
Core Network Development – Phase 2

➢ We will be going to implement a simplified Routing Protocol in this course

➢ Routing protocol chosen – Interior gateway protocol (IGP , ex OSPF, ISIS)

➢ Don’t know about it – don’t worry, we shall cover theory first before any implementation

➢ A typical IGP (link state) protocol functionality is divided into 4 distinct parts :

1. Adjacency Management (Each device know its neighbours)

• Sending and Receiving hello packets periodically

• Update neighborship state machine

2. Building Link State Database (Each device internally creates a view of topology - Graph)

• Building Link State packets

• Flooding link state packets

• Build a Graph – a view of network topology

3. Running SPF algorithm (Dijkstra) on LSDB

• Process the LSDB through the algorithm

• Compute Results and store

• Algorithmically challenging

4. L3 Route Calculations

• Use Results of 3 to compute final L3 routes and update Routing Table

• Algorithmically challenging

We shall be going to implement all 4 parts in this course series

Along the journey we shall implement various sub-features within the protocol

Adjacency Mgmt

Building Link state

Database

Running SPF

Algorithm

L3 Route Calculations

Network Protocol Development → Phase 2 : LSDB Mgmt

➢ Congratulations for successfully completing the Adj Mgmt (Phase 1) of the project

➢ You are marching toward being a pro programmer ! ☺

➢ In this Phase, we shall be going to implement Link-State Database Mgmt

➢ Device running IGP protocols Generates periodic link state packets

➢ Link state packets contains :

➢ Information about Originator Device

➢ Rtr ID, Host Name

➢ Nbr information (Adjacencies in UP state)

➢ Other attributes

➢ ISIS LSPs are also TLV-ised packets

➢ Every device share/flood its own LSPs throughout topology

➢ Every device recv LSP of every other device in the topology

➢ Result : Every device has a collection of LSP of every other device this is called Link-state-database (lsdb)

➢ LSDB represents a graph in which:

➢ Nodes represent the IGP devices

➢ Edges represent UP adjacencies

➢ This Graph represent the topology altogether

➢ End Goal of phase 2 : Every device must have exact same lsdb (same view of the topology)

10.1.1.1/24

eth0

10.1.1.2/24

eth1

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1 R2 11.1.1.2/24

eth2

11.1.1.1/24

eth1

R3

Lo : 122.1.1.3/32

LSP R1 LSP R2 LSP R3

➢ Content of LSDB is exactly same on every routing device

➢ Every Routing Device has the same view of IGP Network Topology

➢ Every Routing Device then Runs several Algorithms on Local

LSDB to compute results such as its local Routing Table

LSDB of

R1 R2 R3

Network Protocol Development → Phase 2 : LSDB Mgmt

➢ End Goal of phase 2 : Every device must have exact

same lsdb (same view of the topology)

Network Protocol Development → Phase 2 : LSDB Mgmt

Topics :

1. LSP format

2. Generation of LSPs

3. Periodic Flooding of LSPs

4. Generation of LSPs on several Events

5. Processing LSPs

6. Populating LSDB

7. Reconciliation (LSP DB Fast Synch)

8. Mini Project – Interface Groups

10.1.1.1/24

eth0

10.1.1.2/24

eth1

Lo : 122.1.1.1/32

Lo : 122.1.1.2/32

R1 R2 11.1.1.2/24

eth2

11.1.1.1/24

eth1

R3
Lo : 122.1.1.3/32

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP format

R2-LSP

Eth hdr ISIS PKT Hdr ISIS TLV Section FCS

Ethernet payload

LSP Pkt Fmt :

TYPE = ISIS_TLV_HOSTNAME

LENGTH = NODE_NAME_SIZE

“R2”

TYPE = ISIS_IS_REACH_TLV (22)

Length

Adjacency Data1

TYPE = ISIS_IS_REACH_TLV (22)

Length

Adjacency Data2

...

TYPE = ISIS_IS_REACH_TLV (22)

Length

Adjacency DataN

➢ No of TLV22 encoded = No of UP Adjacencies

➢ TLV 22 encodes Adjacency object information attached to intf

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP format → TLV22

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32

Lo : 122.1.1.2/32

R1

R2
11.1.1.2/24

eth2 (70)

11.1.1.1/24

Eth1 (80)

R3
Lo : 122.1.1.3/32

Content of

isis_adjacency_t:

1. 122.1.1.3

2. R3

3. 11.1.1.1

4. 80 (ifindex)

5. 6 (hold time)

6. 10 (cost)

7. uptime

8. state

Content of

isis_adjacency_t :

1. 122.1.1.1

2. R1

3. 10.1.1.1

4. 50 (ifindex)

5. 6 (hold time)

6. 10 (cost)

7. uptime

8. state

TYPE = ISIS_TLV_HOSTNAME

LENGTH = NODE_NAME_SIZE

“R2”

TYPE = ISIS_IS_REACH_TLV (22)

Length = 31

122.1.1.1 (Nbr lo addr)

10 (metric)

Sub TLV Length = 22

SUB TYPE = ISIS_TLV_IF_INDEX (4)

Length = 8

60 (lcl if index)

50 (remote if index)

SUB TYPE = ISIS_TLV_LOCAL_IP (6)

Length = 4

10.1.1.2

SUB TYPE = ISIS_TLV_REMOTE_IP (8)

Length = 4

10.1.1.1

… Next TLV 22

1
1
16

1

1
4
4

1
1
1

4
4
1
1
4
1
1
4

TLV 22 = Nbr lo Addr + Metric + SubTLV 4 + SubTLV 6 + SubTLV 8

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP format → TLV22

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32

Lo : 122.1.1.2/32

R1

R2
11.1.1.2/24

eth2 (70)

11.1.1.1/24

Eth1 (80)

R3
Lo : 122.1.1.3/32

Content of

isis_adjacency_t:

1. 122.1.1.3

2. R3

3. 11.1.1.1

4. 80 (ifindex)

5. 6 (hold time)

6. 10 (cost)

7. uptime

8. state

Content of

isis_adjacency_t :

1. 122.1.1.1

2. R1

3. 10.1.1.1

4. 50 (ifindex)

5. 6 (hold time)

6. 10 (cost)

7. uptime

8. state

TYPE = ISIS_IS_REACH_TLV (22)

Length = 31

122.1.1.3 (Nbr lo addr)

10 (metric)

Sub TLV Length =22

SUB TYPE = ISIS_TLV_IF_INDEX (4)

Length = 8

70 (lcl if index)

80 (remote if index)

SUB TYPE = ISIS_TLV_LOCAL_IP (6)

Length = 4

11.1.1.2

SUB TYPE = ISIS_TLV_REMOTE_IP (8)

Length = 4

11.1.1.1

… Next TLV 22

1
1

4
4

1
1

1
4
4
1

1
4
1
1
4

TLV 22 = Nbr lo Addr + Metric + SubTLV 4 + SubTLV 6 + SubTLV 8

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP format → Defining new TLV Codes

Given as Assignment

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP format → API to encode TLV22

➢ TLV 22 is encoded from a given isis_adjacency_t object

➢ Write below APIs in isis_adjacency.c/.h

uint8_t /* Returns the total length of TLV 22 in bytes */

isis_nbr_tlv_encode_size(

isis_adjacency_t *adjacency,

uint8_t *subtlv_len); /* Total length of all SUBTLVs with in a TLV 22 */

byte * /* Returns end of the buffer ptr after encoding/inserting a TLV 22 */

isis_encode_nbr_tlv(

isis_adjacency_t *adjacency,

byte *buff, /* Output buffer ptr to encode tlv in */

uint16_t *tlv_len); /* length encoded (tlv overhead + data len)*/

Content of

isis_adjacency_t :

1. 122.1.1.1

2. R1

3. 10.1.1.1

4. 50 (ifindex)

5. 6 (hold time)

6. 10 (cost)

7. uptime

8. state

TYPE = ISIS_TLV_HOSTNAME

LENGTH = NODE_NAME_SIZE

“R2”

TYPE = ISIS_IS_REACH_TLV (22)

Length = 31

122.1.1.1 (Nbr lo addr)

10 (metric)

Sub TLV Length = 22

SUB TYPE = ISIS_TLV_IF_INDEX (4)

Length = 8

60 (lcl if index)

50 (remote if index)

SUB TYPE = ISIS_TLV_LOCAL_IP (6)

Length = 4

10.1.1.2

SUB TYPE = ISIS_TLV_REMOTE_IP (8)

Length = 4

10.1.1.1

… Next TLV 22

1
1
16

1

1
4
4

1
1
1

4
4
1
1
4
1
1
4

TLV 22 = Nbr lo Addr + Metric + SubTLV 4 + SubTLV 6 + SubTLV 8

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Pkt Mgmt

➢ ISIS protocol would have to manage LSP Pkts (its own, as well as remote)

➢ Update self-LSP contents

➢ Periodic flooding

➢ Install/un-install in LSDB

➢ LSDB synchronization

➢ Therefore, It is better to have a proper structure to govern the management of LSPs

isis_pkt.h

typedef struct isis_pkt_ {

/* The wired form of pkt */

byte *pkt;

/* pkt size, including ethernet hdr */

size_t pkt_size;

} isis_lsp_pkt_t;

Eth hdr ISIS PKT Hdr ISIS TLV Section FCS

pkt_size

LSP Pkt

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Pkt Mgmt→ The Sequence Number

➢ Whenever the device initializes the ISIS protocol , it initialize a uint32_t sequence no to 0

typedef struct node_info_ {

…

uint32_t seq_no;

…

} isis_node_info_t;

➢ When device generates a new LSP pkt from scratch, this sequence number is incremented first and then

fed into lsp pkt hdr

node_info->seq_no++;

lsp_pkt_hdr->seq_no = node_info->seq_no;

➢ This Sequence number shall be used to control the flooding of LSPs in the topology, we shall revisit

➢ Higher the sequence no, younger is said to be the LSP (most recent or latest)

typedef struct isis_pkt_hdr_{

isis_pkt_type_t isis_pkt_type;

uint32_t seq_no; /* meaningful only for LSPs */

uint32_t rtr_id;

isis_pkt_hdr_flags_t flags;

} isis_pkt_hdr_t;

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Generation

Topics :

1. LSP format

2. Generation of LSPs

3. Periodic Flooding of LSPs

4. Generation of LSPs on several Events

5. Processing LSPs

6. Populating LSDB

7. Reconciliation (LSP DB Fast Synch)

8. Mini Project – Interface Groups

Get Free Access to all our cases for 30 days trial :
https://csepracticals.teachable.com/p/trial-goldmine

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Pkt Generation

➢ ISIS Protocol, after creating self lsp pkt, will cache its own LSP packet so that :

➢ It has a quick access to its own LSP packet

➢ Re-transmit LSP packet as and when required

typedef struct node_info_ {

. . .

/* pointer to self LSP pkt */

isis_lsp_pkt_t *self_lsp_pkt;

. . .

} isis_node_info_t;

isis_pkt.c/.h

void

isis_create_fresh_lsp_pkt (node_t *node);

• Create a new LSP pkt

• Discard the old one

• Cache the new one

• TLV Section of ISIS Lsp pkt must contain ISIS_TLV_HOSTNAME, and all TLV22s

• Protocol must trigger new fresh LSP pkt generation as a result of admin config change, Adjacency state change,

in request of other devices (on demand), periodically etc.

Network Protocol Development → Phase 2 : LSDB Mgmt→ Debug and Verify

➢ It make sense to have some show commands in our bag asap, which could display the LSP contents

➢ It would help in catching early bugs and proceed further

cli : show node <node-name> protocol isis lsdb

For now, just call the fn to generate new lsp pkt and just print the self – lsp pkt contents

uint32_t

isis_show_one_lsp_pkt_detail (byte *buff, isis_pkt_hdr_t *lsp_pkt_hdr, size_t pkt_size);

call to : isis_create_fresh_lsp_pkt ()

if buff is NULL, print it on console, else print it in buff using sprintf

return number of output bytes

Use the fn isis_show_one_lsp_pkt_detail () to trace lsp packets by tracing infra

Demo !

Eth hdr ISIS PKT Hdr ISIS TLV Section FCS

Network Protocol Development → Phase 2 : LSDB Mgmt→ Introducing Asynchronous Programming

Network Protocol Development → Phase 2 : LSDB Mgmt→ Asynchronous Programming

➢ For further development of our project, we shall switch to Asynchronous Programming

➢ We would be able to reap benefits of Asynchronous programming in our development

➢ Development made easy through Asynchronous Programming

➢ We shall realize the benefits of async programming as we progress more into the course

(telling all benefits right here would only confuse you)

➢ First, let us get ourself introduced to the world of async programming and understand a subset of

problems it solves for us, and understand why sync programming alone is a no go in big software

projects

➢ We shall be going to use external library called Dispatch Queue which will allow us to program our

protocol asynchronously. Technically it is also as called as Event Loop

➢ Asynchronous programming is a broad term, Dispatch Queue is just one programming techniques to

realize a part of Asynchronous Programming

➢ Async Programming is also realized using Multithreading, Coroutines, etc

Network Protocol Development → Phase 2 : LSDB Mgmt→ Asynchronous Programming

➢ Before we proceed further, first we need to understand the terms clearly and understand the difference

between them

➢ Pls refer to Appendix Section B to understand basics of A(Synchronous) Programming Model

➢ Appendix B shall also explain a pit fall we would fall into in our project if we don’t switch to async

programming asap

➢ Proceed to next lecture video only after covering the appendix Section

➢ A Part of Async Programming which we shall going to use in our project is Work Deferral, as I explains in

the next lecture video

Network Protocol Development → Phase 2 : LSDB Mgmt→ Asynchronous Programming → Redundant work Example 1

➢ Let us discuss straightaway the problem we shall face if we do not have Async Programming (esp work deferral)

in place

➢ Consider a device running our implementation of ISIS protocol. Let us say, device running 3 LSPs from remote

nodes of the topology

• Update Link State Database

• Run SPF Algo

• Calculate all Routes

• Update Routing Table

➢ So, if you notice, device has to do lot of work whenever

it recvs an LSP pkt , and that for every LSP pkt

➢ If LSP incoming pkt rate is constant and last long, device CPU would be high (100 %)

➢ Device is overloaded !!

➢ If the device synchronously process all incoming LSP pkts, sine time to process one LSP pkt take significant

time, rest of LSP packets may throttle the incoming queue and get dropped

➢ Solution :

➢ If device could have deferred the SPF computation for a short while, and only update the LSDB with all 3 LSPs

and trigger SPF only after 3 LSP is updated in LSDB, then device would not have to redundant work (save

CPU)

Note : SPF algo + Route cal/installation is quite a computationally intensive task and lot of research has

been done to minimize the number of SPF runs

Network Protocol Development → Phase 2 : LSDB Mgmt→ Asynchronous Programming → Redundant work Example 1

➢ As the size of our protocol grows, there shall exist several external stimuli which revokes ISIS protocol

to trigger computation

➢ For example :

➢ At time t1, say, a new LSP pkt recvd→ device trigger SPF synchronously

➢ At time t2, say, some adjacency goes up → device regen new LSP → trigger spf synchronously

➢ Now if t1 and t2 are temporally very close, then we end up same problem, spf triggered by LSP pkt reception

shall be redundant work

➢ Solution :

➢ If device could have deferred the SPF computation and trigger it only after t2, then only one SPF run suffice

In general : Events which are temporally close enough and invoke same computation C should invoke only

one instance of computation C (relate it to real life)

Network Protocol Development → Phase 2 : LSDB Mgmt→ Asynchronous Programming → Redundant work Example 2

In General : Work Deferral comes under asynchronous programming world, and is very powerful

Linux kernel use work deferral techniques such as tasklets, work Queues, timers, waitQueues

E1 E2 E3 E4 E5

C C C C C

E1 E2 E3 E4 E5

C

Synch Asynch (Deferral)

Network Protocol Development → Phase 2 : LSDB Mgmt→ Asynchronous Programming → Redundant work Problem

➢ The problem of redundant computation is just not specific to ISIS protocol, but common to software

applications whose design somewhat matches to ISIS protocol

• Packet Reception at high rate

• External events reception at high rate (IPCs)

• Various code paths leading to same computation

• Common to Network Protocols

➢ Problems becomes more pronounced as software size grows (many code paths leads to invocation to same computation) and software

scale grows.

➢ In our project, any logically isolated non-trivial computation shall be performed asynchronously (by deferring it from main flow)

➢ LSP packet generation

➢ Flooding LSPs out of all local interfaces

➢ Triggering SPF Algo

➢ Route calculations and installation

➢ TCP-IP stack library provides the mechanism using which

application can perform computation asynchronously

computation = F + ARG

instead of traditional fn call : F(ARG)

invoke a function F asynchronously :

task_t *task = task_create_new_job(ARG, F, TASK_ONE_SHOT);

Eg : task_t *bar_task = task_create_new_job (arg, bar, TASK_ONE_SHOT);

➢ To cancel the already scheduled job :

task_cancel_job(bar_task);

bar_task = NULL;

foo () {

. . .

printf(“this ”);

bar (arg);

printf(“is my fav ”);

. . .

}

foo () {

. . .

printf(“this ”);

task_t *bar_task =

task_create_new_job(arg, bar);

printf(“is my fav ”);

. . .

}

Asynchronous CallSynchronous Call

bar(void *arg) {

printf (“bar”);

}

Network Protocol Development → Phase 2 : LSDB Mgmt→ Asynchronous Programming → APIs to use

Network Protocol Development → Phase 2 : LSDB Mgmt→ Sync Method of Generating LSP Packets

➢ We wrote an API :

➢ isis_create_fresh_lsp_pkt ()

➢ This API must be invoked when :

➢ ISIS hello pkt recvd has different Hostname, if-index or metric value then what is there in local adjacency object

on recipient interface [isis_update_interface_adjacency_from_hello ()]

➢ User config changed which results in content of LSP pkt to update

➢ Interface up/down [isis_handle_interface_up_down ()]

➢ IP address change [isis_handle_interface_ip_addr_changed ()]

➢ Adjacency goes from init → UP , Or from UP→ DOWN [isis_change_adjacency_state ()]

➢ Adjacency in UP state is deleted via CLI : clear node <node-name> protocol isis adjacency

[isis_delete_adjacency ()]

➢ Protocol Initialization at node level

➢ [isis_init ()]

➢ Periodically (later)

➢ Remove the API call which we placed in show CLI backend handler, not required anymore

➢ Let us first integrate this API at all appropriate places in a code so that protocol always advertise the most up to date

information in its LSP

> Only Adjacencies in UP state as TLV 22

Network Protocol Development → Phase 2 : LSDB Mgmt→ Sync Method of Generating LSP Packets → Testing

Network Protocol Development → Phase 2 : LSDB Mgmt→ Sync Method of Generating LSP Packets → Redundant Computation

Redundant Computation Example Demo

Event Sequence :

1. Disable protocol on R1

2. 3 Adj on R0 time out almost same time

3. R0 generate 3 LSPs and flood with seq x, x+1, x+2

4. R0, R2 and R3 recvs 3 LSPs and trigger

SPF 3 times

5. All routers – R0, R2, R3 are momentarily

overloaded (~100% CPU)

Somewhat similar to Denial of Service Attack

Situation is more pronounced with more no of adjacencies

between R1 and R0

R1

R0

R2

R3

3 instances of

SPF run

Route Calculations

High CPU

3 instances of

SPF run

Route Calculations

High CPU

Network Protocol Development → Phase 2 : LSDB Mgmt→ Async Method of Generating LSP Packets

➢ Invoking isis_create_fresh_lsp_pkt() asynchronously using API isis_schedule_lsp_pkt_generation()

➢ Since LSP Gen is a node level work, therefore isis_node_info should contain a new member of type task_t *

➢ Any work that if deferred to be done future is called as task

protocol() {

.

printf (“Adjacency 1 goes down“);

. . .

isis_schedule_lsp_pkt_generation(node);

. . .

printf (“ Adjacency 2 goes down“);

printf (“ Adjacency 3 goes down“);

printf (“ Adjacency 4 goes down“);

}

Adjacency 1 goes down
Schedule lsp pkt gen task

Adjacency 2 goes down

Adjacency 3 goes down

Adjacency 4 goes down

LSP pkt is generated

protocol() {

.

printf (“Adjacency 1 goes down“);

. . .

isis_create_fresh_lsp_pkt(node);

. . .

printf (“ Adjacency 2 goes down“);

isis_create_fresh_lsp_pkt(node);

printf (“ Adjacency 3 goes down“);

isis_create_fresh_lsp_pkt(node);

printf (“ Adjacency 4 goes down“);

isis_create_fresh_lsp_pkt(node);

}
 Synchronous LSP pkt Generation

 Asynchronous LSP pkt Generation

End Result is same :

Most recent LSP pkt

would contain same

content as per latest

view of topology

Adjacency 1 goes down

Lsp pkt generated

Adjacency 2 goes down

Lsp pkt generated

Adjacency 3 goes down

Lsp pkt generated

Adjacency 4 goes down

Lsp pkt generated

d
e
fe

rr
e
d

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Periodic Generation and Disbursement

➢ An ISIS node not only have to generate self LSP periodically, but also must disburse it

➢ This is done to ensure that all nodes of the topology has their LSDB in sync

➢ Disburse means – send the new LSP pkt out of all protocol enabled interfaces which has adjacency in UP state

➢ So let us implement the mechanism of periodic generation of self LSP

➢ Timer must start as soon as protocol is enabled on node level

➢ Timer must be stopped only when protocol is disabled on a node

➢ Flooding Time interval : #define ISIS_LSP_DEFAULT_FLOOD_INTERVAL 120 // but take 15 sec for testing purpose

APIs : isis_flood.c/.h (new files)

You are already familiar with the Timer library, pls try to do this by yourself.

Use show command to verify that self LSP pkt’s sequence number increases by 1 periodically

Periodic Generation of LSP

void

isis_start_lsp_pkt_periodic_flooding(node_t *node);

void

isis_stop_lsp_pkt_periodic_flooding(node_t *node);

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Periodic Generation and Disbursement

Disburse of LSP
➢ Sending out the LSP packet out of all protocol enabled interfaces of a device which has Adj in UP state

isis_node_info_ {

. . . .

isis_lsp_pkt_t *self_lsp_pkt;

. . . .

} isis_node_info_t;

isis_intf_info_ {

. . . .

glthread_t lsp_xmit_list_head;

task_t *lsp_xmit_job;

. . . .

} isis_intf_info_t;

isis_flood.h

typedef struct isis_lsp_xmit_elem_ {

isis_lsp_pkt_t *lsp_pkt;

glthread_t glue;

} isis_lsp_xmit_elem_t;

Acts as a glue to

attach LSP into

Intf lsp xmit Queue

 Every interface has a Queue which maintains list of LSPs pending to be

sent out of that interface

 Every interface has a task/job whose responsibility is to Disburse the

pending lsp queue

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Periodic Generation and Disbursement

Disburse of LSP
➢ Sending out the LSP packet out of all protocol enabled interfaces of a device which has Adj in UP state

Overall Procedure :

1. LSP to be disbursed is Queued into pending lsp queue for all eligible

interfaces

2. Task/job to process pending lsp queue for each interface is scheduled

3. When task/job of an interface is triggered, it dequeues

LSPs from interface’s pending queue one by one and

send them out of the interface

4. When pending queue of an interface is empty, task/job is finished

5. When sending out a given LSP out of all eligible interface is completed,

then LSP is said to have completed its disbursement procedure

Highly Asynchronous Design !

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Periodic Generation and Disbursement

Disburse of LSP
void

isis_queue_lsp_pkt_for_transmission(

interface_t *intf,

isis_lsp_pkt_t *lsp_pkt) ;

4 Steps :

Step 1 : Queue the lsp_pkt into interface lsp xmit Queue

isis_lsp_xmit_elem_t *lsp_xmit_elem =

calloc(1, isis_lsp_xmit_elem_t);

init_glthread(&lsp_xmit_elem->glue);

lsp_xmit_elem->lsp_pkt = lsp_pkt;

glthread_add_last(&intf_info->lsp_xmit_list_head,

&lsp_xmit_elem->glue);

Step 2 : Fork out the new task to dispatch lsp pkt out

of this Queue, if not already

if (!intf_info->lsp_xmit_job) {

intf_info->lsp_xmit_job =

task_create_new_job (intf, isis_lsp_xmit_job,

TASK_ONE_SHOT);

}

isis_flood.h/.c1

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Periodic Generation and Disbursement

Disburse of LSP
static void

isis_lsp_xmit_job(void *arg, uint32_t arg_size);

Step 3 :

Dequeue LSPs one by one from interface’s lsp xmit queue

and send_pkt_out() it out of the interface

void

isis_schedule_lsp_flood(node_t *node,

isis_lsp_pkt_t *lsp_pkt,

interface_t *exempt_iif);

Step 4 :

Iterate over all interfaces, and Queue LSP pkt

for transmission for each interface

ITERATE_NODE_INTERFACES_BEGIN(node, intf) {

if (intf == exempt_intf) continue;

isis_queue_lsp_pkt_for_transmission(intf, lsp_pkt);

} ITERATE_NODE_INTERFACES_END(node, intf);

 Highest Level API to

be used

isis_flood.c

isis_flood.h/.c

2

3

Network Protocol Development → Phase 2 : LSDB Mgmt→ Reference Count on LSPs

➢ Consider the protocol has Scheduled up its own LSP in LSP Xmit Queue

of interfaces during LSP disbursement, at time t1

➢ At time t2, assume some Adjacency goes up (or down)

➢ Protocol will delete its own old LSP, and re-create a new one

➢ LSP xmit Queue would now hold the pointer to freed LSP

packet (dangling reference), performing any operation on

it would result in program crash, unexpected behaviour

➢ Moreover , if the old LSP is installed in LSDB, then LSDB would

corrupt (freeing the node already inserted in a tree)

➢ Solution :

➢ Protocol must free the lsp pkt only when no other object hold the

reference to it

➢ Let us understand this problem in general and discuss solution

Reference Counting

A

B

C

D

Some other

Standalone object Some linked list Some Tree

➢ When the application has a multi-reference object then such an object must

be freed only when it is no more referenced by any other object

➢ Pre-mature free of such an object would result in dangling pointers

➢ Solution : Program must destroy the object A

only when no other object has a reference to it

➢ Reference count

➢ Maintain an integer ref_count of A which keep tracks regarding how many other objects are referencing to A

➢ In this case it is 3

➢ Malloc the object A with ref_count = 0

➢ Increase the ref_count of A when some object holds the pointer to it (reference (A))

➢ Decrease the count of A, when other object stop referencing object A (dereference (A))

➢ Free the object A when ref_count of A reduces to 0

➢ Never invoke free() on such objects directly, always free it through dereference() it

void reference(A) {

A->ref_count++;

}

void dereference(A) {

A->ref_count--;

if (A->ref_count == 0) free(A);

}

Network Protocol Development → Phase 2 : LSDB Mgmt→ Reference Count on LSPs

➢ lsp_pkt->ref_count = 6 as per diagram

➢ When protocol creates a new LSP pkt, ref_count of old lsp_pkt = 5

(node_info->self_lsp_pkt will now point to new LSP pkt)

➢ When old lsp pkt is disbursed out of interface I1, ref_count = 4

➢ When old lsp pkt is disbursed out of interface I2, ref_count = 3

➢ When old lsp pkt is disbursed out of interface I3, ref_count = 2

➢ When old lsp pkt is disbursed out of interface I4, ref_count = 1

➢ When old lsp pkt is disbursed out of interface I5, ref_count = 0

➢ Old_lsp_pkt is freed !

void

isis_ref_isis_pkt (isis_lsp_pkt_t *lsp_pkt) ;

void

isis_deref_isis_pkt (isis_lsp_pkt_t *lsp_pkt);

So, now our disbursement logic is full proof

isis_pkt.c/.h

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSDB

➢ First of all, we should be able to verify whatever we have implemented so far is bug-free

➢ So, lets work towards our short-term goal to show link state packet contents using show command

➢ LSPDB is a database of Link State Packets the device has recvd + its own LSP

➢ Node level data structure

➢ We shall model LSPDB as a balanced AVL Tree, keyed by router id

➢ Install

➢ Delete

➢ Lookup

➢ Walk

➢ We shall install/replace LSP packets in LSPDB

➢ Homework : Before proceeding to next lecture video, pls go through Appendix A section

➢ Implement a show CLI to print the link-state database content

show node <node-name> protocol isis lsdb [<rtr-id>]

Network Protocol Development → Phase 2 : LSDB Mgmt→ Defining LSDB

➢ LSDB is modelled as AVL tree

➢ Define new AVL tree as member in isis_node_info_t structure

➢ LSDB will contain isis_lsp_pkt_t type objects keyed by router id.

➢ Define new Members in isis_lsp_pkt_t

➢ Initialize LSDB in isis_init () , and destroy in isis_de_init()

➢ APIs for LSDB Mgmt will go in isis_lsdb.c|.h (new files)

➢ Let us discuss what all APIs we would be needing to manage lsdb and implement them

Network Protocol Development → Phase 2 : LSDB Mgmt→ Defining LSDB → LSDB Mgmt APIs

isis_lsdb.h/.c

LSDB Integration Steps:

➢ Initialize isis_init ()

> avltree_init()

➢ de_initialize in isis_de_init ()

➢ void isis_cleanup_lsdb(node_t *node);

➢ Install API : bool isis_add_lsp_pkt_in_lspdb(node_t *node, isis_lsp_pkt_t *lsp_pkt) ;

➢ Remove API : void isis_remove_lsp_from_lspdb(node_t *node, uint32_t rtr_id);

: void isis_remove_lsp_pkt_from_lspdb(node_t *node, isis_lsp_pkt_t *lsp_pkt);

➢ Validation : bool isis_is_lsp_pkt_installed_in_lspdb(isis_lsp_pkt_t *lsp_pkt);

➢ Util : byte* isis_print_lsp_id(isis_lsp_pkt_t *lsp_pkt);

➢ Util : bool isis_our_lsp(node_t *node, isis_lsp_pkt_t *lsp_pkt) ;

➢ Show : void isis_show_one_lsp_pkt_detail(node_t *node, char *rtr_id_str);

➢ Show : void isis_show_lspdb(node_t *node);

➢ Lookup : isis_lsp_pkt_t * isis_lookup_lsp_from_lsdb(node_t *node, uint32_t rtr_id) ;

➢ Look up : avltree_t * isis_get_lspdb_root(node_t *node);

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSDB update with LSPs

➢ All ISIS nodes has to process the LSP packets it recvs over interface Or self-originates

ISIS Protocol

LSDB

isis_install_lsp()

Network

Source S1 isis_create_fresh_lsp_pkt()

Source S2

• For Source S2, recv_intf = NULL

• For Source S2, LSP is always self-lsp

• For Source S1, recv_intf != NULL

• For Source S1, remote node’s LSP or

self-LSP can also be recvd

• isis_install_lsp() is an interface between ISIS core

and LSDB

• isis_install_lsp() API implements algorithm to

look after LSP installation in LSDB

• Remove the obsolete one

• Trigger LSP flood

• Regenerate new self LSP

recv_intf

Network Protocol Development → Phase 2 : LSDB Mgmt→ Update LSP reference count

➢ Revisiting Ref count of LSPs (Covered as Assignment)

ISIS Protocol

LSDB

isis_install_lsp()

Network

Source S1 isis_create_fresh_lsp_pkt()

Source S2

recv_intf

➢ Remember LSPs are multi-reference objects

➢ we need to increase the ref count of LSP if it is installed in lsdb

➢ Dec the ref count if it is removed from lsdb

➢ Code changes

➢ We shall soon going to write a show command to verify ref counts of LSPs are correct

Q. Under normal protocol operation, what

Should be the ref count of self LSP ?

Ans : ?

Q. Under normal protocol operation, what

Should be the ref count of remote LSPs ?

Ans : ?

Normal Operation : No LSP is Queued

for disbursement by protocol

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Flooding Algorithm

➢ Ever ISIS node has to distribute its own LSP throughout the ISIS topology

➢ This is done via Flooding Algorithm

➢ Ensure Every Node’s LSP Pkt is distributed to every other node

➢ Ensure the LSDB of all nodes is in sync and accurate

➢ Ensure there is no infinite distribution of LSPs (infinite loop)

➢ Ensure Addition/Deletion of new nodes in the topology (Later)

➢ The LSP’s Sequence no plays a key role in flooding Algorithm Implementation

R0

R1

R2

R3

R4

Two variations of LSP flooding :

• Forward flooding

• Blind flooding

➢ All ISIS nodes has to process the LSP packets it recvs over interface Or self-originates

ISIS Protocol

LSDB

isis_install_lsp()

Network

Source S1 isis_create_fresh_lsp_pkt()

Source S2

• For Source S2, recv_intf = NULL

• For Source S2, LSP is always self-lsp

• For Source S1, recv_intf != NULL

• For Source S1, remote node’s LSP or

self-LSP can also be recvd

• isis_install_lsp() is an interface between ISIS core

and LSDB

• isis_install_lsp() API implements algorithm to

look after LSP installation in LSDB

• Remove the obsolete one

• Trigger LSP flood

• Regenerate new self LSP

recv_intf

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Installation Rules

Network Protocol Development → Phase 2 : LSDB Mgmt→ Self LSP Installation Rules

➢ ISIS have to maintain LSDB which store all remote LSPs recvd + Self own LSP

➢ It is ISIS responsibility that LSPs installed in LSDB is correct and accurate

➢ When ISIS regenerates its own LSP, it should install the new self LSP in LSDB replacing the old one if exist

➢ Node may recv its own LSP from Remote Nodes as well as a part of flooding Algorithm

Event Criteria Recvd via

interface

Action Remark

isis_event_self_duplicate_lsp isis_our_lsp(node, new_lsp) ==

TRUE &&

new_lsp->seq_no == old_lsp-

>seq_no

Yes Ignore the LSP As a part of flooding algorithm, Node may recv

its own duplicate lsp from other node. Since

node already has it, no action

No assert(0); Node never generate a new LSP pkt with same

seq no as before

isis_event_self_fresh_lsp isis_our_lsp(node, new_lsp) ==

TRUE &&

old_lsp == NULL

No Install the LSP in LSDB, forward flood

it

Propagate the LSP further as a part of flooding

algorithm

Yes Ignore the LSP, regenerate self LSP pkt

with higher seq no and blind flood

Somebody trying to game you ! Node receiving

its own LSP when it itself doesn’t have one,

Node would try to overwrite its LSP in other

node’s lsdb

isis_event_self_new_lsp isis_our_lsp(node, new_lsp) ==

TRUE &&

new_lsp->seq_no > old_lsp->seq_no

Yes Ignore the LSP, regenerate self LSP pkt

with higher seq no and blind flood

Somebody trying to game you ! Node receiving

its own obsolete LSP, Node would try to

overwrite its LSP in other node’s lsdb

No Replace the new_lsp in LSDB with

old_lsp, blind flood the new_lsp

Node is refreshing its own LSP with higher

sequence no.

isis_event_self_old_lsp isis_our_lsp(node, new_lsp) ==

TRUE &&

new_lsp->seq_no < old_lsp->seq_no

yes Ignore the LSP, blind flood own LSP Node would blind its own LSP so as to overwrite

its own old lsp in other node’s lsdb

No assert(0); Node cannot generate new LSP with lower seq

no

ISIS Protocol

LSDB

isis_install_lsp()

recv_intf

Network

Source S1

Network Protocol Development → Phase 2 : LSDB Mgmt→ Remote LSP Installation Rules

➢ ISIS have to maintain LSDB which store all remote LSPs recvd + Self own LSP

Event Criteria Recvd via

interface

Action Remark

isis_event_non_local_duplicate_lsp isis_our_lsp(node, new_lsp)

== FALSE &&

new_lsp->seq_no ==

old_lsp->seq_no

Yes Ignore the LSP As a part of flooding algorithm,

Node may recv own duplicate

remote lsp from nbr node

No assert(0); Node never generate remote LSPs

isis_event_non_local_fresh_lsp isis_our_lsp(node, new_lsp)

== FALSE &&

old_lsp == NULL

No assert(0) Node never generate remote LSPs

Yes Add LSP in DB, Forward

flood it

Node recvd LSP of remote node

for the first time, install it

isis_event_non_local_new_lsp isis_our_lsp(node, new_lsp)

== FALSE &&

new_lsp->seq_no > old_lsp-

>seq_no

Yes Replace the old_lsp with

new_lsp in lsdb, forward flood

new lsp

Node recvd more recent remote

LSP, update the lsdb with new LSP

No assert(0) Node never generate remote LSPs

isis_event_non_local_old_lsp isis_our_lsp(node, new_lsp)

== FALSE &&

new_lsp->seq_no < old_lsp-

>seq_no

yes Ignore the LSP , shoot back

the LSP already in LSPDB on

receiving interface

Node would try to overwrite the

older remote LSP in other node

LSDB by advertising the newer

remote LSP is has

No assert(0); Node never generate remote LSPs

ISIS Protocol

LSDB

isis_install_lsp()

recv_intf

Network

Source S1

Network Protocol Development → Phase 2 : LSDB Mgmt→ Testing and Bug Fixing

➢ We implemented isis_install_lsp() which implements the

➢ Local LSDB database update

➢ LSP flooding

➢ LSDB synchronization

➢ Any bug introduced in this fn can have devastating effect :

➢ LSPs can go in infinite flooding

➢ LSPs can replicate to millions (like bacteria , causing system going OOM)

➢ System hang, process killed

➢ Functional bugs – LSPs missing in LSDB, LSDBs is not in sync state across topology

➢ What about Memory leaks ?

➢ You need to test out the API starting from smaller topologies

➢ 1 point-to-point link between two devices

➢ Gradually increase topology size by adding nodes and links

➢ Test out your code for at-least 5 days

➢ Use show CLIs to verify the functionality

➢ Bug Fixes :

➢ We had introduced 2 bugs in isis_install_lsp () , lets exercise how did I resolve them

➢ You will suffer if you had not put traces in your code, specially in this function (dynamic feature)

➢ You would have to depend on logs/tcp_log_file to resolve bugs related to lsdb mgmt, gdb wont help much

➢ I give you some instances how to resolve bugs related to dynamic features ! Same Technique applies to production code

Network Protocol Development → Phase 2 : LSDB Mgmt→ Debug Event Counters

➢ Phew !! The core part of the proto dev is finished ! Congratulations once again.

➢ But the show is not finished yet, we have completed approx 70% of the protocol development

➢ And Our Protocol is growing in size .. Have you counted # of lines we have coded so far in isis dir

➢ It is desirable to introduce some event counters which helps user keeps a track regarding how many times what events have generated/

triggered by the protocol during the course of its operation in the network

Eg :

Counter to count no of self LSP pkt generation

Counter to count no of Adj state transitions

Counter to count LSP recv events

Counter to count no of times adjacency attributes changed

and many more …

➢ These counters give an idea to the user how the ISIS protocol is reacting to the network, health check of the network as well indirectly

➢ Very helpful in debugging as well

➢ Addition of more features, introduce more related counters in future

Network Protocol Development → Phase 2 : LSDB Mgmt→ Event Counters

tcp-ip-stack> $ show node R2 protocol isis event-counters

Parse Success.

Event Counters :

ISIS EVENT ADJ STATE CHANGED : 4

ISIS EVENT ADMIN CONFIG CHANGED : 1

ISIS EVENT NBR ATTRIBUTE CHANGED : 0

ISIS_EVENT_UP_ADJACENCY_DELETED : 0

ISIS EVENT SELF DUPLICATE LSP : 0

ISIS EVENT SELF FRESH LSP : 1

ISIS EVENT SELF NEW LSP : 6

ISIS EVENT SELF OLD LSP : 0

ISIS EVENT NON LOCAL DUPLICATE LSP : 59

ISIS EVENT NON LOCAL FRESH LSP : 5

ISIS EVENT NON LOCAL NEW LSP : 27

ISIS EVENT NON LOCAL OLD LSP : 0

ISIS EVENT PERIODIC LSP GENERATION : 1

ISIS EVENT ADMIN ACTION DB CLEAR : 0

CLI returned

typedef struct isis_node_info_ {

. . .

/*event counts*/

uint32_t isis_event_count[isis_event_max];

. . .

} isis_node_info_t;

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Purging

➢ If user disables the protocol ISIS on a node of the topology, then rest of the nodes in the topology must almost immediately

delete the LSP pkt of the former node, and must not rely on timeout of LSP timer

➢ This is achieved via Purge LSP

➢ A purge LSP is an LSP in which there is no TLVs except ISIS_TLV_HOSTNAME and only isis_pkt_hdr_t, with purge bit

set in isis_pkt_hdr_t->flags

#define ISIS_LSP_F_PURGE_LSP (1) in isis_const.h

➢ When other routers in the topology recvs this purge LSP pkt, they immediately delete the existing LSP pkt from their LSDB

and forward-flood the purge LSP

➢ Purge LSP is also flooded using same LSP flooding algorithm, whichever node recvs it, delete the copy the LSP pkt from its

LSDB from forward-flood it

➢ Result : All nodes in the topology have got rid of LSP packet of a dead ISIS router ! LSDB of all nodes end up in sync

➢ Demo

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Purging

void

isis_create_and_flood_purge_lsp_pkt_synchronously (node_t *node);

• isis_create_fresh_lsp_pkt(node); // create purge LSP

• isis_flood_lsp_synchronously(node, node_info->self_lsp_pkt); // flood the purge LSP

void

isis_de_init (node_t *node) {

interface_t *intf;

isis_node_info_t *isis_node_info = ISIS_NODE_INFO(node);

if (!isis_node_info) return;

isis_create_and_flood_purge_lsp_pkt_synchronously(node);

. . .

. . .

typedef struct isis_node_info_ {

. . .

/* control flags to generate LSP */

uint8_t lsp_gen_flags;

. . .

} isis_node_info_t;

/* LSP pkt generation flags in isis_pkt.h */

#define ISIS_LSP_PKT_CREATE_PURGE_LSP 1

Network Protocol Development → Phase 2 : LSDB Mgmt→ LSP Purging

void

isis_create_and_flood_purge_lsp_pkt_synchronously (node_t *node);

• isis_create_fresh_lsp_pkt(node); // create purge LSP

• isis_flood_lsp_synchronously(node, node_info->self_lsp_pkt); // flood the purge LSP

void

isis_flood_lsp_synchronously (node_t *node, isis_lsp_pkt_t *lsp_pkt) {

interface_t *intf;

isis_intf_info_t *intf_info ;

ITERATE_NODE_INTERFACES_BEGIN (node, intf) {

if (!isis_node_intf_is_enable((intf))) continue;

intf_info = ISIS_INTF_INFO(intf);

if (intf_info->adjacency &&

intf_info->adjacency->adj_state == ISIS_ADJ_STATE_UP) {

send_pkt_out (lsp_pkt->pkt, lsp_pkt->pkt_size, intf);

}

} ITERATE_NODE_INTERFACES_END (node, intf);

}

Network Protocol Development → Phase 2 : LSDB Mgmt→ Reconciliation → Protocol Convergence

➢ Protocol Convergence

➢ When the protocol is disturbed (adj gone up/down, admin config etc), it triggers the entire computation cycle :

➢ Regenerate self LSP and disburse

➢ Run SPF algorithm

➢ Compute routes

➢ Update Routing Table

➢ Time interval beginning from the point when protocol was stimulated (t1), to the point when protocol has updated it Routing table again

(t2) is called protocol convergence time (t2 – t1)

➢ Lesser convergence time is desirable

➢ Until the protocol converges, Routing table has stale routes which results in traffic loss, traffic loop etc (Explained in theory sec)

➢ Protocol undergoes convergence are of two types :

➢ Event based triggered convergence (Fast)

➢ Timer based triggered convergence (Slow)

Network Protocol Development → Phase 2 : LSDB Mgmt→ Reconciliation → Protocol Convergence

➢ Protocol Convergence

R1R0 R2

R3

Ex of Event based convergence (Fast)

➢ All routers recvs the update almost instantly

Network Protocol Development → Phase 2 : LSDB Mgmt→ Reconciliation → High Convergence Problem

R1R0 R2

R3
Assume flood time interval set is 15 sec

1. At t1 R1->R0 Adj goes up

R1 regen LSP-R1 and flood

R2 and R3 recvs and update lsdb

R0 ignores because R0->R1 adj is not up yet

2. At t2, R0->R1 Adj goes up

1. R0 regen LSP-R0 and flood

2. R1 recvs and update lsdb

3. R1 forward flood

4. R2 and R3 recvd and update lsdb

R0 would not recv

LSPs of R1, R2 &

R3 until they

periodically floods it

• Higher the flood time interval, higher the

convergence time

• Setting flood time interval too rigorous

would result frequent LSP flooding which

would eat up lot of network resources

in big topologies (Scaling problem)

• Solution : Reconciliation

➢ Protocol Convergence

Ex of Timer based convergence (Slow)

Network Protocol Development → Phase 2 : LSDB Mgmt→ Reconciliation Explained

R1R0 R2

R3
Type = 111

1

1 Or 0

ISIS_TLV_ON_DEMAND

• When the ISIS router detects its adjacency has gone UP, it enters into reconciliation phase (void isis_enter_reconciliation_phase(node_t *node))

• In reconciliation phase, router generates its self-LSP pkts at an interval of 2 sec (default)

• On demand TLV is inserted into LSP pkt when router is operating in reconciliation phase

• When other router recvs LSP pkt with OD TLV, it blind floods its own LSP in addition to processing the LSP as per the

normal LSP flooding algorithm, provided that recipient router is not running in reconciliation phase

• When router enters reconciliation phase, it also starts the reconciliation timer (10 sec) (void isis_start_reconciliation_timer(node_t *node))

• When reconciliation timer expires, router exits the reconciliation phase and resume self lsp pkt periodic flooding as normal

(void isis_exit_reconciliation_phase(node_t *node))

• When router operating in reconciliation phase detects adj transitions, it restarts the reconciliation timer (void isis_restart_reconciliation_timer(node_t *node))

• Router operating in Reconciliation phase process remote router’s LSPs as normal (no change)

void isis_stop_reconciliation_timer(node_t *node)

bool isis_is_reconciliation_in_progress(node_t *node)

typedef struct isis_reconc_data_ {

/* is reconciliation going on */

bool reconciliation_in_progress;

/* reconciliation timer */

timer_event_handle *reconciliation_timer;

} isis_reconc_data_t;

Network Protocol Development → Phase 2 : LSDB Mgmt→ Reconciliation Explained

➢ Router operating in Reconciliation phase has the following special behaviour :

• Generate self LSPs in every 2 sec , overriding the flood LSP interval value

• Runs the Reconciliation timer

• Restart the reconciliation timer, when any Adj goes UP

➢ Whether or not Router is operating in Reconciliation timer, it always responds to On-Demand TLV

➢ The purpose of the Reconciliation phase is to enable router to snatch the LSPs from other routers in the topology !

➢ Like its your first day at school and you are cracking funny jokes to make/attract new friends in the first week ☺

➢ LSDB sync no more depends on periodic LSP flooding due to reconciliation

➢ Lets Code Reconciliation !

Network Protocol Development → Phase 2 : LSDB Mgmt→ Processing on Demand TLV

R1 R2

➢ When other router recvs remote LSP pkt with OD TLV :

➢ if recipient router is executing in reconciliation phase

➢ Process LSP as per the LSP flooding algorithm (isis_install_lsp ())

➢ ignore OD TLV

➢ Else

➢ Process LSP as per the LSP flooding algorithm (isis_install_lsp ())

➢ blind floods its own LSP with higher seq no

Solution :

isis_install_lsp() {

…

if (!isis_is_reconciliation_in_progress (node) &&

!self_lsp &&

isis_present_on_demand_tlv(new_lsp_pkt) &&

!node_info->lsp_gen_task) {

isis_schedule_lsp_pkt_generation(node);

}

}

Rest of

the

topology

If two routers are in reconciliation

phase, then they form LSP storm in the

network, that’s the reason they should

ignore OD TLV

Core Network Development – Phase 2 Finished

➢ We will be going to implement a simplified Routing Protocol in this course

➢ Routing protocol chosen – Interior gateway protocol (IGP , ex OSPF, ISIS)

➢ Don’t know about it – don’t worry, we shall cover theory first before any implementation

➢ A typical IGP (link state) protocol functionality is divided into 4 distinct parts :

1. Adjacency Management (Each device know its neighbours)

• Sending and Receiving hello packets periodically

• Update neighborship state machine

2. Building Link State Database (Each device internally creates a view of topology - Graph)

• Building Link State packets

• Flooding link state packets

• Build a Graph – a view of network topology

3. Running SPF algorithm (Dijkstra) on LSDB

• Process the LSDB through the algorithm

• Compute Results and store

• Algorithmically challenging

4. L3 Route Calculations

• Use Results of 3 to compute final L3 routes and update Routing Table

• Algorithmically challenging

We shall be going to implement all 4 parts in this course series

Along the journey we shall implement various sub-features within the protocol

Adjacency Mgmt

Building Link state

Database

Running SPF

Algorithm

L3 Route Calculations

Network Protocol Development → Phase 2

Network Protocol Development → Phase 2 : Mini Project – Interface Groups

➢ We have completed the core development of phase 2 of the project and now its time to

add one feature to the protocol

➢ This is optional feature – even if you skip, further project development is not impacted

➢ Interface groups – A feature to optimize LSP flooding

➢ Pledge that

➢ You have thoroughly tested LSDB Mgmt and LSP flooding

➢ You have thoroughly completed all assignment

➢ You have all show/config CLIs in place which we have discussed so far

➢ You are confident that there are no major bugs in the project

➢ Your code is stable and ready for further development

Network Protocol Development → Phase 2 : Mini Project – Interface Groups → Problem Statement

R0

➢ There is a lot of redundant flooding of LSPs whenever there are parallel links in the topology

➢ Waste Processing, eats up network bandwidth

R1

➢ Flooding LSP on exactly one qualified parallel link is enough

➢ We can suppress the redundant event isis_event_non_local_duplicate_lsp through interface group feature

➢ LSP should be sent out on exactly one parallel link – whichever is available at the time of LSP disbursement

➢ All parallel PTP links between two devices are treated as one group called interface groups

➢ Interface groups is a group of local interfaces which connects to same nbr node

➢ Protocol sees parallel links as just one link and send out LSP pkt on available member sub-link

➢ Can you think of the Data structure / Design / Algorithm to implement this functionality !

➢ This is how you shall be implementing various new features on existing protocol in the industry.

isis_event_non_local_new_lsp

isis_event_non_local_duplicate_lsp

Network Protocol Development → Phase 2 : Mini Project – Interface Groups In Action

R0

➢ LSP flooding with Interface Groups

R1

R2

R3

➢ LSP pkt recvd on a interface Group is not flooded back on

that interface group

➢ Saves lot of redundant LSP flooding and Network Resources

➢ A node can have multiple interface Groups

➢ Ex, R1 has 3 interface groups

➢ Interface groups is a group of local interfaces which connects

to same nbr node

➢ How can a given node name multiple interface groups such as

interface groups are unique for a given device ?

> Soln : Using Nbr rtr id as identifier of interface

groups

Network Protocol Development → Phase 2 : Mini Project – Interface Groups → Design Steps

R0

➢ Interface Groups Design

R1

R2

R3

➢ Every interface Group is identified by nbr rtr id

➢ Interface Grp is a collection of parallel interfaces

➢ A Node can have multiple interface grp, therefore

maintain a db of interface groups

typedef struct isis_intf_group_ {

char name[ISIS_INTF_GRP_NAME_LEN]; /* key */

glthread_t intf_list_head;

avltree_node_t avl_glue;

} isis_intf_group_t;

typedef struct isis_node_info_ {

. . .

/* Tree of interface Groups */

avltree_t intf_grp_avl_root;

/* Dynamic intf grp */

bool dyn_intf_grp;

. . .

} isis_node_info_t;

typedef struct isis_intf_info_ {

. . .

/* glue to add to interface group*/

glthread_t intf_grp_member_glue;

isis_intf_group_t *intf_grp;

. . .

} isis_node_info_t;

Network Protocol Development → Phase 2 : Mini Project – Interface Groups → Design Steps

R0

➢ Interface Groups Design -> Algorithm

R1

R2

R3

➢ When a node will create a new interface group and add interface

➢ Steps :

➢ Node R1 brings up Adjacency with node R2 on local

interface R1-if1

➢ Node R1 search in intf grp db if there exist intf_grp with

name 2.2.2.2

➢ If yes, add R1- if1 in interface grp’s intf list

➢ If Not, create a new intf grp “2.2.2.2” , add it to intf grp db

and, add R1-if1 in interface grp’s intf list

➢ When a node will delete an interface from interface grp

➢ Steps :

➢ Node R1 brings down Adjacency with node R2 on local

interface R1-if1

➢ Node R1 search in intf grp db if there exist intf_grp with

name 2.2.2.2

➢ If not found, done

➢ If found, remove R1-if1 from intf grp intf list. If intf list is

empty, delete interface group also

Network Protocol Development → Phase 2 : Mini Project – Interface Groups → Design Steps

R0 R1

R2

R3

isis_schedule_lsp_flood() to be updated !

➢ How to do controlled LSP flooding

➢ Blind Flooding Steps :

➢ Iterate over all interface groups

➢ Select the Ist interface in interface-grp list

➢ Schedule lsp xmit on this interface

➢ Forward Flooding Steps:

➢ Let exempt_iif is the exempted interface (LSP pkt

recvd on this interface)

➢ Iterate over all interface groups

➢ If intf_grp has member exempt_iif , skip this intf_grp

➢ Select the Ist interface in interface-grp list

➢ Schedule lsp xmit on this interface

➢ Interface Groups Design -> Algorithm

Note : The lsp flooding behaviour must fallback to

Old behaviour if interface group feature is disabled on a node

Network Protocol Development → Phase 2 : Mini Project – Interface Groups → Design Steps

R0

➢ CLIs

R1

R2

R3

Show :

Show node <node-name> protocol isis interface-groups

< Output attached in Resource Section >

Config :

config node <node-name> [no] protocol isis interface-groups

[Enabled by default]

Network Protocol Development → Phase 2 : Mini Project – Interface Groups → Design Steps

R0

➢ APIs

R1

R2

R3

int

isis_config_dynamic_intf_grp(node_t *node) ;

int

isis_un_config_dynamic_intf_grp(node_t *node) ;

void

isis_dynamic_intf_grp_update_on_adjacency_up (

isis_adjacency_t *adjacency);

void

isis_dynamic_intf_grp_update_on_adjacency_down (

isis_adjacency_t *adjacency);

void

isis_dynamic_intf_grp_build_intf_grp_db(node_t *node);

void

isis_intf_grp_cleanup(node_t *node) ;

void

isis_init_intf_group_avl_tree(avltree_t *avl_root);

isis_intf_group_t *

isis_intf_grp_look_up(node_t *node, char *intf_grp_name);

Network Protocol Development → Phase 2 : Mini Project – Interface Groups → Design Steps

R0

➢ APIs

R1

R2

R3

bool

isis_intf_group_insert_in_intf_grp_db(node_t *node,

isis_intf_group_t *intf_grp);

isis_intf_group_t *

isis_intf_group_create_new(char *grp_name);

bool

isis_intf_group_delete_by_name_from_intf_grp_db(

node_t *node, char *intf_grp_name);

void

isis_intf_group_remove_from_intf_grp_db(

node_t *node, isis_intf_group_t *intf_grp);

Network Protocol Development → Phase 2 : Mini Project – Interface Groups → Design Steps

R0

➢ Testing

R1

R2

R3

➢Ensure that unnecessary LSP flooding do not happen

➢ ISIS LSDB is in sync across all topologies

➢Use show CLIs to ensure LSP pkts are not being transmitted over redundant

parallel links

➢ clear node <node-name> protocol isis adjacency must also delete all interface

grps, but intf-grps will form again as soon as adjacency starts forming again

due to continuous hellos

➢Take care of protocol shut-down procedure

➢Delete all interfaces from interface grp intf list

➢Delete interface groups

➢Add assert check in isis_check_and_delete_intf_info() to ensure that

interface is not Queued up in intg grp interface list

➢Add assert check in isis_check_delete_node_info() to ensure that

interface grp DB is empty

Hope You Enjoyed this Course !

END of Phase 3

