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a b s t r a c t

Pricing and riskmanagement for longevity risk have increasingly becomemajor challenges for life insurers
and pension funds around the world. Risk transfer to financial markets, with their major capacity for
efficient risk pooling, is an area of significant development for a successful longevity product market.
The structuring and pricing of longevity risk using modern securitization methods, common in financial
markets, have yet to be successfully implemented for longevity risk management. There are many issues
that remain unresolved for ensuring the successful development of a longevity risk market. This paper
considers the securitization of longevity risk focusing on the structuring and pricing of a longevity bond
using techniques developed for the financial markets, particularly for mortgages and credit risk. A model
based on Australian mortality data and calibrated to insurance risk linked market data is used to assess
the structure and market consistent pricing of a longevity bond. Age dependence in the securitized risks
is shown to be a critical factor in structuring and pricing longevity linked securitizations.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Longevity risk has become an increasingly important risk
facing an increasing proportion of the world’s population. Individ-
uals would like to insure against this risk by purchasing life an-
nuity products or other products with lifetime income guarantees.
Annuity providers such as life insurance companies are unable to
effectively manage aggregate longevity risk and are limited in ca-
pacity. Pension plans have increasingly offered defined contribu-
tion benefits with the risk of longevity remaining with individuals.
Annuity providers’ traditionalmethods formanaging longevity risk
have focused on participating policies, and financing through capi-
tal reserves. Reinsurers have been reluctant to accept the risk, some
describing it as ‘toxic’ (Wadsworth, 2005). Financial markets have
the potential to provide a risk pooling and risk management func-
tion for longevity risk. Securitization has been well developed for
a range of risks including credit risk. Longevity bonds and related
derivative contracts allow the securitization of the risk inherent
in annuity portfolios leading to a more vigorous retail market in
longevity risk management products.
People are living longer, yet more are retiring at younger

ages. Labour participation rates for OECD males aged 60–64 have
fallen from 70%–90% in the 1970s to 20%–50% today (Creighton
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et al., 2005). Individual future lifetimes are also becoming
more variable (Booth et al., 2002; Morgan, 2007). These will
result in an increased reliance on income sources including
life annuities and lifetime income guarantee products to fund
longer retirement time periods. Demand for individual annu-
ity products will also be influenced by the shift from defined
benefit (DB) to defined contribution (DC) pension plans. Defined
contribution (DC) plans do not currently provide longevity protec-
tion (Creighton et al., 2005; Lin and Cox, 2005).
To illustrate the importance of developing a longevity mar-

ket, the Australian pension (superannuation) industry had AUD
1177 billion in funds under management at December 31, 2007,
two thirds of which were in defined contribution or hybrid DC/DB
funds (APRA, 2007a). In contrast, the Australian lifetime annuity
market was only AUD 3.9 billion in assets (APRA, 2007b). Purcal
(2006) investigates the demand and supply constraints that have
contributed to the size of this annuity market and concludes that
on the supply side, longevity risk and the lack of long term debt
instruments have prevented insurers from actively pursuing an-
nuity business. On the demand side there has also been a shift
towards investment linked products because of their flexibility and
potential for higher returns. Similar issues arise in other developed
economies.
Securitization has become an important technique for transfer-

ring illiquid risks into financial markets allowing risk pooling and
risk transfer for many illiquid retail products such as house mort-
gages, corporate loans and life insurance policies. Mortgage and
other asset-backed securities have been the main focus of securi-
tization but increasingly the insurancemarket has been developed
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initially with the sale of rights to emerging profits from life insur-
ance business (Cowley and Cummins, 2005). The transfer of credit
risk via collateralized debt obligations (CDOs) has been a more re-
cent development. The securitization of pure insurance risks began
in themid-1990s through insurance linked securitization (ILS) and
the catastrophe bondmarket. This has since grown to over USD 5.6
billion worth of bonds issued in 2006 (Lane and Beckwith, 2007).
Insurance risk securitization allows the transfer of pure insurance
risk to investors. Securitization also provides an efficient alterna-
tive to insurance risk-transfer methods such as reinsurance.
The initial mortality risk securitization was the Swiss Re Vita

Capital issue in December 2003. This mortality bond was designed
to reduce the exposure of Swiss Re to catastrophic mortality de-
terioration over its three-year term (Blake et al., 2006a). Lane and
Beckwith (2005, 2006) outline a number of other recent mortal-
ity linked issues by Swiss Re (Queensgate in 2005, and ALPS II in
2006) and Scottish Re (Orkney Holdings in 2005). These transac-
tions securitize entire blocks of in-force business. Payments are in-
demnity based, linked to the actual experience of the cedent. These
structures bundle underwriting, business, interest rate andmortal-
ity risks. Investors do not gain pure mortality exposures, a major
contributor to the success of the Vita issues (Blake et al., 2006a).
The securitization of longevity risk was proposed using a ‘sur-

vivor bond’ (Blake and Burrows, 2001; Cox et al., 2000; Dowd,
2003; Blake, 2003). These bonds offer coupon payments linked to
the survival rates of a reference population. Annuity providers can
receive a payment stream thatmatches their liability profile, hedg-
ing longevity exposures. In November 2004 the European Invest-
ment Bank, advised by BNP Paribas, proposed the first survivor
bond issue. Coupon payments were linked to a mortality index
for English and Welsh males 65 years old and discounted at LI-
BOR minus 35 basis points, including a premium for the transfer
of longevity risk. The exposure was underwritten by Partner Re
through a series of longevity swaps. In late 2005 the bond was
withdrawn for redesign. Blake et al. (2006a) provide a thorough
analysis of themajor concerns including an insufficient term toma-
turity of 25 years, excessive basis risk, model and parameter risk,
and the capital intensive structure.
Securitization, structuring and pricing of longevity risk for a

multi-age annuity portfolio is considered in this paper, extending
(Lin and Cox, 2005; Liao et al., 2007). The impact of age depen-
dencewith amultiple-age portfolio is analysed. A tranche structure
similar to that used in the collateralized debt obligation (CDO)mar-
ket is assessed. Pricing models for longevity bonds include appli-
cation of the Wang (1996, 2000, 2002) transform to a mortality
distribution and the Lee and Carter (1992) model. This approach
has been subject to criticism (see Cairns et al., 2006; Bauer and
Russ, 2006) and an approach that falls within the framework of
financial risk models is more appropriate. Dahl (2004) has devel-
oped financial risk models for mortality risk modelling. Risk ad-
justed probability measures can then be calibrated to market data.
Although there is no currently activemarket in longevity risk, there
are a number of existing mortality linked securities and a signifi-
cant insurance linked security market that can provide price infor-
mation for related risks.
The paper is structured as follows. Section 2 provides a back-

ground to longevity risk products and their pricing. In Section 3,
a tranched longevity bond structure designed for an annuity port-
folio with multiple ages is developed. The data and methodology
used to price the longevity bond structure is covered in Section 4.
Section 5 discusses the pricing and structuring and Section 6 con-
cludes.

2. Longevity bonds background

Investment banks structure and issue securitized products.
Longevity bonds are designed to transfer longevity exposure to the
capital markets. Lin and Cox (2005), and others including Blake
et al. (2006a,b,c) and Blake et al. (2006c), analyse longevity bonds.
Coupon payments are contingent on a single-age reference index
describing the number of annuitants initially aged x alive at time
t , lx+t . If this index, known as the loss measure, is greater than
anticipated then the coupon paid to investors is reduced. The
difference is paid to the bond issuer as compensation for higher
annuity liabilities. These structures usually assume a single cohort
and the impact of dependence between ages is not assessed. Only
the coupons are at risk and the bond is designed to be issued in a
single tranche.
Lane and Beckwith (2007) note that tranched issues are becom-

ing increasingly popular in the insurance linked securitymarket. In
2006 and 2007, new ILS issues were dominated by multi-tranche
offerings. The tranche structures are based on CDOs and provide
more tailored risk structures for capital markets investors. In the
mortality bond market, the transactions since the Vita I issue have
involved multiple tranches.
Chang and Shyu (2007) analyse the pricing of a tranched life

insurance linked security under mortality dependence. Their ‘Col-
lateralized Insurance Obligation’ is a product designed to transfer
the mortality risk of a life insurance portfolio. It has the same un-
derlying concept as the Swiss Re Vita Capital bonds. Mortality de-
pendence between lives is incorporated using a Clayton copula, an
approach that is popular in credit risk securitization. Mortality
rates for age i are given by a linear mortality rate function:

µi(t) = µ0i (t)+ µ
g
i (t)+ µ

a
i (t)+ µ

l
i(t) log

[
I(t)
B(t)

]
, (1)

where the first term is the basemortality rate, and the others allow
for gender, age and income respectively. The price of each tranche
is determined under a risk neutralmeasure. Their analysis suggests
that Lin and Cox’s (2005) independence assumption overestimates
the premium of the equity tranche, and underestimates the premi-
ums of themezzanine and senior tranches. This result is consistent
with the JP Morgan analogy of the ‘correlation cat’ for CDOs (Blum
and Overbeck, 2006).
Liao et al. (2007) further examine tranching in mortality linked

securities with a product designed to transfer longevity risk. They
assume that mortality follows a non-mean reverting stochastic
process for a single age as proposed by Luciano and Vigna (2005). If
B is the level annuity payment per period, X(t) is the actual num-
ber of survivors at time t and X̄(t) the expected number, then the
loss on an annuity portfolio at t is defined as

l(t) =
{
B(X(t)− X̄(t)) if X(t) ≥ X̄(t)
0 if X(t) ≤ X̄(t).

(2)

A difficulty in structuring longevity bonds is defining the percent-
age cumulative loss on the portfolio. In a CDO or mortality bond,
this is naturally the percentage of the portfolio that has defaulted
or died by a certain time, as defaults and deaths only occur once. In
longevity securitization, the number alive can exceed expectations
consistently over a number of years. Liao et al. (2007) overcome
this by defining the percentage cumulative loss based on the face
value of the bond issued. They determine optimal tranche weights
to match hypothetical market demands for expected loss expo-
sures.
In order to price a longevity risk linked security, the underlying

mortality risk process needs to be a risk adjusted pricing measure.
In an incompletemarket, such as the longevity riskmarket, equilib-
rium pricing theory can be used to derive a risk adjustment (Hull,
2003). Wang (1996, 2000, 2002) developed a framework for pric-
ing risks that aimed to unify actuarial and financial theory based
on the distortion operator

gλ(u) = Φ[Φ−1(u)− λ], (3)

where the parameter λ is the ‘market price of risk’. The distortion
can be applied to a cumulative density function F(t), to yield a ‘risk
adjusted’ function F∗(t) = gλ (F(t)). Both Lin and Cox (2005) and
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Liao et al. (2007) employ this approach to determine a risk adjusted
mortalitymeasure.Market annuity data are used to calibrateλ. The
major criticism of this approach is that it does not readily reflect
different prices of risk across ages (Cairns et al., 2006; Bauer and
Russ, 2006).
A number of ways of calibrating the risk adjusted probability

measure have been proposed. Biffis (2005) suggests using basic
insurance contracts traded in the secondary reinsurance market
to imply a risk adjusted probability measure, but concedes that a
deep market in such contracts does not exist. Blake et al. (2006c)
incorporate the market price of risk as a parameter within their
model and calibrate it to the BNP/EIB issue. Ballotta and Haberman
(2006) assume that the market is risk neutral with respect to
mortality risk mainly because of the inability to adequately assess
the market risk premium. Lin and Cox (2005) use annuity data to
calculate impliedmarket probabilities for theirmodel, an approach
mirrored by Bauer and Russ (2006). As opposed to adjusting the
underlying probability distribution, Lane (2000) has constructed
an empirical model for pricing insurance linked securities where
the spread on the security is a function of the expected losses of the
issue (EL) and its expected excess return (EER). The EER is the ‘risk
loading’ demanded by the market for accepting the exposure. To
accommodate asymmetric loss distributions, Lane (2000) proposes
using the probability of first loss (PFL) and the conditional expected
loss (CEL) given exceedance of a tranche attachment point.
Equivalent concepts in the credit and insurance risk literature are
the probability of default (frequency) and the loss given default
(severity). ILS tranches are priced using the functional form

EER = γ (PFL)α × (CEL)β . (4)

Lane fits the model to insurance linked security (ILS) transactions
to estimate γ , α and β . The model provides a reasonable fit for the
market based EER. Lane and Beckwith (2005) use themodel to eval-
uate the Swiss Re Vita Capital issue, and Lane and Beckwith (2006)
review prices in the wind catastrophe bond market following the
2005 US hurricane season.

3. Structuring a longevity bond

The proposed structure for a longevity bond is based on that
used for a collateralized debt obligation. Over the term of the
bond the issuer pays a regular premium to the tranche investors.
The tranche is ‘triggered’ by higher than anticipated longevity im-
provements. In this event, the investor forfeits a fraction of their
prescribed capital to the issuer, as compensation for the issuer’s
incurred losses on an annuity portfolio. The payments are based
on a specified population mortality index. In the following period,
the premium is paid on a notional tranche principal that has been
reduced by the incurred loss. The proposed longevity bond is struc-
tured in a number of tranches. This allows the risk profile of the
bonds to be tailored to investor demands.
The underlying annuity portfolio consists of lives of differing

ages. The population mortality process includes common factors
that result in dependence between lives. There is both systematic
and non-systematic longevity risk. Systematic risk is the risk asso-
ciatedwith changes in the underlying (population)mortality rates.
Non-systematic risk arises from the random variation in deaths in
a portfolio for a fixed mortality rate. Systematic risk is not diver-
sifiable, and thus does not decrease with the increasing size of a
portfolio, whereas non-systematic risk is diversifiable. Longevity
bonds aim to provide an alternative means of managing the sys-
tematic risk.
Payments are aggregated for all the lives in the portfolio and

then allocated to tranches reflecting the seniority of the tranche.
Fig. 1 summarizes the cashflows of the longevity bond where
the issuer is assumed to have the obligation to pay fixed annuity
Fig. 1. The proposed tranched longevity bond.

payments of A to the survivors l(x, t) of those initially aged x. The
junior tranche is also referred to as the equity tranche.
Tranche investors subscribe an initial principal amount FV (in

total), that is held as collateral in a special purpose vehicle (SPV).
If no losses are incurred on the tranche, FV is returned to the
investors at maturity. At the beginning of each period, investors
receive a premium payment, P , from the issuer via the SPV. In ex-
change, a fraction of FV is transferred from the SPV to the issuer, in
the event that longevity exceeds expectations. This provides com-
pensation for higher than anticipated losses on the issuer’s annu-
ity portfolio. FV is not evenly reduced for all investors, since this
depends on the allocation of portfolio loss between the tranches.
After a loss has occurred, premiums are then calculated as a per-
centage of the reduced notional principal.
The price of each tranche is determined by equating the ex-

pected present values of premiums and losses under an equivalent
risk adjusted probability measure for the mortality process.

3.1. Bond cash flows and annuity portfolio losses

The payments on the longevity bond are contingent on the
losses on the underlying annuity portfolio. The longevity bond has
a term to maturity of T periods and a total face value of FV . The
bond’s cashflows are determined by a reference annuity portfolio
of n(0) lives of different ages at time t = 0. It is assumed that
annuitant i is paid a whole of life annuity of Ai per period, i =
1, . . . , n(0). The indicator Ii(t) = 1τi>t jumps from 1 to 0 at the
time of death τi of an annuitant. The loss on the portfolio at time t
is defined as

L(t) =
∑
n(x,0)

(Ii(t)Ai − E [Ii(t)Ai])+ (5)

which is the amount by which the annuity payments at time t ex-
ceed the expected payments. Losses on the portfolio are not sym-
metric, giving rise to a number of ‘option-like’ features.
For an initial age of life i at time 0 of xi, the probability of the life

living to age (xi + t) is

tpxi = E[Ii(t)] (6)

= exp
[
−

∫ t

0
µ(xi, s)ds

]
. (7)

The portfolio of annuitants have different ages, so denote the num-
ber of lives initially alive aged x by l(x, 0), with∑
all x

l(x, 0) = n(0). (8)

The number of lives alive at time t , initially aged x, is denoted by
l(x, t). For a given population survival probability tpx, the distribu-
tion of the number alive at time t is binomial:

l(x, t) =
∑

all i for age x

Ii(t) ∼ Binomial (l(x, 0), tpx) |tpx. (9)

The total variability in the portfolio is the unconditional variance
of the compound binomial distribution:

Var[l(x, t)] = E[Var[l(x, t)|tpx]] + Var[E[l(x, t)|tpx]]. (10)
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Fig. 2. Total and partial variance of l(x, t).
For large portfolios of lives the main source of randomness will
arise from systematic changes in the mortality rates impacting all
lives in the portfolio. This randomness in l(x, t) is due to the ran-
domness in tpx. Fig. 2 shows both the total variance Var[l(x, t)]
and the variance due to the random survival probability tpx,
Var[E[l(x, t)|tpx]]. The twoplots are almost identical, so the volatil-
ity in l(x, t) is primarily explained by the systematic variability
of the underlying mortality process. Lin and Cox (2005) model a
longevity bond based on longevity risk volatility from l(x, t) given
a fixed tpx, understating the longevity risk in a portfolio. Since the
longevity bond aims tomanage systematic longevity risk of the an-
nuity portfolio, the systematic risk is the focus of this paper.
The portfolio loss in Eq. (5) can then be written as

L(t) =

(
A
∑
all x

l(x, 0)tpx − E

[
A
∑
all x

l(x, 0)tpx

])+
(11)

=

(
A
∑
all x

l(x, 0)tpx − A
∑
all x

l(x, 0)t p̄x

)+
(12)

where t p̄x is the expected value of the random survival probability
tpx. The portfolio percentage cumulative loss can be written as

CL(t) =

t∑
s=1
L(s)

FV
. (13)

CL(t) describes the percentage of the bond’s face value that has
been exhausted by portfolio losses up to that time. The choice of
face value FV affects this loss, and in turn the risk profile of the
bond. Unlike CDOs and Vita-style mortality bonds, it is possible to
have CL(t) > 1, particularly for smaller values of FV . This arises
when annuitants repeatedly exceed expectations of longevity
whereas credit risky bonds and individual lives can default or die
only once. Payments are restricted to cases where CL(t) <= 1.

3.2. Tranching by percentage cumulative loss

The J tranches are characterized by an attachment and detach-
ment point denoted by KA,j and KD,j for j = 1, . . . , J respectively.
The expected loss in each tranche determines the appropriate pre-
mium. The proposed tranche structure is based on the percentage
cumulative loss of the portfolio with the longevity risk associated
with the annuity portfolio tranched ‘vertically’, in a way that is
similar to an ‘excess of loss’ reinsurance contract. As losses are in-
curred on the underlying annuity portfolio, they are allocated to a
tranchewhen the cumulative loss falls between its attachment and
detachment points. These points are expressed as a percentage of
the bond’s face value, FV , such that

KA,1 = 0;
KD,j−1 = KA,j;
KA,j < KD,j; and,
KD,J = 1.

(14)

If cumulative losses exceed the detachment point of a tranche, it is
retired and the losses are allocated to the next in order of seniority.
The senior tranches will only attach if all subordinated ones have
been retired. The cumulative loss on the jth tranche at time t is
given by

CLj(t) =

{0 if L(t) < KA,j;
CL(t)− KA,j if KA,j <= L(t) < KD,j;
KD,j − KA,j if L(t) >= KD,j,

(15)

where

CL(t) =
J∑
j=1

CLj(t). (16)

The expected percentage cumulative loss in tranche j at time t is

TCLj(t) =
E[CLj(t)]
KD,j − KA,j

. (17)

Defining tranche payments by cumulative loss has a number of ad-
vantages. These can be seen by contrasting it with the approach
used by Lin and Cox (2005), based on losses per period. In the lat-
ter case, the coupon paid to tranche investors only depends on the
level of portfolio losses in each period. In a year of strong mor-
tality improvement, coupons may be reduced to zero for a par-
ticular tranche. In the next year, if mortality rates return to
expectation then couponsmay be fully reinstated. The coupon pay-
ment stream thus becomes highly variable, reducing its attractive-
ness to investors. Initial capital costs would also be high, as the risk
coverage per period is limited to the coupon size. Tranching by cu-
mulative loss leads to amore predictable streamof cashflows. Once
a tranche is exhausted, it will not be reinstated again. The tranches
also provide greater coverage, as both principal and interest are at
risk.

3.3. Pricing structured longevity risk

The price of a longevity bond tranche Pj is defined as a per-
centage of the principal at risk. This percentage is paid to the in-
vestor each period as the tranche premium. The fair price P∗j is
set so that the expected present value of the premium and claim
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Table 1
Longevity bond structure.

Assumptions

Bond face value: FV = $750,000,000.
Term to maturity: T = 20 years.
Payment frequency: Annually, for both premium and loss payments.
Number of tranches: J = 3.
Initial age of annuitants: x = 50, . . . , 79.
Initial number of annuitants: n(0) = 60, 000. We assume that this is evenly distributed between the 30 ages, with

l(x, 0) = 2000∀x.
Annuity payments: A = $50,000 paid at the end of each year to each living annuitant.
payment legs of the tranche are equal. Each leg is a function of the
expectedpercentage cumulative loss on the tranche at time t under
a risk adjusted probability measure, denoted by TCL∗j (t). Assuming
that premiumpayments occur at the beginning of each time period
t = 0, . . . , T , the value of tranche j’s premium leg is equal to the
risk adjusted expected present value of all premium payments to
the investor:

PLj =
T∑
t=1

PjB(0, t − 1)[1− TCL∗j (t − 1)]. (18)

The term B(0, t−1) is the present value of a risk-free zero-coupon
bond that pays $1 at time (t − 1). TCL∗j (t − 1) is the risk adjusted
value of the expected percentage cumulative loss on the tranche
at the time at which the premium is paid, so [1 − TCL∗j (t − 1)]
determines the proportional value of the notional face value of
the tranche on which the premium is calculated. At the begin-
ning of the contract, the premium is paid on 100% of the notional
face value. This reduces over time to zero when the tranche is ex-
hausted, and the premium payments cease.
The value of the claim payment leg is the risk adjusted expected

present value of the loss payments, which occur at the end of each
period:

LLj =
T∑
t=1

B(0, t)[TCL∗j (t)− TCL
∗

j (t − 1)]. (19)

P∗j is determined using a risk adjusted probability measure which
incorporates a ‘risk premium’ for longevity risk.
The fair price of the tranche is then defined as the premium P∗j

such that
PLj(P∗j )− LLj(P

∗

j ) = 0 (20)
giving

P∗j =

T∑
t=1
B(0, t)[TCL∗j (t)− TCL

∗

j (t − 1)]

T∑
t=1
B(0, t − 1)[1− TCL∗j (t − 1)]

. (21)

The pricing is based on a financial pricing mortality model in
Wills and Sherris (2008) where the continuous time dynamics of
the mortality rate are given under a risk adjusted probability mea-
sure Q by

dµQ(x, t) =

(
a(x+ t)+ b+

N∑
i=1

δxiλi(t)

)
µQ(x, t)dt

+ σµQ(x, t)dW (x, t) for all x (22)
where λ(t) = [λ1(t), . . . , λN(t)]′ is a vector of ‘risk adjustments’
and N is the number of factors driving volatility of the mortality
rate. The expected changes in mortality rates differ by cohort and
include a constant plus a cohort varying term. The ‘prices of risk’,
λi(t), can be calibrated to market price data where available and
ILS data are used later to calibrate the model. The main motivation
for using the model is the ability to capture the volatility of his-
torical data through the random factors and the ability to include
expected mortality changes varying by cohort.
Table 2
Attachment and detachment points as a percentage of bond face value (FV ).

Tranche j KA,j (%) KD,j (%)

1 0 15
2 15 30
3 30 100

4. Implementation and analysis

Table 1 provides details of the structure for the longevity bond
used for analysis. The FV determines the amount of coverage pro-
vided by the longevity bond issue. Losses are measured as a per-
centage of the bond’s face value. The choices of FV , n(0) and Awere
determined so that the longevity bond tranches have risk profiles
commensurate with senior AAA, mezzanine BBB- and equity (un-
rated) securities. A long term tomaturity of the bond is required to
manage exposure to long term longevity improvements. The bond
covers 30 ages in the portfolio over a 20 year term reflecting the
longest dated Australian Government bonds. Other longer terms
can be consideredwhere a longer termbondmarket exists. In 2005,
the French and UK governments issued 50 year bonds, which fa-
cilitate the management of interest rate risk over a longer time
horizon. Longer term bonds will facilitate the market for longer
longevity risk linked securities.
The attachment and detachment points of the jth tranche, KA,j

and KD,j, are defined in terms of the portfolio percentage cumu-
lative loss and given in Table 2. The allocation of losses between
tranches results in an unrated junior or equity tranche, a BBB-
rated mezzanine tranche and a AAA rated senior tranche. The
junior tranche should be retained by the issuer, managing moral
hazard by aligning the issuer’s interests with those of the investor.
Where this does not occur, as happened in the CDO market, the
tranche structure will not mitigate moral hazard. Tranching also
creates a range of risk profiles, expanding the potential pool of risk
capital to provide the funding.

4.1. Pricing tranched longevity risk

In an annuity portfolio the ages of the lives will vary and de-
pendence between the ages is an important factor. In order to
clearly demonstrate the impact of dependence, the longevity bond
tranches are analysedunder three specifications of dependence be-
tween ages in the underlyingmortality process. These are indepen-
dence, dependence based on principal components analysis (PCA)
of Australian population mortality data and perfect dependence.
Data for calibrating and analysing the longevity bond were ob-

tained from:
• Australian Population Mortality Data: ages 50–99, 1971–2004.
Drawn from the Human Mortality Database, University of Cal-
ifornia, Berkeley (USA), and Max Planck Institute for Demo-
graphic Research (Germany).
• Australian Government Treasury Bill and Note Prices: maturity
ranging from12months to 12 years. Drawn from the Bloomberg
data service, 24/09/2007.
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Fig. 3. The assumed zero-coupon bond yield curve (Bloomberg 24/09/2007).

Table 3
Fitted parameters and chi-square statistic X2 for the Lane model, using 2006–2007
data.

Parameter 2006–07 all 2006–07 mortality

γ 0.9736 0.9980
α 0.6006 0.8965
β 0.6261 0.5034
X2 1.84 0.04
χ29 at 99% 44.64 2.09

• Market Insurance Linked Security Data: 2007 issues. Drawn
from Lane and Beckwith (2007).

Zero-coupon bond yields were determined using linear inter-
polation between quoted maturities. For periods exceeding the
12 years of available data, the yield curve was assumed to be flat
at 6.246% to reflect mean reversion in the long term interest rates.
The zero-coupon bond curve is given in Fig. 3.
Under the risk adjusted pricing measure, Q, the losses on each

tranche are discounted at the risk-free rate. To price longevity
linked securities it is necessary to calibrate λ(t) to market data.
Longevity risk is not liquidly traded so it is necessary to use avail-
able data for similar risk securities including mortality bonds. The
prices of risk are determined such that the price of each tranche is
consistent with that obtained using the Lane (2000) model based
onmarket data. From Eq. (22), themortality dynamics for each ini-
tial age x under the risk adjusted measure Q was simplified to in-
clude only a single aggregate price of risk such that

dµQ(x, t) =
(
a(x+ t)+ b− σλ∗

)
µQ(x, t)dt

+ σµQ(x, t)dW (x, t). (23)

The Lane (2000) model for the expected excess return for
insurance linked for security tranches

EER = γ (PFL)α(CEL)β (24)

is calibrated tomarket data observed premiums ofmortality linked
securities issued in 2006–2007. The data is drawn from Lane and
Beckwith (2007), incorporating thirteen tranches across the issues
by the Vita III and Osiris Capital special purpose vehicles. For com-
parison, the model is also fitted to all 72 insurance linked security
issues over the same period. Table 3 lists the parameters fitted us-
ing the method of non-linear least squares.
The Pearson chi-square statistic and 99% confidence level is

provided as a summary of the fit of the model, given in Fig. 4.
The proposed model determines tranche losses using Monte

Carlo simulation. The probability of first loss for tranche j is esti-
mated from

ˆPFLj =
number of simulations where the tranche is triggered

total number of simulations
(25)
Fig. 4. Observed and fitted EER found by calibrating the Lane model to 2006–2007
mortality bond issues.

where the expected cumulative percentage loss on tranche j at
time t is given by TCLj(t). This is annualized for use in Lane’s model
to give

ÊLj =
TCLj(T )
T

. (26)

The annualized cumulative expected loss is then

ˆCELj =
ÊLj
ˆPFLj
. (27)

The parameters listed in Table 3 and the estimated values of ÊLj,
ˆPFLj and ˆCELj yield an estimate of the risk adjusted premium for
tranche j, PLj . Prices of risk are calibrated to this tranche price by
choosing λ∗j to give the model premium:

Pλ
∗

j = P
L
j . (28)

The price of risk λ∗j is a function of the risk characteristics of the
cash flows as priced using the Lane model:

λ∗j = f ( ˆPFLj, ˆCELj, γ , α, β). (29)

4.2. Pricing and Monte Carlo simulation

The approach used to determine tranche prices of risk is imple-
mented using Monte Carlo simulation. The process is as follows.
Step 1. The values of µ(x, 0) and its expectation µ̄(x, 0) are ini-

tially set to the latest observed values.
Step 2. The P-distribution of dµ(x, t) at each time t is modelled

using 100,000 simulations. This is driven by simulations
of the multivariate process dW (t), under three assump-
tions of dependence. dµ̄(x, t) is determinedwith dW (t) =
[0, . . . , 0]′.

Step 3. Simulations of µ(x, t) are derived:

µ(x, t) = µ(x, 0)+
t∑
s=0

dµ(x, s).

Step 4. The portfolio loss L(t) andpercentage cumulative loss CL(t)
are determined for each simulation at each time. They are
both functions of µ(x, t) and µ̄(x, t).

Step 5. Losses are allocated between tranches based on their at-
tachment and detachment points. This gives the expected
percentage cumulative tranche loss EMj(t).

Step 6. EMj(t) is used to find the tranche fair premium P∗j .
Step 7. Estimates of ÊLj, ˆPFLj and ˆCELj are used to find the market

price of the tranche, PLj .
Step 8. Steps 1–7 are repeated, to determine the price of risk

adjustment for dµ(x, t). This gives a Q-distribution of
dµ(x, t) where λ∗ is chosen such that the premium in
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Step 6 of this iteration, Pλ
∗

j , equals the P
L
j calculated with

the Lane model under the measure P.
Step 9. The process is repeated for each tranche j = 1, 2 and 3.

5. Analysis of bond structure

For the Wills and Sherris (2008) mortality model, the expected
number of lives alive under 20 year projections is given in Fig. 5.
Mortality is expected to continue to improve for all ages.
Expected portfolio cumulative loss, given as the percentage of

the bond’s face value that has been exhausted by losses up to each
point in time and falling between [0, 1], on the proposed 20 year
longevity bond is given in Fig. 6. Values are shown for both time and
the initial age of the annuitant, providing a summary of portfolio
losses before they are allocated between tranches.
A statistical summary of portfolio loss is given in Table 4. P0 is

the premium on an untranched longevity bond, calculated under
realworldmortality projections. CL(T ) is the portfolio expected cu-
mulative loss at the bond’s maturity, T , also calculated under the
real world probability measure P expressed as a percentage of the
bond’s face value. This is the fraction of invested capital that in-
vestors can expect to lose over the term of the issue. The final col-
umn gives the standard deviation of portfolio cumulative losses at
time T . This is an indication of the volatility of the portfolio, though
it does not account for the non-symmetric nature of losses.
The statistics in Table 4 are shown under the three age de-

pendence assumptions. Independence assumes that mortality im-
provements at any age are not impacted by changes at other ages.
Table 4
Whole portfolio premiums (bps) for λ = 0, and loss statistics under three
assumptions for mortality dependence.

P0 CL(T ) Std dev. (T )

Ind 75 0.181 0.042
PCA 44 0.108 0.074
Dep 62 0.149 0.196

Dependence results in themortality curve shifting proportionately
across all ages. PCA refers tomortality rates simulated using princi-
pal components analysis, with a dependence structure taken from
observed Australian data.
Table 4 shows that the variability of the loss on the portfolio

increases with age dependence. This is to be expected, as under
higher dependence, fluctuations in mortality at one age are exac-
erbated by the flow-on effects at all other ages. Less intuitive is the
relationship between expected losses assuming age dependence.
This is influenced by the one-sided nature of the loss function L(t).
If longevity improvements are less than expected, a ‘negative loss’
is not incurred on the annuity portfolio for the purpose of securiti-
zation. As a result, higher volatility would be expected to increase
the expected loss on the portfolio. This is similar to the impact of
volatility on the price of an option as discussed, for example, inHull
(2003). This is seen in the higher expected losses under perfect in-
dependence compared with the dependence case. Lower volatili-
ties are balanced by higher dispersion in the mortality rate at ages
above 95. Few lives reach these ages over the term of the bond,
as the initial cohorts range from 50–79, so their effect is limited.
Although the range of outcomes is more dispersed than under in-
dependence, its average is lower.
In Fig. 7, differences in portfolio cumulative loss under the three

assumptions are further illustrated along with 95% confidence
intervals for the losses over the 20 year term of the bond.

5.1. Tranching by percentage cumulative loss

Cumulative losses on the annuity portfolio increase over time.
In the proposed tranche structure, when cumulative loss exceeds
the detachment point of a tranche, it is retired, and thenext tranche
in order of seniority bears the subsequent losses. This continues
until the final tranche is exhausted, or the bond matures. Tranches
have significantly different risk profiles as a result. The equity, or
‘junior’, tranche bears themajority of risk,whilst the senior tranche
only attaches in the event of particularly adverse experience.
The operation of this tranching structure is illustrated in Fig. 8,

which shows 100 simulations of portfolio cumulative loss over
20 years. Each simulation is a step function that traces portfolio
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Fig. 7. Portfolio expected cumulative loss; 95% confidence intervals.

cumulative losses at discrete annual intervals. At each step, cu-
mulative loss is divided between the three tranches, based on the
thresholds illustrated in the diagram. The loss on each tranche is
then calculated as a percentage of the tranche ‘coverage’—or the
difference between its attachment and detachment points. In the
case of the middle tranche in our example, portfolio cumulative
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Table 5
Tranche premiums (bps) for λ = 0, and loss statistics under three assumptions for
mortality dependence.

P0j TCLj (T ) Std dev. (T )

Tranche 1
Ind 574 0.966 0.082
PCA 306 0.626 0.282
Dep 304 0.532 0.403

Tranche 2
Ind 66 0.238 0.233
PCA 24 0.082 0.225
Dep 84 0.228 0.384

Tranche 3
Ind 0 0.000 0.002
PCA 1 0.003 0.025
Dep 15 0.050 0.166

loss is divided by (0.3–0.15) to find the tranche percentage cumu-
lative loss.
A statistical summary of tranche losses is given in Table 5, and

mirrors the portfolio results in Table 4 for each tranche. P0j is the
premium on each tranche, TCLj(T ) is the tranche expected cumu-
lative loss at T , and the standard deviation of cumulative tranche
losses at T is given in the final column. TCLj(T ) is expressed as a
percentage of the face value of the tranche and, like CL(t) in the
portfolio case, is interpreted as the fraction of invested capital that
investors can expect to lose over the term of the issue.
The statistics in Table 5 provide an insight into the impact of

age dependence on each tranche. Assuming independence, losses
in the equity tranche (Tranche 1) are overestimated, whilst those
in the senior tranche are underestimated. The opposite is true for
completely dependent ages. Senior tranche investors face expected
losses that are 17 times greater under perfect dependence than
they are under observed PCA dependence estimated from Aus-
tralian mortality data.
In Fig. 9, the difference in tranche risk profiles is further illus-

trated under the three dependence assumptions with 95% confi-
dence intervals for the losses in each tranche shown, giving an
indication of their dispersion about themean. For each tranche, the
variability of losses increases with age dependence. Under higher
dependence, mortality improvements at each age impact all ages,
accumulating the impact of mortality improvement losses for an
annuity portfolio. As a result, equity tranche investors expect fewer
losses under dependence; because along with the higher probabil-
ity of large losses, to which their exposure is capped, there is also
a higher probability of low losses. For the senior tranche investor,
expected loss increases with dependence, as there is a greater pos-
sibility that their tranche will attach.
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Fig. 9. Expected cumulative tranche loss TCLj(t) (solid), with 95% bounds (dotted), under three assumptions for mortality dependence.
Tranche losses are not equally incurred across all cohorts in
the annuity portfolio. Figs. 10–12, show the expected cumulative
tranche loss at each time disaggregated by initial age. This clearly
shows that the largest contribution to tranche loss at each time
is made by the older cohorts. The difference is particularly pro-
nounced in more senior tranches due to the higher volatility in the
mortality process at these ages.
These results clearly demonstrate how age dependence has a

significant impact on structuring and pricing multiple-age longe-
vity linked securities. As each tranche has a different exposure to
the loss distribution, their characteristics vary greatly. The contri-
bution to tranche losses by each cohort in a multiple-age portfolio
are not equal, and vary by the tranche and by the age dependence
in the underlying portfolio.Modelling the age structure and age de-
pendence is a crucial factor in structuring and pricing a longevity
securitization.

5.2. Pricing and calibration of market price of risk

Fig. 13 is a summary of the tranche premiums and associated
risk adjustments λ∗j for the longevity bond structure calculated
under three age dependence assumptions consistent with the
calibrated Lane model parameters.
The parameters used in this model are given in Table 3.
Two sets of premiums are calculated under the Lane model,
based on two different data sets. The first (Lane: all), is based on
the characteristics of all 72 insurance linked securities issued in
2006 (drawn from data in Lane and Beckwith (2007). This includes
catastrophe bonds exposed to a number of risks. The second (Lane:
mort.) is fitted only to the thirteen tranches of the mortality linked
issues of Vita III and Osiris Capital over the same period. The
latter, using mortality linked securities, is selected as the basis for
calibration since it is expected to provide a closer reflection of the
market price for longevity risk (see Tables 6 and 7).
The calibration to mortality bond data has a higher yielding

junior tranche, and lower premiums for the senior tranche. Tranche
premiums are a function of expected loss, and its constituent parts
PFL and CEL. The premiums in Fig. 13 reflect tranche expected
losses (see Table 8).
The parameter λ∗j is the estimated ‘price of risk’. It differs by

tranche and depends on the underlying mortality risk. As λ∗j is an
adjustment to the real world mortality process, it captures mor-
tality risk preferences under the market calibrated measure Q, as
compared to the real world measure P. In Eq. (23), λ∗j was defined
as a reduction in mortality drift. Higher values result in improved
longevity assumptions underQ, resulting in larger expected annu-
ity portfolio losses and a larger risk loading in tranche premiums.
A summary of tranche premiums, risk adjustments and the

sensitivities of λ∗j to inputs for the Lane model is provided in
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Table 6
Model inputs and premiums calculated using the Lane (2000) model, under perfect age independence.

Inputs Premiums
PFL CEL Annual EL Lane: all Lane: mort. Calibrated

Equity Tranche 1 1.000 0.048 0.048 1943 2653 2652
Mezzanine Tranche 2 0.758 0.016 0.012 732 1082 1085
Senior Tranche 3 0.005 0.001 0.000 6 3 3
Table 7
Model inputs and premiums calculated using the Lane (2000) model, under age co-dependence using PCA.

Inputs Premiums
PFL CEL Annual EL Lane: all Lane: mort. Calibrated

Equity Tranche 1 1.000 0.031 0.031 1426 2058 2058
Mezzanine Tranche 2 0.196 0.021 0.004 368 373 371
Senior Tranche 3 0.030 0.005 0.000 46 32 31
Table 8
Model inputs and premiums calculated using the Lane (2000) model, under perfect age dependence.

Inputs Premiums
PFL CEL Annual EL Lane: all Lane: mort. Calibrated

Equity Tranche 1 1.000 0.027 0.027 1271 1873 1870
Mezzanine Tranche 2 0.327 0.035 0.011 723 790 789
Senior Tranche 3 0.153 0.016 0.003 266 260 261
Table 9
Tranche premiums, risk adjustments and sensitivities of λ∗j under perfect age independence.

Premium λ∗j Sensitivities
ˆPFLj ˆCELj γ α β

Equity Tranche 1 2652 4.97 – 1.38 1.91 – −2.89
Mezzanine Tranche 2 1085 2.32 2.48 1.52 2.43 −0.60 −5.02
Senior Tranche 3 3 0.11 0.27 0.16 0.30 −1.38 −0.97
Table 10
Tranche premiums, risk adjustments and sensitivities of λ∗j under age co-dependence using PCA.

Premium λ∗j Sensitivities
ˆPFLj ˆCELj γ α β

Equity Tranche 1 2058 2.52 – 1.39 2.04 – −3.52
Mezzanine Tranche 2 371 0.31 1.24 0.76 1.21 −1.76 −2.33
Senior Tranche 3 31 0.25 0.29 0.17 0.31 −0.95 −0.79
Table 11
Tranche premiums, risk adjustments and sensitivities of λ∗j under perfect age dependence.

Premium λ∗j Sensitivities
ˆPFLj ˆCELj γ α β

Equity Tranche 1 1870 2.03 – 1.41 2.11 – −3.81
Mezzanine Tranche 2 789 1.18 1.83 1.15 1.72 −1.72 −2.88
Senior Tranche 3 261 0.70 0.76 0.46 0.76 −1.26 −1.55
Tables 9–11. The value of λ∗j decreases with tranche seniority
under each assumption for age dependence. This is consistent with
investors having a non-linear risk/return tradeoff and beingwilling
to accept smaller risk adjustments in the senior tranche.
The sensitivities of λ∗j to the Lane model inputs describe

changes in λ∗j as a multiple of the change in each underlying pa-
rameter, all else being equal. Sensitivities to PFL and α for the
Equity Tranche 1 are zero since PFL = 1 for this tranche. The sensi-
tivity of the risk adjustment to all underlying parameters decreases
with tranche seniority. Parameters α and β are both exponents of
values in [0, 1], and have an inverse relationship with price, and
in turn λ∗j . The risk adjustment is most sensitive to changes in β ,
followed by the probability of first loss in the tranche, and then γ .
Tranche premiums reflect expected losses when calibrated

under the Lanemodel. The risk adjustmentλ∗j is themarket price of
mortality (longevity risk for each tranche). This price of risk can be
used to calibrate mortality models for application to pricing other
longevity related securities.

6. Conclusion

Longevity risk is an increasingly important risk facing individ-
uals in developed economies. Financial institutions are develop-
ing products to provide insurance for this risk. Longevity bonds
have yet to be successfully structured and issued to capital mar-
kets. They are an important component in the possible risk transfer
and riskmanagement of longevity risk by institutions. The success-
ful development of such a market will support the development of
life annuity and other retail products for this risk.
Since its introduction, the Lee–Carter mortality model has been

widely used, and has become a benchmark for the stochastic mod-
elling of mortality. However, its suitability for pricing longevity
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Fig. 10. Tranche 1: Expected cumulative losses by age.

linked securities is restricted, due to limitations in incorporating
a risk adjustment into the mortality distribution. Both Lin and Cox
(2005), and Liao et al. (2007) employ theWang (1996, 2000, 2002)
transform to price longevity bonds. This method has been subject
to criticism (see Cairns et al., 2006; Bauer and Russ, 2006), be-
cause of the assumption of a constant market price of mortality
risk across ages and time. The pricing and structuring in this pa-
per is based on a multivariate mortality model calibrated under a
risk neutral pricingmeasure which is flexible enough to allow cali-
bration of the price of risk adjustment to insurance linked security
prices.
Fig. 11. Tranche 2: Expected cumulative losses by age.

The approach used for structuring the longevity risk in the pa-
per is based on the cumulative loss of an annuity portfolio. This
compensates a bond issuer for losses on an annuity portfolio as
they occur. Other alternative loss measures could be based on the
value of an annuity portfolio’s future obligations, allowing for all
future expected longevity improvements to be captured by the
bond payoffs, as proposed by Sherris and Wills (2007). This is a
structure that could also have potential interest and is worthy of
further analysis.
This paper provides a detailed analysis of the structuring and

pricing of a longevity bond suitable for a multiple-age annuity
portfolio. Dependence between ages plays a significant role in the
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Fig. 12. Tranche 3: Expected cumulative losses by age (scales vary).
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mortality process because of common factors affecting mortality
improvement. This paper has demonstrated the significance of age
dependence in the pricing and tranche structure for a longevity risk
bond. Age dependence must be considered in order to successfully
structure and price longevity linked securities.
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