Many technological
Innovations are inspired
by nature




Take ants for example




Take ants for example

Ants are fascinating
[N many ways




Individually,
each ant is
seemingly
inconsequential




Collectively, they work
together to accomplish
complicated things

They rarely come alone. They march single file through miniscule cracks around windows
or under doors, looking for crumbs, water or a warm place to make a new home. Often

you'll see them trooping up your walls or across your counter, organized and on a
mission. You have an ant invasion.

MARY JO DILONARDO, "What kind of ants are in my house?", Mother Nature Network, August 10, 2015



Together, ants behave
like a single entity

In pursuit of a
common goal




a single entity
common goal

Take one ant down;
Another comes up to
take it’s place!




Distributed computing

is the idea of putting
many small and cheap
computers together




Distributed computing

is the idea of putting many swall
and cheap computers together

0 accom p I i g h I_ I_ I_ I
really complex 17
tasks - g




Distributed computing

Each individval _
computer is called
a node




Distributed computing

Togethey all the
“ O d e s f O rm a I_ I_ |_ |
cluster




Distributed computing

Like ants,

Each individval
node (s pretty
inconsequential




Distributed computing

Like ants,
Together these 1 g R

nodes act like a H H I
a comwon goal S




Distributed computing

Why is this so
cool? -




Distributed computing

The performance

of this system T T
scales linearly




Distributed computing

perfomance, just
d 0u b l e 1. h e i e e

NUM b er Of no d es i i




Distributed computing

To double the

perfomance, just
double the
nuwmber of nodes




Distributed computing

This is not true
of individval
computers




Distributed computing

A computer that’s
twice as expensive,
will not necessarily
give you twice the
performance




Distributed computing
can get very complicated




Pistributed computing can get very complicated

1. You have to manage .
resources and memory - -
across multiple nodes -~




Pistributed computing can get very complicated

2. You have to co-ordinate
and schedule tasks




Pistributed computing can get very complicated

3. If one node goes down, the

system should not be affected 7 1

(Just like with ants) S




Pistributed computing can get very complicated

Before the 2000s, all of these
problems had to be taken care
of by the programwer




Between 2002 and 2000

Google published 2 seminal papers

that completely changed the
world of distributed computing




2 sewminal papers

Google File System
MapReduce

BigTable




2 sewminal papers
Google File System

MapReduee  These are all
PigTable technologies
built to power
Google Search




% sewminal papers

Each of these papers
proposed an
architecture for an
(mportant distributed

computing problem




3 SGWIiIﬂaI papers proposed an architecture for
Google File System Storage

MapReduce
BigTable

Processing data

Patabase management



% sewminal papers
Google File System

MapReduce
BigTable

All of these architectures abstract
programmers from the complexity of
distributed computing




2 sewminal papers
Google File System

MapReduce
BigTable

Hadoop ecosystem

An ecosystem of Open source softwares
based on these architectures




2 sewminal papers

Hadoop ecosystem
= HOFS

Google File System

MapReduce

% Hadoop MapReduce

BigTable s HBase



Hadoop ecosystem

HOFS
Hadoop MapReduce

HBase




RADOQP

is a distributed computing framework
developed and maintained by

THE APACHE SOFTWARE FOUNPATION

written in Java




RADOQP

HDFS MapReduce
A file systewm to A framework to
manage the process data across

multiple servers

storage of data



HADOOP
HDFS

A file systewm to
manage the
storage of data




HOFS

The Hadoop Pistributed File System

Hadoop uses this to store
data across multiple disks



HOFS

One of the nodes acts
as the master node

This node
manages the
overall file system




HOFS

The name node stores
[::___j 1. The directory structure
E-_-:] 2. Metadata for all the files




HOFS

Other nodes are
called data nodes

Jata node , ,
The data is physically
Jata node stored on these nodes




HOFS

Here is a large text file

hext up previous contents index
Next: Dynamic indexing Up: Index construction Previous: Single-pass in-memory indexing Contents Index

Distributed indexing

Collections are often so large that we cannot perform index construction efficiently on a single machine. This is particularly true of the
World Wide Web for which we need large computer clusters [*]to construct any reasonably sized web index. Web search engines, therefore,
use distributed indexing algorithms for index construction. The result of the construction process is a distributed index that is
partitioned across several machines - either according to term or according to document. In this section, we describe distributed indexing
for a

term-partitioned index . Most large search engines prefer a document-partitioned index (which can be easily generated from a term-
partitioned index). We discuss this topic further in Section 20.3 (page [=*]).

The distributed index construction method we describe in this section is an application of MapReduce , a general architecture for
distributed computing. MapReduce is designed for large computer clusters. The point of a cluster is to solve large computing problems on
cheap commodity machines or nodes that are built from standard parts (processor, memory, disk) as opposed to on a supercomputer with
specialized hardware. Although hundreds or thousands of machines are available in such clusters, individual machines can fail at any time.
One requirement for robust distributed indexing is, therefore, that we divide the work up into chunks that we can easily assign and - in
case of failure - reassign. A master node directs the process of assigning and reassigning tasks to individual worker nodes.

The map and reduce phases of MapReduce split up the computing job into chunks that standard machines can process in a short time. The
various steps of MapReduce are shown in Figure 4.5 and an example on a collection consisting of two documents is shown in Figure 4.6 .
First, the input data, in our case a collection of web pages, are split into $n$ splits where the size of the split is chosen to ensure
that the work can be distributed evenly (chunks should not be too large) and efficiently (the total number of chunks we need to manage
should not be too large); 16 or 64 MB are good sizes in distributed indexing. Splits are not preassigned to machines, but are instead
assigned by the master node on an ongoing basis: As a machine finishes processing one split, it is assigned the next one. If a machine
dies or becomes a laggard due to hardware problems, the split it is working on is simply reassigned to another machine.

In general, MapReduce breaks a large computing problem into smaller parts by recasting it in terms of manipulation of key-value pairs .
For indexing, a key-value pair has the form (termID,docID). In distributed indexing, the mapping from terms to termIDs is also distributed
and therefore more complex than in single-machine indexing. A simple solution is to maintain a (perhaps precomputed) mapping for frequent
terms that is copied to all nodes and to use terms directly (instead of termIDs) for infrequent terms. We do not address this problem here

The map phase of MapReduce consists of mapping splits of the input data to key-value pairs. This is the same parsing task we also
encountered in BSBI and SPIMI, and we therefore call the machines that execute the map phase parsers . Each parser writes its output to
local intermediate files, the segment files (shown as \fbox{a-f\medstrut} \fbox{g-p\medstrut} \fbox{q-z\medstrut} in Figure 4.5 ).

For the reduce phase , we want all values for a given key to be stored close together, so that they can be read and processed quickly.
This is achieved by partitioning the keys into $j$ term partitions and having the parsers write key-value pairs for each term partition
into a separate segment file. In Figure 4.5 , the term partitions are according to first letter: a-f, g-p, q-z, and $j=3%. (We chose these
key ranges for ease of exposition. In general, key ranges need not correspond to contiguous terms or termIDs.) The term partitions are
defined by the person who operates the indexing system (Exercise 4.6 ). The parsers then write corresponding segment files, one for each
term partition. Each term partition thus corresponds to $r$ segments files, where $r$ is the number of parsers. For instance, Figure 4.5
shows three a-f segment files of the a-f partition, corresponding to the three parsers shown in the figure.

Collecting all values (here: docIDs) for a given key (here: termID) into one list is the task of the inverters in the reduce phase. The
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Let’s see how
this file is
stored in HUFS
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HOFS

Data node 1 || Pata node 3 Name node
“Blook 1 ][ Blosk Z_ The name

node stores
metadata

Pata node 4
 Block7 | Block$ |

Pata node 2
s | [ ]




HOFS

Block locations

for each file are

stored in the
hawe node

Name node

T [ |

T [ | it
T [




HOFS

A file is read using
1. The metadata in name node

2. The blocks in the data nodes




HOFS

Pata node 3

What if one of the %
blocks gets corrupted?



HOFS

Or one of the data %

nodes crashes?




HOFS

This is one of the key %
challenges in

distributed storage




HOFS

You can define a
replication factor in
HOFS




HOFS

Pata node |
Block 1 | Block 2

Each block is replicated,

Pata node 2 and the replicas are
ks Voo 1| stored in different data
nodes

Block 1| Block 2 _




HOFS

Name node

The replica locations
are also stored in the
name node




HADOOP
HDFS

A file systewm to
manage the
storage of data




HADOOP
MapReduce

A tframework to
process data across
multiple servers




MapReduce

MapReduce is a way
fo parallelize a data
processing task




MapReduce

MapReduce tasks
have 2 phases




MapReduce

1. Process each block in the node it is stored in

Map phase

Pata node 1

Block 2 Kesuh‘ 2




MapReduce

2. Take all the results to one node and combine thew

Pata node 3 Name node

Result § / Result 6

o0 1 The nawme

Pata node 1

Result | & Result 2

node stores
Pata node 2 Pata node 4 metadata

| (
Result 3 Result 4 Result7 Result 8




MapReduce

2. Take all the results to one node and combine thew

Name node

Reduce phase The name

node stores
metadata




MapReduce

Any data processing task can
be expressed as a chain of map
reduce operations




MapReduce

The programmwer just specifies
the logic fo be implemented the
map and reduce phases

The rest is taken care
of by Hadoop




HADOOP
MapReduce

A tframework to
process data across
multiple servers




Hadoop ecosystem

With Hadoop, you can

. Storedataina
cluster and

Process it

Hadoop MapReduce| 2.




Hadoop ecosystem
HOFS

Hadoop MapReduce

Why then, do you need a
Hbase separate architecture for
database managewment?




Hadoop vs Databases

Patabases are at the heart of most
applications

e-mails Sales
Bank accounts Payroll




Hadoop vs Patabases

Patabases that serve
such applications do
something called
Transaction
processing




Hadoop vs Databases

e-wails They store data

Sales in the form of
Pank accounts tables, rows,

Payroll columns




Hadoop vs Patabases

A fransaction involves
Inserting, updating,

deleting data (or a

combination of these)




Hadoop vs Databases

e-mails Transaction

Sales processing has

Pank accounts gertain requirements
Payroll




Hadoop vs Databases

Hadoop has a few limitations
which make it unsuited for
transaction processing




Hadoop vs Databases

Hadoop limitations
l. Unstruetured data

2. No randow access

3. High latency
4. Not ACID compliant




Hadoop vs Databases

Hadoop limitations
l. Unstructured data



Hadoop vs Databases

Hadoop stores
data in HDFS




Hadoop vs Databases 1. Unstructured data

The data in HPFS is
Unstructured




Hadoop vs Databases

Unlike databases, HPFS
data doesnt have any
schewma



Hadoop vs Databases

I1’s basically in the form of files

Text files

Log files
Video/Audio files




Hadoop vs Databases

There’s no concept of rows/columns
There are no tables




Hadoop vs Databases

This is not to say that
Hadoop cant be used fo
store structured data




Hadoop vs Databases 1. Unstructured data

You could store your data in a structured format
even in Hadoop

esv files

xwl files
jsons




Hadoop vs Databases 1. Unstructured data

Eacﬁ» recglrd esv files
(nh these files
could be 1 x| files

jsons

row in a table



Hadoop vs Databases

But unlike databases,
Hadoop will not
enforce the schema
or any constraints
on these rows/tables




Hadoop vs Databases

Hadoop limitations
l. Unstructured data



Hadoop vs Databases

Hadoop limitations
l. Unstructured data

2. No randow access




Hadoop vs Databases 2. Norandowm access

Applications that use databases
require random access

ie. the ability to create, access and
modify individval rows of a table

This is not possible with Hadoop



Hadoop vs Patabases 2. Norandom access

HOFS is optimal for storing large files

MapReduce is optimal for
processing these files as a whole



Hadoop vs Patabases 2. Norandom access

If an HPES file consists of many rows in a table

There is no provision fo access
or modify a specific row without
processing the entire file




Hadoop vs Databases

Hadoop limitations
l. Unstructured data

2. No randow access




Hadoop vs Databases

Hadoop limitations
l. Unstructured data

2. No randowm access
3. High latency




Hadoop vs Databases

Applications also require low latency

Any operations like inserting,
updating or deleting data should
occur as fast as possible




Hadoop vs Databases

All processing in Hadoop occurs via
MapReduce tasks on complete files

Even on large clusters, these tasks
might take winutes or hours at times




Hadoop vs Databases

Hadoop limitations
l. Unstructured data

2. No randow access
3. High latency




Hadoop vs Databases
Hadoop limitations
l. Unstructured data

2. No randowm access

3. High latency
4. Not ACID compliant




Hadoop vs Databases

Patabases are the
source of truth for the
data that they store




Hadoop vs Databases

Patabases quarantee ACIDV
properties to maintain the
integrity of their data




4. Not ACID compliant

Hadoop vs Databases

Atowicity
ACID Consistency
properties Isolation

Durability




4. Not ACID compliant

Hadoop vs Patabases

Atowicity
Consistency

Isolation
Durability




Hadoop vs Databases

Atowicity

Operations (aka
transactions) must be
all-or-nothing




Hadoop vs Databases

Atowicity
Example of a fransaction :
Cash withdrawal from an ATM

b Update cash balance
Update account balance




4. Not ACID compliant

Hadoop vs Databases
Atowicity
Cash withdrawal from an ATM

Update cash balance

Update account balance

If one of these fails, the whole
transaction should fail




Hadoop vs Databases

, Any changes to the
Consistency  database must not
violate any specified
database
constraints




4. Not ACID compliant

Hadoop vs Patabases

If multiple/concurrent
operations oceur, the
result is as if these
operations are applied
[n sequence

Isolation




4. Not ACID compliant

Hadoop vs Patabases

Once a transaction
is executed, the

changes are

Durability permanent




Hadoop vs Databases

Afowmicity Traditional

Consistency  databases are

Isolation designed to
guarantee all of

Durability

these properties



4. Not ACID compliant

Hadoop vs Patabases

ACID guarantees require that
the database management
systew is aware of the structure
and contents of the data




Hadoop vs Databases 4 Not ACIP compliant

IS aware
of the structure and contents of the data

HOFS being just a file storage
systew, has no such awareness




Hadoop vs Databases
Hadoop limitations
l. Unstructured data

2. No randowm access

3. High latency
4. Not ACID compliant




Hadoop vs Databases
Hf %°n"s'33{.'§‘£§2’3'32fa All these
2. No randowm access limitations make
3. High latency Hadoop unsuited
4. Not ACID compliant  for transaction
processing




HBase

(S a distributed databhase
managewment system that’s part
of the Hadoop ecosystem




HPase uses HPFS to store
it’s underlying data




HBase has the architecture

benefits of HPFS
l. Distributed storage
2. Fault tolerance




HBase

It also has many of the properties
required for tfransaction processing

1. Awareness of the structure of data
2. Low latency

2. Randow access

4. ACID compliant at some levels




To understand HBase

it’s helpful understand how it’s
ditferent from a traditional

RPEMS




In a traditional RVBEMS, all
operations like creating, inserting,
updating rows are done using SQL

HBase does not support SOL



HBase vs RPBMS
Only CRUD operations

HBase only supports a basic set of
operations (Create-Read-Update-Pelete)




HBase vs RIBMS

(Create-Read-Update-Delete)

Only CRUP operations

All these operations have to
be applied at a row level



HBase vs RIBMS

(Create-Read-Update-DPelete)

Only CRUPD operations

HBase does not support any
operations across rows (or)
across tables



HBase vs RIBMS

(Create-Read-Update-DPelete)

Only CRUP operations

This means that youv cannot
perform operations like
Joins, Group by ete




HBase vs RIBMS

Penormalized

HBase tables are not designed
using a relational data model




HBase vs RIBMS

Penormalized

All the data pertaining to
an entityis storedin 1 row
(ie tables are denormalized)




HBase vs RIBMS

Column oriented storage

HBase has a special kind of
data model




HBase is ACID

compliant for
limited kinds of
transactions




HBase vs RVBMS
Column oriented storage

Penormalized
Only CRUP operations
ACID at a row level

Let’s

understand the

implications of
each of these




HBase vs RVBMS Column oriented storage

Sav we haVe an —
25\ Jessicaimmm accepted your friend request. Since she's new

to Facebook, you should suggest people she knows,

application that 5

W =,
Jessica is new on Facebook, To welcome her:

8 (|
a a e s O l c a lo Sugqgest people that she knows
Write on her wall
34 minutes aQo

totheusersofa [T
social network e

[2) Dyl s commented o

2 hours ago

¢]] Brendan McLaughlin commented on your link. 3 hours ago

ES Brendan McLaughiin likes your link, 2 hours ago
[[i’] Bruce Robert Abbott commented on your photo, 2 hours 390

@ Chaz Yoon commented on your link. 3 hours ago




HBase vs RVBMS Column oriented storage

Here is a table that stores
sowe notification related data

25\ Jessicaimmm accepted your friend request. Since she's new
to Facebook, you should suggest people she knows,

A
£ 3
4.,14 type foruser from user timestamp

Jessica is new on Facebook., To welcome her:
Suggest people that she knows Friend request

Write on her wall 1
34 minutes 3go status

Ryan Jessica 146710201

Jon Dugan commented on your photo. about an hour ago

2 Comment Chaz Daniel 146711200

| Daniel ), Adams commented on your link. 2 hours ago

Pt commented cmBiiiaas's photo.
2 hours ago 3 Comment Rick Brendan 1467112205

¢]] Brendan McLaughlin commented on your link. 3 hours ago

o &

¢y Brendan McLaughiin likes your link, 2 hours ago 4 Like Rick Brendan 1467112213

[®)] Bruce Robert Abbott commented on your photo, 2 hours age

¢]] Chaz Yoon commented on your link. 3 hous ago




HBase vs RVBMS Column oriented storage

This is how data is stored
in traditional databases

type for user from user timestamp
Friend request Rya Jessica 146710201
statu
Commen t Cha Daniel 146711200
Commen t Ric Brend 1467112205
Lik Ric Brend 1467112213




HBase vs RVBMS Column oriented storage
A table with a fixed schema is defined

2 Commen t Chaz Daniel 146711200

3 Commen t Rick Brendan 1467112205

4 Like Rick Brendan 1467112213




HBase vs RVBMS Column oriented storage
Each row represents a data point

for user from user timestamp

2 Commen t Chaz Daniel 146711200

3 Commen t Rick Brendan 1467112205

4 Like Rick Brendan 1467112213




HBase vs RVBMS Column oriented storage

In a column oriented store, each cell
represents a datapoint

type for user from user timestamp

1 Jessica 146710201
2 Daniel 146711200
3 Commen t Rick Brendan 1467112205

4 Like Rick Brendan 1467112213




HBase vs RVBMS Column oriented storage

Pata is stored
nnnnnn ina map

Key <KOW id, Col id>
Valve= <data>




HBase vs RVBMS Column oriented storage

Pata is stored
na map

2, for _user
Chaz

Daniel

Comment Rick | Brendan | 1467112205

11111111111111111




HBase vs RIBMS

type for user from user timestamp

1 Friend Ryan Jessica | 146710201
request status

2 Comment Chaz Daniel 146711200

4 Like

Rick

Brendan

1467112213

Column oriented storage

ag

row

column

value

1 type Friend request status
1 for user Ryan

1 from user Jessica

1 timestamp 146710201

2 type Comment

2 for user Chaz

2 from user Daniel

2 timestamp 146711200




HBase vs RVBMS Column oriented storage
Keys  Values

An HBase table srye—
1 |  foruser
- . 1 from user Jessica
ls l " acf a 1 timestamp 146710201
2 type |  Comment
s O r‘re d m a > | foruser
p from user Daniel




HBase vs RIBMS

Notifications

25\ Jessicaimmm accepted your friend request. Since she's new
to Facebook, you should suggest people she knows,

N 5 S

L&A

Jessica is new on Facebook. To welcome her:
Suggest people that she knows
Write on her wall

34 minutes ago

| Jon Dugan commented on your photo. about an hour ago

¢1| Daniel 1. Adams commented on your link. 2 hours ago

3] Sptessetestienisl commented commiisisssis's photo.

2 hours 3qQo

ﬁ Brendan MclLaughlin commented on your ink. 3 hours ago
&Y Brendan McLaughlin likes your link. 2 hours ago

[®) Bruce Robert Abbott commented on your photo, 3 hours ago

¢]] Chaz Yoon commented on your link. 3 hours age

Column oriented storage

Let’s say some
notifications have special
atiributes depending on

their type




Colummn oriented
storage

Jessica is new on Facebooky To welcome her:
s

Write on her wall

34 minutes ago

Jon Dugan commented on your photo. about an hour ago F rie "d req ue s.l-

Daniel ). Adams commenct:: ;:n::: ink. 2 hours ago " no ‘l‘i ﬁca 'riO“S
might have

2 hours ago
:ren:an :ctaMn 'c:emmente'd :n y::u ink. 3 hours ago i“f OYWI a ‘l.i 0 “
/Y Brendan McLaughiin ikes your link, 2 hows age s
about the friend

Bruce Robert Abbott commented on your photo. 2 hours ago
¢]| Chaz Yoon commented on your link. 3 hours age




-

Jessica is new on Facebook., To welcome her:
Suggest people that she knows

Write on her wall

34 minutes ago

Colummn oriented
storage

Jon Dugan commented on your photo. about an hour ago

@ Daniel J. Adams commentec 2 hours ago comme"fs a"d llkes

St commented ol 's photo. have i"fo rmafio"
2 hours ago abOU‘[’ a Ii"k Or
ﬁl Brendan Mclaughin commented on your ink. 3 hours ago ph 0 _l. 0 fh a ‘l,

Brendan McLaughlin likes your link. 3 hours ago p rom D fe d fhem

Bruce Robert Abbott commented on your photo. 2 hours ago
¢]| Chaz Yoon commented on your link. 3 hours age




HBase vs RIBMS

Colummn oriented
storage

id rom user timestamp friend type commented on
y | Friend Ryan | Jessica |146710201 new
request
2 | Commen t| Chaz Daniel |146711200 - link
3 | Commen t Rick Brendan (1467112205 - photo
4 Lik Rick Brendan (1467112213

In ’rhe KVBMS ’rable each of these
attributes becomes a new column




Colummn oriented
storage

HBase vs RIBMS

id t or user rom user timestamp friend type commented o

y | Friena Ryan | Jessica |146710201 _-
request

2 | Commen t Chaz Daniel |146711200

3 | Commen t Rick Brendan [146711220°f photo

4 | Like Rick endan |146711221 -

Thls results in tables that
are very sparse




Colummn oriented
storage

HBase vs RIBMS

user timestamp friend type com

tvype or user ro S
Friend Ryan | Jessica |[146710201 _-
reques

id

1 equest

2 | Commen t Chaz Daniel 146711200

3 | Commen t Rick Brendan [146711220°f photo

4 | Like Rick | Brendan |146711221 -

In an RPBMS, Sparse tables utilize
disk space even for these empty cells



Colummn oriented
storage

HBase vs RIBMS

id t or user rom user timestamp friend type commented o

y | Friena Ryan | Jessica |146710201 _-
request

2 | Commen t| Chaz Daniel |146711200

3 | Commen t Rick Brendan [146711220°f photo

4 | Like Rick | Brendan [146711221 -

In a column-oriented store, these
cells can be skipped completely




HBase vs RIBMS

request status

for user

from user

Jessica

friend type commented

timestamp

146710201

S — — — — ——

146711200 - link

Comment Chaz Daniel
3 Comment Rick Brendan 1467112205 - photo
4 Like Rick Brendan 1467112213 - .

row id

Column oriented storage

column

value

Friend request

1 type status

1 for user Ryan

1 from user Jessica
1 timestamp 146710201
1 friend type new




HBase vs RPBMS Column oriented storage

rowid column value

commented

type for user fromuser timestamp | friend type o 1 ype Friend request
LI PP ‘ Ryan Jessica 146710201 ? < 1 for user Ryan
Comment Chaz Daniel 146711200 > « :
] _ o ~ B TN 1 from user Jessica
3 Comment Rick Brendan 1467112205 - photo 1 timestamp 146710201
4 Like Rick Brendan 1467112213 - - 1 friend type new
Friend request
2 type status
2 for user Ryan
2 from user Jessica
2 timestamp 146710201
5 commented ink
on




HBase vs RVBMS Column oriented storage

Column oriented storage has some
powerful advantages

1. You can storereally sparse tables very
efficiently

2. You can accommodate
dynawmically changing attributes




HBase vs RVBMS Column oriented storage

Each row id can have a different
set of col ids

2. You can accommodate
dynamically changing attributes




HBase vs RVBMS Column oriented storage

The schema for a row id is not
fixed, you can keep changing it

ie. Add or remove new col ids

2. You can accommodate
dynamically changing attributes




HBase vs RVBMS
Column oriented sforage\/

Penormalized
Only CRUD operations
ACID at a row level




HBase vs RVTBMS Penormalized
LET'S SAY WE HAVE AN EMPLOYEES DATABASE

WE WANT T0 CAPTURE EMPLOYEE NAME,
ADDRESS, SUBORPINATES




HBase vs RVTBMS Penormalized
A TRADITIONAL RVBMS WOULP MOPEL IT AS 3 TABLES

EmpID EmpName Addressid
1 Vitthal 1

Addressid Street City
1 Bellandur | Bangalore
EmpiD SubordinateEmplID
1 3
1 4

1 8




HBase vs RVTBMS Penormalized
A TRADITIONAL RVBMS WOULP MOPEL IT AS 3 TABLES

v THIS KIND OF PESIGN
MINIMIZES REPUNDANT
— STORAGE OF DATA




HBase vs RPBMS Penorwmalized

v THIS KIND OF PESIGN
MINIMIZES REPUNDANT
— STORAGE OF DATA




HBase vs RIBMS

Penormalized

Vitthal

THESE STREET AND CITY NAMES
ARE ONLY STORED ONCE

AND REFERRED TO BY AN
INTEGER 1P THEREAFTER




HBase vs RPBMS Penorwmalized

NORMALIZATION
OPTIMIZES FOR
STORAGE




HBase vs RPBMS Penorwmalized

| IN A DISTRIBUTED SYSTEM,
STORAGE IS CHEAP

INSTEAD YOU NEED T0
OPTIMIZE DISK SEEKS




HBase vs RPBMS Penorwmalized

1 IF YOU STORE DATA
2 ACROSS DIFFERENT TABLES

wewn  YOU HAVE TO PERFORM
PISK SEEKS FOR EACH TABLE




HBase vs RVTBMS Penormalized
INSTEAD WE CAN EMBED ALL 3 TABLES INTO A SINGLE TABLE

EmplD EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>

/

“Street”:”Bellandur”, l
“City” :”Bangalore” ("Anuradha”,

//Arun 144 ,
"Swetha’)




HBase vs RPIBMS Penorwmalized

EmplD EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>

THIS IS A
PENORMALIZED
PESIGN




HBase vs RVBMS Penormalized
EmplD EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>
ALL THE DATA
CORRESPONPING TO AN
EMPLOYEE IS STORED

IN A SINGLE TABLE



HBase vs RPBMS Penorwmalized

IN HBASE DATA IS STORED IN A
PENORMALIZED MANNER




HBase vs RPBMS
Column oriented ’roraqe\/

Penormalized
Only CRUD operations
ACID at a row level




HBase vs RFEMS Only CRUP operations

HBase architecture is
designed such that you can
det random read-write
access o a specific row




Unlike, traditional
RVBMS, HBase does
not support SQL




HBase vs RPEMS Ounly CRUD operations

HBase only supports a
limited set of
operations




HBase vs RFEMS (Qnly CRUD operations

HBase only supports a limited set of operations
cre ate Add a new value to the table

Read

Up da‘l' 0 Update the value for a specific row id, col id
Vele‘[' 0 Delete the value for a specific row id, col id

Read the value for a specific row id, col id




HBase vs RPEMS Ounly CRUD operations

Create All HBase operations
deal with a specific
Kead oW

Update
Pelete




HBase vs RFEMS (Qnly CRUD operations

HBase does not support
Create  any operations across
Kead tables
Update No Joins

No Foreign key
constraints

Delete




HBase vs RFEMS (Qnly CRUD operations

Croate  HbBasedoes not support
any operations across
Kead Y op

row Iids
Update
Delete

No Grouping/Aggregation




HBase vs RPEMS Ounly CRUD operations

breate This is another reason
Kead why denormalization
Update  isimportant in Hbase

Delete




HBase vs RPEMS Ounly CRUD operations

breate All the data needed fo
Read describe an entity
Update  should be self-contained
Delote within its row id




HBase vs RPEMS Ounly CRUD operations

LET'S GO BACK TO THE EMPLOYEE EXAMPLE
A TRADITIONAL RPEMS WOULD MOPEL IT AS 3 TABLES

EmpID EmpName Addressid
1 Vitthal 1

Addressid Street City
1 Bellandur | Bangalore
EmpiD SubordinateEmplID

1 3
1 4
1 38




HBase vs RFBMS  Only CRUD operations
WHEN AN APPLICATION ASKS FOR AN EMPLOYEE'S PETAILS

EmpID EmpName Addressid
1 Vitthal 1

YOU WOULD NEEP TO JOIN 2 TABLES
TO FETCH THE ADDRESS




HBase vs RPBMS (Only CRUD operations
WHEN AN APPLICATION ASKS FOR AN EMPLOYEE'S DETAILS

EmpID EmpName Addressid
1 Vitthal 1

YOU WOULD NEEP TO
JOIN THESE 2 TABLES
TWICE TO GET THE
1 3 LIST OF SUBORPINATES
1 4 FOR AN EMPLOYEE

1 38




HBase vs RFEMS (Qnly CRUD operations

IN AN RPBMS THESE JOINS CAN
BE MADE EFFICIENT WITH THE
ADPITION OF INPICES




HBase vs RFEMS (Qnly CRUD operations

IN HPASE, THERE IS NO SUPPORT FOR
JOINING TABLES ON THE FLY WHILE
FETCHING THE PETAILS FOR 1 ROW




HBase vs RPEMS Ounly CRUD operations

YOU COULD USE AN EXTERNAL
APPLICATION LIKE MAPREDUCE
T0 PERFORM JOINS

WHILE THIS IS FINE FOR ANALYTICAL
QUERIES, IT WOULP NOT BE SUITABLE
FOR TRANSACTION PROCESSING




HBase vs RFBMS  Only CRUD operations
IN A PENORMALIZED DESIGN

EmplD EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>

YOU CAN USE THE HBASE SUPPORTED
READ OPERATION TO READ THE
ROW AND FETCH ALL THE DATA




HBase vs RPBMS
Column oriented ’roraqe\/

Penormalized

Only CRUD opera’rionsx/
ACID at a row level




HBase vs RPIBMS ACID at a row level

HBase is ACID compliant, but
only at a row id level

For exawmple, let’s look at
Atowicity




HBase vs RVBMS ACID at a row level
Atowicity

Transaction 1: Transaction 2:

Update values Update values
for 2 col ids for 2 col ids

within 1 row for 10 row ids




Atowmie Atowmicity

Transaction 1:
Update values |  If one col id update

tor 2 col ids fails, the entire
within 1 row fransaction fails




HBase vs RVBMS ACID at a FXW level

fomicity
If the operation .
fails after 9 row ot Atowie
ds z"e "pd?‘;‘ed' Transaction 2:
the row ids Update values
which are For 2 col ids

updated remain

updated for 10 row ids




HBase vs RVBMS
Column oriented foraqe\/

Penormalized
Only CRUD opera’rionsx/
ACID at a row level, /




If you are familiar with the Hadoop
ecosystew, you might know of other
technologies which seew similar to Hase

RIVE FOR INSTANCE




. Used for both
HbBase is a database transaction processing

management system  andanalytical

processing

HIVE IS A DATA Used only for
WAREHOUSE  analytical processing




Provides low latency and
randowm access for some
supported operations

HBase is a database
management system

HIVE IS A DATA Only suitable for batch
o




HBase does not provide
any SQL inferface

Hive does!



HIVE
RADOOP

HIVE IS A DPATAWAREHOUSE
BUILT ON TOP OF HADOOP




RIVE

RIVE STORES IT'S DATA
AS FILES IN HDFS




RIVE

MapReduce

All processing tasks in Hadoop
are run using MapReduce tasks




RIVE

MapReduce

MapReduce tasks are usvally
written using a Java Framework




RIVE

MapReduce

Writing these MapReduce
tasks can be pretty daunting




RIVE

MapReduce

Traditional databases/closed-source
datawarehouses normally use SQL




RIVE

MapReduce

SQL = Struetured Query
Language




SQL = Struetured Query Language

SQL is really wmuch easier to use
and understand :)



SQL = Strucetured Query Language

I+'s widely used by analysts and
programmers to work with
databases/data warehouses



SQL = Struetured Query Language

SQL has a few easy to
understand construets

Seleet, group by, join ete



SQL = Struetured Query Language

Most data processing tasks are defined
using a combination of these construets

Seleet, group by, join ete



RIVE

MapReduce

RIVE PROVIDES AN SQL LIKE
INTERFACE TO DATA IN HDFS




RIVE

MapReduce

THE FILES IN HDFS ARE EXPOSED TO
THE USER IN THE FORM OF TABLES




RIVE

MapReduce

THE USER CAN WRITE SQL-LIKE
QUERIES TO WORK WITH THESE TABLES




SQL-LIKE QUERY

HIVE HIVE WILL

TRANSLATE THE
QUERY INTO 1/MORE

MAPREDPUCE TASKS
o7 [




SQL-LIKE QUERY

+

HIVE THE MAPREDUCE

TASKS WILL PROCESS
THE DATA IN HDFS

AND RETURN ANY
RESULTS TO HIVE

o7 [




SQL-LIKE QUERY

¢ THE QUERIES ARE
WRITTEN IN A
HIVE SQL LIKE
LANGUAGE
CALLED HIVEQL

o7 [




PIFFERENCES BETWEEN HIVE AND
HBASE




RIVE

USEDP FOR PATCH
PROCESSING

HBASE

USED FOR BOTH
PATCH AND
TRANSACTION
PROCESSING



RIVE HBASE

NO SQL
INTERFACE

PROVIPES AN SOL
SKIN FOR HADOOP




HIVE HBASE

- USES HDES BUT
7 THE HAS IS OWN
MAPREDPUCE ENGINE ARCHITECTURE




RIVE

PATA MODEL IS PATA MOPDEL IS
SIMILAR T0 COLUMN ORIENTED
PATABASES (TABLES STORAGE

WITH FIXED SCHEMA)



