Many technological
Innovations are inspired
by nature

Take ants for example

Take ants for example

Ants are fascinating
[N many ways

Individually,
each ant is
seemingly
inconsequential

Collectively, they work
together to accomplish
complicated things

They rarely come alone. They march single file through miniscule cracks around windows
or under doors, looking for crumbs, water or a warm place to make a new home. Often

you'll see them trooping up your walls or across your counter, organized and on a
mission. You have an ant invasion.

MARY JO DILONARDO, "What kind of ants are in my house?", Mother Nature Network, August 10, 2015

Together, ants behave
like a single entity

In pursuit of a
common goal

a single entity
common goal

Take one ant down;
Another comes up to
take it’s place!

Distributed computing

is the idea of putting
many small and cheap
computers together

Distributed computing

is the idea of putting many swall
and cheap computers together

0 accom p I i g h I_ I_ I_ I
really complex 17
tasks - g

Distributed computing

Each individval _
computer is called
a node

Distributed computing

Togethey all the
“ O d e s f O rm a I_ I_ |_ |
cluster

Distributed computing

Like ants,

Each individval
node (s pretty
inconsequential

Distributed computing

Like ants,
Together these 1 g R

nodes act like a H H I
a comwon goal S

Distributed computing

Why is this so
cool? -

Distributed computing

The performance

of this system T T
scales linearly

Distributed computing

perfomance, just
d 0u b l e 1. h e i e e

NUM b er Of no d es i i

Distributed computing

To double the

perfomance, just
double the
nuwmber of nodes

Distributed computing

This is not true
of individval
computers

Distributed computing

A computer that’s
twice as expensive,
will not necessarily
give you twice the
performance

Distributed computing
can get very complicated

Pistributed computing can get very complicated

1. You have to manage .
resources and memory - -
across multiple nodes -~

Pistributed computing can get very complicated

2. You have to co-ordinate
and schedule tasks

Pistributed computing can get very complicated

3. If one node goes down, the

system should not be affected 7 1

(Just like with ants) S

Pistributed computing can get very complicated

Before the 2000s, all of these
problems had to be taken care
of by the programwer

Between 2002 and 2000

Google published 2 seminal papers

that completely changed the
world of distributed computing

2 sewminal papers

Google File System
MapReduce

BigTable

2 sewminal papers
Google File System

MapReduee These are all
PigTable technologies
built to power
Google Search

% sewminal papers

Each of these papers
proposed an
architecture for an
(mportant distributed

computing problem

3 SGWIiIﬂaI papers proposed an architecture for
Google File System Storage

MapReduce
BigTable

Processing data

Patabase management

% sewminal papers
Google File System

MapReduce
BigTable

All of these architectures abstract
programmers from the complexity of
distributed computing

2 sewminal papers
Google File System

MapReduce
BigTable

Hadoop ecosystem

An ecosystem of Open source softwares
based on these architectures

2 sewminal papers

Hadoop ecosystem
= HOFS

Google File System

MapReduce

% Hadoop MapReduce

BigTable s HBase

Hadoop ecosystem

HOFS
Hadoop MapReduce

HBase

RADOQP

is a distributed computing framework
developed and maintained by

THE APACHE SOFTWARE FOUNPATION

written in Java

RADOQP

HDFS MapReduce
A file systewm to A framework to
manage the process data across

multiple servers

storage of data

HADOOP
HDFS

A file systewm to
manage the
storage of data

HOFS

The Hadoop Pistributed File System

Hadoop uses this to store
data across multiple disks

HOFS

One of the nodes acts
as the master node

This node
manages the
overall file system

HOFS

The name node stores
[::___j 1. The directory structure
E-_-:] 2. Metadata for all the files

HOFS

Other nodes are
called data nodes

Jata node , ,
The data is physically
Jata node stored on these nodes

HOFS

Here is a large text file

hext up previous contents index
Next: Dynamic indexing Up: Index construction Previous: Single-pass in-memory indexing Contents Index

Distributed indexing

Collections are often so large that we cannot perform index construction efficiently on a single machine. This is particularly true of the
World Wide Web for which we need large computer clusters [*]to construct any reasonably sized web index. Web search engines, therefore,
use distributed indexing algorithms for index construction. The result of the construction process is a distributed index that is
partitioned across several machines - either according to term or according to document. In this section, we describe distributed indexing
for a

term-partitioned index . Most large search engines prefer a document-partitioned index (which can be easily generated from a term-
partitioned index). We discuss this topic further in Section 20.3 (page [=*]).

The distributed index construction method we describe in this section is an application of MapReduce , a general architecture for
distributed computing. MapReduce is designed for large computer clusters. The point of a cluster is to solve large computing problems on
cheap commodity machines or nodes that are built from standard parts (processor, memory, disk) as opposed to on a supercomputer with
specialized hardware. Although hundreds or thousands of machines are available in such clusters, individual machines can fail at any time.
One requirement for robust distributed indexing is, therefore, that we divide the work up into chunks that we can easily assign and - in
case of failure - reassign. A master node directs the process of assigning and reassigning tasks to individual worker nodes.

The map and reduce phases of MapReduce split up the computing job into chunks that standard machines can process in a short time. The
various steps of MapReduce are shown in Figure 4.5 and an example on a collection consisting of two documents is shown in Figure 4.6 .
First, the input data, in our case a collection of web pages, are split into n splits where the size of the split is chosen to ensure
that the work can be distributed evenly (chunks should not be too large) and efficiently (the total number of chunks we need to manage
should not be too large); 16 or 64 MB are good sizes in distributed indexing. Splits are not preassigned to machines, but are instead
assigned by the master node on an ongoing basis: As a machine finishes processing one split, it is assigned the next one. If a machine
dies or becomes a laggard due to hardware problems, the split it is working on is simply reassigned to another machine.

In general, MapReduce breaks a large computing problem into smaller parts by recasting it in terms of manipulation of key-value pairs .
For indexing, a key-value pair has the form (termID,docID). In distributed indexing, the mapping from terms to termIDs is also distributed
and therefore more complex than in single-machine indexing. A simple solution is to maintain a (perhaps precomputed) mapping for frequent
terms that is copied to all nodes and to use terms directly (instead of termIDs) for infrequent terms. We do not address this problem here

The map phase of MapReduce consists of mapping splits of the input data to key-value pairs. This is the same parsing task we also
encountered in BSBI and SPIMI, and we therefore call the machines that execute the map phase parsers . Each parser writes its output to
local intermediate files, the segment files (shown as \fbox{a-f\medstrut} \fbox{g-p\medstrut} \fbox{q-z\medstrut} in Figure 4.5).

For the reduce phase , we want all values for a given key to be stored close together, so that they can be read and processed quickly.
This is achieved by partitioning the keys into j term partitions and having the parsers write key-value pairs for each term partition
into a separate segment file. In Figure 4.5 , the term partitions are according to first letter: a-f, g-p, q-z, and $j=3%. (We chose these
key ranges for ease of exposition. In general, key ranges need not correspond to contiguous terms or termIDs.) The term partitions are
defined by the person who operates the indexing system (Exercise 4.6). The parsers then write corresponding segment files, one for each
term partition. Each term partition thus corresponds to r segments files, where r is the number of parsers. For instance, Figure 4.5
shows three a-f segment files of the a-f partition, corresponding to the three parsers shown in the figure.

Collecting all values (here: docIDs) for a given key (here: termID) into one list is the task of the inverters in the reduce phase. The

—— - - -l A - - - - e - - o L EE - - - - .- -

- - - - - . - - - - —— - —— - o —— - A S - - - - L 2V S m -

Let’s see how
this file is
stored in HUFS

Dynamic indexing Up: Index construction Previous: Si

Wide Web fO'
) ;bufc indexing algorithms for result

ingex construct |
several machines - either according t 00

ned index . Most large search engines prefer a doCument-

tuc CUTpU ing. MapReduce is designed for large com
ommodity machines or nodes that are built from stan

incex construction method we describe in t l
Although hundreds or thousands of machines

hardware.

map and reduce phases of dapRuCuCu split up the comput
ious steps of MapReduce are shown 1in F‘QLIU 4.5 and an
the input data, in our case a collection of web p
the work can be distributed evenly (chunks should no

e pr Oblt_T‘_ , the

igure 4.5: An example of dis indexing with MapRec
\includegraphics [width=11.5cm reduce2.eps}
1_genet MapReduce breaks] mputing problem

. complex than in single-machine ncwanc.
terms that 1is ied to all nodes and to use tch~ rec*
and assume all nodes share a consistent term S$\ri

he map pl of MapReduce con

ntermecl

For the reduce pl ! | values for
his 1is achicvec by artitioni keys into
into

Each term
segment fi

values (here:

- b - -—— - -

which we need large cowpu*er clu:ter' [w]to construct

el luTu lincexing Contents Index

bly sized web index. Web search encine:, trcrcforc,
un~*ruct;un process 1 istributed index ﬂ
document. In this secti we describe distr

artitioned index (which can be

Lication of MapReduce , a general architecture for
oint of a cluster is to solve large comput
-, memory, disk) as opposed to on a supercomputer with

available in such clusters, individual machines can fail at

standard machines can process in a short time. The
consisting of two documents is shown in Figure 4.6 .
splits where the size of the split is cho to ensure
(the total number of chunks we need to manage

fperhaps precomputed) ma
terms. We do not addres

we also

r+t

rt

D

<

o

D

D

o

v Q

D
K

D

| =<
o

[

v

o

o

'4

-

m rt
o

D O ~
|
o

n 0o
|

- N

v
\
"
)
5
[

the number of parsers. instance, Figure 4.

shown in the figure.

task of the inverters in the

- cmde o el - .- - - - -k b e -

educe phase. The

ing problems on

5

r frequent
roblem her

First the file is

brokewn into
blocks of size

128 MP

: Index

construction

WaTel-2"8
lNncexl

t: Dynamic

tributed

incexing

neec C

for

ilncexing

rge

for

g

eed la computer

algorithms

1de wWe b wh 1C h w L
istributed

S
wice

incex con

oned across several machines - either acco

M~ o~
10T

snday
ilnoex .

~ et

MapRecd
Or noces

Althou C h hund

ruction method desc

for
built

9—'-

index cot we
putin

machin

hardware.

distributed

stributed

commoglt

com Q. nec
es hat
reags

Y are

cialized ousa

anc
steps
input

work

f Map

are s

map

10US of Map hown
ca

be

S the

the

ta, 1n our case ction

t distributed eve unks

can

Lo S S)

oroblems

Lbuted
t/map

Qe _ Comp

yjure 4.5: An example 1
cludegraphics [width=1:

general,. MapReduce

thFCfD;C

that 1is

than nc !
TO

in si & —m

lex
a]_]

share

more comp

to

ms copied nodes and

that all

assume ad

noces

al 1htermecla
va]_ ues
he

igure

-|l
achieved
separate

~ e —

the
This 1S

1NTO

lase , we want a

by parti
.f

Tion

11LNC KEeYysS

In

1410

a segment file.

thus

the a-f par

Each

canmant
segment

term reiation

0 'f

ferm partition.

a-t

pa
files

th oo Py
three 1t

shows

all values (here: docIDs) for a given
- o o d o = - - - - IR S S

Collecting

- o dn = -

Prev

large search engines

of

should

on,

V1i0oUus:

pass 1in

0C

memo l'l‘. ncexing

any L

*'-
- 1)

sized web index. Web sea

p
sSet

this se

lusters

y

struction onstruction a dist
I n

rain L0 Qg tgycocument. on, we

-
g

S a oned index (which can be easily

prefer

t . > an Lication of MapReduce
0 f
memory,

clusters,

ribe 1in
Large com
from

necs

o1nt

a cluster 1is

ctan iek) ac ¢ +
sSLtahn ClSK) as opposec .

of ma lable in such individual

p[.lll 2 8 S

cocuments

machines can
0 f
t h B

total

he com pu T stancarc
5 and

w ':‘ t'

an cons1istl Two

pag
not (th number of

to

another

(20

24) .

terms of

simple solu aintain a BCO

(perhaps

terms

precom

t infrequent . We do

ac

loe

0
)
input dat This is

the

oxX1gq-=2\

avw - =n that
RCY >C : 1c > U -||L1-

;:' d

par) o . g to first letter:

be
key-value pairs

_fl c-p, g-2z,

+tor

ven they can reac

write

term

term a

~aNnNec ; < taprmec m

TOo $r% segments

the number of parsers

he figure.

corres ng to t parsers shown in t

Ke Y (her

distributed

desc
generat
a general
Large computing

machines

chunks

manipulation

pufccﬁ

not

the same par

es

S

therefore,

9—'--9—
1iau

YK
ena.ll

rch

index

“ibe index

ributed

e Te I‘ 1

from

arcl ¢ for

can fail at any t

The
igure 4.6 .

a short time.

in

shown

the split 1s ¢ to ensure

neec to manage

w ':'

machine.

of kev-value palir

for
prob Lem |

mapping

dress th

ac 1S

sing t

e rut j

anc
f or ec < on
] th

L P - r e

and hose

4.

>C.

1d

Th

S N

problems on

0 on a supercomputer with

frequent

e

in

blocks of size
128 MB

This size is chosen
to minimize the
time to seek to the
block on the disk

ime

es

CI

indexin : Index construction Pre

t: Dynamic

tributed

incexing

neec

algorithms

for

ilncexing

Llarge

for

machines - either

ide Web which we computer c

istributed

S
wice

index con
0ss several acco

onec acr

M~ o~
10T

snday
ilnoex . DS L

large search engine

~ et

const
MapRecd
y machines or hat

Althou C h hundreds

ruction method desc
gned for

built

9—'-

distributed index we

stributed

commoglt

computing.
noces

DCcC are

cialized hardware. ousa

and es of
steps of Map
input data, our

be distributed eve

Map

are s

map

10US

hown

st, the in case ction
t the work can unks

Lo S S)

oroblems

4.5: An example Lbuted 1n
cludegraphics [width=" L/map

MapReduce breaks ge Ccomp

jure

general
thFCfD;C

that 1is

more complex than in single-m

a]_]

share a

me

copied to nodes and to

that all

assume

d

noces

al 1htermecla

the shase , we want a values
This 1s by partitioning
into a segment file. In

1410

he keys

achieved
separate

~ e —

igure

thus

Each

canmant
segment

term partition

files of

ferm partition.

three a-f

shows

all values (here: docIDs) for a given
- o o d o = - - - - IR S S

- o dn = -

Collecting

V1i0ous:

struction

of web

should

the a-f partition,

pass 1in

0C

memo l'l‘. ncexing

any ly web search

distributed

web
pt ss 1s a

this section,

Llusters sizec index.

th onstruction

In

rcrng t©o Qg T cocument. we CescC

oned index (which can be easily generate

s prefer a

in t . > an Lication of MapReduce a general arc
0 f
memory,

clusters,

ribe
Large com oint
from

nds of ma

a cluster 1is

S e
| >N)

stan as opposec €
lable such individual machines

1in

p[.lll 2 8 S

cocuments

standard machines can 1n
l:_lf

the

total

he comput
5 and an consisti two

pag

~nt - 3 + ha
not L (the

the split

of chunks

number

to another

terms napipulatior

aintaln a precomputec)

solu

-ls*ﬁac
| ‘E’W(=;

0
)
1Nnput cat

simple (perhaps
t : infrequent terms. We do

This 1s the same parsing

the

ll_n,:qu—Z-, ecstrut

avw - =n that
RCY >C : 1c > U -||L1-

;:' d

par) o . g to first letter: a-

be
key-value pairs

f; c-p, g-2z,

+arm

anc
for

anc

ven they can reac
term write
+arm
LCI

.- : - + o

- e

to r segments files : 1S the number of parsers

corres ng to shown in the figure.

Ke Y (her

englnes

1ndex

x
C

I

Large comp

(=

1

“ibe

ributed

from

can

a sh

-

w ':'

machine.

fa

or

shown 1n

’

e

uting

11

+

1Q

neec

mapping

Nnot accoress

4+

th

1 <

therefore,

9—'--9—
1iau

incexin

term-

for
problems on

to on a supercomputer with

ime

at any t©

ime
ime.

The
ure 4.6 .

to ensure

Tto manaqge

for
prob Lem |

frequent

0_'.|l|‘-l'

L P - r e

4.5

1asc.

The

S N

thes

These blocks are
then stored
across the data

HOFS

Data node 1 || Pata node 3 Name node
“Blook 1][Blosk Z_ The name

node stores
metadata

Pata node 4
 Block7 | Block$ |

Pata node 2
s | []

HOFS

Block locations

for each file are

stored in the
hawe node

Name node

T [|

T [| it
T [

HOFS

A file is read using
1. The metadata in name node

2. The blocks in the data nodes

HOFS

Pata node 3

What if one of the %
blocks gets corrupted?

HOFS

Or one of the data %

nodes crashes?

HOFS

This is one of the key %
challenges in

distributed storage

HOFS

You can define a
replication factor in
HOFS

HOFS

Pata node |
Block 1 | Block 2

Each block is replicated,

Pata node 2 and the replicas are
ks Voo 1| stored in different data
nodes

Block 1| Block 2 _

HOFS

Name node

The replica locations
are also stored in the
name node

HADOOP
HDFS

A file systewm to
manage the
storage of data

HADOOP
MapReduce

A tframework to
process data across
multiple servers

MapReduce

MapReduce is a way
fo parallelize a data
processing task

MapReduce

MapReduce tasks
have 2 phases

MapReduce

1. Process each block in the node it is stored in

Map phase

Pata node 1

Block 2 Kesuh‘ 2

MapReduce

2. Take all the results to one node and combine thew

Pata node 3 Name node

Result § / Result 6

o0 1 The nawme

Pata node 1

Result | & Result 2

node stores
Pata node 2 Pata node 4 metadata

| (
Result 3 Result 4 Result7 Result 8

MapReduce

2. Take all the results to one node and combine thew

Name node

Reduce phase The name

node stores
metadata

MapReduce

Any data processing task can
be expressed as a chain of map
reduce operations

MapReduce

The programmwer just specifies
the logic fo be implemented the
map and reduce phases

The rest is taken care
of by Hadoop

HADOOP
MapReduce

A tframework to
process data across
multiple servers

Hadoop ecosystem

With Hadoop, you can

. Storedataina
cluster and

Process it

Hadoop MapReduce| 2.

Hadoop ecosystem
HOFS

Hadoop MapReduce

Why then, do you need a
Hbase separate architecture for
database managewment?

Hadoop vs Databases

Patabases are at the heart of most
applications

e-mails Sales
Bank accounts Payroll

Hadoop vs Patabases

Patabases that serve
such applications do
something called
Transaction
processing

Hadoop vs Databases

e-wails They store data

Sales in the form of
Pank accounts tables, rows,

Payroll columns

Hadoop vs Patabases

A fransaction involves
Inserting, updating,

deleting data (or a

combination of these)

Hadoop vs Databases

e-mails Transaction

Sales processing has

Pank accounts gertain requirements
Payroll

Hadoop vs Databases

Hadoop has a few limitations
which make it unsuited for
transaction processing

Hadoop vs Databases

Hadoop limitations
l. Unstruetured data

2. No randow access

3. High latency
4. Not ACID compliant

Hadoop vs Databases

Hadoop limitations
l. Unstructured data

Hadoop vs Databases

Hadoop stores
data in HDFS

Hadoop vs Databases 1. Unstructured data

The data in HPFS is
Unstructured

Hadoop vs Databases

Unlike databases, HPFS
data doesnt have any
schewma

Hadoop vs Databases

I1’s basically in the form of files

Text files

Log files
Video/Audio files

Hadoop vs Databases

There’s no concept of rows/columns
There are no tables

Hadoop vs Databases

This is not to say that
Hadoop cant be used fo
store structured data

Hadoop vs Databases 1. Unstructured data

You could store your data in a structured format
even in Hadoop

esv files

xwl files
jsons

Hadoop vs Databases 1. Unstructured data

Eacﬁ» recglrd esv files
(nh these files
could be 1 x| files

jsons

row in a table

Hadoop vs Databases

But unlike databases,
Hadoop will not
enforce the schema
or any constraints
on these rows/tables

Hadoop vs Databases

Hadoop limitations
l. Unstructured data

Hadoop vs Databases

Hadoop limitations
l. Unstructured data

2. No randow access

Hadoop vs Databases 2. Norandowm access

Applications that use databases
require random access

ie. the ability to create, access and
modify individval rows of a table

This is not possible with Hadoop

Hadoop vs Patabases 2. Norandom access

HOFS is optimal for storing large files

MapReduce is optimal for
processing these files as a whole

Hadoop vs Patabases 2. Norandom access

If an HPES file consists of many rows in a table

There is no provision fo access
or modify a specific row without
processing the entire file

Hadoop vs Databases

Hadoop limitations
l. Unstructured data

2. No randow access

Hadoop vs Databases

Hadoop limitations
l. Unstructured data

2. No randowm access
3. High latency

Hadoop vs Databases

Applications also require low latency

Any operations like inserting,
updating or deleting data should
occur as fast as possible

Hadoop vs Databases

All processing in Hadoop occurs via
MapReduce tasks on complete files

Even on large clusters, these tasks
might take winutes or hours at times

Hadoop vs Databases

Hadoop limitations
l. Unstructured data

2. No randow access
3. High latency

Hadoop vs Databases
Hadoop limitations
l. Unstructured data

2. No randowm access

3. High latency
4. Not ACID compliant

Hadoop vs Databases

Patabases are the
source of truth for the
data that they store

Hadoop vs Databases

Patabases quarantee ACIDV
properties to maintain the
integrity of their data

4. Not ACID compliant

Hadoop vs Databases

Atowicity
ACID Consistency
properties Isolation

Durability

4. Not ACID compliant

Hadoop vs Patabases

Atowicity
Consistency

Isolation
Durability

Hadoop vs Databases

Atowicity

Operations (aka
transactions) must be
all-or-nothing

Hadoop vs Databases

Atowicity
Example of a fransaction :
Cash withdrawal from an ATM

b Update cash balance
Update account balance

4. Not ACID compliant

Hadoop vs Databases
Atowicity
Cash withdrawal from an ATM

Update cash balance

Update account balance

If one of these fails, the whole
transaction should fail

Hadoop vs Databases

, Any changes to the
Consistency database must not
violate any specified
database
constraints

4. Not ACID compliant

Hadoop vs Patabases

If multiple/concurrent
operations oceur, the
result is as if these
operations are applied
[n sequence

Isolation

4. Not ACID compliant

Hadoop vs Patabases

Once a transaction
is executed, the

changes are

Durability permanent

Hadoop vs Databases

Afowmicity Traditional

Consistency databases are

Isolation designed to
guarantee all of

Durability

these properties

4. Not ACID compliant

Hadoop vs Patabases

ACID guarantees require that
the database management
systew is aware of the structure
and contents of the data

Hadoop vs Databases 4 Not ACIP compliant

IS aware
of the structure and contents of the data

HOFS being just a file storage
systew, has no such awareness

Hadoop vs Databases
Hadoop limitations
l. Unstructured data

2. No randowm access

3. High latency
4. Not ACID compliant

Hadoop vs Databases
Hf %°n"s'33{.'§‘£§2’3'32fa All these
2. No randowm access limitations make
3. High latency Hadoop unsuited
4. Not ACID compliant for transaction
processing

HBase

(S a distributed databhase
managewment system that’s part
of the Hadoop ecosystem

HPase uses HPFS to store
it’s underlying data

HBase has the architecture

benefits of HPFS
l. Distributed storage
2. Fault tolerance

HBase

It also has many of the properties
required for tfransaction processing

1. Awareness of the structure of data
2. Low latency

2. Randow access

4. ACID compliant at some levels

To understand HBase

it’s helpful understand how it’s
ditferent from a traditional

RPEMS

In a traditional RVBEMS, all
operations like creating, inserting,
updating rows are done using SQL

HBase does not support SOL

HBase vs RPBMS
Only CRUD operations

HBase only supports a basic set of
operations (Create-Read-Update-Pelete)

HBase vs RIBMS

(Create-Read-Update-Delete)

Only CRUP operations

All these operations have to
be applied at a row level

HBase vs RIBMS

(Create-Read-Update-DPelete)

Only CRUPD operations

HBase does not support any
operations across rows (or)
across tables

HBase vs RIBMS

(Create-Read-Update-DPelete)

Only CRUP operations

This means that youv cannot
perform operations like
Joins, Group by ete

HBase vs RIBMS

Penormalized

HBase tables are not designed
using a relational data model

HBase vs RIBMS

Penormalized

All the data pertaining to
an entityis storedin 1 row
(ie tables are denormalized)

HBase vs RIBMS

Column oriented storage

HBase has a special kind of
data model

HBase is ACID

compliant for
limited kinds of
transactions

HBase vs RVBMS
Column oriented storage

Penormalized
Only CRUP operations
ACID at a row level

Let’s

understand the

implications of
each of these

HBase vs RVBMS Column oriented storage

Sav we haVe an —
25\ Jessicaimmm accepted your friend request. Since she's new

to Facebook, you should suggest people she knows,

application that 5

W =,
Jessica is new on Facebook, To welcome her:

8 (|
a a e s O l c a lo Sugqgest people that she knows
Write on her wall
34 minutes aQo

totheusersofa [T
social network e

[2) Dyl s commented o

2 hours ago

¢]] Brendan McLaughlin commented on your link. 3 hours ago

ES Brendan McLaughiin likes your link, 2 hours ago
[[i’] Bruce Robert Abbott commented on your photo, 2 hours 390

@ Chaz Yoon commented on your link. 3 hours ago

HBase vs RVBMS Column oriented storage

Here is a table that stores
sowe notification related data

25\ Jessicaimmm accepted your friend request. Since she's new
to Facebook, you should suggest people she knows,

A
£ 3
4.,14 type foruser from user timestamp

Jessica is new on Facebook., To welcome her:
Suggest people that she knows Friend request

Write on her wall 1
34 minutes 3go status

Ryan Jessica 146710201

Jon Dugan commented on your photo. about an hour ago

2 Comment Chaz Daniel 146711200

| Daniel), Adams commented on your link. 2 hours ago

Pt commented cmBiiiaas's photo.
2 hours ago 3 Comment Rick Brendan 1467112205

¢]] Brendan McLaughlin commented on your link. 3 hours ago

o &

¢y Brendan McLaughiin likes your link, 2 hours ago 4 Like Rick Brendan 1467112213

[®)] Bruce Robert Abbott commented on your photo, 2 hours age

¢]] Chaz Yoon commented on your link. 3 hous ago

HBase vs RVBMS Column oriented storage

This is how data is stored
in traditional databases

type for user from user timestamp
Friend request Rya Jessica 146710201
statu
Commen t Cha Daniel 146711200
Commen t Ric Brend 1467112205
Lik Ric Brend 1467112213

HBase vs RVBMS Column oriented storage
A table with a fixed schema is defined

2 Commen t Chaz Daniel 146711200

3 Commen t Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

HBase vs RVBMS Column oriented storage
Each row represents a data point

for user from user timestamp

2 Commen t Chaz Daniel 146711200

3 Commen t Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

HBase vs RVBMS Column oriented storage

In a column oriented store, each cell
represents a datapoint

type for user from user timestamp

1 Jessica 146710201
2 Daniel 146711200
3 Commen t Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

HBase vs RVBMS Column oriented storage

Pata is stored
nnnnnn ina map

Key <KOW id, Col id>
Valve= <data>

HBase vs RVBMS Column oriented storage

Pata is stored
na map

2, for _user
Chaz

Daniel

Comment Rick | Brendan | 1467112205

11111111111111111

HBase vs RIBMS

type for user from user timestamp

1 Friend Ryan Jessica | 146710201
request status

2 Comment Chaz Daniel 146711200

4 Like

Rick

Brendan

1467112213

Column oriented storage

ag

row

column

value

1 type Friend request status
1 for user Ryan

1 from user Jessica

1 timestamp 146710201

2 type Comment

2 for user Chaz

2 from user Daniel

2 timestamp 146711200

HBase vs RVBMS Column oriented storage
Keys Values

An HBase table srye—
1 | foruser
- . 1 from user Jessica
ls l " acf a 1 timestamp 146710201
2 type | Comment
s O r‘re d m a > | foruser
p from user Daniel

HBase vs RIBMS

Notifications

25\ Jessicaimmm accepted your friend request. Since she's new
to Facebook, you should suggest people she knows,

N 5 S

L&A

Jessica is new on Facebook. To welcome her:
Suggest people that she knows
Write on her wall

34 minutes ago

| Jon Dugan commented on your photo. about an hour ago

¢1| Daniel 1. Adams commented on your link. 2 hours ago

3] Sptessetestienisl commented commiisisssis's photo.

2 hours 3qQo

ﬁ Brendan MclLaughlin commented on your ink. 3 hours ago
&Y Brendan McLaughlin likes your link. 2 hours ago

[®) Bruce Robert Abbott commented on your photo, 3 hours ago

¢]] Chaz Yoon commented on your link. 3 hours age

Column oriented storage

Let’s say some
notifications have special
atiributes depending on

their type

Colummn oriented
storage

Jessica is new on Facebooky To welcome her:
s

Write on her wall

34 minutes ago

Jon Dugan commented on your photo. about an hour ago F rie "d req ue s.l-

Daniel). Adams commenct:: ;:n::: ink. 2 hours ago " no ‘l‘i ﬁca 'riO“S
might have

2 hours ago
:ren:an :ctaMn 'c:emmente'd :n y::u ink. 3 hours ago i“f OYWI a ‘l.i 0 “
/Y Brendan McLaughiin ikes your link, 2 hows age s
about the friend

Bruce Robert Abbott commented on your photo. 2 hours ago
¢]| Chaz Yoon commented on your link. 3 hours age

-

Jessica is new on Facebook., To welcome her:
Suggest people that she knows

Write on her wall

34 minutes ago

Colummn oriented
storage

Jon Dugan commented on your photo. about an hour ago

@ Daniel J. Adams commentec 2 hours ago comme"fs a"d llkes

St commented ol 's photo. have i"fo rmafio"
2 hours ago abOU‘[’ a Ii"k Or
ﬁl Brendan Mclaughin commented on your ink. 3 hours ago ph 0 _l. 0 fh a ‘l,

Brendan McLaughlin likes your link. 3 hours ago p rom D fe d fhem

Bruce Robert Abbott commented on your photo. 2 hours ago
¢]| Chaz Yoon commented on your link. 3 hours age

HBase vs RIBMS

Colummn oriented
storage

id rom user timestamp friend type commented on
y | Friend Ryan | Jessica |146710201 new
request
2 | Commen t| Chaz Daniel |146711200 - link
3 | Commen t Rick Brendan (1467112205 - photo
4 Lik Rick Brendan (1467112213

In ’rhe KVBMS ’rable each of these
attributes becomes a new column

Colummn oriented
storage

HBase vs RIBMS

id t or user rom user timestamp friend type commented o

y | Friena Ryan | Jessica |146710201 _-
request

2 | Commen t Chaz Daniel |146711200

3 | Commen t Rick Brendan [146711220°f photo

4 | Like Rick endan |146711221 -

Thls results in tables that
are very sparse

Colummn oriented
storage

HBase vs RIBMS

user timestamp friend type com

tvype or user ro S
Friend Ryan | Jessica |[146710201 _-
reques

id

1 equest

2 | Commen t Chaz Daniel 146711200

3 | Commen t Rick Brendan [146711220°f photo

4 | Like Rick | Brendan |146711221 -

In an RPBMS, Sparse tables utilize
disk space even for these empty cells

Colummn oriented
storage

HBase vs RIBMS

id t or user rom user timestamp friend type commented o

y | Friena Ryan | Jessica |146710201 _-
request

2 | Commen t| Chaz Daniel |146711200

3 | Commen t Rick Brendan [146711220°f photo

4 | Like Rick | Brendan [146711221 -

In a column-oriented store, these
cells can be skipped completely

HBase vs RIBMS

request status

for user

from user

Jessica

friend type commented

timestamp

146710201

S — — — — ——

146711200 - link

Comment Chaz Daniel
3 Comment Rick Brendan 1467112205 - photo
4 Like Rick Brendan 1467112213 - .

row id

Column oriented storage

column

value

Friend request

1 type status

1 for user Ryan

1 from user Jessica
1 timestamp 146710201
1 friend type new

HBase vs RPBMS Column oriented storage

rowid column value

commented

type for user fromuser timestamp | friend type o 1 ype Friend request
LI PP ‘ Ryan Jessica 146710201 ? < 1 for user Ryan
Comment Chaz Daniel 146711200 > « :
] _ o ~ B TN 1 from user Jessica
3 Comment Rick Brendan 1467112205 - photo 1 timestamp 146710201
4 Like Rick Brendan 1467112213 - - 1 friend type new
Friend request
2 type status
2 for user Ryan
2 from user Jessica
2 timestamp 146710201
5 commented ink
on

HBase vs RVBMS Column oriented storage

Column oriented storage has some
powerful advantages

1. You can storereally sparse tables very
efficiently

2. You can accommodate
dynawmically changing attributes

HBase vs RVBMS Column oriented storage

Each row id can have a different
set of col ids

2. You can accommodate
dynamically changing attributes

HBase vs RVBMS Column oriented storage

The schema for a row id is not
fixed, you can keep changing it

ie. Add or remove new col ids

2. You can accommodate
dynamically changing attributes

HBase vs RVBMS
Column oriented sforage\/

Penormalized
Only CRUD operations
ACID at a row level

HBase vs RVTBMS Penormalized
LET'S SAY WE HAVE AN EMPLOYEES DATABASE

WE WANT T0 CAPTURE EMPLOYEE NAME,
ADDRESS, SUBORPINATES

HBase vs RVTBMS Penormalized
A TRADITIONAL RVBMS WOULP MOPEL IT AS 3 TABLES

EmpID EmpName Addressid
1 Vitthal 1

Addressid Street City
1 Bellandur | Bangalore
EmpiD SubordinateEmplID
1 3
1 4

1 8

HBase vs RVTBMS Penormalized
A TRADITIONAL RVBMS WOULP MOPEL IT AS 3 TABLES

v THIS KIND OF PESIGN
MINIMIZES REPUNDANT
— STORAGE OF DATA

HBase vs RPBMS Penorwmalized

v THIS KIND OF PESIGN
MINIMIZES REPUNDANT
— STORAGE OF DATA

HBase vs RIBMS

Penormalized

Vitthal

THESE STREET AND CITY NAMES
ARE ONLY STORED ONCE

AND REFERRED TO BY AN
INTEGER 1P THEREAFTER

HBase vs RPBMS Penorwmalized

NORMALIZATION
OPTIMIZES FOR
STORAGE

HBase vs RPBMS Penorwmalized

| IN A DISTRIBUTED SYSTEM,
STORAGE IS CHEAP

INSTEAD YOU NEED T0
OPTIMIZE DISK SEEKS

HBase vs RPBMS Penorwmalized

1 IF YOU STORE DATA
2 ACROSS DIFFERENT TABLES

wewn YOU HAVE TO PERFORM
PISK SEEKS FOR EACH TABLE

HBase vs RVTBMS Penormalized
INSTEAD WE CAN EMBED ALL 3 TABLES INTO A SINGLE TABLE

EmplD EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>

/

“Street”:”Bellandur”, l
“City” :”Bangalore” ("Anuradha”,

//Arun 144 ,
"Swetha’)

HBase vs RPIBMS Penorwmalized

EmplD EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>

THIS IS A
PENORMALIZED
PESIGN

HBase vs RVBMS Penormalized
EmplD EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>
ALL THE DATA
CORRESPONPING TO AN
EMPLOYEE IS STORED

IN A SINGLE TABLE

HBase vs RPBMS Penorwmalized

IN HBASE DATA IS STORED IN A
PENORMALIZED MANNER

HBase vs RPBMS
Column oriented ’roraqe\/

Penormalized
Only CRUD operations
ACID at a row level

HBase vs RFEMS Only CRUP operations

HBase architecture is
designed such that you can
det random read-write
access o a specific row

Unlike, traditional
RVBMS, HBase does
not support SQL

HBase vs RPEMS Ounly CRUD operations

HBase only supports a
limited set of
operations

HBase vs RFEMS (Qnly CRUD operations

HBase only supports a limited set of operations
cre ate Add a new value to the table

Read

Up da‘l' 0 Update the value for a specific row id, col id
Vele‘[' 0 Delete the value for a specific row id, col id

Read the value for a specific row id, col id

HBase vs RPEMS Ounly CRUD operations

Create All HBase operations
deal with a specific
Kead oW

Update
Pelete

HBase vs RFEMS (Qnly CRUD operations

HBase does not support
Create any operations across
Kead tables
Update No Joins

No Foreign key
constraints

Delete

HBase vs RFEMS (Qnly CRUD operations

Croate HbBasedoes not support
any operations across
Kead Y op

row Iids
Update
Delete

No Grouping/Aggregation

HBase vs RPEMS Ounly CRUD operations

breate This is another reason
Kead why denormalization
Update isimportant in Hbase

Delete

HBase vs RPEMS Ounly CRUD operations

breate All the data needed fo
Read describe an entity
Update should be self-contained
Delote within its row id

HBase vs RPEMS Ounly CRUD operations

LET'S GO BACK TO THE EMPLOYEE EXAMPLE
A TRADITIONAL RPEMS WOULD MOPEL IT AS 3 TABLES

EmpID EmpName Addressid
1 Vitthal 1

Addressid Street City
1 Bellandur | Bangalore
EmpiD SubordinateEmplID

1 3
1 4
1 38

HBase vs RFBMS Only CRUD operations
WHEN AN APPLICATION ASKS FOR AN EMPLOYEE'S PETAILS

EmpID EmpName Addressid
1 Vitthal 1

YOU WOULD NEEP TO JOIN 2 TABLES
TO FETCH THE ADDRESS

HBase vs RPBMS (Only CRUD operations
WHEN AN APPLICATION ASKS FOR AN EMPLOYEE'S DETAILS

EmpID EmpName Addressid
1 Vitthal 1

YOU WOULD NEEP TO
JOIN THESE 2 TABLES
TWICE TO GET THE
1 3 LIST OF SUBORPINATES
1 4 FOR AN EMPLOYEE

1 38

HBase vs RFEMS (Qnly CRUD operations

IN AN RPBMS THESE JOINS CAN
BE MADE EFFICIENT WITH THE
ADPITION OF INPICES

HBase vs RFEMS (Qnly CRUD operations

IN HPASE, THERE IS NO SUPPORT FOR
JOINING TABLES ON THE FLY WHILE
FETCHING THE PETAILS FOR 1 ROW

HBase vs RPEMS Ounly CRUD operations

YOU COULD USE AN EXTERNAL
APPLICATION LIKE MAPREDUCE
T0 PERFORM JOINS

WHILE THIS IS FINE FOR ANALYTICAL
QUERIES, IT WOULP NOT BE SUITABLE
FOR TRANSACTION PROCESSING

HBase vs RFBMS Only CRUD operations
IN A PENORMALIZED DESIGN

EmplD EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>

YOU CAN USE THE HBASE SUPPORTED
READ OPERATION TO READ THE
ROW AND FETCH ALL THE DATA

HBase vs RPBMS
Column oriented ’roraqe\/

Penormalized

Only CRUD opera’rionsx/
ACID at a row level

HBase vs RPIBMS ACID at a row level

HBase is ACID compliant, but
only at a row id level

For exawmple, let’s look at
Atowicity

HBase vs RVBMS ACID at a row level
Atowicity

Transaction 1: Transaction 2:

Update values Update values
for 2 col ids for 2 col ids

within 1 row for 10 row ids

Atowmie Atowmicity

Transaction 1:
Update values | If one col id update

tor 2 col ids fails, the entire
within 1 row fransaction fails

HBase vs RVBMS ACID at a FXW level

fomicity
If the operation .
fails after 9 row ot Atowie
ds z"e "pd?‘;‘ed' Transaction 2:
the row ids Update values
which are For 2 col ids

updated remain

updated for 10 row ids

HBase vs RVBMS
Column oriented foraqe\/

Penormalized
Only CRUD opera’rionsx/
ACID at a row level, /

If you are familiar with the Hadoop
ecosystew, you might know of other
technologies which seew similar to Hase

RIVE FOR INSTANCE

. Used for both
HbBase is a database transaction processing

management system andanalytical

processing

HIVE IS A DATA Used only for
WAREHOUSE analytical processing

Provides low latency and
randowm access for some
supported operations

HBase is a database
management system

HIVE IS A DATA Only suitable for batch
o

HBase does not provide
any SQL inferface

Hive does!

HIVE
RADOOP

HIVE IS A DPATAWAREHOUSE
BUILT ON TOP OF HADOOP

RIVE

RIVE STORES IT'S DATA
AS FILES IN HDFS

RIVE

MapReduce

All processing tasks in Hadoop
are run using MapReduce tasks

RIVE

MapReduce

MapReduce tasks are usvally
written using a Java Framework

RIVE

MapReduce

Writing these MapReduce
tasks can be pretty daunting

RIVE

MapReduce

Traditional databases/closed-source
datawarehouses normally use SQL

RIVE

MapReduce

SQL = Struetured Query
Language

SQL = Struetured Query Language

SQL is really wmuch easier to use
and understand :)

SQL = Strucetured Query Language

I+'s widely used by analysts and
programmers to work with
databases/data warehouses

SQL = Struetured Query Language

SQL has a few easy to
understand construets

Seleet, group by, join ete

SQL = Struetured Query Language

Most data processing tasks are defined
using a combination of these construets

Seleet, group by, join ete

RIVE

MapReduce

RIVE PROVIDES AN SQL LIKE
INTERFACE TO DATA IN HDFS

RIVE

MapReduce

THE FILES IN HDFS ARE EXPOSED TO
THE USER IN THE FORM OF TABLES

RIVE

MapReduce

THE USER CAN WRITE SQL-LIKE
QUERIES TO WORK WITH THESE TABLES

SQL-LIKE QUERY

HIVE HIVE WILL

TRANSLATE THE
QUERY INTO 1/MORE

MAPREDPUCE TASKS
o7 [

SQL-LIKE QUERY

+

HIVE THE MAPREDUCE

TASKS WILL PROCESS
THE DATA IN HDFS

AND RETURN ANY
RESULTS TO HIVE

o7 [

SQL-LIKE QUERY

¢ THE QUERIES ARE
WRITTEN IN A
HIVE SQL LIKE
LANGUAGE
CALLED HIVEQL

o7 [

PIFFERENCES BETWEEN HIVE AND
HBASE

RIVE

USEDP FOR PATCH
PROCESSING

HBASE

USED FOR BOTH
PATCH AND
TRANSACTION
PROCESSING

RIVE HBASE

NO SQL
INTERFACE

PROVIPES AN SOL
SKIN FOR HADOOP

HIVE HBASE

- USES HDES BUT
7 THE HAS IS OWN
MAPREDPUCE ENGINE ARCHITECTURE

RIVE

PATA MODEL IS PATA MOPDEL IS
SIMILAR T0 COLUMN ORIENTED
PATABASES (TABLES STORAGE

WITH FIXED SCHEMA)

