1. Write out the following sets in list notation.
a. $\{x \mid 0<x<10$ and $x \in \mathbb{Z}\}$
b. $\left\{x \in \mathbb{Z} \mid 5<x<10\right.$ and $\left.\frac{x}{2}<4\right\}$
c. $\left\{x^{2} \mid x \in \mathbb{Z}\right\}$
d. $\left\{x \in \mathbb{Z} \mid x^{2}-4=0\right\}$
e. $\{x \mid x$ is even $\}$
f. $\{x \mid x$ is a multiple of 3$\}$
g. $\{x \in \mathbb{Z}||2 x|<7\}$
h. $\{3 x+2 \mid x \in \mathbb{Z}\}$
2. Write out the following sets in set-builder notation. These may have multiple possible solutions. Post yours in the comments to verify.
a. $\{\ldots,-3,-1,1,3, \ldots\}$
b. $\{1,8,27,64, \ldots\}$
c. $\{-4,4\}$
d. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$
e. $\left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots\right\}$
f. $\{1,-2,3,-4,5,-6, \ldots\}$
g. $\{-2,0,2\}$
3. Is each equivalency true or false?
a. $\{0,2,4,6\}=\{x \mid x$ is even and $0<x<6\}$
b. $\{0,2,4,6\}=\{x \mid x$ is even and $0 \leq x \leq 6\}$
c. $\left\{1, e, e^{2}, e^{3}, \ldots\right\}=\left\{e^{x} \mid x \in \mathbb{Z}\right\}$
d. $\left\{\ldots, \frac{1}{e^{2}}, \frac{1}{e}, 1, e, e^{2}, e^{3}, \ldots\right\}=\left\{e^{x} \mid x \in \mathbb{Z}\right\}$
e. $\{3,5,7\}=\{|2 x+1| \mid x \in \mathbb{Z}$ and $-2 \leq x \leq 2\}$
4. Modify the conditions on $\{|2 x+1| \mid x \in \mathbb{Z}$ and $-2 \leq x \leq 2\}$ to make it equivalent to $\{3,5,7\}$.

## 1. Write out the following sets in list notation.

a. $\{x \mid 0<x<10$ and $x \in \mathbb{Z}\}=\{1,2,3,4,5,6,7,8,9\}$

This says we want the set of $x$ such that $x$ is an integer between 0 and 10 exclusive.
b. $\left\{x \in \mathbb{Z} \mid 5<x<10\right.$ and $\left.\frac{x}{2}<4\right\}=\{5,6,7\}$

This says we want the set of $x$ in the integers such that $x$ is between 5 and 10 exclusive and $\frac{x}{2}$ is less than 4.
c. $\left\{x^{2} \mid x \in \mathbb{Z}\right\}=\{1,4,9,16, \ldots\}$

This says that for every $x$ in the integers, we add $x^{2}$ to our set.
d. $\left\{x \in \mathbb{Z} \mid x^{2}-4=0\right\}=\{-2,2\}$

This says that we want to include all integer solutions of $x^{2}-4=0$ into our set.
$x^{2}-4=0$
$x^{2}=4$
$x= \pm 2$
e. $\{x \mid x$ is even $\}=\{\ldots,-4,-2,0,2,4, \ldots\}$
f. $\{x \mid x$ is a multiple of 3$\}=\{\ldots,-6,-3,0,3,6, \ldots\}$
g. $\{x \in \mathbb{Z}||2 x|<7\}=\{-3,-2,-1,0,1,2,3\}$

This says we want to include all integers where $|2 x|<7$
$|2 x|<7$
$-7<2 x<7$
$-\frac{7}{2}<x<\frac{7}{2}$
h. $\{3 x+2 \mid x \in \mathbb{Z}\}=\{\ldots,-4,-1,2,5,8,11, \ldots\}$

This says we want to include all multiples of $3 x+2$ for $x$ in the integers.
2. Write out the following sets in set-builder notation. These may have multiple possible solutions. Post yours in the comments to verify.
a. $\{\ldots,-3,-1,1,3, \ldots\}=\{x \mid x$ is odd $\}$ or $\{2 x+1 \mid x \in \mathbb{Z}\}$
b. $\{1,8,27,64, \ldots\}=\left\{x^{3} \mid x \in \mathbb{Z}\right.$ and $\left.x>0\right\}$
c. $\{-4,4\}=\left\{x \mid x^{2}-16=0\right\}$
d. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}=\left\{\left.\frac{1}{x} \right\rvert\, x \in \mathbb{Z}\right.$ and $\left.x>0\right\}$
e. $\left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots\right\}=\left\{\left.\frac{1}{x^{2}} \right\rvert\, x \in \mathbb{Z}\right.$ and $\left.x>0\right\}$
f. $\{-1,2,-3,4,-5,6, \ldots\}=\left\{x(-1)^{x} \mid x \in \mathbb{Z}\right.$ and $\left.x>0\right\}$

This one is tougher. To get the alternating sequence of positives and negatives we use $(-1)^{x}$ so that when $x$ is odd it's negative, and when $x$ is even it's positive. Then we multiply by $x$ to get our increasing values.
g. $\{-2,0,2\}=\left\{x \mid x^{2}-4=0\right.$ or $\left.x=0\right\}$

There are probably elegant ways of doing this, but adding "or" allows us to specify another condition that can be satisfied.

## 3. Is each equivalency true or false?

a. $\{0,2,4,6\}=\{x \mid x$ is even and $0<x<6\}$

False. It should not include 0 and 6 .
b. $\{0,2,4,6\}=\{x \mid x$ is even and $0 \leq x \leq 6\}$

True.
c. $\left\{1, e, e^{2}, e^{3}, \ldots\right\}=\left\{e^{x} \mid x \in \mathbb{Z}\right\}$

False. We did not consider the negative integers.
d. $\left\{\ldots, \frac{1}{e^{2}}, \frac{1}{e}, 1, e, e^{2}, e^{3}, \ldots\right\}=\left\{e^{x} \mid x \in \mathbb{Z}\right\}$

True.
e. $\{3,5,7\}=\{|2 x+1| \mid x \in \mathbb{Z}$ and $-2 \leq x \leq 2\}$

False. This set should include the numbers $1,3,5$.
4. Modify the conditions on $\{|2 x+1| \mid x \in \mathbb{Z}$ and $-2 \leq x \leq 2\}$ to make it equivalent to $\{3,5,7\}$.
$\{|2 x+1| \mid x \in \mathbb{Z}$ and $1 \leq x \leq 3\}$

