
Hbase’s Architecture
is inspired by

HBase vs RDBMS This is how data is stored
in traditional databases

id type for user from user timestamp

1 Friend request
status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

Recap

Column oriented storage

Data is stored
in a map

id type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

Key = <Row id, Col id>
Value = <data>

Recap

Column oriented storage

Data is stored
in a map

id type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

Key = 2, for_user
Value = Chaz

Recap

Column oriented storage

id type for user from user timestamp

1 Friend
request status Ryan Jessica 146710201

2 Comment Chaz Daniel 146711200

3 Comment Rick Brendan 1467112205

4 Like Rick Brendan 1467112213

row
id

column value
1 type Friend request status

1 for user Ryan

1 from user Jessica

1 timestamp 146710201

2 type Comment

2 for user Chaz

2 from user Daniel

2 timestamp 146711200

3 type Comment

3 for user Rick

3 from user Brendan

3 timestamp 1467112205

Recap

Column oriented storage

An HBase table
is in fact a
sorted map

row
id

column value
1 type Friend request status

1 for user Ryan

1 from user Jessica

1 timestamp 146710201

2 type Comment

2 for user Chaz

2 from user Daniel

2 timestamp 146711200

3 type Comment

3 for user Rick

3 from user Brendan

Keys Values

Recap

A sorted nested map
<Row id,

ColumnFamily,
 <Column,
 <Timestamp,Value>>>

<Row id,
ColumnFamily,
 <Column,
 <Timestamp,Value>>>When you read data

from HBase, it
performs a lookup for

the specified row id

A sorted nested
map

<Row id,
ColumnFamily,
 <Column,
 <Timestamp,Value>>>

When you write data to
HBase, it needs to insert the
row id in the right place, so

the rows are sorted

A sorted nested
map

<Row id,
ColumnFamily,
 <Column,
 <Timestamp,Value>>>HBase does this
using Region Servers

A sorted nested
map

Region Servers

Row ids in a
table are divided

into ranges
called regions

row id
1

2

3

4

5

6

7

8

9

10

11

12

Region 1

Region 2
Region 3

Region Servers

Each region is
handled by a

Region Server

row id
1

2

3

4

5

6

7

8

9

10

11

12

Region 1

Region 2
Region 3

Region Servers
Regions serve as an

index to perform fast
lookup for where a

row key belongs

Region 1

Region 2

Region 3

Region Server 1

Region Server 2

Region Servers
A region server

handles all read-write
operations to Regions
that are allotted to it

Region 1

Region 2

Region 3

Region Server 1

Region Server 2

Region Servers
Initially all
writes are
stored in
memory

Region Server

Memstore

Region Servers
Whenever there is a

new change, the
data is updated in
the Memstore and

a change log is
written to disk

Region Server

Memstore

WriteAheadLog

Region Servers
The WriteAheadLog

is created for
recovery in case

the Region Server
crashes

Region Server

Memstore

WriteAheadLog

Region Servers
Periodically the
Memstore gets

full, and the data
in Memstore is
flushed to disk

Region Server

Memstore

WriteAheadLog

HFile

Region Servers

The data for a
row key is either
in the Memstore

or in a HFile

Region Server

Memstore

WriteAheadLog

HFile

Region Servers

HFiles are
stored in

HDFS

Region Server

Memstore

WriteAheadLog

HFile

Region Servers
HDFS will break
up the HFile into
blocks and store
it on different

nodes

Region Server

Memstore

WriteAheadLog

HFile

Region Servers
To minimize disk
seeks, the region

server keeps an index
of row key to HFile
block in memory

Region Server

Memstore

WriteAheadLog

HFile

Region Servers

It only performs
1 disk seek for

finding a row key

Region Server

Memstore

WriteAheadLog

HFile

Region ServersRegion Server 1
MemstoreWAL HFile

Region Server 2
MemstoreWAL HFile

When you try to
read/insert data
1. The region server
containing the row

key is identified

Region ServersRegion Server 1
MemstoreWAL HFile

Region Server 2
MemstoreWAL HFile

When you try to read/
insert data

1. The region server containing
the row key is identified

2. The region server will
lookup the Memstore or

the HFile and do the needful

Memstore
WAL

HFile

Region Server
Clients interact directly

with a Region server
handling the relevant row

keys
HDFS

Memstore
WAL

HFile

Region Server
They need to know
which region server

their row key is
being handled by HDFS

Memstore
WAL

HFile

Region Server
HBase uses a

Master server to
manage Regions

and RegionServers HDFS

Memstore
WAL

HFile

Region Server

The Master assigns
regions to region servers,
manages load balancing

etc

HDFS

Master

Memstore
WAL

HFile

Region Server

The Master uses
Apache Zookeeper to
help assign regions to

region servers

HDFS

Master

Memstore
WAL

HFile

Region Server

Zookeeper helps clients
lookup the relevant
region server for a

specific row id

HDFS

Master

Zookeeper

HBase

Memstore
WAL

HFile

Region Server

HDFS

Master

Zookeeper

