
Pseudocode: An Introduction

Flowcharts were the first design tool to be widely used, but unfortunately they do not
very well reflect some of the concepts of structured programming. Pseudocode, on the
other hand, is a newer tool and has features that make it more reflective of the
structured concepts. Unfortunately, the narrative presentation is not as easy to
understand and follow.

RULES FOR PSEUDOCODE

1. Write only one stmt per line

Each stmt in your pseudocode should express just one action for the computer.
If the task list is properly drawn, then in most cases each task will correspond to
one line of pseudocode.

EX: TASK LIST:

Read name, hourly rate, hours worked, deduction rate
 Perform calculations

gross = hourlyRate * hoursWorked
deduction = grossPay * deductionRate
net pay = grossPay – deduction

 Write name, gross, deduction, net pay

 PSEUDOCODE:
 READ name, hourlyRate, hoursWorked, deductionRate
 grossPay = hourlyRate * hoursWorked
 deduction = grossPay * deductionRate
 netPay = grossPay – deduction
 WRITE name, grossPay, deduction, netPay

2. Capitalize initial keyword
In the example above, READ and WRITE are in caps. There are just a few
keywords we will use:

READ, WRITE, IF, ELSE, ENDIF, WHILE, ENDWHILE, REPEAT, UNTIL

3. Indent to show hierarchy

We will use a particular indentation pattern in each of the design structures:

SEQUENCE: keep statements that are “stacked” in sequence all starting in the
same column.

SELECTION: indent the statements that fall inside the selection structure, but not
the keywords that form the selection

LOOPING: indent the statements that fall inside the loop, but not the keywords
that form the loop
EX: In the example above, employees whose grossPay is less than 100 do not
have any deduction.

 TASK LIST:

Read name, hourly rate, hours worked, deduction rate
 Compute gross, deduction, net pay
 Is gross >= 100?
 YES: calculate deduction
 NO: no deduction
 Write name, gross, deduction, net pay

 PSEUDOCODE:
 READ name, hourlyRate, hoursWorked
 grossPay = hourlyRate * hoursWorked
 IF grossPay >= 100
 deduction = grossPay * deductionRate
 ELSE
 deduction = 0
 ENDIF
 netPay = grossPay – deduction
 WRITE name, grossPay, deduction, netPay

4. End multiline structures

See how the IF/ELSE/ENDIF is constructed above. The ENDIF (or END
whatever) always is in line with the IF (or whatever starts the structure).

5. Keep stmts language independent
Resist the urge to write in whatever language you are most comfortable with. In
the long run, you will save time! There may be special features available in the
language you plan to eventually write the program in; if you are SURE it will be
written in that language, then you can use the features. If not, then avoid using
the special features.

SELECTION STRUCTURE

We looked at this in Chap 2:

The pseudocode for this would be:

IF amount < 1000
 interestRate = .06 // the “yes” or “true” action
ELSE
 interestRate = .10 // the “no” or “false” action
ENDIF

Some selections are of the “do it or don’t” (one sided) variety. For example:

The pseudocode for this is:

IF average < 60
 DO SendWarning
ENDIF

amount
< 1000

interestRate =

.06

interestRate =

.10

yes no

average
 < 60 ?

DO

SendWarning

yes

no

It is considered poor form to have a 1-sided IF stmt where the action is on the “no” or
ELSE side. Consider this code:

IF average < 60
 NULL
ELSE
 DO GivePassingGrade
ENDIF

This could (and should) be rewritten to eliminate the NULL “yes” part. To do that, we
change the < to its opposite: >= as follows:

IF average >= 60
 DO GivePassingGrade
ENDIF

NESTING IF STATEMENTS

What if we wanted to put a little menu up on the screen:

1. Solitaire
2. Doom
3. Monopoly

and have the user select which game to play. How would we activate the correct
game?

 READ gameNumber
 IF gameNumber = 1
 DO Solitaire
 ELSE
 IF gameNumber = 2
 DO Doom
 ELSE
 DO Monopoly
 ENDIF
 ENDIF

We must pay particular attention to where the IFs end. The nested IF must be
completely contained in either the IF or the ELSE part of the containing IF. Watch for
and line up the matching ENDIF.

READ
gameNumber

 gameNumber
 = 1 ?

 gameNumber
 = 2 ?

no

DO
Solitaire

DO Doom

DO
Monopoly

no yes

yes

LOOPING STRUCTURES

One of the most confusing things for students first seeing a flowchart is telling the loops
apart from the selections. This is because both use the diamond shape as their control
symbol. In pseudocode this confusion is eliminated. To mark our loops we will use

these pairs: WHILE / ENDWHILE REPEAT / UNTIL

The loop shown here (from the last
chapter) will have the following
pseudocode:

count = 0
WHILE count < 10
 ADD 1 to count
 WRITE count
ENDWHILE
WRITE “The end”

Notice that the connector and test at the
top of the loop in the flowchart become
the WHILE stmt in pseudocode. The
end of the loop is marked by
ENDWHILE.

What statement do we execute when
the loop is over? The one that follows
the ENDWHILE.

Sometimes it is desirable to put the steps that are inside the loop into a separate
module. Then the pseudocode might be this:

Mainline We often use this name for the first module.
count = 0 Initialization comes first
WHILE count < 10
 DO Process The processing loop uses this module
ENDWHILE
WRITE “The end” Termination does clean-up

Process Go thru these steps and then return to the
ADD 1 to count module that sent you here (Mainline)
WRITE count

START

Count = 0

Count
< 10

Add 1 to count

STOP
Write
count

no

yes

Write
“The
end”

This time we will see how to write pseudocode
for an UNTIL loop:

count = 0
REPEAT
 ADD 1 to count
 WRITE count
UNTIL count >= 10
WRITE “The end”

Notice how the connector at the top of the loop
corresponds to the REPEAT keyword, while
the test at the bottom corresponds the the
UNTIL stmt. When the loop is over, control
goes to the stmt following the UNTIL.

START

Count = 0

Add 1 to count

Write
count

Count
>= 10

STOP

no

yes

Write
“The end”

ADVANTAGES AND DISADVANTAGES

Pseudocode Disadvantages

 It’s not visual

 There is no accepted standard, so it varies widely from company to company

Pseudocode Advantages

 Can be done easily on a word processor

 Easily modified

 Implements structured concepts well

Flowchart Disadvantages

 Hard to modify

 Need special software (not so much now!)

 Structured design elements not all implemented

Flowchart Advantages

 Standardized: all pretty much agree on the symbols and their meaning

 Visual (but this does bring some limitations)

HOW WE STORE AND ACCESS DATA

What happens when we execute READ stmt?
 READ name, hoursWorked, hourlyRate, deductionRate

The computer stores all program data into memory locations. It knows these location by
their addresses. It is perfectly able to understand code like:
 READ 19087, 80976, 10943, 80764
but we would have a hard time with it. So we name our storage locations using words
that are descriptive to us. Every language has its own (different) set of rules about how
these names are formed. We will use a simple style:

 variable names will start with a lowercase letter

 they will have no spaces in them

 additional words in them will start with a capital

 names must be unique within the program

 consistent use of names

The READ statement tells the computer to get a value from the input device (keyboard,
file, …) and store it in the names memory location.

When we need to compute a value in a program (like grossPay) we will use what is
called an assignment stmt.
 variable = expression

Be careful to understand the difference between these two stmts:
 num1 = num2
 num2 = num1

The WRITE stmt is used to display information on the output device (screen, printer).
To display words, enclose them in quotes. A variable’s value will be displayed. So if the
variable name currently contains John Smith, then the stmt
 WRITE “Employee name: “, name
will output like this:
 Employee name: John Smith

CALCULATION SYMBOLS

We will often have to represent an expression like the one that computes grossPay. To
symbolize the arithmetic operators we use these symbols

grouping ()
exponent ** or ^
multiply *
divide /
add +
subtract -

There is a precedence or hierarchy implied in these symbols.

ORDER OF EXECUTION

 () equations in parenthesis

 ** exponentiation

 / * division and multiplication

 + - addition and subtraction

Note: when operators of equal value are to be executed, the order of execution
is left to right.

Examples:

AREA = R2

SUM = A2 + B2
PERIM = 2(L + W)

CB

A


 C

B

A
 C

B

A

BC

A
 C

B

D


2
CB

D



2

value = 100*2/5-3 = 200/5-3 = 40-3 = 37
value = 100*2/(5-3) = 100*2/2 = 200/2 = 100
value = 100*((2/5)-3) = 100*(.4-3) = 100*-2.6 = -260

Please Excuse My Dear Aunt Sally

SELECTION

When we have to make a choice between actions, we almost always base that choice
on a test. The test uses phrases like “is less than” or “is equal to”. There is a
universally accepted set of symbols used to represent these phrases:

 > (greater than)
 < (less than)

 >= (greater than or equal to)
 <= (less than or
 = (equal to)
 <> (not equal to)

It is interesting to notice that these can be paired up:

SYMBOL IS OPPOSITE TO

> <=

< >=

= <>

LOGICAL OPERATORS: AND, OR, NOT

AND: if any of the conditions are false, the whole expression is false.

 ex: IF day = “Saturday” AND weather = “sunny”
 WRITE “Let’s go to the beach!”
 ENDIF

OR: if any of the conditions are true, the whole expression is true

 ex: IF month = “June” OR month = “July” OR month = “August”
 WRITE “Yahoo! Summer vacation!”
 ENDIF

NOT: reverses the outcome of the expression; true becomes false, false becomes true.

 ex: IF day <> “Saturday” AND day <> “Sunday”
 WRITE “Yuk, another work day”
 ENDIF

