about 100 run-time constants that can be queried with sysconf.

The getconf command is defined by Posix.2, and it prints the value of most of
these implementation limits. For example

alpha % getconf OPEN_MAX

4096

alpha % geteconf PIPE_BUF /[
4096

4.12 Summary

Pipes and FIFOs are fundamental building blocks for many applications. Pipes are
commonly used with the shells, but also used from within programs, often to pass infor-
mation from a child back to a parent. Some of the code involved in using a pipe (pipe,
fork, close, exec, and waitpid) can be avoided by using popen and pclose,
which handle all the details and invoke a shell.
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FIFOs are similar to pipes, but are created by mkfifo and then opened by open.
We must be careful when opening a FIFO, because numerous rules (Figure 4.21) govern
whether an open blocks or not.

Using pipes and FIFOs, we looked at some client-server designs: one server with
multiple clients, and iterative versus concurrent servers. An iterative server handles
one client request at a time, in a serial fashion, and these types of servers are normally
open to denial-of-service attacks. A concurrent server has another process or thread
handle each client request.

One characteristic of pipes and FIFOs is that their data is a byte stream, similar to a
TCP connection. Any delineation of this byte stream into records is left to the applica-
tion. We will see in the next two chapters that message queues provide record bound-
aries, similar to UDP datagrams.

Exercises

41 In the transition from Figure 43 to Figure 4.4, what could happen if the child did not
close(fd[1])?

4.2 In describing mkfifo in Section 4.6, we said that to open an existing FIFO or create a new
FIFO if it does not already exist, call mkfifo, check for an error of EEXIST, and if this
occurs, call open. What can happen if the logic is changed, calling cpen first and then
mkfi fo if the FIFO does not exist?

4.3  What happens in the call to popen in Figure 4.15 if the shell encounters an error?

44 Remove the open of the server’s FIFO in Figure 4.23 and verify that this causes the server to
terminate when no more clients exist.

45 In Figure 4.23, we noted that when the server starts, it blocks in its first call to open until
the first client apens this FIFO for writing. How can we get around this, causing both
opens to return immediately, and block instead in the first call to readline?

4.6 What happens to the client in Figure 4.24 if it swaps the order of its two calls to open?

4.7 Why is a signal generated for the writer of a pipe or FIFO after the reader disappears, but
not for the reader of a pipe or FIFQ after its writer disappears?

4.8  Write a small test program to determine whether £stat returns the number of bytes of data
currently in a FIFO as the st_size member of the stat structure.

4.9 Write a small test program to determine what select retums when you select for writabil-
ity on a pipe descriptor whose read end has been closed.
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Posix Message Queues

Introduction

A message queue can be thought of as a linked list of messages. Threads with adequate
permission can put messages onto the queue, and threads with adequate permission
can remove messages from the queue. Each message is a record (recall our discussion of
streams versus messages in Section 4.10), and each message is assigned a priority by the
sender. No requirement exists that someone be waiting for a message to arrive on a
quetie before some process writes a message to that queue. This is in contrast to both
pipes and FIFOs, for which it having a writer makes no sense unless a reader also exists.

A process can write some messages to a queue, terminate, and have the messages
read by another process at a later time. We say that message queues have kernel persis-
tence (Section 1.3). This differs from pipes and FIFOs. We said in Chapter 4 that any
data remaining in a pipe or FIFO when the last close of the pipe or FIFO takes place, is
discarded.

This chapter looks at Posix message queues and Chapter 6 looks at Systern V mes-
sage queues. Many similarities exist between the two sets of functions, with the main
differences being;:

* A read on a Posix message queue always returns the oldest message of the high-
est priority, whereas a read on a System V message queue can return a message
of any desired priority.

* Posix message queues allow the generation of a signal or the initiation of a
thread when a message is placed onto an empty queue, whereas nothing similar
is provided by System V message queues.

75
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Every message on a queue has the following attributes:

» an unsigned infeger priority (Posix) or a long integer type (System V),

» the length of the data portion of the message (which can be 0), and

*+ the data itself (if the length is greater than Q).

Notice that these characteristics differ from pipes and FIFOs. The latter two are byte
streams with no message boundaries, and no type associated with each message. We
discussed this in Section 4.10 and added our own message interface to pipes and FIFOs.

Figure 5.1 shows one possible arrangement of a message queue.

—_— .
head 4+—-» next next NULL
mg_Maxmsg priority = 30 priority =20 prioxity = 10
mg msgsize length=1 length=2 length=3
data
data
data
Figure 5.1 Possible arrangement of a Posix message queue containing three messages.
We are assuming a linked list, and the head of the list contains the two attributes of the
queue: the maximum number of messages allowed on the queue, and the maximum
size of a message. We say more about these attributes in Section 5.3.

In this chapter, we use a technique that we use in later chapters when looking at
message queues, semaphores, and shared memory. Since all of these IPC objects have at
least kernel persistence (recall Section 1.3), we can write small programs that use these
techniques, to let us experiment with them and learn more about their operation. For
example, we can write a program that creates a Posix message queue, write another pro-
gram that adds a message to a Posix message queue, and write another that reads from
one of these queues. By writing messages with different priorities, we can see how
these messages are returned by the mq_receive function.

5.2 mg cpen, mg close, and mg unlink Functions

The mg_open function creates a new message queue Or opens an existing message
queue.

#include <mgueue.h>

mgd_t mg open(const char *name, int oflag,
/* mode_t mode, struct mg attr *afir */ ) ;

Returns: message queue descriptor if OK, -1 on error




