
Studocu is not sponsored or endorsed by any college or university

My Revision Notes Ocr a Level Computer Science Second
Edition (George Rouse, Jason Pitt, Sean OByrne) (z-lib

Computer science (École Nationale Supérieure d’Informatique et d’Analyse des
Systèmes)

Studocu is not sponsored or endorsed by any college or university

My Revision Notes Ocr a Level Computer Science Second
Edition (George Rouse, Jason Pitt, Sean OByrne) (z-lib

Computer science (École Nationale Supérieure d’Informatique et d’Analyse des
Systèmes)

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib
https://www.studocu.com/en-gb/document/ecole-nationale-superieure-dinformatique-et-danalyse-des-systemes/computer-science/my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib/30614565?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib
https://www.studocu.com/en-gb/course/ecole-nationale-superieure-dinformatique-et-danalyse-des-systemes/computer-science/5174178?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib
https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib
https://www.studocu.com/en-gb/document/ecole-nationale-superieure-dinformatique-et-danalyse-des-systemes/computer-science/my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib/30614565?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib
https://www.studocu.com/en-gb/course/ecole-nationale-superieure-dinformatique-et-danalyse-des-systemes/computer-science/5174178?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

For more information about all our revision titles
and series across a wide range of subjects, visit:
www.hoddereducation.co.uk/revision

Looking to boost your learning?
Ensure you’re on track to excel in your studies with trusted

A-level study and revision resources from Hodder Education.

My Revision
Notes
There are hundreds of My Revision

Notes across a wide range of

subjects. My Revision Notes

will set you on track to achieve

your best with structured topic

summaries to test your knowledge

and understanding of key content,

accompanied by a mixture

of activities and exam-style

questions that will help you to

perfect your written answers.

Student
Workbooks
Maximise your potential with

these write-in workbooks written

by experienced authors to help

you to practise and apply what

you have learned during your

course. Build confidence and

independent learning skills

through a blend of focused course

guidance and varied practical

activities.

Student Guides
Consolidate knowledge and

strengthen exam technique with

our convenient and content-

packed range of Student Guides.

Benefit from clear topic-by-

topic course coverage alongside

challenging sample questions and

answers that will keep you on

track for success.

Magazines
Ideal for developing independent

learning skills, our Student

Magazines provide in-depth

information surrounding subject

content, with topical articles

and expert exam advice to help

deepen your understanding and

put knowledge into context.

www.hoddereducation.co.uk/mrn www.hoddereducation.co.uk/studentguides

Also available as eTextbooks Also available as eTextbooks

www.hoddereducation.co.uk/studentworkbooks www.hoddereducation.co.uk/magazines

Answers to workbook
questions available online
at hodderplus.co.uk Also available as eMagazines

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/mrn
http://www.hoddereducation.co.uk/mrn
http://www.hoddereducation.co.uk/mrn
http://www.hoddereducation.co.uk/magazines
http://www.hoddereducation.co.uk/revision

OCR

A-level

COMPUTER
SCIENCE
SECOND EDITION

George Rouse and Jason Pitt

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

Every effort has been made to trace all copyright holders, but if any have been inadvertently
overlooked, the Publishers will be pleased to make the necessary arrangements at the first
opportunity.

Although every effort has been made to ensure that website addresses are correct at time of
going to press, Hodder Education cannot be held responsible for the content of any website
mentioned in this book. It is sometimes possible to find a relocated web page by typing in
the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products
and made from wood grown in well-managed forests and other controlled sources. The
logging and manufacturing processes are expected to conform to the environmental
regulations of the country of origin.

Orders: please contact Hachette UK Distribution, Hely Hutchinson Centre, Milton Road,
Didcot, Oxfordshire, OX11 7HH. Telephone: +44 (0)1235 827827.
Email education@hachette.co.uk. Lines are open from 9 a.m. to 5 p.m., Monday to Friday.
You can also order through our website: www.hoddereducation.co.uk

ISBN: 978 1 3983 2547 0

© George Rouse and Jason Pitt 2021

First published in 2021 by

Hodder Education,

An Hachette UK Company

Carmelite House

50 Victoria Embankment

London EC4Y 0DZ

www.hoddereducation.co.uk

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2025 2024 2023 2022 2021

All rights reserved. Apart from any use permitted under UK copyright law, no part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, or held within any information
storage and retrieval system, without permission in writing from the publisher or under
licence from the Copyright Licensing Agency Limited. Further details of such licences (for
reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited,
www.cla.co.uk

Cover photo © Holmessu - stock.adobe.com

Illustrations by Aptara, Inc.

Typeset by Aptara, Inc.

Printed in Spain

A catalogue record for this title is available from the British Library.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.fsc.org
mailto:education@hachette.co.uk
http://www.hoddereducation.co.uk
http://www.hoddereducation.co.uk
http://www.cla.co.uk
http://stock.adobe.com

3

G
e
t

th
e
 m

o
st

 f
ro

m
 t

h
is

 b
o

o
k

My Revision Notes OCR A-level Computer Science Third Edition

Get the most from this book

5

C
o

u
n

td
o

w
n

 t
o

 m
y
 e

x
a
m

s

My Revision Notes OCR A-level Computer Science Third Edition

4

M
y
 R

e
v
is

io
n

 P
la

n
n

e
r

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Countdown to my exams

6–8 weeks to go

✚ Start by looking at the specification — make sure you

know exactly what material you need to revise and

the style of the examination. Use the revision planner

on pages 4 and 5 to familiarise yourself with the

topics.

✚ Organise your notes, making sure you have covered

everything on the specification. The revision planner

will help you to group your notes into topics.

✚ Work out a realistic revision plan that will allow you

time for relaxation. Set aside days and times for all

the subjects that you need to study, and stick to your

timetable.

✚ Set yourself sensible targets. Break your revision

down into focused sessions of around 40 minutes,

divided by breaks. These Revision Notes organise the

basic facts into short, memorable sections to make

revising easier.

2–6 weeks to go

✚ Read through the relevant sections of this book and

refer to the exam tips, summaries, typical mistakes

and key terms. Tick off the topics as you feel

confident about them. Highlight those topics you find

difficult and look at them again in detail.

✚ Test your understanding of each topic by working

through the ‘Now test yourself’ questions in the book.

Look up the answers at the back of the book.

✚ Make a note of any problem areas as you revise, and

ask your teacher to go over these in class.

✚ Look at past papers. They are one of the best

ways to revise and practise your exam skills.

Write or prepare planned answers to the exam

practice questions provided in this book. Check

your answers online and try out the extra quick

quizzes at www.hoddereducation.co.uk/

myrevisionnotesdownloads

✚ Use the revision activities to try out different revision

methods. For example, you can make notes using

mind maps, spider diagrams or flash cards.

✚ Track your progress using the revision planner and

give yourself a reward when you have achieved your

target.

One week to go

✚ Try to fit in at least one more timed practice of an

entire past paper and seek feedback from your

teacher, comparing your work closely with the mark

scheme.

✚ Check the revision planner to make sure you haven’t

missed out any topics. Brush up on any areas of

difficulty by talking them over with a friend or getting

help from your teacher.

✚ Attend any revision classes put on by your teacher.

Remember, he or she is an expert at preparing people

for examinations.

The day before the examination

✚ Flick through these Revision Notes for useful

reminders, for example the examiners’ tips,

examiners’ summaries, typical mistakes and key

terms.

✚ Check the time and place of your examination.

✚ Make sure you have everything you need — extra

pens and pencils, tissues, a watch, bottled water,

sweets.

✚ Allow some time to relax and have an early night to

ensure you are fresh and alert for the examinations.

My exams

Paper 1 Computer systems

Date: ...

Time: ..

Location: ..

Paper 2 Algorithms and programming

Date: ...

Time: ..

Location: ..

My Revision Planner

1 The characteristics of contemporary processors, input,

output and storage devices
8 Structure and function of a processor

13 Types of processor

15 Input, output and storage

2 Software and software development
19 Systems software

24 Applications generation

28 Software development

33 Types of programming language

3 Exchanging data
44 Compression, encryption and hashing

49 Databases

65 Networks

71 Web technologies

4 Data types, data structures and algorithms
83 Data types

101 Data structures

120 Boolean algebra

5 Legal, moral, cultural and ethical issues
133 Computing-related legislation

138 Moral and ethical issues

6 Elements of computational thinking
150 Thinking abstractly

152 Thinking ahead

155 Thinking procedurally

157 Thinking logically

159 Thinking concurrently

7 Problem solving and programming
163 Programming techniques

175 Computational methods

8 Algorithms
184 Algorithms

209 Now test yourself answers

Features to help you succeed

Exam tips

Expert tips are given throughout the book to
help you polish your exam technique in order to
maximise your chances in the exam.

Typical mistakes

The authors identify the typical mistakes candidates
make and explain how you can avoid them.

Now test yourself

These short, knowledge-based questions provide the
first step in testing your learning. Answers are at the
back of the book.

Definitions and key words

Clear, concise definitions of essential key terms are
provided where they first appear.

Key words from the specification are highlighted in
bold throughout the book.

Making links

This feature identifies specific connections between
topics and tells you how revising these will aid your
exam answers.

Exam skills

These summaries highlight how to specific skills
identified or applicable in that chapter can be
applied to your exam answers.

Revision activities

These activities will help you to understand each
topic in an interactive way.

Exam practice

Practice exam questions are provided for each topic.
Use them to consolidate your revision and practise
your exam skills.

Summaries

The summaries provide a quick-check bullet list for
each topic.

Online

Go online to find answers to the exam
practice questions and try out the extra quick
quizzes at www.hoddereducation.co.uk/
myrevisionnotesdownloads

Everyone has to decide his or her own revision
strategy, but it is essential to review your work,
learn it and test your understanding. These Revision
Notes will help you to do that in a planned way,
topic by topic. Use this book as the cornerstone
of your revision and don’t hesitate to write in it —
personalise your notes and check your progress by
ticking off each section as you revise.

Tick to track your progress
Use the revision planner on pages 4 and 5 to plan your
revision, topic by topic. Tick each box when you have:
✚ revised and understood a topic
✚ tested yourself
✚ practised the exam questions and gone online

to check your answers and complete the quick
quizzes

You can also keep track of your revision by ticking
off each topic heading in the book. You may find it
helpful to add your own notes as you work through
each topic.

8
 A

lg
o

ri
th

m
s

185

My Revision Notes OCR A-level Computer Science Third Edition

184

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Algorithms

Analysis and design of algorithms for a given
situation
An algorithm is a set of instructions to carry out a given task. There are
a number of ways to express algorithms such as using flowcharts and
pseudocode.

When we want a computer to carry out an algorithm, we write it as a
program.

The aim of writing algorithms is to produce a process that will work on a
generalised representation of a problem, that is, it can be reused for similar
problems.

It is not straightforward to produce algorithms. We need to ensure that an
algorithm is both correct and as efficient as it can be.

Proving that an algorithm is incorrect can be trivial; we just need to show
that, in one case, it fails.

Proving that an algorithm is correct is much more difficult and often
requires mathematical induction (which is beyond the scope of this course).
Sometimes a problem is ‘too hard’. We then need to decide if there is a ‘good
enough’ solution that is acceptable.

In the next few sections, we will look at evaluating an algorithm’s efficiency.

The suitability of different algorithms for a
given task and data set
There may often exist more than one algorithm to perform a given task.
For example, as you will see later in this chapter, there are a number of
algorithms that can be used to sort data. We need to determine which
algorithm is best for any given situation. Algorithms can vary in terms of:
✚ execution time (how long they take to run)
✚ execution space (the amount of working memory they need).

This is known as an algorithm’s efficiency.

It is often the case that there is a trade-off to be made between these two
factors. A number of algorithms can be made to run more quickly (reducing

8 Algorithms

Algorithm A set of

instructions explaining how

to carry out a given task.

Making links

When designing algorithms, you may wish to consider the computational methods

discussed in Chapter 7. These help with the process of breaking down a problem and

constructing an algorithm to solve it.

Now test yourself

1 Describe the difference between an algorithm and a program.

2 State two ways algorithms could be represented.

Answers on p. 222

Efficiency A reflection of

the amount of CPU time

or memory an algorithm

requires to execute.

the execution time) by using more memory (increasing the execution space).
One example of this is implementing a cache.

The choice of algorithm will also depend on the data that is being used.
Binary search has a far quicker execution time than linear search but is only
able to operate on sorted data.

Measures and methods to determine the
efficiency of different algorithms
One way to compare how efficiently algorithms will perform is by looking at
their complexity.

Complexity doesn’t show us how quickly an algorithm executes (that would
depend on the CPU running it) or exactly how much space it requires, but
rather how well it scales when given larger data sets to act upon. In other
words, complexity looks at how much longer an algorithm will take to run, or
how much more space it needs, as the amount of data that the algorithm acts
upon gets bigger.

We can use Big-O notation to denote an algorithm’s worst-case complexity.
If we know the expression for the number of steps, n, an algorithm takes to
execute, we can get the Big-O expression by:
✚ removing all terms except the one with the largest exponent

(remembering that n is treated bigger than any constant)
✚ removing any constant factors.

There are different classes of complexity:

Constant O(1) Slowest growing

Logarithmic O(log n)

Linear O(n)

Polynomial O(nk) Where k is a constant > = 0

Exponential O(kn) Where k is constant > 1 Fastest growing

If there is a mixture of different terms in the expression, then we discard all
but the fastest growing term listed in the table above.

Making links

As an example of the effect of a data set, compare the RLE and dictionary coding

compression algorithms in Chapter 3. RLE performs well on text with repeated

consecutive characters, whereas dictionary coding performs well where large chunks

of text repeat in a document. For example, RLE would perform well on:

XXXXXXXYYYYYXXYYYYYYYYXXXYXXXXXXXYYYYYYYYYYYYY

Whereas dictionary coding would perform well on:

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

Worked example

An algorithm takes 3n3 + 5n2 + 4n − 4 steps.

Remove all terms except the one with the highest exponent:

3n3

Remove any constant factors:

n3

This gives a complexity of O(n3).

Complexity How well an

algorithm scales in terms

of time to execute or space

needed as the size of the

data upon which it operates

increases.

Big-O notation A notation

used to represent an

algorithm’s worst-case

complexity.

Now test yourself

3 State the ways

algorithms can differ

in terms of their

performance.

Answer on p. 222

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

www.hoddereducation.co.uk/myrevisionnotesdownloads
www.hoddereducation.co.uk/myrevisionnotesdownloads
http://www.hoddereducation.co.uk/myrevisionnotesdownloads
http://www.hoddereducation.co.uk/myrevisionnotesdownloads
http://www.hoddereducation.co.uk/myrevisionnotesdownloads
http://www.hoddereducation.co.uk/myrevisionnotesdownloads
http://www.hoddereducation.co.uk/myrevisionnotesdownloads
http://www.hoddereducation.co.uk/myrevisionnotesdownloads
https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4

M
y
 R

e
v
is

io
n

 P
la

n
n

e
r

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

My Revision Planner

1 The characteristics of contemporary processors, input,

output and storage devices
8 Structure and function of a processor

13 Types of processor

15 Input, output and storage

2 Software and software development
19 Systems software

24 Applications generation

28 Software development

33 Types of programming language

3 Exchanging data
44 Compression, encryption and hashing

49 Databases

65 Networks

71 Web technologies

4 Data types, data structures and algorithms
83 Data types

101 Data structures

120 Boolean algebra

5 Legal, moral, cultural and ethical issues
133 Computing-related legislation

138 Moral and ethical issues

6 Elements of computational thinking
150 Thinking abstractly

152 Thinking ahead

155 Thinking procedurally

157 Thinking logically

159 Thinking concurrently

7 Problem solving and programming
163 Programming techniques

175 Computational methods

8 Algorithms
184 Algorithms

209 Now test yourself answers

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

5

C
o

u
n

td
o

w
n

 t
o

 m
y
 e

x
a
m

s

My Revision Notes OCR A-level Computer Science Third Edition

Countdown to my exams

6–8 weeks to go

✚ Start by looking at the specification — make sure you

know exactly what material you need to revise and

the style of the examination. Use the revision planner

on pages 4 and 5 to familiarise yourself with the

topics.

✚ Organise your notes, making sure you have covered

everything on the specification. The revision planner

will help you to group your notes into topics.

✚ Work out a realistic revision plan that will allow you

time for relaxation. Set aside days and times for all

the subjects that you need to study, and stick to your

timetable.

✚ Set yourself sensible targets. Break your revision

down into focused sessions of around 40 minutes,

divided by breaks. These Revision Notes organise the

basic facts into short, memorable sections to make

revising easier.

2–6 weeks to go

✚ Read through the relevant sections of this book and

refer to the exam tips, summaries, typical mistakes

and key terms. Tick off the topics as you feel

confident about them. Highlight those topics you find

difficult and look at them again in detail.

✚ Test your understanding of each topic by working

through the ‘Now test yourself’ questions in the book.

Look up the answers at the back of the book.

✚ Make a note of any problem areas as you revise, and

ask your teacher to go over these in class.

✚ Look at past papers. They are one of the best

ways to revise and practise your exam skills.

Write or prepare planned answers to the exam

practice questions provided in this book. Check

your answers online and try out the extra quick

quizzes at www.hoddereducation.co.uk/

myrevisionnotesdownloads

✚ Use the revision activities to try out different revision

methods. For example, you can make notes using

mind maps, spider diagrams or flash cards.

✚ Track your progress using the revision planner and

give yourself a reward when you have achieved your

target.

One week to go

✚ Try to fit in at least one more timed practice of an

entire past paper and seek feedback from your

teacher, comparing your work closely with the mark

scheme.

✚ Check the revision planner to make sure you haven’t

missed out any topics. Brush up on any areas of

difficulty by talking them over with a friend or getting

help from your teacher.

✚ Attend any revision classes put on by your teacher.

Remember, he or she is an expert at preparing people

for examinations.

The day before the examination

✚ Flick through these Revision Notes for useful

reminders, for example the examiners’ tips,

examiners’ summaries, typical mistakes and key

terms.

✚ Check the time and place of your examination.

✚ Make sure you have everything you need — extra

pens and pencils, tissues, a watch, bottled water,

sweets.

✚ Allow some time to relax and have an early night to

ensure you are fresh and alert for the examinations.

My exams

Paper 1 Computer systems

Date: ...

Time: ..

Location: ..

Paper 2 Algorithms and programming

Date: ...

Time: ..

Location: ..

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads
http://www.hoddereducation.co.uk/myrevisionnotesdownloads
https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

6

C
o

u
n

td
o

w
n

 t
o

 m
y
 e

x
a
m

s

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Assessing A level Computer
Science
As a student of Computer Science, it is important that you understand three
things in relation to the A level examinations:
✚ assessment objectives
✚ the command words used
✚ the nature of the examination papers.

Assessment objectives

✚ AO1 You should be able to demonstrate knowledge and understanding of the

principles and concepts of computer science, including abstraction, logic,

algorithms and data representation.

✚ AO2 You must be able to apply your knowledge and understanding to the

principles and concepts of computer science, including analysing problems in

computational terms.

✚ AO3 You must be able to design, program and evaluate computer systems that

solve problems, making reasoned judgements about these systems and presenting

conclusions.

Command words
Familiarity with the relevant command words is important and helps you to
avoid wasting time in the exam room, for example trying to evaluate when
there is no requirement for it. The most frequently used command words in
the A level papers, along with number of marks for associated questions, are:
✚ Calculate: requires you to work out the value of something. A correct final

answer, to the required degree of accuracy and with the correct units
is required. Working is not always required, but there may be credit for
correct working even when the answer is incorrect. (AO1, AO2)

✚ Compare: requires you to describe the differences and similarities between
two situations. (AO1, AO2)

✚ Describe: requires you to set out the characteristics or features of
something. (AO1)

✚ Discuss: requires you to identify and expand upon points related to
different aspects of the situation/system/issue, looking at both sides of the
argument. (AO1, AO2)

✚ Evaluate: requires you to reach a conclusion based on evidence for all
aspects of the situation. (AO1, AO2, AO3)

✚ Explain: requires you to provide evidence to explain how a system works
or to support a proposition about a situation. In some cases, an appropriate
diagram may be used to support your explanation. (AO1, AO2)

The A level exam papers
The Computer Science A level specification is examined through two
equally weighted examination papers of 2 hours and 30 minutes duration
sat at the end of the course, and a programming project. The papers are
each worth 40% of the marks, with the project worth 20%.

Paper 1 Computer systems
There will be a mix of short and long answer questions.

Questions may cover any of the content in section 1 of the specification,
computer systems, which includes:
✚ computer architecture (including the structure of the central processing

unit, memory and storage)
✚ software and its development

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7

C
o

u
n

td
o

w
n

 t
o

 m
y
 e

x
a
m

s

My Revision Notes OCR A-level Computer Science Third Edition

✚ storing and exchanging data (including databases, networks and web
technologies)

✚ data representation, logic and algorithms
✚ legal and ethical issues.

Paper 2 Algorithms and programming
There are two sections and in both sections there will be a mix of short and
long answer questions.

Questions may cover any of the content in section 2 of the specification,
algorithms and programming, which includes:
✚ computational thinking
✚ problem solving
✚ algorithms (including knowledge of key algorithms and their efficiency).

The two sections are:
✚ Section A, worth 100 marks, will contain a mixture of questions, similar in

style to paper one.
✚ Section B, worth 40 marks, will be based on a scenario that contains

information to be used when answering the questions that follow.

Long answer questions
Both papers will contain longer answer questions worth 9 or 12 marks. These
questions may require you to link a number of topics together or look at
contrasting approaches.

When tackling a longer answer question:
✚ Read through the question carefully to ensure you understand what is

being asked.
✚ Take a moment to consider which part or parts of the specification the

question is testing you on and to plan your answer.
✚ If there is a scenario, make sure your answer relates the points you are

making to it.
✚ If you are asked to discuss two approaches, make sure you pay roughly

equal attention to both.
✚ Where relevant, ensure you give a clear conclusion.
✚ Make sure you use technical terminology appropriately.

Programming questions
Both papers will include programming questions. These may require you to
write or follow code. The code presented in the exam will be in pseudocode
(with the exception of any question in paper one specifically on JavaScript).

The exam board’s style of pseudocode has been used throughout this book.
There is a full description of it in the appendix of the specification. It is worth
taking a little time to familiarise yourself with it.

When writing pseudocode in answers, you are free to use whatever style you
wish and may want to stick with one similar to the language with which you
have learned to program.

You should always use sensible variable names and indentation in your
pseudocode. Where the meaning of code is not immediately obvious, add
comments. In some questions, there may be marks for ensuring your code is
easily readable.

Programming project
The project is submitted as a report, containing the details about the process
of identifying, analysing, designing, developing, testing and evaluating a
solution to a problem using a suitable programming language.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Structure and function of a
processor
The central processing unit (CPU) carries out the instructions in computer
programs. Essentially it’s what makes a computer a computer! Inside a
processor there are billions of transistors (effectively electronic switches).
This section looks at how CPUs work and different developments in CPU
technology.

The arithmetic logic unit, control unit and
registers
The main components of the CPU are the arithmetic logic unit, control unit
and registers. These are connected to the system’s main memory using
pathways called buses.

Arithmetic logic unit
The arithmetic logic unit (ALU) carries out the calculations and logical
decisions. The results of its calculations are stored in the accumulator.

Control unit
The control unit (CU) sends out signals to co-ordinate how the processor
works. It controls how data moves around parts of the CPU and how it moves
between the CPU and memory. Instructions are decoded in the control unit.

Registers
Registers are areas of memory within the processor itself. They can be
accessed at extremely fast speeds so can be used by the processor without
causing a bottleneck. Registers in the processor that have a specific use are
called special purpose registers.

The special purpose registers you need to know are listed below.

1 The characteristics of
contemporary processors, input,
output and storage devices

Register Purpose

Program counter (PC) Keeps track of the memory location of the line of machine code being executed. With

each iteration of the fetch–decode–execute cycle, it gets incremented to point to the

next instruction, allowing the program to be executed in sequence, instruction by

instruction. The program counter can also be changed by instructions that alter the flow

of control (for example, branch like BRA, BRP and BRZ)

Memory data register (MDR) Stores the data or instructions that are to be fetched from or sent to memory

Memory address register

(MAR)

Stores the address of the data or instructions that are to be fetched from or sent to memory

Current instruction register

(CIR)

Stores the most recently fetched instruction, which will be decoded and executed

Accumulator (ACC) Stores the results of calculations made by the ALU

Register A discrete piece

of memory built onto the

CPU that holds a single

piece of data.

Central processing

unit (CPU) The central

processing unit ‘runs

programs’ by continually

fetching, decoding and

executing instructions.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

1
 T

h
e
 c

h
a
ra

c
te

ri
st

ic
s

o
f

c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
ss

o
rs

,
in

p
u

t,
 o

u
tp

u
t

a
n

d
 s

to
ra

g
e
 d

e
vi

c
e
s

9

My Revision Notes OCR A-level Computer Science Third Edition

The fetch–decode–execute cycle, including
its effects on registers

Processors may also have general purpose registers. These can temporarily
store data being used rather than sending data to and from memory. (Memory
data access times are slow compared to special purpose registers but still
much faster than secondary storage.)

Buses
Buses are the communication channels through which data can be sent
around the computer. You need to know about three buses:
1 The data bus carries data between the processor and memory.
2 The address bus carries the address of the memory location being read

from or written to.
3 The control bus sends control signals from the control unit.

Exam tip

A common mistake is to

talk about the control bus

carrying instructions around

the processor. This is not

the case. Instructions are

sent to and from memory

via the data bus. The control

bus carries the signals

orchestrating the fetch–

decode–execute signal.

Now test yourself

1 Describe the purpose of the control unit.

2 State the names of the three buses used by the CPU.

3 State the name of the part of the CPU responsible for calculations.

Answers on p. 209

Making links

In order to fully understand this section you need to know about the Little Man

Computer instruction set. You should revisit this section after studying Chapter 2,

Assembly language.

The processor works by continually fetching, decoding then executing
instructions. You need to be aware of how the registers are used during the
process.

Fetch
1 The contents of the PC are copied to the MAR.
2 The read signal is sent across the control bus and the contents of the

MAR are sent across the address bus.
3 The contents of the memory location stored in the MAR are then sent

across the data bus and stored in the MDR.
4 The contents of the MDR are then copied to the CIR.
5 The PC is incremented by one.

Decode
6 The contents of the CIR are sent to the control unit.
7 The control unit then decodes the instruction.

Execute
8 The registers can be changed in different ways during the execution phase,

depending on the instruction.

 For instance, if the instruction is for a memory location to be read from
or written to (that is, LDA or STA), then the address stored within the
instruction will be loaded into the MAR. In the case of STA, the data stored
in the ACC is sent to memory. In the case of LDA, the data is loaded from
memory into the ACC.

 If the instruction is to carry out a calculation (that is, ADD or SUB) then the
contents of the MDR and ACC are sent to the ALU and the result sent back
to the ACC.

Fetch

Execute Decode

Figure 1.1 Fetch–decode–

execute cycle

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

1
 T

h
e

 c
h

a
ra

c
te

ri
s
ti

c
s
 o

f
c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
s
s
o

rs
,

in
p

u
t,

 o
u

tp
u

t
a
n

d
 s

to
ra

g
e

 d
e
v
ic

e
s

10

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

The factors affecting the performance
of the CPU
✚ clock speed
✚ number of cores
✚ amount of cache memory
✚ use of pipelining.

Clock speed
Processors work at incredible speeds, dictated by the clock signal. The speed
of this signal, known as the clock speed, is measured in hertz (Hz).

Unit Pulses per second

1 Hertz (Hz) 1

1 Kilohertz (kHz) 1 000

1 Megahertz (MHz) 1 000 000

1 Gigahertz (GHz) 1 000 000 000

Modern desktop processors tend run in the order of Gigahertz. The processor
on the computer being used to write this chapter runs at a speed of 2.8 GHz.
That means its processor has a clock producing 2.8 billion pulses per second.

Number of cores
A core is a processing unit within the CPU. Modern CPUs have multiple cores
that can operate independently.
✚ Each core is a distinct processing unit on the CPU that can run independently.
✚ When multitasking, different cores can run different applications.
✚ It is also possible for multiple cores to work on the same problem.
✚ The more cores you have, the easier it is to run more things

simultaneously. More cores also mean that tasks that can have their work
shared will run more quickly.

Cache
Random access memory’s (RAM’s) access speed is significantly slower than
the speed at which the CPU operates. To compensate for this, processors have
a small amount of fast memory called cache memory:
✚ Cache memory is a temporary store.
✚ Cache memory is built into the processor itself, reducing the distance

data has to travel to it. Data and instructions that are likely to be regularly
accessed are kept in cache memory, ready for fast access.

✚ By allowing the processor to access cache, the overall speed at which it
operates is less likely to be limited by RAM’s access speed.

✚ Because cache memory is faster when it is smaller, different levels of cache
are used.

✚ Level one cache is the smallest and built directly into the CPU. Often each
core will have its own level one cache.

✚ Each subsequent cache level is larger and further away from the heart of
the CPU and is therefore slower to access.

✚ Modern CPUs tend to have three or four levels of cache.

Now test yourself

4 Give an example of when the contents of the ACC might be changed.

5 State the name of the bus that carries the contents of memory to the MDR.

6 Explain why the PC is incremented by 1 in each cycle.

Answers on p. 209

Core A core is a processing

unit within the CPU.

Cache memory A fast

memory that is built on

or close to the CPU and

is designed to reduce the

need to access RAM, which

has slower access speeds.

Making links

Having a cache is a

common concept in

computing, and isn’t just

used in the CPU. Web

browsers cache files

on your computer to

avoid them having to be

repeatedly downloaded.

You can find out more

about caches in Chapter 6.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

1
 T

h
e
 c

h
a
ra

c
te

ri
st

ic
s

o
f

c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
ss

o
rs

,
in

p
u

t,
 o

u
tp

u
t

a
n

d
 s

to
ra

g
e
 d

e
vi

c
e
s

11

My Revision Notes OCR A-level Computer Science Third Edition

This works as long as subsequent instructions can be predicted. This isn’t
always the case. For example, if there is a branch instruction, the CPU may
not be able to tell it should fetch the instruction immediately after it, or
needs to jump to a different part of the program until it is time to execute
the branch instruction. If the wrong instruction is chosen to be fetched in
advance, it has to be thrown away and the correct one fetched.

The use of pipelining in a processor to
improve efficiency
The processor works by repeatedly fetching, decoding and executing
instructions. If it does this one instruction at a time, then parts of the processor
are potentially left sitting idle. To overcome this, using pipelining in the CPU
means that different parts of the CPU performing different parts of the fetch–
decode–execute cycle on a sequence of instructions. While one instruction is
being executed, the next can be decoded and the one after that fetched.

Fetch Decode Execute

Step 1 Instruction 1

Step 2 Instruction 2 Instruction 1

Step 3 Instruction 3 Instruction 2 Instruction 1

Step 4 Instruction 4 Instruction 3 Instruction 2

Pipelining When discussing

a CPU, it means different

parts of the CPU performing

different parts of the fetch–

decode–execute cycle on a

sequence of instructions.

Von Neumann, Harvard and contemporary
processor architecture
A computer’s architecture is the approach taken to its design. Computers with
the same architecture aren’t necessarily identical but will follow a specific
design philosophy.

Von Neumann architecture
The Von Neumann architecture has:
✚ a single control unit
✚ a single arithmetic logic unit
✚ a single memory store that contains both instructions and data.

Storing data and instructions in the same memory unit and having them
travel along the same bus can hold things up.

If an instruction is being read, then because memory and the data bus are in
use, it is not possible to read and write data at the same time.

Harvard architecture
Harvard architecture differs from Von Neumann in that it has separate
memory units and buses for data and instructions and therefore doesn’t
suffer from the restriction of having a single memory store.

Now test yourself

7 Explain why CPUs have cache memory.

8 Explain how pipelining improves the performance of a processor.

9 Describe a situation in which more cores will improve the performance of a CPU.

Answers on p. 209

Making links

Pipelining can be seen as

a more general process,

not just specific to the CPU.

You can read about how

pipelining can be applied

to other problems when

looking at computational

methods in Chapter 7.

Architecture When

discussing computers, this

refers to the approach taken

in a computer’s design.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

1
 T

h
e

 c
h

a
ra

c
te

ri
s
ti

c
s
 o

f
c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
s
s
o

rs
,

in
p

u
t,

 o
u

tp
u

t
a
n

d
 s

to
ra

g
e

 d
e
v
ic

e
s

12

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Contemporary processors
While modern processors have many of the features of the model described
at the start of the chapter, in practice, they are many times more complex.
Over time, processor designers have come up with many ideas to improve
performance and efficiency. A number are described below but there are
many more, with new ones being developed all the time.

Simultaneous multithreading
✚ A ‘thread’ is the sequence of instructions that have been sent to the CPU to

be processed.
✚ Simultaneous multithreading allows two threads to run on each core at

one time.
✚ The core is designed so that the part of it that fetches and decodes, the

‘front end’, is duplicated. This means that it is capable of fetching and
decoding two threads at once.

✚ As the execution part of the core is not continuously being used, it can
switch between the two threads.

✚ It should be noted that while simultaneous multithreading will improve
performance, two cores that are not multithreading will outperform one
similar core with two threads.

Out of order execution
✚ In the model you have studied, each instruction is fetched, decoded then

executed.
✚ In reality, some instructions may take longer than others to execute,

leaving other parts of the CPU idle.
✚ Out of order execution allows instructions to be executed ahead of when

they usually would be if the required resources are available, preventing
delays. This requires the CPU to check that the instruction to be executed
out of order isn’t dependent on data yet to be processed.

Branch prediction
✚ We have seen that one issue with pipelining is that the pipeline has to be

cleared if the prediction is wrong, costing time.
✚ Modern CPUs use branch prediction to try and work out where a program

will go at a decision point. This reduces how often the pipeline has to be
cleared, improving overall speed of execution.

Variable clock speed
✚ Modern processors are able to change their clock speeds. They may

temporarily be able to increase it during intensive tasks to give a
performance boost

✚ There is, however, a limit as to how long this can be done for before
overheating means it has to return to its normal speed.

✚ Some CPUs can also reduce their clock speed to reduce power
consumption and extend battery life in portable devices.

Power conservation
As well as adjusting clock speed to conserve power, modern CPUs are able to
shut off parts of their circuity that aren’t being used at a given point in time.
This might, for example, be parts dedicated to video processing. All this helps
to reduce power consumption.

Exam tip

You may come across the

term Hyper-Threading.

This is the processor

manufacturer Intel’s

proprietary name for their

version of simultaneous

multithreading. In an exam

you should always give

generic and not proprietary

names. Therefore always

use the term simultaneous

multithreading not Hyper-

Threading.

Now test yourself

10 Describe one difference between the Von Neumann and Harvard architectures.

11 Give one example of a feature a contemporary processor might have.

Answers on p. 209

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

1
 T

h
e
 c

h
a
ra

c
te

ri
st

ic
s

o
f

c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
ss

o
rs

,
in

p
u

t,
 o

u
tp

u
t

a
n

d
 s

to
ra

g
e
 d

e
vi

c
e
s

13

My Revision Notes OCR A-level Computer Science Third Edition

Types of processor
The differences between and uses of CISC
and RISC processors
There are two main approaches to CPUs – reduced instruction set computing
(RISC) and complex instruction set computing (CISC). An instruction set is the
list of instructions a CPU is able to decode.
✚ RISC processors have a smaller range of instructions than CISC processors.
✚ The smaller instruction set means fewer transistors are needed. Therefore,

they generally require less power and cost less to produce.
✚ The instructions in a CISC processor may take several clock cycles to

execute. RISC instructions usually take a single clock cycle, meaning they
are better suited to pipelining.

✚ Compilers for RISC processors tend to be more complicated, so for a given
program more instructions are likely to be generated.

✚ RISC processors have fewer addressing modes than CISC processors but
more general-purpose registers.

Making links

Because RISC and CISC CPUs have different instruction sets, a program that runs on

one type of CPU will not run on the other. This means different compilers need to be

used for programs targeted to run on RISC or CISC devices. You can find out more

about compilers in Chapter 2.

You should also keep in mind that just because two CPUs are both RISC (or both CISC)

designs, this does not mean they necessarily have the same instruction set. The terms

RISC and CISC simply describe the philosophy for the design of the instruction set.

Reduced instruction

set computing (RISC) A

design approach where

a CPU uses a small set of

instructions. While this

means a loss of some

of the more specialised

instructions, it allows for

efficiencies in the processor

design.

Complex instruction set

computing (CISC) This was

a term retroactively coined

for non-RISC processors.

CISC processors tend to

have a larger instruction set,

including very specialised

instructions.

Now test yourself

12 State which has more addressing modes: a CISC or a RISC processor.

13 State which processor type is likely to be made of more transistors, RISC or CISC.

14 Explain why some laptop manufacturers have started to produce laptops with RISC

CPUs rather than the CISC approach they have previously used.

Answers on p. 209

GPUs and their uses (including those not
related to graphics)
A graphics processing unit (GPU) is specifically designed to perform the
calculations associated with displaying graphics. GPUs:
✚ have instruction sets specifically designed for the sorts of calculations

required in graphics processing
✚ have the ability to process these pieces of data in parallel, referred to as

single instruction multiple data (SIMD)
✚ can either be placed on a graphics card with access to their own dedicated

memory …
✚ … or can be embedded within a CPU.
✚ GPUs require additional software to convert CPU functions to GPU

functions.

It should be remembered that GPUs cannot themselves run programs. A
computer still needs a CPU to run a program, but if there is a GPU, the CPU can
pass on certain processing of data (traditionally the rendering of graphics) to it.

Graphics processing unit

(GPU) A type of processor

designed with the purpose

of drawing graphics on the

screen.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

1
 T

h
e

 c
h

a
ra

c
te

ri
s
ti

c
s
 o

f
c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
s
s
o

rs
,

in
p

u
t,

 o
u

tp
u

t
a
n

d
 s

to
ra

g
e

 d
e
v
ic

e
s

14

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

While designed for graphics (for example for gaming animation and graphic
design), because of their special capabilities GPUs are increasingly being used
in many other fields. Examples include:
✚ modelling physical systems
✚ audio processing
✚ breaking passwords
✚ machine learning.

Now test yourself

15 Describe one way a GPU is different from a CPU.

16 Give an example of how a GPU might be used other than for drawing three

dimensional (3D) graphics.

Answers on p. 209

Multicore and parallel systems
Parallel processing is when a computer carries out multiple computations
simultaneously to solve a given problem. There are different approaches to this:
✚ One is SIMD, where the same operation is carried out on multiple pieces

of data, at one time. This type of parallel processing is often carried out by
GPUs.

✚ The other approach is multiple instructions multiple data (MIMD); here,
different instructions are carried out concurrently on different pieces of data.

Parallel processing could take place within a single CPU by sharing
computation across its cores. This is a multicore approach.

If we need a higher degree of parallelisation, then multiple CPUs (each with
their own multiple cores) may be used. An example of this is a supercomputer.
The top supercomputers in the world have tens of thousands of CPUs and
GPUs, with millions of cores able to work on a problem simultaneously.

Some things are easy to parallelise. If we have a batch of one billion numbers
to add together, it is easy to see that 100 processors could divide the workload
to come to a total, quicker than a single CPU. On the other hand, if we want to
work out the 10 000th term of the Fibonacci sequence, where each term is the
calculated by adding the two previous terms (e.g. 0, 1, 1, 2, 3, 5, 8 …) there is no
benefit to be gained by having more than one CPU. Most programs have some
parts that can be parallelised and others that cannot.

The extent to which parallel processing speeds up the solving of a problem
depends on how much of the problem is parallelisable. If only half of a
program is parallelisable, then the best case that can be achieved by adding
more processors is getting close to the program running in half the time of
one processor.

Now test yourself

17 Explain what is meant by MIMD.

18 Explain what is meant by SIMD.

Answers on p. 209

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

1
 T

h
e
 c

h
a
ra

c
te

ri
st

ic
s

o
f

c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
ss

o
rs

,
in

p
u

t,
 o

u
tp

u
t

a
n

d
 s

to
ra

g
e
 d

e
vi

c
e
s

15

My Revision Notes OCR A-level Computer Science Third Edition

Hardware The physical

components of a computer

system. For example the

CPU, RAM, motherboard,

mouse, monitor etc.

Input, output and storage
How different input, output and storage
devices can be applied to the solution of
different problems
Hardware is the description given to the physical components of a computer
system:
✚ A computer system has a CPU and memory.
✚ There is usually some form of storage.
✚ There are usually devices to input data into and output information from

the computer.
✚ ‘Peripheral’ is the term given to hardware attached to and used with a

computer, but that are not an integral part of it.

Input devices and output devices
✚ Input devices allow data to be entered into a computer. Examples include

keyboards, mice, microphones, scanners and joysticks.
✚ Output devices allow information to be retrieved from a computer.

Examples include printers, speakers, monitors and actuators (devices that
cause movement).

Storage devices
Storage devices can use magnetic, optical or flash technology. This is covered
in more detail in the next section.

To make an informed decision as to what device is best for a given scenario:
✚ You need to have a good feel for how much storage is taken up by different

types of files.
✚ As a rough guide, documents and photographs require several

megabytes, audio requires a couple of megabytes per minute and video
tens of megabytes per minute. The number can vary depending on the
quality and compression used. You should a look around your own
computer and see how much space different files take up.

Device Type Capacity

CD Optical 650 MB

DVD Optical 4.7 GB

Blu-ray Optical 25–100 GB

Hard disk drive (HDD) Magnetic 1–20 TB

Solid state drive (SSD) Flash 500 GB–5 TB

Tape Magnetic 10–30 TB

USB flash drive Flash 16 GB–1 TB

Exam tip

HDDs and SSDs can be

external or internal. If the

device needs to be moved

between devices or stored

away safely, then you

should state the device is

either ‘external’ or ‘portable’

(the latter can run without

being plugged into a power

supply). If the terms hard

disk drive or solid state

drive are used on their own

they are usually assumed to

be internal.

Now test yourself

19 List ten different input devices.

20 List ten different output devices.

Answers on p. 209

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

1
 T

h
e

 c
h

a
ra

c
te

ri
s
ti

c
s
 o

f
c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
s
s
o

rs
,

in
p

u
t,

 o
u

tp
u

t
a
n

d
 s

to
ra

g
e

 d
e
v
ic

e
s

16

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

RAM and ROM
Primary memory is memory the CPU can access directly.

There are two forms of primary memory: random access memory (RAM) and
read-only memory (ROM).

RAM:
✚ is volatile (that is, loses its contents when electrical power is lost)
✚ can be read from or written to (any location is accessed at equal speed to

any other location)
✚ stores the parts of the operating system, programs and data that are

currently in use by the computer.

ROM:
✚ is non-volatile (that is, retains its contents when electrical power is lost)
✚ is read-only and so cannot be written to
✚ is often used to store the computer’s boot program.

Now test yourself

21 Find out and describe the storage devices your school or college uses to store and

back up students’ data.

22 State what type of media a DVD is: magnetic, optical or flash.

23 Explain why backups are usually carried out on magnetic media (e.g. tapes).

24 Explain why software tends to be distributed on DVDs rather than USB memory

sticks.

Answers on p. 209–210

Random access memory

(RAM) A type of primary

memory that the CPU uses

for programs and data in

use. It loses its contents

when power is lost.

Read-only memory

(ROM) A type of primary

memory that can only

be read from. It retains

its contents even when

electrical power is lost. It is

often used to store start-up

instructions on a computer.

Now test yourself

25 State one difference between RAM and ROM.

26 State which of the following types of primary memory is volatile: RAM, ROM

or both.

Answers on p. 210

Exam tip

If an answer requires an

optical medium that can be

written to, ensure you use

the R or RW suffix and not

ROM. ROM indicates it is

read-only, R means it can be

written to once and RW can

be written to many times. It is

no use, therefore, suggesting

a person backs up their

computer onto a DVD-ROM.

Type of storage device Description Examples

Magnetic Uses a magnetisable material. Patterns of magnetisation are

then used to represent binary sequences. Magnetic storage

tends to have a high capacity at a low cost. Their moving parts

tend to make them unsuitable for portable devices as sudden

movements can cause them to malfunction. They consume

more power than flash media

Hard disk drive

Magnetic tape (often used

to back up servers)

Optical Uses a laser and by looking at its reflection, determines where

there are pits on a surface, which represent 1s and 0s. Optical

media tend to be cheap to distribute and fairly resilient

Compact disc (CD)

Digital versatile disc (DVD)

Blu-ray disc™

Flash Uses a special type of read-only memory that can be

overwritten. While expensive, it can be read from and written

to at high speeds and, as it has no moving parts, has lower

power consumption. It is unaffected by sudden movements

USB memory stick

Camera memory card

Solid state drive

The uses of magnetic, optical and flash
storage devices
Storage devices fall into three categories: magnetic, optical and flash.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

1
 T

h
e
 c

h
a
ra

c
te

ri
st

ic
s

o
f

c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
ss

o
rs

,
in

p
u

t,
 o

u
tp

u
t

a
n

d
 s

to
ra

g
e
 d

e
vi

c
e
s

17

My Revision Notes OCR A-level Computer Science Third Edition

Virtual storage
✚ It is increasingly common for computers to make use of remote external

storage, that is, storage not directly connected to the computer
✚ Often this can be done in such a way that the operating system presents it

to the user as part of the actual system.
✚ This virtual storage may be stored elsewhere on a local area network or

even in a data centre somewhere on the other side of the world.
✚ This means that storage can be added to your computer without physically

installing new hardware. Depending on your set-up, this storage can be
automatically backed up, shared among multiple people and available
anywhere in the world.

✚ In order to access the storage, the computer needs to be connected to the
network on which it resides, or the internet. This makes virtual storage
unsuitable for scenarios in which a computer will be without a connection
for extended periods.

Now test yourself

27 Describe an advantage

of using virtual storage

over traditional storage

inside a computer.

Answers on p. 210

Exam tip

The specification requires you to be able to know how input, output and storage

devices are ‘applied to the solution of different problems’. It is, therefore, likely that

questions on this topic will be given in the context of a scenario. You should take time

to look at the scenario for clues as to what devices are most appropriate. For example,

if the context requires portability you are likely to choose a storage device that uses

flash storage such as an SSD (low power consumption and no moving parts) over one

that uses magnetic storage such as an HDD.

Summary

Structure and function of a processor

✚ The central processing unit (CPU) carries out the

instructions in programs. The faster the clock speed

(measured in GHz), the more instructions it can execute

per second.

✚ The CPU contains a control unit (CU), arithmetic logic

unit (ALU) and registers. It is linked to memory by

address, data and control buses.

✚ Processor performance can be improved by increasing

the clock speed, the number of cores and increasing

the amount of cache memory.

✚ Pipelining will also have a beneficial effect on the

performance of a CPU.

✚ Pipelining is when different parts of the CPU can fetch,

decode and execute instructions simultaneously.

✚ The Von Neumann architecture follows the fetch–

decode–execute cycle and uses one ALU and one CU.

✚ In the Von Neumann architecture, data and instructions

are stored together in memory; in the Harvard

architecture, programs and data are stored in separate

memory units.

✚ Modern processors have features to improve

performance and power efficiency. These include

out of order execution, branch prediction and power

conservation.

Types of processor

✚ Reduced instruction set computing (RISC) is an

alternative processor architecture, which has a reduced

instruction set. These instructions require fewer clock

cycles to execute and mean that the processor requires

fewer transistors to build. Non-RISC processors are

referred to as complex instruction set computing (CISC)

processors.

✚ A graphics processing unit (GPU) is a specialist

processor that is primarily designed for drawing 3D

graphics to the screen, but can be applied to other

tasks.

✚ Parallel processing is the processing of multiple pieces

of data at the same time. This could be with the

same instruction being applied to all the data (single

instruction multiple data, SIMD) or different instructions

(multiple instructions multiple data, MIMD).

Input, output and storage

✚ Input devices allow data to be entered into a

computer; output devices allow computers to give out

information; storage devices are used to permanently

store data.

✚ Storage devices can use magnetic, optical or flash

storage.

✚ Random access memory (RAM) is volatile and stores

the programs and data in use.

✚ Read-only memory (RAM) is non-volatile and is often

used to store the computer’s boot program.

✚ Storage is often separate to the computer, located

elsewhere on a network or even in a remote data

centre. This virtual storage can be treated as part of the

computer itself.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

1
 T

h
e

 c
h

a
ra

c
te

ri
s
ti

c
s
 o

f
c
o

n
te

m
p

o
ra

ry
 p

ro
c
e
s
s
o

rs
,

in
p

u
t,

 o
u

tp
u

t
a
n

d
 s

to
ra

g
e

 d
e
v
ic

e
s

18

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Exam practice

1 Explain why smartphones use flash memory. [2]

2 Describe the purpose of the address bus. [1]

3 Give two differences between RISC and CISC processors. [2]

4 Describe the Von Neumann architecture. [2]

5 Explain what is meant by a GPU. [2]

6 State two output devices a programmer might have, justifying your choices. [4]

7 Discuss the differences between a CPU in a smartwatch and one in a PC

designed for gaming. [9]

Answers available online

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

19

My Revision Notes OCR A-level Computer Science Third Edition

Systems software
The need for, function and purpose of
operating systems
Operating systems are an essential piece of software in modern computer
systems, managing the hardware itself and the programs running on it.
Examples of operating systems are Windows, MacOS, Linux, iOS and Android.

An operating system has several roles, including to:
✚ manage the system hardware
✚ manage the installation and running of programs
✚ manage the security of the system
✚ provide a user interface.

Operating system

Software that controls the

computer, manages the

computer’s hardware and

from which other programs

can be run.

User interface The means

by which the computer

and user interact. This

could be a command line

interface, where operating

system commands are

typed in, or a graphical user

interface, where programs

run in windows and the

user interacts using a

mouse and icons. Graphical

user interfaces are far

more common now than

command line interfaces.

2 Software and software
development

Memory management (paging, segmentation
and virtual memory)
One of the key jobs of an operating system is the management of memory.
✚ When a program is run, it is retrieved from secondary storage and placed

in memory.
✚ Memory stores the programs and data in use by the system.

The operating system needs to ensure that:
✚ memory is used efficiently – programs that are being used need to be

stored in memory without space being wasted
✚ data in memory is secure – most of the time, programs should not have

access to other programs’ data.

Storing complete programs as a single block of memory is wasteful as it
means that parts of the program not being used are taking up memory, and
as programs are added and removed space can be used inefficiently. For this
reason, items in memory are split up. There are two ways programs and data
can be split, paging and segmentation:
✚ paging means memory is split up in equally sized chunks, called pages
✚ segmentation is when memory is divided according to logical breaks

within the program.

When a system is running low on physical memory (that is, RAM), it is able to
use an area of secondary storage as virtual memory. This happens because:

Paging Where programs

are divided physically into

equal-sized blocks called

pages (typically several

kilobytes).

Segmentation Where

programs are divided

logically; they are split into

blocks containing modules

or routines.

Virtual memory The use

of secondary storage as an

extension of a computer’s

physical memory.

Making links

Linux is an operating system that has many variants. This is because it is open source,

meaning different groups of people have been able to take the source code and adapt it

to make their own versions. You can find out more about open source software below.

Now test yourself

1 State three roles of an operating system.

Answer on p. 210

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

20

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Interrupts, interrupt service routines and their
role within the fetch–decode–execute cycle
The CPU needs to know when a device needs its attention. It does this by
sending a signal called an interrupt. An interrupt has a priority. Interrupts can
only take processor time from tasks with a lower priority. When an interrupt is
raised, the operating system runs the relevant interrupt service routine (ISR).

At the end of each iteration of the fetch–decode–execute cycle, the processor
checks to see if there are any interrupts. If there are, and they are of a higher
priority than the current task, the following steps are carried out:
✚ The contents of the program counter and the other registers are copied to

an area of memory called a stack.
✚ The relevant ISR can then be loaded by changing the program counter to

the location of the ISR in memory.
✚ When the ISR is complete, the previous values of the program counter and

other registers can be restored from the stack to the CPU.
✚ If, while an interrupt is being serviced, a new, higher priority interrupt

is raised, the interrupt currently being serviced is also added to a stack
in memory and the new interrupt is serviced. Once this new interrupt is
finished, the previous interrupt is taken off the stack and continued.

Interrupt A signal sent to

a CPU to signify another

process is in need of

processing time.

Interrupt service routine

(ISR) This is the program

code that is called when an

interrupt is triggered. Each

interrupt will have a specific

ISR associated with it. When

the processor runs this ISR,

it carries out the actions

required to handle the

situation that has triggered

the interrupt.

✚ RAM is significantly more expensive than secondary storage.
✚ Therefore a computer system will often have secondary storage that is

hundreds of times larger than RAM.

Pages are swapped from main memory to virtual memory when not needed
and then back to main memory when required. If a computer has to swap pages
back and forth too often the computer slows down. We call this disk thrashing.

Now test yourself

2 Describe the purpose of virtual memory.

3 Explain the difference between paging and segmentation.

Answers on p. 210

Now test yourself

4 Describe the purpose of an interrupt service routine.

5 Explain the significance of an interrupt having a priority.

Answers on p. 210

Making links

We examined the program counter register in Chapter 1. You will recall that its

purpose is to store the location in memory of the next instruction to be fetched. Note

how it is used here to point to the starting location of the ISR, meaning the CPU starts

fetching, decoding and executing the code in the ISR.

For more on stacks, see Chapter 4.

Scheduling
Modern operating systems run multiple programs at one time, known as
multitasking. While it is usual today to have one user to a computer at any
one time, there are still occasions where a computer has to do work for more
than one user at once. An example of this might be a server giving multiple
access to files.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

21

My Revision Notes OCR A-level Computer Science Third Edition

Distributed, embedded, multitasking, multi-user
and real-time operating systems
There are a number of different types of operating systems:
✚ Distributed operating system: allows multiple computers to work together

on a single task. They tend to be used in systems aimed at completing
computationally intensive tasks. An example of this is rendering complex
3D animation. This workload can often be shared across a collection of
computers using a distributed operating system.

✚ Embedded operating system: designed to run on embedded systems rather
than general-purpose computers. An embedded system is a computer that
forms part of a device such as a washing machine, vending machine or a
car’s engine management system.

✚ Multitasking operating system: can run multiple programs simultaneously.
Most modern personal computer operating systems are multitasking (e.g.
Windows, MacOS and Linux).

✚ Multi-user operating system: allows multiple users to use a system and its
resources simultaneously. It is the simultaneous aspect that is important.
An operating system that allows multiple user accounts, but only one
person to use the system at a time, is not classed as a multi-user operating
system. Multi-user operating systems tend to be used on larger, more
powerful mainframe computers able to service large numbers of users at
one time. Banks and retailers are examples of organisations that use these
systems, which are capable of processing large numbers of transactions
while being accessed by employees and customers.

✚ Real-time operating system: designed to carry out actions within a
guaranteed amount of time even when left running for long periods.
Usually the expected response time is within a small fraction of a second.

An operating system has to ensure that each job and user gets sufficient
processing time. It does this through scheduling, which is carried out by a
scheduler.

A scheduler uses a scheduling algorithm to determine how to share processor
time. The scheduling algorithms you need to know are:
✚ Round robin: each process is given a fixed amount of time. If it hasn’t

finished by the end of that time period, it goes to the back of the queue so
the next process in line can have its turn.

✚ First come first served: this is just like queuing in a shop. The first process
to arrive is dealt with by the CPU until it is finished. Meanwhile, any other
processes that come along are queued up waiting for their turn.

✚ Shortest job first: picks the job that will take the shortest time and run it
until it finishes. Naturally this algorithm needs to know the time each job
will take in advance.

✚ Shortest remaining time: the scheduler estimates how long each process
will take. It then picks the one that will take the least amount of time,
and runs that. Unlike the shortest-job-first algorithm, shortest remaining
time is pre-emptive. This means that if it hasn’t completed after a
certain amount of time, the scheduler checks to see whether any shorter
processes have been added. If so, it switches to them.

✚ Multilevel feedback queues: as the name suggests, a multilevel feedback
queue uses a number of queues. Each of these queues has a different
priority. The algorithm can move jobs between these queues depending on
the jobs’ behaviour.

Scheduling The method

an operating system uses

to ensure all processes get

sufficient processor time.

Now test yourself

6 Describe the first come first served scheduling algorithm.

7 Describe the round-robin scheduling algorithm.

Answers on p. 210

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

22

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Autopilot on a plane is an example of a system that need to run using a
real-time operating system. If the plane needs to move it is essential there
is no delay!

BIOS
BIOS stands for ‘basic input/output system’. When a computer is first switched
on it looks to the BIOS to get it up and running, and so the processor’s
program counter points to the BIOS’s memory.

While originally stored on ROM, nowadays the BIOS is often stored on flash
memory so that it can be updated. This also allows settings such as the boot
order of disks to be changed and saved by the user.

Device drivers
Operating systems are expected to communicate with a wide variety
of devices, each with different models and manufacturers. It would be
impossible for the makers of operating systems to program them to handle
all existing and future devices. This is why we need device drivers.

A device driver is a piece of software that tells the operating system how
it can communicate with hardware. In the past, device drivers were often
supplied on a CD-ROM with the device, but today they are often just
downloaded from the internet. Sometimes the operating system can do this
in the background without any intervention by the user.

Now test yourself

8 Describe what is meant by a real-time operating system.

9 Describe the sort of tasks a multitasking operating system might carry out

simultaneously on a student’s computer.

Answers on p. 210

Now test yourself

10 Describe the purpose of a computer’s BIOS.

Answer on p. 210

Now test yourself

11 When setting up a new printer, explain why a device driver has to be installed.

Answer on p. 210

Making links

If you look at Chapter 1 you will see which properties of ROM made it suitable for

storing a computer’s BIOS.

Virtual machines
It is possible to write a program that has the same functionality as a physical
computer. We call such programs virtual machines. They have the advantage
that they can be backed up and duplicated and more than one can be run at
one time on a physical machine.

A common use of virtual machines is to run one operating system within
another operating system. This might be because a program is needed that
will not run on the host operating system or it might be because it offers a
convenient way to test a program being developed on multiple platforms.

Virtual machine A

program that has the same

functionality as, and can be

used in place of, a physical

machine.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

23

My Revision Notes OCR A-level Computer Science Third Edition

Figure 2.1 Windows 10® and Mint Linux® running in virtual machines in MacOS®

Another common use of virtual machines is interpreting intermediate code.
As you will see, compilers usually convert programmers’ source code into CPU
readable machine code. However, with some languages, for instance Java, a
compiler instead converts source code into something called intermediate
code.
✚ Intermediate code is akin to an artificial machine code. Unlike machine

code, it isn’t designed be read by a CPU, but is a similarly efficient
representation of a program and is designed to be computer readable
rather than human readable.

✚ Because it is not machine code it cannot be run directly on a processor.
Instead, a virtual machine is used to read the code.

✚ Any device running this virtual machine can read this intermediate code,
which makes it highly portable – unlike machine code, which can only be
run by CPUs for which it has been compiled.

Making links

In the section on networking in Chapter 3, you will see that servers are computers

that play an important role on a network, providing services such as file sharing,

printing and email. In the past, it was usual to have a different physical machine for

each server. Today you are just as likely to find one or two powerful physical machines

with multiple servers inside them running on virtual machines. This has a number

of benefits such as making backups easy, and being able to adjust the resources

afforded to each server depending on their needs.

Making links

You can find out more about compilers below.

Now test yourself

12 Explain how a virtual machine makes it possible for someone running Windows on

their computer to run a program designed to run on Linux.

Answer on p. 210

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

24

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Applications generation
The nature of applications and justifying
suitable applications for a specific purpose
Applications software is software that allows a user to perform a task or
produce something.

Common examples of applications include:
✚ word processors: used for writing letters, reports and other documents
✚ spreadsheet packages: these allow a user to model complex situations, and

are often used for financial calculations
✚ presentation software: used to make on-screen slide shows to accompany

presentations
✚ desktop publishing software: used for documents where layout is

important, such as newsletters
✚ image editors: used to alter and amend images such as photographs
✚ web browsers: allow a user to browse the World Wide Web
✚ database management systems: used to run databases, which can store

and search large quantities of data and present them in different ways.

There are also many other types of more specialist applications available.
For instance:
✚ computer-aided design packages allow engineers to build accurate designs
✚ management information systems allow data to be stored and processed
✚ video games provide entertainment.

All these are further examples of software applications.

Applications software

Programs that allow a

user to complete a task.

Examples include word

processors, spreadsheet

packages and presentation

software.

Exam tip

In the exam, you may be

given scenarios and asked

to decide which applications

would be used and what

they would be used for.

Making links

You can find out more about databases and database management systems in

Chapter 3.

Utilities
Utility software is a relatively small program that has one purpose. This
purpose is usually concerned with the upkeep of a computer system.

Examples of utilities include:
✚ anti-malware: used to detect and remove malware on a system
✚ disk defragmentation: used to rearrange where data is stored on a hard

disk drive so that files load more quickly
✚ backup: used to make copies of data to an alternative device or location,

in case the original is damaged or lost. This can be set up to occur
automatically.

Utility software Small

programs designed to

help with the maintenance

of a system. Examples

include antivirus software,

disk defragmentation and

backup software.

Revision activity

It is not always obvious as to whether a database (driven by a database management

system) or a spreadsheet should be used for certain tasks. As a rule of thumb, if a

task requires lots of complex calculations with values that need changing, then a

spreadsheet is the most suitable application. If the focus of the task is storing and

organising data, then a database may be more suitable. This is not always clear-cut

and there is some overlap where either system could be used.

Find two examples of how your school/college might use a database and two

examples of how they might use a spreadsheet package. For each example, explain

why you think the particular software has been chosen.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

25

My Revision Notes OCR A-level Computer Science Third Edition

Closed source versus open source
When software is sold commercially it is compiled to machine code. This
means users can run it without having to translate it. They do not have access
to the source code, that is, the high-level language code it was originally
written in.

Closed source software
✚ Software that is only distributed as executable machine code.
✚ Most users have no need for the program’s source code.
✚ It would not be wise for the company making the software to supply

source code as it would mean users could amend their software and steal
their work.

Open source software (OSS)
✚ Software where the source code is made publicly available.
✚ OSS grants anyone permission to amend, recompile and, if they wish,

redistribute the program.
✚ This means that users can modify software to suit their needs.
✚ It also means that there is potential for anyone to play a part in the

development of open source software. Examples of OSS are Linux® and
OpenOffice™.

There are advantages and disadvantages of each.
✚ Open source software is usually free.
✚ Users are at liberty to amend the source code of open source software and

adapt it to their purposes.
✚ Closed source software is developed by companies with lots of resources

and teams of programmers. It often (but not always) tends to be more
polished.

✚ Open source software can be developed by huge teams of volunteers
across the world who are not constrained by the commercial
considerations of the project.

✚ Open source software has the advantage that anyone can help find
security holes in it but this also includes those who may exploit such
failures maliciously before they are fixed.

Source code The program

code written by the

programmer, usually in a

high-level language.

Open source software

Software that has its source

code freely available and

grants users the right

to examine, modify and

share it.

Closed source software

Software distributed as

executable machine code,

which means the source

code is kept secret.

Now test yourself

13 Explain the classification of software for a compression program.

14 Explain the classification of software for a desktop publishing package.

Answers on p. 210

Now test yourself

15 Explain why a program being free of charge does not necessarily mean it can be

classed as open source.

16 Explain why commercial companies do not tend to make their software open

source.

Answers on p. 210

Making links

There is further discussion of open source software and copyright in Chapter 5.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

26

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Translators: assemblers, compliers
and interpreters

Machine code and translators
Computers follow instructions, represented in binary, that comprise an
opcode (the instruction itself) and an operand (the data it acts on). We call
this machine code. While computers only understand machine code, humans
write programs in easier-to-read programming languages. To convert these
languages to machine code, computers use translator programs.

Assembly code and assemblers
Machine code, being made up of just 1s and 0s, is very difficult for humans
to follow. To get round this, computer scientists devised assembly code.
In assembly code the opcode is represented by a mnemonic (a memorable
group of letters) and the operand is represented in denary or hexadecimal. A
program called an assembler is then used to convert each line of assembly
code into machine code.

Assembly language and machine code are both known as low-level languages.

Compilers and interpreters
Writing assembly code is laborious; many lines of code are needed for the
simplest of tasks. This led to the development of high-level languages. A high-
level language is one that is more easily human-readable. Over time, many
high-level languages have been created including (to name just a few): BASIC,
C, C++, JavaScript and Python.

For a computer to run a program written in a high-level language, the
program needs to be converted to machine code. To do this we can use a
compiler or an interpreter.

Compiler
✚ A compiler takes code written in a high-level language and converts it into

an executable machine code program.
✚ A compiler can take a while to perform the translation, but once the

executable file is built it can be run immediately.
✚ When distributing a program, a compiled version is better: it runs quicker,

does not require any additional software to run and is much harder to
change than it would be if the source code was available.

Interpreter
✚ An interpreter takes each line of a high-level language program, converts it

to machine code and runs it, before reading and converting the next line.
✚ An interpreter can start running the program straight away but it will run

more slowly than it would if it were compiled as the interpreter has to
translate each line as it is run.

✚ Interpreters can be useful during the coding and debugging process as the
programmer does not have to wait for the entire program to compile: the
interpreter will stop at a line if it finds an error.

Machine code Instructions

and data stored in binary,

directly readable by the

CPU.

Assembly code A low-

level language that uses

single words or mnemonics

to represent instructions.

Assembler A program that

converts assembly code

into machine code.

Low-level languages

These are languages closely

tied to the architecture

of the CPU. They use the

CPU’s instruction set. The

lowest level language is

machine code, which is

directly readable by the

CPU. Assembly code is

also considered a low-level

language.

High-level languages

These are designed to be

easily read by humans. They

tend to use a combination

of English keywords and

mathematical notation.

There are many high-level

languages. Examples

include C++, JavaScript and

Python.

Compiler A program that

converts the entire high-

level source code into an

executable machine code

file that is then executed.

Interpreter A program

that reads and executes

high-level source code line

by line.

Now test yourself

17 Explain why a programmer might use an interpreter rather than a compiler.

18 Describe what is meant by a high-level language.

Answers on p. 210

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

27

My Revision Notes OCR A-level Computer Science Third Edition

Stages of compilation
Compilers generally work by going through the following steps:
✚ lexical analysis
✚ syntax analysis
✚ code generation
✚ code optimisation.

Lexical analysis
Lexical analysis identifies the parts that make up the program. This include
the program’s keywords (for, while, if etc.) and variables. During lexical
analysis:
✚ comments and whitespace are removed from the program
✚ the remaining code is turned into a series of tokens (specific sequences of

characters) each representing a small discrete part of the program
✚ a symbol table is created to keep track of the variables and subroutines

(this includes information such as data type and scope).

Syntax analysis
Syntax is the structure of a language. Just like spoken languages, computer
languages have a specific structure. For example, you would usually be able to
write a = b + c but not b + c = a.

In syntax analysis:
✚ an abstract syntax tree is built from the tokens produced during lexical

analysis
✚ if any tokens break the rules of the language, syntax errors are generated.

Code generation
During code generation, the abstract code tree is converted to object code.
Object code is machine code before the final step (the linker) is run.

Code optimisation
Optimisation tweaks the code so it will run as efficiently as possible. This
might mean optimising for speed of execution or optimising for using as little
memory as possible.

Object code When code

is compiled but yet to be

run through a linker, it is

sometimes referred to as

object code. In practice,

you will often see the terms

machine code and object

code used interchangeably.

Now test yourself

19 List the stages of compilation.

20 Describe what is stored in the symbol table.

Answers on p. 210

Libraries, linkers and loaders

Libraries
Code to perform common complex tasks has often already been written (and
usually compiled) and packaged as a library. This code can be reused by other
programmers.

Libraries have the advantages that:
✚ they save time – no need to rewrite code someone else has already written
✚ they can cover complex areas that require significant expertise in an area

that would be time-consuming, or unfeasible, to learn
✚ a library coded in one language can be used in programs written in

another language.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

28

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Linkers and loaders
A linker is used to combine compiled code with that from a library into a
single executable file.

Object file Object file Object file

Compiler Compiler Compiler Compiler

Linker

Source code
file

Source code
file

Source code
file

Source code
file

Executable
program

Library

Figure 2.2 A linker combining code into a single executable program

A loader is part of the operating system and is responsible for loading a
program into memory.

Now test yourself

21 Explain why programmers use libraries.

22 State the purpose of a linker.

Answers on p. 210

Software development
Large-scale mechanical engineering projects are at least as old as the
pyramids. Over many centuries, best practice has developed as to how groups
of people can work together towards a shared goal.

By contrast, software engineering – the process of teams working on
developing programs – is a very new discipline that is only a few decades old.
There has been much debate as to the best approach to take and there is, as of
yet, no consensus.

This section looks at some of the methodologies that can be used for software
development and their relative strengths and weaknesses.

Software development methodologies
There are a number of different ways in which software development projects
can be implemented:
✚ the waterfall lifecycle
✚ rapid application development
✚ the spiral model
✚ agile methodologies
✚ extreme programming

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

29

My Revision Notes OCR A-level Computer Science Third Edition

The waterfall lifecycle
The waterfall lifecycle is a well-known and often criticised development model.
✚ The waterfall lifecycle consists of a sequence of stages; each stage is

started only after the previous one is complete.
✚ It is possible to go back a stage when necessary.
✚ Exact stages can vary but usually are: requirements definition, analysis,

design, coding, testing, maintenance.
✚ It works well where there is a clear expected output at each stage and

everyone has clear responsibilities.
✚ It is not suited to high-risk projects. If a problem is discovered at a later

stage, a lot of work (and therefore time and money) may have been wasted.

Determine
requirements

Analysis

Design

Coding

Testing

Maintenance

Figure 2.3 The waterfall lifecycle

Rapid application development
Rapid application development (RAD) involves the use of prototypes.
A prototype is a version of the system that lacks full functionality.
✚ The user is shown the prototype and gives feedback that is used to inform

how the prototype is further developed.
✚ This continues until the end user is happy that the prototype has all the

required functionality. At this point it becomes the end product.
✚ Rapid application development is well suited to projects where the

requirements aren’t entirely clear from the outset.
✚ With continuous feedback from the client, the end product is likely to have

excellent usability, though the code may not be particularly efficient.
✚ It is necessary to have frequent contact with the end user.
✚ It works well on small projects with small teams but does not scale well

and so is less suited to large projects with big teams.

Is the
prototype good

enough?

Yes

No

Decide
requirements

Improve
prototype

Build
prototype

Evaluate
prototype with

customer

Prototype
becomes final

product

Figure 2.4 Rapid application development

Prototype An early version

of a system, lacking full

functionality but allowing

a feel for what the final

version will be like before

large amounts of time

are committed to its

production.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

30

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Spiral model
The spiral model is designed to try and manage risk. It consists of four stages,
each forming a quadrant of the spiral that are iterated through:
1 Determine objectives: the first stage is to determine the objectives of that

rotation of the spiral according to the biggest potential risks.
2 Identify and resolve risks: in the next stage, the possible risks are

identified and alternative options considered. If the risks are considered
too high at this stage, the project may be stopped.

3 Development and testing: the third stage allows the part of the project
being worked on to be made and tested.

4 Plan next iteration: the fourth stage determines what will happen in the
next iteration of the spiral.

The spiral cycle manages risk well but requires practitioners skilled in risk
management.

Cumulative cost

Review

Requirements
plan Prototype 1 Prototype 2

DraftRequirements

Concept of
requirements

Concept of
operation

Development
plan

Test plan

Verification
& validation

Verification
& validation

Operational
prototype

Detailed
design

Code

Integration

Test

Implementation

Release

Progress
2

Identify and
resolve risks

1

Determine
objectives

3

Development
and Test

4

Plan the
next iteration

Figure 2.5 The spiral model

Agile software development
Agile software development is not a single methodology but a group of
methods. These methods are designed to cope with changing requirements
by producing software in an iterative manner; that is, it is produced in
versions, each building on the previous one and each increasing the number
of requirements it meets.

The methods focus on the quality of the software and the response to user
needs. The core of the Agile philosophy can be summed up by the Agile
Manifesto, which was agreed upon by 17 pre-eminent software engineers.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

31

My Revision Notes OCR A-level Computer Science Third Edition

We are uncovering better ways of developing software by doing it and helping
others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

https://agilemanifesto.org/

Extreme programming
An example of an agile software development methodology is extreme
programming (often abbreviated to XP), a methodology that puts the
emphasis on the coding itself.
✚ A representative of the customer becomes part of the team to help

determine the ‘user stories’ (XP’s equivalent of requirements and how
these will be tested) and to answer questions.

✚ XP is iterative in nature – the program is coded, tested and improved
repeatedly, using shorter (usually week long) iterations than RAD.

✚ Each iteration in XP produces a version of the system (albeit lacking some
of the requirements) with code of a good enough quality to be used in the
final product.

✚ XP uses pair programming. This is when code is written with two
programmers sitting next to each other, one writing the code and the
other analysing what is being written, and then switching roles at regular
intervals.

✚ Programmers are encouraged to regularly ‘refactor’ code, that is, make it
more efficient without changing what it does.

✚ Every programmer is responsible for the entire system.
✚ With such an emphasis on programming, the quality of the final code is

likely to be very high.
✚ The client needs to be able to commit to having a representative working

with the team.

Now test yourself

23 Describe the purpose of the prototype in rapid application development.

24 List the stages of the waterfall lifecycle model.

25 Describe the spiral model.

Answers on p. 210–11

The relative merits and drawbacks of
different methodologies and when they
might be used

Methodology Advantages Disadvantages Suited to

Waterfall Clear responsibilities at each stage

Possible for different parts of the

team to be geographically remote

If requirements change

halfway through the project

(or have been previously

misinterpreted), previous

stages have to be repeated,

delaying the project

Large projects with static

requirements

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://agilemanifesto.org/
https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

32

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Methodology Advantages Disadvantages Suited to

Rapid application

development

The user’s experience is prioritised.

Can be confident the end product

meets the user’s needs

Little attention is paid to the

efficiency of the program

Does not scale well

Can overrun initial budgets

due to being an agile

approach

Smaller projects where there

is ready access to an end

user

Spiral Prioritises risk management and can

handle changes in requirements

Suitable for high risk applications

Requires practitioners

experienced in risk

management and can be a

long and expensive process

Large, high-risk projects

without tight time

constraints

Agile

methodologies

Adapts to user’s needs, resulting in

a final system tailored. to meet their

requirements

Continual collaboration

is needed between the

software developers and

end users.

Hard to determine timescale

and outcomes early on

Projects where the initial

requirements are hard to

determine from the outset

and in which the end user

can play an active role in the

development process

Now test yourself

26 Describe the factors you would consider when choosing between the waterfall

lifecycle and rapid application development for a software project.

27 State the disadvantages of Agile development.

Answers on p. 211

Writing and following algorithms
Algorithms are sets of instructions that can be followed to perform a task.
They are at the very heart of what computer science is about. Often software
developers may wish to share algorithms with each other without writing the
actual programs. This may be to avoid getting bogged down with the rules of a
language or because they are familiar with different programming languages.

There are a number of ways algorithms can be described, including:
✚ bulleted lists
✚ flowcharts
✚ pseudocode.

Computer scientists tend to express algorithms in pseudocode.

Pseudocode A way in

which algorithms can be

written using ‘pretend’

code. Unlike a real high-

level language, there

are no strict rules as to

how pseudocode needs

to look, but it should

be understandable to

someone familiar with

programming (though

perhaps in a different

programming language to

the writer).

Making links

When looking at

computational thinking in

Chapter 6, you will reflect

more on how algorithms are

written and the techniques

that can be used in creating

an algorithm.

When reading algorithms, the best approach is to follow them through in the
same way a computer would. When doing this with pseudocode, have a pen
and paper at hand to keep track of the variable values.

Exam tip

Programming questions in the exam use pseudocode. To avoid any confusion there

is a guide to the pseudocode style that will be used in the exam in the back of the

Specification. You should ensure you are familiar with this well in advance of the exam.

Note that while the exam board limit themselves to using their pseudocode style,

you are under no such restriction when answering questions. The meaning of your

written pseudocode must, however, be understandable to the examiner. Do be

cautious of creating lines of code that magically solve a given problem (even if they

exist in the language of your choice.) For instance, if a question gives 4 marks for

showing the largest number in an array called numbers, you are unlikely to get much

credit for writing a solution in pseudocode such as:

print(max(numbers))

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

33

My Revision Notes OCR A-level Computer Science Third Edition

Types of programming
language
Need for and characteristics of a variety of
programming paradigms
A programming paradigm is the approach a programming language takes to
defining a program.

Initially all programming was carried out in low-level languages, that is, those
that are directly linked to the architecture of the CPU. Machine code and
assembly language are both low-level languages.

In assembly language:
✚ Mnemonics (memorable letter sequences) are used in place of machine

code instructions.
✚ The set of instructions varies from processor to processor, meaning that

assembly code written for one processor will not necessarily work on another.
✚ Low-level languages offer a high level of control, meaning instructions

can be carefully selected to reduce memory consumption and ensure best
performance.

For the A-level course you have studied the Little Man Computer assembly
language.

High-level languages that use English and mathematical notation are much
easier to read and write. A few lines of high-level code may be the equivalent
to tens of lines of assembly code. As we saw when looking at compilers and
interpreters, high-level code can be run on any CPU architecture by using a
compatible translator.

Now test yourself

28 Follow the pseudocode below and explain what it does:

numbers = [… Array of 10 Random Numbers …]

pos = 0

for i = 1 to 9 //i goes from 1 to 9 inclusive

 if numbers[i] > numbers[pos] then

 pos = i

 endif

next i

print(numbers[pos] + " at " + pos)

29 Write an algorithm in pseudocode to determine if a word has more vowels or more

consonants in it.

Answers on p. 211

Revision activity

Using a high-level language

of your choice write:

1 A working version of the

pseudocode shown in

question 28.

2 A working version of

your answer to

question 29.

Making links

More on compilers and interpreters can be found earlier in this chapter.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

34

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

A number of high-level paradigms have developed over the years, where
different languages have adopted different fundamental approaches.
Common high-level paradigms include:
✚ Procedural: a language where instructions are given in sequence. These

instructions can be grouped into subroutines that can be called throughout
the program. Examples of procedural languages include BASIC, C, Python
and Pascal.

✚ Object-oriented: a language in which the solution is represented by objects
that interact. Examples of object-oriented languages include Java and C++.

✚ Functional: a function, in mathematics, takes in one or more
values and returns a value, for example double(4) returns 8, and
highestCommonFactor(36,24) returns 12. In functional programming, a
description of the solution to a problem is built up through a collection of
functions, some of which are used to define other functions. Examples of
functional programming languages include Haskell and ML.

✚ Declarative: a language where the characteristics of a solution are stated,
rather than stating how the problem is solved. Examples of declarative
programming languages include Prolog and SQL.

Making links

In Chapter 7 you will look at backtracking. Prolog is a declarative language that uses

backtracking to find a solution according the criteria stated in the program.

While most problems can be solved by most languages, it is often the case
that the solution to a problem is more easily represented and solved by a
particular paradigm.

Procedural languages
In procedural programming, we give the computer instructions on the steps
we want it to go through to solve a problem.
✚ These instructions are given in sequence.
✚ Selection is used to decide what a program does when certain conditions

are met.
✚ Iteration (i.e. loops) dictates how many times it does it.

In procedural programming, programs are broken down into subroutines
called procedures and functions. These can then be combined to form a
solution.

If all this seems familiar, that’s because procedural is the paradigm used for
most programming questions in the exam.

Now test yourself

30 Explain why different programming paradigms exist.

31 Explain why SQL can be considered a declarative language. (You may wish to refer

to Chapter 3 to look at SQL.)

Answers on p. 211

Now test yourself

32 Discuss whether the programming language you have studied for the A level

course can be considered procedural, justifying your decision.

Answer on p. 211

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

35

My Revision Notes OCR A-level Computer Science Third Edition

Assembly language and the Little Man
Computer instruction set
Machine code uses binary sequences to represent instructions (opcodes) and
data on which they act (operands). Rather than having to remember which
binary sequence represents which instruction, assembly code allows us to use
mnemonics to represent these sequences.

As each assembly code instruction represents a machine code instruction,
assembly code programs can often be much longer than their high-level
equivalents.

Each processor family has its own assembly language instruction set. In this
course you will be using the Little Man Computer instruction set. (The ‘Little
Man Computer’ is a hypothetical machine used to teach the principles of
assembly language programming.)

Figure 2.6 Online Little Man Computer simulator

Little Man Computer (LMC) uses 11 instructions.

Mnemonic Instruction

ADD Add

SUB Subtract

STA Stores value from the accumulator to memory

LDA Loads value from the memory to the accumulator

BRA Branch always

BRZ Branch if zero

BRP Branch if positive

INP Input

OUT Output

HLT End program

DAT Data location

Each line of an LMC program can have up to four parts: a label, the mnemonic,
the data and a comment.

The label is used to identify a line so it can be branched to elsewhere in the
program:

thisLine ADD 3

thisLine is a label; the program can jump here with the code:

BRA thisLine

Exam tip

You must be familiar with all

of the LMC mnemonics and

their functions.

Making links

When running a program,

LMC demonstrates the

fetch–decode–execute

cycle, covered in Chapter 1.

Now test yourself

33 Describe what the LDA

instruction does.

Answer on p. 211

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

36

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

A label is also used to give a name to a memory location when used with the
DAT instruction.

attempts DAT 5

puts the value 5 in a memory location called attempts.

Example

The following program takes in a number and doubles it.

 INP

 STA num

 ADD num

 OUT

 HLT

num DAT

It works as follows:

1 INP A number is input (and stored in the accumulator): 2

2 STA Num The contents of the accumulator are stored in the memory

location labelled num.

3 ADD Num The contents of num are added to the accumulator.

4 OUT The contents of the accumulator are output.

5 HLT The program ends.

6 num DAT A location in memory is labelled num.

You will notice that the line num DAT is last but is needed earlier. The memory

location num is allocated when the program is assembled into memory, before the

program is run.

Revision activity

You will recall from Chapter 1 that in the Von Neumann architecture data and

instructions are stored together in memory as binary. The CPU has no way of knowing

which are which, other than relying on the program counter to point to the next

instruction. For this reason all data is stored at the end of the LMC program, after the

HLT instruction, so it cannot accidentally be read as program code.

To see what would happen otherwise, consider the following simple program, which

takes in a number, stores it in memory and outputs it.

INP

STA num

OUT

HLT

num DAT

Now try the following amended version with the DAT instruction moved.

INP

STA num

num DAT

OUT

HLT

Try running the program three different times with the following inputs and see if you

can explain why the program’s behaviour changes each time.

901

101

000

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

37

My Revision Notes OCR A-level Computer Science Third Edition

The branch instructions are used for selection (BRP and BRZ) and iteration
(BRA, BRP and BRZ).

Selection

Now test yourself

34 Write an LMC program to triple a number.

35 Write an LMC program that takes in a number and subtracts 1 from it.

Answers on p. 211

Now test yourself

36 In a high-level language of your choice, write a program equivalent to the one in

the previous example.

37 Write a program in LMC that takes in a number and trebles it if it is less than 100,

otherwise it doubles it.

38 Explain the difference between the BRA, BRZ and BRP instructions.

Answers on p. 211–12

Example

Here is an example of selection.

This program outputs 0 if a number less than 10 is entered and 10 if any other number

is entered.

start INP

 SUB ten

 BRP tenOrMore

 LDA zero

 OUT

 BRA end

tenOrMore LDA ten

 OUT

end HLT

ten DAT 10

zero DAT 0

Example

This program demonstrates condition-controlled iteration by asking for a number until

one less than 10 is entered:

start INP

 SUB ten

 BRP start

 HLT

ten DAT 10

Notice how the BRP instruction is used to loop back round to the start if the number is

greater than ten (the result is positive when 10 is subtracted from entered number).

Iteration
We can perform condition-controlled iteration and count-controlled iteration.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

38

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Modes of addressing memory
There are different ways of accessing memory in low-level languages; we call
this memory addressing. In LMC we have referred to memory locations by
using names (defined with the DAT instruction). This is known as symbolic
addressing. You need to know about four other kinds of addressing: direct,
indirect, indexed and immediate.
✚ Direct addressing: the address given is the location of the data to be used.

With direct addressing, LDA 43 means ‘load the contents of location 43
into the accumulator’. LMC uses direct addressing.

✚ Indirect addressing: the address given is the memory location that holds
the location of the data. If memory location 43 contains the value 119 then,
using indirect addressing, LDA 43 means ‘load the contents of location
43 (119) into the accumulator’.

✚ Indexed addressing: the value given is added to the value stored in the
index register to give the memory location. With index addressing, if
the index register contains the value 100 then LDA 43 means ‘load the
contents of location 143 into the accumulator’.

✚ Immediate addressing: the address given is not actually an address
but the required value. LDA 43 would mean ‘load the value 43 into the
accumulator’.

Memory addressing

In assembly language

there are different ways

of referring to locations.

We refer to these as

different modes of

memory addressing.

Index register The index

register holds a value that

is added to the operand

of an indexed addressed

instruction, to give the

memory address that is to

be accessed.

Example

Here are the contents of 12 memory locations:

Location Contents

0 43

1

2 3

3 8

4 6

5

6 9

7

8

9 12

10

11 54

12 32

Example

This program demonstrates count-controlled iteration by counting down from a

number input to zero.

start INP

takeOneOff OUT

 SUB one

 BRP takeOneOff

 HLT

one DAT 1

Now test yourself

39 Write an LMC program

that keeps asking for a

number until one greater

than 10 is entered.

40 Write an LMC program

that takes in a number

and outputs the number

1 that many times.

Answers on p. 212

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

39

My Revision Notes OCR A-level Computer Science Third Edition

Object-oriented languages
Object-oriented programming allows a program to solve problems by
programming objects that interact with each other. Classes are templates
made to create objects. Objects have their state represented by variables called
attributes and their functionality defined by subroutines called methods.

Class A template used to

define an object. It specifies

the methods and attributes

an object should have.

In the following example,

House is the class.

Object An instance of

a class. In the following

example, myHouse is

an object.

Attribute Variables

contained within and

associated to an object.

In the following example,

doorColour, floors

and garden are all

attributes.

Method A subroutine

associated with an object.

In the following example,

changeDoorColour

and changeFloors are

methods. Additionally, new

is a special type of method

called a ‘constructor’.

Constructors define how

an object is created. In the

example below, and in OCR

pseudocode, constructors

are always given the name

new.

Example

Using the memory contents above, LDA 6 loads the following values into the

accumulator for each type of addressing:

Addressing mode Value in accumulator after LDA 6

Direct 9

Indirect 12

Indexed (5 in the index register) 54

Immediate 6

Example

The code below contains the class House. It contains its attributes and methods

(including a constructor). The main program then creates an object called myHouse of

the type House, with a red door, 2 floors and a garden.

class House

private doorColour

private floors

private garden

 public procedure new(givenDoorColour, givenFloors,
givenGarden)

doorColour = givenDoorColour

floors = givenFloors

garden = givenGarden

endProcedure

public procedure changeFloors(givenFloors)

if givenFloors > 0 then

floors = givenFloors

endif

endProcedure

public procedure changeDoorColour(givenColour)

doorColour = givenColour

endProcedure

endclass

//Main Program

myHouse = new House("Red", 2, true)

Now test yourself

41 Describe the difference

between direct and

indirect addressing.

42 Explain which is

quicker to execute,

an instruction using

direct addressing or

an instruction using

immediate addressing.

Answers on p. 212

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

40

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

You will notice in the previous example that the attributes are private
(meaning they cannot be accessed from outside the class) and the methods
are public. By the attributes being private they cannot be altered from outside
the class in ways we do not want. For example, someone cannot set the
number of floors to –1. Instead we allow private attributes to be changed via
public methods such as changeFloors. We call this encapsulation.

Encapsulation Ensures

private attributes can only

be amended through public

methods. This prevents

objects being manipulated

in unintended ways.

Inheritance The ability

for a class to inherit the

methods and attributes of a

parent class. Its ‘child’ class

can have its own methods

and attributes and override

the methods of its parent

class.

Now test yourself

43 Describe what is meant by a class and an object.

Answer on p. 212

Revision activity

Implement the code in the previous example in an object-oriented language of

your choice.

A major feature of object-oriented programming is inheritance. This is where
a class inherits the methods and attributes of a parent class as well as having
its own.

We will often want to treat objects of different classes (e.g. houses and
bungalows) in the same way. Perhaps we have an array called buildings
composed of houses and bungalows. If we want to change the door colour of
everything inside the array to blue we can do this from the main program
invoking a method from the House class. Because Bungalow has inherited all
the House methods, the following is valid code and is an example of
polymorphism:

for i = 0 to 99

 buildings[i].changeDoorColour("Blue")

next i

Polymorphism

Meaning ‘many forms’,

polymorphism is the ability

for objects of different

classes to be treated in the

same way. For example,

the same method may

be applied to objects of

different classes.

Worked example

This example shows a class Bungalow which inherits from the class House and

then an instance of a bungalow called myBungalow being created with a blue door,

no garden and a porch. In the example, the class Bungalow inherits all the methods

and attributes of the class House. However, it also has its own attribute Porch

and method changePorch. (We will assume in our hypothetical example only

bungalows have porches!)

Note the line super.new(givenDoorColour, 1, givenGarden)in the

constructor. This calls the constructor from the House class. The remainder of the

bungalow’s constructor then carries out the parts specific to a bungalow.

class Bungalow inherits House

 private porch

 public procedure new(givenDoorColour, givenGarden,
givenPorch)

 super.new(givenDoorColour, 1, givenGarden)

 floors = 1

 porch = givenPorch

 endprocedure

 public procedure changePorch(newPorch)

 porch = newPorch

 endprocedure

endclass

myBungalow = new Bungalow("Blue", false, true)

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

41

My Revision Notes OCR A-level Computer Science Third Edition

If any of the classes that inherit from House have their own method called
changeDoorColour this will be used instead of the version in the House
class. This is called overriding.

Another example of polymorphism is method overloading. Overloading is
where a class has multiple methods of the same name but each with different
patterns of parameters. (The parameters can vary by quantity and data type.)
The correct version of the method is then selected according to the arguments
passed to it.

Overriding This is when

a subclass has a method

of the same name (and

pattern of parameters) as

its parent class. The child

class version is always

used over that of the parent

class: it is said to ‘override’

the parent’s method.

Method overloading This

is when a class contains

two or more methods of

the same name but that

differ in the pattern of the

arguments they take and/

or the type of data they

return. The compiler then

chooses the correct version

according to the values

being passed or being

expected.

Example

class Robot

 //greet version one takes a string

 public procedure greet(name)

 print("Greetings " + name)

 endprocedure

 //greet version two takes a string and an integer

 public procedure greet(name, times)

 for i = 1 to times

 print("Hello " + name)

 next i

 endprocedure

endclass

If we have an object of type Robot called robo, then the line robo.
greet("Betsy") will select the first method as the argument being passed is just

one string, matching version one. This means it will print Greetings Betsy

On the other hand, the line robo.greet("Hamish",3) will select the second

method as the arguments match version two (i.e. a string and an integer). This means

it will print:

Hello Hamish

Hello Hamish

Hello Hamish

Note that it would not be valid code to have two methods of the same name, in the

same class, expecting the same pattern of parameters.

Now test yourself

44 Create a class called Mansion that inherits from House. It should have the

additional attribute Fountain that denotes whether or not it has a fountain. The

changeFloors method needs to be overridden so no mansion can be given

fewer than two floors.

Answer on p. 212

Exam tip

Object-oriented programming appears both in paper one and paper two so it is worth

investing some time to ensure you are confident writing code in this style.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n

t

42

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Summary

Systems software

✚ Operating systems manage system hardware, manage

programs being installed or run, provide an interface

for the user and manage security.

✚ One of the jobs of an operating system is memory

management. Memory can be split logically into

segments or into equal-sized pages. When physical

memory is full, pages are stored in virtual memory on a

secondary storage device.

✚ Checks are made for interrupts at the end of each

fetch–decode–execute cycle. Interrupts are used to

get the processor to attend to something other than

its current task. An interrupt can only take over from a

lower priority process.

✚ Scheduling is used to ensure all jobs get processor

time. Scheduling algorithms include: round robin, first

come first served, shortest job first, shortest remaining

time and multilevel feedback queues.

✚ There are number of different types of operating

systems: multitasking, multi-user, distributed,

embedded and real time.

✚ The BIOS is used to help boot the system.

✚ A device driver is a program that allows the operating

system to control hardware devices.

✚ Virtual machines are programs that perform the

function of a physical computer. Two of the main uses

are to run an operating system inside another and to

run intermediate code.

Applications generation

✚ Applications software allows users to perform different

tasks; the most suitable application depends on the

task, the user and the computer system being used.

✚ Utilities are programs designed to keep a computer

system running efficiently. Examples include antivirus

and backup software.

✚ Closed source software does not allow users to view

or modify source code. Most commercial software is

closed source.

✚ Open source software allows users to view and modify

their source code.

✚ Compilers, interpreters and assemblers are all types of

translator programs.

✚ An assembler converts low-level assembly code into

machine code.

✚ A compiler converts code in a high-level language into

an executable machine code file.

✚ An interpreter converts and runs high-level code line by

line.

✚ Compilers work through the following stages: lexical

analysis, syntax analysis, code generation and code

optimisation.

✚ Libraries are pre-written bodies of code that can be

used by programmers.

✚ Linkers combine different pieces of compiled code,

including from libraries, into a single executable

compiled code.

✚ Loaders load a program into memory.

Software development

✚ The waterfall lifecycle involves one stage being

completed after another. A stage is only started when

the previous one is complete.

✚ In rapid application development a prototype is

produced. The user evaluates it and the feedback is

used to improve it. This process is continued until a

final product is produced.

✚ The spiral model takes an iterative approach centred

on risk. The biggest risks are identified and resolved in

each iteration.

✚ Agile software development is a set of methodologies

that work well with potentially changing requirements.

One of these agile methodologies is called extreme

programming.

✚ Extreme programming uses techniques such as pair

programming and refactoring to produce high-quality

code. A user works with the development team

throughout the process.

✚ Algorithms can be written as flowcharts, as bulleted

lists or in pseudocode.

✚ Pseudocode does not have a particular syntax but

it must be written so that someone familiar with

programming can understand its meaning.

Types of programming language

✚ Programming paradigms are the approaches

programming languages take to how programs are

structured in order to solve problems.

✚ There are two main paradigms: high-level and low-level

languages.

✚ High-level languages use a mixture of English

and mathematical expressions and are machine

independent.

✚ Low-level languages use the instructions available

to a specific processor and therefore only work on

machines with that processor architecture.

✚ An example of a low-level language is assembly

language.

✚ High-level languages can be split into further

paradigms: procedural, object-oriented, functional and

declarative.

✚ Procedural languages include Python and C.

✚ Object-oriented languages include Java and C++.

✚ Functional languages include Haskell and ML.

✚ Declarative languages include SQL and Prolog.

✚ There are four different ways to access memory: direct,

indirect, indexed and immediate.

✚ Object-oriented programming is a paradigm that breaks

a problem down into a series of objects that interact.

✚ Classes are templates that define the attributes and

methods (subroutines) of these objects.

✚ Inheritance allows a class to inherit all methods and

attributes of a parent class (as well as having its own).

✚ Encapsulation is the practice of keeping attributes in

a class private so they can only be accessed through

public methods.

✚ Polymorphism is the ability to use the same code to

process different objects according to their type.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

2
 S

o
ft

w
a
re

 a
n

d
 s

o
ft

w
a
re

 d
e
ve

lo
p

m
e
n

t

43

My Revision Notes OCR A-level Computer Science Third Edition

Exam practice

1 Explain how an operating system deals with physical memory being full. [2]

2 Explain what happens when an interrupt is generated. [4]

3 Explain why a self-driving car may use an operating system that is both embedded

and real time. [4]

4 Describe a disadvantage of the shortest-job-first scheduling algorithm. [2]

5 Describe a disadvantage of running a program on an operating system on a

virtual machine rather than directly on an operating system running on a

physical machine. [2]

6 State what is meant by a utility. [1]

7 Explain why a company might choose to use closed-source software. [2]

8 Explain the similarities and differences between a compiler and an assembler. [2]

9 Explain why programmers might use an interpreter. [2]

10 Describe what happens in the lexical analysis stage of compilation. [2]

11 State what a loader does. [1]

12 Explain how extreme programming is likely to lead to high-quality code. [3]

13 Explain why the spiral model would be a better choice than the waterfall

lifecycle model for a high-risk project. [4]

14 A company wishes to produce a set of office applications that they aim to sell

for a number of different computer systems. Discuss why using a high-level

language for this project would be far more suitable than a low-level language. [9]

15 Write an LMC program that outputs the numbers 1 to 100. [3]

16 a) Describe an advantage of direct addressing over indirect addressing. [1]

b) Describe an advantage of indirect addressing over direct addressing. [1]

17 A library stock-control system is being developed in an object-oriented language.

 Describe how inheritance might be used in this program. [2]

18 Explain why encapsulation is considered best practice when using object-oriented

programming. [1]

19 Write a class called Dog.

a) It should have the attribute Colour. [1]

b) It should have a constructor and the method changeColour. [2]

c) Use encapsulation to ensure the only colours the dog can be changed to are

black, brown, white or grey. [3]

20 The code below shows a class called Student. The class contains the student’s

name and an array with the names of the subjects the student studies:

class Student

 public name

 private Array subjects

 public procedure new(gName, gSubjects)

 name = gName

 subjects = gSubjects

 endprocedure

 public procedure foo()

 for i = 0 to subjects.length-1

 print(subjects[i])

 next i

 endprocedure

endclass

a) Explain how you would encapsulate the attribute name [2]

b) Suggest an appropriate name for the method foo [1]

c) Write the method takesComputerScience() which returns true if the

student studies “Computer Science” and false otherwise. [3]

Answers available online

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

44

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

3 Exchanging data

Compression, encryption
and hashing
Lossy versus lossless compression
Compression is the process of making files smaller by representing them
using less data. This reduces the space they take up on a storage device and
means they are quicker to transmit over a connection.

When compressing data, there are two approaches: lossy and lossless.

Lossy compression
✚ In lossy compression information is removed.
✚ It is usually used on image, video and sound files.
✚ Changes may include removing frequencies of sound that the human ear

is unlikely to perceive or changing very similar colours (ones the human
eye would not notice as different) to the same colour.

✚ The version of the file that has been compressed may look/sound identical
to the original but at a bit level (i.e. the 1s and 0s that make it) it will be
different.

✚ The higher the compression ratio (i.e. the smaller the file has been made),
the more it will be noticeably different from the original.

✚ Examples of files that use lossy compression are JPEG, MP3 and MP4.

Lossless compression
✚ In lossless compression no information is removed.
✚ This means the original file that is reconstructed from the compressed

version will be bit for bit the same as it was before compression.
✚ Lossless compression is used when no information can be lost, for example

in documents and program files.
✚ Lossless compression tends to result in less impressive file size reductions

than lossy compression.
✚ Examples of files that use lossless compression are ZIP and PNG.

Run-length encoding and dictionary coding
for lossless compression
Two methods of lossless compression are run-length encoding (RLE) and
dictionary coding.

Run-length encoding
This makes use of redundant data, so that if a data item occurs multiple times
consecutively, the item is stored once in an index along with the number of
repetitions. For example, the series of letters:

AAAABBBBBCCCAAABBBBBBBCCBBBBAAA

could be represented using run-length encoding as:

4A5B3C3A7B2C4B3A

This needn’t just be limited to textual representations. For example, it could
be the number of adjacent pixels of the same colour in an image.

Now test yourself

1 Explain what is meant

by file compression.

2 Name a lossy and a

lossless file type for

images.

3 Give one advantage of

each of the file types

you gave.

Answers on p. 212

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

45

My Revision Notes OCR A-level Computer Science Third Edition

Dictionary coding
RLE performs well on data with large numbers of consecutive identical
chunks, but not on other data. On English text it would be ineffective.

For instance, if we simply take the word HELLO, using RLE this becomes
1H1E2L10 Our ‘compressed’ output is larger than our original input.

A different approach is dictionary coding. There are many variations of
this compression algorithm, but the central idea is the same. An index
is built where each data item is recorded along with an index reference.
The compressed file then consists of the dictionary plus the sequence of
occurrences.

Reference Data

1 if

2 you

3 are

4 not

5 fired

6 with

7 enthusiasm

8 will

9 be

A message can be constructed by supplying the dictionary and the words
used, that is:

1234567289567

While this example has been shown using English text, dictionary coding can
be performed at a bit level (i.e. on binary) and therefore can be applied to any
data. The algorithm simply needs to determine the most frequently occurring
bit patterns and ensure they are added to the dictionary.

Now test yourself

4 Use RLE to compress the following sequence:

 AAABBBBBAAAAAAAAAAABBABBBBBB

5 Explain whether the quote below is best compressed with run-length encoding or

dictionary coding:

Now this is not the end. It is not even the beginning of the end. But it is, perhaps,

the end of the beginning.

Winston Churchill

Answers on p. 212

Symmetric and asymmetric encryption
Encryption is the process of making data unreadable to third parties.

Historically, simple methods such as the Caesar cipher were used, where
letters are displaced by a known amount, for example a displacement of 4
would produce the following look-up table:

Plain text letter: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher text letter: EFGHIJKLMNOPQRSTUVWXYZABCD

The initial message, or plaintext, HELLO becomes encrypted message, or
cipher text, LIPPS

The key is the number 4.

Encryption The process of

making data unreadable to

third parties.

Key A value that needs to

be provided to encrypt/

decrypt data.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

46

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

With only 26 possible keys the Caesar cipher was considered insecure many
centuries ago and a modern computer could crack it in literally less time
than it takes to blink an eye. Modern encryption algorithms are much more
complicated but the principle remains the same:
✚ Apply the encryption algorithm to the original data using the key and

encrypted data is produced.
✚ The recipient applies the decryption algorithm using the key to get the

original unencrypted data.
✚ The encryption algorithm can (and should be presumed to be) known by

anyone but the key must be kept secret between the sender and receiver.

Figure 3.1 shows the encryption process and Figure 3.2 shows the decryption
process.

Original data

Key

Encryption algorithm

Hello, this is my super
secret message

Q14VdH4m1xAqwpp7

Encrypted data

WxHuM+xz40JYuEKsy
owCUGEUx9u1XVDuy
1tNoflo6VvRRYaaGyxC
Ua4FKbpVc952

Figure 3.1 Encryption

Key

Decryption algorithm

Q14VdH4m1xAqwpp7

Original data

Hello, this is my super
secret message

Encrypted data

WxHuM+xz40JYuEKsy
owCUGEUx9u1XVDuy
1tNoflo6VvRRYaaGyx
CUa4FKbpVc952

Figure 3.2 Decryption

You will notice we have used the same key to encrypt and decrypt the data.
When algorithms use the same key for encryption as decryption it is called
symmetric encryption. While this is fine if you are encrypting data you are
storing away from prying eyes, it causes a problem if you wish to send this
data to another person.

If you are sending encrypted data to another person, the problem arises
as to how to send them the key. We cannot simply encrypt the key as that
then requires another key, and we face the same problem. If there were a
guaranteed secure way of sending the key we might as well just send the
message that way.

Symmetric encryption

Encryption where the same

key is used to encrypt and

decrypt data.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

47

My Revision Notes OCR A-level Computer Science Third Edition

In these cases we use asymmetric encryption. In asymmetric encryption:
✚ A public key is used to encrypt data.
✚ This public key can be freely distributed.
✚ The encrypted data can only be decrypted with a private key (which has to

be kept secret).

This works because the two keys are related using some clever mathematics.
In practice, asymmetric encryption takes a lot of computing power. It is
common for asymmetric encryption to be used when two parties agree on a
shared secret key that can then be used for symmetric encryption (which is
just as secure but requires less computation power).

Exam tip

When reading about encryption you may see the terms plaintext and ciphertext used.

Before computers, encryption was almost always applied to written text, so plaintext

refers to the original, unencrypted text and ciphertext refers to the encrypted text.

Computers use algorithms that perform encryption at a bit level (i.e. to the 1s and

0s), meaning it can be applied to any data. It is therefore more accurate, in terms

of computer encryption, to refer to encrypted and unencrypted data rather than

plaintext and ciphertext.

Now test yourself

6 Explain why symmetric encryption would not be suitable for transferring credit

card details over the internet.

7 Give one possible use of symmetric encryption.

Answers on p. 212

Hashing and its uses
A hash function is one that takes in any amount of data and gives a fixed-
sized output, regardless of the size of the input.

Properties of hash functions
As well as having a fixed-sized output, a hashing algorithm should have the
following properties:
✚ Irreversibility: they should be one-way functions. That is, it should be

impossible to calculate what data was put into the hash function given its
output. This property of irreversibility is particularly useful when it comes
to passwords, as we will see later. To ensure hash functions are truly
irreversible, similar inputs should not give similar outputs.

✚ Determinism: a hash function should be deterministic, meaning the same
input will always give the same output.

✚ Collision resistance: a collision is when two or more inputs give the same
outputs. It is impossible to have no collisions as there are endless possible
inputs and a limited number of outputs. A good hashing algorithm should,
however, reduce the chance of collisions by ensuring all outputs are
equally likely.

Example

One hashing algorithm is called SHA-256. SHA-256 takes in data and returns a 256-bit

value that is usually represented as 64 hexadecimal digits. There are a few things to

note from the example.

✚ The first is that despite there only being one letter difference between hello and

hullo, the outputs are completely different.

✚ The other is that no matter how much bigger the input gets, the output still

remains the same length.

Asymmetric encryption

Encryption where one key

(the public key) is used to

encrypt data and another

(the private key) is used to

decrypt it.

Hash function A function

that takes in data of any

size and returns a fixed-

length output.

Irreversibility The

property such that an

output of a process cannot

be used to derive the

original input.

Determinism The property

that a process with the

same inputs will always give

the same output.

Collision resistance

The property that

different inputs giving the

same output occurs as

infrequently as possible.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

48

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Input Output

hello 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

hullo 7835066a1457504217688c8f5d06909c6591e0ca78c254ccf17450d0d999cab0

hello, this is an example

of data going into a hash

function.

bb32d5eff798673675276be4706dc60fac01c077ebacf20efd0540e5ee7fdb1b

While the examples we have looked at have hashed text, the hashing
algorithm works at a bit level (on the 1s and 0s that make up the data). This
means they can be used on any data on a computer not just text.

Uses of hashes

Passwords
Passwords used to authenticate users when accessing systems need to be
stored in a database. If that database were to get hacked, the passwords would
be exposed.

For this reason, good systems will store a hash of the password rather than
the password itself. When the user comes to log in:
1 The password they enter is hashed and compared against the stored hash.
2 If they are the same, the password is correct and they are granted access.

If the system is hacked, only the hashes are available and, as they cannot be
reversed, the hacker is unable to get access to the passwords themselves.

If you ever forget your password and a website is able to tell you what it is,
rather than offering a reset, it is likely it is not using hashing and probably not
very secure!

Proof of state
Sometimes we want to prove that data hasn’t changed over a period of
time. One example of this is when law enforcement seize computers for an
investigation. They need to prove that the contents of the computers haven’t
been changed from the time they were taken into custody. To do this they:
1 Take the contents of the entire secondary storage system and hash them.
2 This hash is then recorded.
3 If anyone questions whether the evidence has been tampered with, the

system can be hashed again.
4 If so much as one bit of data has changed the hash will be different.

Another example is when software is made available to download on the
internet. A hash of the file is often shown next to the download. The user can
then hash their file when it has downloaded to confirm the download has
been successful and the file has not been altered in any way.

Hash tables
Hash tables are a data structure designed for fast access of data. Each piece of
data is stored using a key. For example, if users are being stored, the key might
be their username. The key is hashed in a way that it is transformed into a
memory location. When the programmer needs to retrieve data, they hash
the key again to get the location in which the data is stored. This allows data
to be accessed far more quickly than other data structures, where it may have
to be searched for.

Making links

Hash tables are covered in more detail in Chapter 4.

It is the use of hashing that allows well-organised hash tables to have a constant

lookup complexity O(1) (using Big-O notation). You can find out more about this in

Chapter 8.

Making links

For more details about hash

functions see Chapter 4.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

49

My Revision Notes OCR A-level Computer Science Third Edition

Revision activity

There are lots of online hash calculators.

1 Find out what the SHA-256 algorithm output is for Computer Science. Try

the values hello and hullo and verify you get the same output as shown

previously.

2 Compare the output of the input Laptop for the following hashing algorithms:

SHA-1, SHA-256, MD5.

Now test yourself

8 State what features make a good hashing algorithm.

9 Explain how hashing can be used to prove a document hasn’t been amended over

a period of time.

Answers on p. 212

Databases
Introduction
A database is a structured, persistent store of data.
✚ Structured means it is organised in a logical way so the data it holds can be

accessed and manipulated.
✚ Persistent means that the data is held for as long as it is required.

A database is usually organised in terms of tables, records and fields.
✚ A field stores a single piece of data. A field has a specified data type (e.g.

Text, Number, Boolean). Fields are represented by columns on a table, and
for that reason are sometimes referred to as columns.

✚ A collection of fields composing an entry in a database are called a record.
Records are represented by rows in a table and as such are referred to as
rows (or, sometimes, tuples).

✚ A complete set of records are called a table.

Record

customer_id

26335

26336

26337

Mr

Mrs

Dr

Asim

Helen

James

Khan

Rosen

Montague

0131 496 0556

0121 496 0600

0113 496 0743

title forename surname tel_no
Table

Field

Figure 3.3 The elements of a database

Most computer systems make use of databases. This is because databases
make it convenient and fast to:
✚ access data
✚ update data
✚ search for data
✚ present data in a usable way.

Making links

Later in this chapter you will look at web technologies including server and client-side

processing. Databases often form an integral part of this model. When you visit an

online shop, the server-side code reads a database to generate the page based on

your previous purchases. The generated code is then sent across the internet to your

browser where the page is displayed.

Database A structured,

persistent store of data,

organised so that it can

easily be accessed,

managed and updated.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

50

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Flat-file and relational databases

Flat-file databases
Simple databases can be made as lists in a single table, like in a spreadsheet.
These are called flat-file databases. They are of limited use. They are fine
for small amounts of data but can quickly become cumbersome if more
complex data needs to be stored. One issue is that they are also prone to
data redundancy.

Data redundancy means the same data is stored in different locations.
This is a bad thing because not only does it waste storage space, but when
updates occur, if all the instances of a data item aren’t changed, there will be
inconsistencies.

The simple example in Figure 3.3 is a flat-file database.

Relational databases
Because of the limitations of flat-file databases, different database models
have been designed. One of the most widely used of these alternative models
are relational databases.

Relational databases:
✚ are based on two or more tables
✚ one field in each table exists in another table
✚ tables are linked using primary keys and foreign keys
✚ each table is based on an entity
✚ an entity is anything about which we store data, for example customer,

invoice, stock item.
✚ an entity has attributes that are characteristics of the entity, for example

customer_name, student_id, subject_level – these become fields in a table
✚ there is no rule about the order of rows in a table. When order is required,

indexes are added
✚ there is no rule about the order of columns.

Now test yourself

10 What are the three key structural elements of a database?

11 Explain the difference between a flat-file and a relational database.

12 State one advantage that relational databases have over flat-file databases.

Answers on p. 213

Primary and foreign keys
Each record in a table needs to be uniquely identifiable. In order to ensure this
is the case we use a primary key.
✚ A primary key is a field in a table that is unique for every record.
✚ In other words, if a field is a primary key, no two records should have the

same value.

Sometimes there may be a natural candidate for the primary key. For
example, a database of cars may use the registration plate as no two cars can
have the same registration.

Often this is not the case however, and a primary key field is created by
assigning a number that increases by one for each record, to act as an
identifier.

Flat-file database A

database in which all data is

stored in a single table.

Data redundancy The

unnecessary duplication of

data in a database. When

updates occur, all the

instances of a data item

must be changed. This

leads to errors and also

wastes storage space.

Relational database A

relational database consists

of multiple tables linked

together. Each table usually

represents a ‘thing’ or an

entity and the links are their

relationships.

Primary key A field that

has a unique value for every

record in a table.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

51

My Revision Notes OCR A-level Computer Science Third Edition

Worked example

The extract of the Booking table below is from a database for a hotel.

room_number date room_type

101 21/03/2021 double

310 22/03/2021 single

250 22/03/2021 double

None of the fields in this table could be a primary key:

✚ a room will be booked many times, meaning that room numbers will be duplicated

in the database

✚ there will be multiple bookings on each date

✚ many rooms are single or double.

In this case the easiest solution is to add an identifier field booking_id.

booking_id room_number date room_type

6348242 101 21/03/2021 double

6348243 310 22/03/2021 single

6348244 250 22/03/2021 double

In order to create a link between two tables, we use the primary key of one
table as a field in the second table. Where this primary key appears in the
second table, it is known as a foreign key.

Worked example

The same hotel database has a Customer table as shown below. You will notice that

it has customer_id as its primary key.

customer_id title forename surname tel_no

26335 Mr Asim Khan 0131 496 0556

26336 Mrs Helen Rosen 0121 496 0600

26337 Dr James Montague 0113 496 0743

If we want to link a customer to a booking this can be done by adding the

customer_id primary key field from the Customer table as a foreign key field in

the Booking table.

booking_id room_number date room_type customer_id

6348242 101 21/03/2021 double 26335

6348243 310 22/03/2021 single 45335

6348244 250 22/03/2021 double 36587

We can see from the tables above that Mr Asim Khan has booked room 101 on

21/3/2021.

Note: there are various conventions for identifying primary and foreign keys. Usually

the primary key is underlined and the foreign key overlined, but you will sometimes

see variations on this. For example, primary keys in bold and foreign keys in italics.

Now test yourself

13 Explain why surname would not make a good primary key in a database.

14 Explain how tables are linked in a relational database.

Answers on p. 213

Foreign key The primary

key of one table being used

as a field in another table,

creating a link.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

52

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Secondary keys and indexing
Sometimes we may wish to search by a field other than the primary key. In
order to speed this up, a database can create an index. Just like the index of a
book, it stores the locations where each value occurs. This saves every record
from having to be checked.

customer_id

26335

26336

26337

Mr

Mrs

Dr

Asim

Helen

James

Khan

Rosen

Montague

0131 496 0556

0121 496 0600

0113 496 0743

title forename surname tel_no

Surname index

378

379

380

Kennedy

Kent

Kepple

381 Khan

382 Kilpatrick

383 Kimble

A field that is likely to be searched and therefore indexed is known as a
secondary key.

Indexes take up extra space but speed up searching.

Taking the Customer table, it is likely that customers will be searched by
surname. Therefore surname would make a suitable secondary key.

Now test yourself

15 Explain why date_of_booking would make a good secondary key in a

database hotel database.

16 State one advantage and one disadvantage of indexing a field.

Answers on p. 213

Entity-relationship modelling and normalisation
When thinking about relational databases, it is useful to be able to visually
represent our ideas. We can do this by considering the entities (the objects
represented by tables) and the relationships (links between these objects).
These are shown in diagrammatic form using entity relationship diagrams.

There are a variety of different variations of entity-relationship diagrams. The
type used in the exam uses ‘crow’s foot notation’.

It is called this because some of the links between the tables are reminiscent
of crows’ feet, see the figure opposite.
✚ Entities are represented in boxes.
✚ Relationships are represented by lines with either a single line

(representing one) or a prong (representing many) at either end.

This gives us three types of relationships.

One-to-one relationships
These are where each instance of an entity connects to a single instance of
another entity.

In the example below, each employee has one set of pay details and each set
of pay details belongs to one employee.

One-to-one relationships are useful when you want to have different security
settings for different tables.

In our example, all departments in a business can access the Employee table
whereas only the Accounts department will be able to access the PayDetails
table.

Employee PayDetails

Secondary key A field

by which records are likely

to be searched and is

therefore indexed.

Entity-relationship

diagram A diagram

showing the tables, which

hold the entities and their

links, or relationships within

a relational database.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

53

My Revision Notes OCR A-level Computer Science Third Edition

One-to-many relationships
These are when each single instance of one entity is linked to many instances
of another entity.

In the example below, each customer can place many orders but each order
only belongs to one customer.

One-to-many relationships are a good way of avoiding data redundancy. By
linking these two tables (rather than having one big orders table), we avoid the
need to duplicate customers’ details with every order they make.

(One-to-many relationships can be many-to-one depending on the order of
the tables.)

Customer Order

Many-to-many relationships
These are when multiple instances of one entity may be linked to
multiple instances of another entity.

In the example below, each order has many items and each item can be
ordered many times.

ItemOrder

This is very hard to implement in practice and therefore many-to-many
relationships are avoided.

We can get rid of many-to-many relationships by placing an intermediary
entity between the original entities. This intermediary table just contains
its own primary key and the two primary keys of the other tables as foreign
keys.

In our example, the intermediary table would contain order_id and item_id
as foreign keys.

Order ItemInOrder Item

To be able to ensure there is no redundant data when representing our data
in such a manner, we use a process called normalisation. This process in
covered on page XXX.

Now test yourself

17 State the likely relationship between the database tables Manufacturer and

CarModel

18 The tables Book and Author have a many-to-many relationship. Use an entity-

relationship diagram to explain how this could be resolved.

Answers on p. 213

Methods of capturing, selecting, managing
and exchanging data

Capturing data
In order to get written data into a database, there are different approaches
depending on the data being captured. Sometimes there is no alternative but
to type it in directly.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

54

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Increasingly it is possible to use computer-based forms, for example on a
website, where data can be entered directly.

Figure 3.4 A website form

If data is being collected from printed forms, then there are two possible
methods to capture it.
✚ Where the data consists of choices from a range of options, optical mark

recognition (OMR) can be used. This is where a computer identifies where
areas of a form have been shaded in.

Q1 A B

Q2

Q3

Q4

C D

A B C D

A B C D

A B C D

Figure 3.5 An example of the use of optical mark recognition is when capturing data

from multiple choice exams

✚ Optical character recognition (OCR) can be used to convert images of typed
documents into readable text. This can be used if data on printed
documents needs entering into databases, and when speed cameras scan
car number plates.

Numerical data can sometimes be automatically collected using sensors, for
example measuring temperatures in a location at different points in time.
Sensors normally measure analogue data, which will need converting into
digital data using analogue-to-digital converters (ADCs).

Selecting and managing data
Between the database itself and the program or person using it, there is a
layer of software known as the database management system. The DBMS
ensures the database is manipulated in a consistent way while ensuring
integrity and security. Examples of DBMSs include:
✚ MySQL
✚ Microsoft Access
✚ PostgreSQL.

DBMSs tend to offer one of two main methods of selecting and managing data
within a database:
✚ Structured Query Language (SQL)
✚ Query by Example (QBE).

SQL is a language used for selecting and updating data within a database. It is
covered in more detail on page XXX.

Optical mark recognition

(OMR) A data input

method that recognises the

positions of marks made

on paper.

Optical character

recognition (OCR) A data

input method that converts

images of text to machine

editable text.

Structured Query

Language (SQL) A

language used to find and

manipulate data within a

database.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

55

My Revision Notes OCR A-level Computer Science Third Edition

With QBE, the user has a graphical interface into which required fields can be
dropped, as well as allowing the user to set up conditions to filter the results.

Example

A QBE from Microsoft Access is shown below, used to select the telephone numbers

of all customers with the surname Khan.

Figure 3.6 Query by Example

Alternatively, here is the SQL statement to do the same thing:

SELECT tel_no FROM Customer WHERE surname = 'Khan'

Exchanging data
In order to exchange data, it is preferable to use standard data format. There
are a number of examples of these:
✚ SQL can be used to transfer data between systems. A database

management system (DBMS) can generate a sequence of SQL instructions
that, when run on a receiving DBMS, will create the relevant tables,
relationships and insert the data.

✚ Comma-separated value (CSV) files are a simple way of exchanging data.
In a CSV file each field can be separated by a comma.

✚ eXtensible Markup Language (XML) is a markup language that uses tags
to designate what different things within a document are. In the case of a
database, each record could be enclosed within tags, and inside those each
field enclosed within further tags.

✚ JavaScript Object Notation (JSON) is a format that represents things as
objects (which can contain other objects). In the case of a database, each
record is an object that can contain an array of objects that represent
the fields. JSON is particularly useful when sending data to a JavaScript
program, for example on a web page, as JavaScript can read the data
directly.

Database management

system (DBMS) Software

used to control a database,

overseeing amendments to

its structure, and used to

access and amend the data

itself.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

56

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Making links

Later in this chapter when we look at web pages you will come across another markup

language called HTML. On first glance HTML and XML look very similar but while HTML

is used to designate the different parts of a web page, XML is used for designating

different parts of data within a larger structure.

You will also explore JavaScript more in the web technologies section of this chapter.

The paradigm that is object-oriented programming is covered in Chapter 2. JSON is an

example of how JavaScript and object-oriented programming can be used together.

Figure 3.7 Extract of SQL file being used to transfer data

Figure 3.9 Extract of XML file being used to transfer data Figure 3.10 Extract of JSON file being used to transfer data

Now test yourself

19 Describe how a school might use OMR to capture attendance data for its registers.

20 Describe how CSV files store data.

Answers on p. 213

Figure 3.8 Extract of CSV file being used to transfer data

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

57

My Revision Notes OCR A-level Computer Science Third Edition

Normalisation to third normal form
When building a relational database, it is important we avoid redundant data,
that is, data that is unnecessarily repeated. Redundant data means space can
be needlessly wasted and can cause inconsistencies if one version is updated
and not the other.

In order to avoid redundant data we use a process called normalisation. For
the course you need to know the first three stages of normalisation. There are
others but these apply to very specific circumstances and are less frequently
used in the real world.
✚ We refer to data after the first stage as being in first normal form.
✚ We refer to data after the second stage as being in second normal form.
✚ We refer to data after the third stage as being in third normal form.
✚ Before any normalisation, data is referred to as being in unnormalised

form (UNF).

First normal form
A database is in first normal form (1NF) if:
✚ Data in every field is atomic (it cannot be split down into smaller pieces of

data).
✚ No fields repeat.
✚ Every record has a primary key.

The table below contains data about students in a college. It includes the
subjects they take, their teacher for each subject and that teacher’s staff code
(used for emails etc.).

Name Address Subject1 Teacher1 T1Code Subject2 Teacher2 T2_Code Subject3 Teacher3 T3_Code

Alison

Jones

12 Queen

Street, Milton

Keynes, MK17

8FF

Computer

Science

Mr Pitt JJP Biology Mr Simons KRS Economics Dr Shah FS

Sunil

Patel

6 High Street,

Milton Keynes,

MK44 1BY

Biology Mr Simons KRS German Miss

Lambert

NWL Chemistry Ms Brooks CBB

Fraser

Hanson

134

Somerfield

Lane, Milton

Keynes, MK3

7QR

Computer

Science

Mr Pitt JJP French Miss

Lambert

NWL

We know it’s unnormalised and not in 1NF as:
✚ There is no primary key.
✚ The subject field is repeated.
✚ The fields Name and Address are not atomic as they can be logically split

down further.

Name and Address not being atomic means searching can become more
complex. If we just want to search for students who live on a particular street,
we would need to build more complex queries than we would if the street was
stored in its own field.

Having a repeated subject field makes queries for subjects more complex. A
query to find all students who do maths requires three fields to be checked.
Not every student takes a third subject yet space is put aside for this. What
about if a student wishes to take a fourth or fifth subject?

To normalise to first normal form we shall:
✚ add a primary key StudentID to the three records
✚ remove the repeating fields, creating a new record for each subject
✚ ensure all the fields are atomic by breaking down the fields Name and

Address.

Normalisation The

process of changing the

structure of a relational

database to remove

the potential for data

redundancy.

First normal form (1NF)

Data after the first stage of

normalisation. It must have

a primary key, no repeating

fields and all of them atomic.

Atomic A field that cannot

be broken down into

multiple smaller fields.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

58

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

For simplicity, we will assume in this college no student ever has more than
one teacher per subject and so every student will only have each subject in
one of their records.

StudentID Forename Surname HouseNo Street Town Postcode Subject Teacher Teacher_Code

1201 Alison Jones 12 Queen Street Milton

Keynes

MK17 8FF Computer

Science

Mr Pitt JJP

1201 Alison Jones 12 Queen Street Milton

Keynes

MK17 8FF Biology Mr Simons KRS

1201 Alison Jones 12 Queen Street Milton

Keynes

MK17 8FF Economics Dr Shah FS

1542 Sunil Patel 6 High Street Milton

Keynes

MK44 1BY Biology Mr Simons KRS

1542 Sunil Patel 6 High Street Milton

Keynes

MK44 1BY German Miss

Lambert

NWL

1542 Sunil Patel 6 High Street Milton

Keynes

MK44 1BY Chemistry Ms Brooks CBB

1677 Fraser Hanson 134 Somerfield

Lane

Milton

Keynes

MK3 7QR Computer

Science

Mr Pitt JJP

1677 Fraser Hanson 134 Somerfield

Lane

Milton

Keynes

MK3 7QR French Miss

Lambert

NWL

The field StudentID can no longer be the primary key on its own as it may
appear multiple times. Therefore a composite key is formed using StudentID
and Subject. A composite key is one that is made from a combination of two
or more fields.

By moving the data into the table as shown we can now consider the data to
be in at least 1NF: every record has a primary key, all fields are atomic and no
fields repeat.

Second normal form
In order to be in second normal form (2NF):
✚ The database must meet all the requirements of 1NF.
✚ Every field must only depend on all of the primary key.

The second point only applies to tables with composite keys. Every field that
is not part of the composite key should depend on all parts of the composite
key. In other words, it should not be possible to determine what a field is by
looking at only one of the fields in the composite key.

 This is not the case with our table in 1NF as it is possible to determine the
student’s name and address purely from the StudentID, regardless of the
subject.

We can solve this by creating a SUBJECT table and a TAKES table, moving
fields from the original table into these two new tables, and forming some
new primary and foreign keys.

STUDENT

StudentID Forename Surname HouseNo Street Town Postcode

1201 Alison Jones 12 Queen Street Milton Keynes MK17 8FF

1542 Sunil Patel 6 High Street Milton Keynes MK44 1BY

1677 Fraser Hanson 134 Somerfield Lane Milton Keynes MK3 7QR

Composite key A primary

key made of two or more

fields. While on their own

they may not be unique,

each record’s combination

of them will be.

Second normal form

(2NF) Data after the second

stage of normalisation. In

2NF, all data is in 1NF and

has no field depending on

only part of the primary key.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

59

My Revision Notes OCR A-level Computer Science Third Edition

TAKES

TakesID StudentID SubjectID

1 1201 1

2 1201 2

3 1201 3

4 1542 2

5 1542 4

6 1542 5

7 1677 1

8 1677 6

SUBJECT

SubjectID Subject Teacher Teacher_Code

1 Computer Science Mr Pitt JJP

2 Biology Mr Simons KRS

3 Economics Dr Shah FS

4 German Miss Lambert NWL

5 Chemistry Ms Brooks CBB

6 French Ms Brooks CBB

Notice the notation for primary and foreign keys, and how we have avoided
having a many-to-many relationship between Student and Subject.

Student Takes Subject

Now our database:
✚ still meets all the rules of 1NF
✚ plus every field in each table depends only on each primary key.

Therefore we know the database is now in 2NF.

Third normal form
In order to be in third normal form (3NF):
✚ The database must meet all the requirements of 2NF.
✚ No field must depend on any field other than the primary key.

The second point means it should not be possible to tell what the value of a
field should be by looking at any field other than the primary key.

This is not the case in our SUBJECT table. It is possible to determine the name
of the teacher from the teacher code, which is not the primary key. This can
be resolved by creating a TEACHER table

SUBJECT

SubjectID Subject Teacher_code

1 Computer Science JJP

2 Biology KRS

3 Economics FS

4 German NWL

5 Chemistry CBB

6 French NWL

Third normal form (3NF)

Data in a relational database

after the third stage of

normalisation. In addition

to being in 2NF, every field

depends solely on the

primary key and no other

field.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

60

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

TEACHER

Teacher_Code Teacher

JJP Mr Pitt

KRS Mr Simons

FS Dr Shah

NWL Miss Lambert

CBB Ms Brooks

Now every field in each table depends only on each primary key and so our
database is in 3NF.

Now test yourself

21 State the requirements for data to be considered in 2NF.

22 Here is a preliminary design for a database to store stock details and handle orders

in a shop.

 stock_number, stock_name, number_in_stock, supplier_ref,
supplier_name, supplier_email, order_number,
order_date, order_quantity

 Normalise this database into 3NF.

Answers on p. 213

Exam tip

A mnemonic used to help remember normalisation is:

 The key, the whole key and nothing but the key.

The key: 1NF requires a primary key (plus atomic data and no repeating fields).

The whole key: 2NF requires all fields to depend on all of the primary key.

And nothing but the key: 3NF requires that no field should depend on any other field

aside from the primary key.

SQL
SQL is a language used for communicating with databases when selecting or
changing data. The SQL commands you need to know for the exam are:
✚ SELECT … FROM
✚ WHERE
✚ LIKE
✚ AND and OR

✚ DELETE
✚ INSERT
✚ DROP
✚ JOIN

SELECT … FROM
SELECT and FROM are used to retrieve specified fields from a specified table:

 SELECT field(s) FROM table;

For example:

 SELECT forename FROM Customer;

selects all the forenames of the customers in the Customer table.

SELECT forename, surname FROM Customer;

selects the forenames and surnames from the Customer table.

If all the fields are required, the * wildcard is used. For example:

 SELECT * FROM Customer;

selects all the fields from the Customer table.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

61

My Revision Notes OCR A-level Computer Science Third Edition

WHERE
WHERE is used to filter the results that are returned.

 SELECT forename FROM Customer WHERE surname = 'Khan';

Note you can use the Boolean operators AND and OR as well as the comparison
operators >, <, <= and <=.

Note that ‘not equal to’ in SQL is <>.

 SELECT customerID from Customer WHERE points > 100 AND
level = "Platinum";

LIKE
LIKE is used with WHERE to select fields that match a given pattern. It is used
with the % wildcard which represents 0 or more characters. For example:

 SELECT Name, Abbreviation FROM States WHERE Name LIKE
'New %';

This selects the names and abbreviations of all states with a name that starts
with ‘New’:

 New Hampshire NH

 New Jersey NJ

 New Mexico NM

 New York NY

To show the role of the % wildcard, consider the following:

 SELECT Name, Abbreviation FROM States WHERE Name LIKE '%o';

This would give:

 Colorado

 Idaho

 New Mexico

 Ohio

DELETE
DELETE is used to delete records.

DELETE FROM Customer WHERE forename = 'Jason';

deletes all records from Customer where the forename is Jason.

INSERT
INSERT adds records into a table.

INSERT INTO Customer (forename, surname, phone_number)

VALUES ('Jason', 'Pitt', '0131 496 0680');

This adds the details of customer Jason Pitt.

Insert can be used to add more than one record at once.

INSERT INTO Customer (forename, surname, phone_number)

VALUES ('Jason', 'Pitt', '0131 496 0680'),

('George', 'Rouse', '07700 900502');

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

62

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

DROP
DROP is used to delete whole tables.

DROP TABLE Customer;

Removes the Customer table from the database.

JOIN
JOIN is used to combine information. It selects data every time it finds a
match between the two specified fields.

For instance, for the following tables:

SUBJECT

SubjectID Subject Teacher_code

1 Computer Science JJP

2 Biology KRS

3 Economics FS

4 German NWL

5 Chemistry CBB

6 French NWL

TEACHER

Teacher_Code Teacher

JJP Mr Pitt

KRS Mr Simons

FS Dr Shah

NWL Miss Lambert

CBB Ms Brooks

SELECT Subject.Subject, Teacher.Teacher

FROM Subject

INNER JOIN Teacher ON Subject.Teacher_Code = Teacher.Teacher_Code;

This SQL statement matches the Teacher_Code entries in the table Students
to the Teacher_Code entries in the table Teacher and then displays the
corresponding data from the two fields Subject and Teacher.

This means it selects:

Computer Science Mr Pitt

Biology Mr Simons

Economics Dr Shah

German Miss Lambert

Chemistry Ms Brooks

French Miss Lambert

Note the use of the table names with dot notation when specifying the fields
(e.g. tablename.fieldname). This not only helps readability but is especially
important if the two tables have any fields with the same name.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

63

My Revision Notes OCR A-level Computer Science Third Edition

Exam tip

In your reading around the topic you may see there are several types of JOIN

statement:

LEFT JOIN

RIGHT JOIN

INNER JOIN

OUTER JOIN

For this course you only need to know about the INNER JOIN, which is the default if

the word JOIN is used on its own.

Now test yourself

23 A database has the following tables and fields:

 CUSTOMER

 CustomerID, Forename, Surname, TelephoneNumber,
BonusPoints

 BOOKING

 BookingID,CustomerID , RoomNumber, BookingDate

a) Write an SQL statement that gives the forename and surnames of all customers

in the database.

b) Write an SQL statement that gives the forename and surnames of all people in

the table Customer who have a Birmingham telephone number (starts 0121)

and have over 1000 bonus points.

c) Write an SQL statement that gives all the rooms and booking dates booked by

customers with the surname Smith.

d) Write an SQL statement to add the customer Joshua Stevenson with the

telephone number 029 2018 0606.

e) Write an SQL statement that removes the customer table.

Answers on p. 213

Referential integrity
Referential integrity is when a DBMS ensures that a change isn’t made to one
table that would impact data stored on another table. For example, in a school
database, referential integrity would prevent a teacher being removed from
the database if there are classes to which they are linked.

In this case, Miss Lambert cannot be deleted as she teaches two classes.

1

2

6

Computer Science

Biology

French

JJP

KRS

NWL

5 Chemistry CBB

4 German NWL

3 Economics FS

SubjectID

Subject
Teacher

Subject Teacher_Code

Mr Pitt

Mr Simons

JJP

KRS

Ms BrooksCBB

Miss LambertNWL

Dr ShahFS

TeacherTeacher_Code

Essentially, referential integrity ensures:
✚ a record cannot be deleted if its primary key appears as a foreign key on

another table
✚ a value cannot be entered into a foreign key field if there isn’t a

corresponding primary key value.

Referential integrity

Guaranteeing the

consistency of a database

by ensuring no record

points to another record

that doesn’t exist.

Now test yourself

24 Explain what impact

a lack of referential

integrity might have in a

hotel’s database.

Answer on p. 213

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

64

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Transaction processing, ACID, record locking
and redundancy

Transaction processing and ACID
Most processes carried out by programs using a database require a number
of actions to take place in the database. For example, if in a bank £50 is
transferred from Person A to Person B:
✚ the first action is to remove £50 from person A’s account
✚ and the next action is to add £50 to person B’s account.

These collections of actions to perform a task are called transactions.

Care has to be taken when transactions occur to ensure the data within the
database remains valid. To help ensure this, transaction systems should
adhere to the ACID properties: atomicity, consistency, isolation and durability.
✚ Atomicity: a change is performed or not performed. Half-finished changes

must not be saved.
✚ Consistency: databases have sets of rules (called constraints) that must

be adhered to by all the data they contain. (For example it might be
that values representing percentages all add up to 100, or that values
representing money in an account never go below 0). Transactions should
never leave a database in a state where any of these rules are broken.

✚ Isolation: a transaction must not be able to be affected by a different
transaction. Unless it can be guaranteed not to affect the running
transaction, any new transaction is locked until the change is committed,
then the new transaction is released. In other words, transactions can only
run at the same time if the end result is the same as if they were run one
after the other.

✚ Durability: once made, transactions cannot be lost. Changes must be
written to storage in order to preserve them.

Record locking
It is usual for databases to be accessed by multiple people at any one time.
This can cause issues if people are trying to simultaneously access the same
record. One person could accidentally overwrite the other person’s change.

Record locking avoids this by preventing anyone accessing a record in use by
another person.

Redundancy
A redundant system is one that duplicates the work of another. Where a
database is crucial for the operation of a business, it is typical to have a
second copy of the database (called a mirror database) stored on a different
server. If the primary server with the database fails, the mirror can quickly be
switched to, preventing loss of service. This is an example of redundancy.

Exam tip

Be careful not to get confused with redundant data (unnecessarily repeated data in

a database), which is a bad thing, and database redundancy (duplication of database

resources to prevent downtime), which is a good thing.

Now test yourself

25 Explain what is meant by a transaction that adheres to the ACID properties.

26 Explain why a bank might have two identical copies of their database running

simultaneously.

Answers on p. 213

Transaction A group

of actions in a database

creating a unit of work.

ACID Atomicity,

consistency, isolation and

durability are concepts

that underpin database

transactions.

Mirror database An

identical instance of

a database kept on a

separate server.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

65

My Revision Notes OCR A-level Computer Science Third Edition

Networks
Characteristics of networks and the
importance of protocols and standards
Protocols are rules that define how devices communicate with each other.
They allow different devices to make sense of the data they receive and
transmit. They only work if both devices understand the protocol.

In the early days of computing, different systems would have their own sets
of protocols. This would mean that you were often limited to only connecting
devices by the same manufacturer.

As networking became more widely used, with devices from a range of
manufacturers being connected, having standardised protocols became more
important.

Now test yourself

27 Find out and explain what the following three protocols are used for:

a) HTTPS

b) DHCP

c) UDP

Answers on p. 213

The internet structure

Protocol layering and the TCP/IP stack
At its most fundamental level, the internet consists of a vast number of data
packets travelling around the network at very high speeds. For this to happen,
each data packet has layers of further data added to it.
✚ Layering is the principle of dividing a complex system into separate slices

of functionality. It is common in computing systems as well as other
aspects of life such as engineering.

✚ Layering allows the creation and maintenance of parts of a system without
having to take the whole system into account.

✚ Networks use layering with protocols.
✚ Protocols on each layer communicate only with the layers above and

below. This means that a protocol on any layer can be changed for another
protocol providing it receives and passes on data in same manner.

The most commonly used protocol layers are Transmission Control Protocol/
Internet Protocol (TCP/IP) stack (named after two of its protocols). The stack
consists of four layers:
✚ application layer
✚ transport layer
✚ internet layer
✚ link layer.

Layer Purpose Examples

Application Concerned with production and reception of data. Packages data and passes

it to the transport layer

HTTP, HTTPS, IMAP, DNS

Transport Concerned with making and breaking connections via routers TCP, UDP

Internet Concerned with providing links across different network types. Essential

feature of the internet that allows interoperability between all connected

systems

IPv4, IPv6

Link Passes data to the physical network. It can work with any media such as

copper wire, optical fibre and wireless

Wi-Fi, Ethernet

Protocol A set of rules for

communication between

devices.

Layering The principle of

dividing a complex problem

into separate, independent

sub-problems.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

66

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

In order to send a data packet, it gets passed down the stack, starting
with the application protocol, and each protocol adds its own
additional necessary data. This is known as encapsulating the previous
data.

Once the data packet has arrived at its destination, it is passed back
up the stack and each protocol removes the relevant data
(decapsulates).

Application

Data flow

Transport

Internet

Link

Application

Transport

Internet

Link

Figure 3.11 The four layers of the TCP/IP stack

DNS
Everything on a network connected to the internet is identified by an IP
address. There are two systems of IP addresses the widely used: IPv4 and its
successor IPv6 (there was no IPv5).
✚ IPv4 is made of four 8-bit numbers, usually represented in denary (e.g.

69.172.201.167).
✚ IPv6 is made of eight 16-bit numbers, usually represented in hexadecimal

(e.g. 57f9:a6cf:44df:5411:2a1e:43f8:d7f:6bce).

We request resources on the internet by asking for a named address, such as:
https://www.hodder.co.uk/a-level/computer-science

The named address is called its uniform resource locator (URL).

URLs include domain names, essentially the website’s name – in
this case hodder.co.uk. Domain names are constructed from a
hierarchy.

Top level domain com uk

root

edu fr

2nd level domain org co

3rd level domain ocr bbc hodder

Figure 3.12 A hierarchical naming system

Exam tip

Do not confuse the

encapsulation of data

along the stack with

encapsulation in object-

oriented programming (see

Chapter 2). These are two

totally different things.

Uniform resource

locator (URL) The main

part of a website address

e.g. hodder.co.uk

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads
https://www.hodder.co.uk/a-level/computer-science
http://hodder.co.uk
http://hodder.co.uk

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

67

My Revision Notes OCR A-level Computer Science Third Edition

We use URLs as they are easier to remember than IP addresses. However, a
web browser needs to know the IP address of a website in order to retrieve
information from it.

The domain name system (DNS) converts URLs to IP addresses. The system
uses a series of servers that act like address books, matching URLs to their
IP addresses.

When looking up the IP address of a URL:
1 First your computer checks its local cache to see if the IP address has

previously been found.
2 If it doesn’t have a copy of the IP address, it checks one of the root servers.

Root servers are the highest level of servers in the DNS that hold the
locations of all the top-level domain servers.

3 If the root server doesn’t have a copy, it points to a server matching the
top-level domain (TLD) such as .com, .uk or .org

4 These may point to second level domains (e.g. .co.uk).
5 Finally comes the authoritative name server that holds the IP address of the

server being sought. This is sent back to the browser so it can visit the site.

Once the address is found, as it gets passed back to each server the address is
cached so it can be found more quickly next time.

Making links

DNS keeps a copy of the IP addresses it has found at every server it’s passed back

along. This local copy is a cache. Caching is looked at in more detail when looking at

computational methods in Chapter 6.

LANs and WANs
Most networks can be considered LANs or WANs.

LANs
✚ Local area networks (LANs) are networks over a defined and limited

location.
✚ It could be a room, a building or a campus.
✚ Their infrastructure is owned by the organisation that uses it, and the

organisation is also responsible for its upkeep.

WANs
✚ Wide area networks (WANs) cover a large geographical area.
✚ Typically, they consist of interconnected LANs at different sites, connected

by some form of telecoms link, which is normally provided by a separate
company.

✚ The internet can be considered a WAN.

Circuit and packet switching

Circuit switching
In traditional landline telephone systems, when one caller wanted to make a
call to another a connection was created just for the duration of the call. This
is called circuit switching.

In computer networks, circuit switching is the establishment of a physical
connection between two communicating entities. It provides an exclusive
dedicated channel.

The channel remains open for the duration of the communication session.

Domain name system

(DNS) is a method that

computers use to find the

correct IP addresses given

the URL

Circuit switching A

pathway for the data

is set up in advance of

communication and then

data is sent across it. The

pathway is closed after

transmission.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

68

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Circuit switching has three phases:
1 connection established
2 data transferred
3 connection released.

Circuit switching ties up a link so that when in use, other entities cannot use
it. It is suitable when there is a need for intensive data transfer.

In reality, modern fast broadband transmissions make circuit switching less
important.

Packet switching
Most networks make use of packet switching. Packet switching divides a
message into data units called packets. A packet of data is a standard unit,
whose makeup is decided by the network protocol.

Typically, a data packet contains the following data items.

Header Payload Trailer

Source address

(The IP address

of the device

the packet is

from)

Destination

address

(The IP address

of the device

the packet is

going to)

Packet

sequence

number

(The order of

the packet in

the sequence)

Protocol

(The type of

protocol being

used)

Data

(The data itself

being sent)

Checksum

(A calculation

used for error

checking)

End of packet

marker

(Denotes the

end of the

packet)

Packets are sent across a network by whichever routes are available or most
efficient. They may arrive in a different order to which they were sent. The
receiver uses the sequence number to reassemble them into the original
message.

Exam tip

When communicating over a circuit switched network, computers will still usually use

packets. Do not be led to the misconception that packets are only used with packet

switching.

Packet switching doesn’t tie up large chunks of a network, making it perform
better for multiple users. It is also part of what helps to make the internet
reliable. If one route is unavailable, there are always others. This is one of
many examples of how redundancy can boost reliability.

Now test yourself

28 Describe the purpose of the link layer in the TCP/IP model.

29 In question 27 (page XXX) you found out about three protocols: HTTPS, DHCP and

UDP. State which layer of the TCP/IP stack each of the protocols belongs to.

30 State two differences between a LAN and a WAN.

31 Produce a DNS hierarchy diagram that would accommodate the following URLs:

a) www.stanford.edu/

b) www.princeton.edu/BarkingDogArt

c) www.cmu.edu/

d) www.cam.ac.uk/

e) www.worcester.ac.uk/

32 Explain how packet switching benefits all users of a network.

33 Explain why a connection using circuit switching is likely to have a constant quality

whereas one using packet switching may not.

Answers on p. 213–14

Packet switching Packets

of data are sent across

a network. They may

take different routes and

are reassembled by the

receiver.

Data packet Data is broken

down into chunks called

packets when sent across

a network.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads
http://www.stanford.edu/
http://www.princeton.edu/BarkingDogArt
http://www.cmu.edu/
http://www.cam.ac.uk/
http://www.worcester.ac.uk/

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

69

My Revision Notes OCR A-level Computer Science Third Edition

Network security and threats
Security is an important part of network design. Users of a network could
potentially access data they aren’t entitled to. If that network is connected to
the outside world via the internet, it means it can be vulnerable to hacking by
anyone around the world.

Firewalls
A firewall is used to protect a network by monitoring traffic going into and out
of the network from the outside world.

Firewalls:
✚ are usually hardware devices (especially on big networks) but can be

implemented as a software application
✚ inspect packets of data entering and leaving a network
✚ can block these packets according to a set of rules
✚ can be configured to restrict access to certain sites or file types.

Proxies
Just like a firewall, proxies (or proxy server) sits between a network and the
internet. Initially their purpose was to allow all the computers on a LAN
(with their different IP addresses) to communicate with the internet. Modern
routers are now able to do this. Proxies are still used, however, as they have a
number of other functions:
✚ Caching: proxies can keep copies of data that has been downloaded from

the internet. Once the proxy receives a request for a file or website from
the internet, a copy is stored on the proxy. Every subsequent person who
requests the same file can get their copy directly from the proxy. This is
quicker for the users and keeps down the bandwidth being used on the
internet connection. The downside is that the file or website on the proxy
might get out of date.

✚ Logging and monitoring traffic: like a firewall, a proxy can monitor data
going into a network. They can keep logs of all traffic in and out.

✚ Security: external users are unable to see or access devices inside the
network – their only contact is with the proxy.

✚ Privacy: proxies can be external to a network and used to fetch web pages.
As far as the website is concerned, the request comes from the proxy and
therefore it is the proxy’s IP address that is logged on the website, not that
of the user.

Making links

Proxy servers are one of many examples in computer science where caching is used.

You can find out more about caching in Chapter 6.

Encryption
Encryption is the process of making data unreadable to a third party. It has to
be decrypted (by someone with the key) in order to be read. Encryption is very
important and it can be used in two ways on a network:
✚ Stored data can be encrypted so it cannot be read by anyone who may gain

unauthorised access to a private network. (This would usually be done
using symmetric encryption.)

✚ Data is often encrypted during transmission. This is especially important
if transmission is taking place across public communications channels or
using wireless technology. (This takes place using asymmetric encryption.)

Making links

Encryption was covered in more detail earlier in this chapter.

Hacking The process of

gaining unauthorised access

to a computer system.

Firewall Software or

hardware that can inspect

and block incoming and

outgoing network data.

Proxy A server that sits

between a network and

the internet, through which

internet data requests are

made.

Now test yourself

34 Describe the function of

a firewall.

Answer on p. 214

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

70

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Network hardware
Specialist hardware has to be used to build a network.

Network interface card
✚ A network interface card (NIC) allows a computer to connect to a network.
✚ Most modern computers have the NIC built into the motherboard.
✚ Depending on the type of NIC, it connects a computer to a network via the

Ethernet protocol (a wired connection) or the Wi-Fi protocols (a wireless
connection).

Router
✚ This is a device to connect networks to the internet.
✚ It receives and forwards data packets to the correct IP address.
✚ When directing packets to the next device, it uses a table or an algorithm

to decide on the route.

Hub
✚ This device connects other devices together to form a network.
✚ It broadcasts all data to all possible destinations.
✚ The correct destination will accept the data.

Switches
✚ This device connects other devices together to form a network.
✚ It has a number of physical ports.
✚ It keeps track of the addresses of devices connected to each port.
✚ It directs data only through the port to which the destination device is

connected.

Wireless access point
✚ A device that is connected to a wired network and then provides a wireless

signal.
✚ Other devices can then use wireless to connect to a Wi-Fi network.
✚ Devices can connect from distances of up to about 100 metres.

Transmission media
✚ Most networks use cables to connect devices.
✚ For short distances, copper cables are used as they are cheap to implement.
✚ For longer distances, fibre optic is used as it carries signals across a greater

distance and has a greater data capacity than copper wire.
✚ Increasingly, wireless connections are made using radio waves for part of

the network. This allows great flexibility but is slower than physical cable
and poses different security threats.

Now test yourself

35 Describe the purpose of a network interface card.

36 Explain the difference between a switch and a router.

37 Give one advantage and one disadvantage of a network using Wi-Fi.

Answers on p. 214

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

71

My Revision Notes OCR A-level Computer Science Third Edition

Client–server and peer to peer
Most networks are constructed on the client–server model. This means that
one, or usually many, high-end computers act as servers. Servers provide
services to the users, or clients, including:
✚ file storage and access
✚ printing
✚ internet access
✚ security features such as logins and audit trails.

Client–server is usually the favoured model because:
✚ client computers need not be powerful and can therefore be cheaper
✚ it makes it easier to make data and software accessible from anywhere in

the network
✚ banks of servers can be combined to make best use of their potential
✚ separate functionality can be devolved to virtual servers or physical

servers.

Making links

See Chapter 2 for more information about virtual machines.

With a peer-to-peer approach, each computer on a network has an equal status.
✚ It is generally a cheap way of implementing a network.
✚ It is a popular way on the internet to pass files between users without the

need to go through servers.
✚ Peer to peer is a useful way to make use of distributed computing to

promote collaborative working.
✚ However, it is not a very common way to set up a network.

Now test yourself

38 In the early 2000s, peer-to-peer systems over the internet were a common way

for illegally copied material to be spread. Discuss why such networks were hard to

regulate.

39 Explain why most LANs favour a client–server model over peer to peer.

Answers on p. 214

Web technologies

HTML, CSS and JavaScript

HTML
Hypertext Markup Language, or HTML, is used to define web pages. It is not a
programming language but, as the name suggests, a markup language.

HTML works with tags that are used to denote what parts of the page
represent. Most tags have an opening tag (e.g. <html>) and a closing tag (e.g.
</html>).

Tags can contain attributes that modify what the tag contained within them
does. For example, in the tag . src is an attribute.

The entirety of an HTML document is usually enclosed in <html> tags.

Virtual server A server

that exists as a virtual

machine, rather than a

physical device dedicated to

the task.

Distributed computing

A collection of computers

working together on a

single task.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

72

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Within the HTML there is a <head> tag that stores information about the page
and a <body> tag that contains the content of the page:

<html>

 <head>

 </head>

 <body>

 </body>

</html>

The title of the web page is usually stored within the head tags. This is the
title of the page that appears in the browser.

<title>My Title</title>

My Title

The tags h1, h2 and h3 are used for different levels of heading.

<h1>This is a heading</h1>

<h2>This is a subheading</h2>

<h3>This is a level further down</h3>

Paragraphs are contained within the <p> tag.

<p>This is a paragraph in HTML</p>

The page can be divided into blocks using the <div> or divider tags.

<div>This is a divider</div>

Numbered lists are written using tags. They are put between tags
for an ordered (numbered) list.

Apple

Banana

Cherry

Bullet points are also written using tags but between tags for an
unordered (bulleted) list.

Apple

Banana

Cherry

1. Apple
2. Banana
3. Cherry

• Apple
• Banana
• Cherry

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

73

My Revision Notes OCR A-level Computer Science Third Edition

Hyperlinks are created with the <a> (standing for anchor) tag. The attribute
href defines where the link leads to.

Hodder Website

Hodder Website

Exam tip

In the exam you may be asked to write some HTML or explain what some HTML does.

The only way to get good at this is through practice. Try making a website for one of

the topics you are revising.

Images can be inserted with the tag. Note that does not have a
closing tag. Images use the following attributes:
✚ src to define where the image is stored
✚ alt to state what text should display if the image cannot be shown
✚ height and width to state the dimensions of the image on screen in

pixels.

In this case, the image called myPicture.jpg is stored in the same folder as the
web page:

<img src="myPicture.jpg" alt="A picture of me!" height="90"
width="160">

Here the image myPicture.jpg is in a folder called images:

<img src="images/myPicture.jpg" alt="A picture of me!"
height="90" width="160">

In both cases the image is associate with the text ‘A picture of me!’ and the
images will be displayed as 90 pixels high by 160 pixels wide.

Making links

The majority of images on the web are JPEGs and PNG files. Photographs tend to be

JPEGs due to the high levels of compression. Simpler images such as logos tend to be

PNGs as they do not fare so well with JPEG’s lossy process.

Keeping image sizes low is important as less data needs to be transferred, meaning

pages load more quickly.

Forms to collect data are created using the <form> tag. They contain <input>
tags to allow data to be entered.

The input tag uses the type attribute to state what type of input it is. The only
two types you need to know for the exam are text (for a textbox) and submit
(for a submit button).

<form>

<p>Subject Name: <input type="text" name="subjectName"></p>

<p>Subject Code: <input type="text" name="subjectCode"></p>

<input type="submit">

</form>

The name attribute is also used so the inputs can be referred to in JavaScript
or server-side code.

Cascading Style Sheets
Originally any formatting on a web page was denoted using HTML. A wide
range of tags were used for setting fonts, colours and so on. It became
apparent that it would be desirable to separate the styling of a web page from
its structure. Cascading Style Sheets (CSSs) were created to take on the job of
styling pages.

Subject Name:

Subject Code:

Submit

Now test yourself

40 Describe the purpose of

the <div> tag.

Answer on p. 214

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

74

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

To specify a styling in CSS you need a property and a value.

The statement

color: red;

denotes that the colour of text should be red, where color is the property and
red is the value.

You need to know the following CSS properties.

Property Meaning Example

background-color Specifies the background colour of an element. Usually used on

<body> tags to change the background colour of the whole page, or

with <div> tags to change just part of it

background-color:

LightGreen;

border-color Specifies the colour of the border (borders tend to be used on div

elements).

border-color:

DarkBlue;

border-style Specifies the style of a border. Options include: dotted, dashed and

solid. If not specified, the border style is none by default and therefore

no border is shown

border-style:

Dotted;

border-width Specifies the width of the border in pixels border-width: 3px;

color Specifies the colour of text within an element color: #2566A1;

color: Green

font-family Specifies the font of the text. While the exact font can be specified,

this relies on it being installed on the end-user’s computer. Instead, or

additionally, the ‘family’ name is often given so the nearest match can

be selected if exact font is unavailable. (Examples of families include

serif, sans-serif and monospace)

font-family:

monospace;

font-size Specifies the size of the font. Size can be given in a number of ways

including:

em: the number of times bigger it is than the standard font on the

page

px: pixels

%: the percentage of the size it is of the standard font on the page

font-size: 3em;

font-size: 11px;

font-size: 150%

height Specifies the height of an element (usually a div). Usually given in

pixels or as a percentage of the element it is within

height: 500px;

width Specifies the width of an element (usually a div). Usually given in pixels

or as a percentage of the element it is within

width: 80%;

Colours can be specified in a number of ways. The most common are named
colours and hexadecimal colours.

Named colours are those that have been assigned a name in CSS. You use
them by just writing their name. There are 140 standard colour names that
are supported.

border-color: DarkRed;

Hexadecimal colours are made up of a red, green and blue value, each
between 0 and 255. With each red, green and blue having 256 possible values
(0–255) there are 16.7 million (2563) colours.

For convenience, these numbers are written in hexadecimal (e.g. 255 is FF),
each using two digits. A hash symbol (#) is used to denote a number is in
hexadecimal. A full amount of red, green and blue is white (#FFFFFF) and the
absence of any is black (#000000).

border-color: #E255B7;

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

75

My Revision Notes OCR A-level Computer Science Third Edition

Examples of hexadecimal colours:

Colour Hex value

Black #000000

White #FFFFFF

Pure Red #FF0000

Pure Green #00FF00

Pure Blue #0000FF

Cyan #00FFFF

Yellow #FFFF00

Magenta #FF00FF

Light Sea Green #20B2AA

Dark Slate Blue #483D8B

Grey #808080

Dark Orange #FF8C00

Exam tip

If asked to set a border, always include the style. Without the style it is assumed

to have a style of none and as such nothing will show. If no style is hinted at in the

question, then solid is a safe bet.

CSS can be applied directly within an HTML tag using the style attribute. For
example:

<div style="color:red; background-color:gray;">

If a style is to be applied to all tags across a page this can be done using the
tag name and curly braces {}. For example:

h1{

 color: darkblue;

 font-size: 2em;

}

This means all text in <h1> tags should be dark blue and twice the size of the
standard text on the screen.

Sometimes you might only want to apply formatting to one particular tag on
a page. To do this we use identifiers. Identifiers are denoted in CSS with the
hash (#) sign followed by the name they are given.

#important{

 color: red;

 font-family: sans-serif;

}

To show which tags it is to be used on, the id attribute is used:

<h2 id="important">Warning</h2>

An identifier can only be used once per page. If you want to use the same
formatting a number of times on a page, a class is used instead. Classes in
CSS are denoted by a full stop (.) followed by the name they are given:

.sideNote{

 font-size: 0.8em;

 color:gray;

}

Exam tip

Remember that in

CSS colour is spelt the

American way as color.

Similarly, grey is spelt

as gray.

Making links

See Chapter 4 for a

full description of how

hexadecimal numbers are

calculated.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

76

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

<div class="sideNote"> CSS is for styling and HTML is for
structure</div>

It is possible for a tag to have a class and an identifier.

<div class="sideNote" id="important">Client-side and should
never be used to try and enforce security.</div>

The text in this divider is 0.8 of the usual size (from the sidenote class) and in
a sans-serif font (from the important id). As both try to define the colour, the
colour from the id is used (red) as this is specific to only this tag so must be of
a higher priority.

Any CSS that defines all instances of a tag, classes and identifiers can be
embedded within an HTML page within the <style> tags. For example:

<style>

.sideNote{

 font-size: 0.8em;

 color:gray;

}

#important{

 color: red;

 font-family: sans-serif;

}

</style>

This is far more efficient than applying CSS to each HTML individually.
However, larger websites have many separate pages of HTML. Instead of
having to add CSS within <style> tags for each page, it is often preferable to
store the CSS externally in a file, which can then be linked to the HTML using
the <link> tag:

<link rel="stylesheet" href="myStyles.css">

This tag has two attributes:
✚ rel="stylesheet" states that a stylesheet is being linked to
✚ href gives the name/location of the style sheet, in this case myStyles.css

JavaScript
As stated earlier, HTML is not a programming language. If we want to
program things to happen within a page (for example checking whether data
being entered is valid), we need to use JavaScript.

JavaScript can be embedded within an HTML document using <script>
</script> tags, or stored in a file and linked to using the src attribute in a
script tag. For example:

<script src="validationCode.js"></script>

Below is the bubble sort algorithm written in pseudocode and then JavaScript:

Pseudocode

set swapMade to true

while swapMade is true

 swapMade = false

 for position = 0 TO listLength − 2 //i.e. the last but one
position

 if list[position] > list[position + 1] then

 temp = list[position]

Exam tip

When an HTML element

has more than one CSS

statement for the same

property, remember the

CSS more specific to that

element will always override

any more general CSS.

CSS in a style attribute will

override an identifier and

an identifier will override a

class. This is the cascading

part of CSS.

Now test yourself

41 Describe how CSS can

be used to make a red,

dashed border, 5 pixels

thick.

42 Explain the difference

between a class and an

identifier.

Answers on p. 214

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

77

My Revision Notes OCR A-level Computer Science Third Edition

 list[position] = list[position + 1]

 list[position + 1] = temp

 swapMade = true

 endif

endwhile

JavaScript

It should be easy to equate most of the code to its pseudocode equivalents. It
is worth taking a quick look at the for loop, especially if you are not familiar
with languages that use this style.

for(var position = 0; position<list.length-1; position++)

var position = 0; start the for loop creating a variable called position,
set to 0.

position<list.length-1; keep it running as long as position is less than the
length of the list – 1

position++; add one to position each time. (position++ is the same as
position = position+1)

Getting data from the user in JavaScript is usually done via a form. You are
not expected to know how to do this from memory in an exam.

Output can be given in three ways:
1 An alert box that pops up on the screen:

 alert("This is an alert box");

2 Writing directly to the page. This appears on the page in the same location
the JavaScript is written.

 document.write("This is written directly to the web page");

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

78

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

3 Changing the contents of a tag. For this the tag needs an identifier.

 If we have the div:

 <div id="theTagID"> </div>

 Running the code below changes the contents of that div to Written to
element:

 elementWeAreWritingIn = document.getElementById("theTagID");

 elementWeAreWritingIn.innerHTML = "Written to element";

 This would result in a change to the HTML:

 <div id="theTagID">Written to element</div>

 This JavaScript code can be contracted to:

 document.getElementById("theTagID").innerHTML = "Written to
element";

Exam tips

You will be expected to carry out the same programming techniques in JavaScript

as you can in pseudocode (if, while, for etc.). However, you will not be expected to

remember the exact details of JavaScript syntax, and will not be penalised for minor

inaccuracies in syntax.

You will not be expected to use JavaScript for object-oriented programming or

file handling.

Now test yourself

43 Explain the roles HTML, CSS and JavaScript play in web pages.

44 Look at the binary search algorithm in Chapter 8. Implement it in JavaScript.

Answers on p. 214

Search engine indexing
The World Wide Web has grown at a phenomenal speed. Initially people used
online directories as guides to which sites to visit but the number of websites
on the web increased exponentially. There were under 3000 websites in 1994,
over a quarter of a million in 1996 and nearly two and a half million by 1998.
Today the number is in the billions. It quickly became apparent that using a
directory approach wasn’t sustainable and search engines were created.

Search engines work by creating an index of words that appear on pages. The
index is not dissimilar to the one at the back of this book, but rather than
storing page numbers it will store the address of the page the word appears
on and its location on the page. They use programs called spiders (or web
crawlers) that visit a web page and index the words that are on the page. They
then follow one of the links on the page to go to the next page to be indexed.
Occasionally they will jump to a random page to avoid getting trapped on a
group of pages that only link to each other.

When a search term is entered, the search engine will look for pages that
contain all the words entered.

Now test yourself

45 Describe what is meant by a search engine spider.

46 Explain how a search engine would determine whether a web page is about

computer mice and not field mice.

Answers on p. 215

Search engine A website

used to find other websites.

Users type in search terms

and are given lists of web

pages that match them.

Spider/web crawler A

program that visits websites

adding terms from them to

a search engine’s index.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

79

My Revision Notes OCR A-level Computer Science Third Edition

PageRank algorithm
In the days before the Google search engine, finding things on the internet
was a hit and miss affair. Search engines existed but they worked by using the
content of a page to determine how relevant it was.

Stanford University students Larry Page and Sergey Brin invented an
algorithm that takes a different approach. This PageRank algorithm was so
successful they based their company, Google, around it. PageRank works by
looking at the number of links pointing to a particular page and the number
of links going out from it. A page with many links pointing to it is likely to be
important, as people have taken the time to link to it. This is used to generate
a weighting for a page, called its PageRank, which is used to order the pages
returned by the search engine.

The algorithm is recursive; it uses the existing PageRank of pages as part of
the calculation for their new PageRank. It continually updates the PageRank of
pages, not only taking into account the number of inbound links but also the
PageRank of the pages providing those links.

These days all search engines use variants of PageRank to determine the
importance of pages.

The details of the PageRank algorithm are given below for reference. For the
exam you only need to know the previously described principles of how it
works – not the details:

PR(A) = (1 − d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

where:

PR(A) is the PageRank of page A

PR(Ti) is the PageRank of pages Ti, which link to page A

C(Ti) is the number of outbound links on page Ti

d is a damping factor, which can be set between 0 and 1.

Exam tips

You need to know the principles of the PageRank algorithm but not the equation.

When talking about indexing and PageRank it is easy, in an exam, to fall into the trap of

talking about Google. Although Google pioneered many of these techniques and is by

far the most used search engine, you must remember in an exam context you should

always use generic names and not brand names. Therefore, always write about search

engines and not Google.

Now test yourself

47 Describe the purpose of the PageRank algorithm.

48 Site A and Site B both have 30 sites linking to them. Explain why Site A might have

a much higher PageRank than Site B.

Answers on p. 215

Server and client-side processing
With any interaction between a user (client) and a server on the internet, data
can be processed at either end. Client-side processing is normally carried out
by JavaScript code within the web browser.

The usual process when accessing a web page is:
1 The browser requests a page from the server.
2 The server runs its scripts (and often queries a database) to produce the

web page to send back.

PageRank algorithm An

algorithm that determines

the importance of web

pages, taking into account

the number of incoming

links a page has and the

PageRank of the pages

those links come from.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

80

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

3 The browser receives the page from the server, renders the HTML and CSS
and runs any client-side scripts as needed.

When using client-side processing:
✚ web traffic is reduced
✚ there are fewer delays as the server does less processing
✚ data can be validated before being sent to the server.

However, client-side scripts can be turned off or amended by the user.
Therefore, we also need server-side processing where:
✚ scripts can access databases located on the server (it would be insecure to

give this access to the client)
✚ it must be guaranteed that a script will be run in the way intended and

cannot be amended or circumvented by the client.

Now test yourself

49 Describe an advantage to website owners of using client-side scripting.

50 Describe a disadvantage to website owners of using client-side scripting.

Answers on p. 215

Summary

Compression, encryption and hashing

✚ Compression is the process of representing files in

such a way that they take up less storage space.

✚ Lossy compression means some date is sacrificed,

making it an inexact but good enough representation

of the original.

✚ Lossless compression means the original data is

preserved perfectly in the compression process.

✚ Lossy compression tends to produce better rates of

compression.

✚ Run-length encoding is one form of lossless

compression where data is represented alongside how

many times it consecutively occurs. For example, 4R3T

in RLE is RRRRTTT
✚ Dictionary coding is another form of lossless

compression where frequently occurring values are

stored in a dictionary and replaced with the smaller

value they are linked to.

✚ Encryption is the process of making data unreadable to

a third party.

✚ Data is encrypted by applying a key to an encryption

algorithm.

✚ Symmetric encryption means the same key is used to

encrypt and decrypt data.

✚ Asymmetric encryption uses a public key to encrypt

data and a private key to decrypt it.

✚ Hashing is the process of turning a piece of data into a

fixed-size value.

✚ A hashing algorithm should be irreversible, that is, it

should not be possible to determine the input from the

output of a hashing algorithm.

✚ A hashing algorithm should be deterministic, that is,

always give the same output for the same input.

✚ It should be unlikely that two inputs, when hashed, give

the same output.

✚ Hashing is used for storing passwords and proving data

has not been changed.

Databases

✚ Databases are persistent organised stores of data.

✚ They comprise fields, records and tables.

✚ A flat-file database stores all data in a single table.

✚ Relational databases store data in multiple tables linked

by primary and foreign keys.

✚ A primary key is a field that uniquely identifies a record.

✚ A foreign key is the primary key of one table appearing

in another to create a link.

✚ A secondary key is a field that is indexed so it can be

searched.

✚ The structure of relational databases can be shown in

entity relationship diagrams.

✚ Entities can be linked with one-to-one, many-to-one

and many-to-many relationships.

✚ Data can be captured in a number of ways including

manual entry, OCR and OMR.

✚ Data can be exchanged using a number of file types

including XML, CSV and JSON.

✚ Normalisation is the process of removing redundant

data from a database to ensure consistency and avoid

redundant data.

✚ First normal form ensures there is a primary key, no

repeating fields and atomic data.

✚ Second normal form ensures all fields depend on the

whole of the key.

✚ Third normal form ensures all fields depend only on the

primary key.

✚ Structured Query Language is a language used for

manipulating data in databases.

✚ SELECT ... FROM ... WHERE is used to extract data.

✚ LIKE is used for matching fields with similar values.

✚ DELETE is used to delete records.

✚ INSERT is used to add new records.

✚ DROP is used to remove tables.

✚ JOIN combines data from two tables.

✚ Comparison operators and Boolean operators AND and

OR can be used with SQL statements.

➜

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

81

My Revision Notes OCR A-level Computer Science Third Edition

✚ Referential integrity is used to ensure that no record

points to another that doesn’t exist.

✚ Transactions should adhere to the ACID principles:

✚ atomicity: either complete or fail, never half

complete

✚ consistency: they never move the database into an

invalid state

✚ isolation: never run alongside transactions that

might affect it

✚ durability: changes cannot be lost.

✚ Record locking prevents more than one person

amending a record at any time.

✚ Redundancy in a database system is having an identical

copy of the database that can be used if the first one

fails.

Networks

✚ Protocols are rules for communication between

devices. They allow devices to have an agreed way of

communicating over a network.

✚ Protocols on a network are layered, allowing the

protocol in each layer to be easily changed.

✚ Most modern networks use the Transmission Control

Protocol/Internet Protocol (TCP/IP) stack comprising of

the layers: application, transport, internet and link.

✚ Domain name system (DNS) is the system that looks up

IP addresses matching the URLs of web pages.

✚ A local area network (LAN) is used to describe a

network that extends over a small geographical area

✚ A wide area network (WAN) is used to describe a

network that extends over a large geographical area,

and is often comprises interconnected LANs.

✚ Circuit switching sets up a connection in advance, then

data is sent across it.

✚ With packet switching, data is broken into packets and

sent across a network. Packets may arrive out of order

and are reassembled by the receiver.

✚ Networks have to be protected so unauthorised people

cannot gain access.

✚ Firewalls sit on the edge of a network and filter traffic

going to and from it and the internet.

✚ Proxies act as an intermediary between a network

and the internet. They can be used for caching data

downloaded from the internet so network users can

access it locally.

✚ Sensitive data should be encrypted when being stored

on or transferred across a network.

✚ Specialist hardware is needed to build a network.

This includes: network interface cards, routers, hubs,

switches, wireless access points and transmission

media.

✚ Network connections are usually copper cable,

wireless or fibre-optic cable.

✚ In the client–server model, devices are connected to

servers that provide services such as files.

✚ In a peer-to-peer network all devices on the network

share responsibility for services.

Web technologies

✚ Web pages are built using a combination of HTML, CSS

and JavaScript.

✚ HTML specifies the structure of the page using tags.

✚ You need to understand the tags: <html>, <link>,
<head>, <title>, <body>, <h1>, <h2>,
<h3>, <img, <a>, <div>, <form>,
<input>, <p>, , , ,
<script>

✚ You need to understand the attributes: src, alt,
height, width, href, type="text",
type="submit"

✚ CSS specifies the styling of a page.

✚ You need to understand the following CSS:

background-color, border-color,
border-style, border-width, color,
font-family, font-size, height, width.

✚ CSS can be placed as an attribute in an HTML tag,

within <style> tags or as an external .css file.

✚ Styling can be applied to types of tags, identifiers (e.g.

#menu) and classes (e.g. .introbox).

✚ Identifiers can only be used once per page, whereas

classes can be used multiple times.

✚ JavaScript is used for programming on a web page,

allowing interactivity.

✚ It can be contained within <script> tags in a

separate file.

✚ Search engines are indexes of words that appear

on web pages, and use spiders/web crawlers to

continually visit and index pages.

✚ The PageRank algorithm determines the order in which

search engines return results.

✚ The PageRank algorithm estimates the importance of a

page by counting the number of other pages that link to

it, taking into account those pages’ PageRank too.

✚ PageRank is a recursive algorithm.

✚ Processing can take place in the browser (client side) or

on the server.

✚ Client-side processing reduces the strain on the server

but can be circumvented by the user.

Exam practice

1 Describe how a file may be compressed with lossless compression techniques. [4]

2 Identify two situations where lossy compression is not acceptable. [2]

3 State the difference between symmetric and asymmetric encryption. [2]

4 Describe how hashing differs from encryption. [4]

5 Explain why it is preferable for a system to hash users’ passwords rather than

encrypting them. [4]

6 Discuss to what extent speed of execution is a desirable feature of a hashing

algorithm. [4]

➜

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

3
 E

x
c
h

a
n

g
in

g
 d

a
ta

82

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

7 A veterinary practice needs a database to administer its clients and their

animals, and has the following requirements:

✚ store data about clients

✚ store data about clients’ pets

✚ keep track of vaccinations given

✚ allow reminders about when their pets’ vaccinations are due to be sent to

clients by text message.

 The database includes the following fields:

✚ Client_Name
✚ Client_Address
✚ Pet_Name
✚ Pet_Date_of_Birth
✚ Pet_Animal_Type
✚ Vaccination_Type

a) Identify two fields in addition to those listed above that will be needed in

order to fulfil fourth requirement. [2]

 When in third normal form, the database includes the tables: Client, Pet and

Vaccination.

b) State what fields would be in the table Client. [4]

c) Produce an entity relationship diagram to show the structure of the

normalised database. You may add any extra tables that are needed but

shouldn’t assume any data is required other than that needed for the

stated requirements. [6]

d) Produce an SQL statement that would produce a list of clients in London

who own dogs. [4]

8 Explain the difference between redundant data in a table and a database

system having redundancy. [4]

9 Define the meaning of referential integrity. [2]

10 a) In terms of a database, explain the term transaction. [2]

b) Explain where record locking might be needed in the performance of a

database transaction. [2]

11 Explain why having common sets of protocols is an advantage to

computer users. [3]

12 State the names of the layers of the TCP/IP model. [4]

13 Describe the process DNS uses to point a browser to the IP address of a

website when a user enters its URL. [5]

14 Describe how packet switching is used to send a file across a network. [5]

15 Explain how packet switching handles the possibility that the receiving device

may receive packets out of order. [3]

16 Discuss the precautions that can be taken to protect data on a network

against unauthorised access. [9]

17 Explain why data sent wirelessly needs to be encrypted. [3]

18 List the hardware that would be needed to connect five stand-alone

computers and a printer to a network. [3]

19 Explain why it is easier to keep data secure on client–server model, rather

than peer to peer. [3]

20 Explain what role a CSS file has on a web page. [4]

21 Describe the difference between the and HTML tags. [2]

22 Write the CSS to make all text in <h2> tags green and in a sans-serif font. [3]

23 SQL injection involves entering SQL into a field on a website to gain access to

that website’s database. Justify whether checks for SQL injection code should

be carried out server side or client side. [4]

24 Discuss what happens in a search engine when a user enters a search term. [5]

25 Discuss how HTML, CSS and JavaScript can be used to improve the

accessibility of a site. [9]

Answers available online

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

83

My Revision Notes OCR A-level Computer Science Third Edition

Data types
Different data types are stored and processed in different ways. This means
we have to tell the computer what type data is so that appropriate facilities for
processing and storing are made available.

Primitive data types
The main data types we use are:

Type Description Example

Integer Whole number values with no decimal part 6, –12, 9, 143

Real/floating point Numbers with decimal or fractional parts 12.3, –18.63, 3.14

Boolean One of two values true or false

Character Single letter, digit, symbol or control code S, g, 7, &

String A string of alphanumeric characters ‘hat’, ‘Fg7tY6’, ‘%7&*j’

Representing positive integers in binary
✚ Computers use switches (transistors) to store and process data and these

switches have just two states, either 1 (on) or 0 (off). 1 and 0 are the two
numbers in the binary number system.

✚ This means that, in a computer, all data – numbers, characters, sounds and
images – are represented in binary.

✚ Denary is a base-10 number system whereas binary is a base-2 number
system.

✚ When we write a number in binary, we use a similar approach to writing
numbers in denary but the column headings are based on 2 rather than 10.

Starting on the right with the 1s column, as we move left through the
columns the place value of each column is multiplied by 2 each time:

128 = 28 64 = 26 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

The conversion from binary to denary is straightforward: add the column
values together for every column containing a 1 in the binary number.

Worked example

The binary number 1101101 in denary.

128 64 32 16 8 4 2 1

1 1 0 1 1 0 1

We write down the column value for each column with a 1 in it then add them up.

64 + 32 + 8 + 4 + 1 = 109

Denary A term that

describes the number

system based on 10, often

called decimal.

4 Data types, data structures and
algorithms

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

84

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

To convert an integer from denary to binary:
✚ For each column value, starting with the most significant bit (MSB), we

decide if it is smaller than or equal to our decimal number.
✚ If it is smaller or equal to, we record 1 in the table, and subtract that

column value from the original decimal number. We then check if that
new number is smaller than the next column value.

✚ If it is not smaller, we check the new decimal number against the next
column and so on.

We continue this process until we are left with the 1s column.

Worked example

To convert 97 into binary:

Is 128 smaller than 97? No, so we record 0 in the 128 column.

128 64 32 16 8 4 2 1

0

Is 64 smaller than 97? Yes, so we record 1 in the 64 column and subtract 64 from 97.

The new number is 97 – 64 = 33

128 64 32 16 8 4 2 1

0 1

Is 32 smaller than 33? Yes, so we record 1 in the 32 column and subtract 32 from 33.

The new number is 1

128 64 32 16 8 4 2 1

0 1 1

We now check against 16, 8, 4 and 2 and record 0 in each of those columns.

128 64 32 16 8 4 2 1

0 1 1 0 0 0 0

We are left with 1 so we record 1 in the 1 column.

128 64 32 16 8 4 2 1

0 1 1 0 0 0 0 1

We do not need to write down the leading 0s so 97 in decimal is 1100001 in binary.

Now test yourself

1 Convert the following binary numbers to denary:

a) 10000010

b) 11000001

c) 11011000

d) 10110

2 Convert the following denary numbers to 8-bit binary values:

a) 140

b) 68

c) 200

d) 148

Answers on p. 215

Most significant bit

(MSB) The bit position in a

binary number having the

greatest value, or the left-

most bit. For an 8-bit binary

number this will be the left-

most bit with value 128.

Exam tips

Check your answer by

converting the binary back

to decimal – in this case

64 + 32 + 1 = 97.

With practice you will be

easily able to do this in your

head, but if there are marks

for working show the key

stages, and always check

your answer.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

85

My Revision Notes OCR A-level Computer Science Third Edition

Representing negative numbers in binary

Sign and magnitude
This approach follows the convention we use to represent negative denary
numbers: a sign, ‘+’ or ‘–’ followed by the number (or magnitude).

To do this we have to use the MSB to indicate the sign:
✚ a ‘0’ represents a ‘+’
✚ a ‘1’ represents a ‘–’.

This changes the headings for our columns in an 8-bit binary number to:

sign 64 32 16 8 4 2 1

Worked example

Write –29 and +33 in denary in sign and magnitude binary.

✚ To store –29 as a sign and magnitude binary number in 8 bits:

1 set the sign bit to 1 to represent ‘–’

2 store the binary equivalent of 29 in the remaining 7 bits.

sign 64 32 16 8 4 2 1

1 0 0 1 1 1 0 1

✚ To store + 33 as a sign and magnitude binary number in 8 bits:

✚ set the sign bit to 0 to represent ‘+’

✚ store the binary equivalent of 33 in the remaining 7 bits.

sign 64 32 16 8 4 2 1

0 0 1 0 0 0 0 1

Now test yourself

3 How would we store the following denary values in sign and magnitude format in

8-bits?

a) 45

b) 125

c) –125

d) –68

Answers on p. 215

Two’s complement
✚ While we are used to dealing with a sign and a magnitude, the processing

to handle this is quite complex for a computer.
✚ A more effective approach is two’s complement.
✚ In the two’s complement approach, instead of storing a sign bit in the MSB,

we store a negative value equivalent to the magnitude of that column. In 8
bits the MSB would be equivalent to –128.

This changes the headings for our columns in an 8-bit binary number to:

–128 64 32 16 8 4 2 1

Magnitude Refers to the

size of a value and does not

take into account the sign,

for example the magnitude

of both 15 and –15 is 15.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

86

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Worked example

Write –37 in denary in two’s complement binary.

✚ To store –37, we store a 1 in the MSB, representing –128, then we add the positive

value to represent the difference between –128 and –37 into the remaining 7 bits.

1 128 – 37 = 91

2 91 in binary is 1011011

3 hence, –37 in two’s complement is:

–128 64 32 16 8 4 2 1

1 1 0 1 1 0 1 1

To store a positive integer we put a 0 in the MSB and store the number in the
remaining 7 bits.

Worked example

55 stored in 8 bits in two’s complement form is:

–128 64 32 16 8 4 2 1

0 0 1 1 0 1 1 1

There is a method for converting a negative integer into two’s complement
form.

For an 8-bit number:
1 write down the magnitude of the number in binary (including leading 0s)
2 change all the 0s to1s and all the 1s to 0s (1’s complement)
3 add 1.

Worked example

To convert –87 to two’s complement form in 8 bits:

The magnitude of –87 = 87

87 in 8-bit binary = 01010111

1’s complement of 87 = 10101000

Add 1in binary = 10101001

Now check the answer:

–128 + 32 + 8 + 1 = –87 ü
So, –87 in two’s complement in 8 bits is: 10101001

Now test yourself

4 Convert the following denary numbers to 8-bit two’s complement binary values:

a) 56

b) –72

c) –3

d) –80

5 Convert the following two’s complement 8-bit binary values to denary:

a) 00101000

b) 10111100

c) 11001111

d) 10000111

Answers on p. 215

1’s complement A simple

process for a computer: it

simply turns all 1s to 0s and

0s to 1s.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

87

My Revision Notes OCR A-level Computer Science Third Edition

Addition and subtraction of binary integers

Addition
Adding binary numbers is similar to adding in denary.

When we add 1s together we generate a carry to the next column.

There are four possibilities:

Sum Write down Carry to the next column

0 + 0 0 none

1 + 0 1 none

1 + 1 0 1

1 + 1 + 1 1 1

Worked example

1011 + 1111

1 1 1 1

+ 1 1 0 1

1 1 1 0 0

1 1 1 1

So 1111 + 1101 = 11100

Check by converting back to denary

15 + 13 = 28 ü

Another example using 8-bit binary numbers.

Worked example

11010101 + 11101001

1 1 0 1 0 1 0 1

+ 1 1 1 0 1 0 0 1

1 0 1 1 1 1 1 0

1 1 1

We have a carry into the ninth column, but we can only represent 8 bits, so it
is lost.
✚ The result will not fit into 8 bits.
✚ This is called overflow and means the result will be incorrect.

Converting to denary, using the 8 bits available, we get 213 + 233 = 190, which
is clearly incorrect.
✚ Overflow errors can generate further logical errors in a program because

the result is not as expected.
✚ This may lead to incorrect results from the program.
✚ The program may crash if it cannot deal with the overflow digit.

Subtraction
Subtracting numbers is also similar to the way we subtract in denary. With
base 10 if the number we are subtracting from is smaller than the number we
are subtracting, we borrow 10 from the next column:

Now test yourself

6 Complete the following

binary additions:

a) 110011 + 11101

b) 100010 + 100111

c) 111000 + 11110

d) 111011 + 101010

Answers on p. 215

Exam tip

It is always worth taking a

few moments to check the

result of the binary addition

by converting it to denary.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

88

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Worked example

What is 135 – 47?

12

2

15 We borrow 10 from the next column

We now need to borrow another 10

1 3 5

– 4 7

8 8

In binary subtractions we use exactly the same approach but, if required, we
borrow 10 from the next column, remembering 10 in binary is 2 in denary.

Worked example

What is 46 – 11 in binary?

46 in binary is 101110

11 in binary is 1011

0 10

01 1

� 1 0 1 1

01 0 0 1 1

1

1 01

We borrow 10 from the next column

Now this is 0 we borrow 10 again10

Check: 46 – 11 = 35 ü

Now test yourself

7 Complete the following binary subtractions:

a) 11010 – 100

b) 10010 – 1111

c) 11001 – 10101

Answers on p. 215

Adding and subtracting using two’s complement

Addition
Adding two’s complement numbers follows the same process as adding
together non-signed integers.

Worked example

0 0 1 1 0 0 1 0

0 0 1 0 0 0 0 1

0 1 0 1 0 0 1 1

1

Now check the result

110010 = 32 + 16 + 2 = 50

100001 = 32 + 1 = 33

1010011 = 64 + 16 + 2 + 1 = 83 ü

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

89

My Revision Notes OCR A-level Computer Science Third Edition

Adding two large numbers illustrates a problem with overflow.

Worked example

Using 8-bit, two’s complement binary, add 01100010 and 01110001

0 1 1 0 0 0 1 0

0 1 1 1 0 0 0 1

1 1 0 1 0 0 1 1

1 1

Now check the result:

01100010 = 64 + 32 + 2 = 98

01110001 = 64 + 32 + 16 + 1 = 113

98 + 113 = 211

11010011 is a two’s complement number so = –128 + 64 + 16 + 2 + 1 = –45 
The result of the calculation is too large to be stored in an 8-bit two’s complement

number and it has caused overflow.

Overflow When a

calculation produces a

result that is too large to be

represented accurately in

the available space.

Subtraction
We can use two’s complement to subtract one binary integer from another.
1 Write the number to be subtracted and calculate its two’s complement

form.
2 Add the two numbers together.

This is similar to saying 56 – 23 is the same as 56 + (–23).

Taking the two’s complement of a binary number gives the negative of the
original number.

Worked example

In binary, what is 01010111 – 00110001?

Number to be subtracted (49 in denary): 0 0 1 1 0 0 0 1

1’s complement: Change 1s to 0s and 0s to 1s 1 1 0 0 1 1 1 0

Add 1 to create the two’s complement form (–49 in denary): 1 1 0 0 1 1 1 1

Add the number we were subtracting from (87 in denary) + 0 1 0 1 0 1 1 1

(1) 0 0 1 0 0 1 1 0

1 1 1 1 1

When using this method we ignore the overflow to get the result:

01010111 – 00110001 = 00100110

00100110 is 38 in denary.

Check 87 – 49 = 38 ü
Note we can ignore the overflow when using this approach to subtracting binary values, but in general overflows should

be considered when carrying out a calculation.

Least significant bit (LSB) The smallest value bit in the number, or the right-

most bit.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

90

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Representing positive integers in
hexadecimal and converting to binary
and denary
Hexadecimal (hex) is a base 16 number system, commonly used by
programmers working with low-level code or with codes for various types
of data, for example when coding in HTML the code for the colour orange
is FFA500.
✚ Computers do not work in hexadecimal but it provides a shorthand for

binary that is simpler to understand and remember.
✚ For example, it is hard to remember and easy to make a mistake entering

the binary number 11001110001110001101.
✚ However the hexadecimal equivalent, CE38D, is much easier to remember

and less likely to be entered incorrectly.
✚ Hexadecimal is convenient because the base is 16 and 16 = 24. This means

one hexadecimal digit can represent a 4-bit binary number, making direct
conversion between binary and hexadecimal easy.

✚ Hexadecimal is based on 16 and we therefore need 16 symbols to represent
the possible values in each column. We use 0–9 for the first ten then A, B,
C, D, E and F to represent 10, 11, 12, 13, 14 and 15.

Denary Binary Hex Denary Binary Hex

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 10 1010 A

3 0011 3 11 1011 B

4 0100 4 12 1100 C

5 0101 5 13 1101 D

6 0110 6 14 1110 E

7 0111 7 15 1111 F

✚ Converting from binary to hexadecimal simply requires each group of
4 bits to be replaced by the equivalent hexadecimal symbol.

✚ Converting from hexadecimal to binary, each symbol is replaced by the
corresponding group of 4 bits.

✚ For example, B7D in hexadecimal is 1011 0111 1101 in binary.

Converting hexadecimal to denary
To convert a hex number to its denary equivalent, we multiply each hex digit
by its column value.

Worked example

Converting B7D in hex into denary:

Column value 162 = 256 161 = 16 160 = 1

B = 11 7 D = 12

So B7D in denary is

11 * 256 + 7 * 16 + 12 = 2941

Hex We often use the

shorter form to describe

hexadecimal.

Exam tip

With practice you will

recognise the binary

equivalent of the hex

symbols, but it can be

easier to convert the hex

to denary then convert to

binary.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

91

My Revision Notes OCR A-level Computer Science Third Edition

Now test yourself

8 Convert the following denary values to hexadecimal:

a) 26

b) 92

c) 175

9 Convert the following hexadecimal numbers to binary:

a) ABC

b) A5D

c) BBC3

10 Convert the following hexadecimal numbers to denary:

a) A5

b) 5F

c) 2DE

11 Convert the following binary numbers to hexadecimal:

a) 10000011

b) 11000111

c) 11101101

Answers on p. 215

Representation and normalisation of
floating-point numbers in binary
✚ Floating point is a similar concept to standard form as used in science and

mathematics.
✚ In standard form, we represent numbers as a decimal fraction raised to a

power of 10. For example, 1.236 * 102 to represent 123.6.
✚ The decimal point ‘floats’ two places to the right in the number to convert

from standard form to standard decimal form.
✚ In floating point we use a binary fraction multiplied by a power of 2

Worked example

Consider the binary floating-point number 0.101 * 211

Converting the exponent to denary, this is the same as 0.101 * 23

To write this without the exponent, we float the binary point three places to the right

to get 101.0

Which is 5 in denary.

In floating-point representation we use a mantissa, the fractional
representation of the number, and an exponent, the binary power to which
the number must be raised.

The mantissa is a binary fraction stored in two’s complement form. The MSB
is –1 and the remaining bits are positive fractional values starting at ½ and
divided by 2 for each column as we move right.

1
512

1
256

1
128

1
64

1
32

1
16

1
8

1
4

1
2

–1

Binary point

The exponent is a two’s complement integer. For example, with a 6-bit
exponent it would be:

–32 16 8 4 2 1

Mantissa The part of the

floating-point number that

represents the significant

digits of the number.

Exponent The power of

two to which the number

in the mantissa must be

raised; the number of

places the binary point

should be moved.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

92

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Worked example

Using a 10-bit mantissa and a 6-bit exponent:

The binary floating-point number 0110100000 000010

Is the same as 0.110100000 * 22

The binary point is after the first digit in the mantissa in floating-point form.

Move the binary point 2 places to the right to get

�4 2 1

0 1 1 0 1

1
2

1
4

which is 11.01 in binary or 3.25 in denary.

Worked example

The binary floating-point number 0110000000 111111

Is the same as 0.11 * 2–1

Move the binary point 1 place to the left to get

0.011 or 0.375 in denary.

If the first bit of the mantissa is 1, then it is a negative number.

To deal with this, we use the technique from earlier in the chapter to switch
between a two’s complement form and an unsigned magnitude:
1 take a 1s complement
2 add 1 – this gives the magnitude of the original negative number
3 we then adjust the number by floating the binary point the number of

places indicated by the exponent.

We then convert the result back to a negative number.

Worked example

Convert this binary number to denary.

The number is a binary floating-point number using a 10-bit mantissa and a 6-bit 2’s

complement exponent.

1010100000 000011

We consider first the magnitude of the mantissa by:

taking the 1’s complement 0101011111

adding 1 0101100000

Now adjust for the exponent, 11 in binary, by moving the binary point three places to

the right.

We get the value 0101.100000

This is the magnitude of the negative value 5.5 in denary, so we now know that:

1010100000 000011 is equal to –5.5 in denary.

We can check this by adjusting the original mantissa according to the exponent :

1010.100000

Using the place values, the denary equivalent is –8 + 2 + .5 = –5.5

Exam tip

These examples use

10-bit mantissa and 6-bit

exponent, both in two’s

complement, but check

carefully the format used in

the question, it may not be

the same.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

93

My Revision Notes OCR A-level Computer Science Third Edition

Now test yourself

12 Using an 8-bit floating point number with 5-bit mantissa and 3-bit exponent in

two’s complement form:

a) Convert 01010 001 to denary

b) Convert 10110 010 to denary

c) Convert 01100 111 to denary

13 Using a 16-bit floating point number with 10-bit mantissa and 6-bit exponent in

two’s complement form:

a) Convert 0101100000 000011 to denary

b) Convert 1011000000 111111 to denary

c) Convert 1100000000 111110 to denary

Answers on p. 215

Normalisation of floating-point numbers
With floating-point numbers there is a balance between accuracy and range.
✚ More bits for the mantissa improves the accuracy of the representation but

reduces the range of values that can be represented.
✚ More bits for the exponent improves the range of values but reduces the

accuracy of the value represented.

In order to improve the accuracy, the mantissa should not waste bits by
having redundant digits at the start of a value.
✚ For a positive mantissa, after the leading 0, the mantissa is floated so that

this 0 is followed by a 1.
✚ For a negative mantissa, after the leading 1, the mantissa is floated so that

this 1 is followed by a 0.
✚ This is done by adjusting the exponent.
✚ Once the binary point is floated to the right place:

✚ positive mantissas are padded with 0s
✚ negative mantissas are padded with 1s.

Worked example

Convert the binary fraction 0.0011 into floating-point form using an 8-bit floating point

with 5 bits for the mantissa and 3 bits for the exponent.

For the binary fraction 0.0011 we need to float the binary point two places to the right

so need an exponent of –2.

In 3-bit two’s complement –2 is represented by 110 (–4 + 2)

0.0011 is written as 0.1100 110 in normalised floating-point form.

Exam tip

A normalised floating-point number will always start with either 01 or 10. This means

you will be able to recognise immediately if the number is positive or negative before

starting the calculation. It also provides an instant check on the sign of the calculated

result.

In order to convert a positive denary number into binary floating-point form,
we need to convert the denary number to an equivalent binary fraction.

It is important this binary fraction is normalised by floating the binary point
to be in front of the leading 1. Remember, a positive floating-point number
will start 01.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

94

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Worked example

Convert the denary number 5.5 into normalised floating-point form using a 10-bit

mantissa and 6-bit exponent.

5.5 in binary is 101.1000000

To normalise, float the binary point to remove the leading 1s in the mantissa.

0.101100000

The binary point has moved three places to the left, so the exponent is 3 or 000011 in

6-bit binary.

The mantissa is 0.1011000000

The exponent is 000011

Converting negative denary numbers to binary floating point is similar to
converting positive denary numbers.
✚ We convert the magnitude of the denary fraction to a binary fraction and

convert to a negative value using 1’s complement and adding 1.
✚ In the case of a negative number, float the binary point to just before the

first 0.
✚ In order to normalise a negative value, we need to remove the leading 1s so

that the number starts 10.

Worked example

Represent the negative decimal fraction –0.1875 in normalised floating-point form

using a 10-bit mantissa and a 6-bit exponent.

0.1875 in binary: 0.001100000 (See the exam tip below for how to do this.)

1’s complement: 1.110011111

Add 1 to LSB to get –0.1875: 1.110100000

To normalise, float the binary point to just before the first 0 and remove the leading 1s

in the mantissa.

1.010000000

To find the exponent, we count how many places we have moved the binary point, in

this case two places to the right so –2.

For the exponent –2

2 in 6-bit binary is 000010

1’s complement 111101

Add 1 to LSB 111110

The exponent is 111110

The mantissa is 1.010000000

The exponent is 111110

–0.1875 in floating-point binary is 1010000000 111110

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

95

My Revision Notes OCR A-level Computer Science Third Edition

Exam tip

If you cannot immediately see what 0.1875 is in binary there is a simple method.

Repeatedly multiply by 2 until it becomes a whole number.

0.1875 * 2 = 0.375

0.375 * 2 = 0.75

0.75 * 2 = 1.5

1.5 * 2 = 3

3 in binary is 11

We have multiplied by 2, 4 times.

Hence, we move the binary point four places to the left:

0.0011 = 0.1875 in denary.

Now test yourself

14 Using a 16-bit floating-point number with 10 bit mantissa and 6-bit exponent in

two’s complement form.

 Represent the following denary values in normalised floating-point form:

a) 1.625

b) –2.5

c) 0.1875

Answers on p. 215

Floating-point arithmetic
When adding and subtracting floating-point numbers we align the decimal
point before making the calculation.

Worked example

Using a 16-bit number with a 10-bit mantissa and a 6-bit exponent, add the following

two numbers: 0110000000 000010 + 0101000000 000001

For 0110000000 000010 the exponent is 2, so we move the binary point two places to

the right:

011.0000000

For 0101000000 000001 the exponent is 1 so we move the binary point one place to

the right:

01.01000000

Add

011.0000000

+01.0100000

100.0100000

To normalise the result, we need to move the binary point three places to the left, so

the exponent is 000011

The result is 0100010000 000011

Check 3 + 1.25 = 4.25 ü

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

96

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

For subtraction, we can use the same approach as for two’s complement
integers.

Worked example

Subtract the following two numbers:

0111000000 000011 – 0101100000 000010

Number to subtract has exponent 2 so we move the binary point two places.

010.1100000

1’s complement 101.0011111

Add 1 to LSB 101.0100000

Number to subtract from has exponent 3 so we move the binary point three places:

111.000000

Number to subtract 101.0100000

First number 111.0000000

Add and ignore overflow (1) 100.0100000

Normalise: move binary point three places to the left so exponent is 3, or 000011 in

binary.

Result:

0111000000 000011 – 0101100000 0000010 = 01000100000 000011

Check your answer:

111.0 = 7

10.11 = 2.75

7 – 2.75 = 4.25

4.25 = 100.01 in binary or 0100010000 000011 in normalised floating-point ¸

Exam tip

Remember, always convert

back to denary to check

your answer.

Now test yourself

15 Using 8-bit floating point with a 5-bit mantissa and 3-bit exponent in two’s

complement form, complete the following calculations:

a) 01100 001 + 01000 010

b) 01000 111 + 01100 001

c) 01101 010 – 01010 001

16 Using 16-bit floating-point with a 10-bit mantissa and a 6-bit exponent in two’s

complement form. Complete the following calculations:

a) 0101000000 000010 + 0100100000 000001

b) 0110100000 000011 + 0110000000 111111

c) 0111000000 000010 – 0101000000 000001

Answers on p. 215

Exam tip

Working with long sequences of 0s or 1s, it is easy to miss a digit or add an extra digit.

One simple check is to count the number of digits in each step of the process.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

97

My Revision Notes OCR A-level Computer Science Third Edition

Bitwise manipulation and masks: shifts,
combining with AND, OR and XOR

Binary shifts
✚ Moving the binary digits to the left or right is called a binary shift.
✚ Moving to the left multiplies the value by 2 for each place the value is

shifted.
✚ Moving to the right divides the number by 2 for each place the value is

shifted.

Shifting the binary point to the left:

Worked example

Starting with the binary number 10110

10110 has the denary value 22

128 64 32 16 8 4 2 1

1 0 1 1 0

If we shift the number one place to the left we get:

128 64 32 16 8 4 2 1

1 0 1 1 0 0

The equivalent denary value is now 44, that is, multiplied by 2.

If we shift two places to the left we get:

128 64 32 16 8 4 2 1

1 0 1 1 0 0 0

Which has the denary value 88, that is, the original number multiplied by 4 or 22.

✚ Shifting left n places multiplies the number by 2n.

✚ If we shift too far to the left, we eventually need a ninth bit to store the 1 in the

MSB.

✚ The number cannot be stored in the available bits, creating an overflow error.

Shifting the binary point to the right:

Worked example

Starting with the same number, 10110

128 64 32 16 8 4 2 1

1 0 1 1 0

Shifting one place to the right we get:

128 64 32 16 8 4 2 1

1 0 1 1

The denary value is now 11, that is, 22 divided by 2.

If we shift the number two places to the right, however, we have a problem – we lose

a 1.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

98

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

128 64 32 16 8 4 2 1

1 0 1

The new value is 5 but 11 / 2 = 5.5

We have lost some information, which has led to a lack of precision.

Shifting the number so that we lose a 1 causes an error.

✚ Shifting too far to the left when the MSB is a 1 means that we lose that 1
and we have an overflow error.

✚ Shifting too far to the right when the LSB is a 1 means that we lose that 1
and we have a lack of precision.

Logical operators (NOT, OR, AND, XOR) and masks
The ALU can perform bitwise operations using the standard logical operators,
NOT, AND, OR and XOR.

NOT is applied to each bit in the binary number to reverse the value of
that bit.

Worked example

NOT

0 0 1 1 0 1 0 0

1 1 0 0 1 0 1 1

For AND, OR and XOR the operation is applied to matching bits in two binary
numbers, the operand and the mask, to determine each bit in the resultant
binary value.

Worked example

Operand 0 0 1 1 0 1 0 0

Mask 1 1 1 1 0 0 0 0

AND 0 0 1 1 0 0 0 0

Operand 0 0 1 1 0 1 0 0

Mask 1 1 1 1 0 0 0 0

OR 1 1 1 1 0 1 0 0

Operand 0 0 1 1 0 1 0 0

Mask 1 1 1 1 0 0 0 0

XOR 1 1 0 0 0 1 0 0

Bitwise operation A

binary operation that takes

two bit patterns of equal

length and performs a

logical operation on each

pair of corresponding bits.

Operand The bit pattern

being ‘operated’ on.

Mask A bit pattern that

is used with the operand.

The corresponding bits in

the operand and mask are

combined using a logical

operator to produce a

result.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

99

My Revision Notes OCR A-level Computer Science Third Edition

Masking is a very important concept that allows the CPU to manipulate
individual bits in the operand, check for values and allow bits through or
block them.
✚ AND is useful for checking conditions stored in a binary value:

✚ masking with a 1 returns the operand bit value
✚ masking with a 0 excludes the operand bit.

✚ OR can reset individual bits in a binary value:
✚ masking with 1 will always set the returned bit to 1
✚ masking with 0 returns the original operand bit value.

✚ XOR can be used to check whether the corresponding bits in the operand
and mask are the same:
✚ if both mask and operand are the same, it returns 0
✚ if mask and operand are different, it returns 1.

Now test yourself

17 Using the operand 00110110, mask this with 10101010 using AND, OR and XOR.

18 Create a mask to reverse the first, fourth and last digits of an operand. State which

logical operand is required.

19 Create a mask to check whether the second, fifth and last bits of an operand are

set to 1. State which logical operation is required.

Answers on p. 215

How character sets (ASCII and UNICODE) are
used to represent text
✚ Each character used by a computer has a unique binary code.
✚ This code is used to identify and display a character on screen or for

printing.
✚ It is important for systems to agree on these codes and their meanings if

the data is to make any sense.
✚ The character set of a computer is all the characters that are available to it.
✚ The number of characters in the character set depends upon how many

characters can be represented by the associated codes.
✚ There are agreed international standards that are used to represent the

character set for a computer system.

The first agreed standard was based on contextual messages in English with a
limited number of extra symbols.

ASCII
The American Standards Association agreed a set of codes to represent the
main characters used in English. This is called the American Standard Code
for Information Interchange (ASCII). This system was designed to provide
codes for the following:

All the main characters, i.e. 26 upper case and

26 lower case

52 characters

All the numeric symbols, 0–9 10 characters

32 punctuation and other symbols plus ‘space’ 33 characters

32 non-printable control codes 32 characters

In total this is 127 characters, or in binary 1111111 (7 bits). Initially, the ASCII
character set used 127 codes for the characters, with 0 meaning ‘no character’.
This gave a total of 128 characters.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

100

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

One additional bit was used for error checking purposes. This meant there
were 8 bits overall, and that each character required one byte.

Some ASCII codes are:

Binary Hex Denary Character

0100000 20 32 ‘space’

1000001 41 65 A

1000010 42 66 B

1000011 43 67 C

1100001 61 97 a

1111001 79 121 y

1111010 7A 122 z

1111111 7F 127 ‘delete’

Wider use of computers, and the need for many more languages and other
symbols, has led to the development of more advanced coding standards for
character sets.

Extended ASCII
As the need for more characters became necessary, including non-English
characters and mathematical symbols, the extended ASCII set used the full
8 bits in the byte to represent another 128 characters, making the available
character set 256, rather than the original ASCII limit of 128.

Unicode
✚ Unicode was developed to use 16 bits rather than a single byte. This

provided the ability to store 216 or 65 536 unique characters.
✚ Later developments of Unicode use more bits to represent billions of

different characters including graphical symbols and emojis.
✚ To ensure compatibility of all of these systems, the original ASCII and

extended ASCII character codes are the same in Unicode. ASCII is
considered a subset of Unicode.

If the list of animals:
✚ Goat, Bear, ape, Zebra, deer

is sorted using ASCII the result will be:
✚ Bear, Goat, Zebra, ape, deer

This is because the ASCII codes for the main alphabetic characters are
allocated to the upper-case characters in sequence, followed by the lower-case
characters in sequence. A is 65 and B is one more at 66 and so on. Lower-case
characters start with a as 97, and this means that when text is sorted Z comes
before a.

Character set Number of bits Number of characters Examples

ASCII 7 128 Upper and lower case,

numbers, punctuation, some

control characters

Extended ASCII 8 256 As above plus non-

English characters and

mathematical symbols

Unicode 16/32 bits 65 000 or over 4 billion + are

possible but for technical

reasons there are just over

1.1 million characters

available

As above plus all known

language characters

and different characters

including Wingdings and

emojis

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

101

My Revision Notes OCR A-level Computer Science Third Edition

Now test yourself

20 Using the table of ASCII values above:

a) What is the ASCII value for the characters:

i) D

ii) G

iii) d

b) What is the character with ASCII value:

i) 69

ii) 120

iii) 100

Answers on p. 215

Data structures

Arrays, records, lists and tuples

Arrays
Arrays are structures that store data using indices.

When solving problems with lots of variables describing similar things, rather
than create these individually we assign the values to an array.

An array:
✚ holds a fixed number of elements; the size is defined as the scope when

the array is created
✚ can only hold data of the same type
✚ uses a single identifier and an index.

Worked example

An array defined under the single identifier Names with a scope of 5 will create five

variables:

Names[0], Names[1], Names[2], Names[3],and Names[4]

This array may contain data such as:

Names[0] Names[1] Names[2] Names[3] Names[4]

Frank Hameed Yin Hannah Marta

Accessing Names[2] will return ‘Yin’

Changing Names[1] to ‘Umar’ will modify the array to:

Names[0] Names[1] Names[2] Names[3] Names[4]

Frank Umar Yin Hannah Marta

We can use a for loop to access the elements of a one-dimensional array:

for index = 0 to 4

 print(Names[index])

next index

Where there are two categories of information, for example class names and
year groups, we can use a two-dimensional array.

Scope When referring to an

array, scope is the number

of elements allocated to it

when it is declared.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

102

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

A two-dimensional array is accessed using two index numbers similar to (x,y)
coordinates in a table.

Worked example

Names 0 1 2 3 4

0 Billy Johan Navdeep Graham Hua

1 Frank Hameed Yin Hannah Marta

2 Barry Wayne Tracey Kylie David

3 Irina Li Sundip Tomasz Dillip

4 Deborah James Michael Wendy Charles

Accessing names[2,3] returns Kylie

To populate this array with names we could use nested for loops:

for i = 0 to 4

 for j = 0 to 4

 names[i,j] = input("Enter a name ")

 next j

next i

Exam tips

The table is only a representation of a two-dimensional array and there is no ‘correct’

way to access the data via [row, column] or [column, row]. In exam questions using a

table, you will be told how to access the array.

Questions may use arrays with up to three dimensions. A three-dimensional array will

allow access to data through three indices similar to coordinates in three-dimensions

(x,y,z).

Records
A record is a structure used within a database to store data by categories
under key fields.
✚ A record is accessed through an attribute (or field).
✚ A record is an unordered data structure consisting of different data types.
✚ Indices may be programmed to provide the data ordered on a particular

attribute.
✚ The ability to access data through an attribute makes the record structure

more user-friendly.
✚ The need to define all the attributes before use makes the record structure

more complex to initialise.

In order to create a record, we need to first set up the field names or
attributes, for example an address book:
✚ FirstName
✚ LastName
✚ Telephone
✚ Email

The data for each person is stored under these headings in a table.

A table must have a name to identify it; we shall call it tblNames

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

103

My Revision Notes OCR A-level Computer Science Third Edition

FirstName LastName Telephone Email ← Fields

Bill Wilson 02222347593 bw@somemail.co.uk ←

Graham Mills 02121398741 graham@othermail.com ← Records

Imran Mahmud 02231974522 imahmud@othermail.com ←

Sally Jones 02231987342 sally@somemail.co.uk ←

Lists
Lists, like arrays, store data using a single identifier and an index, but unlike
arrays do not have a fixed size when declared and are not restricted to a
single data type.
✚ A list is an ordered data structure.
✚ A list is accessed through an index that indicates the position of the data

in the list.
✚ Lists have no predefined scope (number of elements).
✚ Not needing to define attributes in advance makes a list easier to initialise

than a record.
✚ Accessing the data in order by index is straightforward to program.

Worked example

In an address book, organised as a list, data is found by its position in the list.

address_book[5] would return the data at position 5 in the list.

Tuples
✚ A tuple is a like a list.
✚ But unlike a list, a tuple is immutable, which means the data cannot be

modified.
✚ Tuples are useful for data that must be accessed by index but must not be

changed.

Now test yourself

21 In the array names

names 0 1 2 3 4 5

0 Alan Kuldeep Li Sarah Harry Mary

1 Jane Tomasz Charles Thomas Jane Irina

2 Wendy Deborah Dillip Umar Johan Hua

a) What is stored in the variable names[1,4]?

b) Show what happens to the array when:

 names[1,3] is set to ‘Joe’

 names[1,1] is set to ‘Navdeep’

c) After these changes have been made, what is output by the program:

for x = 1 to 3

 print(names[1,x])

next x

Answers on p. 215

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

mailto:bw@somemail.co.uk
mailto:graham@othermail.com
mailto:imahmud@othermail.com
mailto:sally@somemail.co.uk
https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

104

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Structures to store data

Linked list
A linked list is a list of data together with a set of links to sort the data on
various factors.

Data is stored in the order it is input and pointers are used to link the data in
the desired order.

Worked example

Data item Fruit

1 Strawberry

2 Banana

3 Apple

4 Damson

5 Cherry

✚ By adding pointers these items can be sorted alphabetically.

✚ We need a start pointer to point to the first item.

✚ We need a pointer from each item to point to the next one in the sorted list.

✚ We need an end pointer to show that we have reached the last item in the sorted list.

✚ We use the data item 0 as an end pointer.

Start (3)

Data item Fruit Alpha pointers

1 Strawberry 0

2 Banana 5

3 Apple 2

4 Damson 1

5 Cherry 4

This can be shown in a diagram.

Banana Apple Damson Cherry

End

Strawberry

Start 3

Figure 4.7 A linked list

The data may also be sorted on other factors, for example the weight of the
individual item. To do this we simply add another set of pointers.

Start (3) Start (5)

Data item Fruit Alpha pointers Weight pointers

1 Strawberry 0 4

2 Banana 5 0

3 Apple 2 2

4 Damson 1 3

5 Cherry 4 1

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

105

My Revision Notes OCR A-level Computer Science Third Edition

Now test yourself

22 The data Ford, Vauxhall, Alfa, Fiat, Mercedes is stored in a linked list in this order.

 Draw a table to show the links for accessing the data in alphabetical order.

Answer on p. 215

Adding data to a linked list
✚ Additional data is inserted at the next available free node.
✚ There is a pointer called ‘free storage pointer’ that points to the first

available free location.

Worked example

For this linked list:

Start (3)

Free (6)

Data item Fruit Alpha pointers

1 Strawberry 0

2 Banana 5

3 Apple 2

4 Damson 1

5 Cherry 4

6

7

8

9

To add orange to our list

✚ Orange is added to the location indicated by free storage pointer (6).

✚ Once added, the free storage pointer is updated to the next free location (7).

✚ Orange’s location in the list is identified (it follows Damson).

✚ The pointer for the preceding location (Damson) is updated to point to the location

for the new data item (6).

✚ The pointer for the new item is updated to that previously stored in the item that

preceded it (1).

The list becomes:

Start (3)

Free (7)

Data item Fruit Alpha pointers

1 Strawberry 0

2 Banana 5

3 Apple 2

4 Damson 6

5 Cherry 4

6 Orange 1

7

8

9

Node A position in a data

structure that can contain

data or links to other nodes.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

106

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Removing data from a linked list
To remove data from a linked list, the pointers to that data are removed and
the data bypassed.

Worked example

Removing ‘Cherry’ from this data:

Start (3)

Free (7)

Data item Fruit Alpha pointers

1 Strawberry 0

2 Banana 5

3 Apple 2

4 Damson 6

5 Cherry 4

6 Orange 1

7

8

9

✚ The pointer for the item preceding Cherry is updated to the pointer at the node

Cherry (so in this example the pointer at node 2, Banana, becomes 4).

✚ The node for the deleted item is added to the free storage location list.

When data is removed from a list it leaves spaces within the list available for new data.

This information is stored in a list of free pointers that can be reused.

Start (3)

Free (7)

Data item Fruit Alpha pointers

1 Strawberry 0

2 Banana 4

3 Apple 2

4 Damson 6

5 Cherry

6 Orange 1

7

8

9

Free pointers 7 8 9 5

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

107

My Revision Notes OCR A-level Computer Science Third Edition

Showing the results of all of these changes on a diagram:

Strawberry 0 Banana 4 Apple 2

7 8 9 5

Damson 6 Orange 1Cherry

Start 3

End 0 Free pointers

Figure 4.2 The linked list after data has been removed

Exam tip

You may be asked to draw these diagrams. It is a good idea to start with the table of

pointers then draw the diagram based on that information. It is much easier to keep

track of the data in the table.

Traversing a linked list
To traverse a linked list to output the data in order:

set the pointer value to the start value

do

 go to node (pointer value)

 output data at node

 set the pointer to value of next item pointer at the node

until pointer = 0

Now test yourself

23 The data Monkey, Lion, Cheetah, Zebra, Gorilla is stored as a linked list in that

order.

 The list is sorted alphabetically.

a) Show the data in the original order and the pointers used to sort the list.

b) Show this data with Lion removed.

c) Show this list with Tiger added.

Answers on p. 216

Exam tip

Having a mental image of the structures rather than thinking of them as abstract

concepts will help you to work with them.

A linked list is basically a treasure hunt with the directions to each location stored at

the previous one.

Stacks and queues
Stacks and queues are implementations of lists that store data in a linear
ordered fashion.

These structures have specific methods for inserting and removing data.

Traverse Travel through the

list in the defined order.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

108

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Stacks
✚ Data is added to the top of the structure.
✚ Data is removed from the top of the structure.
✚ Stacks are Last In First Out (LIFO) data structures.
✚ PUSH is the command to insert data.
✚ POP is the command to remove data.

Worked example

A stack initially contains:

23 ← Top

13

4 ← Bottom

PUSH 7 results in 7 being added to the top of the stack:

7 ← Top

23

13

4 ← Bottom

PUSH 18 results in 18 being added to the top of the stack:

18 ← Top

7

23

13

4 ← Bottom

POP results in the data at the top of the stack being removed, leaving:

7 ← Top

23

13

4 ← Bottom

✚ We call the top pointer the stack pointer.
✚ If a stack is full, data cannot be pushed on to it.
✚ If a stack becomes empty, data cannot be popped from it.

An algorithm to describe a PUSH operation in a stack is:

if stack pointer maximum then report stack full

else

 set the stack pointer to stack pointer + 1

 set stack[stack pointer] to data

endif

An algorithm to describe a POP operation in a stack is:

if stack pointer minimum then report stack empty

else

 set data to stack[stack pointer]

 set stack pointer to stack pointer – 1

endif

Stack pointer A register

that holds the address of

the top location in a stack.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

109

My Revision Notes OCR A-level Computer Science Third Edition

Exam tips

It is worth learning these algorithms but they do not need to be repeated in this form –

it is the process that is important. Try to make sense of what is happening in these

algorithms, write them down and remember what you have written down.

A stack is a data structure rather like a plate stack in a canteen: the last plate added to

the stack is the first one to be removed.

Now test yourself

24 A stack contains 3, 7, 12 with 3 the first value stored and 12 the last. Show how the

stack changes when the following sequence of commands is used:

 PUSH 9

 POP

 POP

 PUSH 17

 POP

 POP

Answer on p. 217

Queues
✚ Data is added to the end of the structure.
✚ Data is removed from the start of the structure.
✚ Queues are First In First Out (FIFO) data structures.
✚ PUSH is the command to insert data.
✚ POP is the command to remove data.

Worked example

A queue initially contains:

23 ← Start

13

4 ← End

PUSH 7 results in 7 being added to the end of the queue:

23 ← Start

13

4

7 ← End

PUSH 18 results in 18 being added to the end of the queue:

23 ← Start

13

4

7

18 ← End

POP results in the data at the start of the queue being removed:

13 ← Start

4

7

18 ← End

Exam tip

In the examples, we refer

to start and end pointers.

These can also be called

front and rear pointers, or

sometimes head and tail.

You may see examples

using this different notation;

they are the same.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

110

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Queues are often circular: data added at the end of the queue can be stored in
locations vacated at the start of the queue.

Worked example

Initially a queue has this data:

12 3 7 8 23

After the command PUSH 9 this becomes:

12 3 7 8 23 9

POP results in:

3 7 8 23 9

PUSH 15 adds the new data in the locations before the start of the queue.

15 3 7 8 23 9

A queue is like a queue to get into a cinema, but a circular queue is much harder to

imagine. You can draw a circular queue as a ring of storage locations to represent this

structure.

In that format, the last stage of the process above would look like this:

8

4
3

2 Start

End

1
0

6

5
23

9

15

3

7

Start End

Start End

Start End

End Start

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

111

My Revision Notes OCR A-level Computer Science Third Edition

✚ If a queue is full, data cannot be pushed to it.
✚ If a queue is empty, data cannot be popped from it.

An algorithm to describe a PUSH operation in a queue is:

if the start pointer = 0 and the end pointer = maximum then
report that the queue is full

elseif the start pointer = the end pointer + 1 then report
that the queue is full

else

 add data at end pointer + 1

 set end pointer to end pointer + 1

endif

An algorithm to describe a POP operation in a queue is:

if start pointer = –1 then report queue empty

else

 data = queue[start pointer]

 set start pointer to start pointer + 1

endif

Exam tip

Note in this example we are using the convention that when a queue is empty the

start pointer and end pointer are reset to –1. In a number of programming languages,

for example C++, an empty queue is indicated by setting the start and end pointers

to –1. What is important is that before attempting to pop an element from a queue the

process checks that it is not empty. When writing an algorithm, the line ‘if queue is not

empty’ should be sufficient unless there is specific guidance provided in the question.

Important points to consider:
✚ If the start pointer = the end pointer there is only one item in the queue.
✚ If this item is removed, the start pointer should be reset to –1.
✚ If the start pointer points to the maximum value for the queue, then it

needs to be reset to point at the data item at the start of the structure.

When these situations are accounted for, the algorithm becomes:

if start pointer = –1 then report queue empty

else

 data = queue[start pointer]

 if start pointer = end pointer then

 start pointer = –1

 end pointer = –1

 endif

 if start pointer = maximum then

 start pointer = 0

 else start pointer = start pointer + 1

 endif

endif

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

112

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Now test yourself

25 A queue contains 5, 3, 7 where 5 is at the start of the queue and 7 at the end.

Show how the queue changes when the following sequence of commands is used:

 PUSH 12

 POP

 POP

 PUSH 9

 POP

 PUSH 6

Answer on p. 217

Graphs
A graph is a collection of data nodes with connections between them.
✚ The data nodes are called vertices.
✚ The connections are called edges.
✚ Edges may be assigned weightings.
✚ A graph may be directional or undirected.
✚ In a directed graph, the data connection may flow in one or both

directions.
✚ In an undirected graph, the edges are all bidirectional.
✚ A graph is made up of a set of ordered pairs.

B

C

D

E

A

4

73

28

9

Figure 4.3 A directional graph

This graph might, for example, describe the possible routes between places,
with the weightings being the distance via that route.

A graph is a mathematical data structure. Graphs are used in computer
science to model real-world systems such as the internet, airline connections
or road networks.

The following set of ordered pairs describes the graph shown in Figure 4.3:

{(A,B,4),(A,C,3),(A,D,8),(B,E,7),(C,A,3),(D,A,8),(D,E,9),(E,C,2),(E,D,9)}

The same data can be used to create an adjacency matrix to describe the
same graph:

A B C D E

A 4 3 8

B 7

C 3

D 8 9

E 2 9

Vertices Nodes in a graph

that contain data.

Edges Links or lines

between nodes in a graph.

Weightings Values applied

to edges in a graph, for

example distances.

Adjacency matrix A table

showing which nodes in a

graph are connected and, if

the edges are weighted, the

weightings associated with

those links.

Revision activity

Understanding how

these processes work

is important. Read the

algorithms and write them

down in your own words to

make sure you appreciate

how they work.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

113

My Revision Notes OCR A-level Computer Science Third Edition

There are two methods for traversing a graph.

Depth-first traversal
In depth-first traversal you:
1 visit the first node attached to the starting node
2 visit all the nodes connected directly or indirectly to this first node
3 visit the second node directly attached to the starting node
4 visit all the nodes connected directly or indirectly to this second node
5 continue until all nodes have been visited.

Depth-first traversal uses a stack to store the visited nodes.

add the first node onto the stack

mark as visited

do

 visit the next unvisited node to the one on top of
the stack

 mark as visited

 add this node onto the stack

 if no node to visit remove the node off the stack

until the stack is empty

Worked example

B

C

D

E

A

Figure 4.4 Depth-first traversal

Stack D

C E E

B B B B B

A A A A A A

Visited A B C E D

The nodes are visited in this order.

B

C

D

E

A

Figure 4.5 Depth-first traversal

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

114

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Breadth-first traversal
In breadth-first traversal you:
1 visit the first node attached to the starting node
2 visit the second node attached to the starting node
3 continue until all the nodes attached directly to the starting node have

been visited
4 move to the first node attached to the starting node and repeat the

process, visiting all nodes directly connected to it.

Breadth-first traversal uses a queue to store the visited nodes.

add the first node into the queue

mark as visited

do

 visit unvisited nodes connected to first node

 add nodes onto queue

until all nodes visited

do

 remove next node from queue and set as current node

 do

 visit unvisited nodes connected to current node

 add nodes onto queue

 until all nodes visited

until queue empty

Worked example

Using the same graph above:

Queue B B D D D C E

D C C E

E

Visited A B D C E

Current A A A B B B D C E

B

C

D

E

A

4

3

1

2

Figure 4.6 Breadth-first traversal

The nodes are visited in this order.

Queue A data structure

that works the same way

as, for example, a cinema

queue. The first item into

the queue is the first item

out of the queue.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

115

My Revision Notes OCR A-level Computer Science Third Edition

Now test yourself

26 Draw the graph represented by this adjacency matrix.

A B C D E F

A 6 5

B 6

C 7

D 7 4

E 2

F 3 2

27 For the undirected graph shown,

show the results of

a) Depth-first traversal

b) Breadth-first traversal

Answers on p. 217

B

C

D

E

A

Trees
For data that does not fit into a list, for example the directory structure on a
computer hard drive, we need data structures such as trees.

Home

Documents

 Expenditure

 Electricity Council tax

 Accounts

Utilities Income Invoices Personal Music Videos

Entertainment

Figure 4.7

A tree is a hierarchical structure with data at a node related to the data in the
nodes above it.
✚ The node at the start of the structure is called the root node.
✚ The nodes immediately down from another node are called children.
✚ The nodes with children are called parents.
✚ The lines that join the notes are called branches.

Binary search tree
One specific kind of tree is the binary tree where each node is only allowed to
have two children. Each node contains:
✚ a left pointer
✚ data
✚ a right pointer.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

116

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Worked example

Using the data Cherry, Apple, Damson, Banana we can create a binary tree to store

the data alphabetically. To do this:

✚ use a left pointer to data that precedes the data in the current node

✚ use a right pointer to data that comes after the data in the current node

✚ start at the root node and decide where to add each piece of data.

Putting Cherry as the root node, Apple precedes it so goes to the left.

Cherry

Apple

The next item is Damson, which comes after Cherry so it goes to the right.

Cherry

DamsonApple

Starting at the root node, Banana precedes Cherry so we go left to reach Apple.

Banana comes after Apple so we insert it to the right of Apple.

Cherry

Damson

Banana

Apple

Retrieving data from a tree
There are various ways to retrieve data from a binary tree. Using the following
tree as an example:

A

CB

ED GF

Preorder
1 Visit the node.
2 Traverse the left sub-tree.
3 Traverse the right sub-tree.
✚ Start at the root and visit the node returning the value A.
✚ Now start to traverse the left sub-tree and visit the node B.
✚ Continue on the left sub-tree to node D.
✚ Return to the previously visited node and then traverse the right sub-tree

from this node visiting E.
✚ Return via previously visited nodes to the root and traverse the right sub-

tree C.
✚ Then on to F, then G.

This gives the output for this tree: ABDECFG

A

B C

ED GF

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

117

My Revision Notes OCR A-level Computer Science Third Edition

Inorder
1 Traverse the left sub-tree.
2 Visit the node.
3 Traverse the right sub-tree.
✚ The difference here is that we traverse the

left sub-tree without visiting intermediate
nodes.

✚ Go as far as possible along the left sub-tree
to node D.

✚ Return from that point visiting nodes B E A in that order.
✚ Now traverse as far as possible on the right sub-tree to node F.
✚ Return to the root visiting nodes C and G.

This gives the output for this tree: DBEAFCG

Postorder
1 Traverse the left sub-tree.
2 Traverse the right sub-tree.
3 Visit the node.
✚ The difference here is that intermediate

nodes are not visited until both left and
right sub-trees have been traversed.

✚ Go as far as possible along the left sub-tree
to node D.

✚ Go as far as possible on the right sub-tree at this node (B) to visit E.
✚ Return to the root visiting node B.
✚ Now traverse the right sub-tree in the same way visiting F G C.
✚ Return to the root vising the root node, A.

This gives the output for this tree: DEBFGCA

Exam tip

These are left-hand trees: they use left for ‘preceding’ and right for ‘following’. Make

sure you read the question carefully to check that it does not ask specifically for a

right-hand tree.

Binary trees can be used to represent arithmetic calculations.

+

* *

46 25

✚ Preorder traversal gives + * 6 4 * 5 2

 In mathematics this is known as prefix notation.

✚ Inorder traversal gives 6 * 4 + 5 * 2

 In mathematics this is known as infix notation.

✚ Postorder traversal gives 6 4 * 5 2 * +

 In mathematics this is known as postfix notation.

Prefix notation is also known as Polish notation and postfix as reverse Polish
notation.

A

B C

ED GF

A

B C

ED GF

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

118

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Now test yourself

28 The data Monkey, Lion, Cheetah, Zebra, Gorilla, Tiger is stored in a binary tree with

the left branch preceding the node alphabetically and the right branch following

alphabetically.

a) Put this data into a tree structure.

b) Show the data retrieved using preorder traversal.

c) Show the data retrieved using postorder traversal.

29 For the arithmetic calculation (3 + 12) / (7 – 2)

a) Draw the inorder binary tree to describe this operation.

b) Use preorder traversal to return the Polish notation for the calculation.

c) Use postorder traversal to return the reverse Polish notation for the calculation.

Answers on p. 217

Revision activity

Coding simple examples of the structures will also help you to understand them. For

most structures and most programming languages, examples and tutorials can be

found on the internet.

Hash tables
Hash tables are used to access data that is stored in a random manner.
✚ Each item maps to an address in a table containing data about that item.
✚ Hash functions are used to calculate a value from a unique number.
✚ This value is used as an index in a table containing data associated with

that unique number.

For example, mail order customers:
✚ Customer accounts are accessed randomly as customers contact the

company.
✚ The account number can be used to calculate index values for a hash table.

Simple hash functions, for example account_number MOD 50, will generate
the same value for a number of account numbers, which will cause clashes.

More complex functions are able to avoid this but duplicates may still occur.

Duplicate values can be stored at the same address in an overflow table as
either:
✚ an unordered list to be searched linearly for the correct data or
✚ stored as a linked list with the address as a start pointer.

Hash table Data structure where each item has its own unique index value.

Hash function Maps data, numeric or string, onto an integer value that can be used

as an index in a hash table.

Making links

Uses of hash tables and hashing for data encryption is covered in Chapter 3.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

119

My Revision Notes OCR A-level Computer Science Third Edition

Worked example

In a club with fewer than 50 members using 3-digit membership numbers, three

people have the following membership numbers: 123, 124, 226, 373.

The hash function k MOD m, where k is the key and m the number of locations (or

buckets) generates the following values:

123 MOD 50 = 23

124 MOD 50 = 24

226 MOD 50 = 26

373 MOD 50 = 23

Address … 21 22 23 24 25 26 27 28 …

Data for 123 124 226

↓

373

Here, member number 373 is stored at the same location as member number 123,

as either a simple linear list requiring a linear search to locate a specific value or as a

linked list.

In this case, there is a clash between customer accounts 123 and 373 so they will both

be stored using the same index value. A linked list will be created at that index value to

point to each item in the list.

The efficiency of the function is improved if m is chosen to be a prime number
close to a power of 2. For 50 locations we could choose a prime close to 64 (26),
for example 61.

Worked example

For our club with membership numbers 123, 124, 226 and 373

123 MOD 61 = 1

124 MOD 61 = 2

226 MOD 61 = 43

373 MOD 61 = 7

There are no longer any clashes using this improved function.

To avoid too many clashes, hash functions can be quite complex but some
simple examples are:

address = (k * k) MOD m

or

address = k(k – 3) MOD m

Worked example

Using address = (k * k) MOD m

For 100 accounts

The closest power of 2 is 128

The closest prime to 128 is 127 so m = 127

For account number 100

100 * 100 MOD 127

= 10000 MOD 127

= 94

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

120

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Now test yourself

30 Using the hashing function k(k + 3) MOD m

 Where k is the key field and m is the bucket size.

 If m is 251 calculate the addresses for the key fields

a) 101

b) 52

Answers on p. 217

Revision activity

As with the previous section, designing your own questions and answers will focus on

the important concepts.

Boolean algebra
✚ George Boole was an English mathematician who identified that all logical

solutions could be represented using just the values true or false.
✚ True and false comprise the Boolean data type.
✚ Since computers use switches that can be on or off, represented by 1 or 0,

these values can be used to represent the true or false values of Boolean
logic.

Logic gates and truth tables
By wiring electronic components together, we can create circuits that make
simple logical calculations.

We use truth tables to show all the possible input combinations and the
resulting output. Inputs are usually labelled with letters from the start of
the alphabet, A, B, C and so on, and outputs with letters from later in the
alphabet, P, Q, R and so on.

NOT gate
The NOT gate simply reverses the input. If we input 1 it outputs 0; if we input
0 it outputs 1.

The NOT gate, symbol is: ¬

A P

0 1

1 0

Input
A

Output
P

Figure 4.8 NOT gate

AND gate
The AND gate outputs 1 only if both of the inputs are 1, otherwise it outputs 0.

The AND gate symbol is: ∧

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

121

My Revision Notes OCR A-level Computer Science Third Edition

A B P

0 0 0

0 1 0

1 0 0

1 1 1

Inputs

Output
P

A

B

Figure 4.9 AND gate

OR gate
The OR gate outputs 1 if either or both of the inputs are 1. If both inputs are 0
it outputs 0.

The OR gate symbol is: ∨

A B P

0 0 0

0 1 1

1 0 1

1 1 1

Output
P

Inputs

A

B

Figure 4.10 OR gate

XOR gate
The XOR gate (Exclusive OR) outputs 1 if just one of the inputs is 1. If both
inputs are 0 or both inputs are 1 it outputs 0.

The XOR gate symbol is: ∨

Output
P

Inputs

A

B

Figure 4.11 XOR gate

A B P

0 0 0

0 1 1

1 0 1

1 1 0

Exam tip

In the examples, we have

used the notation identified

in the OCR specification,

but OCR will accept all

equivalent notation and

it may be easier to use

the words, NOT, AND, OR

and XOR, rather than the

symbols.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

122

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Define problems using Boolean logic
Logic gates can be combined into more complex functions.

If we are given the Boolean expression to describe a circuit we can create the
truth table for the expression.

Worked example

R ≡ ¬ (A ∨ B) ∧ C

A

B

C

R

Figure 4.12 Logic circuit

By listing all the possible input combinations and identifying the outputs at each stage,

we can use a truth table to calculate the output from these functions.

R = ¬ (A ∨ B) ∧ C

A B C A ∨ B ¬(A ∨ B) R

0 0 0 0 1 0

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 1 0 0

1 0 0 1 0 0

1 0 1 1 0 0

1 1 0 1 0 0

1 1 1 1 0 0

Boolean logic can be used to express written problems mathematically to
identify solutions.

Worked example

A family wish to buy a new car. They have £20 000 available for a car with removable

rear seats or an estate car. If they can get a hybrid car with removable seats or an

estate they are willing to pay more than £20 000.

Using the following

A = cost less than or equal to £20 000

B = Removable rear seats

C = Estate car

D = Hybrid

the Boolean expression to describe their requirements, P, is

P = (A AND (B OR C)) OR (D AND (B OR C))

which simplifies to

P = (A OR D) AND (B OR C)

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

123

My Revision Notes OCR A-level Computer Science Third Edition

P = (A OR D) AND (B OR C)

A B C D (A OR D) (B OR C) P

0 0 0 0 0 0 0

0 0 0 1 1 0 0

0 0 1 0 0 1 0

0 0 1 1 1 1 1 a)

 0 1 0 0 0 1 0

0 1 0 1 1 1 1

0 1 1 0 0 1 0

0 1 1 1 1 1 1

1 0 0 0 1 0 0 b)

1 0 0 1 1 0 0

1 0 1 0 1 1 1

1 0 1 1 1 1 1

1 1 0 0 1 1 1

1 1 0 1 1 1 1

1 1 1 0 1 1 1

1 1 1 1 1 1 1

The truth table can be used to identify suitable options.

The highlighted rows describe:

a) an acceptable choice: hybrid estate car costing more than £20,000

b) an unacceptable choice: costs less than £20,00 but without removable seats, not

an estate and not a hybrid

Now test yourself

31 Complete the truth tables for the expressions:

a) (A ∧ B) ∨ ¬C

b) ¬(A ∧ B) ∨ C

32 Draw the logic circuits for these expressions.

Answers on p. 217

Simplify statements in Boolean algebra
There are rules about how to manipulate Boolean expressions.

As with arithmetic operators, logical or Boolean operations are carried out in
order of precedence:
1 NOT
2 AND
3 OR.

We also define everything and nothing:
✚ Everything is 1.
✚ Nothing is 0.

For the NOT operator we have the following rules:
✚ ¬(¬A) = A (double negative law)
✚ A ∧ ¬A = 0 (complement law)
✚ A ∨ ¬A = 1 (complement law).

There are also rules similar to standard mathematical operations that are
very similar to * and +.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

124

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Associative (A ∧ B) ∧ C ≡ A ∧ (B ∧ C)

 (A ∨ B) ∨ C ≡ A ∨ (B ∨ C)

Commutative A ∧ B ≡ B ∧ A

 A ∨ B ≡ B ∨ A

Distributive A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)

There are also some simplification rules for Boolean algebra.

Making links

See Chapter 6. Pattern recognition is a critical element in computational thinking.

De Morgan’s rules
De Morgan’s rules are:

¬(A ∨ B) ≡ ¬A ∧ ¬B

¬(A ∧ B) ≡ ¬A ∨ ¬B

These rules can be used to simplify expressions.

Example

C ∨ ¬(B ∧ C) original expression

C ∨ ¬B ∨ ¬C De Morgan

(C ∨ ¬C) ∨ ¬B Commutative and associative laws

1 ∨ ¬B Complement law

1 Identity

Now test yourself

33 Simplify the expressions.

a) (A ∨ B) ∧ (A ∨ C)

b) (A ∧ B) ∨ A ∧ (B ∨ C)

c) ¬A ∨ C ∨ (A ∧ B)

Answers on p. 217

Manipulate Boolean expressions, and the
use of Karnaugh maps
✚ Karnaugh maps are tables of possible inputs mapped against outputs.
✚ Karnaugh maps use a slightly different order of inputs from a truth table to

make it easier to spot patterns more effective: 00 01 11 10.
✚ Karnaugh maps use pattern recognition to simplify Boolean expressions.

The rules for Karnaugh maps are:
✚ list the inputs in column and row headings
✚ ensure only one digit is different between adjacent column and row

headings, for example 00 01 11 10
✚ list the outputs for each set of inputs
✚ groups of 1s are grouped together as a block
✚ each block must contain 1, 2, 4, 8 and so on 1s
✚ no zeros are allowed in the blocks
✚ no diagonal blocks are allowed
✚ overlapping blocks are allowed
✚ wrap-around blocks are allowed
✚ blocks should be as large as possible while following these rules
✚ aim for the smallest possible number of groups.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

125

My Revision Notes OCR A-level Computer Science Third Edition

Worked example

Simplify this three-input Karnaugh map:

C\AB 00 01 11 10
Notice how

the two blocks
overlap

0 1 1 0 0

1 1 1

¬A

1 1

C

The simplified Boolean expression represented by this Karnaugh map is therefore

¬A ∨ C

When working with more inputs, we need to consider more possibilities. It is
important to note that the order of the binary values in the heading and side
columns is 00, 01, 11, 00.

Worked example

Simplify this four-input Karnaugh map:

01 1 0 0 0

11 1 0 0 0

10 1 0 1 1

00 1 0 1 1

CD\AB 00 01 11 10
Notice how the
red block wraps
around from top

to bottom

¬A ∧ ¬B

A ∧ ¬D

The expression is (¬A ∧ ¬B) ∨ (A ∧ ¬D)

We can use Karnaugh maps to simplify complex expressions.

Worked example

Simplify:

A ∧ B ∧ C ∨ A ∧ ¬B ∧ C ∨ A ∧ B ∧ ¬C

We identify the values of the inputs that result in an output of 1 for each element of

the expression separated by ∨, in turn:

For A ∧ B ∧ C the output is 1 only when A, B and C are all 1:

C\AB 00 01 11 10

0

1 1

Now add A ∧ ¬B ∧ C

C\AB 00 01 11 10

0

1 1 1

Finally add A ∧ B ∧ ¬C

C\AB 00 01 11 10

0 1

1 1 1

We can see two overlapping blocks that will include all the 1s:

A ∧ B

A ∧ C

The expression simplifies to: A ∧ B ∨ A ∧ C

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

126

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Now test yourself

34 Simplify the expression shown in these Karnaugh maps:

a)

b)

35 By completing a Karnaugh map, simplify the expression:

(¬A ∧ B) ∨ (B ∧ ¬C) ∨ (B ∧ C) ∨ (A ∧ ¬B ∧ ¬C)

Answers on p. 217–18

CD\AB 00 01 11 10

00 1 1 1 1

01 1 1 0 0

11 0 0 0 0

10 0 0 0 0

CD\AB 00 01 11 10

00 0 0 0 0

01 0 1 1 0

11 1 1 1 1

10 1 0 0 1

Exam tip

When simplifying an expression, if the question says use a particular method then do

so. Otherwise, use whichever method you are most comfortable with. You can always

check your answers using your preferred method if time allows.

The logic associated with half and full
adders, and D type flip-flops

Half-adder
A half-adder is a logic circuit with two inputs that can output the sum and
carry for the two input digits.

That is, 1 + 1 would output 0 and the carry 1.

The two outputs are labelled here as S and C for the sum and carry.

The truth table for a half-adder is:

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

From this table we can see that

S is A ∨ B

(This can also be written as S = A XOR B.)

C is A ∧ B

(This can also be written as C = A AND B.)

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

127

My Revision Notes OCR A-level Computer Science Third Edition

This circuit is a half-adder:

B

A
S

C

Figure 4.13 A half-adder

Full adder
A full adder allows the carry from a previous calculation to be carried forward
in the calculation.

To deal with carries from previous calculations, there need to be three inputs:
✚ A, B and Cin. (the input from the carry in the half-adder)
✚ it needs to produce two outputs, S and Cout.

The truth table is:

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Using two half-adders (labelled ‘HA’ in the diagram) and an OR gate, we can
construct the circuit for a full adder:

C
out

A

B

C
in

S
1

C
1

HA
S

C
2

HA

Figure 4.14 A full adder

If we combine a series of full adders, we can build a circuit for a computer that
will add two binary numbers.

NAND (NOT AND)

There is another commonly used logic gate, NAND, (NOT AND).

The circuit:

A

B
P

Can be represented by the NAND gate:

A

B
P

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

128

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Flip-flop circuits
✚ There are some important circuits that differ from the gate circuits we

have considered so far.
✚ These circuits are capable of storing information and can be used in, for

example, RAM memory.

Consider this basic circuit:

A
P

Q
B

Figure 4.15 A flip-flop circuit

The truth table for this differs from the others we have seen because when A
is 1 and B is 1 there are two possibilities:

A B P Q

0 0 1 1

0 1 1 0

1 0 0 1

1 1
0

1

1

0

This circuit can exist in either state, storing 1 or 0.

Which state depends upon the previous values stored. For instance:
✚ if the input was A = 1 and B = 0 …
✚ … then the input was changed so that A = 1 and B = 1 …
✚ … the outputs would remain as P = 0 and Q = 1.

Alternatively, if the previous inputs were A = 0 and B = 1 …
✚ … then when A = 1 and B = 1 the outputs would be P = 1 and Q = 0.

This means the previous values of P and Q would be stored.

This circuit is called a flip-flop and it can store one bit of information.

(It is called a flip-flop because it can flip the data from 0 to 1 or 1 to 0.)

By combining flip-flops, we can create a number of circuits.

Two flip-flops combine to make a D-type flip-flop.

D

E

Q

Q
–

Figure 4.16 D-type flip-flop

The D stands for delay and the D-type flip-flop:
✚ uses a clock pulse to delay the output
✚ has two inputs

✚ data
✚ clock

✚ and has two outputs
✚ the data (1 or 0)
✚ the inverse of the data (0 or 1).

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

129

My Revision Notes OCR A-level Computer Science Third Edition

Clock Input Q ¬Q Comment

0 (low) Has no effect Current state Inverse of current state Does not change state

1 (high) 0 0 1 Sets the values of the output to 0

1 (high) 1 1 0 Sets the value of the output to 1

If the clock is high (= 1), the output will be the same as the input.

If the clock is low, the circuit will not change state and will store whatever
data was present in the output before the clock changed.

Now test yourself

36 Draw the truth table and logic diagram for a half-adder.

37 Complete the table showing the output, Q, from a D-type flip-flop

Clock pulse 0 1 0 1 0 1 0 1

Input 0 0 0 1 1 1 1 0

Output Q 0

Answers on p. 218

Summary

Data types

✚ All data in a computer is stored in binary.

✚ Non-binary formats such as denary or hexadecimal can

be represented in binary.

✚ When adding binary numbers we use the fact

that 1 + 1 = 10 and 1 + 1 + 1 = 11

✚ Negative binary numbers can be represented using

sign and magnitude or two’s complement formats.

✚ Sign and magnitude requires one bit to represent a + (0)

or a – sign (1).

✚ Two’s complement works by making the most

significant bit (MSB) negative.

✚ To subtract in two’s complement, we add a negative

version of the number we are subtracting.

✚ To convert from hex to binary, we convert the hex digit

to denary then the denary value to a binary nibble.

✚ Floating-point numbers are similar to standard scientific

notation with a mantissa and exponent.

✚ The binary point in the mantissa is immediately after

the MSB.

✚ To convert a floating-point number:

✚ convert the exponent to decimal

✚ move the binary point in the mantissa according to

the exponent.

✚ Normalisation maximises the precision for a given

number of bits.

✚ For a binary number, the mantissa is adjusted so that it

starts with

✚ 01 for a positive number

✚ 10 for a negative number.

✚ To add or subtract floating-point numbers, adjust the

exponents for the numbers so that they are the same.

✚ To subtract floating-point numbers, convert to two’s

complement and add.

✚ Shifting the bits in a binary number:

✚ to the left multiplies the number by 2 for each place

✚ to the right divides the number by 2 for each place.

✚ Masks can be applied to a binary number using a logic

gate, that is, AND, OR and XOR.

✚ Masks are used to check the state of individual bits in a

binary number.

✚ The computer’s character set is represented using

Unicode, allocating a numeric value to all characters

that can be represented.

✚ ASCII is a subset of Unicode using the same numeric

codes.

Data structures

✚ Arrays define a set of variables under a single

descriptor with an index.

✚ Two-dimensional arrays have two indices similar to

coordinates.

✚ Three-dimensional arrays use three indices.

✚ A record is an unordered data structure accessed by

an attribute.

✚ The attribute must be defined before the structure

is used.

✚ Using attributes makes the structure more

user-friendly.

✚ Lists are ordered data structures accessed by an index

representing the position of the data in the list.

✚ Lists have no predefined scope (size).

✚ Tuples are immutable lists: the data cannot be

modified.

✚ Linked lists use pointers to sort data by pointing from

one data item to the next item.

✚ Linked lists use a start pointer and an end pointer.

✚ The end pointer usually points to null.

✚ Linked lists can have multiple sets of pointers to

sort the data by different attributes.

✚ Stacks are Last In First Out (LIFO) data structures.

✚ Data is added and removed from the top of the

stack.

✚ Queues are First In First Out (FIFO) data structures.
➜

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

130

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

✚ Data is added at the end of the queue and removed

from the front of the queue.

✚ Queues can be circular, so data added at the end of

the queue can be added in the locations vacated at

the front of the queue.

✚ Graphs are a mathematical data structure consisting of:

✚ vertices (data nodes)

✚ edges (links between nodes) that can be weighted

with a numerical value that relates to the linked

nodes

✚ Graphs can be unidirectional or bidirectional.

✚ Trees are hierarchical data structures.

✚ The start node is called the root.

✚ Nodes branch from the start node, then from

subsequent nodes to form a tree-like structure.

✚ Binary search trees allow only two branches from

each node.

✚ Binary trees can be traversed using inorder,

preorder or postorder methods.

✚ Hash tables are used to locate data stored in a random

order.

✚ An attribute associated with the data is processed

using a hash algorithm to identify a location for that

data.

✚ If calculated locations clash with other stored data

then a linked list, or possibly just a list, is used to

store multiple data items at that location.

Boolean algebra

✚ Four logic gates are:

✚ AND: both inputs must be true for the output to be

true

✚ OR: one or both inputs must be true for the output

to be true

✚ XOR: just one of the inputs must be true for the

output to be true

✚ NOT: inverts the input from true to false or false to

true.

✚ A Boolean expression consists of inputs combined with

logic gates to form a logic circuit.

✚ There are standard rules for manipulating Boolean

expressions, similar to those used in algebra:

✚ Double negation:

✚ NOT(NOT A) = A

✚ Association:

✚ A AND (B AND C) = (A AND B) AND C

✚ A OR (B OR C) = (A OR B) OR C

✚ Commutation:

✚ A AND B = B AND A

✚ A OR B = B OR A

✚ Distribution:

✚ A AND (B OR C) = (A AND B) OR (A AND C)

✚ De Morgan:

✚ NOT(A AND B) = NOT A OR NOT B

✚ NOT(A OR B) = NOT A AND NOT B

✚ Karnaugh maps use pattern recognition to simplify

Boolean expressions.

✚ They use tables of all possible inputs mapped

against the required outputs.

✚ By identifying blocks of 1s and the equivalent

Boolean expression, the original expression may be

simplified.

✚ Blocks must be groups of 2, 4, 8 and so on 1s with

no 0s in the block.

✚ Adder circuits are the basic building blocks of the

processor.

✚ A half-adder takes two inputs and outputs the sum

and carry.

✚ A full adder combines two half-adders using an OR

gate to output the sum and carry for three inputs.

✚ Flip-flops can store one item of data (0 or 1).

✚ A D-type flip-flop can delay a signal by one clock

pulse.

✚ A D-type flip-flop has two inputs, data and clock.

✚ A D-type flip-flop has two outputs: the data and the

inverse of the data.

Exam practice

1 a) Convert the denary number 206 into:

i) binary [1]

ii) hexadecimal [1]

b) Explain why programmers use hexadecimal. [2]

2 Convert the denary value –112 into:

a) an 8-bit binary value in sign and magnitude form [1]

b) an 8-bit binary value in two’s complement form [1]

3 Subtract the binary integer 11011 from 100000 [3]

4 a) The following 8-bit floating-point numbers use a 5-bit mantissa in two’s

complement and 3-bit exponent in two’s complement.

 Convert each number to denary:

i) 01110 001 [1]

ii) 01100 111 [1]

b) Using a normalised 8-bit floating-point number with a 5-bit mantissa and 3-bit

exponent calculate:

 01110 001 – 01100 111 [6]

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

4
 D

a
ta

 t
yp

e
s,

 d
a
ta

 s
tr

u
c
tu

re
s

a
n

d
 a

lg
o

ri
th

m
s

131

My Revision Notes OCR A-level Computer Science Third Edition

5 a) Show the byte below after having an OR applied with the masking byte.

Byte 1 0 1 1 0 1 1 0

OR 1 1 1 1 0 0 0 0

Result [2]

b) Explain what effect this has on the operand. [2]

6 The items 5, 7, 2, 8, 4 are stored in a linked list.

a) Draw a table showing these items sorted numerically using pointers. [3]

b) Draw a diagram showing the data stored in a linked list sorted numerically. [3]

c) Modify the diagram to show the item 8 removed from this linked list. [3]

7 In dictionaries of words, the words are stored in sequence of first letter, second

letter and so on. A tree created to represent this process with the four words:

 CHAIR

 CHASE

 CARD

 CASE

 would look like this:

C

H

A

R S

ED

SI

R E

A

a) Annotate the diagram, by crossing out nodes, to show how the word CHASE

would be removed from the tree. [2]

b) Annotate the diagram, by adding in nodes, to show how the word CASTLE

could be added to the tree. [2]

8 The items 8, 12, 19, 6, 14, 5, 7 are stored in a binary tree.

 Draw the left-hand tree for this data. [3]

9 Draw the graph represented by the order pairs:

 {(A,B,5),(B,A,5),(B,D,4),(C,B,3),(C.E,2),(D,B,4),(D.E,6),(E,D,6)} [3]

10 Show the traversal of the following graph using depth-first and breadth-first

traversal methods. [8]

A

B

C

D
E

11 Where k is the key value and m is 113, find the locations used to store the data

with key field 57 using the hashing algorithm k * k MOD m. [2]

12 Simplify the expressions:

a) ¬(¬A ∨ ¬B) [1]

b) (A ∨ B) ∧ (A ∨ C) [2]

c) (A ∧ B) ∨ (B ∧ C) ∧ (B ∨ C) [2]

d) (A ∨ C) ∧ (B ∨ C) [2]

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

4
 D

a
ta

 t
y
p

e
s
,

d
a
ta

 s
tr

u
c
tu

re
s
 a

n
d

 a
lg

o
ri

th
m

s

132

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

13 An online retailer provides free delivery for a customer if:

 they are an existing customer with a voucher code

 they are a new customer and open an account.

 A existing customer

 B voucher code

 C new customer

 D open an account

 P free delivery

 Write an expression for P. [3]

14 a) Complete the truth table for the expression (A ∧ B) ∨ (C ∧ D) [4]

b) Draw the logic circuit for this expression. [3]

15 Simplify the expression shown by the Karnaugh map:

CD\AB 00 01 11 10

00 1 1 0 0

01 1 1 1 1

11 0 0 1 1

10 0 0 0 0 [3]

16 a) State the purpose of a flip-flop. [1]

b) State what the inputs to a D-type flip-flop must be for the output, Q, to be

changed from 0 to 1. [2]

c) Describe the output from a half-adder. [2]

Answers available online

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

133

My Revision Notes OCR A-level Computer Science Third Edition

Computing-related legislation
There are a number of Acts of Parliament that apply to the use of computer
technology in the UK.

The Data Protection Act 1998
Computers hold vast amounts of data and it is important this data is collected,
stored and processed by organisations in ways that protect the individual.

Every organisation in the UK holding personal data, apart from those
with specific exemptions (see below), must register with a body called the
Information Commissioner’s Office and disclose what data they are holding,
why they are collecting it and how it will be used.

The Data Protection Act (1998) sets out the requirements about the collection,
processing and storage of data about individuals.

There are eight principles covered in the Data Protection Act 1998:
1 Data should be processed fairly and lawfully (that is, the data must not be

obtained by deception and the purpose of the data being collected should
be revealed to the data subject).

2 Data should only be used for the purpose specified to the Data Protection
Agency and should not be disclosed to other parties without the necessary
permission.

3 Data should be relevant and not excessive.
4 Data should be accurate and up to date.
5 Data should only be kept for as long as necessary.
6 Individuals have the right to access data kept about them and should be

able to check and get the data updated if necessary.
7 Security must be in place to prevent unauthorised access to the data.
8 Data may not be transferred outside the European Union (EU) unless the

country has adequate data protection legislation. (Note: this is still the case
even though the United Kingdom (UK) has left the EU.)

The data controller in an organisation is responsible for the accuracy and
security of data kept about the data subjects.

There are some exemptions to the principles of the Data Protection Act 1998:
✚ National security and crime: any data processed in relation to national

security or to prevent crime is exempt from the Act (e.g. some police
databases).

✚ Taxation: any data used to assist with the collection of taxes is exempt
from the Act.

✚ Domestic purposes: any data used solely for individual, family or
household use is exempt from the Act.

GDPR updates to the DPA, 2018
In 2018, the Data Protection Act was updated to comply with European
General Data Protection Regulation (GDPR).

The Data Protection Act 2018 sets out seven key principles that should be
central to processing personal data.

5 Legal, moral, cultural and ethical
issues

Data subject The

individual whose data is

being stored.

Data controller The

person who is responsible

for implementing the

provisions of the Data

Protection Act within an

organisation.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

5
 L

e
g
a
l,
 m

o
ra

l,
 c

u
lt

u
ra

l
a
n

d
 e

th
ic

a
l
is

s
u

e
s

134

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Lawfulness, fairness and transparency
✚ There must be valid reasons for collecting and using personal data.
✚ Nothing must be done with the data that would break any other laws.
✚ Personal data can only be used in a way that is fair. This means data must

not be processed in a way that is damaging, unexpected or misleading.
✚ The person or organisation collecting the data must be open and honest

with people from the start about how they will use their personal data.

Purpose limitation
✚ The purpose for processing the data must be clear from the start.
✚ The purpose must be documented and specified in privacy information

that is communicated to individuals.
✚ Data must not be used for a new purpose unless this is compatible

with the original purpose. If it is not, then additional consent must be
obtained unless there is a clear obligation or function set out in law. For
instance, if you signed up to a website’s email newsletter, they cannot
send you separate marketing emails unless that was stated in the sign-up
process.

Data minimisation
Data being processed must be:
✚ adequate
✚ relevant
✚ limited to what is necessary.

For instance, imagine you signed up to a free online revision class service that
asked for your email address, telephone number and your GCSE results. The
data being processed would not be:
✚ Adequate: they did not ask you which subjects you are studying. This is a

problem because they might not offer revision for your subject, and in fact
simply want to collect your data for other purposes.

✚ Relevant: your telephone number is irrelevant for an online class.
✚ Limited: your GCSE results might seem relevant but they do not appear to

be necessary to actually provide a revision class, therefore should not be
collected.

Accuracy
✚ All reasonable steps must be taken to ensure the personal data held is not

incorrect or misleading.
✚ Data must be kept up to date.
✚ If any data is incorrect or misleading it must be corrected or erased as soon

as possible.
✚ Challenges to the accuracy of personal data must be considered.

Storage limitation
✚ Data must not be kept for longer than necessary.
✚ How long data is kept for must be justified and specified in a policy

statement.
✚ There must be a periodic review of the data held, and data no longer

required should be erased or anonymised.
✚ Individuals have a right to have data erased if it is no longer required.
✚ Data can be kept for longer if it is only kept for public interest archiving,

scientific or historical research, or statistical purposes.

Security
✚ There must be adequate security measures in place to protect the data

held.

Making links

Security measures include

encrypting data. See

Chapter 3 for more on

encryption.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

5
 L

e
g
a
l,

m
o

ra
l,

c
u

lt
u

ra
l
a
n

d
 e

th
ic

a
l
is

su
e
s

135

My Revision Notes OCR A-level Computer Science Third Edition

The Computer Misuse Act 1990
The Computer Misuse Act 1990 makes unauthorised access to computer
systems illegal.

Under the provisions of the Act the following are criminal offences:
✚ unauthorised access to computer materials
✚ unauthorised access with intent to commit or facilitate further offences
✚ unauthorised access with intent to harm or break a computer system.

The first provision refers to unauthorised access (commonly called hacking).

The second provision refers to hacking with the intent of committing further
crimes, such as stealing money.

The third provision refers to anything that impairs the performance of a
computer system including the distribution of viruses

Hackers
There are various reasons for hacking, not all of which are with criminal
intent. There are three categories of hacker, often called black, white and grey
hat hackers.
✚ Black hat hackers are intent on causing damage or making a financial gain.

This is criminal activity and illegal.
✚ White hat hackers are ethical hackers often employed by the service owner

to seek out vulnerabilities so that they can be fixed. Because they have
advance permission from the system owners, white hat hackers are not
gaining unauthorised access and as such their actions are perfectly legal.

✚ Grey hat hackers will seek out vulnerabilities in a system in order to report
them to the system owner for a fee. Non-payment of the fee may lead the
grey hat hacker to exploit the vulnerability. Ultimately, since it is
unauthorised access, this is illegal.

Hacking Unauthorised

access to computer systems.

Digital signature A digital

code (generated and

authenticated by public

key encryption) that is

attached to an electronically

transmitted document to

verify its contents and the

sender’s identity.

Secure Sockets Layer

(SSL) A security technology

for establishing an

encrypted link between a

server and a client.

Accountability
The data controller, and all staff within the organisation, must take
responsibility for how the data is used and for compliance with the other
principles.

Exam tip

The specification requires

knowledge of the 1998 Data

Protection Act and you

must be able to provide

detailed discussion of

the principles. If you are

answering a question about

data protection in general,

however, it is perfectly

acceptable to refer to the

provisions in the 2018 Act.

Now test yourself

1 Describe two instances where inaccurate data held by a credit checking company

might cause problems for an individual.

2 Explain why it is important that data is held for only as long as necessary.

3 List four provisions of the Data Protection Act 1998.

Answers on p. 218

Making links

See Chapter 3 for more on how hackers target networks and how to prevent them.

The hats refer to old cowboy films where the villain always wore a black hat
and the hero a white one.

Features used to minimise the threat of hackers include:
✚ Digital signatures or certificates that use encrypted messages to confirm

the identity of the sender.
✚ Secure Sockets Layer (SSL), a protocol that enables encrypted links

between computers to ensure the security of a transaction.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

5
 L

e
g
a
l,
 m

o
ra

l,
 c

u
lt

u
ra

l
a
n

d
 e

th
ic

a
l
is

s
u

e
s

136

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

✚ User IDs, passwords and access rights, used for basic identification of users
and their legitimate rights to access specific data.

✚ Anti-malware software such as antivirus and anti-spyware applications
used to identify and remove suspicious software on a computer system.

✚ Firewalls, which can be software applications or hardware, that sit
between the system and external networks to prevent certain types of
data and users accessing the system; firewalls can also be set to simply
deny access to all external users.

Firewalls are the principal defence against Denial of Service (DoS) attacks,
where a user or group of users saturate the service with requests in order to
make the service unavailable to other users.

The Copyright, Design and Patents Act 1988
The Copyright, Design and Patents Act 1988 protects the intellectual property
of an individual or organisation.
✚ Copyright refers to the automatic protection given to written work, music,

photography, web content, software and films.
✚ Under the Act it is illegal to copy, modify or distribute any copyright

material, including software, without the relevant permission.
✚ The Act also covers patents, which is the intellectual property associated

with new inventions and products, for example a new computer chip.
✚ Unlike copyright, patents have to be applied for and are not automatic.

Using the internet to download free copies of copyright material (e.g. software,
films, books, music) is illegal since no money or credit will have been passed
on to the original creator.

While peer-to-peer streaming is perfectly legal, the technology has been used
to illegally share video and audio, which has had a significant impact on the
income of the copyright owners.

The Copyright, Design and Patents Act is enacted through a number of
licensing approaches.

Most commercial software will come with a licence agreement specifying
how the purchaser may use the product. In most cases, a licence key will
be required to access the software to prevent unauthorised copying and
distribution.

Proprietary software versus open source software
Much of the software we buy is written by organisations trying to make a
profit. This is called proprietary software. The source code of such software is
kept secret and is protected by copyright law.

Open source software is developed under open standards, which means its
source code is freely available to view or modify. It is often free or very low
cost.

Making links

See Chapter 3 for more on public and private key encryption.

Firewall A network security

device that monitors

incoming and outgoing

network traffic and permits

or blocks data packets

based on a set of security

rules.

Denial of Service (DoS)

An attack meant to shut

down a machine or

network by overwhelming

it with requests, making it

inaccessible to its intended

users.

Now test yourself

4 Describe what is meant by hacking.

5 Under what circumstances might hacking be legal?

6 Describe two features that can be used to minimise the threat from hackers.

7 What is the purpose of the Computer Misuse Act 1990?

Answers on p. 218

Making links

Peer-to-peer streaming

makes use of peer-to-

peer networks, covered in

Chapter 3.

Peer-to peer streaming

Allows data to be shared

directly between lots of

different users/clients rather

than downloading from a

central server.

Proprietary software

The owner of the copyright

material retains intellectual

property rights.

Open source software

The original source code is

made freely available and

may be redistributed and

modified.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

5
 L

e
g
a
l,

m
o

ra
l,

c
u

lt
u

ra
l
a
n

d
 e

th
ic

a
l
is

su
e
s

137

My Revision Notes OCR A-level Computer Science Third Edition

Open source software Proprietary software

Access to the source code No access to source code

May be free of charge or very cheap Almost always some cost involved

Users can modify the software Copyright law means users cannot modify the software

Can be installed on as many computers as necessary Extra licences must normally be obtained before installing

on additional computers

No one is responsible for any problems with the software Full support from the software developer – fully tested

before release, regular updates to fix bugs and improve

features, faulty software replaced

Usually only community support Commercial and community support available

Often of very high quality because of the community of

highly skilled developers

High-quality software because a lot of money is spent

developing it

Updates are often provided by a community of highly skilled

developers, to fix bugs and improve features

Updates provided by the developer, sometimes with extra

costs involved

✚ There are no ‘typical’ users for open source or proprietary software – many
large organisations such as Amazon rely on open source software because
they have the in-house expertise to manage it effectively.

✚ The choice will be based on the level of expertise within the organisation
balanced against the need for commercial support.

✚ Typical users of proprietary software need to have readily available
support to solve problems but are likely to have limited access to in-house
support. These users might include individuals who rely on a piece of
software but have limited expertise in finding and understanding the
community support available for open source software.

Creative Commons licences
Creative Commons is an organisation that issues licences that are less
restrictive than proprietary licences. The licenses include:
✚ public domain: which has no restrictions on use for any purpose
✚ attribution: where the work can be freely reproduced but the original

creator must be credited
✚ attribution non-commercial: where the work can only be used for non-

commercial purposes.

The Creative Commons form of licence is often referred to as ‘some rights
reserved’ as opposed to the CPDA’s ‘all rights reserved’.

The Regulation of Investigatory Powers Act 2000
The Regulation of Investigatory Powers Act provides certain public bodies,
such as the police and other government departments, with the right to
monitor communications and internet activity. For example, to:
✚ demand internet service providers (ISPs) provide access to a customer’s

communications
✚ allow mass surveillance of communications

Making links

See Chapter 2 for more on open source versus closed source applications.

Now test yourself

 8 What is the difference between proprietary and open source software?

 9 Explain two benefits of using proprietary software rather than open source software.

10 Describe when peer-to-peer streaming to share software may be illegal.

11 Describe what is meant by ‘creative commons’.

Answers on p. 218–19

Internet service provider

(ISP) A company that

provides access to the

internet, for example BT,

Virgin Media, Sky, Talk Talk,

Hyperoptic and so on.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

5
 L

e
g
a
l,
 m

o
ra

l,
 c

u
lt

u
ra

l
a
n

d
 e

th
ic

a
l
is

s
u

e
s

138

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

✚ demand ISPs fit equipment to facilitate surveillance
✚ demand access be granted to protected information
✚ allow monitoring of an individual’s internet activities
✚ prevent the existence of such interception activities being revealed in court.

The Act is intended to allow suitable authorities (e.g. GCHQ, MI6) access to
communications to prevent criminal or terrorist activities.

It was designed specifically to take account of the growing importance
and use of the internet and the use of strong encryption in electronic
communications, which criminals can use to hide their activities.

There was some concern about the range of public bodies with powers under
this Act when it was first introduced. There are examples of this Act being
used for reasons other than monitoring criminal or terrorist activities, for
example to monitor the activities of journalists.

The Investigatory Powers Act 2016 is a further piece of legislation, and some
modified regulations from it came into effect between May and August 2018.
These changes take account of advances in communication technology and
respond to the criticism of law enforcement use of data to identify journalists’
sources.

Moral and ethical issues
There are moral, social, ethical and cultural opportunities and risks
associated with digital technology.
✚ Moral relates to behaviour that is right or wrong.
✚ Social relates to society and its organisation.
✚ Ethical relates to moral principles that govern an individual’s behaviour.
✚ Cultural relates to the ideas, customs and social behaviour of a society.

Computers in the workplace
Computer technology in various forms plays a major part in the workplace.
✚ Computer technology has changed the skill set required from the modern

workforce. Instead of a human welder making cars, factories now require a
technician to maintain welding robots instead.

✚ The way we access shops and services has changed the job market
significantly, with fewer traditional high street shops and ‘in-person’ roles.

✚ Online shopping: instead of a shop assistant we now use automated
warehouses with workers collecting and packing objects.

✚ Online banking: we now use banking apps and no longer need as many
high street banks and the associated workforce.

✚ The workforce is subject to monitoring by computer technology to assess
their productivity, the way they work and their effectiveness. It can be
used to monitor any online activity, phone calls, work patterns, work
quality, social media activity and so on.

Automated decision-making
Computers are used for automated decision-making.
✚ They do this by analysing data to reach a conclusion about what action

to take.
✚ It is often used in situations where decisions have to be made frequently

and rapidly.

Now test yourself

12 Describe the purpose of the Regulation of Investigatory Powers Act 2000.

Answer on p. 219

Revision activity

Research how the

introduction of computer

technology has changed

the workplace since the

year 1990. Consider which

roles have gone and which

ones have been created.

Consider how this impacts

on education and training.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

5
 L

e
g
a
l,

m
o

ra
l,

c
u

lt
u

ra
l
a
n

d
 e

th
ic

a
l
is

su
e
s

139

My Revision Notes OCR A-level Computer Science Third Edition

✚ Automated decision-making systems use complex algorithms to reach a
decision.

✚ It is important to get these algorithms right in order to avoid incorrect
decisions that in some circumstances would have serious consequences.

✚ Automated decision-making can make some processes very impersonal.

Automated decision-making has many applications including:
✚ Electrical power distribution, which means getting electricity to each and

every home and office in the country. This requires rapid responses to
changing demand.

✚ Emergency services, who use algorithms when responding to major
incidents in order to deploy resources quickly and effectively.

✚ Stock market trading, also known as algorithmic or automated trading,
which can react to markets and make trades in fractions of a second.

✚ Industrial plant automation, for example chemical plants or distribution
centres.

✚ Airborne collision avoidance systems in planes.
✚ Driverless cars.
✚ Finance, when banks use algorithms to decide whether someone can have

a bank account or credit card based on their financial history. In the past, a
person would make this decision.

Artificial intelligence
Artificial intelligence (AI) is an area within computer science that devises
software that behaves as if it were intelligent. Examples of AI have been
around for some time and early examples include chess playing programs
that are able to analyse millions of possible alternative scenarios in order to
make a move.
✚ AI is a catch-all term for any system that displays any degree of human

intelligence.
✚ Machine learning is a subset of AI.

An artificial intelligence system will use pattern recognition to determine
the nature of objects or situations and compare this with stored information
about similar objects and situations.

AI is particularly useful for, for example:
✚ spotting fraudulent activity
✚ game playing (e.g. the computer program AlphaGo)
✚ medical diagnosis
✚ handwriting recognition
✚ face recognition.

In all these applications, AI can match or better a human’s ability to spot
patterns while processing far more data than a human can. For these reasons,
AI is a very important technology that will have a profound effect on our lives
in the future

As an example, an AI company called DeepMind uses AI to predict how 3D
proteins ‘fold’. This could contribute to a new understanding of a range of
diseases and complement existing research methods, because malfunctions
of protein folding are responsible for many diseases. By predicting the most
promising avenues for research, we can enable precise development of
effective drugs.

General AI
Examples of general AI are expert systems or intelligent knowledge-based
systems. They can perform at a level similar to human experts in certain
areas.

There are numerous examples where these systems are used on a daily basis
including:

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

5
 L

e
g
a
l,
 m

o
ra

l,
 c

u
lt

u
ra

l
a
n

d
 e

th
ic

a
l
is

s
u

e
s

140

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

✚ speech recognition systems that identify key words and patterns in the
spoken word to interpret the meaning

✚ medical diagnosis systems used to self-diagnose illness from the
symptoms and to support medical staff in making diagnoses

✚ control systems that monitor, interpret and predict events to provide real-
time process control, for example chemical plants.

All of these systems have a similar structure:
✚ a knowledge base that holds the collected expert knowledge, usually as ‘if

then’ rules
✚ an inference engine that searches the knowledge base to find potential

responses to questions
✚ an interface to connect with the user or to a system it is controlling.

Machine learning
Machine learning uses algorithms and statistical models to analyse and draw
inferences from patterns in data to develop computer systems that are able to
learn and adapt without following explicit instructions.

There are a number of different machine learning algorithms that have been
developed to solve problems such as:
✚ credit card checking that looks for unusual patterns in credit card use to

identify potential fraudulent use
✚ creating automatic filters to catch spam email
✚ to predict what you might be looking for as you type into a search engine

or online store
✚ detecting computer viruses.

Many tasks humans find straightforward are hard for computers and
require significant computer processing power. For example, relatively
simple things like:
✚ recognising objects
✚ deciding whether a station platform is full or not.

These kinds of problems require complex algorithms for a computer program
to complete. Much of the work in this area is based on artificial neural
networks, which emulate structures within the human brain.

Artificial neural networks learn from data sets with known inputs and
outputs (i.e. results) by generating mathematical weightings for particular
patterns.
✚ When new similar but unknown data is provided to the network, it uses

these weightings to predict the result.
✚ If there is any difference between the actual and predicted result, the

network applies this new knowledge to adjust the weightings it gives to
the rule it has applied.

Artificial neural networks are used for the most complex machine learning
problems, such as, for instance, driverless cars.

Intelligence is more than just pattern recognition however; there are other
aspects that define what we know as intelligence, including:
✚ creativity
✚ social intelligence – our ability to interact with other humans.

The Turing test is a test for intelligence in a computer. The test requires that a
human being should be unable to distinguish a machine from another human
being, based on the replies to questions. One interpretation of the Turing test
is: ‘Can a computer fool an interrogator into thinking it is a human being?’

Knowledge base A

collection of information in

a specific field of study.

Inference engine

Interprets and evaluates

the facts in the knowledge

base in order to provide a

potential solution.

Making links

The concept of algorithms is covered in Chapter 8.

Artificial neural network

A series of algorithms that

tries to recognise underlying

patterns and relationships

within a set of data, through

a process that mimics

the way the human brain

operates.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

5
 L

e
g
a
l,

m
o

ra
l,

c
u

lt
u

ra
l
a
n

d
 e

th
ic

a
l
is

su
e
s

141

My Revision Notes OCR A-level Computer Science Third Edition

It is worth mentioning the philosophical debate about the development
of effective AI. If such an intelligence were strong enough to have a
consciousness:
✚ Would the program have rights?
✚ Would it be right to terminate such a program?
✚ Should the programmer be accountable for the actions of such a program?

We can apply the last questions to the AI systems that are used on driverless
cars: who is responsible for any accident involving a driverless car?

Environmental effects
There is an environmental impact from the manufacturing, running and
disposing of computer systems and hardware. There is further impact
associated with infrastructure on which networks, and the internet in
general, is built on.

While there are ongoing attempts to change, there is still a ‘throw away’
culture when it comes to technology:
✚ People sometimes want frequent updates and access to the latest device

despite the previous version working perfectly well.
✚ Manufacturers have often made devices that cannot be repaired

economically, in order to reduce the price in an increasingly competitive
environment.

✚ Computers are considered hazardous waste, but are often shipped to
countries with lower environmental standards to be disposed of, in order
to save money.

✚ In some cases, children pick over the waste to extract metals that can be
recycled and sold, thus exposing them to significant danger.

Common toxic materials within a computer include:
✚ PVC
✚ bromine compounds
✚ polychlorinated biphenyls (PCBs)
✚ chromium
✚ mercury.

Environmental movements have highlighted the effects of this approach
on the world we live in, and the environmental credentials of technology
businesses is now much more in focus. This has led to:
✚ recycling devices to recover precious materials
✚ refurbishing devices so they can be used by others.
✚ devices being designed to last longer and be easily repaired when faults occur.

Computer technology is also a major consumer of energy:
✚ While most modern computers consume low levels of electricity, they are

often left running permanently and it is estimated that cloud data centres
use more energy than the aviation industry.

✚ There are large energy costs associated with extraction of the raw
materials, manufacture of the technology and the air conditioning
associated with large installations.

✚ The increasing array of computer-based devices in the modern home also
contributes to this use of energy, much of which is still generated from
fossil fuels and contributing to global warming.

Revision activity

These topics are vast and

constantly changing. It

is worth reading around

to provide insights and

information that can be

used to inform responses to

questions on these topics.

Typically, questions on

these topics allow you to

discuss any relevant areas

you may have researched.

Now test yourself

13 Explain how computer use has contributed to the decline of the high street shop.

14 Describe one way in which machines can learn how to solve problems.

15 Describe two benefits that result from the use of driverless cars.

16 Describe two uses for artificial intelligence.

Answers on p. 219

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

5
 L

e
g
a
l,
 m

o
ra

l,
 c

u
lt

u
ra

l
a
n

d
 e

th
ic

a
l
is

s
u

e
s

142

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

On the positive side:
✚ Devices have become significantly more efficient and many will

automatically go into stand-by mode to save electricity.
✚ A great deal of office work can now be done remotely using computer

networks, reducing the need for travel and therefore lowering carbon
consumption.

Computer technology also contributes to the battle against global warming
through, for example:
✚ smart home devices that provide more effective control of central heating
✚ computer-controlled car engine management that improves fuel efficiency
✚ more efficient logistics to ensure goods are moved more effectively using

computerised route planning.

Censorship and the internet
Internet censorship is the deliberate suppression of what can be accessed or
published on the internet.

Governments or organisations may impose these restrictions for various
reasons:
✚ to limit access to socially unacceptable material
✚ to limit access to politically unacceptable material
✚ to limit access to what they regard as dangerous information.

The extent to which the internet is censored varies from country to country,
depending on the political and social situations in those countries. In some
parts of the world, access to any information other than officially sanctioned
versions of the facts is strictly controlled for political reasons.

The main categories of website content being blocked by ISPs in the UK include:
✚ extremist politics
✚ extreme pornography
✚ sites that infringe copyright.

In the UK, ISPs have blocked access to various categories of site by default, for
example drugs, self-harm, violence and so on. The customer has to request to
opt out of this filtering to gain access to this blocked content.

There are arguments about the extent of the blocking in certain areas, for
example legitimate websites may be blocked because they cover sensitive
topics.

Censorship is usually carried out centrally or by ISPs at the request of, or
under instruction from, governments. However:
✚ Total control of information through censorship is very difficult to apply

unless there is a single central censor.
✚ Despite censorship, many will still share information through underlying

data transfer networks including file-sharing networks, for example the
‘deep web’ – a part of the World Wide Web that cannot be found by search
engines.

✚ Access to websites is filtered by reference to blacklists that are set up with
unacceptable sites and through dynamic examination of the website for
unacceptable content.

Monitor behaviour
People are increasingly monitored by computer technology. There are a
number of reasons why authorities or organisations might want to monitor
communications:
✚ employers, to monitor the activities of the workforce while at work
✚ law enforcement, to monitor criminal activity
✚ transport authorities, to monitor the flow of people within a transport

terminal.

Revision activity

Research the Internet of

Things (IoT) and consider its

potential for positive and

negative environmental

impacts.

Revision activity

Research areas of the world

where what we consider

‘normal’ internet access is

blocked for political or social

reasons.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

5
 L

e
g
a
l,

m
o

ra
l,

c
u

lt
u

ra
l
a
n

d
 e

th
ic

a
l
is

su
e
s

143

My Revision Notes OCR A-level Computer Science Third Edition

Some examples of monitoring include:
✚ Performance in a workplace role: some employers track how long people

take to complete tasks, how many tasks are completed in a set time, and
how many and how long people take for breaks.

✚ Internet activity while at work or school.
✚ Monitoring known criminals with tagging devices to ensure they remain

within a prescribed area or away from areas they are banned from.
✚ Internet use to ensure individuals are not accessing sites or content they

are not allowed to.
✚ The use of facial recognition to identify individuals in public areas.
✚ Young drivers reducing insurance costs through devices that monitor how

they drive, where they drive and when they drive.
✚ Social media posts and activities: these can be monitored by various

people including the press and employers. Once data is on the internet, it is
difficult to remove and may be available for many years after the event; it
may be accessed by employers, potential employers, the authorities or the
press in the future.

Many message services use end-to-end encryption, meaning only the sender
and receiver have the key to access the message. This makes it very difficult
for the authorities to monitor such communication.

Analyse personal information
Data about individuals is collected by many organisations. While the data
collected may be harmless in isolation, when combined with data collected
elsewhere it could create issues for the individual.
✚ Data is a valuable commodity and is used to analyse shopping and leisure

activities to focus advertising more effectively.
✚ Analysing data can provide significant insights into an individual’s likes,

dislikes, political views or even physical health.

The Data Protection Act provides suitable legislation about sharing data
between organisations, but any problems may not be identified until data is
shared in contravention of the Act.
✚ Organisations are obliged to identify what information they are collecting

and why, but this is often hidden away and not obvious to the data subject.
✚ The newer GDPR legislation obliges organisations to be clearer about this

when asking for data from an individual.

Data mining is an automated process that searches for patterns in large data
sets to predict events.
✚ Data mining is a valuable tool in the fight against organised crime; data

about individual activities including social media, financial transactions,
travel, internet histories and shared contact details have provided valuable
information in the fight against crime and terrorism.

✚ In business, it is used to identify patterns to inform strategic business
decisions. The data can be used to predict future sales and hence stock
requirements and effective and targeted marketing strategies to improve
business profitability.

✚ In science and engineering, analysis of human DNA sequences and
matching this to medical information has led to the development of
effective treatments for various conditions.

✚ In retail, loyalty cards are used so that businesses can track consumer
buying behaviour, allowing retailers to predict future behaviour and tailor
their marketing messages to individuals.

Exam tip

It is common for questions

to ask about these issues

from a specific viewpoint –

the employer, the

authorities or the individual.

Make sure you are aware of

both sides of the argument.

If you are asked to discuss

the issue, then you should

provide points from all

relevant viewpoints.

Revision activity

Consider the following statement: ‘Your school/college will be implementing monitoring

software on all school computers, and all computers that connect to the school

network, in order to stamp out plagiarism.’ Discuss with your classmates the moral,

legal, cultural and ethical issues that would be raised by implementing such a system.

Revision activity

It is useful to read around

these topics and keep track

of recent events in the

news. These can be used

to illustrate your discussion

in any question on these

topics.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

5
 L

e
g
a
l,
 m

o
ra

l,
 c

u
lt

u
ra

l
a
n

d
 e

th
ic

a
l
is

s
u

e
s

144

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Piracy and offensive communications

Piracy
Piracy is the unauthorised reproduction of copyright material. The Copyright,
Designs and Patents Act makes it illegal to copy content without authorisation
from the owner of the material.

There are sources on the internet that provide access to copyright material
without the required authorisation. Accessing and copying this material:
✚ deprives the author of some income for their work
✚ deprives the rightful author of the work being identified – this is known as

their attribution
✚ risks criminal charges for breach of copyright laws.

Users of pirated software often find that:
✚ the software does not work correctly
✚ they have no access to software support
✚ they may have introduced malware onto their system.

There are a number of methods used to try and reduce piracy:
✚ digital rights management uses product keys to ensure that only one user

with the decryption key can access the material
✚ watermarks that are visible on the product to show that it is not a

legitimately obtained copy
✚ attempts are made to shut down websites that are offering pirated

material.

Offensive communications
We often hear that individuals are affected very badly by unsolicited and
offensive communications. Social media provides cover for those who wish to
be offensive to others, especially celebrities and vulnerable individuals most
susceptible to this type of abuse:
✚ cyberbullying
✚ trolling
✚ stalking.

Under the Communications Act 2003 it is a criminal offence to send indecent
or offensive communications and if traced the offender may end up with a
criminal record.

The Act is in place to deal with communications that contain credible threats
of violence, such as trolling or stalking, or communications that contain
material grossly offensive to identified individuals and intended to cause
harm.

The Communications Act has several provisions that impact on the use of
computer technology.

Now test yourself

17 Describe two environmental benefits of widespread computer use.

18 Explain why censorship of the internet by a government might be problematic for

the citizens of that country.

19 Describe what is meant by data mining.

20 Identify three ways computers may be used to monitor the workforce in a

distribution warehouse.

21 Describe three environmental problems related to the use of computer technology.

22 Explain why access to some websites on the internet may be censored in the UK.

Answers on p. 219–220

Cyberbullying Any form

of bullying that takes place

online.

Trolling Deliberately

upsetting people with social

media posts in order to

start an argument or offend

someone.

Stalking The use of the

internet, or other electronic

means, to harass and

intimidate someone.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

5
 L

e
g
a
l,

m
o

ra
l,

c
u

lt
u

ra
l
a
n

d
 e

th
ic

a
l
is

su
e
s

145

My Revision Notes OCR A-level Computer Science Third Edition

Among the provisions in the Act are that it is illegal to:
✚ access an internet connection with no intention to pay for the service,

making it a crime to piggyback onto other people’s Wi-Fi without their
permission

✚ send offensive communications using any communications system,
including social media.

Those who repeat the messages are also subject to the provisions of this Act,
and re-sharing or re-posting an offensive message may be illegal.
✚ Governments have pressed social media providers to put into place

systems to deal with offensive communications.
✚ There is evidence that filtering of offensive messages by social media

providers has improved significantly, but there may be scope for more
action on the matter.

Layout, character sets and colour paradigms

Layout
The layout of a document has a significant impact on how effective it is.

For example, when visiting a website on a computer the viewer will scan the
page for key information. For text-based sites, people who read left to right
will scan in an ‘E’ pattern:
✚ scan down the left-hand side first
✚ then scan the first few words of the first two or three paragraphs.

This means the important information or ‘hook’ needs to be in the left-hand
vertical column or in the first few words of the first two paragraphs.

TOPICSTOPICS DOWNLOADSWEBINARS

Webtech Webinars

DICTIONARY TUTORIALS Q&A AI GUIDE TRENDING VIRTUAL MORE f inWebtech

1

3 4

2

f inS Q&A AI GUIDE TRENDING VIRTUAL MORE

2

Figure 5.1 Reading pattern for text-based website accessed from a computer

Exam tip

This is an area where the news provides many examples of offensive communications

and how they have affected individuals. Many refer to celebrities but there are

many more cases where vulnerable individuals are subject to bullying with terrible

consequences. It is worth researching websites that provide support for these

individuals, to be aware of ways to mitigate the effects of such activities and bring the

perpetrators to justice.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

5
 L

e
g
a
l,
 m

o
ra

l,
 c

u
lt

u
ra

l
a
n

d
 e

th
ic

a
l
is

s
u

e
s

146

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

With graphics-based sites the viewer scans in a ‘Z’ pattern:
✚ scans across the top row, for example looking at the menu options
✚ scans diagonally from the top right to the bottom left-hand corner
✚ scans across the bottom row looking for important links.

This means for a graphics-heavy site, key information should be horizontally
along the top or bottom row.

Home About News Departments Parents and Pupils Admissions Contact

2

3 4

1

Figure 5.2 Reading pattern for graphics-based website accessed from a computer

For different cultures this needs to be varied. For readers who read right
to left, for example Arabic, this pattern is generally mirrored from right to
left. So in Figure 5.1 an shape and in Figure 5.2 a

Z
.

✚ Knowing who is visiting the site – for instance, knowing which country
they are in, from their IP address – will help to determine the most
effective layout for a website and the most effective design.

✚ Knowing which device is accessing the website is also very important
because the screen sizes are so different. Website developers will adapt the
layout according to whether the website is accessed from a smartphone,
tablet or laptop/desktop.

Character sets and colour paradigms
Initially electronic communication used ASCII, which was based on a basic
set of English characters used for telegraph systems. ASCII provided just 128
characters.

The need to be able to communicate in languages other than English, use
scientific notation or include graphical symbols was addressed through the
creation of the Unicode character set. Unicode can represent over 1.1 million
characters.

The large number of different languages, and graphical and scientific symbols
provided by the Unicode character set makes it possible to produce material
that is accessible to a wide audience and can meet the demands of most
disciplines.

Colour paradigms refer to established ideas about the messages that different
colours send, and how colours can work together within a design. Exactly the
same information may be communicated quite differently simply by using
different colours. However, it is important to note that some of these ideas are
deeply informed by culture:
✚ in some cultures the colour red is considered a lucky colour
✚ in other cultures red signifies danger.

A designer must also take account of the Equality Act 2010 and Disability
Discrimination Act 1995 as it is illegal to discriminate against a group of

Paradigm A common set of

ideas or ways of thinking.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

5
 L

e
g
a
l,

m
o

ra
l,

c
u

lt
u

ra
l
a
n

d
 e

th
ic

a
l
is

su
e
s

147

My Revision Notes OCR A-level Computer Science Third Edition

people when providing a service. This makes it important for it to be easy to
navigate between pages for all users. For example:
✚ For the partially sighted, a website should provide:

✚ alternative text for images
✚ screen magnification
✚ the ability to adjust the contrast
✚ good contrast between the text and the background
✚ clear character sets that can be read easily.

✚ For people with hearing impairments, the site should provide a transcript
or closed captions for any video footage, and any sound notifications
should also have a visual signal.

✚ For people with physical disabilities, there could be the ability to navigate
using voice commands.

Revision activity

Computer technology has

the ability to improve the

lives of those living with

disabilities. Research how

developments in computer

technology have impacted

on the lives of people

with learning disabilities in

education.

Making links

See Chapter 3 for

information on CSSs,

which is used to define the

presentation of information

on a website. The same

HTML content can be made

to look radically different

with a different CSS applied.

Now test yourself

23 Describe two methods to reduce piracy.

24 Define the term ‘colour paradigm’.

25 Discuss how legislation in the UK protects individuals from offensive

communications.

Answers on p. 220

Summary

Computing-related legislation

✚ The Data Protection Act 1998 sets out the rights of

individuals and the responsibilities of organisations

regarding the storage of personal data.

✚ The Computer Misuse Act 1990 makes unauthorised

access illegal. It is this Act that makes hacking and the

distribution of malware an offence.

✚ The Copyright, Design and Patents Act 1988 protects

the intellectual property rights of individuals and

organisations.

✚ The Regulation of Investigatory Powers Act 2000 gives

public bodies the right to monitor communications and

internet activity.

Moral and ethical issues

Computers in the workforce:

✚ increase efficiency and productivity

✚ reduce cost and provide more online services

✚ replace repetitive roles with more technical support

roles

✚ replace many jobs with low-level service roles.

Automated decision-making:

✚ is used when it is impossible for a human to react

quickly enough

✚ uses algorithms that make decisions that affect

people’s lives

✚ for example whether to protect the driver or the

pedestrian in a potential collision.

Artificial intelligence:

✚ is used in expert systems to make the experience of an

expert in the subject available more widely, for example

in diagnosing illness

✚ uses a knowledge base and an inference engine to

make decisions/suggestions

✚ is commonplace in voice recognition technology, for

example smart home devices

✚ is used in neural networks for pattern detection.

Environmental effects:

✚ ‘throw-away’ attitude to technology a concern for the

environment

✚ many components in computers are toxic

✚ discarded computer equipment is often sent to

countries with lower environmental standards

✚ energy and valuable resources are used to

manufacture computer equipment

✚ energy use for computers and large data centres is

considerable and contributes to global warming

✚ computer technology is behind the development of

environmentally friendly technology

✚ the use of computers for remote working and remote

meetings cuts down on carbon consumption caused by

travelling.

Censorship and the internet:

✚ Censorship is the deliberate act of suppressing content

deemed unsuitable.

✚ Censorship can be used to protect individuals.

✚ Censorship can be used to repress individuals by

restricting their freedom to communicate or view

different points of view and promote an ideology.

Monitor behaviour:

✚ used to monitor criminal and terrorist activity in order

to protect society

✚ used to monitor people and productivity in the

workplace

✚ closed-circuit television(CCTV) and facial recognition

can monitor people’s activities

✚ phone locations can track individuals.

➜

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

5
 L

e
g
a
l,
 m

o
ra

l,
 c

u
lt

u
ra

l
a
n

d
 e

th
ic

a
l
is

s
u

e
s

148

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Analyse personal information:

✚ Data can reveal insights into behaviour and preferences,

for example commerce and social media sites will

promote products that are likely to be of interest.

✚ Data mining can identify societal trends or research

patterns associated with a medical condition in order

to find a treatment or cause.

Piracy and offensive communications

✚ Piracy is theft and deprives individuals and

organisations payment for their intellectual property

✚ Offensive communications are illegal through the

Malicious Communications Act

✚ Offensive communications include cyber bullying,

trolling, stalking and the distribution of offensive

materials

Layout, character sets and colour paradigms

✚ the layout of a document or website affects who can

access it

✚ the Equality Act 2010 makes it illegal to discriminate

against providing a service to a group of people

✚ websites must be accessible and easy to navigate for

all groups of people.

Typically, in order to meet legal requirements, websites will

include:

✚ readability features such a large text, magnifier options,

alternative text and transcripts.

Colour paradigms should consider:

✚ interpretation of colours by groups, for example by

ethnic origin

✚ the effect of the colours used on readability for all

groups of people.

When choosing a character set, its readability should be

taken into account, for example san-serif fonts are easier

to read on screen.

Exam skills

Questions for these topics are likely to be longer

discussion questions requiring extended writing.

They are marked on the quality of the communication as

well as the quality of the argument. Simply listing facts is

not enough. Before answering the question, write a plan by

listing any facts or points from all sides of the discussion.

Try to match these points against each other and in

order of importance. Use this template to structure your

response. Try to justify any opinions with facts and use the

balance of the argument to support any conclusions.

You will normally be expected to:

✚ Demonstrate your knowledge and understanding of the

topic.

✚ Apply this knowledge by making arguments, both

for and against, backed up with evidence and sound

reasoning.

✚ Evaluate all the arguments and come to a well-

reasoned conclusion, taking into account all of the

points you have made. There is not a ‘right’ or ‘wrong’

answer, so it doesn’t matter which conclusion you

come to – as long as it takes into account all of your

points and is based on reasonable arguments.

A typical mark scheme for these questions will identify the

points that might have been made and how these points

were used to discuss the topic in a balanced way, and how

this discussion was used to support a conclusion.

Exam skills

A sample mark scheme for a question on the confidentiality

of data held on a computer might look something like this.

Mark band 6–8. High-level response

✚ Discussion of the effects on the confidentiality of data

held on computers.

✚ Positive and negative points have been made.

✚ A number of measures to protect the confidentiality

of the data have been described. These points have

been linked to negative or positive points affecting the

confidentiality of the data.

✚ The candidate has used appropriate technical

terminology throughout.

✚ There are no spelling errors or errors of grammar.

Mark band 3–5. Medium-level response

✚ The discussion of points is from one viewpoint, either

positive or negative.

✚ A number of measures related to protect the

confidentiality have been identified.

✚ The candidate has used some technical terminology in

the response.

✚ There may be spelling errors or grammatical errors, but

they are not obtrusive.

Mark band 0–2. Low-level response

✚ There are a limited number of points about

confidentiality of data.

✚ The candidate has failed to use technical terminology

in the response.

✚ Spelling errors and grammatical errors are obtrusive.

Points may include (use a bulleted list like this to plan your

response):

✚ Positive:

✚ access to the data is required to view it

✚ access to data can be monitored

✚ security measures can be put in place.

✚ Negative:

✚ files can be copied

✚ data can be shared

✚ the system may be hacked without triggering any

alarms

✚ harder to ensure all copies of data removed.

✚ Measure that can be used:

✚ passwords

✚ encryption

✚ physical security

✚ firewall.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

5
 L

e
g
a
l,

m
o

ra
l,

c
u

lt
u

ra
l
a
n

d
 e

th
ic

a
l
is

su
e
s

149

My Revision Notes OCR A-level Computer Science Third Edition

Exam practice

1 Discuss the implications under the Data Protection Act 1998 for a mail order

company who keeps detailed records of customers and wishes to share

these with a sister company selling a different range of products. [8]

2 Discuss the potential consequences for an individual posting images and

thoughts on social media. [8]

3 Discuss the measures a website developer should put into place to ensure

they do not disadvantage people with disabilities. [8]

4 ‘Computers should be used to monitor workplace communications and work

progress in the office of a large bank.’

 Discuss to what extent you agree with this statement. [8]

5 Discuss the way computers have changed how people spend their leisure

time and the impact this has had on their well-being. [8]

Answers available online

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

150

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Computer professionals have developed techniques to solve real-world
problems and turn them into computer solutions. Collectively these
techniques are known as computational thinking. Computational thinking
does not require a computer but can be implemented on one.

Computational thinking is important because some of the biggest problems
facing people are difficult to understand.

At its heart, computational thinking is used to change a messy problem into
something that can be:
✚ understood
✚ formally represented and solved.

Computational thinking involves algorithmic thinking. Algorithmic thinking
requires the following stages:
1 Understand the problem: this can be a serious stumbling block. How do

we know that we understand a problem sufficiently? This does not mean
understand the solution but what it is we are trying to solve.

2 Formulate the problem: in this stage we need to produce a concise
representation of the problem. This will normally involve abstraction and
some form of mathematical notation.

3 Design an algorithm: once a clear representation of the problem is
obtained, we can set about designing algorithms that apply to, and solve,
the representation of the problem.

4 Implement the algorithm: in this stage we write computer code that
implements the algorithm.

5 Run the code and solve the original problem: in this stage we actually try
out the solution. After this, it is necessary to evaluate the results to see if
they have solved the problem.

There are well-defined thinking approaches that can be deployed when
solving problems.

Thinking abstractly
The nature of abstraction
Abstraction is a representation of reality. It is the process of hiding non-
essential detail, leaving just the key elements of the problem. This process
requires us to recognise what is important in a problem, and then formulate it
in a way that can be passed to an algorithm. The algorithm can then be used
to design a coded solution.

Examples of abstraction include:
✚ variables
✚ objects
✚ layers
✚ data models
✚ data structures
✚ entity-relationship diagrams.

6 Elements of computational
thinking

Computational thinking

A set of problem-solving

methods that express

problems and solutions in

ways that a computer could

execute.

Abstraction Hiding details

or attributes when studying

objects or systems to focus

attention on the essential

elements of the problem

Object An object is an

abstract data type used by

a programmer – see later in

this chapter.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

151

My Revision Notes OCR A-level Computer Science Third Edition

Data abstraction is using a data structure without being concerned about how it
is implemented. Programmers might well use a subprogram to manage a stack,
queue or linked list without needing to know how those data structures are
being implemented. Large projects programmed by teams often use routines
developed by others without needing to know how they work, just that they do.

Generalisation is part of the process of abstraction. By grouping together
items with similar features that are relevant to the problem (i.e. ignoring
different features that are irrelevant to the problem), a common approach
may already exist or can be created. From experience of using approaches to
solutions, these can be reused to solve similar problems.

All high-level coding is an abstraction because one high-level command may
well require several machine code instructions to complete. The programmer
does not need to know how the high-level command is implemented by the
computer at a machine code level.

The need for abstraction
Abstraction enables the programmer to focus on the important aspects of
a problem rather than getting bogged down with messy and unnecessary
detail. This:
✚ enables teams of programmers to work on different aspects of a problem

and
✚ enables programmers to use pre-built and built-in functions without

concerning themselves with how they work.

Layering is an example of abstraction. How one layer is implemented is
of no concern to another layer. For the programmer developing one layer
of a system, all that is necessary is to know what the input requirements
are for the next layer and what outputs to expect from the previous layer.

The differences between an abstraction and
reality
Abstraction is just a simplification of reality. Entities in the real world are
represented by containers such as variables or data structures. The real-world
data is the values stored in these containers.

In object-oriented programming, the objects are abstractions of real-
world entities and the attributes and methods represent the real-world
characteristics and actions.

Making links

The major data structures are covered in Chapter 4.

The relationship between high-level and low-level code is described in Chapter 2.

Layers Organising programs

into separate functional

components that interact

in a hierarchical way. Each

layer usually only has an

interface to the layer above

it and the layer below it.

Data model An abstract

model that organises

elements of data and how

they relate to one another

and to real-world entities.

Entity-relationship

diagram A graphical

model to represent the

relationships between

different entities. See

Chapter 3.

Generalisation Solving

new problems based on

previous problems for

which we have an existing

solution. This involves using

an algorithm that solves

a problem and adapting

it so that it solves similar

problems.

Example

When designing a game where characters move around a virtual landscape, the

programmer will remove unnecessary details when planning the layout of the

landscape.

The characters will be replaced by simplified versions. Objects such as plants and

trees can be represented by blocks of colour or simple shapes. None of this detail is

significant to the layout of the game. Therefore, it is removed so that the programmer

can simply focus on how the character moves around the environment.

Including such complex detail is unnecessary, would be time-consuming to program

and would significantly impair the performance of the game.

Making links

The TCP/IP layers are an

example of abstraction.

Each layer does not need to

know how the others work.

The layers are developed

and modified independently

of each other, but it is

important they remain

compatible with each other.

See Chapter 3 for details.

Making links

See Chapter 2 for more

detail about object-oriented

programming techniques.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

152

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Devise an abstract model for a variety of
situations
A computer program is effectively an abstract model of a real-world situation.
When developing such a model we first need to consider:
✚ Can the problem be solved using a computer program?

If yes, then we need to consider:
✚ What are the key features of the problem?
✚ How will it be used?
✚ Who will be using it?
✚ What is the skill set of the target user group?
✚ What features are required by the target audience for the program?

By considering all of these factors, only the relevant features need be
included, and unnecessary detail, not required by the target user group,
can be omitted.

Thinking ahead
In computing, thinking ahead involves planning inputs and outputs. This is a
useful technique to apply to a range of problems. For example, asking:
✚ What answers do we need?
✚ What do we need to know or have before we can get what we need?
✚ How can we turn the inputs into the required outputs?

Identify the inputs and outputs for a given
situation
Thinking ahead about how the software needs to function, and how it will be
used, provides the programmer with insights that will inform the design.

Example

When fitting a new room such as a kitchen, interior design programs are often used.

These programs will start with some basic objects that can be resized or modified:

✚ basic room shapes

✚ standard graphics for door and window positions

✚ blocks to represent fixtures and fittings, like cupboards and fridges

✚ a range of textures and colours that can be applied to the objects.

The detail of these objects is not required when designing the basic layout. For instance,

the model does not need to show how the hinges on the cupboards will operate. Using

this simplified model, it is possible to construct a working layout to examine how the

room will function and what fixtures and fittings can be incorporated.

Note, too, that by using sets of objects that can be selected and placed in the design, it

simplifies the use of the program, making it accessible to a wide range of potential users.

Now test yourself

1 Describe what is meant by the term abstraction.

2 Describe what is meant by the term generalisation.

3 Describe what is meant by the term data abstraction.

Answers on p. 220

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

153

My Revision Notes OCR A-level Computer Science Third Edition

The output from any software is the key element for the design. When the
functions of a program are described, they are essentially a description of
what outputs it will produce. These may be:
✚ on-screen information
✚ printed data
✚ data to be stored
✚ actions for the computer to complete.

In order to produce the necessary outputs, the program must have the
necessary inputs. At this stage, the source of those inputs and the order and
format in which they are supplied is an important consideration.

The designer must decide upon the data types and data structures required
for the proposed solution to the problem.

Determine the preconditions for devising a
solution to a problem
Preconditions are the requirements that must be met before the program
can run.

Some of these preconditions can be specified within documentation and can
include:
✚ requirements for the device specification to be able to run the program
✚ the operating system required to run the program
✚ any necessary additional software or hardware.

When planning the development of a program or routine:
✚ subprograms will need the correct data passed to them
✚ input data should be validated to ensure it meets essential criteria
✚ actions need to be validated to ensure they will not crash the program if

erroneous results are returned.

Preconditions need to be established to ensure the routine or program will
execute successfully. For example, when creating an algorithm to traverse a
tree we need to know:
✚ what type of tree it is, for example binary
✚ if it is ordered
✚ the traversal order.

The nature, benefits and drawbacks of
caching
A cache is a temporary store where instructions or data that are likely to be
needed are anticipated and stored, ready for fast access. This is an illustration
of ‘thinking ahead’.

Cached data can replace the need for recalculations, or the need to transfer
data from slow-to-access storage online or on disk.

Example

Some of the outputs and inputs for a simple maze game might include:

Outputs Inputs

Image moves on screen Key presses for direction

Sound to indicate collision with wall Key press for movement

Sound when reward objects intercepted Player name

Points score displayed

Timer

Making links

In Chapter 4 the algorithms

for popping data from a

stack or a queue include

checking that the stack

or queue are not empty

before trying to remove an

item. This is an example

of a precondition that

was required when these

algorithms were written.

Preconditions

Requirements that must

be met before a program

can run.

Cache A temporary store

where instructions or data

an algorithm anticipates will

be needed are stored, ready

for fast access.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

154

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Caching is used extensively for web access, where frequently used pages are
stored for future use. This means:
✚ content can be loaded with minimal delay
✚ any images and text do not need to be downloaded every time the page is

visited.

This frees up bandwidth for other tasks.

The size of the cache determines how effective it is:
✚ too small and it may not be able to store sufficient data to be effective
✚ too large and the longer it will take to search it.

Prefetching is where an algorithm predicts which instructions or data are
likely to be required by a program. The data likely to be needed next is fetched
and stored in a cache ready to be used by the program, minimising delays
waiting for data or instructions to be fetched from storage.

Prefetching can significantly improve the performance of a program or
subprogram, but is limited by the accuracy of the algorithm: it is only
predicting what will be required and may not get it right.

The need for reusable program components
When developing programs, there are certain functions that are commonly
used, for example print, random number generation and sort routines. These
commonly used functions are often pre-written and provided as libraries
within the programming language, for reuse by the programmer.

The advantage of reusing pre-written components are:
✚ they are reliable and bug free, having been tested and used many times
✚ they save time for the programmer
✚ they save on development costs for a project
✚ in some cases, for example mathematical techniques, they will be

optimised by experts for computational efficiency.

To provide the necessary features of a coded solution, it will often make
sense to modify a similar pre-written code segment or function to fulfil the
requirements. This can reduce the time taken for development since it may
only be the new elements that will require detailed testing. However, there
may be compatibility issues, which mean this is not possible. In this case, it is
more reliable and effective to start from scratch.

Making links

The description of how cache is used in a computer system is explained in Chapter 1.

Prefetching Loading

a resource before it is

needed. This can refer to

commonly used web pages

being requested before they

are used. In this section, we

are talking about instruction

prefetching where the CPU

caches instructions and

data blocks before they are

executed.

Example

In our game there will be pre-written code for:

✚ movement control

✚ timer routines

✚ high-score tables

✚ rendering of images

that can all be reused in different games.

Now test yourself

4 Identify the inputs and outputs for an automatic teller machine (ATM – cashpoint).

5 Describe what is meant by preconditions.

6 State two advantages of using pre-written program components.

7 Describe how prefetching might help to improve computer performance.

Answers on p. 220

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

155

My Revision Notes OCR A-level Computer Science Third Edition

Thinking procedurally
When writing programs, thinking about all aspects of the problem
simultaneously can be impossible. Most problems are multifaceted and need
to be broken down into smaller, more manageable tasks that are easier to
understand and resolve.

Identify the components of a problem
The first stage of thinking procedurally is decomposition. Decomposition is
the process of breaking down a problem into smaller and smaller parts until
each aspect of the problem can be dealt with effectively.

Top-down design is used to make complex problems easier to understand and
solve. Each branch is repeatedly subdivided until the problem is broken down
into tasks at the lowest level that are able to be solved.

Main
component 1

Main
component 2

Sub-problem
1

Sub-problem
2

Sub-problem
3

Sub-problem
4

Big Problem

Figure 6.1 A tree diagram showing the hierarchical structure for top-down design

This example assumes that a hierarchical structure is able to represent
the problem. Event-driven programs do not fit easily into this model since
there are parallel strands for linked objects. However, the top-down design
approach can instead be used for the processes within the linked objects.

Identify the components of a solution to a
problem
Once the problem has been broken down into its component parts, solutions
can be created for each of them. Each solution could be:
✚ a pre-written function or subprogram
✚ an existing solution that can be modified
✚ an individual task that can be allocated to a programmer.

Ideally, each of the sub-problems represents a single, self-contained solution
module that can be developed and tested independently. Each component of a
solution will eventually need to be integrated into the main solution.

Determine the order of the steps needed to
solve a problem
Having identified the individual modules required to solve a problem, the
order in which they are developed and tested is important.

Data passes from one component of a solution to the next (just like with
layers of network protocols, as seen in Chapter 3):
✚ If the data required for one module comes from another, then the order in

which these modules are developed becomes crucial.
✚ Data from one module must be checked for validity before being passed on

to another.

Decomposition Breaking

down a complex problem

into smaller parts that are

easier to understand. The

smaller parts are simpler to

work with in order to find or

develop solutions.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

156

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Similarly, when a program is being used, it is important for processes to be
executed in the correct order – for instance, it would be pointless to make the
payment module for an online store available before any purchases are made.

For a large program with several programmers working together, a plan
showing the order in which modules are needed, and those which can be
produced simultaneously, is required.

Identify sub-procedures necessary to solve a
problem
A sub-procedure, or procedure, is a named part of a larger process that may be
used several times, like a function, but unlike a function, it will not return any
values to the calling code.

Sub-procedures are used to solve sub-problems within the program and it is
important to identify the sub-problems that form part of the main task. The
order in which these problems are dealt with can be important.

Worked example

This project plan shows how three programmers, represented by different colours, might be allocated to complete a

project over nine weeks.

The plan indicates which sub-problems depend on others. For example:

✚ Sub-problems 1, 4 and 8 are not directly connected so can be started simultaneously by three different programmers

(red, green and purple).

✚ Sub-problem 2 depends on sub-problem 1 and sub-problem 3 on sub-problem 2 so they cannot be started until the

previous sub-problem has been completed.

✚ In week 4, the green programmer splits their time between sub-problem 4 and sub-problem 7.

By careful planning, the three programmers have completed a task that would take one programmer three times

as long.

Sub-problem 1

Task Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

Sub-problem 2

Sub-problem 3

Sub-problem 4

Sub-problem 5

Sub-problem 6

Sub-problem 7

Sub-problem 8

Sub-problem 9

Sub-problem 10

Making links

The concept of multiple programmers working simultaneously on a problem relates to

section later in this chapter, ‘Thinking concurrently’.

Example

With our game example, we might identify several sub-problems that need to be

solved in order, for example:

✚ We will need a scoring system before we can set up a high-score table.

✚ We need to set up movements before we deal with interactions with other objects.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

157

My Revision Notes OCR A-level Computer Science Third Edition

Thinking logically
Thinking logically requires inferring things from what is known. In
programming, it requires understanding where decisions need to be made
and their consequences.

There are basically two approaches.
✚ Induction proposes a hypothesis (or idea) based on observations. When

developing a solution for a stakeholder, the programmer or analyst will
observe and collect evidence of existing systems in order to propose a
solution. This approach is particularly useful when modelling real-world
systems.

✚ Deduction uses underlying rules to determine how a system should
work. When developing a simulation or model for a scientific or
mathematical problem, the known rules will be applied to produce the
required output.

Identify the points in a solution where a
decision has to be taken
When developing a computer solution to a problem, choices have to be made
including the:
✚ choice of programming paradigm or approach (e.g. procedural or object-

oriented language)
✚ programming language that provides the most appropriate features to

solve the problem
✚ peripheral devices required.

Once these initial decisions are made, planning where decision points in the
program occur is essential. It is necessary to understand where decisions
need to be made and the consequences of these decisions.

To think logically when solving a problem, it is necessary to:
✚ identify when decision-making is required
✚ identify what decisions need to be made
✚ identify the conditions to enable a decision to be made
✚ understand the interactions between decisions
✚ apply decision-making to the real-world problem.

Identifying these decision points can be achieved in several ways, but often a
flowchart or a pseudocode plan for the solution are used. In flowcharts, the
decisions are usually shown as a diamond shape with two paths, one for true
and one for false.

Paradigm A programming

paradigm is an approach

to programming, not a

particular type of language.

Programming languages

can be classified by their

features, but many will fit

more than one paradigm.

Now test yourself

 8 Describe what is meant by decomposition.

 9 Explain why it is beneficial to identify the components of a problem.

10 Explain why it is important to consider the order of the steps needed to solve a

problem.

Answers on p. 220

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

158

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Start

List is sorted

Go to start of list

Set flag to false

Move to next
item in list

Swap items and
set flag to true

Is this item and
the next in the list

in order?

Have we
reached the end

of the list?

Is the flag true?

No

No

Yes
Yes

Yes

No

Figure 6.2 Flowchart for a bubble sort

Determine the logical conditions that affect
the outcome of a decision
When developing a solution to a problem, decisions need to be made.

The choice of programming language will determine what is possible.
Alternatively, what is required will determine the choice of programming
language. When developing a program for a small embedded system, an
assembler is a more likely choice than a high-level language.

The format of a decision may affect the structure of the program being
developed. A simple change, for example from ‘greater than or equal to’
to ‘less than’ in a condition, could make a significant change to the code
structure that follows.

For example, the choice of repeat or while iterations can affect the outcome.
A repeat loop will always execute at least once so is unsuitable when there is
a possibility the loop may never need to execute.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

159

My Revision Notes OCR A-level Computer Science Third Edition

Determine how decisions affect flow through
a program
As well as decisions made in the program to determine how to proceed, there
will be decisions made by the user that affect the flow through the program.

When developing software, it is necessary to:
✚ identify where the user needs to make decisions
✚ identify and provide for all the possible outcomes from those decisions
✚ prepare routes through the program for all the possible outcomes from

decisions.

Good decision-making and planning for the outcomes of all possible decisions
are key to an effective program.

Where a decision point occurs within the program can also have an impact
on the code.

For example, if we are checking a password for length, use of upper case,
lower case and numbers, the decision about when to check the length of the
password is important:
✚ Check the length and set a flag. Then check for upper case, lower case and

numbers. This means each password is checked for all attributes each
time.

✚ Check and reject passwords that are too short. This means that only
passwords that are long enough are checked for other attributes.

The second approach is potentially much more efficient.

Thinking concurrently
Concurrently means ‘at the same time’. Sometimes it can be more efficient
to consider how to solve more than one problem at the same time. This
can often result in more efficient algorithms that are quicker or use less
computing resource.

If we have more resources, such as parallel processors, we can divide up jobs
to be performed at the same time.

A large, modular program will often be developed by a team of programmers
working on modules simultaneously.

Determine the parts of a problem that can be
tackled at the same time
In a concurrent approach to a problem, the designer looks for tasks that can
be completed at the same time. In many cases, this will be a choice between
going through all of the tasks in list A followed by all the tasks in list B or

task 1 in lists A and B simultaneously, then task 2 in lists A and B and so on.

Now test yourself

11 State two things that must be considered before starting to develop a program.

Answer on p. 220

Making links

See Chapter 1 for details about parallel processors.

See below for details of how multiple programmers can work as a team on a program.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

160

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

List A Task 1 Task 2 Task 3 Task 4 Task 5

List A Task 1 Task 2 Task 3 Task 4 Task 5

List B Task 1 Task 2 Task 3 Task 4 Task 5

List B Task 1 Task 2 Task 3 Task 4 Task 5

Figure 6.3 Concurrent tasks

Determining which tasks can be completed simultaneously, for example

within the same loop, can then be dealt with concurrently.

Outline the benefits and trade-offs that
might result from concurrent processing in a
particular situation

Concurrent processing is about using a computer to implement concurrent

thinking.

The benefits of concurrent processing include:

✚ more tasks can be completed in the same time frame, which is particularly

useful for graphics processing

✚ processor time is used more effectively: the program can get on with other

tasks while it waits for a process to complete, for example user input or

data retrieval.

The trade-offs include:

✚ in more complex programs there may be delays while other parts of the

program complete

✚ organisation of the separate tasks and switching between processes can

cause delays in processes starting and slow the program

✚ some problems just cannot be broken down into tasks that can be

completed simultaneously

✚ problems with large sections that need to be completed sequentially will

not benefit from other parts being processed simultaneously.

Genuinely processing more than one thing at a time requires multi-core

processors and is called parallel processing. Parallel processing may have

significant benefits if the problem is suited to being broken down into

modules that can be processed simultaneously.

Because processors work so quickly it often appears that tasks are

being completed simultaneously, when in fact they are being completed

sequentially.

Concurrent processing

Where several computations

are carried out

simultaneously.

Making links

Parallel processors are covered in Chapter 1.

Now test yourself

12 Explain why parallel processing may not be the best approach to solving a

problem.

13 Describe two trade-offs related to concurrent processing.

Answers on p. 221

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

161

My Revision Notes OCR A-level Computer Science Third Edition

Summary

Thinking abstractly

✚ Abstraction is the removal of details to identify the key

elements of a problem.

✚ Abstraction allows programmers and non-specialists to

use systems without needing to know the detail about

how they work.

✚ High-level languages use abstraction to hide away the

details of the low-level code needed to implement each

high-level command.

✚ Abstraction is a simplification of reality.

✚ When devising an abstract model, we need to consider

the nature of the problem, who will use the solution,

how the solution will be used, and the relevant detail

required by the user.

Thinking ahead

✚ By thinking ahead, it is possible identify the inputs and

outputs for a given situation.

✚ The required outputs will determine the necessary

inputs; this in turn will determine the processing required.

✚ Any data structures must be identified and how to

capture the input data should be considered.

✚ Preconditions for a solution to a problem that must be

considered include:

✚ any software or hardware requirements

✚ identification of any subprograms and the data that

will need to be passed to them

✚ validation of input data to ensure it meets essential

criteria

✚ validation of actions to ensure they will not crash

the program or return erroneous results.

✚ Caching is the temporary storage of instructions

or data the program anticipates will be needed, in

locations that can be accessed quickly.

✚ Caching saves time by speeding up access to data.

✚ Algorithms are used to prefetch data that they predict

will be required.

✚ Different sizes of cache have limitations:

✚ a small cache is quick to access but cannot store

much data

✚ a large cache can store more data but it takes more

time to locate data within it.

✚ Reusable program components such as frequently

used routines are stored in program libraries for the

user to access.

✚ Reusable components have been thoroughly tested and

require no further testing, saving time and resources.

✚ Reusable components that do not quite match the

requirements can be modified as required.

Thinking procedurally

✚ Thinking procedurally enables the developer to identify

the components of a problem.

✚ Decomposition is the process of breaking a problem

down step by step until each sub-problem can be

solved.

✚ The solution to a problem can be built from the low-

level sub-problems by solving them and combining

them into a complete solution.

✚ The order of the steps needed to solve a problem is

important.

✚ Data from one module needs to be available and

validated before it can be passed to another one.

Thinking logically

✚ It is important to identify the points in a solution where

a decision has to be taken.

✚ The outcome of a decision will determine the process.

✚ It is important to identify and consider the

consequences of any decisions.

✚ Decisions will affect the flow through a program.

✚ Different decisions produce different paths through a

program.

✚ Decisions made by the user should be anticipated and

appropriate measures built in to deal with all possible

choices.

Thinking concurrently

✚ Thinking concurrently will determine which parts of a

problem can be tackled at the same time.

✚ Multiple programmers may be able to work on different

modules simultaneously if the modules are not

interdependent.

✚ There are benefits and trade-offs that might result from

concurrent processing:

✚ more tasks can be completed in the same time

frame

✚ the program can get on with other tasks while it

waits for a slower process

✚ there may be delays while other parts of the

program complete

✚ some problems, however, just cannot be

broken down into tasks that can be completed

simultaneously.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

6
 E

le
m

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
a
l
th

in
k
in

g

162

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Exam practice

1 a) A group of programmers are working on a multi-player role-playing game. In

the game, players move around a virtual environment based on a small city.

 The developers study a small city to design their environment.

i) Identify two features of the real-world environment that will be

included in the model. [2]

ii) Identify two features of the real-world environment that will not be

included in the model. [2]

b) The players will have to move through the environment using the keyboard.

 Describe two ways the input should be validated to ensure the players can

move around the virtual environment as realistically as possible. [4]

c) The game has a number of players and other characters interacting

throughout the game and when they encounter each other.

 Identify a suitable programming paradigm and explain why it is the most

appropriate choice. [4]

d) The game has high-resolution graphics and fast-response action. The

organisation developing the program requires the programmers to use the

cache when the program is running.

 Explain what is meant by cache and how it can be used within this type of

program. [4]

e) The developer has suggested the program be written using concurrent

processing.

i) Explain two benefits of using concurrent processing. [4]

ii) Explain two trade-offs when using concurrent processing. [4]

2 a) A regional transport authority is planning to develop an app showing the

local rail and metro networks.

 Explain what is meant by abstraction and why the developers will need

to use abstraction before designing the virtual network diagram. [3]

b) In the abstraction of the network, there will be similarities and differences.

i) Identify two similarities and explain why they are included in the virtual

network diagram. [4]

ii) Identify two differences and explain why they are included in the virtual

network diagram. [4]

c) The finished app will be able to locate the user and identify the closest

stops or stations and the services that run through that location.

i) Identify two outputs from the system. [2]

ii) Identify two inputs required for the system. [2]

iii) Identify two preconditions for the real-world network to make this data

available. [2]

d) The app is designed using decomposition.

i) Explain what is meant by decomposition. [2]

ii) Explain what is meant by generalisation and how this can help the

programmers when developing the program. [3]

 Once the problem has been decomposed, the tasks with a pre-written

solution are identified.

iii) Explain two reasons why it is beneficial to use pre-written components. [4]

e) The remaining tasks are allocated to the team of programmers to work on

concurrently.

 Describe how the order in which these tasks are completed is important. [4]

f) The programmers are instructed to write subprograms using standard rules.

 Explain why enforcing standard rules for the subprogram is important. [4]

Answers available online

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

163

My Revision Notes OCR A-level Computer Science Third Edition

Programming techniques

Programming constructs: sequence,
branching and iteration
There are three fundamental constructs from which all programs can be
built. These are:
✚ sequence ✚ branching ✚ iteration.

Sequence
A sequence is the order in which statements are executed.
✚ Computers will execute statements one after another, in the order they are

presented.
✚ This means that the order of instructions is very important as the same

instructions in a different order will not produce the same result.

a = 5

b = a * 2

a = a + 1

c = a * 4

print b, c

This program will display: 10, 24

a = 5

a = a + 1

b = a * 2

c = a * 4

print b, c

This program will display: 12, 24

Branching
Branching (often referred to as selection) is where a decision as to which part
of a program is to be run is made, based on the state of a Boolean expression.
Program control continues or is diverted to another part of the program
according to whether the expression evaluates to ‘true’ or ‘false’.

Carry on
from here

Carry on
from here

True False

Condition?

Figure 7.2 A decision with a Boolean expression

7 Problem solving and programming

Do this

Then this

Then this

Figure 7.1 A sequence

Selection Another term for

branching.

Boolean expression An

expression to which the

answer is either true or

false. Examples include:

x == 1

y < 9

password == "foo"
and attempts <= 3

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

164

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

There are two main ways of branching in high-level programming languages:
if/else and switch/case.

If/else statements
✚ present a Boolean condition and a block of code that is run if the

condition is true.
✚ can have further conditions (using else if) that are run if they are true

and the previous conditions are false
✚ can optionally end with an else that runs a block of code if all previous

conditions are false.

Switch/case statements
✚ do not use explicit Boolean conditions, but instead a variable is given after

the keyword switch
✚ have case statements that are considered true (and therefore execute) if

the variable after switch matches their value
✚ can also have a default statement, run if none of the cases is true.

Assembly language performs selection using branch instructions such as:
✚ BRA (branch always)
✚ BRP (branch if the value in the accumulator is positive).

Example

if number > 100 then

 print("Too high")

else if number < 50 then

 print("Too low")

else

 print("Accepted")

end if

Example

switch day:

 case "Mon":

 print("Monday")

case "Tue":

 print("Tuesday")

case "We":

 print("Wednesday")

case "Thu":

 print("Thursday")

case "Fri":

 print("Friday")

default:

 print("Not a weekday")

endswitch

Exam tip

It is common for students to

refer to ‘if statements’ as ‘if

loops’. This terminology is

incorrect as ‘if statements’

do not repeat. Ensure you

use the term ‘if statements’

and not ‘if loops’ in the

exam to avoid dropping

marks.

Exam tips

The Python programming

language doesn’t contain

an equivalent to switch/

case. If you are a Python

programmer, you should

spend some time getting

familiar with switch/case

prior to the exam.

Note the OCR pseudocode

doesn’t have an equivalent

of break, which is used in

switch/case statements

in some languages. You

should assume the switch

statement terminates after

a successful case.

Making links

You can find out more about branch instruction in assembly code in the section on

Little Man Computer in Chapter 2.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

165

My Revision Notes OCR A-level Computer Science Third Edition

Iteration
Iteration means repetition. It is used to make a section of code repeat itself.
The repeated section is called a ‘loop’.

Carry on
from here

While condition
is true

True False

Condition?

Figure 7.3 Iteration using a while loop

Loops can be:
✚ count controlled; they run a certain number of times
✚ condition controlled; they run as long as a Boolean expression is true.

Count-controlled loops
For loops are count-controlled loops.

Condition-controlled loops
While loops are condition-controlled loops with the condition at the start.

Example

for i = 1 to 10

 print(i)

next i

Exam tip

For loops in OCR pseudocode are inclusive of their starting and ending number. That

means that the OCR pseudocode:

for i = 1 to 10

 print(i)

next i

will print the numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

This is equivalent to the Python code:

for i range(1,11):

print(i)

and the C style code:

for(int i=1; i<11; i++)

{

print(i);

}

or

for(int i=1; i<=10; i++)

{

print(i);

}

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

166

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Do … Until loops have their condition at the end.

✚ While loops may never run if the initial condition is not met.
✚ Do … until loops will always run at least once.

Recursion
Recursion is where a procedure or function calls itself. This can be used as an
alternative to iteration.

Example

while x * x < 1024

 x = x + 1

endwhile

Example

do

 answer = input("What word beginning with 'i' means
repetition?")

until answer == "iteration"

Exam tip

The Python programming language doesn’t contain do … until loops. However,

you should spend some time getting familiar with them prior to the exam, as there

may be questions on them.

Some languages (such as C-style languages C, C++, C#, Java etc.) use do … while

(the loop continues as long as a condition is true) instead of do … until (the loop

continues as long as the condition is false.

The OCR pseudocode

do

 answer = input("What word beginning with 'i' means
repetition?")

until answer == "iteration"

would be the C-style equivalent of:

do

{

 answer = input("What word beginning with 'i' means
repetition?")

}while(answer!="iteration")

Now test yourself

1 Look at the bubble sort algorithm on page XXX. Identify one example of:

a) Sequence b) Branching c) Iteration

2 Look at the binary search algorithm on page XXX. Identify one example of:

a) Sequence b) Branching c) Iteration

3 Where you have identified iteration in questions 1 and 2, state whether it is count

controlled or condition controlled.

Answers on p. 221

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

167

My Revision Notes OCR A-level Computer Science Third Edition

✚ Every time a subroutine is called, the state of the program (including
values of all local variables) is put on a stack.

✚ This means each time a new version of counting is called, all information
related to the current version of counting is stored on this stack.

✚ This causes a problem, however. The stack has a finite amount of space
and eventually will be able to hold no more.

While the program in the previous worked example starts counting, as we’d
expect at some point it will run out of space on the stack, causing a stack
overflow error.

In order to avoid this, we need a base case; a situation in which we stop the
recursion. For example:

procedure counting(n)

 if n == 100 then

 print("Done")

 else

 print(n)

 counting(n + 1)

 endif

endprocedure

The program now terminates after printing 99:

95

96

97

98

99

Done

Once the base case is true, the subroutine returns control to the subroutine
that called it rather than running another recursive instance. This means
values start getting returned back to each instance of the function that has
made a recursive call (known as ‘unwinding’ the stack).

You might think the program finishes at the line print("Done") but after
running that line it still has to take each instance of the procedure counting
from the stack.

Worked example

The program below uses recursion to count upwards.

procedure counting(n)

 print(n)

 counting(n + 1)

endprocedure

//Main program

counting(1)

When the procedure counting is called it prints out n then calls counting again on

n + 1

So:

✚ calling counting(1) will print 1 and then call counting(2)
✚ counting(2) prints 2 and calls counting(3)
✚ counting(3) prints 3 and calls counting(4) and so on.

The line counting(n + 1) is where recursion takes place – it is said to be a

recursive call.

counting(9)

counting(8)

counting(7)

counting(6)

counting(5)

counting(4)

counting(3)

counting(2)

counting(1)

counting(10)

Figure 7.4 Calling

counting(11) would result

in counting(10) being put

on the stack

Recursive call An instance

of a subroutine calling itself

(i.e. causing recursion).

Stack overflow When a

stack runs out of space to

store data.

Base case A condition in a

recursive subroutine that,

when true, returns control

to the subroutine that

called it rather than running

another recursive instance.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

168

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

If there were more lines after counting(n + 1), it would then go on to run
them, first for count(99) then count(98) and so on. This can be seen if we
change the order of print(n) and counting(n + 1) in the subroutine:

procedure counting(n)

 if n == 100 then

 print("Done")

 else

 counting(n + 1)

 print(n)

 endif

endprocedure

Now the program starts by printing Done then counts down from 99:

Done

99

98

97

96

95

and so on.

Worked example

The factorial function is often used to demonstrate recursion. The factorial function,

written as !, denotes a number being multiplied by every integer from 1 up to and

including itself. For example:

4! = 4 * 3 * 2 * 1

We can write a program to calculate the factorial for any given integer, n. To write this

recursively, we should first consider the base case. We want our function to return 1

when given the value 1 (as 1! = 1)

function factorial(n)

 if n == 1 then

 return 1

 endif

endfunction

Next consider the following. When n is not 1, n! = n * (n − 1)!

So 4! is the same as 4 * 3! …

… and 3! is the same as 3 * 2! …

… and 2! is the same as 2 * 1! …

We have already established 1! is 1.

We can write this out as:

function factorial(n)

 if n == 1 then

 return 1

 else

 return n * factorial(n − 1)

 endif

endfunction

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

169

My Revision Notes OCR A-level Computer Science Third Edition

Anything that can be achieved through recursion can be achieved through
iteration and vice versa. There are some programming languages that do not
have iteration and rely solely on recursion.

The advantages of recursion:
✚ Some problems are easier to think of recursively.
✚ Recursive solutions can be more elegant and easier to follow than their

iterative counterparts.

The disadvantages of recursion compared to iteration are:
✚ It requires more memory in order to maintain the stack of calls.
✚ If the space on the stack runs out the program will crash.
✚ The overheads of maintaining the stack means a recursive solution can

perform more slowly than an iterative equivalent.

Global and local variables
All non-trivial programs use variables.

Variables:
✚ are named locations that store data
✚ have contents that can be changed during program execution
✚ have data types
✚ have scope (whether a variable is global or local).

Exam tip

If you are asked to write a

recursive algorithm in the

exam, make sure you have

a base case (or base cases)

so you know your program

will eventually stop and not

crash.

Making links

You can find out more about stacks in Chapter 4. Note that a stack is used to store

recursion calls because it is a ‘last in first out’ data structure. This means that when

the base case is reached, the stack can be ‘unwound’ each time, going back to the

previous step.

You can use recursion with object-oriented programming to make data structures. For

more about object-oriented programming, see later in this chapter and Chapter 2, and

for more about data structures, see Chapter 4. A node class that contains an attribute

that is itself an instance of node can build a linked list. A node class that contains two

instances of a node can build a binary tree.

Now test yourself

4 The function foo is recursive.

function foo(n)

 if n == 0 then

 return true

 else if n == 1 then

 return false

 else

 return foo(n − 2)

 endif

endfunction

a) State the result of foo(5).

b) State the result of foo(6).

c) State the purpose of the function foo.

d) Explain what would happen if the statement foo(-1) were run.

Answers on p. 221

Scope A variable’s scope is

the extent to which it can be

seen within different parts

of a program. Scope can be

said to be global or local. A

variable is said to be in scope

at any particular part of the

program if it can be used.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

170

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

In most languages, variables need to be declared before they can be used.
This is known as variable declaration and normally defines what data type is
associated with each variable. When a variable is assigned its first value, it is
said to be initialised.

Global variables can be ‘seen’ throughout a program. They are declared
outside any functions or subprograms and then can be accessed from any
part of the program.

Local variables are set or declared inside a function or other subprogram. They
can only be accessed from within that subprogram. (In some languages, such as
C# and Java, variables can be local to the structure in which they are declared,
for example an if statement or a while loop.) Once a program leaves the structure
the local variable is scoped for, that local variable ceases to exist.

It is considered best practice to avoid global variables whenever possible. Having
a variable that can be changed in any part of a program, affecting completely
different parts of the program, can make for some very hard to solve bugs.

Because global variables are never destroyed, having more global variables
also increases a program’s memory requirements.

It is possible for a local variable to have the same name as a global variable.
On these occasions, the local version is used whenever it is in scope.

Exam tip

OCR’s pseudocode does

not require variables to be

declared separately before

use; they are declared at

the point they are initialised,

hence the worked examples

in this chapter do not show

this. If you have learned

the Python programming

language you will be

familiar with this approach.

However, this is contrast to

many other languages, so

ensure you are familiar with

the concepts of declaration.

Worked example

max = biggest(3,8)

print(max)

print(a)

function biggest(a,b)

 if a > b then

 return a

 else

 return b

 endif

endfunction

The local variables a and b do not exist until the function biggest is called. Once the

line return b has been run, both a and b are destroyed. Therefore, the line print(a)

would cause an error, because a does not exist in the main program.

Worked example

num = 5

print(num)

foo()

print(num)

procedure foo()

 num = 10

 print(num)

endprocedure

The program above outputs

5

10

5

Variable declaration The

point at which a variable is

created.

Bug An error or mistake

within program code

that causes a program to

behave in ways other than

intended.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

171

My Revision Notes OCR A-level Computer Science Third Edition

Modularity: functions and procedures
Programs are often written in separate sections called subroutines. The
property of a program being split into subprograms is called modularity.
Modularity has the advantages that:
✚ The program is easier to test. Each subroutine can be tested individually to

confirm that it works wherever it is called – regardless of whether the rest
of the program or other subroutines are working properly.

✚ The program is easier to read. If the subroutines are well named, the
reader can understand what is being done by looking at the subroutine’s
name, rather than needing to look at the code in the subroutine itself.

✚ Subroutines can be reused within the program (and other programs)
saving time.

✚ It is easier to share work among a team, with different members working
on different subroutines.

There are two types of subroutines, functions and procedures:
✚ Functions are subprograms that return a value.
✚ Procedures perform some operation but do not return a value.

Parameter passing
Subroutines can have data, known as arguments, passed to their parameters.

When the code below is run, the values 7 and 9 are passed to the parameters
a and b respectively.

print(biggest(7,9))

function biggest(a,b)

 if a > b then

 return a

 else

 return b

 endif

endfunction

Passing by value
In most languages, values are passed to subroutines by value. This means a
copy of the value is passed to the subroutine.

In the exam board pseudocode, unless specifically stated otherwise, you
should assume arguments are passed by value.

If it is relevant to the question, it will be flagged in the code with the :byVal
postfix.

Now test yourself

5 Describe the difference between a global and a local variable.

6 In the program below:

a) State whether the variable n is local or global.

b) Explain why running the program generates an error.

 foo()

 print(n)

 procedure foo()

 print("Hello")

 n = 10

 endprocedure

Answers on p. 221

Making links

Note that in object-oriented

programming, subroutines

within classes are referred

to as methods. For more

about object-oriented

programming, see Chapter 2.

Exam tip

Students sometimes

get confused between

arguments and parameters.

Parameters are the

variables whose values are

taken in by a subroutine

and the arguments are the

values passed to them.

In the example shown, a

and b are the parameters

and 7 and 9 are the

arguments.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

172

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Passing by reference
Passing by reference means that the parameter is set to point to the same
memory location as the variable. In the exam board’s pseudocode, this is
denoted by :byRef after the parameter.

Example

num = 5

print(num)

print(triple(num))

print(num)

function triple(n:byVal)

 n = n * 3

 return n

endfunction

In the code above:

✚ The variable num is assigned the value 5 and printed.

✚ A copy of 5 gets passed to the function triple and assigned to n.

✚ n gets multiplied by 3 to become 15.

✚ 15 gets sent back to the main program and printed (and n ceases to exist when the

function triple finishes).

✚ Throughout this process, num remains unchanged from its starting value of 5

meaning print(num) outputs 5.

So the program outputs:

5

15

5

Example

num = 5

print(num)

print(triple(num))

print(num)

function triple(n:byRef)

 n = n * 3

 return n

end function

In the code above:

✚ The variable num is set to 5 and printed.

✚ In the line print(triple(num)), instead of a copy of 5 being passed to n, its

reference is, meaning n now points to the same memory location as num.

✚ n (which is the same memory location as num) is multiplied by 3, and 15 is sent

back to the main program (again n ceases to exist when triple finishes).

Because n and num are both stored in the same location, when n became 15 so did

num. This means, this program will output:

5

15

15

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

173

My Revision Notes OCR A-level Computer Science Third Edition

As previously stated, global variables are to be avoided where possible.
Passing by reference is one way of avoiding the need for a global variable in a
subroutine.

In the example below, function popA requires the variable top to be global.
However, function popB can have top passed to it by reference, allowing the
variable top to be local.

top = 5

function popA()

 if top >= 0 then

 topValue = stack[top]

 top = top − 1

 return topValue

 else

 print("Stack empty")

 return null

 end if

endfunction

function popB(top:byRef)

 if top >= 0 then

 topValue = stack[top]

 top = top − 1

 return topValue

 else

 print("Stack empty")

 return null

 end if

endfunction

Passing by reference instead of using global variables is still not ideal, as it
is good programming practice for subroutines to have no side effects on the
wider program.

Now test yourself

7 Describe an advantage of making a program modular.

8 State what the following program would output:

a = 10

b = 10

foo(a,b)

print(a)

print(b)

procedure foo(x:byValue, y:byRef)

 x = x + 5

 y = y + 5

endprocedure

Answers on p. 221

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

174

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Use of an IDE to develop/debug a program
In the past, programs were written in text editors, which can create and change
text files but little else. Once written, the files created would then be run through
a compiler or interpreter. If any errors were identified, the file would be amended
in the text editor before being run through the translator program again.

Over time, the number of tools programmers use has increased. Examples
include Linters, version control software and unit testing programs:
✚ Linters: check code for any syntax errors or stylistic approaches that can

be improved.
✚ Version control software: keeps track of changes made to code allowing

programmers to work together on code, combine their contributions and
roll code back to a previous state if there are any errors.

✚ Unit testing programs: allows programmers to design tests to check
aspects of a program’s functionality. This means they can be sure no part
of the program has been inadvertently broken when changes are made.

Rather than having to move back and forth between multiple software tools
to perform these functions, integrated development environments (IDEs)
started to be used.

An IDE combines the functionality of an advanced text editor and compiler/
interpreter along with tools like linters, version control software and unit
testing programs into one application.

In addition, IDEs offer other functionality to help the programmer with the
coding process. This includes:
✚ Refactoring tools: refactoring is the process of improving code without

changing its functionality. This may be to improve code’s readability or to
improve its efficiency. IDEs often include tools to help with this. For example,
they may allow the programmer to rename a variable, and automatically
rename every instance of it. It may also allow them to select code that is
repeated throughout the program and automatically place it in a subroutine.

✚ Code completion: this is when the IDE detects what the user is typing and
suggests how to complete the part they are typing. This can speed up the
programmer’s work and saves them having to remember the exact names
of every routine they are calling.

✚ Code generation: there are common pieces of code that programmers
have to regularly create (for example getters and setters in classes). With
code generation, IDEs automatically create these pieces of code for the
programmer.

✚ Syntax error, inline highlighting: the IDE can draw the programmer’s
attention to syntax errors in a similar way a spellchecker would do in
a word processor. This saves the programmer having to go through the
process of compiling and only then being faced with a list of errors. In
some cases, the IDE may be able to suggest corrections to the errors.

✚ Syntax highlighting: an IDE can work out which part of the program each
word is as it is typed (e.g. a variable, a comment, a reserved word etc.) and
then colour it accordingly. This not only makes the code easier to read but
may also help the programmer detect typos. If, for example, they mistype
the reserved word while as whole it will appear in the same colour as a
variable rather than the reserved word used to make a loop.

IDEs also have tools specifically able to help with debugging:
✚ Breakpoints: these allow points to be set within the program where it will

be paused when run to allow the programmer to try and detect where and
why errors are occurring.

Making links

Refactoring is a key part of extreme programming (covered in Chapter 2). In extreme

programming, programmers are encouraged to continually refactor code.

Integrated development

environment (IDE) A

coding environment that

incorporates numerous

software tools to aid the

writing, executing and

debugging of code.

Syntax error An error

in a program that breaks

the rules of the language’s

structure. For example,

2 + 3 = a

Reserved word A word

put aside by the language

as having a special purpose

and so cannot be used as

a variable name. Examples

vary from language to

language but may include:

if, else, for, while,

return.

Debugging The process of

finding and removing bugs

(or errors in the behaviour)

of a program.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

175

My Revision Notes OCR A-level Computer Science Third Edition

✚ Stepping: this allows the programmer to run the program line by line,
stepping through the code.

✚ Variable inspection, watches and watchpoints: often an IDE will allow
you to inspect the values of variables while you are debugging. If there
are variables you want to keep a particular eye on, you can also set a
variable watch that will keep the programmer updated as to their values.
Programmers can also set watchpoints that pause the program’s execution
when a variable or expression reaches a given value.

✚ Stack inspection: every time a subroutine is called the computer places
the current state of the program into a stack. Stack inspection allows the
programmer to see the chain of subroutines that have been called in order
to lead the program to its current state.

These debugging tools are often used in conjunction with each other. For
example, a programmer may set a breakpoint, and when the program reaches
it, step through each line, examining the variables.

Use of object-oriented techniques
Object-oriented programming is discussed in detail in Chapter 2.

In paper two you should be able to:
✚ use classes to make objects with attributes to define their state and

methods to define their behaviour
✚ use encapsulation to ensure attributes can only be manipulated in the

intended way for a class
✚ use inheritance to create subclasses with the attributes and methods of

their parent class as well as their own
✚ use polymorphism to allow classes of the same parent class to be treated

in the same way and allow for overloading and overriding of methods.

Computational methods

Features that make a problem solvable by
computational methods
For a problem to be solvable using computational methods, it must be able to
be represented in a structured, algorithmic form.

For example, many problems based on mathematics or known physical laws
lend themselves to computational solutions, such as:
✚ plotting a course to the moon
✚ predicting eclipses
✚ estimating the amount of steel necessary to build a new model of car to a

given specification.

Making links

You can find out more about stacks being used with subroutines in the section on

recursion earlier in this chapter.

Revision activity

Investigate at least two

IDEs that can be used with

your usual programming

language.

1 For each one, find out

the facilities that it offers

the programmer.

2 Try some of these out

on a program that you

have written.

Now test yourself

 9 State three features an IDE has to help programmers debug their code.

10 Explain why, for very small programs, programmers may prefer a text editor over

an IDE.

Answers on p. 221

Computational methods

Any method that can be

used to solve a problem by

computational means. For

example, searching, sorting,

modelling and mathematical

methods.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

176

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

In all the cases in these examples, it is feasible to acquire enough data in order
to apply calculations and expect a reasonably accurate solution.

A problem is said to be computable if it can be:
✚ represented by an algorithm
✚ solved within a finite timescale
✚ solved at a reasonable cost.

However, while a problem may be computable it may be impractical to apply
computational methods if the problem:
✚ cannot be solved within a realistic time frame
✚ requires resources that are not available.

This means when deciding if a problem is solvable the available resources
must be taken into consideration:
✚ processing power
✚ memory limitations
✚ financial resources
✚ time available
✚ available peripheral devices.

Problem recognition
Having decided that a problem is computable, and can be potentially solved
within a realistic time frame, at a reasonable cost and using the available
resources, the exact nature of the problem needs to be identified.

To define a problem we need to:
✚ identify what the problem actually is – this might not always be

immediately apparent
✚ identify the stakeholders’ requirements for the solution
✚ analyse existing solutions to similar problems and identify the strengths

and weaknesses of these solutions
✚ decide what features in existing solutions can be incorporated into the

proposed solution
✚ decide whether a partial solution can solve a significant part of the initial

problem and have value, if the problem is becoming too large to solve as
one task

✚ consider the data requirements, including the necessary inputs and
storage requirements.

Problem decomposition
Decomposition is the process of breaking down a problem into sub-problems
until the lowest level of sub-problem is recognisably solvable. Usually this
will mean decomposing the solution until it becomes a set of self-contained
subprograms.

This process will to help identify:
✚ whether any solutions already exist for particular sub-problems
✚ whether any subprograms can be reused in other parts of the solution
✚ the overall structure of the solution
✚ the order in which sub-problems need to be dealt with.

For large projects, each sub-problem can be allocated to different teams of
programmers based on:

✚ their specialisms
✚ tasks that can be completed concurrently by different programmers.

Making links

For the analysis of the problem in the non-examined assessment programming

project, you should apply these methods to identify and research the problem. The

results of the process can then be used to specify the proposed solution.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

177

My Revision Notes OCR A-level Computer Science Third Edition

Teams of programmers working concurrently can speed up the time to create
an overall solution.

Once a sub-problem has been solved by a subprogram, each subprogram can
be reused in other solutions to different problems in the future.

Use of divide and conquer
Divide and conquer is an approach to solving a problem. It does this by
repeatedly dividing the problem into two or more similar, but simpler, sub-
problems, which themselves are divided until they become simple enough
to solve.

Once the individual sub-problems can be solved, the solution is built
recursively by merging the solutions at each stage. This process is often
referred to as ‘divide – conquer – merge’.

Sub-problem Sub-problem

Sub-problem Sub-problem

Sub-solution Sub-solution

Sub-problem

Problem

Divide

Solve problems

Merge & conquer

Solution

Sub-problem Sub-problem

Figure 7.5 Divide – conquer – merge

Examples of the use of divide and conquer algorithms include the binary
search tree technique in Chapter 4 and the binary search and merge sort in
Chapter 8.

The advantage of divide and conquer is that the problem is simplified at each
iteration and reduces to a set of solvable sub-problems quite quickly.

However, there are disadvantages when using recursive solutions:
✚ they can generate a lot of data to be stored in the stack, potentially causing

stack overflow
✚ the code for these sub-problems can be quite complex, making it difficult

to trace data flows when debugging a solution.

Making links

Problem decomposition is linked to procedural thinking, covered in Chapter 6.

Now test yourself

11 List three features that make a problem solvable by computer methods.

12 Describe two features of problem recognition that help to define a problem.

Answers on p. 221

Making links

Recursively refers to a function or process that calls itself repeatedly in order to solve

a problem. Recursion is discussed above. Merge sort and quick sort are examples of

recursive algorithms – see Chapter 8.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

178

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Use of abstraction

Abstraction is a representation of reality that removes unnecessary detail. It:
✚ allows the programmer to identify the important aspects of the problem
✚ helps to identify elements of the program that are similar and can be

solved using a similar approach
✚ identifies reusable components that can be incorporated into the solution.

Examples of abstractions used to represent real-world entities in a program
include:
✚ variables
✚ objects
✚ layers
✚ data models
✚ data structures
✚ entities.

Problem-solving techniques
There are a number of well-defined computational techniques that can be
deployed to solve problems.

Backtracking
Backtracking is essentially a trial-and-error approach. The problem is solved
by following a sequence of actions until it no longer works. At this point, we
return to the last known working stage and try a new path.
✚ When writing a program, we develop the code section by section, testing at

each stage. Once that section is tested and working we save it as a version of
the program. If at the next stage we introduce an error, we can backtrack to
the saved version that we know to work and try another approach.

✚ Playing chess uses backtracking. When planning a chess move the
consequences of that move are considered. If the consequences are not
good, we backtrack and consider alternative moves until we find one that
is likely to be successful.

Data mining
Data mining examines large data sets looking for patterns and relationships
in order to find new insights.

Databases are defined to store and process data in predefined ways but,
when they become large enough, unexpected patterns and relationships can
emerge, especially if combined with other large databases.

Making links

Abstraction is discussed in

Chapter 6.

Making links

For the programming project, these methods are used when designing a solution to

the problem.

Now test yourself

13 Describe what is meant by the term divide and conquer.

14 Explain why abstraction helps to define the elements of a problem that are suited

to a computational solution.

Answers on p. 221

Exam tip

You will be expected to

apply your knowledge of

these topics to scenarios

developed as part of

longer questions in the

examination paper.

Backtracking An approach

to finding a solution that

explores a possibility until

it is no longer deemed

feasible. At that point we

backtrack to the last point

at which it worked and

follow a new path.

Data mining Looking for

patterns in large data sets.

Making links

Depth-first traversal is an example of backtracking. Look at algorithms for depth-first

traversal in Chapter 8. There is also an example of depth-first traversal for graphs in

Chapter 4.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

179

My Revision Notes OCR A-level Computer Science Third Edition

Data mining is used extensively for medical research. AI is used to look
at large data sets in order to identify previously unknown patterns and
relationships. This can be used to predict the onset of a disease, in order to
prevent or intervene earlier and more effectively, or to look for potential cures
for diseases.

Data mining incorporates:
✚ cluster analysis: grouping objects that have similarities together
✚ pattern matching: finding and checking specific patterns of data, for

example a compiler parsing source code to check if it is syntactically
correct

✚ anomaly detection: identifying outliers – data that does not fit the pattern
for a data set

✚ regression analysis: a modelling technique that looks at the relationship
between variables where one variable affects the other.

Heuristics
Heuristic solutions are approximate solutions used when finding an exact
solution is not feasible, for example because of complexity or cost or time.

Instead of supplying a perfect solution, we provide one that is good enough
and solves the major elements of a problem. These are often called ‘rule of
thumb’ solutions.

Heuristics are used to provide estimates for intractable problems and are
typically used in machine learning or voice recognition.

Performance modelling
It is not always possible to test the full performance of a system. It may not be
feasible to test all possibilities for reasons of:
✚ safety
✚ time
✚ expense.

For example, in avionics or traffic management, we might want to test that
software responds correctly in an emergency but do not want test this out on
a real-life emergency. Instead, we use a mathematical model to simulate the
potential outcomes.

The performance of software solutions should also be tested when the system
is under maximum stress, for instance with:
✚ the maximum number of users
✚ extreme data
✚ unusual activity.

Performance modelling is an important tool in computational thinking but is
only useful if the model and the data used are accurate.

Various mathematical tools will form part of such a model:
✚ statistics: relevant existing data will be used to formulate the model
✚ randomisation: where we cannot predict real-life events, for example

when simulating the performance of a transport system, randomised data
(such as the random arrival of passengers at a station) can be provided to
simulate a range of potential situations.

Making links

In Chapter 5 we look at the analysis of personal data. Data supplied for specified

purposes may not present a problem, but if two or more data sets are combined and

processed in a way that was not identified, information about the individual that may

cause concern could be revealed.

Parsing The process

of analysing a string of

symbols in a computer

language to determine

whether there are any

syntax errors.

Heuristic solutions An

approximate, non-optimal,

but sufficient solution –

used when finding an exact

solution is impractical.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

180

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Pipelining
Pipelining is where the output from one process provides the input for
another.

Complex tasks can often be split into multiple streams using separate
pipelines so that processes can be completed in parallel.

The RISC processor is an example of a processor where the fetch, decode and
execute stages can be queued, speeding up the process.

Figure 7.6 In both images, instructions are queued by the CPU before being fetched,

decoded and executed. In the first image, the next instruction is fetched while the

previous one is decoded and so on. This is pipelining. In the second image, pipelining

is not used, and each instruction waits until the previous one has been fetched,

decoded and executed. This means that parts of the CPU are idle at certain times and

instructions wait in the queue for longer

Making links

Pipelining in relation to CPUs, and RISC processors are discussed in Chapter 1.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

181

My Revision Notes OCR A-level Computer Science Third Edition

Visualisation to solve problems
Problems can often be better understood if presented as a visual model.
A visual model will often identify key features and trends in a complex
situation.

Figure 7.7 A visualisation of Oyster card use on the London underground

In hotspot visualisation, circles are used to indicate events; the relative size of
the circles indicates the numbers involved.

For instance, circles could be superimposed on a map of central London to
show where people begin and end their tube journeys. The relative size of the
circles would indicate the number of people beginning or ending a journey at
each tube station.

Using such models can show interesting and unexpected trends that could
not be produced by traditional methods.

Making links

Graphs and trees, in Chapter 4, are an example of a visual representations of a real-life

situation.

Now test yourself

15 Describe what is meant by the term heuristic solution.

16 Explain when you would use performance modelling to test a solution

17 Explain why visualisation is used to examine problems.

Answers on p. 221–22

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

182

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Summary

Programming techniques

✚ Programs are based on three fundamental constructs:

sequence, branching and iteration.

✚ Sequence means that lines of code are run

consecutively in the order they are written.

✚ Branching is when a program uses a condition to

determine which code is executed next.

✚ In the case of an if/else statement, this is based

on a Boolean expression.

✚ Case/switch statements choose the code to

execute, based on whether it matches a stated

variable.

✚ Iteration means the repetition of code and takes place

using loops. There are three types of loops:

✚ count controlled, for example for loops

✚ condition controlled with the condition at the start,

for example while loops

✚ condition controlled with the condition at the end,

for example do … until loops.

✚ Recursion is where a subroutine calls itself and can be

used as an alternative to iteration.

✚ Recursive subroutines should have a base case to

avoid stack overflow errors.

✚ Recursive solutions can be easier to follow than some

iterative solutions but require more memory.

✚ Variables have scope, which specifies where in the

program they exist.

✚ Local variables only exist in the part of the program in

which they are created, usually a subroutine.

✚ Global variables exist through the entire program.

✚ Local variables should be used in preference to global

variables where possible as this reduces the risk of

introducing bugs.

✚ Modularity is the breaking down of a program into

subroutines. This helps with the readability and

maintainability of the code.

✚ Subroutines can be functions (which carry out code

and return a value) or procedures (which carry out

code but do not return a value).

✚ Parameters are the variables whose values are taken in

by a subroutine and arguments are the values passed

to the parameters.

✚ Arguments can be passed to parameters by reference

or by value.

✚ Passing by value sends a copy of the value to the

subroutine.

✚ Passing by reference send the location of the argument

to the subroutine meaning the parameter points to that

location.

✚ Integrated development environments (IDEs) combine

a number of programming tools (including text editors

and compilers) into a single application.

✚ IDEs have features that assist the programmer with

writing their code (including syntax highlighting,

refactoring tools and code completion).

✚ IDEs also have features to help the programmer debug

their code (including breakpoints, stepping and variable

watches).

✚ You are expected to be able to use the object-oriented

programming techniques you studied for paper one in

Chapter 2, in paper two, too. This includes using classes,

objects, encapsulation, inheritance and polymorphism.

Computational methods

✚ Identifying whether a problem can be solved using

computational methods. Can it be:

✚ represented by an algorithm

✚ solved within a finite timescale

✚ solved at a reasonable cost?

✚ Problem recognition by defining the stakeholder and

system requirements: strengths and weaknesses,

input, output and data requirements.

✚ Problem decomposition means breaking down

problems into smaller problems until each sub-problem

can be solved.

✚ Divide and conquer simplifies complex problems very

quickly:

✚ divide the problem into sub-problems

✚ conquer each sub-problem recursively

✚ merge the solutions.

✚ Abstraction is used to remove excessive detail and

simplify the problem:

✚ real-world entities are represented by

computational elements

✚ problems that already have a solution are identified

✚ similar problems are grouped together

✚ which makes the project more manageable.

✚ Problem-solving techniques:

✚ backtracking: trying a sequence of actions until it

no longer provides a solution, then backtracking

to the last known working stage and following a

different path

✚ data mining: examining large data sets to identify

new patterns and relationships in the data

✚ heuristics: rule of thumb, approximate solutions

that produce solutions described as ‘good enough’

✚ performance modelling: using models to test

complex solutions where it would be unfeasible to

test in real life because of issues such as safety,

cost or time

✚ pipelining: computer technique where the output

from one module provides the input for another

✚ visualisation to solve problems: using visual models

of a situation to highlight unexpected patterns and

relationships.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

7
 P

ro
b

le
m

 s
o

lv
in

g
 a

n
d

 p
ro

g
ra

m
m

in
g

183

My Revision Notes OCR A-level Computer Science Third Edition

Exam practice

1 The function head returns the first item in a list.

 The function tail returns a list with everything but the first item.

 numbers = [1,2,3,4,5]

 head(numbers) returns 1

 tail(numbers) returns [2,3,4,5]

 Using head and tail, write a recursive version of the linear search

algorithm. (You may wish to refer to page XXX to reacquaint yourself with

linear search.) [5]

2 Discuss how an IDE can save a programmer time. [9]

3 Describe how a Boolean expression can control the operation of a loop. [4]

4 Describe the difference between a while loop and a for loop. [2]

5 Explain the disadvantages of using global variables. [2]

6 In terms of a function, explain what a parameter is. [1]

7 Explain the differences between passing parameters by reference and by value. [4]

8 Explain the difference between a class and an object. [2]

9 Explain how we use visualisation to represent arrays. [2]

10 A programmer applies decomposition to a complex problem.

a) Explain what is meant by decomposition. [2]

b) Identify two features that decomposition will reveal to the programmer

and explain how each of these features will help the programmer solve the

problem. [4]

11 A government department has several large databases of citizens. One stores

employment income and tax records, another stores home ownership records,

another stores vehicle registrations details and another stores details of foreign

travel.

 The department uses this data to identify unexplained income to track down

criminal activity.

 Evaluate how this government department could use data mining with this

data to identify criminal activity. [6]

12 When buying stocks and shares, an investor wants to write a program that

attempts to identify which shares to buy and which to sell. The program should

look for patterns in the data in order to identify trends in the market based on past

events.

 Explain how such a program might be designed using a range of computational

methods. [6]

Answers available online

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

184

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Algorithms

Analysis and design of algorithms for a given
situation
An algorithm is a set of instructions to carry out a given task. There are
a number of ways to express algorithms such as using flowcharts and
pseudocode.

When we want a computer to carry out an algorithm, we write it as a
program.

The aim of writing algorithms is to produce a process that will work on a
generalised representation of a problem, that is, it can be reused for similar
problems.

It is not straightforward to produce algorithms. We need to ensure that an
algorithm is both correct and as efficient as it can be.

Proving that an algorithm is incorrect can be trivial; we just need to show
that, in one case, it fails.

Proving that an algorithm is correct is much more difficult and often
requires mathematical induction (which is beyond the scope of this course).
Sometimes a problem is ‘too hard’. We then need to decide if there is a ‘good
enough’ solution that is acceptable.

In the next few sections, we will look at evaluating an algorithm’s efficiency.

The suitability of different algorithms for a
given task and data set
There may often exist more than one algorithm to perform a given task.
For example, as you will see later in this chapter, there are a number of
algorithms that can be used to sort data. We need to determine which
algorithm is best for any given situation. Algorithms can vary in terms of:
✚ execution time (how long they take to run)
✚ execution space (the amount of working memory they need).

This is known as an algorithm’s efficiency.

It is often the case that there is a trade-off to be made between these two
factors. A number of algorithms can be made to run more quickly (reducing

8 Algorithms

Algorithm A set of

instructions explaining how

to carry out a given task.

Making links

When designing algorithms, you may wish to consider the computational methods

discussed in Chapter 7. These help with the process of breaking down a problem and

constructing an algorithm to solve it.

Now test yourself

1 Describe the difference between an algorithm and a program.

2 State two ways algorithms could be represented.

Answers on p. 222

Efficiency A reflection of

the amount of CPU time

or memory an algorithm

requires to execute.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

8
 A

lg
o

ri
th

m
s

185

My Revision Notes OCR A-level Computer Science Third Edition

the execution time) by using more memory (increasing the execution space).
One example of this is implementing a cache.

The choice of algorithm will also depend on the data that is being used.
Binary search has a far quicker execution time than linear search but is only
able to operate on sorted data.

Measures and methods to determine the
efficiency of different algorithms
One way to compare how efficiently algorithms will perform is by looking at
their complexity.

Complexity doesn’t show us how quickly an algorithm executes (that would
depend on the CPU running it) or exactly how much space it requires, but
rather how well it scales when given larger data sets to act upon. In other
words, complexity looks at how much longer an algorithm will take to run, or
how much more space it needs, as the amount of data that the algorithm acts
upon gets bigger.

We can use Big-O notation to denote an algorithm’s worst-case complexity.
If we know the expression for the number of steps, n, an algorithm takes to
execute, we can get the Big-O expression by:
✚ removing all terms except the one with the largest exponent

(remembering that n is treated bigger than any constant)
✚ removing any constant factors.

There are different classes of complexity:

Constant O(1) Slowest growing

Logarithmic O(log n)

Linear O(n)

Polynomial O(nk) Where k is a constant > = 0

Exponential O(kn) Where k is constant > 1 Fastest growing

If there is a mixture of different terms in the expression, then we discard all
but the fastest growing term listed in the table above.

Making links

As an example of the effect of a data set, compare the RLE and dictionary coding

compression algorithms in Chapter 3. RLE performs well on text with repeated

consecutive characters, whereas dictionary coding performs well where large chunks

of text repeat in a document. For example, RLE would perform well on:

XXXXXXXYYYYYXXYYYYYYYYXXXYXXXXXXXYYYYYYYYYYYYY

Whereas dictionary coding would perform well on:

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

Worked example

An algorithm takes 3n3 + 5n2 + 4n − 4 steps.

Remove all terms except the one with the highest exponent:

3n3

Remove any constant factors:

n3

This gives a complexity of O(n3).

Complexity How well an

algorithm scales in terms

of time to execute or space

needed as the size of the

data upon which it operates

increases.

Big-O notation A notation

used to represent an

algorithm’s worst-case

complexity.

Now test yourself

3 State the ways

algorithms can differ

in terms of their

performance.

Answer on p. 222

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8
 A

lg
o

ri
th

m
s

186

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Although it is most common to use Big-O notation to look at algorithms’
time complexity, as we have in this section, it can also be used to look at
their space complexity. Whereas time complexity looks at the how long an
algorithm takes to run, space complexity looks at the amount of extra space,
in addition to the data itself, an algorithm needs in order to run.

In practical terms, time complexity relates to CPU time used and space
complexity relates to the amount of RAM required.

Comparison of the complexity of algorithms
You need to be aware of five different types of complexity: constant, linear,
logarithmic, polynomial and exponential.

Constant complexity O(1)
Algorithms that show a constant complexity take the same time to run
regardless of the size of a data set.

An example of this is pushing an item onto, or popping an item off, a stack; no
matter how big the stack, the time to push or pop remains constant.

Size of data

T
im

e
 t

o
 c

o
m

p
le

te

Figure 8.1 Constant complexity

Linear complexity O(n)
Algorithms with linear complexity increase at the same rate as the input
size increases. If the input size doubles, the time taken for the algorithm to
complete doubles.

An example of this is the average time to find an element using linear search.

Size of data

T
im

e
 t

o
 c

o
m

p
le

te

Figure 8.2 Linear complexity

Worked example

An algorithm takes 8an + n2 + log n steps to complete, where a is a constant > 1.

In this case, we discard all terms except the exponential one because we know that

the exponential term is the fastest growing:

8an

And then discard the constant, leaving a complexity of O(an).

Now test yourself

4 An algorithm takes

3n2 + 2n − 1 steps to

run on an array of size n.

State the complexity of

the algorithm in Big-O

notation.

Answer on p. 222

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

8
 A

lg
o

ri
th

m
s

187

My Revision Notes OCR A-level Computer Science Third Edition

Logarithmic complexity O(log n)
If you are studying A level mathematics, you may well have encountered
logarithms (and if you haven’t you certainly will do). A full discussion of
what logarithms are is outside the bounds of this course. However, a simple
description is that a logarithm is the inverse of exponentiation (raising to the
power of). This means that:

If y = xz then z = logx y

Algorithms with logarithmic complexity scale up extremely well. The rate
of increase in execution time decreases with more data. In other words, the
difference in execution time between n = 100 and n = 150 will be less than
the difference in execution time between n = 50 and n = 100. This means that
logarithmic algorithms become more time efficient with more data.

A good example is binary search. As the size of the data set doubles, the
number of items to be checked only increases by one.

Size of Data

T
im

e
 t

o
 C

o
m

p
le

te

Figure 8.3 Logarithmic complexity

Polynomial complexity O(nk) (where k >= 0)
Polynomial complexity is expressed as nk where k is a constant value. There
are two special cases:
✚ when k = 0, n0 = 1, which corresponds to constant complexity
✚ when k = 1, n1 = n, which corresponds to linear complexity.

However, as k gets larger, complexity grows faster. Other polynomial
complexities include quadratic O(n2) and cubic O(n3).

Size of data

T
im

e
 t

o
 c

o
m

p
le

te

Figure 8.4 Polynomial complexity with k = 2, that is, showing O(n2)

Worked example

We know that:

23 = 8

Using the identity above we can say:

log28 = 3 (said as ‘log to the base 2 of 8 equals 3’).

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8
 A

lg
o

ri
th

m
s

188

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Exponential complexity O(kn) (where k > 1)
Algorithms with exponential complexity do not scale well at all. Exponential
complexity means that, as the input n gets larger the time taken increases at a
rate of kn where k is a constant value.

To put this into context, if a computer takes 0.0001 seconds to run an
algorithm with complexity O(2n) on a data set with 1 item, it will take over
1785 years to run the same algorithm on a data set with 50 items.

Size of data

T
im

e
 t

o
 c

o
m

p
le

te

Figure 8.5 Exponential complexity

Summary of complexity algorithms

Table 8.1 Examples of growth under the different complexities

Growth type

n Constant Logarithmic Linear Polynomial Exponential

1 log10n n n2 2n

10 1 1 10 100 1024

20 1 1.30 20 400 1048576

30 1 1.48 30 900 1.07 * 1009

40 1 1.60 40 1600 1.1 * 1012

50 1 1.70 50 2500 1.13 * 1015

60 1 1.78 60 3600 1.15 * 1018

70 1 1.85 70 4900 1.18 * 1021

80 1 1.90 80 6400 1.21 * 1024

90 1 1.95 90 8100 1.24 * 1027

100 1 2 100 10000 1.27 * 1030

In the table above, notice how large an exponential algorithm becomes when
n = 100, that is, there are only 100 data items to process. Algorithms with
exponential complexity take an impractically long period of time with large
data sets.

The following rules of thumb will give you a good idea as to the complexity of
an algorithm, though further investigation of the algorithm may be needed.
✚ An algorithm with no loops (or recursion) is likely to have constant time

complexity as the same number of instructions are always run.
✚ Algorithms with non-nested loops, where the number of times they run

are determined by the size of the data set, are likely to have at least linear
complexity.

for i = 0 to names.length − 1

 print(names[i])

next i

In the code above, the execution time is proportional to the size of the array.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

8
 A

lg
o

ri
th

m
s

189

My Revision Notes OCR A-level Computer Science Third Edition

Note, even if there are multiple for loops, the complexity is still linear.

for i = 0 to names.length − 1

 print("Hello " + names[i])

next i

for i = 0 to names.length − 1

 print("Bye " + names[i])

next i
✚ A program with nested loops, where the number of times they run is

determined by the size of the data set, will likely have at least polynomial
complexity.

for i = 0 to numbers.length − 1

 for j = 0 to numbers.length − 1

 print(str(numbers[i]) + " times " + str(numbers[j])
 + " is " + str(numbers[i]*numbers[j]))

 next j

next i

The number of loops nested determines the type of polynomial complexity.
Two nested loops would indicate quadratic complexity O(n2), whereas three
nested loops would indicate cubic O(n3) complexity.
✚ While loops could mean anything from logarithmic to exponential

complexity, depending on their conditions.

As previously mentioned, these are just guidelines. The key is to determine
how the data set affects the number of times the loops run.

For example, the loop below would only have linear complexity, despite
having two nested loops. (This is because the inner loop does not depend on
the size of the data set.)

for i = 0 to numbers.length − 1

 for j = 0 to 10

 print(str(numbers[i]) + " times " + str(j) +
 " is " + str(i*j))

 next j

next i

Conversely, this singular loop has polynomial complexity. (This is because the
length of the loop depends on the square of the number of data items.)

for i = 0 to numbers.length − 1 * numbers.length − 1

 print(i)

next i

Exam tip

One algorithm can be more complex than another but still perform better with small

enough values. Imagine an algorithm has a constant complexity and on a given CPU

takes 100 seconds to execute on any given piece of data. Another algorithm with

exponential complexity might take a thousandth of a second to execute on piece of

data. So, for one piece of data the exponential algorithm would actually be quicker.

However, the time taken by the exponential algorithm will rapidly increase with more

data, quickly overtaking the constant complexity algorithm.

In an exam question, always keep in mind complexity is about how the time or

memory requirements of an algorithm grow with the size of the data on which it

operates, not about the precise time or memory required.

Making links

For details of the time

and space complexities

of a range of standard

algorithms that you need to

know about, see the very

end of this chapter.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8
 A

lg
o

ri
th

m
s

190

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Algorithms for the main data structures
For the exam you need to be able to:
✚ push to and pop from a stack
✚ represent a stack using an array and pointers
✚ enqueue to and dequeue from a queue
✚ represent queues (including circular queues) using an array and pointers
✚ traverse linked lists
✚ perform breadth-first traversal of trees
✚ perform depth-first (postorder) traversal of trees.

These algorithms are covered in Chapter 4. You should ensure you are
familiar with them as all can come up in the paper 2 examination.

Now test yourself

5 An algorithm takes five steps to run on an array of size n. State the complexity of

the algorithm in Big-O notation.

6 State the complexity of the algorithm below, justifying your choice.

max = -1

for i = 0 to numbers.length − 1

 if numbers[i] > max then

 max = numbers[i]

 endif

next i

print(max)

7 State the complexity of the algorithm below, justifying your choice.

n = input("Enter a number")

while(n > 0)

 print(n)

 if n MOD 2 == 1 then

 n = n − 1

 endif

 n = n / 2

endwhile

Answers on p. 222

Now test yourself

8 A program contains a stack and a queue, both capable of holding integers.

 The stack is represented by the array called stack and a variable called top.

 The queue is represented by an array called queue and the variables front and

length.

a) Write the function pop() for the stack.

b) Write the procedure enqueue(data) for the queue.

c) Write a program that reverses the order of the values on the stack.

Assume:

– Push, pop, enqueue

and dequeue have been

implemented.

– The stack initially contains

numbers and the queue is

empty.

 Example

Answers on p. 222

1

3

2
Should become

4

6

6

4

2

3

1

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

8
 A

lg
o

ri
th

m
s

191

My Revision Notes OCR A-level Computer Science Third Edition

Standard algorithms

Search algorithms
Two searching algorithms are covered here: linear search and binary search.

Linear search
Linear search involves methodically searching one location in a list after
another until the searched-for value is found. The linear search algorithm
starts at the beginning of a list and checks each item in turn until the desired
item is found.

It can be expressed in pseudocode as follows:

pointer = 0

while pointer < lengthOfList and list[pointer] != searchedFor

 pointer = pointer + 1

endwhile

if pointer >= lengthOfList then

 print("Item is not in the list")

else

 print("Item is at location " + pointer)

endif

The order of the conditions in the while loop are important. That is because
it makes use of short-circuit evaluation. This is when, given a condition made
up of two parts linked by a Boolean operator, the computer only evaluates the
second condition if it is necessary, having evaluated the first. For example:

Condition1 or Condition2

If Condition1 is true there is no need to evaluate Condition2 as the
statement is true regardless of whether it is true or false.

Condition1 and Condition2

If Condition1 is false there is no need to evaluate Condition2 as the
statement is false regardless of whether it is true or false.

This is used to our advantage in the line:

while pointer < LengthOfList and list[pointer] != searched

By checking the pointer first, list[pointer] != searched is never executed
when the pointer is bigger than highest location in the list, preventing an out
of bounds error.

Now test yourself

9 Show how linear search would be used to find the number 12 in the list:

 1, 2, 6, 7, 9, 12, 15, 24, 25, 30, 31, 34, 40

10 Show how binary search would be used to find the number 12 in the list:

 1, 2, 6, 7, 9, 12, 15, 24, 25, 30, 31, 34, 40

Answers on p. 222

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8
 A

lg
o

ri
th

m
s

192

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Binary search
Binary search works by repeatedly dividing a list in two and discarding one
half until the item being searched for is found. For binary search to work, the
list has to be in order.

lowerBound = 0

upperBound = lengthOfList − 1

midPoint = round((lowerBound + upperBound) / 2)

while list[midPoint] != searchedFor and lowerBound <=
upperBound

 if list[midPoint] < searchedFor then

 lowerBound = midPoint + 1

 else

 upperBound = midPoint − 1

 endif

 midPoint = round((lowerBound + upperBound) / 2)

endwhile

if list[midPoint] == searchedFor then

 print("Item found at " + midPoint)

else

 print("Item not in list")

endif

Sorting algorithms
Four sorting algorithms are covered here: bubble sort, insertion sort, merge
sort and quicksort.

Bubble sort
A bubble sort works by:
✚ Comparing the first item in the list with the second item and swapping

them if necessary; then comparing the second item with the third item,
and so on until reaching the end of the list.

Exam tip

In an exam, questions about algorithms tend to fall into several categories:

✚ Filling in the blanks: a version of the algorithm is given and you need to work out

what statements or variables go in the blank spaces. Learning an algorithm is not like

learning a script for a play. An algorithm is an idea that cannot be learnt word for word.

Do not be put off if initially an algorithm looks unfamiliar, as the same idea can be

expressed in different ways. Look through the code, and work through what it is doing.

✚ Writing out an algorithm: often you will be given the option of writing out the

algorithm in pseudocode or in the language of your choice. Pick whichever you

are most comfortable with. If you are using a programming language, you should

use comments to explain any code that might not be obvious. Assume the person

marking is an experienced programmer, but not in the same language as you.

✚ Tracing an algorithm: when tracing an algorithm, you are expected to show what

changes are made to variables and what subroutines are called.

✚ Demonstrating how an algorithm works on a data set: you are expected to show

step by step how the algorithm works on the data. You are encouraged to draw out

the data at each step.

When you encounter an algorithm question, take a moment to consider exactly what it

is asking for. You will score no marks for writing out an algorithm when you have been

asked to demonstrate it. If you have been given sample data, it is highly likely you are

going to be asked to trace or demonstrate an algorithm acting upon it.

Now test yourself

11 State which property

of the list above makes

binary search possible.

Answer on p. 223

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

8
 A

lg
o

ri
th

m
s

193

My Revision Notes OCR A-level Computer Science Third Edition

✚ If any swaps were made in this first pass, then the list has to be examined
again in a second pass, because some items may still be out of order.

✚ If no swaps are made in a complete pass, then the sort is complete and no
more passes are required.

✚ We can keep track of the swaps by creating a Boolean variable (in this
example called swapMade) and setting it to false at the start of each pass.

Set swapMade to true

while swapMade is true

 swapMade = false

 for position = 0 to listLength − 2 //i.e. the last but
one position

 if list[position] > list[position + 1] then

 temp = list[position]

 list[position] = list[position + 1]

 list[position + 1] = temp

 swapMade = true

 endif

endwhile

Example

FLAG=False

B A C F E D

B and A are in the wrong order so are swapped and the flag set to true.

FLAG=True

A B C F E D

B and C are in order so no change is made.

FLAG=True

A B C F E D

C and F are in order so no change is made.

FLAG=True

A B C F E D

F and E are out of order so they are swapped.

FLAG=True

A B C E F D

F and D are out of order so they are swapped.

FLAG=True

A B C E D F

The flag is set to false and starting at A the process is repeated.

When the algorithm gets to the last cell and the flag is false the list is in order.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8
 A

lg
o

ri
th

m
s

194

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Insertion sort
Insertion sort works by:
✚ Splitting a list into two – a sorted sub-list and an unsorted sub-list.
✚ During each pass, it takes the first item of the unsorted section and

shuffles it down to the correct location in the sorted section.

for i = 1 to listlength − 1

 item = list[i]

 position = i

 while position > 0 and item < list[position − 1]

 list[position] = list[position − 1]

 position = position − 1

 endwhile

 list[position] = item

next i

A few things to note:
✚ Initially the sorted sub-list is made up of one item at position 0. We start

the for loop at 1 rather than 0 for this reason. A list of only one item is
always sorted!

✚ In the while loop, the position > 0 must be the first condition to make use
of short-circuit evaluation (as we did in linear search).

This process continues until all the list is the sorted list.

Merge sort
Merge sort works as follows:
✚ it splits a list of size n in half
✚ the splitting is then recursively applied to the sub-lists
✚ this continues until there are n lists of size 1
✚ as the recursion unwinds, each pair of lists are merged with their items in

order

Example

C A B E F D

C becomes a member of the ‘sorted list’.

A, the first item of the unsorted list, is smaller than C so is shuffled to the left of it.

C A B E F D

A and C are now both in the sorted list.

A C B E F D

B is now the first item in the unsorted list.

A C B E F D

B is less than C so is shuffled to the left of it. B is not less than A so it does not get

shuffled any further. E is now the first item of the unsorted list.

A B C E F D

Sorted List

Sorted List

Sorted List

Sorted List

Unsorted List

Unsorted List

Unsorted List

Unsorted List

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

8
 A

lg
o

ri
th

m
s

195

My Revision Notes OCR A-level Computer Science Third Edition

✚ each pair of newly merged lists are merged with another, with their items
in order

✚ this is repeated until there is only one, sorted list.

The key to this algorithm is the way each pair of lists are merged together in
order. The following merging algorithm is used:

Create an empty list called newlist

while list1 is not empty and list2 is not empty

 if the first item in list1 < the first item in list2 then

 Remove the first item from list1 and add it to
newlist

 else

 Remove the first item from list2 and add it to
newlist

 endif

endwhile

if list1 is empty then

 Add the remainder of list2 to newlist

else

 Add the remainder of list1 to newlist

endif

Example

B A C F E D H G

The list is split into two sub-lists.

B A C F E D H G

Each sub-list is further divided into two sub-lists.

B A C F E D H G

Then each of these sub-lists are divided again, resulting in eight single-item lists.

B A C F E D H G

Now each pair is merged into a new list containing only two items. When merging

them, we follow the merge algorithm looked at previously in this section.

A B C F D E G H

Again, we merge each pair of lists, into two lists containing four items.

A B C F D E G H

We then merge this final pair of lists into one list with all eight items, which are now in

order.

A B C D E F G H

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8
 A

lg
o

ri
th

m
s

196

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Quick sort
Quicksort works as follows:
1 Pick an item in the list and call it the pivot (it can be any item; we will

always pick the first).
2 Split the remainder of the list into two sub-lists: those less than or equal to

the pivot and those greater than the pivot.
3 Recursively apply steps 1 and 2 until all sub-lists are pivots.
4 The pivots can now be combined to form a sorted list.

Example

Let’s work through an example:

D F C A E B H G

We take the first item (D), make it the pivot and create two sub-lists of those items

smaller and larger than the pivot. (Notice how we make no attempt to sort the sub-

lists, items are just added in order.)

C A B D F E H G

The process is repeated on the sub-lists, generating further pivots and sub-lists (some

of the sub-lists being empty).

A B C D E F H G

We continue to repeat the process until …

A B C D E F G H

… all the items are pivots.

A B C D E F G H

As everything is a pivot we assemble all the pivots to get our sorted list.

A B C D E F G H

Exam tip

The examples above sort the lists in ascending order (0–9, A–Z). In the exam you may

be asked to sort a list in descending order (Z–A, 9–0). To adapt an ascending sort

algorithm to a descending sort algorithm, you simply switch what you do with the

bigger and smaller value when comparing two locations.

For example, in an ascending bubble sort, when two locations are compared it is

necessary to ensure the smaller value is on the left (i.e. if a location is bigger than the

one to the right of it, they are swapped). In a descending bubble sort, the smaller value

needs to be on the right (i.e. if a location is smaller than the one to right of it, they are

swapped).

Making links

The space complexity is concerned with the memory we need in addition to the list in

order to execute the sorting algorithms.

For instance, bubble sort and insertion sort both keep data in the original list and as

such are known as in-place sorting algorithms. Regardless of the size of the list being

sorted, they only require storage for the same set of variables. Therefore they have

constant O(1) space complexity.

Merge sort, on the other hand, needs to make space for the sub-lists it creates. This

extra space is proportional to the size of the list being sorted. Therefore a merge sort

has linear O(n) complexity.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

8
 A

lg
o

ri
th

m
s

197

My Revision Notes OCR A-level Computer Science Third Edition

Space and time complexity for standard
algorithms
Below are the time and space complexities for the sorting and searching
algorithms. You should commit these to memory. Two things to note:
1 The best and average case complexities are denoted with the Greek letters

omega, Ω, and theta, Q, respectively.
2 The complexity O(n log n) is known as linearithmic complexity, which

is a cross between linear and logarithmic complexity. A discussion of
its performance goes beyond the specification but you should be aware
it scales worse than linear complexity but significantly better than
polynomial complexity.

Time complexity

Space

complexity

Best Average Worst

Linear search Ω(1) Θ(n) O(n) O(1)

Binary search Ω(1) Θ(log n) O(log n) O(1)

Bubble sort Ω(n) Θ(n2) O(n2) O(1)

Insertion sort Ω(n) Θ(n2) O(n2) O(1)

Merge sort Ω(n log n) Θ(n log n) O(n log n) O(n)

Quick sort Ω(n log n) Θ(n log n) O(n2) O(log n)

Shortest path algorithms

Dijkstra’s algorithm
Dijkstra’s algorithm finds the shortest path between two points. The
algorithm goes as follows:
✚ Mark the start node as a distance of 0 from itself and all other nodes as an

infinite distance from the start node.
✚ Carry out the following steps until the destination node becomes the

current node:
✚ Go to the closest unvisited node to the start node (initially this will be

the start node itself) and call this the current node.
✚ For every unvisited node connected to the current node:

– Add the distance from the start node to the current node to the
distance on the edge between the current node and the unvisited
node.

– If the newly calculated distance is less than the shortest recorded
distance, then it becomes the new shortest recorded distance.
Record the new shortest distance to that node, along with the label
of the current node.

✚ Mark the current node as visited.

Now test yourself

12 Demonstrate the stages of a bubble sort on the numbers 3, 5, 2, 4, 1

13 Demonstrate the stages of an insertion sort on the numbers 3, 5, 2, 4, 1

14 Demonstrate the stages of a merge sort on the numbers 9, 0, 1, 2, 5, 4, 3, 8, 7, 6

15 Demonstrate the stages of a quick sort on the numbers 9, 0, 1, 2, 5, 4, 3, 8, 7, 6

Answers on p. 223–24

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8
 A

lg
o

ri
th

m
s

198

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Worked example

In this example, Dijkstra’s algorithm is used to find the shortest path from A to J.

A

B

D

50

50

45

25
70

80

30

80

30

35

25
10

25

C

E

F

I

J

G

H

Figure 8.6 Nodes (1)

We start by assuming the distance from A to every node is infinity. (From there things

can only get better!) The exception to this is A, which is a distance of 0 from itself.

We start with the closest node to A (which in this case is A) and mark it as the ‘current

node’.

Node Shortest distance from A Previous node

A (C) 0

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

I ∞

J ∞

We then calculate the distance to A from all the nodes directly connected to A. If it is

shorter than the currently recorded distance, then the new distance is recorded and a

record is made of the current node in the previous node column so we know how we

got to this node.

Node Shortest distance from A Previous node

A (C) 0

B ∞ 50 A

C ∞ 25 A

D ∞

E ∞

F ∞

G ∞

H ∞

I ∞

J ∞

Now we mark A as visited and repeat the process. C is now the closest unvisited node

to A so we look at the nodes directly connected to C, namely F and E.
➜

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

8
 A

lg
o

ri
th

m
s

199

My Revision Notes OCR A-level Computer Science Third Edition

A

B

D

50

50

45

25
70

80

30

80

30

35

25
10

25

C

E

F

I

J

G

H

Figure 8.7 Nodes (2)

To update E and F, we add the distance of the current node C from A (in this case 25)

to the distance from the current node C to the connecting nodes. In our example, the

distance to F is 75 (that is, 25 + 50) and the distance to E is 70 (that is, 25 + 45).

We only update the values in the table if the values we have calculated are

less than the values already in the table. In this case, the values in the table for

E and F are infinity so we update them both and put the current node in the ‘Previous

node’ column.

Node Shortest distance from A Previous node

A (V) 0

B (V) ∞ 50 A

C (C) ∞ 25 A

D ∞

E (V) ∞ 70 C

F (V) ∞ 75 C

G ∞

H ∞

I ∞

J ∞

B now becomes the current node and the process continues until J has been marked

as the current node. We know the shortest distance from A to J is 160. Then, by

following the previous nodes from J to A, the route can be determined. The node

previous to J is I, previous to I is B and previous to B is A.

Node Shortest distance from A Previous node

A (V) 0

B (V) ∞ 50 A

C (V) ∞ 25 A

D (V) ∞ 75 B

E (V) ∞ 70 C

F (V) ∞ 75 C

G (V) ∞ 100 E

H (V) ∞ 100 EF

I (V) ∞ 130 B

J (C) ∞ 180 160 GI

➜

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8
 A

lg
o

ri
th

m
s

200

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

A* Search
While Dijkstra’s algorithm always finds the shortest path, it doesn’t always go
about finding it in the quickest way. A* search is a variation of Dijkstra’s that
uses a heuristic to try and get to the correct solution sooner. The heuristic we
use is taking the straight-line distance from each node to the destination node.

The heuristic distance in the example is a simple guess as to how far each
node is from J. The assumption is that the more nodes are traversed the closer
we’ll get to J. We can see from the diagram that while the details of the guess
are not accurate, the general idea is correct.

Taking the straight-line distance between two locations is a common
heuristic. For a heuristic to work with A* algorithm, it has to be admissible.
This means it never overestimates the actual distance.

Both Dijkstra’s algorithm and A* algorithm will find the shortest path between
two nodes on a graph and as such will always give the same answer.
✚ The advantage of A* algorithm is that it will potentially find the path in

fewer steps.
✚ The use of heuristics prevents A* algorithm exploring routes that will not

offer an improvement over routes already checked.

Worked example

As before, we start at A and work out the values for B and C. But this time, instead of

assigning them the value of the edge, we use the distance from A (which we will call ‘g’)

plus the heuristic value of the distance to J (which we will call ‘h’). We will call their sum ‘f’.

Node Path distance (g) Heuristic distance (h) f = g + h Previous node

A (C) 0 95 95

B 50 80 130 A

C 25 90 115 A

D 75

E 70

F 65

G 50

H 45

I 25

3 0

We then pick the unvisited node with the lowest value for f and make it the current

node (in this case C).

Node Path distance (g) Heuristic distance (h) f = g + h Previous node

A (V) 0 95 95

B 50 80 130 A

C (C) 25 90 115 A

D 75

E 70 70 140 C

F 75 65 140 C

G 50

H 45

I 25

J 0

We repeat this until J is the current node. Just like Dijkstra’s algorithm, we only update

when the new value for f is better than the existing one.

Revision activity

Work through the example to

confirm the number of steps

taken by the A* algorithm.

Admissible The property

of a heuristic that it never

overestimates the actual

value.

Heuristic A method or rule

of thumb that quickly gives

an estimated answer.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

8
 A

lg
o

ri
th

m
s

201

My Revision Notes OCR A-level Computer Science Third Edition

Making links

You can find out more about the use of heuristics in computational methods,

Chapter 7.

Tree and graph data structures for looked at early in this chapter. A tree is a special

example of a graph; it is a graph with no cycles (or loops). This means that the shortest

path algorithms can be applied to trees just as they would be to graphs.

Now test yourself

16 Explain the advantage of using A* search over Dijkstra’s algorithm.

Answer on p. xxx

Summary

Algorithms

✚ Algorithms are sets of instructions for specific tasks.

✚ Different algorithms can be used to perform the same task. They can be compared

in terms of the time they take, the memory they require and how they perform on

different data sets.

✚ The complexity of an algorithm denotes how well it scales in terms of time or

space needed to run.

✚ We can represent algorithm efficiency/complexity using Big-O notation

✚ Complexities can be constant, linear, logarithmic, polynomial and exponential.

✚ Algorithms exist for: stacks, queues, trees, linked list depth-first and breadth-first

tree traversal.

✚ Linear search searches a list one item at a time until the element is found.

✚ Binary search continually divides a list in two until the element is found.

✚ Binary search performs better than linear search but requires the list to be

sorted.

✚ Bubble sort repeatedly passes through a list, swapping adjacent items.

✚ Insertion sort takes each item from an unsorted list and shuffles it into a sorted list

until it is in order.

✚ Merge sort recursively splits a list in half until there are multiple lists containing

one item. The single-item lists are recursively paired and merged in order. This is

repeated until there is one, final, sorted list containing all items.

✚ Quick sort picks an element from the list as a pivot and creates two sub-lists, one

bigger and one smaller than this element. The same process is applied over and

over to the sub-lists, until all elements are pivots and are thus in order.

✚ The time and space complexities for sorting and searching algorithms should be

committed to memory.

✚ Dijkstra’s algorithm finds the shortest path between two points in a graph.

✚ A* algorithm improves on Dijkstra’s algorithm by using heuristics.

✚ A heuristic is an estimated value.

✚ Dijkstra’s algorithm and A* search will both always find the shortest path between

two points and as such give the same result, but A* search can often come to this

result in fewer steps.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

8
 A

lg
o

ri
th

m
s

202

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Exam practice

1 Demonstrate how to perform a binary search for the letter E on the following list:

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K [2]

2 Show the steps of a merge sort on the following list:

D A B F E C [3]

3 Demonstrate how to perform a quicksort on the following list:

C F D E A B [3]

4 An algorithm can take up to 3n3 – 4n2 + 6n – 1 steps to solve a data set with n

items.

a) Express the algorithm’s complexity in Big-O notation. [1]

b) State the complexity class of the algorithm. [1]

5 Using the graph below, use Dijkstra’s algorithm to calculate the shortest

path from:

a) A to D [5]

b) A to F [5]

14

9

10

1

5

9

6

7

8

A
C

D

B

E

F

6 Using the graph below, calculate the shortest path from A to F using:

a) Dijkstra’s algorithm [5]

b) A* search (the heuristic value to F is given in red under each node) [5]

c) Compare your answers to parts a) and b). [2]

A

10 7

7

6

1
1

1

B

C
D

E

F

0

5

12
12

10

8

7 Explain why bubble sort has a time complexity of O(n2) and a space

complexity of O(1). [3]

8 Eric is comparing bubble sort and quick sort and notes they both have a

worst case time complexity of O(n2). He concludes, therefore, that it doesn’t

matter which of these algorithms he uses. Discuss to what extent you agree

with Eric, justifying your answer. [9]

Answers available online

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

203

G
lo

ss
a
ry

My Revision Notes OCR A-level Computer Science Third Edition

Glossary

Term Definition Page

1’s complement A simple process for a computer: it simply turns all 1s to 0s and 0s to 1s. 86

Abstraction Hiding details or attributes when studying objects or systems to focus attention on the

essential elements of the problem

150

ACID Atomicity, consistency, isolation and durability are concepts that underpin database

transactions.

64

Adjacency matrix A table showing which nodes in a graph are connected and, if the edges are weighted,

the weightings associated with those links.

112

Admissible The property of a heuristic that it never overestimates the actual value. 200

Algorithm A set of instructions explaining how to carry out a given task. 184

Applications

software

Programs that allow a user to complete a task. Examples include word processors,

spreadsheet packages and presentation software.

24

Architecture When discussing computers, this refers to the approach taken in a computer’s design. 11

Artificial neural

network

A series of algorithms that tries to recognise underlying patterns and relationships

within a set of data, through a process that mimics the way the human brain operates.

140

Assembler A program that converts assembly code into machine code. 26

Assembly code A low-level language that uses single words or mnemonics to represent instructions. 26

Asymmetric

encryption

Encryption where one key (the public key) is used to encrypt data and another (the

private key) is used to decrypt it.

47

Atomic A field that cannot be broken down into multiple smaller fields. 57

Attribute Variables contained within and associated to an object. 39

Backtracking An approach to finding a solution that explores a possibility until it is no longer deemed

feasible. At that point we backtrack to the last point at which it worked and follow a

new path

178

Base case A condition in a recursive subroutine that, when true, returns control to the subroutine

that called it rather than running another recursive instance.

167

Big-O notation A notation used to represent an algorithm’s worst-case complexity. 185

Bitwise operation A binary operation that takes two bit patterns of equal length and performs a logical

operation on each pair of corresponding bits.

98

Boolean

expression

An expression to which the answer is either true or false. 163

Bug An error or mistake within program code that causes a program to behave in ways

other than intended.

170

Cache A temporary store where instructions or data an algorithm anticipates will be needed

are stored, ready for fast access.

153

Cache memory A fast memory that is built on or close to the CPU and is designed to reduce the need to

access RAM, which has slower access speeds.

10

Central

processing unit

(CPU)

The central processing unit ‘runs programs’ by continually fetching, decoding and

executing instructions.

8

Circuit switching A pathway for the data is set up in advance of communication and then data is sent

across it. The pathway is closed after transmission.

67

Class A template used to define an object. It specifies the methods and attributes an object

should have.

39

Closed source

software

Software distributed as executable machine code, which means the source code is kept

secret.

25

Collision

resistance

The property that different inputs giving the same output occurs as infrequently as

possible.

47

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

204

G
lo

s
s
a
ry

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Compiler A program that converts the entire highlevel source code into an executable machine

code file that is then executed.

26

Complex

instruction set

computing (CISC)

This was a term retroactively coined for non-RISC processors. CISC processors tend to

have a larger instruction set, including very specialised instructions.

13

Complexity How well an algorithm scales in terms of time to execute or space needed as the size of

the data upon which it operates increases.

185

Composite key A primary key made of two or more fields. While on their own they may not be unique,

each record’s combination of them will be.

58

Computational

methods

Any method that can be used to solve a problem by computational means. For

example, searching, sorting, modelling and mathematical methods.

175

Computational

thinking

A set of problem-solving methods that express problems and solutions in ways that a

computer could execute.

150

Concurrent

processing

Where several computations are carried out simultaneously. 160

Core A core is a processing unit within the CPU. 10

Cyberbullying Any form of bullying that takes place online. 144

Data controller The individual whose data is being stored. 133

Data mining Looking for patterns in large data sets 178

Data model An abstract model that organises elements of data and how they relate to one another

and to real-world entities.

151

Data packet Data is broken down into chunks called packets when sent across a network. 68

Data redundancy The unnecessary duplication of data in a database. When updates occur, all the

instances of a data item must be changed. This leads to errors and also wastes storage

space.

50

Data subject The individual whose data is being stored. 133

Database A structured, persistent store of data, organised so that it can easily be accessed,

managed and updated.

49

Database

management

system (DBMS)

Software used to control a database, overseeing amendments to its structure, and

used to access and amend the data itself.

55

Debugging The process of finding and removing bugs (or errors in the behaviour) of a program. 174

Decomposition Breaking down a complex problem into smaller parts that are easier to understand. The

smaller parts are simpler to work with in order to find or develop solutions.

155

Denary A term that describes the number system based on 10, often called decimal. 83

Denial of Service

(DoS)

An attack meant to shut down a machine or network by overwhelming it with requests,

making it inaccessible to its intended users.

136

Determinism The property that a process with the same inputs will always give the same output. 47

Digital signature A digital code (generated and authenticated by public key encryption) that is attached

to an electronically transmitted document to verify its contents and the sender’s

identity.

135

Distributed

computing

A collection of computers working together on a single task. 71

Domain name

system (DNS)

A method that computers use to find the correct IP addresses given the URL 67

Edges Links or lines between nodes in a graph. 112

Efficiency A reflection of the amount of CPU time or memory an algorithm requires to execute. 184

Encapsulation Ensures private attributes can only be amended through public methods. This prevents

objects being manipulated in unintended ways.

40

Encryption The process of making data unreadable to third parties. 45

Entity-

relationship

diagram

A diagram showing the tables, which hold the entities and their links, or relationships

within a relational database.

52, 151

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

205

G
lo

ss
a
ry

My Revision Notes OCR A-level Computer Science Third Edition

Exponent The power of two to which the number in the mantissa must be raised; the number of

places the binary point should be moved.

91

Firewall A network security device that monitors incoming and outgoing network traffic and

permits or blocks data packets based on a set of security rules.

69, 136

First normal form

(1NF)

Data after the first stage of normalisation. It must have a primary key, no repeating

fields and all of them atomic.

57

Flat-file database A database in which all data is stored in a single table. 50

Foreign key The primary key of one table being used as a field in another table, creating a link. 51

Generalisation Solving new problems based on previous problems for which we have an existing

solution. This involves using an algorithm that solves a problem and adapting it so that it

solves similar problems.

151

Graphics

processing unit

(GPU)

A type of processor designed with the purpose of drawing graphics on the screen. 13

Hacking The process of gaining unauthorised access to a computer system. 69, 135

Hardware The physical components of a computer system. For example the CPU, RAM,

motherboard, mouse, monitor etc.

15

Hash function A function that takes in data of any size and returns a fixed-length output. 47, 118

Hash table Data structure where each item has its own unique index value. 118

Heuristic A method or rule of thumb that quickly gives an estimated answer. 200

Heuristic

solutions

An approximate, non-optimal, but sufficient solution – used when finding an exact

solution is impractical.

179

Hex We often use the shorter form to describe hexadecimal. 90

High-level

languages

These are designed to be easily read by humans. They tend to use a combination of

English keywords and mathematical notation. There are many high-level languages.

Examples include C++, JavaScript and Python.

26

Index register The index register holds a value that is added to the operand of an indexed addressed

instruction, to give the memory address that is to be accessed.

38

Inference engine Interprets and evaluates the facts in the knowledge base in order to provide a potential

solution.

140

Inheritance The ability for a class to inherit the methods and attributes of a parent class. Its ‘child’

class can have its own methods and attributes and override the methods of its parent

class.

40

Integrated

development

environment (IDE)

A coding environment that incorporates numerous software tools to aid the writing,

executing and debugging of code.

174

Internet service

provider (ISP)

A company that provides access to the internet, for example BT, Virgin Media, Sky, Talk

Talk, Hyperoptic and so on.

137

Interpreter A program that reads and executes high-level source code line by line. 26

Interrupt A signal sent to a CPU to signify another process is in need of processing time. 20

Interrupt service

routine (ISR)

This is the program code that is called when an interrupt is triggered. Each interrupt will

have a specific ISR associated with it. When the processor runs this ISR, it carries out

the actions required to handle the situation that has triggered the interrupt.

20

Irreversibility The property such that an output of a process cannot be used to derive the original

input.

47

Key A value that needs to be provided to encrypt/ decrypt data. 45

Knowledge base A collection of information in a specific field of study. 140

Layering The principle of dividing a complex problem into separate, independent sub-problems. 65

Layers Organising programs into separate functional components that interact in a hierarchical

way. Each layer usually only has an interface to the layer above it and the layer below it.

151

Least significant

bit (LSB)

The smallest value bit in the number, or the rightmost bit. 89

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

206

G
lo

s
s
a
ry

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Low-level

languages

These are languages closely tied to the architecture of the CPU. They use the CPU’s

instruction set. The lowest level language is machine code, which is directly readable by

the CPU. Assembly code is also considered a low-level language.

26

Machine code Instructions and data stored in binary, directly readable by the CPU. 26

Magnitude refers to the size of a value and does not take into account the sign, for example the

magnitude of both 15 and –15 is 15.

85

Mantissa The part of the floating-point number that represents the significant digits of the

number.

91

Mask A bit pattern that is used with the operand. The corresponding bits in the operand and

mask are combined using a logical operator to produce a result.

98

Memory

addressing

In assembly language there are different ways of referring to locations. We refer to

these as different modes of memory addressing.

38

Method A subroutine associated with an object. Additionally, new is a special type of method

called a ‘constructor’. Constructors define how an object is created. In pseudocode,

constructors are always given the name new.

39

Method

overloading

This is when a class contains two or more methods of the same name but that differ

in the pattern of the arguments they take and/ or the type of data they return. The

compiler then chooses the correct version according to the values being passed or

being expected.

41

Mirror database An identical instance of a database kept on a separate server. 64

Most significant

bit (MSB)

The bit position in a binary number having the greatest value, or the leftmost bit. For an

8-bit binary number this will be the leftmost bit with value 128.

84

Node A position in a data structure that can contain data or links to other nodes. 105

Normalisation The process of changing the structure of a relational database to remove the potential

for data redundancy.

57

Object An instance of a class. 39

Object An abstract data type used by a programmer. 150

Object code When code is compiled but yet to be run through a linker, it is sometimes referred to

as object code. In practice, you will often see the terms machine code and object code

used interchangeably.

27

Open source

software

Software that has its source code freely available and grants users the right to examine,

modify and share it.

25, 136

Operand The bit pattern being ‘operated’ on. 98

Operating system Software that controls the computer, manages the computer’s hardware and from

which other programs can be run.

19

Optical character

recognition (OCR)

A data input method that converts images of text to machine editable text. 54

Optical mark

recognition (OMR)

A data input method that recognises the positions of marks made on paper. 54

Overflow When a calculation produces a result that is too large to be represented accurately in

the available space.

89

Overriding This is when a subclass has a method of the same name (and pattern of parameters) as

its parent class. The child class version is always used over that of the parent class: it is

said to ‘override’ the parent’s method.

41

Packet switching Packets of data are sent across a network. They may take different routes and are

reassembled by the receiver.

68

PageRank

algorithm

An algorithm that determines the importance of web pages, taking into account the

number of incoming links a page has and the PageRank of the pages those links come

from.

79

Paging Where programs are divided physically into equal-sized blocks called pages (typically

several kilobytes).

19

Paradigm A common set of ideas or ways of thinking. 146, 157

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

207

G
lo

ss
a
ry

My Revision Notes OCR A-level Computer Science Third Edition

Parsing The process of analysing a string of symbols in a computer language to determine

whether there are any syntax errors.

179

Peer-to peer

streaming

Allows data to be shared directly between lots of different users/clients rather than

downloading from a central server.

136

Pipelining When discussing a CPU, it means different parts of the CPU performing different parts

of the fetch– decode–execute cycle on a sequence of instructions.

11

Polymorphism Meaning ‘many forms’, polymorphism is the ability for objects of different classes to be

treated in the same way. For example, the same method may be applied to objects of

different classes.

40

Preconditions Requirements that must be met before a program can run. 153

Prefetching Loading a resource before it is needed. This can refer to commonly used web pages

being requested before they are used. For example, instruction prefetching is where the

CPU caches instructions and data blocks before they are executed.

154

Primary key A field that has a unique value for every record in a table. 50

Proprietary

software

The owner of the copyright material retains intellectual property rights. 136

Protocol A set of rules for communication between devices. 65

Prototype An early version of a system, lacking full functionality but allowing a feel for what the

final version will be like before large amounts of time are committed to its production.

29

Proxy A server that sits between a network and the internet, through which internet data

requests are made

69

Pseudocode A way in which algorithms can be written using ‘pretend’ code. Unlike a real high-level

language, there are no strict rules as to how pseudocode needs to look, but it should be

understandable to someone familiar with programming (though perhaps in a different

programming language to the writer).

32

Queue A data structure that works the same way as, for example, a cinema queue. The first

item into the queue is the first item out of the queue.

114

Random access

memory (RAM)

A type of primary memory that the CPU uses for programs and data in use. It loses its

contents when power is lost.

16

Read-only

memory (ROM)

A type of primary memory that can only be read from. It retains its contents even when

electrical power is lost. It is often used to store start-up instructions on a computer.

16

Recursive call An instance of a subroutine calling itself (i.e. causing recursion). 167

Reduced

instruction set

computing (RISC)

A design approach where a CPU uses a small set of instructions. While this means

a loss of some of the more specialised instructions, it allows for efficiencies in the

processor design.

13

Referential

integrity

Guaranteeing the consistency of a database by ensuring no record points to another

record that doesn’t exist.

63

Register A discrete piece of memory built onto the CPU that holds a single piece of data. 8

Relational

database

A relational database consists of multiple tables linked together. Each table usually

represents a ‘thing’ or an entity and the links are their relationships.

50

Reserved word A word put aside by the language as having a special purpose and so cannot be used

as a variable name. Examples vary from language to language but may include: if, else,

for, while, return.

174

Scheduling The method an operating system uses to ensure all processes get sufficient processor

time.

24

Scope (array) When referring to an array, scope is the number of elements allocated to it when it is

declared.

101

Scope (variable) A variable’s scope is the extent to which it can be seen within different parts of a

program. Scope can be said to be global or local. A variable is said to be in scope at any

particular part of the program if it can be used.

169

Search engine A website used to find other websites. Users type in search terms and are given lists of

web pages that match them.

78

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

208

G
lo

s
s
a
ry

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

Second normal

form (2NF)

Data after the second stage of normalisation. In 2NF, all data is in 1NF and has no field

depending on only part of the primary key.

58

Secondary key A field by which records are likely to be searched and is therefore indexed. 52

Secure Sockets

Layer (SSL)

A security technology for establishing an encrypted link between a server and a client. 135

Segmentation Where programs are divided logically; they are split into blocks containing modules or

routines.

19

Selection Another term for branching. 163

Source code The program code written by the programmer, usually in a high-level language. 25

Spider/web

crawler

A program that visits websites adding terms from them to a search engine’s index. 78

Stack overflow When a stack runs out of space to store data. 167

Stack pointer A register that holds the address of the top location in a stack. 108

Stalking The use of the internet, or other electronic means, to harass and intimidate someone. 144

Structured Query

Language (SQL)

A language used to find and manipulate data within a database. 54

Symmetric

encryption

Encryption where the same key is used to encrypt and decrypt data. 46

Syntax error An error in a program that breaks the rules of the language’s structure. For example,

2 + 3 = a

174

Third normal form

(3NF)

Data in a relational database after the third stage of normalisation. In addition to being

in 2NF, every field depends solely on the primary key and no other field.

59

Transaction A group of actions in a database creating a unit of work. 64

Traverse Travel through the list in the defined order. 107

Trolling Deliberately upsetting people with social media posts in order to start an argument or

offend someone.

144

Uniform resource

locator (URL)

is the main part of a website address e.g. hodder.co.uk 66

User interface The means by which the computer and user interact. This could be a command

line interface, where operating system commands are typed in, or a graphical user

interface, where programs run in windows and the user interacts using a mouse

and icons. Graphical user interfaces are far more common now than command line

interfaces.

19

Utility software Small programs designed to help with the maintenance of a system. Examples include

antivirus software, disk defragmentation and backup software.

24

Variable

declaration

The point at which a variable is created. 170

Vertices Nodes in a graph that contain data. 112

Virtual machine A program that has the same functionality as, and can be used in place of, a physical

machine.

24

Virtual memory The use of secondary storage as an extension of a computer’s physical memory. 19

Virtual server A server that exists as a virtual machine, rather than a physical device dedicated to the

task.

71

Weightings Values applied to edges in a graph, for example distances. 112

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads
http://hodder.co.uk66

209

N
o

w
 t

e
st

 y
o

u
rs

e
lf
 a

n
sw

e
rs

My Revision Notes OCR A-level Computer Science Third Edition

Now test yourself answers

Chapter 1

1 The control unit orchestrates the movement of

data around the CPU and memory during the

fetch–decode–execute cycle. During this process it

decodes instructions.

2 Control bus, data bus, address bus

3 Arithmetic logic unit (ALU)

4 A calculation is carried out, meaning the results are

stored in the accumulator.

 A value is loaded from memory and stored in the
accumulator.

5 Data bus

6 To ensure the next instruction in the program is

fetched in the next cycle.

7 The time take to read from memory is significantly

higher than the speed at which the CPU operates.

Cache is faster than memory and closer to the

CPU. This helps to reduce the bottleneck caused by

memory’s access speed.

8 Pipelining avoids the need for the CPU to have to

wait until an instruction has been executed before

fetching the next instruction. By splitting the fetch–

decode–execute cycle into a pipeline of multiple

stages, all parts of the CPU are continually being

used, reducing time being wasted with them lying

idle. In theory, the performance can be increased

by almost as many times as there are stages in the

pipeline. Because of issues such as overheads in the

pipelining process and having to flush the pipeline,

real-world improvements are never this high, but

are still significant.

9 If a user has multiple programs open at once,

these can be distributed across the CPU’s cores,

significantly improving performance over one core.

In some cases, one program may be running but

the task it’s performing might have components

that can be executed simultaneously (i.e. it is

parallelisable). The cores can share the workload for

such tasks, also improving performance.

10 In the Von Neumann architecture, data and

instructions are stored together in memory,

whereas the Harvard architecture has separate

memory units for data and instructions, with their

own buses.

11 Examples may include:

– simultaneous multithreading

– out of order execution

– branch prediction

– variable clock speed

– power conservation features.

12 CISC has more addressing modes than RISC.

13 CISC processors tend to have more transistors than

RISC processors.

14 RISC CPUs tend to use less power than their

CISC equivalents. This is because their smaller

instruction set means they can have simpler

designs, with fewer transistors. Lower power

consumption results in longer battery life, which is

a desirable trait in a laptop.

15 A CPU has a very general instruction set; a GPU’s

instruction set is specialised for the maths used in

the rendering of 3d graphics. (Consequently, CPUs

are able to run programs GPUs cannot.)

 A GPU will have many more cores than a CPU.
The cores in a GPU can all only perform the
same instruction at the same time. A CPU has
fewer cores but these can independently execute
different instructions.

16 – scientific/engineering modelling

– code breaking

– crypto currency mining

– video encoding

– machine learning

17 Multiple processing units executing different

instructions on different pieces of data

simultaneously (multiple instructions multiple

data).

18 Multiple processing units executing the

same instruction on different pieces of data

simultaneously (Single instructions multiple data).

19 Examples include:

– keyboard

– mouse

– joystick

– scanner

– microphone

– touchscreen

– trackpad

– webcam

– barcode scanner

– fingerprint scanner

20 Examples include:

– monitor

– projector

– speaker

– motor

– LED

– printer

– plotter

– 3D printer

– headphones

– laser cutter

21 Most schools will use a combination of tape drives,

Redundant Array of Inexpensive Disks (RAID) and

offsite storage.

22 Optical

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

210

N
o

w
 t

e
s
t

y
o

u
rs

e
lf

 a
n

s
w

e
rs

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

23 Backups often involve a large amount of data.

Magnetic media tends to offer higher capacities (at

a lower price) than other storage media. The slower

read/write speed compared to flash storage is not

an issue when it comes to backing up.

24 DVDs are light, durable and easy to transport. They

are also significantly cheaper than USB memory

sticks.

25 RAM is volatile; ROM is non-volatile.

 RAM can be written to; ROM is read-only.

26 RAM is volatile (ROM is not).

27 Virtual storage can be accessed from multiple

devices.

 It is easier to upgrade the size of virtual storage.

 If the device is lost, the data isn’t lost with it.

Chapter 2

1 Any three from:

– provides a user interface

– memory management

– management of CPU time

– manage peripherals

– manage system’s security

– file management

– allows the installation and removal of

applications.

2 To allow memory to be mapped across the physical

memory and secondary storage, allowing the

amount of memory locations available to the

operating system to be extended.

3 Paging divides memory by physical amounts

(typically 4 KB), whereas segmentation divides

memory according to logical divisions within its

content.

4 An interrupt service routine provides the code to

be executed when its corresponding interrupt is

generated.

5 The priority of an interrupt signifies how critical it

is. An interrupt can only stop a process of a lower

priority than itself.

6 The scheduler ensures the CPU executes processes

in the order they arrive. When a process is

generated it is added to a queue. The CPU repeats

the cycle of taking the process at the front of the

queue and executing it to completion.

7 Each process is given an equal time slice (and is

placed in a circular queue). When its time is up, the

CPU moves onto the next process, returning back

to the first process when it has spent equal time

on every other process. Completed processes are

removed from the queue.

8 An operating system (i.e. systems software that

manages a computer’s hardware and applications)

that guarantees responses within a given, short

period of time.

9 Accept any reasonable examples such as:

– running an email client for downloading/

composing emails

– running a media player, playing music/videos

– running a web browser for accessing websites

– running a word processor for document creation

– running a virus checker to prevent malware.

10 The BIOS sets up the computer to the point it is able

to load up the operating system.

11 The driver provides instructions to the operating

system, allowing it to interact with the printer.

It shows the device how data is to be sent to the

printer and how to interpret signals back from it

(such as being low on paper or ink).

12 A virtual machine can run an operating system.

This allows one operating system to be run

within another one. A Windows user could run an

application with a virtual machine running Linux.

13 A utility. It has one purpose: to make files smaller,

which helps with system maintenance (by

potentially freeing up space).

14 An application. It allows the user to make leaflets/

posters/flyers and so on.

15 For software to be classed as open source, the

program’s source code has to be available with

permission to do anything with it.

16 If source code is freely available for others to

amend, recompile and redistribute, there is less

incentive for people to pay for the software.

17 Interpreters can be useful when debugging software

as there is no need to wait for compilation after

every amendment, and the interpreter can continue

running up to the point it encounters an error.

18 A high-level language is designed to be human

readable and usually consists of a mix of English

words and mathematical statements. High-level

languages cannot be read directly by a computer

and therefore need translation software (i.e. a

compiler or interpreter).

19 Lexical analysis, syntax analysis, code generation,

optimisation

20 The symbol table stores information such as the

data type and scope of variables within the program

being compiled.

21 Libraries allow programmers to use code other

people have written, saving them time and enabling

them to draw upon the expertise of others. They

will likely have been tested and refined over time,

meaning they will contain more efficient code

than the programmer could write and (unlike the

programmer’s code) won’t need debugging.

22 A linker combines the object code generated when a

program is compiled along with any libraries used,

generating an executable machine code file.

23 The prototype is used for evaluation by the user

at the end of each iteration. This evaluation is

used to feed into the next iteration. By the end of

the process, the prototype has become the final

product.

24 – requirements definition

– analysis

– design

– coding

– testing

– maintenance.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

211

N
o

w
 t

e
st

 y
o

u
rs

e
lf
 a

n
sw

e
rs

My Revision Notes OCR A-level Computer Science Third Edition

25 The spiral model is a risk-focused software

lifecycle. It is iterative. Each iteration involves

determining objectives; identifying and resolving

risks; developing and testing; and planning the next

iteration.

26 – size and complexity of the project

– the amount of interaction that will be possible

with the end user

– the expertise and experience of the software

development team

– whether the software team are situated together

or in geographically remote locations

– how well suited the product is to prototyping.

27 – less documentation during the process

– can be hard to set milestones and plan for time

and budget

– can be hard to ascertain progress being made.

28 The program prints the highest number in an array,

along with its position.

29

word = input("Enter a word").lowercase()

vowelCount = 0

consonantCount = 0

for i = 0 to word.length-1

 vowels = [a","e","i","o","u"]

 vowelFound = false

 for j = 0 to vowels.length − 1

 if word.substring(i,1) == vowels[j]
then

 vowelFound == true

 end if

 next j

 if vowelFound = true then

 vowelCount = vowelCount + 1

 else

 consonantCount = consonantCount + 1

 endif

next i

if consonantCount > vowelCount then

 print(word + " has more consonants than
vowels.")

else if vowelCount > consonantCount then

 print(word + " has more vowels than
consonants.")

else

 print(word + " has an equal number of
vowels and consonants.")

endif

30 Some programs are more easily solved with

different approaches. Different paradigms allow

different approaches.

31 In a declarative language, the programmer states

the conditions of the result, but not how to get

the result. This is the case with SQL. For example

SELECT forename FROM Employee WHERE
surname = 'Smith'; states what is needed but not

how to get it.

32 Full details will depend on the language studied.

 The language will almost certainly be possible to
be considered as procedural as its programs are
described through a sequence of steps that can
then be grouped into subroutines.

 Many languages adhere to more than one
paradigm. For example, Java/C++/C# allow for
procedural programming but are primarily
designed to be object oriented. Many languages
also allow an element of functional programming.

33 Loads the contents of the given memory location

into the accumulator.

34

INP

STA num

ADD num

ADD num

OUT

HLT

num DAT

35

INP

SUB one

OUT

HLT

one DAT 1

36

number = int(input("Enter a number"))

if number < 10 then

print(0)

else

print(10)

endif

37

INP

STA num

SUB oneHundred

BRP double

LDA num

ADD num

ADD num

BRA end

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

212

N
o

w
 t

e
s
t

y
o

u
rs

e
lf

 a
n

s
w

e
rs

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

double LDA num

ADD num

end OUT

 HLT

onehundred DAT 100

num DAT

38 All three branch to their given label depending on

the value in the accumulator.

 BRA always branches regardless of the value in

the accumulator.

 BRZ branches if the value in the accumulator is 0

 BRP branches if the value in the accumulator is

>= 0

39

loop INP

SUB eleven

BRP end

BRA loop

end HLT

eleven DAT 11

40 Write an LMC program that takes in a number and

outputs the number 1 that many times.

INP

loop STA num

LDA one

OUT

LDA num

SUB one

BRZ end

BRA loop

end HLT

one DAT 1

num DAT

41 With direct addressing, the operand represents the

address being used. With indirect addressing, the

operand represents the memory location that holds

a value representing the memory location to be

used.

42 Immediate addressing is quicker as the operand

represents the absolute value, meaning that, unlike

direct addressing, no time has to be spent getting a

value from memory.

43 A class is a template that specifies state (through

attributes) and behaviour (through methods). An

object is an instance of a class.

44

class Mansion inherits House

 private fountain

 public procedure new(givenDoorColour,
givenGarden, givenFloors, givenFountain)

 fountain = givenFountain

 super.new(givenDoorColour,
givenFloors, givenGarden)

 endprocedure

 public procedure changeFloors
(givenFloors)

 if floors >= 2 then

 floors = givenFloors

 endif

 endprocedure

endclass

Chapter 3

1 File compression is the process of making files take

up less storage space.

2 Lossy: JPEG

 Lossless: PNG

3 JPEG can achieve very high compression ratios

on photographs, allowing them to be quickly

transmitted across the internet.

 PNG stores a perfect representation of the image
(the same pixel for pixel) while still achieving a
respectable amount of compression.

4 3A5B11A2B1A6B

5 The quote is better compressed using dictionary

coding. Run-length encoding only performs well on

data with large amounts of consecutively repeating

data. This is not the case in natural language.

Dictionary coding performs well when sequences

of data repeat throughout a file. This works well

here, for example the phrases ‘the end’ and ‘the

beginning’.

6 Symmetric encryption requires a key to be agreed

by both parties in advance. This is not practical

when transmitting data, making symmetric

encryption unsuitable. (Note that this issue can be

circumvented by agreeing a key over asymmetric

encryption then moving to symmetric encryption.)

7 Keeping files stored on a computer/saved

in database protected in case anyone gains

unauthorised access.

8 Deterministic (always gives the same output)

 Irreversible (input cannot be determined from
output)

 Low levels of collision (two different inputs are
unlikely to give the same output)

9 A hash of the document can be taken and shared

between all parties (and if necessary publicly

shared).

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

213

N
o

w
 t

e
st

 y
o

u
rs

e
lf
 a

n
sw

e
rs

My Revision Notes OCR A-level Computer Science Third Edition

 At any point in the future, another hash can be
taken. If it matches the original, the data has not
been changed.

10 – records

– fields

– tables

11 A flat-file database stores all data in a single table.

In a relational database, data is stored in multiple

tables that are linked.

12 require less space for large databases

 easier to maintain and use when storing
complex data

13 A primary key needs to be unique, whereas it

is possible (and indeed likely) two people in the

database will have the same surname.

14 Tables are linked using primary and foreign keys.

The primary key of a record appears in another

table as a foreign key, creating a link.

15 It would be a common action to search for

bookings on a given date. Making the booking date

a secondary key means it would be indexed, and

these searches would be faster.

16 Indexing a field reduces the time it takes to be

searched. The disadvantage of this is that the index

itself needs to be stored, taking up extra storage

space.

17 Manufacturer and CarModel are likely to have a

one-to-many relationship.

18

Author Wrote Book

19 The school can have sheets with all student names

in a class printed on them, with boxes alongside

that can be shaded in. The teacher shades in the

boxes of all those present and then these are

centrally scanned.

 This was a common method of registering
students prior to computers being more common
in all classrooms and electronic registration
being used.

20 CSV, or comma separated values, files store

different pieces of data separated by commas. In the

case of a database, it stores the value of each field

separated by a comma (and starting a new line for

each record).

21 – Data must already be in 1NF

– All fields must depend on the whole of the

primary key. In other words, if a table has a

composite key, every field that is not part of the

key must depend on all of the fields within the

composite key.

22

Table Stock

stock_number, stock_name, number_in_
stock, supplier_ref

Table Order

order_number, order_date, order_quantity,
stock_number

Table Supplier

supplier_ref, supplier_name, supplier_
email

23 a) SELECT Forename, Surname FROM Customer;

b) SELECT Forename, Surname FROM Customer
WHERE TelephoneNumber LIKE '0121%' AND

BonusPoints > 1000;

c) SELECT RoomNumber, BookingDate FROM
Customer JOIN Booking ON Customer.
CustomerID = Booking.CustomerID WHERE
Surname = 'Smith';

d) INSERT INTO Customer (Forename,
Surname, TelephoneNumber,
BonusPoints) VALUES ('Joshua',
'Stevenson', '029 2018 0606',0)

 NB answer can include CustomerID but usually

this is set to auto-increment by the DBMS,

preventing duplicate values occurring.

e) DROP TABLE Customer;

24 A customer could be deleted while they still have

bookings. This would mean that there would be

rooms booked out but no person allocated to those

bookings.

25 A group of operations that are designed to carry

out a single task within a database. The transaction

itself must be:

– Atomic: it either completes or fails but cannot

partially complete.

– Consistent: it won’t put the database into a state

inconsistent with its rules.

– Isolated: it won’t run alongside any transactions

that may impact it

– Durable: once it has made changes, those

changes remain.

26 Two identical copies of a database provides an

element of redundancy for the bank. If the database

being used fails, it can switch to the other without

losing any data or having downtime.

27 HTTPS (Hypertext Transfer Protocol Secure) is used

for transferring data over a network, usually web

pages over the World Wide Web. It is designed to be

secure so that third parties cannot read the data if

intercepted.

 DHCP (Dynamic Host Configuration Protocol) is
used to allocate IP addresses to devices when
they join a network.

 UDP (User Datagram Protocol) is used to send
data across a network when it’s important that it
is sent at a constant, fast rate but there is no need
to ensure every packet is received. An example of
its use is video streaming.

28 The link layer obtains data from the internet layer

and places it as signals on the physical connections.

It also receives signals from the physical layers and

passes them as data to the internet layer.

29 HTTPS belongs to the application layer

 DHCP belongs to the application layer

 UDP belongs to the transport layer.

30 – LAN: one limited area; WAN: covers a large area.

– LAN: owned in total by the operating

organisation; WAN: communication links owned

by communication company.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

214

N
o

w
 t

e
s
t

y
o

u
rs

e
lf

 a
n

s
w

e
rs

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

31

uk

ac

edu

stanford cmu

cam worcester

princeton

root

32 Packet switching prevents segments of the network

being tied up at any given time by two devices

communicating. This means all users experience a

more consistent quality of service.

33 When two devices communicate over a network

using circuit switching, they have exclusive

use of that connection over the time they are

communicating. This means that while these two

devices will have an excellent quality connection,

those parts of the network will be unusable over

this time to other users. Packet switching avoids

this by allowing connections to be shared by

multiple devices at the same time.

34 A firewall monitors traffic going from the internet

into and out of a network. It then allows packets

through if they meet its set of rules.

35 A network interface card (NIC) allows a computer

to connect to a network. It will usually have an

Ethernet port or have a built-in wireless antenna.

These days it is common for NICs to be built into the

motherboard.

36 A switch connects multiple devices on a network.

When data comes in through one port it sends it

out the port to which the device with the data’s

destination address is connected. Typically, a switch

uses MAC addresses to identify devices.

 A router can also connect multiple devices and
can connect two networks (in a home network,
your home’s LAN to the internet). It identifies
devices by their IP addresses. Using routing
tables, it is able to determine the most efficient
route to send data.

37 Advantage: Wi-Fi allows devices to be used from

anywhere within range of a signal.

 Disadvantage: signals can vary according to
obstacles such as walls and distance from the
wireless access point.

 Wireless traffic can be easily intercepted and so
must be encrypted.

38 Material is spread across multiple computers in

multiple jurisdictions, with different laws. This

made it hard for regulators, as they were dealing

with many people across multiple countries.

39 A client–server model centralises all the network’s

functionality. This makes it much easier to identify

issues and maintain hardware. Having a central

point means security can be focused on that area,

rather than having data stored across multiple

machines.

40 <div> tags are used to set dividers. These are areas

of a page to be treated as one block.

41

border-color: red;

border-style: dashed;

border-width: 5px;

or

border: 5px dashed red;

(#FF0000 can be used instead of red)

42 A class is a group of elements on a page that are to

be formatted the same way.

 An identifier is a specific element on a page to be
formatted. Elements can belong to both a class
and an identifier. In this case, the formatting of
the identifier overrides that of the class.

43 HTML sets out the structure of the page using tags.

 CSS determines the formatting of the page.

 JavaScript provides any functionality on the web
page (such as validation or interactivity).

44

var lowerBound = 0;

var upperBound = list.length − 1;

var midPoint = Math.
round((lowerBound+upperBound) / 2);

while(list[midPoint] != searchedFor &&
lowerBound <= upperBound)

{

 if(list[midPoint] < searchedFor)

 {

 lowerBound = midPoint + 1;

 }

 else

 {

 upperBound = midPoint − 1;

 }

 midPoint = Math.
round((lowerBound+upperBound) / 2);

}

if(list[midPoint] == searchedFor)

{

 document.write("Item found at "
+midPoint);

}

else

{

 document.write("Item not in list");

}

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

215

N
o

w
 t

e
st

 y
o

u
rs

e
lf
 a

n
sw

e
rs

My Revision Notes OCR A-level Computer Science Third Edition

45 A search engine spider is a program that travels

from web page to web page indexing their contents.

It visits a page, adds words on that page to an index,

then uses one of the links on that page to travel to

its next page.

46 The search engine would look at the words computer

and mice/mouse in its index and select pages where

the index shows the word computer directly

precedes the words mouse or mice.

47 PageRank determines the significance of a site. By

looking at how many sites already link to a site, it is

able to determine those sites that are likely to be of

more use, so they can be presented in order to the

person searching.

48 Site A may have fewer outgoing links than site B.

The sites linking to Site A may have a higher

PageRank themselves.

49 Client-side scripting puts the processing demands

on the browser and as such the client’s computer.

This reduces the work the server has to do, saving

the owner extra hardware requirements and

expenses.

50 Scripts running on the client can be circumvented

or amended. Therefore the owner cannot rely

on them being run on the client’s browser. They

can also be viewed by the user and code could be

copied/duplicated

Chapter 4

1 a) 130

b) 193

c) 216

d) 22

2 a) 10001100

b) 1000100

c) 11001000

d) 10010100

3 a) 00101101

b) 01111101

c) 11111101

d) 11000100

4. a) 00111000

b) 10111000

c) 11111101

d) 10110000

5 a) 40

b) −68

c) −49

d) −121

6 a) 01010000

b) 01001001

c) 01010110

d) 01100101

7 a) 10110

b) 11

c) 100

8 a) 1A b) 5C c) AF

9 a) 1010 1011 1100

b) 1010 0101 1101

c) 1011 1011 1100 0011

10 a) 165

b) 95

c) 734

11 a) 83

b) C7

c) ED

12 a) 1.25

b) −2.5

c) 0.375

13 a) 5.5

b) −0.3125

c) −0.125

14 a) 0110100000 000001

b) 1011000000 000010

c) 0110000000 111110

15 a) 01110 010

b) 01110 001

c) 01000 001

16 a) 0111010000 000010

b) 0110111000 000011

c) 0100100000 000010

17
Operand 0 0 1 1 0 1 1 0

Mask 1 0 1 0 1 0 1 0

AND 0 0 1 0 0 0 1 0

OR 1 0 1 1 1 1 1 0

XOR 1 0 0 1 1 1 0 0

18 10010001 with XOR

19 01001001 with AND

20 a) i) 68 ii) 71 iii) 100

b) i) E ii) x iii) d

21 a) Jane assuming row/column

b)

names 0 1 2 3 4 5

0 Alan Kuldeep Li Sarah Harry Mary

1 Jane Navdeep Charles Joe Jane Irina

2 Wendy Deborah Dillip Umar Johan Hua

c) Navdeep, Charles, Joe

22

Start (3)

Data item Vehicle manufacturer Alpha pointers

1 Ford 5

2 Vauxhall 0

3 Alfa 4

4 Fiat 1

5 Mercedes 2

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

216

N
o

w
 t

e
s
t

y
o

u
rs

e
lf

 a
n

s
w

e
rs

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

23

 As a table

a)

Start (3)

Data item Animal Alpha

pointers

1 Monkey 4

2 Lion 1

3 Cheetah 5

4 Zebra 0

5 Gorilla 2

a) As a diagram (examples).

Lion Cheetah Zebra GorillaMonkey

Start (3)

b)

Lion Cheetah Zebra GorillaMonkey

Start (3)

c)

Lion Cheetah Zebra Gorilla TigerMonkey

Start (3)

b)

Start (3)

Data item Animal Alpha

pointers

1 Monkey 4

2 Lion

3 Cheetah 5

4 Zebra 0

5 Gorilla 1

c)

Start (3)

Data item Animal Alpha pointers

1 Monkey 6

2 Lion

3 Cheetah 5

4 Zebra 0

5 Gorilla 1

6 Tiger 4

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

217

N
o

w
 t

e
st

 y
o

u
rs

e
lf
 a

n
sw

e
rs

My Revision Notes OCR A-level Computer Science Third Edition

24 Initial PUSH

9

POP POP PUSH

17

POP POP

9

12 12 12 17

7 7 7 7 7 7

3 3 3 3 3 3 3

25 Initial PUSH

12

POP POP PUSH

9

POP PUSH

6

5 5 3 7 7 12 12

3 3 7 12 12 9 9

7 7 12 9 6

12

26 Example

A
F

E

D

C

B6 3

2

47

5

27 a)

 ABCDE

Stack D E

C C C C

B B B B B

A A A A A A

Visited A B C D E

b)

 ABCED

Queue B B B C E D

C C E D

E

Visited A B C E D

Current A A B B C E

28 a)

Monkey

Lion Zebra

Tiger

Gorilla

Cheetah

b) Monkey Lion Cheetah Gorilla Zebra Tiger

c) Gorilla Cheetah Lion Tiger Zebra Monkey

29 a)

7 2

+ –

/

3 12

b) / + 3 12 − 7 2

c) 3 12 + 7 2 − /

30 a) 101 * 104 = 10504

 10504 MOD 251 = 213

b) 52 * 55 = 2860

 2860 MOD 251 = 99

31 a) R = (A ∧ B) ∨ ¬ C

A B C A∧B ¬C R

0 0 0 0 1 1

0 0 1 0 0 0

0 1 0 0 1 1

0 1 1 0 0 0

1 0 0 0 1 1

1 0 1 0 0 0

1 1 0 1 1 1

1 1 1 1 0 1

b) R = ¬ (A ∧ B) ∨ C

A B C A∧B ¬(A∧B) R

0 0 0 0 1 1

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 0 1 1

1 0 0 0 1 1

1 0 1 0 1 1

1 1 0 1 0 0

1 1 1 1 0 1

32

A

a. b.

B R

C

A
B R

C

33 a) A V (B ∧ C)

b) A ∧ (B V C)

c) B V C

34 a)

CD\AB 00 01 11 10

00 1 1 1 1

01 1 1 0 0

11 0 0 0 0

10 0 0 0 0

The blue block is ¬C ^ ¬D
The green block is ¬C ^ ¬A
(¬C ^ ¬D) (¬C ^ ¬A)
Simplifying to ¬C ^ (¬D ¬A)

^
^

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

218

N
o

w
 t

e
s
t

y
o

u
rs

e
lf

 a
n

s
w

e
rs

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

b)

CD\AB 00 01 11 10

00 0 0 0 0

01 0 1 1 0

11 1 1 1 1

10 1 0 0 1

The blue block is C ^ ¬B
The green block is B ^ D
(C ^ ¬B) V (B ^ D)

35
CD\AB 00 01 11 10

00 0 1 1 1

01 0 1 1 1

11 0 1 1 0

10 0 1 1 0

The blue block is A ^ ¬C
The green block is B
(A ^ ¬C) V B

36
A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

37
Clock pulse 0 1 0 1 0 1 0 1

Input 0 0 0 1 1 1 1 0

Output Q 0 0 0 1 1 1 1 0

Chapter 5

1 Examples:

– an inaccurate record of payments may show

missed payments that are not correct and affect

access to credit

– inaccurate name and address details will

prevent access to credit because the lender

cannot verify the home address or individual

– an inaccurate record of outstanding credit or

past credit can affect the rate at which credit

is offered or the amount offered and rate for a

mortgage application.

2 Data is held for a specific purpose and must not

be used for any other purpose. Once the reason for

keeping the data is over there is no necessity to

keep the data and it should be deleted. Data kept

beyond the limit for necessary use, therefore, can

only be used illegally for a purpose that was not

agreed by the data owner.

3 There are seven provisions:

– Lawfulness, fairness and transparency – valid

reason, not breach any other laws, processed

fairly, clearly identified use of data.

– Purpose limitation – clear purpose for collecting

data and only used for that purpose.

– Data minimisation – relevant data only and

limited to what is necessary.

– Accuracy – data stored must be accurate and

kept up to date.

– Storage limitation – data should only be kept for

as long as necessary for the stated purpose.

– Security – data must be kept securely.

– Accountability – the data holder is responsible

for how the data is used and for compliance with

all the regulations of the DPA.

4 Hacking is when a computer system is accessed

without authorisation.

 This is using technical skills and know-how to
bypass the security in a system.

5 Hacking can be authorised by the owner of a

computer system to test for vulnerabilities in the

security. Since it is authorised, it is not illegal.

6 – digital signatures or certificates that use

encrypted messages to confirm the identity of

the sender.

– Secure Sockets Layer (SSL), a protocol that

enables encrypted links between computers to

ensure the security of a transaction.

– user IDs, passwords and access rights, used for

basic identification of users and their legitimate

rights to access specific data.

– anti-malware software such as antivirus and

anti-spyware applications used to identify and

remove suspicious software on a computer

system.

– firewalls, which can be software applications

or hardware, that sit between the system and

external networks to prevent certain types of

data and users accessing the system; firewalls

can also be set to simply deny access to all

external users.

7 It makes it illegal to make unauthorised access:

– to computer materials

– with intent to commit further offences such as

stealing money

– with intent to damage or impair the operation of

a computer, for instance distributing malware.

8
Open-source software Proprietary software

Access to the source code No access to source code

May be free of charge or

very cheap

Almost always some

cost involved

Users can modify the

software

Copyright law means

users cannot modify the

software

Can be installed on as many

computers as necessary

Extra licences must

normally be obtained

before installing on

additional computers

No one is responsible for

any problems with the

software

Full support from the

software developer –

fully tested before

release, regular updates

to fix bugs and improve

features, faulty software

replaced

Usually only community

support

Commercial and

community support

available

Often of very high quality

because of the community

of highly skilled developers

High-quality software

because a lot of money

is spent developing it

Updates are often provided

by a community of highly

skilled developers, to fix

bugs and improve features

Updates provided by the

developer, sometimes

with extra costs

involved.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

219

N
o

w
 t

e
st

 y
o

u
rs

e
lf
 a

n
sw

e
rs

My Revision Notes OCR A-level Computer Science Third Edition

9 – full support for the product by the developers

– regular updates to fix issues or add

improvements or new features

– often high-quality software

– often includes tutorial guides and training

support.

10 Peer-to-peer streaming allows data to be shared

directly between computers. There is no or limited

monitoring possible for this process, allowing the

illegal sharing of files.

 The illegal sharing of files is an offence under the
Copyright, Design and Patents Act and is illegal.

 Under the Act it is illegal to copy, modify or
distribute any copyright material, including
software, without the relevant permission.

11 Some rights reserved: less restrictive than

proprietary software.

 May be no restrictions on use but the developer
might require attribution or that the software
cannot be used for commercial purposes.

12 The Act is intended to allow suitable authorities (e.g.

GCHQ, MI6) access to communications to prevent

criminal or terrorist activities.

 The Regulation of Investigatory Powers Act
provides certain public bodies, such as the police
and other government departments, with the
right to:
– demand internet service providers (ISPs) provide

access to a customer’s communications

– allow mass surveillance of communications

– demand ISPs fit equipment to facilitate

surveillance

– demand access be granted to protected

information

– allow monitoring of an individual’s internet

activities

– prevent the existence of such interception

activities being revealed in court.

13 Examples:

– high street shops are expensive to maintain; the

cost of the premises, staff, displayed stock

– high street shops require people to travel to the

high street in order to select and purchase items

– with the associated time and travel costs

– high street shops will only be able to hold

a limited range of items, for example fewer

options/sizes for clothing.

– large out of town warehouses are cheaper to run,

have significantly less idle stock, require fewer

workers

– the internet provides the customer with

immediate 24/7 access to a wide range of items

with no time or travel costs

– online shopping baskets and payment systems

allow easy and safe purchasing

– efficient logistics, provided by computer

software for stock retrieval and distribution,

route planning and customer contact make

delivery of these items cost-effective.

14 Computers are able to look at huge amounts of data

very quickly and can analyse patterns in that data

to determine potential solutions. These potential

solutions can be tested by the software to identify

the most effective solution.

 By using algorithms that apply statistical analysis
to patterns within the data, computers can
generate mathematical weightings for particular
patterns and match these to known solutions
to similar problems to formulate a potential
solution. These weightings are used to test the
proposed solution, and any differences between
the predicted and actual result are used to adjust
the weightings.

15 Driverless cars are able to communicate with

each other to co-operate effectively. With the

unpredictable behaviour of human drivers

eliminated, driverless cars can co-operate to

avoid collisions. This means they can move more

quickly, more fuel efficiently, managing routes to

avoid congestion and there is no need for traffic

management, such as roundabouts, traffic lights

and so on.

16 Examples include:

– Speech recognition systems that identify key

words and patterns in the spoken word to

interpret the meaning, for example Siri or Alexa.

– Medical diagnosis systems used to self-diagnose

illness from the symptoms and to support

medical staff in making diagnoses.

– Control systems that monitor, interpret and

predict events to provide real-time process

control, for example chemical plants. Tesla

and other driver support and self-driving cars,

Amazon and others use artificial intelligence

to predict what products might be of interest to

consumers.

17 – online meetings reducing the need for travel

– electronic documents replacing paper ones

– better logistics, reducing energy use in delivery

systems

18 Access to apps for communication may not be

available, limiting access to friends and family,

particularly those who are living in another country.

 Access to news items may be limited, meaning
people cannot stay informed about issues within
the country or the wider world.

 Ideas and opinions cannot be shared or discussed
widely.

 Political opinion and news coverage may be
limited to a centrally sanctioned version only.

19 Data mining is an automated process that searches

for patterns in large data sets to predict events.

20 – track how long people take to complete tasks

– how many tasks are completed in a set time

– how many and how long people take for breaks

– internet activity while at work.

21 – Throwaway devices: people constantly updating

tech and throwing away old tech – devices that

cannot be repaired economically.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

220

N
o

w
 t

e
s
t

y
o

u
rs

e
lf

 a
n

s
w

e
rs

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

– Hazardous waste: computers use some toxic

materials that should be recycled carefully; they

are often simply disposed of in the environment.

– Rare elements: computer devices use some

rare elements that can be expensive and

environmentally problematic to source.

– Energy use: data centres use a lot of energy.

22 Examples: to limit access to socially unacceptable

material, extreme politics and ideas, dangerous

information such as advice on creating products

that can harm or contribute to terrorist activities, or

terrorist propaganda.

23 – product keys to ensure that only one user with

the decryption key can access the material

– watermarks that are visible on the product to

show that it is not a legitimately obtained copy

– shut down websites that are offering pirated

material.

24 Established concepts about the messages that

different colours send, and how colours can work

together within a design.

25 Under the Communications Act 2003, it is a

criminal offence to send indecent or offensive

communications and if traced the offender may end

up with a criminal record.

 The Act is in place to deal with communications
that contain credible threats of violence, such
as trolling or stalking, or communications that
contain material grossly offensive to identified
individuals and intended to cause harm.

 Those who repeat the messages are also subject
to the provisions of this Act, and re-sharing or
re-posting an offensive message may be illegal.

 Governments have pressed social media
providers to put into place systems to deal with
offensive communications.

Chapter 6

1 Hiding details or attributes when studying objects

or systems, to focus attention on the essential

elements of the problem. This process is used to

identify what is important in a problem, and then

formulate it to create an algorithm.

2 Grouping together items with similar features in

order to develop a general solution by using an

algorithm that solves a problem and adapting it so

that it solves similar problems. This is often based

on looking at similar existing problems for which

there is a solution.

3 A representation of reality by taking a real-life

problem and building a model of it. The purpose

is to identify what is important by removing

unnecessary detail, leaving only the key elements of

the problem.

4 Examples:

– inputs: PIN, choice of transaction, amount of

cash to withdraw

– outputs: greeting, instruction to enter PIN,

choose transaction, cash withdrawal amount,

any error messages, messages about process,

for example waiting for bank, entering new

PIN, balance if requested. Also verbal messages

provided via headphone socket for those with

impaired vision.

5 Requirements that must be met before the program

can run.

 Examples:
– device specification, software requirements,

operating system, additional software, input

requirements and validation.

6 – they are reliable and bug free, having been

tested and used many times

– they save time for the programmer

– they save on development costs for a project

– often optimised for computational efficiency.

7 Loading a resource before it is needed, for example

commonly used web pages being requested before

they are used.

 Algorithms can also be used to prefetch
instructions by predicting which instructions
or data are likely to be required by a program.
The data likely to be needed next is fetched
and stored in a cache ready to be used by the
program, minimising delays waiting for data or
instructions to be fetched from storage.

8 Breaking the complex problem down into smaller

more manageable parts. Dealing with each small

part of the problem is much simpler than trying to

deal with a complex problem. Breaking the problem

down allows us to work on each sub-problem

individually, then combine those individual

solutions into a solution for the whole problem.

 For very large problems, a team of programmers
can work on individual parts of the problem.

9 The components of a problem can be solved

individually; many may already have existing,

tested and robust solutions or an existing solution

that can be modified. For large problems, individual

components can be allocated to members of a team

of programmers.

 Each component represents a single, self-
contained solution module that can be developed
and tested independently, before being
assembled into a solution for the main problem.

10 As the output from one module may be required

as input for another, it makes sense to develop the

solution in that order.

 The data flow through a program may determine
the order, for example a module gathering input
data may be required before one that processes
that data.

11 Examples:

 Is it feasible:
– Can it be done?

– Is it cost-effective?

– Can an effective solution be developed within a

realistic time frame?

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

221

N
o

w
 t

e
st

 y
o

u
rs

e
lf
 a

n
sw

e
rs

My Revision Notes OCR A-level Computer Science Third Edition

 If yes:
– Programming paradigm required.

– Choice of programming language, that is, does

it have the necessary features to create the

solution?

– System requirements including peripheral

requirements.

12 Programs have to be written specially to take

advantage of parallel processing and can be

much longer and more complex. Only if a

significant number of processes can be completed

simultaneously is this an advantage.

13 – in more complex programs, there may be delays

while other parts of the program complete

– organisation of the separate tasks and switching

between processes can cause delays in processes

starting and slow the program

– some problems just cannot be broken down into

tasks that can be completed simultaneously

– problems with large sections that need to be

completed sequentially will not benefit from

other parts being processed simultaneously.

Chapter 7

1 a) Any two statements, for example:

 temp = list[position]

 list[position] = list[position + 1]

b) if list[position] > list[position + 1]
then

c) for position = 0 to listLength − 2

 or

 while swapMade is true

a) Any two statements, for example:

 lowerBound = 0

 upperBound = lengthOfList − 1

b) if list[midPoint] < searchedFor then

 or

 if List[midPoint] == searchedFor then

c) while list[midPoint] != searchedFor and

lowerBound <= upperBound

3 For bubble sort:

 If the while loop has been chosen, it is condition
controlled.

 If the for loop has been chosen, it is count
controlled.

 For binary search:

 The while loop is condition controlled.

4 a) False

b) True

c) Determines if a number is even.

d) The program will never reach the base case of

n == 0, meaning it would continue making

recursive calls until the computer runs out of

stack space, at which point a stack overflow

error is generated.

5 A global variable can accessed from any point in the

program. A local variable can only be accessed from

the part of the program in which it is declared. This

is usually a subroutine, although in some languages

a local variable can be local to the structure (e.g. if,
while, for) in which it is declared.

6 a) As we only see n declared in foo(), we can

assume it is local to that procedure.

b) n is local to foo, which means it is not in

scope when the line print(n) is called. As the

program is trying to print a variable that doesn’t

exist, it generates an error.

7 When a program is modular, it’s easier to split work

between the programming team, with modules

assigned to different people.

 Testing becomes easier as each module can
be tested individually, and then once it is
determined that it works, it can be confidently
used within the whole program.

 Modules from previous projects can be reused,
and modules from the current project can be
reused in future projects.

8 The program would output

 10

 15

9 – breakpoints

– watches/watchpoints

– stepping

– stack traces

10 IDEs tend to consume a lot more system resources

than text editors, and as a consequence they can

take longer to load. Writing a program often results

in a number of additional project files. All this may

be overkill for very simple programs that won’t

benefit from the advantages of the IDE.

11 It must be able to be represented:

– in a structured, algorithmic form.

 It must be feasible to solve it:
– within the time available

– at a realistic cost

– using the available resources

12 – stakeholder requirements identified

– information available used to clearly define the

problem and system requirements

– features of current or existing solutions or

solutions to similar problems identified

– data requirements and structures identified.

13 A problem-solving technique used to divide the

problem into sub-problems repeatedly until all

sub-problems can be solved. The solution is then

built recursively by solving and merging the sub-

problems into a single solution.

14 Excessive details are removed or hidden leaving the

basic requirements for a solution. This clarifies the

requirements and makes complex problems more

manageable. By removing unnecessary detail the

programmer can:

– focus on the important aspects of the problem

– identify pre-existing solutions to parts of the

problem.

15 An approximate solution identified by looking at

existing but similar problems and their solutions.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

222

N
o

w
 t

e
s
t

y
o

u
rs

e
lf

 a
n

s
w

e
rs

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

16 Performance modelling is used to test how well

a solution functions under a range of conditions.

This will test the robustness of the solution when

under stress and is particularly useful when it is

potentially dangerous to test in real situations.

17 Problems can often be better understood if

presented as a visual model. A visual model will

often identify key features and trends in a complex

situation that cannot be seen from the data alone.

Chapter 8

1 An algorithm is a set of instructions that, when

followed, carry out a process. A program is the

algorithm implemented into a form that can

ultimately be run on a computer.

2 – pseudocode

– flowcharts

3 – time taken to run

– space required to run

4 O(n2)

5 O(1)

6 Linear, O(n). The time taken grows proportionally to

the size of the list.

7 Logarithmic, log(n). Each time the size of n doubles,

the loop requires one further iteration.

8 a) The pop function

//Assumes top points to the item on top of
the

// stack

function pop()

 if top >= 0 then

 result = stack[top]

 top = top − 1

 return result

 else

 print("Stack is empty")

 return null

 endif

end function

b) The enqueue procedure

procedure enqueue(item)

 if length < queue.length then

 queue[front + length] = item

 length = length + 1

 else

 print("Queue is full")

 endif

end procedure

 Note:

 queue[front + length] = item

 could also be

 queue[(front + length) MOD length] =
item

 if the queue is considered circular.

c) Reversing the stack

//Note: a cleaner solution is to have two
stacks

//and pop from one and push onto the
other.

//As we don't have two stacks, we shall
use the

//queue

lastPopped = pop()

while lastPopped != null

 enqueue(lastPopped)

end while

//Assuming dequeue also returns null when
empty

lastDequeued = dequeue()

while lastDequeued != null

 push(lastDequeued)

end while

9 First location is checked

1 2 6 7 9 12 15 24 25 30 31 34 40

↑

 then the next

1 2 6 7 9 12 15 24 25 30 31 34 40

↑

 and the next

1 2 6 7 9 12 15 24 25 30 31 34 40

↑

 and the next

1 2 6 7 9 12 15 24 25 30 31 34 40

↑

 and the next

1 2 6 7 9 12 15 24 25 30 31 34 40

↑

 until 12 is found

1 2 6 7 9 12 15 24 25 30 31 34 40

↑

10 In the example below, when an odd number is

divided by two the result is always rounded down

(i.e. 5 / 2 = 2). Rounding down is often used in

practice as it works easily with integer division.

Rounding up or down is acceptable but should be

done consistently.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

223

N
o

w
 t

e
st

 y
o

u
rs

e
lf
 a

n
sw

e
rs

My Revision Notes OCR A-level Computer Science Third Edition

 LB = lower bound; MP = midpoint; UB = upper
bound

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 6 7 9 12 15 24 25 30 31 34 40

LB MP UB

 (0 + 12) / 2 = 6

 15 at location 6 is too high so UB becomes MP − 1
(i.e. 5)

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 6 7 9 12 15 24 25 30 31 34 40

LB MP UB

 (0 + 5) / 2 = 2

 6 at location 2 is too low so LB becomes MP + 1
(i.e. 3)

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 6 7 9 12 15 24 25 30 31 34 40

LB MP UB

 (3 + 5) / 2 = 4

 9 at location 4 is too low so LB becomes MP + 1
(i.e. 5)

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 6 7 9 12 15 24 25 30 31 34 40

LB

MP

UB

 (5 + 5) / 2 = 5

 12 at location 5 is the target so the value has been
found at 5.

11 The numbers in the list are in order.

12 The first pass …

 3, 5, 2, 4, 1

 3, 2, 5, 4, 1

 3, 2, 4, 5, 1

 3, 2, 4, 1, 5

 After the second pass …

 2, 3, 1, 4, 5

 After the third pass …

 2, 1, 3, 4, 5

 After the fourth pass …

 1, 2, 3, 4, 5

 After the fifth pass the sort finishes …

 1, 2, 3, 4, 5

13

 3 is assumed to be in place

 3, 5, 2, 4, 1

 5 is already in place

 3, 5, 2, 4, 1

 2 gets inserted in its position

 2, 3, 5, 4, 1

 4 gets inserted in its position

 2, 3, 4, 5, 1

 1 gets inserted in its position

 1, 2, 3, 4, 5

14

1 29 0 5 4 3 8 7 6

109 2 5 4 3 8

Recursively
split lists until
single lists

Merge lists as
stack unwinds

7 6

21 5

2 5

9 0

90

1 2 5

52

5 3 4 6 7 821

952

2 3 4 5 6 7 8 910

10 87643

4 3 8 7

6 7

6

9 0 4 3 8 7 6

7 6

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

224

N
o

w
 t

e
s
t

y
o

u
rs

e
lf

 a
n

s
w

e
rs

Check your understanding and progress at www.hoddereducation.co.uk/myrevisionnotesdownloads

15 A pivot is picked and two sub-lists created. This process is recursively

applied to each sub-list until the lists are one item big.

9 0 1 2

210 5 4 3 8 7 6 9

78345210 6

1 2 5 4 3 8 7 6

5 4 3 8 7 6

Right sub-list

Right sub-list

Left sub-list

2 5 4 3 8 7 6

Right sub-list

8 7 6

Right sub-list

54 3

Left sub-list

3 4

Left sub-list

7

Left sub-list

6 8

76

Left sub-list

16 Both A* search and Dijkstra’s algorithm will find

the shortest path between two points but A* search

avoids exploring paths that will not find a better

solution, meaning it finds the shortest path in a

quicker time.

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.co.uk/myrevisionnotesdownloads

Downloaded by thomas donnay (kunal.ucluhsoc@gmail.com)

lOMoARcPSD|25403484

http://www.hoddereducation.com/boost
mailto:education@hachette.co.uk
http://www.hoddereducation.co.uk
https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=my-revision-notes-ocr-a-level-computer-science-second-edition-george-rouse-jason-pitt-sean-obyrne-z-lib

