
So far, we have looked at the general theory theory and tools for working with curvilinear 
coordinates, as well as doing integrals in curvilinear coordinates.
 
This is already enough for a lot of interesting applications in vector calculus. However, 
there is still one thing we are missing - how do the standard vector operators like 
gradients, divergence, curl and Laplacian work in curvilinear coordinates?
 
That is the topic we are diving in with this lesson. The key idea we'll discover is that the 
interpretation and geometric meaning of all the vector calculus operations remain exactly 
the same (which we've discussed previously), but their form looks different when 
expressed in different coordinates.
 
We will first begin by discussing the general theory behind how these operators work in 
different coordinate systems. Then, we will look at various examples of how to actually 
apply these in physics - the main applications for us being for electromagnetics.
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1. Nabla Operators In Curvilinear Coordinates
 
 
In many of the previous lessons, we've discussed (and used) the various operators in 

vector calculus. The most important ones include the gradient ( ), divergence , ∇f ∇ ·( F)

curl ( ) and Laplacian ( ). Collectively, we will refer to these here as "nabla ∇ × F ∇ f2

operators", originating from the commonly used name Nabla for the symbol .∇
 
However, we've mainly only seen them when expressed in Cartesian coordinates. In 
Cartesian coordinates - just as a little reminder - here's how each of these operators look 
like in coordinate form (i.e. expressed in terms of derivatives with respect to coordinates):
 

∇f = + +
∂f

∂x
x̂

∂f

∂y
ŷ

∂f

∂z
ẑ

∇ · = + +F
∂F

∂x

x ∂F

∂y

y ∂F

∂z

z

∇ × = - + - + -F
∂F

∂y

z ∂F

∂z

y
x̂

∂F

∂z

x ∂F

∂x

z
ŷ

∂F

∂x

y ∂F

∂y

x
ẑ

∇ f = + +2 ∂ f

∂x

2

2

∂ f

∂y

2

2

∂ f

∂z

2

2

 
The key thing to understand from this lesson is that the coordinate form of these nabla 
operators will look very different in different coordinates. For example, compare the 
Laplacians of a scalar function in Cartesian and spherical coordinates:
 

∇ f = + +2 ∂ f

∂x

2

2

∂ f

∂y

2

2

∂ f

∂z

2

2

∇ f = r + 𝜃 +2 1

r2

∂

∂r
2 ∂f

∂r

1

r 𝜃2 sin

∂

∂𝜃
sin

∂f

∂𝜃

1

r 𝜃2 sin2

∂ f

∂𝜑

2

2

 
Both of these describe exactly the same thing geometrically - the average difference in the 
values of  at a particular point, compared to the neighboring points.f
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However, what is clearly different is how the two expressions look like when expressed in 
different coordinates. In the case of spherical coordinates, there are these additional 
factors like  and .r2 𝜃sin
 
These arise exactly from the fact that the spherical coordinate system is a curvilinear one. 
This is indeed where the heart of the matter lies - the nabla operators have very different 
expressions in different curvilinear coordinates.
 
In this lesson, we'll find out how to derive these expressions as well as use them to do 
physics.
 
In the following sections, we'll look at each operator, specifically for orthogonal 
coordinate systems here. We'll first look at the general cases and dive into more specific 
examples like spherical and cylindrical coordinates thereafter.
 

1.1. Gradient

 
The gradient is an operator that acts on a scalar field or multivariable function (it can also 
act on vector fields, though) and produces a vector. This vector describes the "direction of 
largest rate of change" of the scalar field. In Cartesian coordinates, it has the simple form:
 

∇f = + +
∂f

∂x
x̂

∂f

∂y
ŷ

∂f

∂z
ẑ

 
But what does the gradient look like in a different, more general  -coordinate u, v, w
system? Does it involve just derivatives like ? Well, not quite. Here is the formula ∂f / ∂u
for the gradient in any orthogonal curvilinear coordinate system:
 

∇f = + +
1

hu

∂f

∂u
êu

1

hv

∂f

∂v
êv

1

hw

∂f

∂w
êw

 
Notice that it involves these first partial derivatives with respect to each coordinate like we 
would probably expect. The formula also involves the unit basis vectors like  and so on.êu
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However, you can also see the scale factors ,  and  appearing once again. The hu hv hw

main reason for this is the fact that the lengths of basis vectors in curvilinear coordinates 
are not constant - as you'll see in the derivation down below.
 

 
Derivation of The General Gradient Formula

 
 
With what we know so far about scale factors, basis vectors and all that, deriving the 
above formula is really just a simple exercise in multivariable calculus. What we will do 
is basically "transform" the Cartesian gradient to the more general  -
coordinates:

u, v, w

 

∇f = + +
∂f

∂x
x̂

∂f

∂y
ŷ

∂f

∂z
ẑ

 
The way we can do this, specifically, is express these partial derivatives like  in 
the new coordinates. It's actually enough to focus on just one of the terms for now, as 
you'll see soon.

∂f / ∂x

 
We imagine that  is a function of the new coordinates, and ,  and  
are thus functions of the old, Cartesian coordinates ,  and . The partial derivative 

 then becomes by the multivariable chain rule:

f = f u, v, w( ) u v w
x y z

∂f / ∂x
 

= + +              1
∂f

∂x

∂f

∂u

∂u

∂x

∂f

∂v

∂v

∂x

∂f

∂w

∂w

∂x
( )

 
I've marked this as equation  since we'll come back to it shortly.1( )

 
Let's think about these partial derivatives like . Partial derivatives of the 
opposite order, such as , would correspond to terms we have in the definition 
of the basis vectors like In fact, if you consider the 

opposite, partial derivatives of  with respect to the Cartesian coordinates instead, we 
have again by the chain rule:

∂u / ∂x
∂x / ∂u

= ∂ / ∂u = ∂x / ∂u + ...eu r x̂

r
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= = + +x̂
∂

∂x

r ∂

∂u

r ∂u

∂x

∂

∂v

r ∂v

∂x

∂

∂w

r ∂w

∂x
 
Here, the partial derivatives of  with respect to ,  and  are the basis vectors in the 

 -coordinate system, which means that:
r u v w

u, v, w
 

= + +x̂
∂u

∂x
eu

∂v

∂x
ev

∂w

∂x
ew

 
Now, for orthogonal coordinates, we generally have . 

Therefore, we could take the dot product with  on both sides to find:

· = · = 0eu ev eu ew

eu

 

· = + +   ⇒   = ·x̂ eu

∂u

∂x
·eu eu

⏠⏣⏣⏡⏣⏣⏢
=h2

u

∂v

∂x
·ev eu

⏠⏣⏣⏡⏣⏣⏢
=0

∂w

∂x
·ew eu

⏠⏣⏣⏡⏣⏣⏢
=0

∂u

∂x

1

h2
u

x̂ eu

 
Here we have an expression for these partial derivatives we were looking for!
 
We typically want to express these in terms of the unit basis vectors, , which we can 

do by writing , so:

êu
= heu u êu

 

= ·
∂u

∂x

1

hu
x̂ êu

 
In the exact same way, we would find for the other partial derivatives:
 

= ·
∂v

∂x

1

hv
x̂ êv

= ·
∂w

∂x

1

hw
x̂ êw

 
Now, let's get back to our equation  from earlier.1( )
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Inserting the above expressions into it, we find:
 

= + +
∂f

∂x

∂f

∂u

∂u

∂x

∂f

∂v

∂v

∂x

∂f

∂w

∂w

∂x

⇒   = · + · + ·
∂f

∂x

∂f

∂u

1

hu
x̂ êu

∂f

∂v

1

hv
x̂ êv

∂f

∂w

1

hw
x̂ êw

⇒   = + + ·
∂f

∂x

1

hu

∂f

∂u
êu

1

hv

∂f

∂v
êv

1

hw

∂f

∂w
êw x̂

 
What we have here inside the parentheses is some vector, which when taken the dot 
product of with , results in the -component of the gradient in Cartesian coordinates:x̂ x
 

∇f · =x̂
∂f

∂x
 
So, what we have inside the parentheses is indeed the full gradient vector,  - 
however, now expressed in terms of the coordinates ,  and ! Therefore, we find 
the expected result as:

∇f
u v w

 

∇f = + +
1

hu

∂f

∂u
êu

1

hv

∂f

∂v
êv

1

hw

∂f

∂w
êw

 
If you trace back our calculation to the point these scale factors appeared at, they 
came from the fact that  and . In other words, these scale 

factors are a result of the fact that these curvilinear basis vectors have length  
instead of 1, like they do in Cartesian coordinates.

· = heu eu
2
u = heu u êu

hu
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1.2. Divergence

 
Let's discuss the divergence next. The divergence is an operator that acts on a vector field 

to produce a scalar. If we have a vector field , its divergence in any orthogonal F
coordinate system is calculated by:
 

∇ · = + +F
1

h h hu v w

∂ h h F

∂u

( v w u) ∂ h h F

∂v

( u w v) ∂ h h F

∂w

( u v w)

 
The scale factors ,  and  appear here once again. The interesting thing now is that hu hv hw

some of them appear inside the derivatives - this means that if, say  depends on the hv

coordinate , it will produce an extra contribution to the divergence.u
 
The quantities ,  and  in the above formula are the components of the vector field Fu Fv Fw

 in the  -coordinate system. Therefore, it is important to first express this vector F u, v, w
field in these coordinates to be able to calculate its divergence.
 

 
Derivation of The General Divergence Formula

 
 
The derivation of the above divergence formula is a bit more involved than the one 
for the gradient.
 
However, the reason I'm including it here is because it also functions as an exercise of 
using the divergence theorem.
 
Even more importantly, this derivation also illustrates the use of the kinds of 
"approximation techniques" that are also quite common in physics.
 
We can do the derivation by using the divergence theorem, since it contains the 

divergence  on the left-hand side.∇ ·F
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Therefore, finding a suitable expression for the right-hand side might give us a direct 
expression for the divergence:
 

∇ · dV = · dS
V

∭ F ∯
∂V

F n̂

 
The way we're going to do this is by considering little approximations first and then 
taking limits at the end to make our results exact. Specifically, we want to find some 
approximation for the volume integral on the left.
 
Because the divergence is always calculated at a single point, what we can do is 
choose any point and approximate it by placing it inside a little (infinitesimal) box. If 
this box is small enough, it's effectively the same as the point itself but allows us to 
"approximate away" the volume integral.
 
The sides of this box are ,  and  along each of the -coordinate axes. 
The box has volume  and surface , which consists of six sides:

Δu Δv Δw u, v, w
V ∂V

 

 
We can now approximate our volume integral on the left-hand side of the divergence 
theorem as (using the general form of the volume element ):dV = h h h dudvdwu v w

 

∇ · dV = ∇ · h h h dudvdw ≈ ∇ · h h h ΔuΔvΔw
V

∭ F
V

∭ F u v w F u v w
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For the right-hand side of the divergence theorem, we need to calculate the flux 
through the closed surface of the entire box, . Well, since it's a box, its surface 
consists of six separate pieces - each will be perpendicular to one of the coordinate 
planes.

∂V

 
Let's focus on the surfaces perpendicular to the -plane for now. For the box, there 
are two of these surfaces, one with unit normal vector  (= basis vector in the -

direction) and one with , with the surface element for this plane being 
:

uv
êw w

-êw
dS = h h dudvu v

 

 
The contributions to the total flux integral through these two sides then consists of, 
well, two parts. First, the flux through the surface  (this is to indicate the 
surface is perpendicular to the -plane) - the "bottom" of the box.

S ⟂ uv
uv

 
Second, there is also the flux through the same surface, but offset by the amount  
in the -direction, which we denote as  (this is the "top" of the box). 
These surfaces have the unit normals  and  like stated above. 

Δw
w S ⟂ uv + Δw

=n̂ êw = -n̂ êw
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The flux integral through these two sides can then be written as:
 

· dS = h h dudv + h h dudv∬
S⟂uv

F n̂ ∬
S⟂uv

·F êw
⏠⏣⏣⏡⏣⏣⏢Fw

u v ∬
S⟂uv+Δw

· -F ( êw)
⏠⏣⏣⏡⏣⏣⏢-Fw

u v

= F h h dudv - F h h dudv∬
S⟂uv

w u v ∬
S⟂uv+Δw

w u v

 
Like was done earlier, we can now approximate these integrals as follows:
 

· dS ≈ F h h ΔuΔv - F h h ΔuΔv∬
S⟂uv

F n̂ w u v
w

w u v
w+Δw

= F h h - F h h ΔuΔvw u v
w

w u v
w+Δw

 
Here,  do not depend on the value of , so they can be pulled outside the limits.ΔuΔv w
 
Inside the parentheses, we now have the difference in a quantity at two nearby points, 
so essentially .Δ F h h( w u v)

 
Now, if these two nearby points are "nearby enough", which they are because we 
assume this box is infinitesimal (this will become exact later when we take limits) then 
this quantity can be approximated with a derivative as:
 

Δ F h h ≈ Δw( w u v)
∂ F h h

∂w

( w u v)

 
Thus, we have that the contribution to the flux integral from the sides with 

constant is:w =

 

· dS ≈ ΔwΔuΔv∬
S⟂uv

F n̂
∂ F h h

∂w

( w u v)

 
We can follow a similar train of thought to find the contributions through the other 
coordinate surfaces as:
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· dS ≈ ΔvΔuΔw∬
S⟂uw

F n̂
∂ F h h

∂v

( v u w)

· dS ≈ ΔuΔvΔw∬
S⟂vw

F n̂
∂ F h h

∂u

( u v w)

 
What this means is that the total flux through the closed surface of the entire box is 
(i.e. what we have on the right-hand side of the divergence theorem):
 

· dS = · dS + · dS + · dS∯
∂V

F n̂ ∬
S⟂uv

F n̂ ∬
S⟂uw

F n̂ ∬
S⟂vw

F n̂

≈ ΔwΔuΔv + ΔvΔuΔw + ΔuΔvΔw
∂ F h h

∂w

( w u v) ∂ F h h

∂v

( v u w) ∂ F h h

∂u

( u v w)

= + + ΔuΔvΔw
∂ h h F

∂u

( v w u) ∂ h h F

∂v

( u w v) ∂ h h F

∂w

( u v w)

 
We now have the following approximation as a result of the divergence theorem:
 

∇ · dV = · dS
V

∭ F ∯
∂V

F n̂

⇒   ∇ · h h h ΔuΔvΔw ≈ + + ΔuΔvΔwF u v w
∂ h h F

∂u

( v w u) ∂ h h F

∂v

( u w v) ∂ h h F

∂w

( u v w)

 
Dividing now by  on both sides and taking the limit , 
this approximation indeed becomes exact - describing the divergence at exactly a 
single point - and we have:

h h h ΔuΔvΔwu v w ΔuΔvΔw 0→

 

∇ · = + +F
1

h h hu v w

∂ h h F

∂u

( v w u) ∂ h h F

∂v

( u w v) ∂ h h F

∂w

( u v w)
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1.3. Curl

 
The curl is an operation that takes a vector field to another vector field. It represents, in 
some sense, the "circulation" of the vector field at each point.
 
Here, we won't derive the general formula for the curl. However, it has a similar structure 
to the gradient and divergence in the sense that it also contains the scale factors (both 
inside and outside the derivatives).
 
Anyway, here is the general formula for the curl of a vector field, again in any orthogonal 
curvilinear coordinate system (written component-wise):
 

∇ × = -( F)u
1

h hv w

∂ h F

∂v

( w w) ∂ h F

∂w

( v v)

∇ × = -( F)v
1

h hu w

∂ h F

∂w

( u u) ∂ h F

∂u

( w w)

∇ × = -( F)w
1

h hu v

∂ h F

∂u

( v v) ∂ h F

∂v

( u u)

 
The full curl vector field is then just , however, it's ∇× = ∇× + ∇× + ∇×F ( F)u êu ( F)v êv ( F)w êw
much more convenient to write it component-wise like above due to the length of the resulting 
expression.
 

1.4. Laplacian

 
Lastly, we have the Laplacian. This is an operator that acts on a scalar field to give another 
scalar field (although it could also act on a vector field).
 
The Laplacian essentially describes the average difference in values of the scalar field at a 
particular point, compared to the neighboring points. This is why it describes things like 
heat diffusion, which happens if there is a temperature difference between nearby points. 
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In any case, here is the general formula for the Laplacian in any orthogonal coordinate 
system:
 

∇ f = + +2 1

h h hu v w

∂

∂u

h h

h

v w

u

∂f

∂u

∂

∂v

h h

h

u w

v

∂f

∂v

∂

∂w

h h

h

u v

w

∂f

∂w

Again, it contains lots of these scale factors, both inside and outside the partial derivatives. 
Notably, like it should, the Laplacian has two derivatives with respect to each coordinate.
 

 
Derivation of The General Formula For The Laplacian

 
 
Given that we already know the general formulas for the gradient and divergence, 
calculating the Laplacian is very simple. This is because the Laplacian of a scalar field is 
defined as the divergence of the gradient of the scalar field, .∇ f = ∇ · ∇f2

 
The divergence of any vector field, which we derived earlier, is:
 

∇ · = + +F
1

h h hu v w

∂ h h F

∂u

( v w u) ∂ h h F

∂v

( u w v) ∂ h h F

∂w

( u v w)

 

Thus, this formula will also apply for the vector field . The components of this 
vector field are the components of the gradient in this curvilinear coordinate system, 
which we found earlier as:

= ∇fF

 

F = ∇f = ,  F = ∇f = ,  F = ∇f =u ( )u
1

hu

∂f

∂u
v ( )v

1

hv

∂f

∂v
w ( )w

1

hw

∂f

∂w
 
Thus, the Laplacian is:

∇ · = ∇ · ∇f = ∇ f = + +F 2 1

h h hu v w

∂

∂u

h h

h

v w

u

∂f

∂u

∂

∂v

h h

h

u w

v

∂f

∂v

∂

∂w

h h

h

u v

w

∂f

∂w
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2. Examples of Nablas In Different Coordinates
 
 
We've now looked at the general formulas for each of the nabla operators in orthogonal 
curvilinear coordinates. For faster reference later, here are the results:
 
 

Gradient ∇f = + +
1

hu

∂f

∂u
êu

1

hv

∂f

∂v
êv

1

hw

∂f

∂w
êw

Divergence ∇ · = + +F
1

h h hu v w

∂ h h F

∂u

( v w u) ∂ h h F

∂v

( u w v) ∂ h h F

∂w

( u v w)

Curl
(component-wise)

∇ × = -( F)u
1

h hv w

∂ h F

∂v

( w w) ∂ h F

∂w

( v v)

∇ × = -( F)v
1

h hu w

∂ h F

∂w

( u u) ∂ h F

∂u

( w w)

∇ × = -( F)w
1

h hu v

∂ h F

∂u

( v v) ∂ h F

∂v

( u u)

Laplacian ∇ f = + +2 1

h h hu v w

∂

∂u

h h

h

v w

u

∂f

∂u

∂

∂v

h h

h

u w

v

∂f

∂v

∂

∂w

h h

h

u v

w

∂f

∂w

 
 
Next, we will apply these formulas to obtain expressions for the gradient, divergence, curl 
and Laplacian in the two most common coordinate systems used in physics - spherical 
and cylindrical coordinates.
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2.1. Spherical Coordinates

 
Let's begin with spherical coordinates. All we really need to know are the following:
 

1. The coordinates being used, which in this case, we are going to set as , u = r
 and  for spherical coordinates.v = 𝜃 w = 𝜑

 
2. The scale factors for spherical coordinates, which are ,  h = h = 1u r h = h = rv 𝜃

and .h = h = r 𝜃w 𝜑 sin

 

Also, the unit basis vectors are simply ,  and . With these, we can =êu r̂ =êv 𝜃̂ =êw 𝜑̂

write out the expression for the gradient as:
 

∇f = + +   ⇒   
1

hu

∂f

∂u
êu

1

hv

∂f

∂v
êv

1

hw

∂f

∂w
êw ∇f = + +

∂f

∂r
r̂

1

r

∂f

∂𝜃
𝜃̂

1

r 𝜃sin

∂f

∂𝜑
𝜑̂

 
Quite a simple calculation at this point, isn't it? This looks a bit similar in form to the 
Cartesian gradient, except the factors of  and  - these are just additional 1 / r 1 / r 𝜃sin
factors that need to be included in the case of curvilinear coordinates.
 
Anyway, let's do the divergence next. Using out general formula from above, this 
becomes:
 

∇ · = + +F
1

h h hu v w

∂ h h F

∂u

( v w u) ∂ h h F

∂v

( u w v) ∂ h h F

∂w

( u v w)

⇒   ∇ · = + +F
1

r 𝜃2 sin

∂ r 𝜃F

∂r

2 sin r ∂ r 𝜃F

∂𝜃

( sin 𝜃) ∂ rF

∂𝜑

( 𝜑)

 
We can simplify this a bit by pulling out the factor of  from the -derivative (since 𝜃sin r

 is a constant with respect to ) and similarly for the two factors of  from the - and 𝜃sin r r 𝜃

-derivatives.𝜑
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The result we get is:
 

∇ · = + +F
1

r2

∂ r F

∂r

2
r 1

r 𝜃sin

∂ 𝜃F

∂𝜃

(sin 𝜃) 1

r 𝜃sin

∂F

∂𝜑

𝜑

 
For the components of the curl, we get by similar simplifications:
 

⇒

∇ × = -( F)u
1

h hv w

∂ h F

∂v

( w w) ∂ h F

∂w

( v v)

∇ × = -( F)v
1

h hu w

∂ h F

∂w

( u u) ∂ h F

∂u

( w w)

∇ × = -( F)w
1

h hu v

∂ h F

∂u

( v v) ∂ h F

∂v

( u u)

∇ × = -( F)r
1

r 𝜃sin

∂ 𝜃F

∂𝜃

(sin 𝜑) ∂F

∂𝜑

𝜃

∇ × = -( F)𝜃
1

r 𝜃sin

∂F

∂𝜑

r ∂ r 𝜃F

∂r

( sin 𝜑)

∇ × = -( F)𝜑
1

r

∂ rF

∂r

( 𝜃) ∂F

∂𝜃

r

 
Lastly, for the Laplacian, we have:
 

∇ f = + +2 1

h h hu v w

∂

∂u

h h

h
v w

u

∂f

∂u

∂

∂v

h h

h
u w

v

∂f

∂v

∂

∂w

h h

h
u v

w

∂f

∂w

⇒   ∇ f = r 𝜃 + +2 1

r 𝜃2 sin

∂

∂r
2 sin

∂f

∂r

∂

∂𝜃

r 𝜃

r

sin ∂f

∂𝜃

∂

∂𝜑

r

r 𝜃sin

∂f

∂𝜑

 
Once again, we can pull some of the terms outside the derivatives to simplify this. The 
final result is:
 

∇ f = r + 𝜃 +2 1

r2

∂

∂r
2 ∂f

∂r

1

r 𝜃2 sin

∂

∂𝜃
sin

∂f

∂𝜃

1

r 𝜃2 sin2

∂ f

∂𝜑

2

2
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Examples
 
Let's have a look at some simple examples of using these formulas (we'll discuss some
more detailed examples and applications later). First, consider the following scalar 
field, which only depends on the radial coordinate :r
 

, where  is a constant.𝜙 = 𝜙 r =( )
k

r
k

 
This type of scalar field can describe, for example, the electric potential of a point 
particle. Now, since this is a scalar field, we can calculate its gradient and Laplacian 
using the formulas above:
 

∇𝜙 = + + = = -
∂𝜙

∂r
r̂

1

r

∂𝜙

∂𝜃
𝜃̂

1

r 𝜃sin

∂𝜙

∂𝜑
𝜑̂

∂

∂r

k

r
r̂

k

r2
r̂

∇ 𝜙 = r + 𝜃 +2 1

r2

∂

∂r
2 ∂𝜙

∂r

1

r 𝜃2 sin

∂

∂𝜃
sin

∂𝜙

∂𝜃

1

r 𝜃2 sin2

∂ 𝜙

∂𝜑

2

2

       = r
1

r2

∂

∂r
2 ∂

∂r

k

r
       = 0
 
Notice how the Laplacian here gives zero because of the factor of  inside the 
derivative cancelling with that resulting from the expression for  itself.

r2

𝜙
 
The relevance of this result is that the potential satisfies (assuming ) Laplace's 
equation,  - an important equation in electrostatics - which we will discuss 
more later.

r ≠ 0

∇ 𝜙 = 02

 
Next, consider the following vector field with only a radial component (that also 
depends on the -coordinate only):r
 

, where  is a constant again.= E r =E r( )r̂
k

r2
r̂ k
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This describes, for example, the electric field of the same point particle as the 
potential  we considered above.𝜙
 
For this vector field, we can calculate its divergence and curl as:
 

∇ · = + + = = 0E
1

r2

∂ r E

∂r

2
r 1

r 𝜃sin

∂ 𝜃E

∂𝜃

(sin 𝜃) 1

r 𝜃sin

∂E

∂𝜑

𝜑 1

r2

∂ r

∂r

2 k

r2

∇ × = - + - = 0E
1

r 𝜃sin

∂E

∂𝜑

r ∂ r 𝜃E

∂r

( sin 𝜑)
𝜃̂

1

r

∂ rE

∂r

( 𝜃) ∂E

∂𝜃

r
𝜑̂

 
The curl here gives zero because there are no derivatives of the form .∂E / ∂rr

 
These results are important, because Maxwell's equations for electrostatics state that 

in a charge-free region, the electric field must satisfy  - which our 

electric field of the form  indeed does (again, outside ). Thus, this 
would be a valid solution to Maxwell's equations!

∇ · = ∇ × = 0E E

∼ / rE r̂ 2 r = 0

 
 

 Exercise 3.1
 
The electric potential of a dipole (consisting of two charges,  and , separated by a 
distance ) can be expressed in spherical coordinates as:

q -q
d

 

𝜙 = 𝜙 r, 𝜃 =( )
qd 𝜃

4𝜋𝜀 r

cos

0
2

 
Here, , , ,  are just constants.q d 𝜋 𝜀0

 

Calculate the electric field of the dipole in spherical coordinates as . Also 

show that .

= -∇𝜙E

∇ · = 0E
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2.2. Cylindrical Coordinates

 
Let's look at the cylindrical coordinate system next. In this case, we have the coordinates 

,  and  as well as the scale factors ,  and . I'll just u = 𝜌 v = 𝜑 w = z h = 1𝜌 h = 𝜌𝜑 h = 1z

tell you what the results we get from the general formulas are:
 

• Gradient: ∇f = + +
∂f
∂𝜌

𝜌̂
1

𝜌

∂f
∂𝜑

𝜑̂
∂f
∂z

ẑ

• Divergence: ∇ · = + +F
1

𝜌

∂ 𝜌F

∂𝜌

( 𝜌) 1

𝜌

∂F

∂𝜑

𝜑 ∂F

∂z
z

• Curl: ∇× = - + - + -F
1

𝜌

∂F

∂𝜑

z ∂F

∂z
𝜑

𝜌̂
∂F

∂z
𝜌 ∂F

∂𝜌

z
𝜑̂

1

𝜌

∂ 𝜌F

∂𝜌

( 𝜑) ∂F

∂𝜑

𝜌
ẑ

• Laplacian: ∇ f = 𝜌 + +2 1

𝜌

∂

∂𝜌

∂f
∂𝜌

1

𝜌2

∂ f

∂𝜑

2

2

∂ f

∂z

2

2

Example: Consider the following vector field in cylindrical coordinates:
 

, where  and  (and , of course) are constants.=B
𝜇 I

2𝜋𝜌

0
𝜑̂ 𝜇0 I 𝜋

 
This describes the magnetic field around a straight wire located at , carrying a 
current . We can calculate the divergence and curl of this magnetic field using the 
formulas from above (the magnetic field only has a -component, ):

𝜌 = 0

I
𝜑 B = 𝜇 I / 2𝜋𝜌𝜑 0

 

∇ · = + + = 0B
1

𝜌

∂ 𝜌B

∂𝜌

( 𝜌) 1

𝜌

∂B

∂𝜑

𝜑 ∂B

∂z

z

∇ × = - + - + - = 0B
1

𝜌

∂B

∂𝜑

z ∂B

∂z

𝜑
𝜌̂

∂B

∂z

𝜌 ∂B

∂𝜌

z
𝜑̂

1

𝜌

∂ 𝜌B

∂𝜌

( 𝜑) ∂B

∂𝜑

𝜌
ẑ

 
Now, according to Maxwell's equations, in a system with static fields and no currents, 

all magnetic fields must satisfy . We see that this isthe case 
(outside ), so this would be a valid free-space solution to Maxwell's equations!

∇ · = ∇ × = 0B B
𝜌 = 0
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 Exercise 3.2
 
Consider the following vector potential in cylindrical coordinates:
 

, where  and  are constants again.= - 𝜌A
𝜇 I

2𝜋

0
ln ẑ 𝜇0 I

 

Calculate the magnetic field in cylindrical coordinates, defined as . Based 
on your result and the example above, what would this vector potential describe?

= ∇ ×B A

 
 
We've now discussed all the key ideas of this lesson! Next, it's time to move on to some 
real physics applications and examples.
 
However, before we do that, on the next page, you'll find a summary of all the results 
we've found for spherical coordinates and cylindrical coordinates in this lesson. Feel 
free to bookmark these for later reference!
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Spherical Coordinates

Gradient ∇f = + +
∂f

∂r
r̂

1

r

∂f

∂𝜃
𝜃̂

1

r 𝜃sin

∂f

∂𝜑
𝜑̂

Divergence ∇ · = + +F
1

r2

∂ r F

∂r

2
r 1

r 𝜃sin

∂ 𝜃F

∂𝜃

(sin 𝜃) 1

r 𝜃sin

∂F

∂𝜑

𝜑

Curl
∇× = - + -F

1

r 𝜃sin

∂ 𝜃F

∂𝜃

(sin 𝜑) ∂F

∂𝜑

𝜃
r̂

1

r 𝜃sin

∂F

∂𝜑

r ∂ r 𝜃F

∂r

( sin 𝜑)
𝜃̂

             + -
1

r

∂ rF

∂r

( 𝜃) ∂F

∂𝜃

r
𝜑̂

Laplacian ∇ f = r + 𝜃 +2 1

r2

∂

∂r
2 ∂f

∂r

1

r 𝜃2 sin

∂

∂𝜃
sin

∂f

∂𝜃

1

r 𝜃2 sin2

∂ f

∂𝜑

2

2

 

Cylindrical Coordinates

Gradient ∇f = + +
∂f

∂𝜌
𝜌̂

1

𝜌

∂f

∂𝜑
𝜑̂

∂f

∂z
ẑ

Divergence ∇ · = + +F
1

𝜌

∂ 𝜌F

∂𝜌

( 𝜌) 1

𝜌

∂F

∂𝜑

𝜑 ∂F

∂z
z

Curl ∇× = - + - + -F
1

𝜌

∂F

∂𝜑

z ∂F

∂z
𝜑

𝜌̂
∂F

∂z
𝜌 ∂F

∂𝜌

z
𝜑̂

1

𝜌

∂ 𝜌F

∂𝜌

( 𝜑) ∂F

∂𝜑

𝜌
ẑ

Laplacian ∇ f = 𝜌 + +2 1

𝜌

∂

∂𝜌

∂f

∂𝜌

1

𝜌2

∂ f

∂𝜑

2

2

∂ f

∂z

2

2
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3. Application: Laplace's Equation In Electrostatics
 
 
In this section, we'll dive into some applications in electrostatics that use the Laplacian 
operator in different coordinates. In particular, we will solve the so-called Laplace's 
equation for a couple simple example systems in electrostatics.
 
Electrostatics is the "sub-branch" of electromagnetism in which all electric fields we study 
are time-independent - that is, they are only functions of position. Usually, we also take 
magnetic fields to be zero in the context of electrostatics.
 
In this case, with these assumptions, the two relevant Maxwell's equations for the electric 
field have the form:
 

∇ · =E
𝜌

𝜀0

∇ × = 0E
 
Now, we could just start solving these for the electric field right away like this (for a 
particular charge configuration). However, in a lot of cases, solving for the electric field is 
much simpler if done through the electric potential.
 
The electric potential is a scalar function - denoted here as  - that is used to define the 𝜙
electric field in electrostatics as:
 

= -∇𝜙E

 
The "in-many-cases-simpler" approach would then be to first solve for the potential and 
then calculate the electric field from this definition. But how do we solve for the potential? 

We can derive an equation for it! First, substitute the definition  into Gauss's = -∇𝜙E
law:
 

∇ · =E
𝜌

𝜀0
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⇒   ∇ · -∇𝜙 =( )
𝜌

𝜀0

⇒   ∇ 𝜙 = -2 𝜌

𝜀0

 
Here,  is the Laplacian operator.∇ ·∇ = ∇2

 
This is the so-called Poisson's equation, which the electric potential of any electrostatic 
system must satisfy. However, in a lot of cases, we can get away by solving a much simpler 
equation if we just set . In this case, we get Laplace's equation:𝜌 = 0
 

∇ 𝜙 = 02

 
Okay, this is a simpler equation, but does setting  actually make any sense? Well, it 𝜌 = 0

does. In many electrostatic problems, we are dealing with regions in which there are no 
electric charges directly. In these regions,  is true.𝜌 = 0

 
In fact, take any arbitrary charge distribution - if we only want to know the fields outside of 
that charge distribution (and don't care about what is going on inside it), then we have 

 and Laplace's equation holds.𝜌 = 0
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Therefore, Laplace's equation is incredibly useful if we want to find the fields at points 
where there are no charge at exactly that point. In fact, I would argue that there are more 
problems where the fields outside some charge region are more useful to know than 
inside it.
 

3.1. Laplace's Equation In Spherical Coordinates

 
In its most general form, Laplace's equation states that . But, as we know based ∇ 𝜙 = 02

on this lesson, the Laplacian operator looks different in coordinate systems.
 
Therefore, if we want to write Laplace's equation in terms of a specific set of coordinates, 
we need to express the Laplacian in that coordinate system.
 
Let's begin by looking at Laplace's equation in spherical coordinates. We know from 
earlier that the Laplacian for any function  has the following form in spherical f
coordinates:
 

∇ f = r + 𝜃 +2 1

r2

∂

∂r
2 ∂f

∂r

1

r 𝜃2 sin

∂

∂𝜃
sin

∂f

∂𝜃

1

r 𝜃2 sin2

∂ f

∂𝜑

2

2

 
Thus, Laplace's equation for the electric potential  takes the following form:𝜙 = 𝜙 r, 𝜃, 𝜑( )

 

∇ 𝜙 = 0  ⇒   2 r + 𝜃 + = 0
1

r2

∂

∂r
2 ∂𝜙

∂r

1

r 𝜃2 sin

∂

∂𝜃
sin

∂𝜙

∂𝜃

1

r 𝜃2 sin2

∂ 𝜙

∂𝜑

2

2

 
In its most general form, this equation looks pretty complicated - and solving it is even 
more complicated. Moreover, solving partial differential is not the aim of this lesson 
anyway.
 
To get a basic idea for what its solutions may describe, we'll resort to some simplifications. 
In particular, let's take a spherically symmetric potential - so, one that only depends on the 
radial distance, .𝜙 = 𝜙 r( )
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In this case, the derivatives with respect to  and  go to zero and we get:𝜃 𝜑
 

r = 0  ⇒   r = 0
1

r2

∂

∂r
2 ∂𝜙

∂r

d

dr
2 d𝜙 r

dr

( )

 
Here, the -derivatives turn into ordinary derivatives, since  is just a single-variable function ∂ / ∂r 𝜙 r( )

now.
 
This can now be solved quite easily. First, we just integrate once with respect to  to get:r
 

, where  is an arbitrary integration constant.r = A2 d𝜙 r

dr

( )
A

 
We can then divide by  and integrate once more to get another integration constant :r2 B
 

𝜙 r = dr =( ) ∫A

r2
- + B
A

r
 
This is the most general expression for a spherically symmetric electric potential. Notice 
how it is of the same form as the potential of a single charged particle, .𝜙 ∼ r-1

 
The interesting thing, however, is that we didn't even mention anything about a single 
charged particle - this  dependence is purely a result of Laplace's equation in ∼ 1 / r
spherical coordinates. It is true for any radial potential that only depends on the 
coordinate  (outside regions of charges).r
 

3.2. Solving Laplace's Equation For Different Capacitors

 
One of the many useful applications of Laplace's equation (in electrostatics) is for 
analyzing various types of capacitors. Capacitors are electronic devices that are able to 
"store" energy (or electric charge) and release it when needed, kind of like a battery.
 
Virtually all modern electronic circuits use capacitors in some form. In DC (direct current) 
circuits, the main use for capacitors is to "stabilize" voltage fluctuations.
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We'll begin by analyzing one of the simplest types of capacitors - the parallel plate 
capacitor. It consists of two plates of some conducting material, with an insulating 
dielectric layer between them.
 
The purpose of the dielectric is that electricity cannot flow between the plates, meaning 
that if the plates become electrically charged, the charge will remain on the plates and 
there is a voltage between them. This is how the capacitor  "stores charge".
 
We'll assume here that the plates have a surface  and separation  between them. One A d
of the plates is charged to a constant potential or voltage  and the other is grounded V
(so, its potential is zero). The permittivity of the dielectric layer is  - a constant material 𝜀
parameter.
 

 
Our goal here is to find the electric potential and electric field between the plates. Now, 
something important to realize is that inside the dielectric, there are not free charges - 
that's what it means for something to be a dielectric.
 
Therefore, in this region between the plates, Laplace's equation will apply. We can write it 
down for the potential  between the plates in (2D) Cartesian coordinates as:𝜙
 

∇ 𝜙 = 0  ⇒   + = 02 ∂ 𝜙

∂x

2

2

∂ 𝜙

∂y

2

2

 
When we are well inside the plates, we would expect the potential to not depend on , x
only on .y

 
 

 

26



At the edges of the plates, this assumption is not exactly true - but what we can do is 
assume the length of the plates in the -direction is much much larger than the x
separation  between them (which is a reasonable assumption for actual real-world d
capacitors).
 
Thus, well inside the plates, we have  and Laplace's equation becomes:𝜙 = 𝜙 y( )

 

= 0
d 𝜙 y

dy

2 ( )
2

 
The solution to this is a linear function of , so . In order to match this y 𝜙 y = Ay + B( )

with our boundary conditions -  and  - we need  and 𝜙 0 = 0( ) 𝜙 d = V( ) 0 A = V / d0

, so our solution for the potential is:B = 0

 

𝜙 y = y( )
V

d
0

 
The electric field can then be calculated as:
 

= -∇𝜙 = - = -E
∂𝜙

∂y
ŷ

V

d

0
ŷ

 
What this means is that the electric field, first of all, is a constant. As for its direction, it 
points from the plate with higher potential to the grounded plate (in the negative -y
direction):
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Okay, that's the parallel plate capacitor. This wasn't a very complicated example of using 
Laplace's equation, since we were able to do everything in Cartesian coordinates. 
Therefore, let's look at something a bit more complicated.
 
In particular, we'll analyze the so-called cylindrical capacitor. As the name suggests, this 
is a capacitor that consists of two conducting cylinders (of different radii), again with a 
dielectric layer between them.
 
We'll label the two radii as  and . The outer cylinder is charged to voltage  and a b 𝜙 = V0

the inner cylinder is grounded, so  there. The permittivity of the dielectric between 𝜙 = 0

the conductors is .𝜀
 

 
What is important to realize again is that since the layer between the two conducting 
cylinders is a dielectric (a perfect dielectric here), Laplace's equation applies in this region. 
So, inbetween the cylinders, we have ∇ 𝜙 = 02

 
In this case, it definitely makes sense to use cylindrical coordinates. We'll place the origin 
at the center of the capacitor, in which case the region of interest to us is :a ≤ 𝜌 ≤ b
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We can now write down Laplace's equation for the potential in cylindrical coordinates:
 

∇ 𝜙 = 0  ⇒   𝜌 + + = 02 1

𝜌

∂

∂𝜌

∂𝜙

∂𝜌

1

𝜌2

∂ 𝜙

∂𝜑

2

2

∂ 𝜙

∂z

2

2

 
Due to the cylindrical symmetry of this problem, we would expect the potential to NOT 
depend on the angle .𝜑
 
Moreover, if the length (or height) of the cylinder in the -direction is large enough and z
we are well inside the cylinder, the potential does not depend on  either. Thus, we have z

 and Laplace's equation becomes:𝜙 = 𝜙 𝜌( )
 

𝜌 = 0  ⇒   𝜌 = 0
1

𝜌

d

d𝜌

d𝜙 𝜌

d𝜌

( ) d

d𝜌

d𝜙 𝜌

d𝜌

( )

 

Integrating this once, we have , where  is an integration constant. Dividing 𝜌 = A
d𝜙 𝜌

d𝜙

( )
A

by  and integrating once more to get another rintegration constant , we have:𝜌 B
 

𝜙 𝜌 = d𝜌 = A 𝜌 + B( ) ∫A

𝜌
ln

 
This definitely has a very different position-dependence than the parallel plate capacitor 
from earlier. Now, in order for this to also match our boundary conditions -  and 𝜙 a = 0( )

 - we need to define  and , such that:𝜙 b = V( ) 0 A = V / b / a0 ln( ) B = -A aln

 

𝜙 𝜌 = V( ) 0

𝜌 / a

b / a

ln( )

ln( )
 
Lastly, we can calculate the electric field using the formula for the gradient in cylindrical 
coordinates:
 

𝜌 = -∇𝜙 = - = -E( )
∂𝜙

∂𝜌
𝜌̂

V

b / a

0

ln( ) 𝜌

𝜌̂
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Again, we see that the electric field points from the conductor with higher potential to the 
grounded one, in the negative -direction. In this case, however, the electric field is not 𝜌

constant - it depends on the radial distance as .∼ 1 / 𝜌
 
 

4. Application: Helmholtz Equation & Electromagnetic Waves
 
 
Above, we looked at some examples from electrostatics - that is, in cases where the fields 
do not change with time. At this point, however, we are in a good place to also study 
more complicated situations, such as time-dependent fields.
 
The plan for this section is to first derive the wave equation for electromagnetic waves 
from Maxwell's equations. Then, we will apply it further for the special case of time-
harmonic fields. This gives us the so-called Helmholtz equation, which we will solve for a 
few example cases.
 

4.1. Derivation of The Helmholtz Equation

 
If we want to study full time-dependent electric and magnetic fields, we need the full four 
Maxwell's equations:
 

∇ · =E
𝜌

𝜀0

∇ · = 0B

∇ × = -E
∂

∂t

B

∇ × = 𝜇 +B 0 J
1

c2

∂

∂t

E

 

What we would ideally like is an equation for only one of the fields, say the electric field . E
The way we can get such an equation is by manipulating the above four Maxwell's 
equations a little bit.
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First, let's take the curl of the third Maxwell's equation:
 

∇ × ∇ × = -∇ ×E
∂

∂t

B

 
On the left-hand side, we can apply the vector calculus identity for the "double-curl", 

which states that . On the right-hand side, since partial ∇ × ∇ × = ∇ ∇ · -∇E ( E) 2E
derivatives are assumed interchangeable here, we can change the order of the  and ∂ / ∂t

 operations. Thus, we have:∇ ×

 

∇ ∇ · -∇ = - ∇ ×( E) 2E
∂

∂t
( B)

 
We can then insert the first Maxwell equation -  - on the left-hand side and ∇ · = 𝜌 / 𝜀E 0

the fourth Maxwell equation -  - on the right:∇× = 𝜇 +B 0 J
1

c2

∂

∂t
E

 

∇ -∇ = - 𝜇 +   ⇒   ∇ - = - ∇𝜌 - 𝜇
𝜌

𝜀0

2E
∂

∂t
0 J

1

c2

∂

∂t

E 2E
1

c2

∂

∂t

2E
2

1

𝜀0
0

∂

∂t

J

 
This is the general form of the wave equation for electromagnetic waves, with the effects 
of sources also included. In our case, however, we will study the vacuum solutions for this 

wave equation, which means that  and .𝜌 = 0 = 0J
 
With this, we then get the free space wave equation in the form:
 

∇ - = 02E
1

c2

∂

∂t

2E
2

 
This differential equation describes all electromagnetic waves in free space. But why does 
it describe waves, exactly? Well, it has the mathematical form of a standard wave equation. 
Also, what we will find out soon is that the solutions to it have the form of sine waves.
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The equation above is the general wave equation in free space. However, many of the 
most useful solutions to it are a result of something called the Helmholtz equation.
 
Specifically, the wave equation can be reduced to the Helmholtz equation in the special 

case of fields that can be "separated" as , where  is some constant , t = f T tE(r ) (r) ( )û û
unit vector.
 
This is commonly known as the technique of separation of variables - perhaps the most 
common strategy for solving partial differential equations.
 
In any case, the idea is to write the field as a product of two functions, with one containing 
all of the time-dependence and the other all the spatial dependence. Plugging this ansatz 
into the wave equation, we find:
 

∇ - = 02E
1

c2

∂

∂t

2E
2

⇒   ∇ f T t - = 02( (r) ( )û)
1

c2

d f T t

dt

2( (r) ( )û)
2

⇒   T t ∇ f - f = 0( ) 2 (r)
1

c2
(r)

d T t

dt

2 ( )
2

û

⇒   ∇ f =
1

f(r)

2 (r)
1

c2

1

T t( )

d T t

dt

2 ( )
2

 
Here, we went through a couple of steps quite quickly. First, we can pull  outside the -operation T t( ) ∇

2

since the Laplacian only contains spatial derivatives (and similarly for the -derivative). We also d / dt2 2

"divided" out the  from both sides and rearranged our equation to have  and  on different sides.û f T
 
We now have this equation in an interesting form - all the spatial dependence is 
contained on the left-hand side, while all the time-dependence is on the right.
 
The only way for an equation like this to be true is if both sides are actually constant.
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If we call this constant , the above equation splits into two equations as follows:-k2

 

∇ f = - k   ⇒   ∇ f + k f = 0
1

f(r)

2 (r) 2 2 (r) 2 (r)

= - k   ⇒   + k c T t = 0
1

c2

1

T t( )

d T t

dt

2 ( )
2

2 d T t

dt

2 ( )
2

2 2 ( )

 
The second equation here is simple to solve, since it has the form of a standard 
differential equation describing harmonic motion. The solutions to it are waves with 
frequency , so for example:𝜔 = ck
 

T t = 𝜔t( ) cos

 
More generally, complex exponentials  would also work as solutions here. In fact, complex e-i𝜔t

exponentials like  lead to travelling wave solutions for the full electric field, while a solution like e-i𝜔t

 leads to a standing wave - but either one is a valid solution.𝜔tcos

 
We've now solved for the time-dependence of our electric field! As promised, it indeed 
describes a wave. Generally, fields that have a sinusoidal time-dependence of this form are 
called time-harmonic. Time-harmonic fields are by far the most useful electromagnetic 
wave solutions to Maxwell's equations.
 
Perhaps the more interesting part of our discussion is the first equation we derived above. 
This is called the Helmholtz equation and its solutions give us the spatial dependence of 
our electromagnetic waves:
 

∇ f + k f = 02 (r) 2 (r)

 
What makes this equation interesting is the fact that the Laplacian has a different form in 
every coordinate system. Therefore, solutions to the Helmholtz equation are also going to 
be very different, depending on the coordinate system we choose.
 
So, unlike the time-dependence (which always has the same form of ), ∼ 𝜔tcos( )

solutions to the Helmholtz equation can be much more unique and interesting.
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Now, these solutions will also generally be waves - but more interesting kinds of waves, 
like spherical waves.
 
In the following section, we will solve the Helmholtz equation for some example cases and 
see what kind of electromagnetic wave solutions we find.
 

4.2. Plane Waves & Spherical Waves

 
The first, and also the simplest, type of wave the Helmholtz equation describes is called a 
plane wave. This is a wave that propagates in a single spatial direction, and at any point, 
has a constant magnitude in a plane perpendicular to the propagation direction.
 
The term 'plane wave' comes from the fact that you can think of the wave as a "plane" 
that moves forward in its propagation direction, with the amplitude being constant 
throughout that plane:
 

 
Following the picture above, let's assume we have a plane wave propagating in the -z
direction. As is probably clear already, plane waves are best described in Cartesian 
coordinates (which consists of, well, planes).
 
By definition, the amplitude of the plane wave can then only depend on the -coordinate, z
so it will be of the form . The Laplacian also has the simple form f = f z(r) ( )

.∇ = ∂ / ∂x + ∂ / ∂y + ∂ / ∂z2 2 2 2 2 2 2
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In Cartesian coordinates and with the function , Helmholtz's equation gives us:f z( )

 
∇ f + k f = 02 (r) 2 (r)

⇒   + + + k f z = 0
∂ f z

∂x

2 ( )
2

⏠⏣⏣⏡⏣⏣⏢
=0

∂ f z

∂y

2 ( )
2

⏠⏣⏣⏡⏣⏣⏢
=0

∂ f z

∂z

2 ( )
2

2 ( )

⇒   + k f z = 0
d f z

dz

2 ( )
2

2 ( )

 
Notice how this is now of the exact same form as the time-dependence equation we had 
earlier. Thus, this will have solutions of the form:
 

f z = A kz( ) cos

 
If you were to write the full electric field solution using this, it would be of the form 

. This actually describes a standing wave, which consists of plane waves z, t ∝ kz 𝜔tE( ) cos cos

propagating in both the  and  directions.+z -z
 
We can obtain another, perhaps more interesting solution to the Helmholtz equation by 
solving it in spherical coordinates instead of Cartesian. For this specific solution, we will 
assume our function  is of the form  - it only depends on the radial coordinate.f f r( )

 
But what would such a solution describe? Well, at a given fixed value of ,  is constant r f r( )

- in other words, the amplitude of the wave is constant on the surface of a sphere of fixed 
radius.
 
Such a thing is called a spherical wave (it'll become clear why a wave once we actually 
solve the Helmholtz equation). This is kind of like a plane wave but instead of planes, the 
"planes" of constant magnitude are spheres of a given radius.
 
Because these spheres become larger with increasing , we would also expect the wave to r
somehow "spread out", the further we go in the radial direction. Due to this "spreading 
out" -phenomenon, spherical waves actually decrease in magnitude with the -coordinate r
(as we will see very soon).
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With , the Helmholtz equation will only contain derivatives with respect to . f = f r(r) ( ) r
Using the spherical coordinate form of the Laplacian from earlier, we get:
 
∇ f + k f = 02 (r) 2 (r)

⇒   r + + + k f r = 0
1

r2

∂

∂r
2 ∂f r

∂r

( )
𝜃

1

r 𝜃2 sin

∂

∂𝜃
sin

∂f r

∂𝜃

( )

⏠⏣⏣⏣⏣⏣⏡⏣⏣⏣⏣⏣⏢=0

1

r 𝜃2 sin2

∂ f r

∂𝜑

2 ( )
2

⏠⏣⏣⏣⏡⏣⏣⏣⏢=0

2 ( )

⇒   r + k f r = 0
1

r2

d

dr
2 df r

dr

( ) 2 ( )

 
To solve this, we will write out the derivative of the parentheses (using the product rule) 
and then multiply by :r
 

2r + r + k f r = 0  ⇒   2 + r + k rf r = 0
1

r2

df r

dr

( ) 2 d f r

dr

2 ( )
2

2 ( )
df r

dr

( ) d f r

dr

2 ( )
2

2 ( )

 
If you stare at this for a bit, you might notice that the first two terms can be written as 

:d rf r / dr2( ( )) 2

 

rf r + k rf r = 0
d

dr

2

2
( ( )) 2 ( )
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Now, you might notice that both terms contain the same expression . Therefore, rf r( )

doing a substitution of the form  actually turns this into an ordinary harmonic u r = rf r( ) ( )

motion differential equation, which has a possible solution :u r = A kr( ) cos
 

+ k u r = 0  ⇒   u r = A kr
d u r

dr

2 ( )
2

2 ( ) ( ) cos

 
But we are not quite done yet! We still need to substitute back in  and solve u r = rf r( ) ( )

for , which is what we care about. Doing so gives us:f r( )
 

rf r = A kr  ⇒   ( ) cos f r = kr( )
A

r
cos

 
This solution is interesting in a couple of ways:
 

• It exhibits the same wave-like behaviour with  as the standard plane f r ∝ kr( ) cos

waves we discussed earlier - only now, the wave spreads out in all directions, 
radially, instead of in the direction of a single axis. 
 

• Notably, the amplitude of the wave also decreases as . The reason for f r ∝ r( ) -1

this is that the spherical wave spreads out more and more with increasing , leading r
to its amplitude having to decrease in a particular direction the further out the wave 
is.

 
The key difference here is exactly the  decrease in the amplitude of the wave, ∼ r-1

compared to standard plane waves. In fact, most electromagnetic waves in the real world 
behave more like spherical waves instead of plane waves.
 
Now, perfect spherical waves do not really exist, as they would require a perfectly point-
like radiating source. However, radiation from things like omnidirectional antennas - one 
of the more common types antennas used, for example, for WiFi - can be approximately 
modeled by spherical waves when far away from the antenna.
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