
Many technological
innovations are inspired

by nature

Take ants for example

Take ants for example

Ants are fascinating
in many ways

Individually,
each ant is
seemingly

inconsequential

Collectively, they work
together to accomplish

complicated things

Together, ants behave
like a single entity

In pursuit of a
common goal

Take one ant down;
Another comes up to

take it’s place!

a single entity
common goal

Distributed computing
is the idea of putting

many small and cheap
computers together

is the idea of putting many small
and cheap computers together

to accomplish
really complex

tasks

Distributed computing

Each individual
computer is called

a node

Distributed computing

Together, all the
nodes form a

cluster

Distributed computing

Like ants,
Each individual
node is pretty

inconsequential

Distributed computing

Like ants,
Together these
nodes act like a

single entity with
a common goal

Distributed computing

Why is this so
cool?

Distributed computing

The performance
of this system
scales linearly

Distributed computing

To double the
perfomance, just

double the
number of nodes

Distributed computing

Distributed computing

To double the
perfomance, just

double the
number of nodes

Distributed computing

This is not true
of individual
computers

Distributed computing

A computer that’s
twice as expensive,
will not necessarily
give you twice the

performance

 Distributed computing
can get very complicated

 Distributed computing can get very complicated

1. You have to manage
resources and memory
across multiple nodes

 Distributed computing can get very complicated

2. You have to co-ordinate
and schedule tasks

manage resources and memory

 Distributed computing can get very complicated

3. If one node goes down, the
system should not be affected

manage resources and memory
co-ordinate and schedule tasks

(Just like with ants)

Fault Tolerance

 Distributed computing can get very complicated
manage resources and memory
co-ordinate and schedule tasks
Fault tolerance

Before the 2000s, all of these
problems had to be taken care

of by the programmer

Between 2003 and 2006

Google published 3 seminal papers

that completely changed the
world of distributed computing

3 seminal papers

Google File System
MapReduce

BigTable

3 seminal papers
Google File System

MapReduce
BigTable

These are all
technologies

built to power
Google Search

3 seminal papers
Google File System

MapReduce
BigTable

Each of these papers
proposed an

architecture for an
important distributed

computing problem

3 seminal papers
Google File System

MapReduce

BigTable

Storage
proposed an architecture for

Processing data

Database management

3 seminal papers
Google File System

MapReduce
BigTable

All of these architectures abstract
programmers from the complexity of

distributed computing

Storage
Processing data

Database management

3 seminal papers
Google File System

MapReduce
BigTable

An ecosystem of Open source softwares
based on these architectures

Hadoop ecosystem

Storage
Processing data

Database management

3 seminal papers
Google File System

MapReduce

BigTable

HDFS
Hadoop ecosystem

Hadoop MapReduce

HBase

Storage

Processing data

Database management

HDFS
Hadoop ecosystem

Hadoop MapReduce

HBase

HADOOP

HADOOP
is a distributed computing framework

developed and maintained by
THE APACHE SOFTWARE FOUNDATION

written in Java

HADOOP
A file system to

manage the
storage of data

A framework to
process data across

multiple servers

HDFS MapReduce

HADOOP
A file system to

manage the
storage of data

A framework to
process data across

multiple servers

HDFS MapReduce

HDFS
The Hadoop Distributed File System

Hadoop uses this to store
data across multiple disks

HDFS
One of the nodes acts
as the master node

Name node

This node
manages the

overall file system

HDFS
Name node The name node stores

1. The directory structure

2. Metadata for all the files

HDFS
Other nodes are

called data nodes
Name node
Data node 1
Data node 2
Data node 3
Data node 4

The data is physically
stored on these nodes

HDFS
Here is a large text file

Let’s see how
this file is

stored in HDFS

HDFS First the file is
broken into

blocks of size
128 MB

Block 1
Block 2
Block 3
Block 4

Block 6
Block 5

Block 7
Block 8

HDFS First the file is
broken into

blocks of size
128 MB

This size is chosen
to minimize the

time to seek to the
block on the disk

Block 1
Block 2
Block 3
Block 4

Block 6
Block 5

Block 7
Block 8

HDFS
Block 1
Block 2
Block 3
Block 4

Block 6
Block 5

Block 7
Block 8

These blocks are
then stored

across the data
nodes

HDFS

Block 1 Block 2

Block 3 Block 4

Block 6 Block 5

Block 7 Block 8

Name node
Data node 1

Data node 2

Data node 3

Data node 4

The name
node stores
metadata

HDFS

Block 1 Block 2

Block 3 Block 4

Block 6 Block 5

Block 7 Block 8

Name node
Data node 1

Data node 2

Data node 3

Data node 4

Block locations
for each file are

stored in the
name node

File 1 Block 1 DN 1

File 1 Block 2 DN 1

File 1 Block 3 DN 2

File 1 Block 4 DN 2

File 1 Block 5 DN 3

HDFS

Block 1 Block 2

Block 3 Block 4

Block 6 Block 5

Block 7 Block 8

Name node
Data node 1

Data node 2

Data node 3

Data node 4

A file is read using
File 1 Block 1 DN 1

File 1 Block 2 DN 1

File 1 Block 3 DN 2

File 1 Block 4 DN 2

File 1 Block 5 DN 3

1. The metadata in name node
2. The blocks in the data nodes

HDFS

Block 1 Block 2

Block 3 Block 4

Block 6 Block 5

Block 7 Block 8

Name node
Data node 1

Data node 2

Data node 3

Data node 4

File 1 Block 1 DN 1

File 1 Block 2 DN 1

File 1 Block 3 DN 2

File 1 Block 4 DN 2

File 1 Block 5 DN 3

What if one of the
blocks gets corrupted?

Block 5

HDFS

Block 1 Block 2

Block 3 Block 4

Block 6 Block 5

Block 7 Block 8

Name node
Data node 1

Data node 2

Data node 3

Data node 4

File 1 Block 1 DN 1

File 1 Block 2 DN 1

File 1 Block 3 DN 2

File 1 Block 4 DN 2

File 1 Block 5 DN 3

Or one of the data
nodes crashes?

Block 5

HDFS

Block 1 Block 2

Block 3 Block 4

Block 6 Block 5

Block 7 Block 8

Name node
Data node 1

Data node 2

Data node 3

Data node 4

File 1 Block 1 DN 1

File 1 Block 2 DN 1

File 1 Block 3 DN 2

File 1 Block 4 DN 2

File 1 Block 5 DN 3

This is one of the key
challenges in

distributed storage

Block 5

HDFS

Block 1 Block 2

Block 3 Block 4

Block 6 Block 5

Block 7 Block 8

Name node
Data node 1

Data node 2

Data node 3

Data node 4

File 1 Block 1 DN 1

File 1 Block 2 DN 1

File 1 Block 3 DN 2

File 1 Block 4 DN 2

File 1 Block 5 DN 3

You can define a
replication factor in

HDFS

HDFS

Block 1 Block 2

Block 3 Block 4

Block 6 Block 5

Block 7 Block 8

Name nodeData node 1

Data node 2

Data node 3

Data node 4
Each block is replicated,

and the replicas are
stored in different data

nodes
Block 1 Block 2

HDFS

Block 1 Block 2

Block 3 Block 4

Block 6 Block 5

Block 7 Block 8

Name node
Data node 1

Data node 2

Data node 3

Data node 4The replica locations
are also stored in the

name node

File 1 Block 1 Master DN 1

File 1 Block 1 Replica DN 2

..

..

..

HADOOP
A file system to

manage the
storage of data

A framework to
process data across

multiple servers

HDFS MapReduce

HADOOP
A file system to

manage the
storage of data

A framework to
process data across

multiple servers

HDFS MapReduce

MapReduce

MapReduce is a way
to parallelize a data

processing task

MapReduce

MapReduce tasks
have 2 phases

MapReduce
1. Process each block in the node it is stored in

Data node 1
Block 1

Block 2

Result 1

Result 2

Map phase

MapReduce

Result 1 Result 2

Result 3 Result 4

Result 6 Result 5

Result 7 Result 8

Name node
Data node 1

Data node 2

Data node 3

Data node 4

The name
node stores
metadata

2. Take all the results to one node and combine them

MapReduce

Result 1

Result 2

Result 3

Result 4

Result 6

Result 5

Result 7

Result 8

2. Take all the results to one node and combine them

Name node

The name
node stores
metadata

Reduce phase

MapReduce

Any data processing task can
be expressed as a chain of map

reduce operations

MapReduce
The programmer just specifies

the logic to be implemented the
map and reduce phases

The rest is taken care
of by Hadoop

HADOOP
A file system to

manage the
storage of data

A framework to
process data across

multiple servers

HDFS MapReduce

HDFS
Hadoop ecosystem

Hadoop MapReduce

HBase

With Hadoop, you can
1. Store data in a

cluster and
2. Process it

HDFS
Hadoop ecosystem

Hadoop MapReduce

HBase
Why then, do you need a
separate architecture for
database management?

Hadoop vs Databases
Databases are at the heart of most

applications

e-mails
Bank accounts

Sales

Payroll

Hadoop vs Databases

Databases that serve
such applications do

something called
Transaction
processing

e-mails

Bank accounts
Sales

Payroll

Hadoop vs Databases

They store data
in the form of
tables, rows,

columns

e-mails

Bank accounts
Sales

Payroll

Hadoop vs Databases

A transaction involves
Inserting, updating,
deleting data (or a

combination of these)

e-mails

Bank accounts
Sales

Payroll

Hadoop vs Databases

Transaction
processing has

certain requirements

e-mails

Bank accounts
Sales

Payroll

Hadoop has a few limitations
which make it unsuited for

transaction processing

Hadoop vs Databases

Hadoop limitations
1. Unstructured data
2. No random access
3. High latency

Hadoop vs Databases

4. Not ACID compliant

Hadoop limitations
Hadoop vs Databases

1. Unstructured data
2. No random access
3. High latency
4. Not ACID compliant

Hadoop stores
data in HDFS

Hadoop vs Databases 1. Unstructured data

The data in HDFS is
Unstructured

Hadoop vs Databases 1. Unstructured data

Unlike databases, HDFS
data doesn’t have any

schema

Hadoop vs Databases 1. Unstructured data

It’s basically in the form of files
Text files
Log files

Video/Audio files

Hadoop vs Databases 1. Unstructured data

There’s no concept of rows/columns
There are no tables

Hadoop vs Databases 1. Unstructured data

This is not to say that
Hadoop can’t be used to
store structured data

Hadoop vs Databases 1. Unstructured data

You could store your data in a structured format
even in Hadoop
csv files
xml files

jsons

Hadoop vs Databases 1. Unstructured data

Each record
in these files
could be 1

row in a table

csv files
xml files

jsons

Hadoop vs Databases 1. Unstructured data

But unlike databases,
Hadoop will not

enforce the schema
or any constraints

on these rows/tables

csv files
xml files

jsons

Hadoop vs Databases 1. Unstructured data

Hadoop limitations
Hadoop vs Databases

1. Unstructured data
2. No random access
3. High latency
4. Not ACID compliant

Hadoop limitations
1. Unstructured data

Hadoop vs Databases

2. No random access
3. High latency
4. Not ACID compliant

Applications that use databases
require random access

Hadoop vs Databases 2. No random access

ie. the ability to create, access and
modify individual rows of a table

This is not possible with Hadoop

HDFS is optimal for storing large files

Hadoop vs Databases 2. No random access

MapReduce is optimal for
processing these files as a whole

If an HDFS file consists of many rows in a table

Hadoop vs Databases 2. No random access

There is no provision to access
or modify a specific row without

processing the entire file

Hadoop limitations
1. Unstructured data

Hadoop vs Databases

2. No random access
3. High latency
4. Not ACID compliant

Hadoop limitations
1. Unstructured data

Hadoop vs Databases

2. No random access
3. High latency
4. Not ACID compliant

Hadoop vs Databases 3. High latency

Applications also require low latency
Any operations like inserting,

updating or deleting data should
occur as fast as possible

Hadoop vs Databases 3. High latency

All processing in Hadoop occurs via
MapReduce tasks on complete files

Even on large clusters, these tasks
might take minutes or hours at times

Hadoop limitations
1. Unstructured data

Hadoop vs Databases

2. No random access
3. High latency
4. Not ACID compliant

Hadoop limitations
1. Unstructured data

Hadoop vs Databases

2. No random access
3. High latency
4. Not ACID compliant

Hadoop vs Databases 4. Not ACID compliant

Databases are the
source of truth for the
data that they store

Hadoop vs Databases 4. Not ACID compliant

Databases guarantee ACID
properties to maintain the

integrity of their data

Hadoop vs Databases 4. Not ACID compliant

ACID
properties

Atomicity
Consistency
Isolation
Durability

Hadoop vs Databases 4. Not ACID compliant

Atomicity
Consistency
Isolation
Durability

Hadoop vs Databases 4. Not ACID compliant

Atomicity
Consistency
Isolation
Durability

Operations (aka
transactions) must be

all-or-nothing

Hadoop vs Databases 4. Not ACID compliant

Atomicity
Consistency
Isolation
Durability

Example of a transaction :
Cash withdrawal from an ATM

Update cash balance
Update account balance

Hadoop vs Databases 4. Not ACID compliant
Atomicity

Consistency
Isolation
Durability

Cash withdrawal from an ATM
Update cash balance
Update account balance

If one of these fails, the whole
transaction should fail

Hadoop vs Databases 4. Not ACID compliant

Atomicity
Consistency
Isolation
Durability

Any changes to the
database must not
violate any specified

database
constraints

Hadoop vs Databases 4. Not ACID compliant

Atomicity
Consistency
Isolation
Durability

If multiple/concurrent
operations occur, the
result is as if these

operations are applied
in sequence

Hadoop vs Databases 4. Not ACID compliant

Atomicity
Consistency
Isolation
Durability

Once a transaction
is executed, the

changes are
permanent

Hadoop vs Databases 4. Not ACID compliant

Atomicity
Consistency
Isolation
Durability

Traditional
databases are

designed to
guarantee all of
these properties

Hadoop vs Databases 4. Not ACID compliant

ACID guarantees require that
the database management

system is aware of the structure
and contents of the data

Hadoop vs Databases 4. Not ACID compliant

HDFS being just a file storage
system, has no such awareness

ACID guarantees require that the
database management system is aware

of the structure and contents of the data

Hadoop limitations
1. Unstructured data

Hadoop vs Databases

2. No random access
3. High latency
4. Not ACID compliant

Hadoop limitations
1. Unstructured data

Hadoop vs Databases

2. No random access
3. High latency
4. Not ACID compliant

All these
limitations make
Hadoop unsuited
for transaction

processing

HBase
is a distributed database

management system that’s part
of the Hadoop ecosystem

HBase

HBase uses HDFS to store
it’s underlying data

HBase
HBase has the architecture

benefits of HDFS
1. Distributed storage
2. Fault tolerance

HBase
It also has many of the properties

required for transaction processing
1. Awareness of the structure of data
2. Low latency
3. Random access
4. ACID compliant at some levels

HBase
To understand HBase

it’s helpful understand how it’s
different from a traditional

RDBMS

HBase vs RDBMS

HBase does not support SQL

In a traditional RDBMS, all
operations like creating, inserting,
updating rows are done using SQL

HBase vs RDBMS

HBase only supports a basic set of
operations (Create-Read-Update-Delete)

Only CRUD operations

HBase vs RDBMS

All these operations have to
be applied at a row level

Only CRUD operations
(Create-Read-Update-Delete)

HBase vs RDBMS

HBase does not support any
operations across rows (or)

across tables

Only CRUD operations
(Create-Read-Update-Delete)

HBase vs RDBMS

This means that you cannot
perform operations like

Joins, Group by etc

Only CRUD operations
(Create-Read-Update-Delete)

HBase vs RDBMS

HBase tables are not designed
using a relational data model

Denormalized
Only CRUD operations

HBase vs RDBMS

All the data pertaining to
an entity is stored in 1 row
(ie tables are denormalized)

Denormalized
Only CRUD operations

HBase vs RDBMS

Column oriented storage

HBase has a special kind of
data model

Only CRUD operations
Denormalized

HBase vs RDBMS

Column oriented storage
HBase is ACID
compliant for

limited kinds of
transactions

Denormalized

ACID at a row level

Only CRUD operations

HBase vs RDBMS
Column oriented storage
Denormalized
Only CRUD operations
ACID at a row level

Let’s
understand the
implications of
each of these

HBase vs RDBMS Column oriented storage

Say we have an
application that

manages notifications
to the users of a
social network

HBase vs RDBMS Column oriented storage
Here is a table that stores

some notification related data

id type for user from user timestamp

1 Friend request
status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

HBase vs RDBMS Column oriented storage
This is how data is stored
in traditional databases

id type for user from user timestamp

1 Friend request
status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

HBase vs RDBMS Column oriented storage
A table with a fixed schema is defined

id type for user from user timestamp

1 Friend request
status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

HBase vs RDBMS Column oriented storage
Each row represents a data point

id type for user from user timestamp

1 Friend request
status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

HBase vs RDBMS Column oriented storage
In a column oriented store, each cell

represents a datapoint
id type for user from user timestamp

1 Friend request
status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

HBase vs RDBMS Column oriented storage

Data is stored
in a map

id type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

Key = <Row id, Col id>
Value = <data>

HBase vs RDBMS Column oriented storage

Data is stored
in a map

id type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

Key = 2, for_user
Value = Chaz

HBase vs RDBMS Column oriented storage

id type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

row
id

column value
1 type Friend request status

1 for user Ryan

1 from user Jessica

1 timestamp 146710201

2 type Comment

2 for user Chaz

2 from user Daniel

2 timestamp 146711200

3 type Comment

3 for user Rick

3 from user Brendan

3 timestamp 1467112205

HBase vs RDBMS Column oriented storage

An HBase table
is in fact a
sorted map

row
id

column value
1 type Friend request status

1 for user Ryan

1 from user Jessica

1 timestamp 146710201

2 type Comment

2 for user Chaz

2 from user Daniel

2 timestamp 146711200

3 type Comment

3 for user Rick

3 from user Brendan

Keys Values

HBase vs RDBMS Column oriented storage

Let’s say some
notifications have special
attributes depending on

their type

HBase vs RDBMS Column oriented
storage

Friend request
notifications
might have

information
about the friend

HBase vs RDBMS Column oriented
storage

Comments and likes
have information

about a link or
photo that

prompted them

HBase vs RDBMS Column oriented
storage

In the RDBMS table, each of these
attributes becomes a new column

id type for user from user timestamp

1 Friend
request
status

Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

friend type

new

-

-

-

commented on

-

link

photo

-

HBase vs RDBMS Column oriented
storage

This results in tables that
are very sparse

id type for user from user timestamp

1 Friend
request
status

Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

friend type

new

-

-

-

commented on

-

link

photo

-

HBase vs RDBMS Column oriented
storage

In an RDBMS, Sparse tables utilize
disk space even for these empty cells

id type for user from user timestamp

1 Friend
request
status

Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

friend type

new

-

-

-

commented on

-

link

photo

-

HBase vs RDBMS Column oriented
storage

In a column-oriented store, these
cells can be skipped completely

id type for user from user timestamp

1 Friend
request
status

Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

friend type

new

-

-

-

commented on

-

link

photo

-

HBase vs RDBMS Column oriented storage
friend type

new

-

-

-

commented
on

-

link

photo

-

id type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213
row id column value

1 type Friend request
status

1 for user Ryan

1 from user Jessica

1 timestamp 146710201

1 friend type new

HBase vs RDBMS Column oriented storage
friend type

new

-

-

-

commented
on

-

link

photo

-

id type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

row id column value

1 type Friend request
status

1 for user Ryan

1 from user Jessica

1 timestamp 146710201

1 friend type new

2 type Friend request
status

2 for user Ryan

2 from user Jessica

2 timestamp 146710201

2 commented
on link

HBase vs RDBMS Column oriented storage
Column oriented storage has some

powerful advantages
1. You can store really sparse tables very

efficiently
2. You can accommodate

dynamically changing attributes

HBase vs RDBMS Column oriented storage
Column oriented storage has some

powerful advantages
1. You can store really sparse tables very

efficiently
2. You can accommodate

dynamically changing attributes

Each row id can have a different
set of col ids

HBase vs RDBMS Column oriented storage
Column oriented storage has some

powerful advantages
1. You can store really sparse tables very

efficiently
2. You can accommodate

dynamically changing attributes

The schema for a row id is not
fixed, you can keep changing it

ie, Add or remove new col ids

HBase vs RDBMS
Column oriented storage
Denormalized
Only CRUD operations
ACID at a row level

HBase vs RDBMS Denormalized
LET’S SAY WE HAVE AN EMPLOYEES DATABASE

WE WANT TO CAPTURE EMPLOYEE NAME,
ADDRESS, SUBORDINATES

A TRADITIONAL RDBMS WOULD MODEL IT AS 3 TABLES
EmpID EmpName AddressId

1 Vitthal 1

AddressId Street City
1 Bellandur Bangalore

EmpID SubordinateEmpID
1 3
1 4
1 8

HBase vs RDBMS Denormalized

A TRADITIONAL RDBMS WOULD MODEL IT AS 3 TABLES
EmpID EmpName AddressId

1 Vitthal 1

AddressId Street City

1 Bellandur Bangalore

EmpID SubordinateEmpID

1 3

1 4

1 8

THIS KIND OF DESIGN
MINIMIZES REDUNDANT

STORAGE OF DATA

HBase vs RDBMS Denormalized

EmpID EmpName AddressId

1 Vitthal 1

AddressId Street City

1 Bellandur Bangalore

EmpID SubordinateEmpID

1 3

1 4

1 8

THIS KIND OF DESIGN
MINIMIZES REDUNDANT

STORAGE OF DATA

HBase vs RDBMS Denormalized

EmpID EmpName AddressId

1 Vitthal 1

AddressId Street City

1 Bellandur Bangalore

EmpID SubordinateEmpID

1 3

1 4

1 8

THESE STREET AND CITY NAMES
ARE ONLY STORED ONCE

HBase vs RDBMS Denormalized

AND REFERRED TO BY AN
INTEGER ID THEREAFTER

EmpID EmpName AddressId

1 Vitthal 1

AddressId Street City

1 Bellandur Bangalore

EmpID SubordinateEmpID

1 3

1 4

1 8

HBase vs RDBMS Denormalized

NORMALIZATION
OPTIMIZES FOR

STORAGE

EmpID EmpName AddressId

1 Vitthal 1

AddressId Street City

1 Bellandur Bangalore

EmpID SubordinateEmpID

1 3

1 4

1 8

HBase vs RDBMS Denormalized

IN A DISTRIBUTED SYSTEM,
STORAGE IS CHEAP

INSTEAD YOU NEED TO
OPTIMIZE DISK SEEKS

EmpID EmpName AddressId

1 Vitthal 1

AddressId Street City

1 Bellandur Bangalore

EmpID SubordinateEmpID

1 3

1 4

1 8

HBase vs RDBMS Denormalized

IF YOU STORE DATA
ACROSS DIFFERENT TABLES

YOU HAVE TO PERFORM
DISK SEEKS FOR EACH TABLE

INSTEAD WE CAN EMBED ALL 3 TABLES INTO A SINGLE TABLE

EmpID EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>

“Street”:”Bellandur”,
“City”:”Bangalore” (“Anuradha”,

”Arun”,
”Swetha”)

HBase vs RDBMS Denormalized

EmpID EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>

HBase vs RDBMS Denormalized

THIS IS A
DENORMALIZED

DESIGN

EmpID EmpName Address Subordinates
1 Vitthal <STRUCT> <ARRAY>

HBase vs RDBMS Denormalized

ALL THE DATA
CORRESPONDING TO AN
EMPLOYEE IS STORED

IN A SINGLE TABLE

IN HBASE DATA IS STORED IN A
DENORMALIZED MANNER

HBase vs RDBMS Denormalized

HBase vs RDBMS
Column oriented storage
Denormalized
Only CRUD operations
ACID at a row level

HBase vs RDBMS Only CRUD operations

HBase architecture is
designed such that you can

get random read-write
access to a specific row

HBase vs RDBMS Only CRUD operations
Unlike, traditional
RDBMS, HBase does

not support SQL
NoSQL

HBase vs RDBMS Only CRUD operations

HBase only supports a
limited set of

operations

HBase vs RDBMS Only CRUD operations
HBase only supports a limited set of operations

Create
Read
Update
Delete

Add a new value to the table

Read the value for a specific row id, col id

Update the value for a specific row id, col id

Delete the value for a specific row id, col id

HBase vs RDBMS Only CRUD operations
All HBase operations
deal with a specific

row
Create
Read
Update
Delete

HBase vs RDBMS Only CRUD operations
HBase does not support
any operations across

tables
Create
Read
Update
Delete

No Joins
No Foreign key

constraints

HBase vs RDBMS Only CRUD operations
HBase does not support
any operations across

row ids
Create
Read
Update
Delete

No Grouping/Aggregation

HBase vs RDBMS Only CRUD operations

This is another reason
why denormalization
is important in HBase

Create
Read
Update
Delete

HBase vs RDBMS Only CRUD operations

All the data needed to
describe an entity

should be self-contained
within its row id

Create
Read
Update
Delete

A TRADITIONAL RDBMS WOULD MODEL IT AS 3 TABLES
EmpID EmpName AddressId

1 Vitthal 1
AddressId Street City

1 Bellandur Bangalore
EmpID SubordinateEmpID

1 3
1 4
1 8

LET’S GO BACK TO THE EMPLOYEE EXAMPLE
HBase vs RDBMS Only CRUD operations

WHEN AN APPLICATION ASKS FOR AN EMPLOYEE’S DETAILS
EmpID EmpName AddressId

1 Vitthal 1

AddressId Street City
1 Bellandur Bangalore

YOU WOULD NEED TO JOIN 2 TABLES
TO FETCH THE ADDRESS

HBase vs RDBMS Only CRUD operations

EmpID EmpName AddressId
1 Vitthal 1

EmpID SubordinateEmpID
1 3
1 4
1 8

YOU WOULD NEED TO
JOIN THESE 2 TABLES
TWICE TO GET THE

LIST OF SUBORDINATES
FOR AN EMPLOYEE

WHEN AN APPLICATION ASKS FOR AN EMPLOYEE’S DETAILS

HBase vs RDBMS Only CRUD operations

IN AN RDBMS THESE JOINS CAN
BE MADE EFFICIENT WITH THE

ADDITION OF INDICES

HBase vs RDBMS Only CRUD operations

IN HBASE, THERE IS NO SUPPORT FOR
JOINING TABLES ON THE FLY WHILE
FETCHING THE DETAILS FOR 1 ROW

HBase vs RDBMS Only CRUD operations

YOU COULD USE AN EXTERNAL
APPLICATION LIKE MAPREDUCE

TO PERFORM JOINS
WHILE THIS IS FINE FOR ANALYTICAL
QUERIES, IT WOULD NOT BE SUITABLE

FOR TRANSACTION PROCESSING

HBase vs RDBMS Only CRUD operations

IN A DENORMALIZED DESIGN
EmpID EmpName Address Subordinates

1 Vitthal <STRUCT> <ARRAY>

HBase vs RDBMS Only CRUD operations

YOU CAN USE THE HBASE SUPPORTED
READ OPERATION TO READ THE
ROW AND FETCH ALL THE DATA

HBase vs RDBMS
Column oriented storage
Denormalized
Only CRUD operations
ACID at a row level

HBase vs RDBMS ACID at a row level
HBase is ACID compliant, but

only at a row id level

For example, let’s look at
Atomicity

HBase vs RDBMS ACID at a row level

Transaction 1:
Atomicity

Transaction 2:
Update values
for 2 col ids

within 1 row

Update values
for 2 col ids

for 10 row ids

HBase vs RDBMS ACID at a row level

Transaction 1:
Atomicity

Transaction 2:
Update values
for 2 col ids

within 1 row

Update values
for 2 col ids

for 10 row ids

Atomic
If one col id update

fails, the entire
transaction fails

HBase vs RDBMS ACID at a row level

Transaction 1:

Atomicity

Transaction 2: Update values
for 2 col ids

within 1 row
Update values
for 2 col ids

for 10 row ids

Not Atomic
If the operation

fails after 5 row
ids are updated,

the row ids
which are

updated remain
updated

HBase vs RDBMS
Column oriented storage
Denormalized
Only CRUD operations
ACID at a row level

HIVE FOR INSTANCE

If you are familiar with the Hadoop
ecosystem, you might know of other

technologies which seem similar to HBase

HIVE IS A DATA
WAREHOUSE

HBase is a database
management system

Used for both
transaction processing

and analytical
processing

Used only for
analytical processing

HIVE IS A DATA
WAREHOUSE

HBase is a database
management system

Provides low latency and
random access for some

supported operations

Only suitable for batch
processing jobs that can

tolerate high latency

HBase does not provide
any SQL interface

Hive does!

HDFS MapReduce
HIVE IS A DATAWAREHOUSE
BUILT ON TOP OF HADOOP

HADOOP
YARN

HIVE

HDFS MapReduce

HIVE STORES IT’S DATA
AS FILES IN HDFS

HADOOP
YARN

HIVE

HDFS MapReduce
HADOOP

YARN

HIVE

All processing tasks in Hadoop
are run using MapReduce tasks

HDFS MapReduce
HADOOP

YARN

HIVE

MapReduce tasks are usually
written using a Java Framework

HDFS MapReduce
HADOOP

YARN

HIVE

Writing these MapReduce
tasks can be pretty daunting

HDFS MapReduce
HADOOP

YARN

HIVE

Traditional databases/closed-source
datawarehouses normally use SQL

HDFS MapReduce
HADOOP

YARN

HIVE

SQL = Structured Query
Language

SQL = Structured Query Language

SQL is really much easier to use
and understand :)

SQL = Structured Query Language

It’s widely used by analysts and
programmers to work with
databases/data warehouses

SQL = Structured Query Language

SQL has a few easy to
understand constructs
Select, group by, join etc

SQL = Structured Query Language

Most data processing tasks are defined
using a combination of these constructs

Select, group by, join etc

HDFS MapReduce

HIVE PROVIDES AN SQL LIKE
INTERFACE TO DATA IN HDFS

HADOOP
YARN

HIVE

MapReduce

HDFS MapReduce

THE FILES IN HDFS ARE EXPOSED TO
THE USER IN THE FORM OF TABLES

HADOOP
YARN

HIVE

MapReduce

HDFS MapReduce

THE USER CAN WRITE SQL-LIKE
QUERIES TO WORK WITH THESE TABLES

HADOOP
YARN

HIVE

MapReduce

HIVE WILL
TRANSLATE THE

QUERY INTO 1/MORE
MAPREDUCE TASKS

HDFS MapReduce
HADOOP

YARN

HIVE

MapReduce

SQL-LIKE QUERY

THE MAPREDUCE
TASKS WILL PROCESS

THE DATA IN HDFS
AND RETURN ANY
RESULTS TO HIVEHDFS MapReduce

HADOOP
YARN

HIVE

MapReduce

SQL-LIKE QUERY

THE QUERIES ARE
WRITTEN IN A

SQL LIKE
LANGUAGE

CALLED HIVEQL
HDFS MapReduce

HADOOP
YARN

HIVE

MapReduce

SQL-LIKE QUERY

DIFFERENCES BETWEEN HIVE AND
HBASE

HIVE HBASE
USED FOR BATCH

PROCESSING
USED FOR BOTH

BATCH AND
TRANSACTION
PROCESSING

HIVE HBASE
USED FOR BATCH PROCESSING USED FOR BOTH BATCH AND

TRANSACTION PROCESSING

PROVIDES AN SQL
SKIN FOR HADOOP

NO SQL
INTERFACE

HIVE HBASE
USED FOR BATCH PROCESSING USED FOR BOTH BATCH AND

TRANSACTION PROCESSING

USES BOTH HDFS
AND THE

MAPREDUCE ENGINE

USES HDFS BUT
HAS IT’S OWN
ARCHITECTURE

PROVIDES AN SQL SKIN FOR
HADOOP NO SQL INTERFACE

HIVE HBASE
USED FOR BATCH PROCESSING USED FOR BOTH BATCH AND

TRANSACTION PROCESSING

DATA MODEL IS
SIMILAR TO

DATABASES (TABLES
WITH FIXED SCHEMA)

DATA MODEL IS
COLUMN ORIENTED

STORAGE

PROVIDES AN SQL SKIN FOR
HADOOP NO SQL INTERFACE

USES BOTH HDFS AND THE
MAPREDUCE ENGINE

USES HDFS BUT HAS IT’S OWN
ARCHITECTURE

