Geometry
 Points, Lines, and Planes YAY MRAGH!

The introduces these new concepts exercises. Print this sheet and work along with us! Representation of a point... then a line... then a plane:

Draw a line on plane A, then through plane A

Points, Lines, and Planes classwork

Terms in Geometry:

- Point: A particular location. Points have no size. They are named with 1 letter.

$$
{ }^{\bullet} P
$$

- Line: Lines extend indefinitely, and have neither thickness nor width.

- Please name the line above in three ways.

1) \qquad
2) \qquad
3) \qquad

- Collinear: points on the \qquad line
- Plane: A flat, two-dimensional surface that extends indefinitely in all directions and having no thickness.

- Please name the plane above in two different ways.

1) \qquad
2) \qquad

- Coplanar : points on the \qquad plane

Ex\#1: Please use the figure to name each of the following.

a) A line containing point A
b) A plane containing point C
c) A point collinear with points A and C.

Ex\#2: Name the geometric shape modeled by each object (either point, line, or plane).
a) a 10×12 patio
b) a telephone wire
c) a star in the sky

Intersections of Lines and Planes:

The intersection of two geometric figures is the set of all points they have in common.

Line r represents the intersection of planes A and B.

Ex\#3: Please draw a plane. Then, draw one line on the plane. Finally, draw a second line through the plane, that intersects the first line. (Like a pencil through a sheet of paper.)

Ex \#4: Please draw and label a figure for each relationship.
a) Lines $\overrightarrow{A B}$ and $\overrightarrow{C D}$ intersect at point P.
b) $\quad \overrightarrow{T U}$ lies in plane Q and contains point R.

Ex\#5: Please refer to the figure below to answer the following questions.

a) How many planes are pictured in the figure? (Hint: the base of the pyramid is the same plane as plane X.)
b) Name three colinear points.
c) Name the intersection of plane HDG and plane X. (Hint: it's a line segment)
d) At what point does line $\overparen{L M}$ and plane X intersect?
e) Do lines $\overleftrightarrow{J H}$ and $\overleftrightarrow{D G}$ intersect?

YeryMherh.org

Geometry - Linear Measure

The video covers the following. Please print this sheet and work along with the class!

$A B$ is half of $A C$
$\mathrm{AB}=5 \mathrm{x}$
$\mathrm{AC}=11 \mathrm{x}-8$

Linear Measure classwork

What is or is not above a pair of letters is meaningful in geometry!
Line $\overrightarrow{A B}$
Segment $\overline{A B}$
Measure $A B$ (distance between points $\mathrm{A} \& \mathrm{~B}$)

- Betweenness

Example: Point M is between points $P \& Q$ only if P, Q, and M are collinear. Create an equation with the line segments above: \qquad $+$ \qquad $=$

Ex \#1: Find y and $Q P$ if P is between Q and $R, Q P=2 y, Q R=3 y+1$, and $P R=21$.

Ex \#2: Find x and $B C$ if B is between A and $C, A C=4 x-12, A B=x$, and $B C=2 x+3$

YesyhRath.org

Algebra - Distance Formula

The video covers the following exercises. Please print this sheet and work along! Please find the distance between $(5,-1)$ and $(11,7)$.

Please find the distance between $(2,2)$ and $(5,-1)$.

Please find the value of ' a ', for the points $(4,7)$ and $(a, 3)$, when the distance between the points is 5 .

Distance classwork

Ex \#1: Use the number line to find each measure

a) KM
b) $\quad \mathrm{JM}$
c) KL
d) JL

Notice how the space between the points is technically the difference between the numbers?

On a Coordinate Plane

- Method 1 - Pythagorean Theorem
- Graph points
- $a^{2}+b^{2}=c^{2}$
- Method 2 - Distance formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Ex \#2: Use the Pythagorean Theorem to find the distance between each pair of points.
a) $\quad R(5,1), S(-3,-3)$
b) $\quad E(-4,1), F(3,-1)$

Ex \#3: Use the Distance Formula to find the distance between each pair of points.
a) $\quad D(-5,6), E(8,-4)$
b) $\quad G(2,0), H(8,6)$
c) $\quad J(0,0), K(6,8)$
d) $\quad K(6,8), J(0,0)$

Did you notice that problems c) and d) were the same points in reverse? This means that the distance between J and K is the same as the distance between K and J .

In other words, it doesn't matter what point is used for x 1 and y 1 . That's good news! Also think about this: the formula squares the difference. Isn't it true that:

$$
\begin{gathered}
8-5 \neq 5-8 \\
\text { But } \\
(8-5)^{2}=(5-8)^{2}
\end{gathered}
$$

Geometry
 Midpoint
 YAY MRAGH!

The video introduces these new concepts. Print this sheet and work along with us! What is the midpoint of $(2,5)$ and $(-4,-3)$?

B is the midpoint of $A C$.
A $(-1,6)$
B $(3,4)$
C ?

Midpoint classwork

$\left.\begin{array}{|l|l|l|}\hline \text { Definition of } \\ \text { Midpoint }\end{array} \quad \begin{array}{l}\text { The midpoint between two points is their "average" } x \text { and } y \text { values. That } \\ \text { would make sense, because the average is right in the middle! }\end{array}\right]$

Ex \#1: Use the number line below to find the middle, or "average" of each measure.

a)
) $A D$
b) $B E$
c) $F A$

Ex \#2: Find the coordinates of the midpoint of a segment having the given endpoints.
a) $\quad J(-1,2), K(6,1)$
b) $\quad A(5,12), B(-4,8)$

Ex\#3: Find the coordinates of X if $Y(-1,6)$ is the midpoint of $\overline{X Z}$ and Z has coordinates $(2,8)$.

Geometry
 Angle Measure
 YAY MRAGH!

The video introduces these new concepts. Print this sheet and work along with us! Please draw the angles seen in the video, label it, and name it in various ways.

Suppose \qquad is an angle bisector. Mark the two equal angles in your sketch. Solving for x :

Acute angle:
Right angle:
Obtuse angle:

What is the basic difference between "equal" and "congruent" ?

Angle Measure classwork

- Degree: $\frac{1}{360}$ of a turn around a circle

- Ray: part of a line
- It has one endpoint and extends indefinitely in one direction.
- Rays are named stating the endpoint first then any other point on the ray.

Please name 2 different rays: \qquad \& \qquad

- Opposite rays: two rays extending from a common point on a line

- Angle: a figure consisting of two noncollinear \qquad with a common \qquad
- Vertex - the common \qquad of the rays of an angle
- Sides - the \qquad forming an angle

Angles:

An angle separates a plane into three distinct parts

- Interior
- Exterior
- The angle itself

Naming angles

- Use a single \qquad or \qquad
- Triplet of \qquad (center letter is the vertex) if there is any possible ambiguity regarding angle to which you refer.

KeyConcept Classify Angles

right angle	acute angle	obtuse angle
	This symbol means 90° angle.	

Ex \#2: Use the figure to answer the following.
a) Name all the angles that have W as a vertex.
b) \quad Name the sides of $\angle 1$.
c) Write another name for $\angle W Y Z$.

d) Name a pair of opposite rays.

- Congruent angles: angles that have the same measure.
- Arcs on the figure indicate which angles are congruent.
- If $m \angle A B C=m \angle D E F$, then it is said that $\angle A B C \cong \angle D E F$.
- Angle bisector: a ray that divides an angle into \qquad is called an angle bisector.

Ex\#3: In the figure, $\overline{Y X}$ and $\overrightarrow{Y Z}$ are opposite rays.
$\overline{Y U}$ bisects $\angle Z Y W$
$\overline{Y T}$ bisects $\angle X Y W$.

a) If $m \angle 1=5 x+10$ and $m \angle 2=8 x-23$, find $m \angle 2$.
b) If $m \angle W Y Z=82$ and $m \angle Z Y U=4 r+25$, find r.
c) If $\angle Z Y W$ is a right angle and $m \angle Z Y U=13 a-7$, find a.

Geometry Angle Relationships YAY MATH!

Students will be able to complete the following problems after watching the video:
Vocabulary:
Adjacent angles -
Linear pair -
Supplementary angles -
Complementary angles -
Acute angle -
Obtuse angle -
Vertical angles -

$$
\begin{aligned}
& \angle W Z V=2 x-3 \\
& \angle V Z U=3 x-7 \\
& \angle W Z V=
\end{aligned}
$$

$$
\begin{aligned}
& \angle V Z U=3 x-7 \\
& \angle U Z Y=6 x-2 \\
& \angle U Z Y=
\end{aligned}
$$

Angle Relationships classwork

- Adjacent angles: angles in a plane that have a common \qquad and a common \qquad , but no common interior points. Please draw an example:
- Linear pair. adjacent angles whose non-common sides are opposites rays. Please draw an example:
- Vertical angles: two nonadjacent angles formed by two intersecting lines. Please draw an example:

KeyConcept Angle Pair Relationships

Vertical angles are congruent.
Examples $\angle A B C \cong \angle D B E$ and $\angle A B D \cong \angle C B E$

Complementary angles are two angles with measures that have a sum of 90 .

Examples $\angle 1$ and $\angle 2$ are complementary. $\angle A$ is complementary to $\angle B$.

Supplementary angles are two angles with measures that have a sum of 180 .

Examples $\angle 3$ and $\angle 4$ are supplementary. $\angle P$ and $\angle Q$ are supplementary.

The angles in a linear pair are supplementary.
Example $m \angle 1+m \angle 2=180$

Ex \#1: Find the measures of two complementary angles if the difference in the measures of the two angles is 12.

Ex\#2: Find x and y so that $\overrightarrow{B E}$ and $\overrightarrow{A D}$ are perpendicular.

Perpendicular Lines: lines that intersect to form right angles. The symbol is: \perp Ex\#3: Find x and y so that $\overleftrightarrow{P R}$ and $\overleftrightarrow{S Q}$ are perpendicular.

\qquad
\qquad Period \qquad

Refer the following figure for problems 1-5.

1) \quad Name a point that is collinear with points D and P.
2) \qquad
3) \quad Name a point that is noncollinear with points A and B.
4) \qquad
5) What is another name for plane R ?
6) \qquad
7) What is another name for $\overrightarrow{B P}$?
8) \qquad
9) What is the intersection of $\overleftrightarrow{A B}$ and $\overleftrightarrow{D E}$?
10) \qquad
Refer the following figure for problems 6-9.

11) What is the intersection of plane S and $\overleftrightarrow{B C}$?
12) \qquad
13) What is the intersection of plane S and $\overleftarrow{A D}$?
14) \qquad
15) Name three points that are coplanar.
16) \qquad
17) Are points A, B, and C coplanar?
18) \qquad

Use the following information for numbers 10 and 11.
Point G is between points H and $K, H G=x+2, G K=4 x$, and $H K=8 x-7$
10) Find the value of x.
10) \qquad
11) Find the length of $H K$.
11) \qquad

Use the number line for problems 12 \& 13 .

12) Find the midpoint of $\overline{Q R}$
12) \qquad
13) Find the measure of $Q R$.
13) \qquad

Use the points $A(2,2)$ and $B(7,4)$ for problems $14 \& 15$.
14) Find the coordinates of the midpoint of $A B$.
14) \qquad
15) Find the distance between A and B. Answers can be left in
15) \qquad radical form or a decimal rounded to the nearest tenth place.
16) $\quad Y(-2,2)$ is the midpoint of $\overline{X Z}$. If Z has coordinates $(2,8)$, find
16) \qquad the coordinates for X.
17) Any three points are coplanar.
17) \qquad
18) \qquad
19) All adjacent angles are congruent.
20) All vertical angles are congruent.
20) \qquad
21) If D is between M and T, then $M D=D T+M T$.
21) \qquad
Refer to the following figure for problems $22-30$.

22) Name a pair of vertical angles.
22) \qquad
23) Name the angle that is complementary to $\angle V Y W$.
23) \qquad
24) Name a right angle.
24) \qquad
25) Name a linear pair.
25) \qquad
26) \quad Is $\overline{V Y} \perp \overline{T X}$?
26) \qquad
27) Name the sides of $\angle S Y T$.
27) \qquad
28) Name the vertex of $\angle T Y W$.
28) \qquad
29) Name a pair of opposite rays.
29) \qquad
30) If $m \angle V Y W=4 x+8, m \angle W Y X=6 x+2$, find the value of x.
30) \qquad

Refer to the following figure for problems 31-34.

31) Find the value of x if $m \angle A B C=7 x, m \angle 1=2 x+5, \&$
31) $m \angle 2=3 x-1$.
32) If $\overrightarrow{B D}$ bisects $\angle A B C, m \angle A B D=5 x-10 \& m \angle D B C=3 x+8$,
32) find $m \angle A B C$.
33) If $\angle A B C$ is a right angle, then what type of angle is $\angle A B D$?
33) \qquad
34) If $\angle A B C$ is a right angle and $\overrightarrow{B D}$ bisects $\angle A B C$, what is $m \angle A B D$?
34) \qquad
35) Find the measures of two supplementary angles if the measure
35) \qquad of one angle is five times its supplement.

