

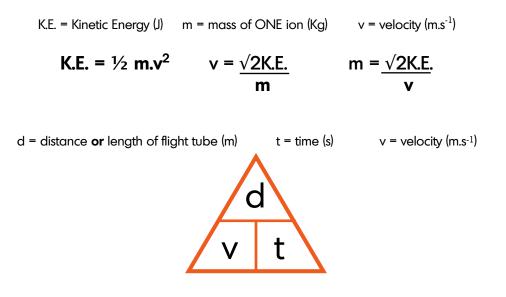
Avogadro's Constant = 6.02 x 10²³ atoms or molecules = 1 mole

MOLAR GAS CONSTANT

1 mole of ANY gas occupies 24.0 dm³ at room temperature & pressure

IDEAL GAS EQUATION

\mathbf{P} = Pressure (pa)	$\mathbf{V} = volume (m^3)$	n = no. of moles
R = Gas Const	ant (8.314 J.K ⁻¹ .mol ⁻¹)	T = Temperature (K)


PV = nRT

P =	<u>nRT</u>	V = <u>nRT</u>	n = <u>PV</u>	T = <u>PV</u>
	V	Р	RT	nR
For changes in condition	ons:	$\frac{P_1V_1}{T_1} =$	$\frac{P_2V_2}{T_2}$	

Relative Atomic Mass = $\frac{(\text{mass isotope 1 x abundance}) + (\text{mass isotope 2 x abundance}) + ...}{(Ar)}$

OTHER EQUATIONS

% by mass = <u>mass of element in 1 mole</u> Mr

 $\begin{array}{c} \text{Empirical formula} = \underline{M1} \\ \underline{Mr1} \\ \hline{Mr2} \\ \hline{Mr2} \\ \hline{Mr2} \end{array}$

Where M1, M2 etc is the mass or % composition of element 1, 2 etc

then divide each by the smallest number to give empirical formula

% Atom Economy = mass of desired product x100 total mass of all products

You can use mass or number of moles here!

% Yield = <u>actual yield</u> x100 theoretical yield

You can replace masses with Mr values here too!

ENTHALPY

 $\label{eq:Q} \begin{array}{l} \mbox{Q} = \mbox{energy transferred (J)} \\ \mbox{c} = \mbox{specific heat capacity (J.K^{-1}.mol^{-1})} \end{array}$

 $\label{eq:m} \begin{array}{l} m = mass \mbox{ of solution (g)} \\ \bigtriangleup T = \mbox{ change in temperature (°C \mbox{ or } K)} \end{array}$

$$\triangle \mathbf{H} = \mathbf{Q}$$

Don't forget to add a sign for $\triangle H!$

Divide by 1000 for kJ.mol⁻¹

\triangle H reaction = \sum reactant mean bond enthalpies - \sum product mean bond enthalpies

(kJ.mol⁻¹)

(kJ.mol⁻¹)

-1)

(kJ.mol⁻¹)

EQUILIBRIA

 $aA + bB \rightleftharpoons cC + dD$

$$Kc = \begin{bmatrix} C \end{bmatrix}^{c} \begin{bmatrix} D \end{bmatrix}^{d}$$
$$\begin{bmatrix} A \end{bmatrix}^{a} \begin{bmatrix} B \end{bmatrix}^{b}$$

Where: [A] = concentration (mol.dm⁻³) a = no. of moles from equation

COMMON IONS

POSITIVE

NEGATIVE

GROUP 1 = +	GROUP 7 = -
GROUP 2 = 2+	GROUP 6 = 2-
H⁺	GROUP 5 = 3-
Ag⁺	
Zn ²⁺	
Pb ²⁺	
Al ³⁺	

(Transition metals are variable)

e.g. Fe²⁺, Fe³⁺

MOLECULAR IONS

NH₄⁺ ammonium

H₃O⁺ hydronium OH⁻ hydroxide CO3²⁻

carbonate

NO3⁻ nitrate

SO4²⁻ sulfate

PO4³⁻ phosphate

ACIDS & BASES

<u>ACIDS</u>

BASES

HClhydrochloric acidHNO3nitric acidH2SO4sulphuric acidH3PO4phosphoric acidCH3COOHethanoic acid

NaOH KOH Ca(OH)2 CuO sodium hydroxide potassium hydroxide calcium hydroxide copper (II) oxide

COMMON OXIDATION STATES

NEGATIVE POSITIVE GROUP 1 = +IF = -IGROUP $2 = + \parallel$ O = -IIH = +IC| = -|Br = -IAq = +IMost common oxidation Zn = +II| = -| states, but may be positive Pb = +II or +IVN = -IIIwhen covalently bonded to more highly electronegative AI = + IIIS = -IIelements. i.e. F or O (Transition metals are variable) P = -III $Fe = + \parallel or + \parallel \parallel$ Cu = +II (sometimes +I)C = + || or + |V|

GROUP 1 SALTS: ALL SOLUBLE

NITRATE SALTS = ALL SOLUBLE

GROUP 2 SALTS: HYDROXIDES INCREASE IN SOLUBILITY DOWN THE GROUP SULFATES DECREASE IN SOLUBILITY DOWN THE GROUP CARBONATES ARE NOT SOLUBLE

Ag SALTS: ALL INSOLUBLE EXCEPT AgNO3

Pb SALTS ALL INSOLUBLE EXCEPT Pb(NO₃)₂

GROUP 7 SALTS: ALL SOLUBLE EXCEPT AgX and PbX₂

CO3 SALTS: ALL INSOLUBLE EXEPT GROUP 1

No.	Practical	Detail	Done?
la	Make a standard solution	Prepare a 250cm ³ sample of a solution (e.g. NaOH) to a known concentration using the standard method.	
lb	Perform a simple acid-base titration	Titrate an acid of known concentration against an alkali. Deduce the concentration of the alkali using a the mean titre. e.g. HCl + NaOH	
2a	Measure the enthalpy change of combustion of a fuel (<u>A</u> Hc)	Use a calorimeter to experimentally determine the energy released by a fuel and the Δ H for the reaction.	
2b	Measure the enthalpy change of neutralisation (Δ Hn)	Use a calorimeter to experimentally determine the energy released by a neutralisation reaction and the Δ H for the reaction.	
3	Measure temperature affects the rate of a reaction	Use the initial rate method to determine the effect of increasing temperature ion the rate of a reaction. e.g. HCl + Sodium Thiosufate	
4	Testing for ions in solution	Use chemical tests to identify Group 2, Group 7, OH ⁻ , CO3 ²⁻ and SO4 ²⁻ ions in solution	
5	Distillation of an organic product	Produce a liquid organic compound and use distillation to separate and purify. e.g. Aldehyde or Ester	
6	Testing for organic functional groups	Use chemical tests to identify a carboxylic acid, an alcohol and an aldehyde.	

THERMODYNAMICS

$$\Delta \mathbf{H}^{\Theta}_{\text{solution}} = \Delta \mathbf{H}^{\Theta}_{\text{latt diss}} + \sum \Delta \mathbf{H}^{\Theta}_{\text{hydration}}$$
(ENDOTHERMIC) (EXOTHERMIC)

 $\triangle \mathbf{G} = \triangle \mathbf{H} \cdot \mathbf{T} \triangle \mathbf{S}$

$$\mathbf{T} = \underline{\triangle \mathbf{H}}$$

Always divide \triangle S by 1000 to match your units!

When calculating the temperature at which a reaction becomes / ceases being feasible For the $\triangle G$ Vs T Graph!

 $\triangle G = -\triangle S T + \triangle H$

Equivalent to: y = mx + c

RATE EQUATIONS & ARRHENIUS

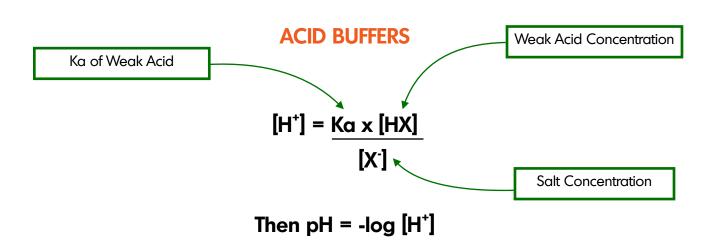
 $Rate = k [A]^{order} [B]^{order}$ $(mol.dm^{-3}.s^{-1})$ $K = \frac{Rate}{[A]^{order} [B]^{order}}$ $K = A e^{\left(\frac{-Ea}{RT}\right)} OR \qquad InK = \left(\frac{-Ea}{RT}\right) + InA \qquad OR \qquad InK = \frac{-Ea}{R} \times \frac{1}{T} + InA$ $Standard Arrhenius \qquad Natural Log of Arrhenius \qquad For the InK Vs 1/T Graph!$ Equivalent to: y = mx + c

ELECTROCHEMISTRY

 $\mathsf{EMF} = \mathsf{Most} \; \mathsf{Positive} \; \mathsf{E}^{\circ} \; \text{-} \; \mathsf{Most} \; \mathsf{Negative} \; \mathsf{E}^{\circ}$

OR

 $EMF = E^{\circ}$ Cell being Reduced - E° Cell being Oxidised


ACIDS & BASES

 $pH = -log [H^+]$ and $[H^+] = 10^{-pH}$

 $K\alpha = \underline{[H^+][X^-]}$ [HX]

 $\mathsf{Kw} = [\mathsf{H}^+] [\mathsf{OH}^-]$

 $Kw = 1.00 \times 10^{-14} \text{ mol}^2 \text{.dm}^{-6}$ at 298K

COMMON OXIDATION STATES

Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Сυ	Zn
+111	+IV	+11, +111 +1V, +V	+II, +III +VI	+II, +III +IV, +VI +VII	+11, +111	+11, +111	+11	+1, +11	+11

COMMON COMPLEX COLOURS

	+H2O	+ OH (aq) or limited NH3(aq)	+ Excess NH3(aq)	+ conc. HCl _(aq)	+ CO3 ²⁻ (aq)
	[Fe(H ₂ O) ₆] ²⁺ (aq)	[Fe(H ₂ O) ₄ (OH) ₂] _(s)			FeCO ₃ (s)
Iron II	GREEN SOLUTION	GREEN PRECIPITATE (may oxidise to brown)	NVR	NVR	GREEN PRECIPITATE
	[Fe(H ₂ O) ₆] ³⁺ (aq)	[Fe(H ₂ O) ₃ (OH) ₃] _(s)		FeCl ₄ ⁻	[Fe(H ₂ O) ₃ (OH) ₃] _(s)
Iron III	YELLOW SOLUTION	BROWN PRECIPITATE	NVR	YELLOW SOLUTION	BROWN PRECIPITATE & CO2(g)
	$[Co(H_2O)_6]^{2+}_{(aq)}$	[Co(H ₂ O) ₄ (OH) ₂] _(s)	[Co(NH3)6] ²⁺ (aq)	CoCl4	CoCO ₃ (s)
*Cobalt	PINK SOLUTION	GREEN PRECIPITATE	BROWN SOLUTION	BLUE SOLUTION	PURPLE PRECIPITATE
	[Cu(H ₂ O) ₆] ²⁺ (aq)	[Cu(H ₂ O) ₄ (OH) ₂] _(s)	$[Cu(H_2O)_2(NH_3)_4]^{2+}_{(aq)}$	CuCl4 ²⁻	CuCO ₃ (s)
Copper	LIGHT BLUE SOLUTION	BLUE PRECIPITATE	ROYAL BLUE SOLUTION	Yellow / Green Solution	BLUE / GREEN PRECIPITATE
Aluminum	[AI(H ₂ O) ₆] ³⁺ (aq)	[AI(H ₂ O) ₃ (OH) ₃] _(s)		[AI(H ₂ O	[AI(H ₂ O) ₃ (OH) ₃] _(s)
	COLOURLESS SOLUTION	White Precipitate	NVR	NVR	WHITE PRECIPITATE & CO2(g)

* Not strictly on the spec but has been known to appear in exam

VANADIUM

Species	VO ₃ -	VO_2^+	VO ²⁺	V ³⁺	V ²⁺
Oxidation State	+V	+V	+IV	+111	+11
Colour of solution	YELLOW	YELLOW	BLUE	GREEN	PURPLE

 H^+ / Zn can reduce vanadium in VO_3^{-}

WHY COMPLEXES ARE COLOURED

△E = h.f

 $\Delta \mathbf{E} = \text{Difference in energy between d orbitals}$ $\mathbf{h} = \text{Planck's Constant (6.63 \times 10^{-34} \text{ J.S}^{-1})} \qquad \mathbf{f} = \text{Frequency (Hz)}$

c =λ.f

 $c = Speed of light (3.00 \times 10^8 m.s^{-1})$

 λ = Wavelength (nm) **f** = Frequency (Hz)

No.	Practical Detail		Done?
7	Measure rate by initial rate method	The "lodine Clock" Reaction lodide (V) + H ₂ O ₂	
8	Set up an electrochemical cell	Set up an electrochemical cell and measure EMF	
9	pH Curve	Investigate how pH changes when a weak acid reacts with a strong base	
10a	Preparation of an organic solid	Produce a pure sample of an organic solid (e.g. Aspirin) and test its purity	
10ь	Preparation of an organic liquid	Produce a pure sample of an organic liquid (e.g. ethyl ethanoate) and test its purity	
11	Testing for ions in solution	Use chemical tests to identify transition metal ions in solution	
12	Thin Layer Chromatography	Use TLC to analyse the composition of mixtures of compounds	