
Example 1:
Creating a table using

HBase Shell

HBase has a command-line shell

This shell can be used to create
tables, insert and read data etc

Create a table to hold
notifications data

This is the
name of the

table

These are column families

Column families are groups
of columns which are

usually semantically related

 column families

When you create a table in
HBase, you don’t have to

specify the columns in the
table

 column families

For instance, this notification table
might have columns like type, text ,

timestamp etc

 column families

columns like type, text, timestamp etc

 column families

These columns are defined on the fly when
you insert data for a specific a row id

Every column has to
belong to some
column family

 column families

The attributes column
family may have columns

like type, timestamp

 column families

The metrics column
family may have columns

like #clicks, # views

 column families

Every table must
have at least 1
column family

 column families

Column families, unlike
columns are usually created
at the time of table creation

 column families

It is possible to add or
change column families

later, but this is rarely done

 column families

Example 2:
Inserting data into a

table using HBase Shell

put

Data is inserted into
HBase tables using
the put operation

Each entry in a
HBase table is
like a cell in a

traditional table

id type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

row
id

column value
2 for user Chaz

With put, you insert data
1 cell at a time

row
id

column value
2 for user Chaz

The table name

row
id

column value
2 for user Chaz

The row idid type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

row
id

column value
2 for user Chaz

The columnid type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

row
id

column value
2 for user Chaz

The valueid type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

row
id

column value
2 for user Chaz

The column name is
specified along

with it’s column
family

row
id

column value
2 for user Chaz

Every column
must belong to a
column family

row
id

column value
2 for user Chaz

An HBase table is
like a sorted map

row
id

column value
2 for user Chaz

Key
row
id

column value
2 for user Chaz

Key
row
id

column value
2 for user Chaz

Value

Key Value

With the put operation, we are
inserting new keys into the map

Example 3:
Updating data using the

HBase Shell

put (contd)

The put operation has 2 purposes:
Inserting values for new keys (row id, column)

Updating the value for existing keys

Inserting values for new keys

Updating the value for existing keys

Say we want to track the number of
times a notification was opened/clicked on

Inserting values for new keys

Updating the value for existing keys

Create row id 2 in notifications table
If the row id does not exist

Updating the value for existing keys

Create column open for the row id 2 in the
metrics column family

Inserting values for new keys

Updating the value for existing keys

Insert the value 0 for the row id 2 and
column open

Inserting values for new keys

Updating the value for existing keys

When someone clicks or opens the
notification, update the value for this

key

Updating the value for existing keys

Since the row id and column already
exist, the value is just updated

Updating the value for existing keys

HBase actually does not lose
the old value

Updating the value for existing keys

The history of updates for
a specific key is maintained

and retrievable

Updating the value for existing keys

Each version is stored with
the created timestamp

1467184097569

1467181276487

Updating the value for existing keys

During retrieval, the latest
version is retrieved by default

1467184097569

1467181276487

Example 4:
Retrieving data using

the HBase Shell

get

Data is retrieved from
HBase tables using the

get operation

You can retrieve
data for 1 row id

at a time

The default behavior is
to return all the columns
for the specified row id

get has 2 mandatory
arguments

The table name

The row id

The column names with
their column families

The values for these
columns

The timestamp when the
value was last updated

In HBase, value + timestamp
is called a cell

A row id, column can have
multiple cells

By default, the cell with the latest
timestamp is retrieved

You can ask get to
retrieve values for

specific columns

You can also specify
a list of columns

Example 5:
Retrieving a range of row ids

using the HBase Shell

scan

get operations only
allow you to retrieve

1 row id at a time

With the scan operation,
you can retrieve row ids
within a specified range

HBase tables are sorted
maps, ie. row ids are sorted

Returns all values from
the notifications table

All columns for row id 1

All columns for row id 2

You can pass in a
dictionary with some
specifications to scan

COLUMNS
A list of column names
(with column family)

LIMIT
The number of values to

be returned

STARTROW
Only values starting

from this row id
You can specify the end
row id using STOPROW

STARTROW

Note: The row id has to be
passed as a string

STOPROW

COLUMNS

STARTROW
LIMIT

STOPROW

Any or all of these
options can be specified

Example 6:
Deleting data using the HBase

Shell

delete

Data is deleted from
HBase tables using

the delete operation

Delete data 1 cell at a time

row id column
2 for user

Before delete

row id column
2 for user

This cell is deleted

Before delete

After delete

Example 7:
Deleting a table using the HBase

Shell

drop

Delete an HBase table using the drop command

Before deleting a table,
it must be disabled first

When a table is in use,
HBase keeps an index of

the the row ids in memory

HBase also keeps a log of recent
changes in memory, which are

periodically flushed to disk

Disabling will flush all recent
changes to disk and remove the

row id index from memory

Use the list
command to check
whether the table
has been dropped

Before drop After drop

