- A student is asked to calculate ΔG at 25 °C for the combustion of butan-1-ol. The teacher provides two pieces of information.
 - The equation for the combustion of butan-1-ol.

$$CH_3(CH_2)_3OH(l) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l)$$
 Equation 2

• Standard entropies of butan-1-ol oxygen, carbon dioxide and water.

	CH ₃ (CH ₂) ₃ OH(1)	$O_2(g)$	$\mathrm{CO}_2(\mathrm{g})$	H ₂ O(l)
S ⁰ / J K ⁻¹ mol ⁻¹	228	205	214	70

The student carries out an experiment using the apparatus below and obtains the following results. The specific heat capacity of water is $4.18 \text{ J g}^{-1} \text{ K}^{-1}$.

Mass of burner and butan-1-ol before burning / g	98.997
Mass of burner and butan-1-ol after burning / g	98.738
Initial temperature / °C	18.5
Maximum temperature reached / °C	39.0

© OCR 2016 H432/01

Use the information on the previous page to calculate ΔG , in kJ mol⁻¹, for the combustion of butan-1-ol according to **Equation 2** at 25 °C.

Show all your working.

- **18** This question is about free energy changes, ΔG , enthalpy changes, ΔH , and temperature, T.
 - (a) The Gibbs' equation is shown below.

$$\Delta G = \Delta H - T \Delta S$$

A chemist investigates a reaction to determine how ΔG varies with T. The results are shown in **Fig. 18.1**.

Fig. 18.1

What is significant about the gradient of the line and the values P and Q shown in Fig. 18.1 ? Explain your reasoning.
[4]

(b)	Iron can be extracted from its ore Fe ₃ O ₄ using carbon.
	Several equilibria are involved including equilibrium 18.1 , shown below.

equ	ıilibrium 18.1	$Fe_3O_4(s) + 4C(s) \rightleftharpoons 3Fe(s) + 4CO(g)$	$\Delta H = +676.4 \text{kJ} \text{mol}^{-1}$ $\Delta S = +703.1 \text{J} \text{K}^{-1} \text{mol}^{-1}$
(i)	Why is equilib i	rium 18.1 a heterogeneous equilibrium?	
			[1]
(ii)	Write the expre	ssion for K_p for equilibrium 18.1 .	

[1]

- (iii) The forward reaction in equilibrium 18.1 is only feasible at high temperatures.
 - Show that the forward reaction is **not** feasible at 25 °C.
 - Calculate the minimum temperature, in K, for the forward reaction to be feasible.

minimum temperature = K [3]

© OCR 2017 Turn over

(iv) Another equilibrium involved in the extraction of iron from ${\rm Fe_3O_4}$ is shown below.

$$Fe_3O_4(s) + 4CO(g) \implies 3Fe(s) + 4CO_2(g)$$
 $\Delta H = -13.5 \text{ kJ mol}^{-1}$

Enthalpy changes of formation, $\Delta_{\rm f}H$, for ${\rm Fe_3O_4(s)}$ and ${\rm CO_2(g)}$ are shown in the table.

Compound	Δ _f H / kJ mol ^{−1}
Fe ₃ O ₄ (s)	-1118.5
CO ₂ (g)	-393.5

Calculate the enthalpy change of formation, $\Delta_{\!f} H,$ for CO(g).

 $\Delta_{\rm f}H$, for CO(g) =kJ mol⁻¹ [3]

Question	Answer	Marks	Guidance
18	Answer $\Delta H \ calculation \ from \ experiment$ $q = 100 \times 4.18 \times 20.5 \ \mathbf{OR} \ 8569 \ \mathbf{J} \ \mathbf{OR} \ 8.569 \ \mathbf{kJ} \ \checkmark$ Amount of butan-1-ol = $0.259 = 3.5 \times 10^{-3} \ \mathrm{mol} \ \checkmark$ $\Delta H = -2448 \ \mathbf{kJ} \ \mathrm{mol}^{-1} \ \checkmark$ $\Delta S \ calculation$ $\Delta S = S_{products} - S_{reactants}$ $\Delta S = (4 \times 214) + (5 \times 70) - [(228) + (6 \times 205)] \ \mathbf{OR}$ $\Delta S = 1206 - 1458 \ \checkmark$ $\Delta S = -252 \ \mathbf{J} \ \mathbf{K}^{-1} \ \mathbf{mol}^{-1} \ \mathbf{OR} \ -0.252 \ \mathbf{kJ} \ \mathbf{K}^{-1} \ \mathbf{mol}^{-1} \ \checkmark$ $\Delta G \ calculation$ $\Delta G = \Delta H - T\Delta S$ $\Delta G = -2448 - (298 \times -0.252) \ \checkmark$ $\Delta G = -2373 \ (\mathbf{kJ} \ \mathbf{mol}^{-1}) \ \checkmark$	Marks 7	ALLOW Calculator value for $\Delta H =$ -2448.285714 correctly rounded to three or more significant figures Mark for use of correct expression with ΔS in kJ K ⁻¹ mol ⁻¹ ALLOW three or more sig figs for ΔG
	Total	7	

Q	Question		Answer	Marks	Guidance
18	(a)		$\Delta G = \Delta H - T \Delta S$ linked to $y = mx + c$ (somewhere) \checkmark gradient = $-\Delta S \checkmark$	4	Could be: $\Delta G = -\Delta S T + \Delta H$ - sign required
					ALLOW $\Delta S = -gradient$
			P: ∆H / enthalpy change ✓		
			Q: (temperature) for reaction to be feasible/unfeasible OR		ALLOW 'point of feasibility' For Feasibility:
			(temperature) at which feasibility changes ✓		ALLOW can take place/happen OR is spontaneous IGNORE 'minimum/maximum temperature'
	(b)	(i)	(Species have) different states/phases ✓	1	
		(ii)	$(K_p =) p(CO(g))^4 \checkmark$	1	Allow species without state symbols and without brackets, e.g. p_{CO}^4 , $ppCO^4$, PCO^4 , $p(CO^4)$ etc.
					DO NOT ALLOW square brackets
		(iii)	ΔG at 25 C	3	
			$\Delta G = \Delta H - T\Delta S = 676.4 - (298 \times 0.7031)$ = (+) 467 (kJ mol ⁻¹) OR (+) 466876 (J mol ⁻¹) \checkmark		IGNORE units ALLOW (+) 467 up to calculator value of 466.8762 correctly rounded
			Non-feasibility statement Non-feasible when $\Delta G > 0$ OR $\Delta G > 0$ OR $\Delta H > T\Delta S \checkmark$		ECF for any positive value determined in M1
			Minimum temperature minimum temperature = $\frac{\Delta H}{\Delta S} = \frac{676.4}{0.7031}$ = 962(.0) K \checkmark		ALLOW 962 up to calculator value of 962.0253165 correctly rounded

Question	Answer		Guidance
Question (iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -110.5 , Award 3 marks.	Marks 3	For answer, ALLOW –111 (kJ mol ⁻¹) NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. –393.5 OR –13.5 may be missing
	Correct subtraction using ΔH and $\Delta_{\rm f} H({\rm Fe_3O_4})$ $4 \times \Delta_{\rm f} H({\rm CO}) = (4 \times -393.5) - (-1118.5) + 13.5$ $= -442(.0) \ ({\rm kJ \ mol^{-1}}) \ \checkmark$ Calculation of $\Delta_{\rm f} H({\rm CO})$ formation $\Delta_{\rm f} H({\rm CO}) = -\frac{442}{4} = -110.5 \ ({\rm kJ \ mol^{-1}}) \ \checkmark$		Common errors (+)110.5 wrong/omitted sign 2 marks (+)184.625 / 184.63 / 184.6 / 185 2 marks No 4CO ₂ (+)738.5 / 739 No 4CO ₂ and no CO/4 1 mark
			-117.25 / -117.3 / -117 Wrong cycle 2 marks -469 Wrong cycle, no CO/4 1 mark (+)177.875 / 177.88 / 177.9 / 178 1 mark Wrong cycle, no 4CO ₂ -360.5 Used 118.5 2 marks
			Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g.395.3 for 393.5
	Total	12	