NAME:_____

How can it be determined if a complex number belongs to the Mandelbrot set?

UNDERSTANDING

The ______ set is a set of points in a complex plain.

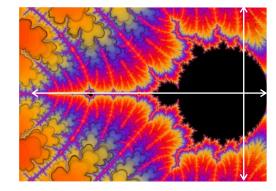
- 1. The image produces a <u>(a never-ending pattern)</u>, that results from separating the points into two categories.
 - a. Points inside the Mandelbrot set are the _____ points.

The absolute value of the sequence of these points never approaches _____

- b. The points outside the Mandelbrot set are the non-black points.
 - 1) The points close to the Mandelbrot set "_____" approach infinity.
 - 2) The points far from the Mandelbrot set more quickly approach infinity.
 - 3) The ______ of these points corresponds to the speed at which infinity is approached.
- c. A Mandelbrot fractal is infinitely complex, meaning you can ______ in forever.
- 2. The function of a Mandelbrot set is the series: $z_n = Z_{n-1}^2 + ...$
 - a. Note: z₀ = ____.
 - b. The output of the ______ function is the input of the preceding function.

Note: $z_1 = (f(z_0))^2 + c$, $z_2 = (f(z_1))^2 + c$, $z_3 = (f(z_2))^2 + c$, $z_4 = (f(z_3))^2 + c$...

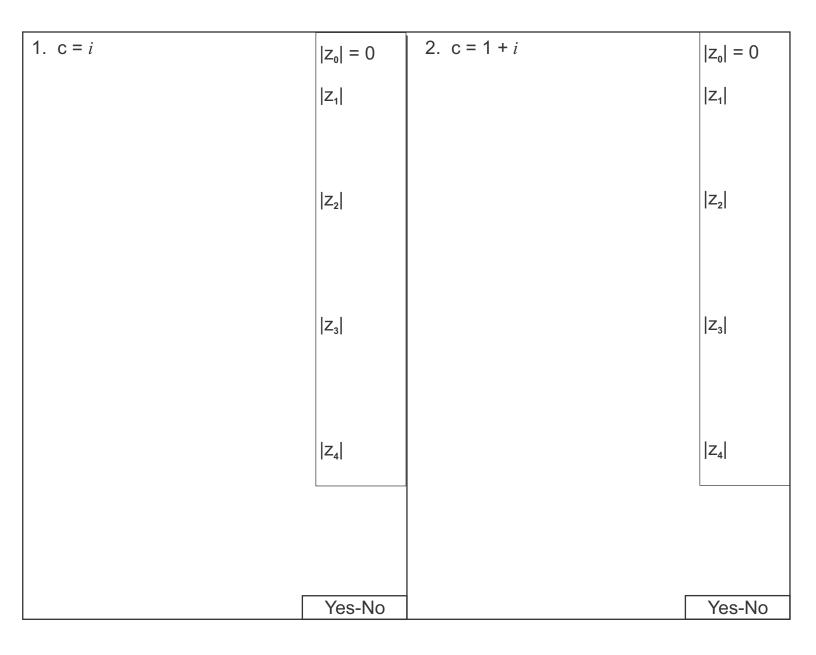
- c. If $|z_0|$, $|z_1|$, $|z_2|$, $|z_3|$, $|z_4|$... does NOT approach infinity, then the point is inside the Mandelbrot set.
- d. If $|z_0|$, $|z_1|$, $|z_2|$, $|z_3|$,...approaches infinity, then the point is NOT inside the Mandelbrot set. Example: if c = 1, $z_n = z^2 + 1$ then $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 5$, $|z_4| = 26$,...



DATE:_____

EXPLORATION

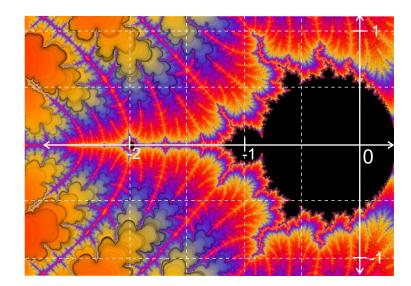
- 1. Determine the values of $z_1 z_4$ for each point and circle your answers (show your work).
- 2. Determine the values of $|z_1|$, $|z_2|$, $|z_3|$, $|z_4|$ for each point (show your work).
- 3. Conclude if each point is part of the Mandelbrot set or not.



3. c = 1 - <i>i</i>	$ z_0 = 0$	4. c = -1 + .1 <i>i</i>	$ z_0 = 0$
	Z ₁		z ₁
	Z ₂		Z ₂
	Z ₃		Z ₃
	Z ₄		Z ₄
	Yes-No	Г	Yes-No

APPLICATION

- 1. Using the illustration to the left, assume if each point is part of the Mandelbrot set.
 - a. c = -0.5 + i Yes-No
 - b. c = -2 + 0i Yes-No



2. What assumption did you have to make to answer "a" and "b" of question 1?

Can you think of any other sequences where a given term is a function of the previous term(s)? Explain.

NAME: Answer Key

How can it be determined if a complex number belongs to the Mandelbrot set?

UNDERSTANDING

MANDELBROT set is a set of points The in a complex plain.

- 1. The image produces a **FRACTAL** (a never-ending pattern), that results from separating the points into two categories.
 - a. Points inside the Mandelbrot set are the **BLACK** points.

The absolute value of the sequence of these points never approaches **INFINITY**

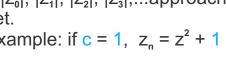
- b. The points outside the Mandelbrot set are the non-black points.
 - 1) The points close to the Mandelbrot set "**SLOWLY**" approach infinity.
 - 2) The points far from the Mandelbrot set more quickly approach infinity.
 - 3) The **COLOR** of these points corresponds to the speed at which infinity is approached.
- c. A Mandelbrot fractal is infinitely complex, meaning you can <u>ZOOM</u> in forever.
- 2. The function of a Mandelbrot set is the series: $Z_n = Z_{n-1}^2 + c$
 - a. Note: $z_0 = 0$.

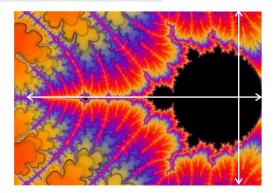
athLiaht

b. The output of the **PREVIOUS** function is the input of the preceding function.

Note: $z_1 = (f(z_0))^2 + c$, $z_2 = (f(z_1))^2 + c$, $z_3 = (f(z_2))^2 + c$, $z_4 = (f(z_3))^2 + c$...

- c. If $|z_0|$, $|z_1|$, $|z_2|$, $|z_3|$, $|z_4|$... does NOT approach infinity, then the point is inside the Mandelbrot set.
- d. If $|z_0|$, $|z_1|$, $|z_2|$, $|z_3|$,...approaches infinity, then the point is NOT inside the Mandelbrot set. Example: if c = 1, $z_n = z^2 + 1$ then $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 5$, $|z_4| = 26$,...





DATE:

EXPLORATION

- 1. Determine the values of $z_1 z_4$ for each point and circle your answers (show your work).
- 2. Determine the values of $|z_1|$, $|z_2|$, $|z_3|$, $|z_4|$ for each point (show your work).
- 3. Conclude if each point is part of the Mandelbrot set or not.

1. $c = i$ $z_1 = f(0) = Z^2 + i$ $z_1 = 0 + i = i$ $ z_1 = \sqrt{(0)^2 + 1^2} = 1$	$ z_0 = 0$ $ z_1 = 1$	2. $c = 1 + i$ $z_1 = f(0) = Z^2 + 1 + i$ $z_1 = 0 + 1 + i = 1 + i$ $ z_1 = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$	z₀ = 0 z₁ ≈ 1.41
$Z_{2} = f(i) = (i)^{2} + i = (-1 + i)$ $ Z_{2} = \sqrt{(-1)^{2} + 1^{2}} = \sqrt{2}$	Z₂ ≈ 1.41	$Z_{2} = f(i) = (1 + i)^{2} + 1 + i$ $1 + 2i + i^{2} + 1 + i = (1 + 3i)$ $ Z_{2} = \sqrt{(1)^{2} + 3^{2}} = \sqrt{10}$	Z₂ ≈ 3.16
$Z_{3} = f(-1 + i) = (-1 + i)^{2} + i$ $1 - 2i + i^{2} + i Z_{3} = -i$ $ Z_{3} = \sqrt{0^{2} + (-1)^{2}} = 1$	Z ₃ = 1	$z_{3} = f(1 + 3i) = (1 + 3i)^{2} + 1 + i$ $1 + 6i + 9i^{2} + 1 + i = -7 + 7i$ $ z_{3} = \sqrt{(-7)^{2} + (7)^{2}} = \sqrt{98}$	Z₃ ≈ 9.90
$z_4 = f(-i) = (-i)^2 + i = -1 + i$ $ z_1 = \sqrt{(-1)^2 + (1)^2} = \sqrt{2}$	Z₄ ≈ 1.41	$z_{4} = f(-7 + 7i) = (-7 + 7i)^{2} + 1 + i$ 49 - 98i + 49i^{2} + 1 + i = = 1 - 97i $ z_{4} = \sqrt{(1)^{2} + (-97)^{2}} = \sqrt{9,410}$	Z₄ ≈ 97.01
	Yes-No		Yes-No

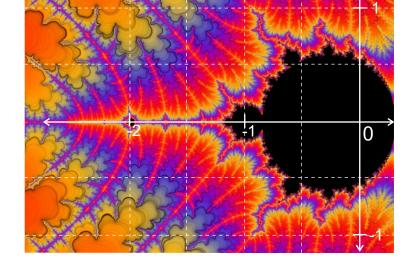
3. $c = 1 - i$ $z_1 = f(0) = Z^2 + 1 - i$	$ z_0 = 0$	4. $c = -1 + .1i$ $z_1 = f(0) = Z^2 + -1 + .1i$	$ z_0 = 0$
$z_1 = 1(0) - 2 + 1 - i$ $z_1 = 0 + 1 - i = (1 - i)$	Z₁ ≈ 1.41	$z_1 = 0 + -1 + .1i = -1 + .1i$	z₁ ≈ 1 .005
$ z_1 = \sqrt{(1)^2 + (-1)^2} = \sqrt{2}$		$ Z_1 = \sqrt{(-1)^2 + (0.1)^2} \approx 1.005$	
$z_{2} = f(1 - i) = (1 - i)^{2} + 1 - i$ $1 - 2i + i^{2} + 1 - i = \underbrace{1 - 3i}_{ Z_{2} } = \sqrt{1^{2} + (-3)^{2}} = \sqrt{10}$	Z₂ ≈ 3.16	$z_{2} = f(-1+.1i) = (-1+.1i)^{2} + -1 + .1i$ $12i + .01i^{2} - 1 + .1i = (011i)$ $ z_{2} = \sqrt{(01)^{2} + (1)^{2}} \approx .10$	Z ₂ ≈ 0.10
$z_{3} = f(1 - 3i) = (1 - 3i)^{2} + 1 - i$ $1 - 6i + 9i^{2} + 1 - i = (-7 - 7i)$ $ z_{3} = \sqrt{(-7)^{2} + (-7)^{2}} = \sqrt{98}$	Z₃ ≈ 9.90	$z_{3} = f(011i) = (011i)^{2} + -1 + .1i$.0001 + .002i + .01i ² - 1 + .1i $\approx -1.0099102i$ $ z_{3} = \sqrt{(-1.0099)^{2} + (102)^{2}} \approx 1.02$	Z₃ ≈ 1.02
$z_{4} = f(-7 - 7i) = (-7 - 7i)^{2} + 1 - i$ $49 + 98i + 49i^{2} + 1 - i = (1 + 97i)^{2}$ $ z_{4} = \sqrt{(1)^{2} + (97)^{2}} = \sqrt{9410}$		$\begin{aligned} z_4 &= (-1.0099102i)^2 + .1 + .1i \\ 1.02 + .206i + .01i^2 - 1 + .1i \\ \approx 0.01306i \\ z_4 &= \sqrt{(.01)^2 + (306)^2} \approx .306 \end{aligned}$	Z₄ ≈ .306
	Yes-No	answers may vary slightly due to rounding	Yes-No

APPLICATION

1. Using the illustration to the left, assume if each point is part of the Mandelbrot set.

Yes-No

a. c = -0.5 + i Yes No



b. c = -2 + 0i

2. What assumption did you have to make to answer "a" and "b" of question 1?

It has to be assumed that when the illustration is zoomed-in, there will not be any change

in the color of the graph at the point being considered. (answers may vary)

3. Can you think of any other sequences where a given term is a function of the previous term(s)? Explain. Fibonacci sequences (a term is the sum of the two previous terms). Example: 1, 1, 2, 3, 5, 8, 13 ... The golden ratio is sum of the inverse of a Fibonacci sequence. Example: 1/f₀ + 1/f₁ + 1/f₂ + 1/f₃ ... Arithmetic sequences are the result of adding a constant to the previous term. Example: 2, 7, 12, 17, 22... (5 is added) or 30, 22, 14, 6, -2 -10...(-8 is added). (answers will vary)

