Meshed Slab and Wall Design as per ACI318-11

Program Version	Gen 2015 (v1.1)
Revision Date	05 Nov 2014

http://en.midasuser.com

Midas Information Technology Co., Ltd.

Overview

Step

In Gen 2013 (v2.1), meshed slab and wall design as per ACI318-11 has been newly implemented. The following design features as per **ACI318-11** are available in midas Gen.

Element type	Member type	Strength Check	Serviceability Check
Beam element	Beam, Column	Bending without axial force Bending with axial force Shear	-
Wall element	Wall	Bending with axial force Shear	-
Plate element	Slab	Flexural design (Wood-Armer moment) Punching shear checking	Deflection Control (Uncracked)
	Wall	In-plane Stress	-

This tutorial is intended to explain how to perform meshed slab and wall design. For this reason, the procedure for general frame design process were not included.

Step

00

Using the task pane, we can display work procedure, required input items and optional input items for each analysis and design case. Using the User Defined Task Pane, the user can create a Task Pane manually.

For the meshed slab wall design feature, TDF file was provided with the tutorial model files for the user's convenience. In order to import the User Defined Task Pane, please follow the procedure below.

1. Go to Task Pane tab in the left panel of the midas Gen window.

2. Click [Task Pane] text from the drop down menu.

3. Click [Import User Defined Page].

4. Select "slab desig.tpd" file and click [Open] button.

Overview

500 x 500

Applied Code			Gi	rder Section	
					i .
• ACI318-11		Designation	Story	Section ID	Section Dimension (mm)
		Girder	1~5F	1	500 x 400
Materials			Col	umn Section	
	Г				Section Dimension

Column

- Beam : Concrete Grade C4000
- Column: Concrete Grade C4500

			(1111)				
Girder	1~5F	1	500 x 400				
Column Section							
Designation	Story	Section Number	Section Dimension (mm)				

Slab/Wall Thickness

2

1~5F

Designation	Story	Thickness ID	Thickness (mm)
Slab	1~5F	1	200
Wall	1~5F	2	250

Applied Load

Load	Details					
Dead Load	Self Weight	Weight Density: 23.56 kN/m ³				
Live Load	Pressure Load	Shopping areas : 4.0 kN/m² Office areas : 2.0 kN/m²				
Wind Load	X-dir./ Y-dir.	IBC2012 (ASCE7-10) Basic Wind Speed : 85 mile/h Exposure Category : C Directional Factor : 0.85 Gust Effect Factor : 0.85				
Earthquake Load	X-dir./ Y-dir.	IBC2012 (ASCE7-10) Site Class : D Importance Factor : 1.0 Response Modification Coefficient (R) : 4.0 Maximum Period : 6.0 sec				

Midas Information Technology Co., Ltd.

3 Click [Close]

Click [Activation] > [Activate] *

Generate meshed elements for walls Specify meshed area for automeshing (Line elements method).
Node/Element > Mesh > Auto-mesh
Method : Nodes
Draw as a picture below.
Type : Quadrilateral
Mesh Size : Length : 0.5 m
Material : 2:Grade C4500

Thickness : 2:0.2500

Domain >Name : '2'

(B) Click [Apply] > [Close]

Midas Information Technology Co., Ltd.

- Generate meshed elements for walls Specify meshed area for auto meshing (Line elements method).
- Type : Quadrilateral Mesh Size : Length : 0.5 m Material : 2:Grade C4500 Thickness : 2:0.2500

1 Method : Planar Elements

- Click 'Select by window'
- Select as a picture
- Domain > Name : '4'
- G Click [Apply] > [Close]

Structures Type Wizar 2 iiding	ed Plane LCS/Plan Group	Display Free Edge/Face Check Element Local Axis Check Structure				
	🕅 🕑 🗩 🛄 🗣 💱 🛞	🍾 17 44 💌 🏋	212to215	2 ⇔ 2 ≧ 2 ⊡	◀ 🔂 🔮 📮 🌉 . א 🗛	× : 🔁 💼 🔒
Tree Menu 7 ×						
Auto-morp Planar Area			1997 - 19	$(k_{1},\ldots,k_{n}) \in \mathbb{R}^{n}$		
Mesher			- 	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
212to215				-		
7 Type Quadrilateral -	and the second second					
Mesh Inner Domain						ZANNAN -
Include Interior Nodes			. St			MANN
Auto ○ User Second Secon						
Include Interior Lines Auto Oliser					· · · ·	
Include Boundary Connectivity						
Mesh Size		1997 - A.		XX - i - i		
● Length Div, 0.5 m						
Property						- the
Element Type PLATE 🗸		4	i - N		1 · .	
Material 2 2: Grade						
Thickness 2 2: 0,2500			1. A.			
Domain	N I				· · · · · · · · · · · · · · · · · · ·	4
ame 4						
🔲 Delete Boundary Line Elem,				4. 1		
Subdivide Boundary Line Elem,			1. 		· · · · ·	
				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1	
				4. 1		
			ter en		· · · · · ·	
					1	
	Message Window					
	>>					

1-3. Define Boundary Condition

Midas Information Technology Co., Ltd.

Midas Information Technology Co., Ltd.

Procedure

- Load > Static Loads > Lateral > Wind Loads > Click [Add]
- Load Case Name : WX
 Wind Load Code :
 IBC2012(ASCE7-10)
- Wind Load Direction Factor :X-Dir.: 1, Y-Dir.: 0
- Olick [Apply]
- Load Case Name : WY
 Wind Load Direction Factor :
 X-Dir. : 0, Y-Dir. : 1

Olick [OK]

O Click [Close]

Procedure

- Load > Seismic > Response
 Spectrum Data > Response
 Spectrum Functions
- 2 Click [Add]
- **6** Click [Design Spectrum]
- Design Spectrum :
 IBC2012(ASCE7-10)
- G Click [OK]
- 6 Click [OK]
- O Click [Close]

Procedure

- Load > Response Spectrum
 Data > Response Spectrum
 Load Cases
- 2 Load Cases Name : RX Excitation Angle : 0
- Check : IBC2012(ASCE7-10)

Olick [Add]

- Load Cases Name : RY
 Excitation Angle : 90
 > Click [Add]
- Click
 [Eigenvalue Analysis control]
 Number of Frequencies: 15
 > Click [OK]

Click [Close]

Procedure

- Results > Combinations >
 Concrete Design >
 Auto Generation
- Select Design Code as "ACI318-11"
 - > Click **[OK]**
 - > Click [Close]
- **③** Perform Analysis

Gen 2015 - [C:\Us	ers\KimTaeGook\Desktop\Release renewal Gen\Tutorial Manual\Tutorial_2nd\Models_test\App12_flat slab_Start_2	*] - [Model View] 👝 🖸 💥
Gen 2015 - [C:\Us View Structure Node/Element Properties Boundary Combination Resolution General Steel Design Concrete Design SRC Design Footin Load Combination List Free M General Steel Design Concrete Design SRC Design Footin Load Combination List Exc Sca Peri	ers/Kim TaeGook/Desktop/Release renewal Gen/Tutorial Manual/Tutorial_2nd/Models_test/App12_flat slab_Start,2 Load Analysis Results Pushover Design Query Tools utomatic Generation of Load Combinations Option Add Replace Code Selection Steel Code Selection Steel Concrete SRC Footins Design C ACI318-11 Scale Up filesponse Spectrum Load Cases Scale Up Factor : 1 RX Factor Load Case Add Modify Delete Wind Load Factor Sterngth-level Seismic Load Factor Sterngth-level Service-level	
Mod Se Fu Copy Import. Auto Generation File Name: C:\Users\WKimTaeGook\WDesktop\WRelease rt	Close Consider Lateral Soli Pressure Factor Cad Factor : 0.9 Manipulation of Construction Stage Load Case ST: Static Load Case SS: Construction Stage Load Case SS: Construction Stage Load Case SS: Consider Orthogonal Effect In the second	
Accidental Eccentricity Description: LoadCase Direction Scale RX X-Y 1 RY X-Y 1 RY X-Y 1 Tree Menu Task Pane For Help, press F1 Command Messa	ge / Analysis Message / Node-22760 U: 1, 17, 15 KN	+ × + <

- Design > Design > RC Design > Design Code
- Select Design Code as
 "ACI318-11" >
 Click [OK]

Step

- Design > Design > RC Design >
 Column Design
- Click [Select All] and then
 [Update Rebar] button.

 Sorted by : Member > Check the design results > click [Close]

Procedure

- Design > Design > RC Design > Modify Column Rebar Data
- **2** Select SECT "2-1" in the list.
- 3 Check the rebar data.
 - Rebar data can be modified in this dialog box.
- Click [Add/Replace] > [Close]

Click [OK]

Procedure

Slab/Wall Load Combination Select the load combinations for the slab/wall element design.

4-2. Design criteria for rebar

4-3. Active Identity

Procedure

- View > Activities > Active Identity
- Click : Story > ROOF Check : +Below
- Click : [Active] > [Close]

Slab Flexural Design Check the flexural design results for slab elements in contour.

- Design > Design >
 Meshed Design >
 Slab Flexural Design
- 2 Select [Avg. Nodal].
- Check [As_req(m^2/m)]
- Check on One-Way Flexure Design option and click [...] button
- **6** Defined Cutting Lines **[Add]**
 - Display the bending moments of the floor slab elements along a cutting line, and produce the design results of reinforcement.
- 6 Click [Apply]

(1

3(4(5)

Procedure

Design > Design >
 Meshed Design >
 Slab Flexural Design

2 Select [Avg. Nodal].

3 Click [Design Result]

Produce the detail flexural design results of slab elements in a text format.

Olick [Design Force]

Produce the flexural design forces of slab elements in a tabular format.

6 Click [Update Rebar]

Update the rebar quantity for each slab element. The updated rebar data is used for strength verification.

	1	Gen 2015 - [C:\Use	s\KimTaeGook\	Desktop\Relea	se renewal Ge	n\Tutorial M	anual\Tutorial_2nd	l\Models_te	st\App12_flat s	lab_Start_revised_2 *] - [Meshed Slab Design]	_ 0 %
View Structure Node/Elem	nent Propert	ies Boundary	Load A	nalysis Re	sults Pus	hover D	esign Query	Tools			🕻 Help Y 🗕 🕫 🗙
General Design General	B18-11 RC Design * Meshed Design Design	▼ SSRC79	r In r Dis Optin	placement s nal Design fo Section	Section r Design	Steel Design Concrete Do SRC Design Design Resu	n 👫 Steel D esign 🔄 Concre 🔣 SRC De ult Design	esign te Design * esign * n Forces	Perform Batch Design Batch	a	
		📲 🖳 🖳 🖂 (ÐI 🖌	Ŧ	7			1 😹 1 🕅			
Tree Menu 7 ×	4 / 🔯 M	odel View	Aeshed Slab Des	ign Force X							Þ
Design							Battam				<u> </u>
Slab Flexural Design 👻	Elem	Node			arlud 2		Bottom				, <u></u> ,
Load Cases/Combinations		LCB	(kN·m/m)	LCB	(kN·m/m)	LCB	(kN·m/m)	LCB (kN·m/m)		88
ALL COMBINATION -	21348	26486 cL0	B1 14.19	cLCB1	0.00	cLCB1	0.00	cLCB1	12.05		
	21346	26482 CLC	B1 22.52	cLCB1	0.00	CLCB1	0.00	cLCB1	7.28		, PO
E 2	21348	22509 cL0 22509 cL0	B1 17.24 B1 17.24	cLCB1 cLCB1	0.00	_ MIDA	S/Text Editor - [Un	titled.rcs]			
	21349	26494 cL0	B1 10.18	cLCB1	0.00	Pile 🚰 File	Edit View Wi	indow He	lp		_ = = × _
element Width 1 m	21349	26489 cL0 26486 cL0	B1 7.54 B1 14.19	cLCB1 cLCB1	0.00	- L1 🗁		Å ≞∎ L		肖[일일]] / · · · · · · · · · · · · · · · · · ·	
○ Top ○ Bottorn	21350	23397 cL0	B1 0.00	cLCB1	0.00	00002	midec Bop - DC	-Sieb Elov	ural Docido	[401318_11]	<u> </u>
	21350	23396 CLC 23395 CLC	B1 2.70 B1 0.00	cLCB1 cLCB1	0.00	00004		ondo nines	urur besran		0*
O DIr, 1 O DIr, 2	21350	24067 cL0	B1 0.00	cLCB1	0.00	00008					4
Type of Display	21351	24067 CLC	B1 0.00	cLCB1	0.00	80000	[[[*]]] S	LAB DESIGN	MAXIMUM RESU	LT DATA : DOMAIN 1-[1], Dir 1.	
Values	21351	23398 cL0	B1 0.00	cLCB1	0.00	00010					2
	21352	24120 cL0	B1 20.41	cLCB1	4.33	00012	<< bottom >>				
🗹 One-Way Flexural Design 🛄	21352	25139 cL0 24850 cL0	B1 17.95 B1 17.45	cLCB1 cLCB1	7.56	00014	Information Elem No. :	of Parame 21431	ters.		
Bath Laft Bight	21352	24493 cL0	B1 25.44	cLCB1	6.11	00016	LCB No. : Materials :	fc = 2	7579.0378 KPa		
Cour Clerk Orlight	21353	25999 cL0 25952 cL0	B1 0.00 B1 0.00	cLCB1 cLCB1	0.00	00018	Thickness :	Fy = 27 0.2000	5790.3776 KPa m.		
💿 Rebar	21353	25713 cL0	B1 0.00	cLCB1	0.50	00020	Covering :	dB = dT =	0.0300 m. 0.0300 m.		<u>æ</u> .
As_req (m^2/m)	21353 21354	25976 cL0 25997 cL0	B1 0.00 B1 4.39	cLCB1 cLCB1	0.00	00022	Information	of Design			
Rho_req v/d	21354	25974 cL0	B1 0.00	cLCB1	0.00	00024	phi = b = 1.	0.900 0 m. (by	Unit Length).		
Resistance Ratio	21354	26000 CLC 26025 CLC	B1 0.00 B1 0.00	cLCB1 cLCB1	0.00	00028	d =	0.1700'm.			
Wood Armer Moment	21355	25809 cL0	B1 0.00	cLCB1	0.00	00028	Information Rein. Bar :	of Moment #10 0300	s and Result.		
Design Result	21355	25961 CLC 25768 CLC	B1 0.00	cLCB1 cLCB1	0.00	00030	As_req = As_use =	0.0008	m^2/m. { m^2/m{	U.UUUB m^2/m.) 0.0027 m^2/m.)	
Design Force	21355	25978 cL0	B1 0.00	cLCB1	0.00	00032	Mn = As phiMn = ph	_use*Fy*[d i * Mn =	-As_use+Fy/(1 104.3534	.7+tc+b)j = 115.9483 kN-m./m. kN-m./m.	
	21356	22819 CLC	B1 0.00	cLCB1	2.83	00034	Mu RatM = Mu	= ∣∕phiMn =	34.6091 0.332 <	KN-m./m. 1.0> O.K !	
	21356	22820 cL0	B1 0.00	cLCB1 cLCB1	3.37	00036	<< TOP >>				
Apply Close	21357	22924 cL0	B1 10.05	cLCB1	24.30	00038	Information	of Parame	ters.		
	21357	22890 <u>cLC</u>	B1 20.79	cLCB1	16.20	00040	LCB No.	23021			
	Message Wind	low				00042	Materials : Thicknose !	Fy = 27	5790.3776 KPa	a 1	
	*** End Des	sign by ACI318-	11			00044	Covering :	0.2000 dB = dT =			
	Total I	Design/Checking	Time:	8.49 [sec]		00046	- Information	ui =	0.0300 Ш.		
						00049	phi =	0.900 0.900 0.m (bu	Unit Length)		
Tree Menu Task Pane		Command Messa	e À Analysis I	Message /	_	00051	d =	ŏ.1700 m.	onit Length).		- I
For Help, press F1											
						Ready				Ln 0 / 128 , Col 1	NUM //

Procedure

Design > Design >
 Meshed Design >
 Slab Flexural Design

The ratio of the design moment to the moment resistance when the designed rebar spacing is applied.
 Load Cases/ Combinations

2 Check [Resistance Ratio]

: ALL COBMINATION

4 Select [Avg. Nodal].

G Check [Dir.1]

6 Click [Apply]

[Smoothing]

Step

Design > Meshed Slab/Wall Design > Slab Flexural Design

Flexural Checking
📀 Element 🕜 Avg. Nodal
€ Element ○ Width □ m
C Top C Bottom C Both
Type of Display
▼ Contour ▼ Legend
🔽 Values 🛄

For practical design, smooth moment distributions are preferred. By selecting the smoothing option, the program can consider the smooth moment in slab design.

Element: Design results are displayed using the internal forces calculated at each node of elements. (no smoothing)

Avg. Nodal: Design results are displayed using the average internal nodal forces of the contiguous elements sharing the common nodes.

Element: Design results are produced for moments at each node of slab elements. (no smoothing) **Width:** Design result of slab elements at each node is produced using the average of the bending moments of the contiguous slab elements with the specified width.

Midas Information Technology Co., Ltd.

Procedure

Design > Design >
 Meshed Design >
 Slab Flexural Design

- 2 Check [Wood Armer Moment]
- Display the Wood Armer Moments in contour.
- Load Cases/ Combinations
 : ALL COBMINATION
- Check [Dir.1]

G Click [Apply]

Design Strength ≥ Required Strength

Adj

Strength

[Design strength of

flexural member]

 Φ (Nominal Strength) $\geq U$

1. Design Strength

□Flexural strength of meshed slab is calculated based on the doubly reinforced beam design method.

Doubly Reinforced: $M_{n1} = A_s' f_y (d - d')$ $M_{n2} = (A_s - A_s') f_y (d - \frac{a}{2})$ where, $a = \frac{(A_s - A_s') f_y}{0.85 f_{ck} b}$ $\Phi M_n = \Phi(M_{n1} - M_{n2}) = \Phi[A_s' f_y (d - d') + (A_s - A_s') f_y (d - \frac{a}{2})$

Cross Section

Es

Strain

[Design strength of

flexural member]

Design Strength \geq Required Strength

 Φ (Nominal Strength) $\geq U$

2.Strength reduction factor

Strength reduction factor needs to be calculated based on the tensile strain in extreme tension steel.

Other $\phi = 0.65 + 0.25[(1/c/d_t) - (5/3)]$

Fig. R9.3.2—Variation of ϕ with net tensile strain in extreme tension steel, ε_t , and c/d_t for Grade 60 reinforcement and for prestressing steel.

Strength reduction factor is uniformly applied as 0.9 in midas Gen.

[Design strength of

flexural member]

3. Minimum reinforcement of flexural members

4. Maximum reinforcement of flexural members

B.10.3 — General principles and requirements

B.10.3.3 — For flexural members and members subject to combined flexure and compressive axial load where ϕP_n is less than the smaller of **0.10** $f_c' A_g$ and ϕP_b , the ratio of reinforcement, ρ , provided shall not exceed 0.75 of the ratio ρ_b that would produce balanced strain conditions for the section under flexure without axial load. For members with compression reinforcement, the portion of ρ_b equalized by compression reinforcement need not be reduced by the 0.75 factor.

5. Minimum Spacing Limit

.

Rebar spacing shall not be less than the smaller of "3*slab thickness" and 18in.

Step

Procedure

[Wood Armer Moment]

6. Required Moment Strength calculated from Wood Armer moment

From the analysis results, following plate forces about the local axis are calculated

- mxx
- туу
- mxy

In order to calculate design forces in the reinforcement direction, angle α and ϕ will be taken as following figure:

x, y: local axis of plate element
 1, 2: reinforcement direction
 α: angle between local x-direction and reinforcement direction 1
 φ: angle between reinforcement direction 1 and reinforcement direction 2

Firstly, internal forces (mxx, myy and mxy) are transformed into the a-b coordinate system.

$$m_{a} = \frac{m_{xx} + m_{yy}}{2} + \frac{m_{xx} - m_{yy}}{2} \cos 2\alpha + m_{xy} \sin 2\alpha$$
$$m_{b} = \frac{m_{xx} + m_{yy}}{2} - \frac{m_{xx} - m_{yy}}{2} \cos 2\alpha - m_{xy} \sin 2\alpha$$
$$m_{ab} = -\frac{m_{xx} - m_{yy}}{2} \sin 2\alpha + m_{xy} \cos 2\alpha$$

Midas Information Technology Co., Ltd.

[Wood Armer Moment]

Then, Wood-Armer moments are calculated as follows:

$$\begin{bmatrix} [Bottom Rebar] \\ m_{ud1} = m_a - 2m_{ab} \cot \varphi + m_b \cot^2 \varphi + \left| \frac{m_{ab} - m_b \cot \varphi}{\sin \varphi} \right| \\ m_{ud2} = \frac{m_b}{\sin^2 \varphi} + \left| \frac{m_{ab} - m_b \cot \varphi}{\sin \varphi} \right| \\ \\ When m_{ud1} \leq 0 \text{ and } m_{ud2} > 0, \\ m_{ud1} = 0 \\ m_{ud2} = \max \left\{ 0, \frac{m_b + \left| (m_{ab} - m_b \cot \varphi)^2 / (m_a - 2m_{ab} \cot \varphi + m_b \cot^2 \varphi) \right|}{\sin^2 \varphi} \right\} \\ \\ When m_{ud1} > 0 \text{ and } m_{ud2} < 0, \\ m_{ud1} = \max \left\{ 0, m_a - 2m_{ab} \cot \varphi + m_b \cot^2 \varphi + \left| \frac{(m_{ab} - m_b \cot \varphi)^2}{m_b} \right| \right\} \\ m_{ud2} = 0 \\ \\ When m_{ud1} < 0 \text{ and } m_{ud2} < 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \end{bmatrix} \\ When m_{ud1} < 0 \text{ and } m_{ud2} < 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \\ When m_{ud1} < 0 \text{ and } m_{ud2} < 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \\ When m_{ud1} < 0 \text{ and } m_{ud2} < 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \\ When m_{ud1} < 0 \text{ and } m_{ud2} < 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \\ When m_{ud1} < 0 \text{ and } m_{ud2} > 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \\ When m_{ud1} < 0 \text{ and } m_{ud2} > 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \\ When m_{ud1} < 0 \text{ and } m_{ud2} > 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \\ When m_{ud1} < 0 \text{ and } m_{ud2} > 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \\ When m_{ud1} < 0 \text{ and } m_{ud2} > 0, \\ m_{ud1} = 0 \\ m_{ud2} = 0 \\ \\ When m_{ud2}$$

Procedure

Slab Shear Checking

Produce the two-way shear (punching shear) check results at the supports of slab elements or at concentrated loads and the oneway shear check results along the user-defined Shear Check Lines.

2 Click [Design Result]

Produce the detail punching shear design results of slab elements in a text format. If the plate elements of a certain critical perimeter are selected in the model view, the detail results will include the punching shear results of the selected elements. If none of the element has been selected, the most critical results will be plotted in the detail result text output.

Proceaure	P	ro	cec	lu	re
-----------	---	----	-----	----	----

[Shear strength] [Punching Shear Check(By CODE)] $\Phi Vn \geq Vu$

Vn = Vc + Vs

Where, Vc : nominal shear strength provided by concrete Vs : nominal shear strength provided by shear reinforcement

Shear strength reduction factor is applied as 0.75.

1. Shear strength of Concrete, Vc

$$V_{c} = \min \begin{cases} \Phi\left(2 + \frac{4}{\beta}\right)\lambda\sqrt{f_{ck}} \\ \Phi\left(2 + \frac{\alpha_{s}d}{b_{o}}\right)\lambda\sqrt{f_{ck}} \\ \Phi 4\lambda\sqrt{f_{ck}} \end{cases}$$

β: Ratio of the maximum to the minimum dimension of a column or wall where.

b_o: Critical perimeter

 α_s : 40(Interior column), 30(Edge column), 20(Corner column)

λ: 1.0 (normal weight concrete)

[Punching Shear Check(By CODE)]

Punching shear perimeter for calculating concrete shear strength

In this method, the program takes the axial force in the column supporting the slab as the shear force (V_u). The basic control perimeter is taken at a distance d/2 from the column face (as shown in the diagram below).

Maximum Shear Strength by Concrete (ACI318-11 11.1.3.1)

 $V_n \le 6\sqrt{f_{ck}}b_o d$ $V_c \le 2\lambda \sqrt{f_{ck}}b_o d$

In midas Gen, the above limitation is applied when slab thickness is larger than 200mm.

[Punching Shear Check(By CODE)]

2. Shear strength of reinforcement, Vs

$$V_{s} = \frac{A_{v}f_{y}d}{s}$$
$$V_{s,\min} = 4\sqrt{f_{ck}}b_{w}d$$

Shear rebar spacing limit

 $s \le 0.5d$ $s \le \begin{cases} 0.75d & \text{for } v_u \le 6\phi\lambda\sqrt{f_{ck}} \\ 0.50d & \text{for } v_u > 6\phi\lambda\sqrt{f_{ck}} \end{cases}$ $g \le 2d$

Minimum Shear Rebar Area

$$\frac{1}{2}\phi V_c < V_u \le \phi V_c$$

$$A_{v,\min} = 0.75\sqrt{f_{ck}} \frac{b_w s}{f_y} \qquad \text{but shall not be less than } (50b_w s) / f_y.$$

In midas Gen, required rebar area is calculated by "*Vs* = *Vn*- *Vc*". Shear rebar spacing limit and minimum shear rebar area are not applied.

[Punching Shear Check(By CODE)]

3. Required Shear Strength, Vu

Unbalanced moment between a slab and column by flexure

$$\gamma_v = (1 - \gamma_f)$$

Unbalanced moment between a slab and column by eccentricity of shear

 $\gamma_f = \frac{1}{1 + (2/3)\sqrt{b_1/b_2}}$

Factored shear stress

a	Area of	Modulus of c	critical section		
_e	section, Ac	J/c	J/c′	ι 	د
A	$(b_1 + 2b_2)d$	$\frac{b_1 d(b_1 + 6b_2) + d^3}{6}$	$\frac{b_1 d(b_1 + 6b_2) + d^3}{6}$	$\frac{b_1}{2}$	$\frac{b_1}{2}$
В	$2(b_1+b_2)d$	$\frac{b_1 d(b_1 + 3b_2) + d^3}{3}$	$\frac{b_1d(b_1+3b_2)+d^3}{3}$	$\frac{b_1}{2}$	$\frac{b_1}{2}$
С	$(2b_1+b_2)d$	$\frac{2b_1^2 d(b_1 + 2b_2) + d^3 (2b_1 + b_2)}{6b_1}$	$\frac{2b_1^2d(b_1+2b_2)+d^3(2b_1+b_2)}{6(b_1+b_2)}$	$\frac{b_1^2}{2b_1+b_2}$	$\frac{b_1(b_1+b_2)}{2b_1+b_2}$
D	$(b_1+b_2)d$	$\frac{b_1^2 d(b_1 + 4b_2) + d^3(b_1 + b_2)}{6b_1}$	$\frac{b_1^2 d(b_1 + 4b_2) + d^3(b_1 + b_2)}{6(b_1 + 2b_2)}$	$\frac{b_1^2}{2(b_1+b_2)}$	$\frac{b_1(b_1+2b_2)}{2(b_1+b_2)}$

[Punching Shear Check(By FEM)]

In these methods (The FEM Method), the Shear force along the critical section is taken and divided by the effective depth to calculate shear stress. Therefore there is no need to calculate **β** (Beta), to consider moment transferred to the column.

(There are 4 plate elements intersecting at nodes. The nodes are marked by nomenclature of Grid Lines. As the center node is denoted by B2, B on x-Axis and 2 on Y-Axis)

When slab is defined as the plate element, the program calculated stresses only at the nodes, in the analysis. So we have the stresses at B1, B2, C2 etc. (see the figure above) are calculated by the program.

Case 1 - To calculate stresses at the critical section that is u1 in the given figure, for example we take the point P in the figure which lies in a straight line. The stress at B1 and B2 are known. The values at these nodes are interpolated linearly to find the stress at point P.

Case 2- Now if the point lies in the curve such as the point Q, then the software will divide the curve into 6 parts. At each point such as Q a tangent which intersects B1-B2 and C2-B2. The value of stresses at T and V are determined by linear interpolation of stresses which are known at for T (at B1 and B2) and for V (at C2 and B2). After knowing stresses at T and V the stress at Q is determined by linear interpolation of stresses at T and V.

[Punching Shear Check(By FEM)]

(Method 1: Average by elements.)

In this method the stresses at all the critical points is determined. The critical points divide the critical section into segments. The average value for all these segments is determined by dividing the stresses at the two ends of the segment by 2. After determining the average value for each segment, **the maximum** average value from all of the segments is reported as the Stress value for the critical Section.

a,b are stresses at the segment ends.

Average value for the segment will be (a+b)/2, and such average value for each segment is determined.

[Punching Shear Check(By FEM)]

(Method 2: Average by Side)

In this method stresses at all critical points is determined and then average stress value is calculated by weighted mean.

To calculate weighted mean , For example we have 4 critical points a, b, c, d.

We divide the Critical section into 4 sides as shown in figure.

The weighted mean value for each side is determined and then the maximum value out of the 4 sides A, B, C, D is reported as the stress value.

Design > Design> RC Design > Serviceability Parameter

2 Select All

Click [Apply]

4 Unselect All

Slab deflection is verified as per the clause 9.5.3 of ACI318-11. This deflection limit can be entered by the user in Serviceability Parameter.

TABLE 9.5(b) - MAXIMUM PERMISSIBLE COMPUTED DEFLECTIONS

Type of member	Deflection to be considered	Deflection limitation
Flat roofs not supporting or attached to nonstructural elements likely to be damaged by large deflections	Immediate deflection due to live load L	ℓ/180 [°]
Floors not supporting or attached to nonstructural elements likely to be damaged by large deflections	Immediate deflection due to live load L	€/360
Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections	That part of the total deflection occurring after attachment of nonstructural elements (sum of the long-term	ℓ/480‡
Roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections	deflection due to all sustained loads and the immediate deflection due to any additional live $\mbox{load})^T$	<mark>ℓ/240</mark> §
*Limit not intended to safeguard against ponding. Ponding should be ch	necked by suitable calculations of deflection, including added de	flections due to ponded

water, and considering long-term effects of all sustained loads, camber, construction tolerances, and reliability of provisions for drainage.

[†]Long-term deflection shall be determined in accordance with 9.5.2.5 or 9.5.4.3, but may be reduced by amount of deflection calculated to occur before attachment of nonstructural elements. This amount shall be determined on basis of accepted engineering data relating to time-deflection characteristics of members similar to those being considered.

[‡]Limit may be exceeded if adequate measures are taken to prevent damage to supported or attached elements.

SLimit shall not be greater than tolerance provided for nonstructural elements. Limit may be exceeded if camber is provided so that total deflection minus camber does not exceed limit. ДX

kN ▼ m ▼ 🕸 🐮 🕨 non ▼ ? 🚺 1 ‡ / 2

Procedure

Design > Design >
 Meshed Design >
 Slab Serviceability Checking

Check [Uncracked] and Active Long-term Deflection and Check [Creep].

> Calculate the deflection for the uncracked section and compare it with the allowable deflection. Deflection for the cracked section is not supported in the current version.

3 Select [Ratio]

4 Click [Design Result]

G Click [Apply]

Wall Design

Wall design forces and tension reinforcements are obtained in an element subject to in-plane orthogonal stress.

The tension reinforcement in an element subject to in-plane orthogonal stresses σ_{Edx} , σ_{Edy} and τ_{Edxy} can be calculated as shown below. Compressive stresses should be taken as positive, with $\sigma_{Edx} > \sigma_{Edy}$, and the direction of reinforcement should coincide with the x and y axes.

 $f_{tdx} = \rho_x f_{yd}$ and $f_{tdy} = \rho_y f_{yd}$

where, px and py are the geometric reinforcement ratios, along the x and y axes respectively.

In locations where σ_{Edy} is tensile or $\sigma_{Edx} \cdot \sigma_{Edy} \leq \tau^2_{Edxy}$, reinforcement is required. The optimum reinforcement, indicated by superscript ', and related concrete stress are determined by:

For
$$\sigma_{Edx} \leq |\tau_{Edxy}|$$

 $f'_{tdx} = |\tau_{Edxy}| - \sigma_{Edx}$
 $f'_{tdy} = |\tau_{Edxy}| - \sigma_{Edy}$
 $\sigma_{cd} = 2|\tau_{Edy}|$
For $\sigma_{Edx} > |\tau_{Edxy}|$
 $f'_{tdx} = 0$
 $f'_{tdy} = \frac{\tau_{Edxy}^2}{\sigma_{Edx}} - \sigma_{Edy}$
 $\sigma_{cd} = \sigma_{Edx}(1 + (\frac{\tau_{Edxy}}{\sigma_{Edx}})^2)$

Wall design using wall element is also supported in midas Gen.

Reference: Nielsen, M.P., Limit Analysis and Concrete Plasticity, Second Edition, CRC Press, USA, 1999

Wall Design

Minimum reinforcement for vertical and horizontal rebar is considered in accordance to ACI318-11, 14.3.2 and 14.3.3. Maximum ratio of of vertical reinforcement are applied as "0.04" and it can be modified in Design > Concrete Design Parameter > Limiting Maximum rebar Ratio.

[Minimum ratio of vertical reinforcement area]

14.3.2 — Minimum ratio of vertical reinforcement area to gross concrete area, ρ_{ℓ} , shall be:

(a) 0.0012 for deformed bars not larger than No. 5 with $f_{\rm V}$ not less than 60,000 psi; or

(b) 0.0015 for other deformed bars; or

(c) 0.0012 for welded wire reinforcement not larger than W31 or D31.

[Minimum ratio of horizontal reinforcement area]

14.3.3 — Minimum ratio of horizontal reinforcement area to gross concrete area, $\rho_{t'}$ shall be:

(a) 0.0020 for deformed bars not larger than No. 5 with f_v not less than 60,000 psi; or

(b) 0.0025 for other deformed bars; or

(c) 0.0020 for welded wire reinforcement not larger than W31 or D31.

[Maximum ratio of vertical reinforcement area]

0.04

Procedure

4-8. Wall design (4)

Procedure

Design > Design >
 Meshed RC Design >
 Wall Design

2 Click [Design Result]

3 Click [Design Force]

View Structure Node/Ele	ment Properties	Boundary L	oad Analysis I	Results Pu	shover De	esign Qu	iery Tools	Help Y -
Eurocode3:05 × A	CB18-11 S	RC79 SRC Design ×	I II		Q Steel Design	n 🔮Q S	iteel Design Ioncrete Design I	
General Design	Meshed Design -		Displacement Optimal Design	Section for Design	Q SRC Design		RC Design -	Perform Batch Design
General	Design		Section		Design Resu	ilt l	Design Forces	Batch
🗄 🖛 - 🖻 - 🖡 📳 🦉 I 📆 🔜 🔜 🕅	🖹 🐚 🕑 🖻 🐒 🤤	, ⊑, X ® •	R	- <i>F</i>	*	1.12	🖴 🖸 🕌 I 🕫	i 🗰 \land 🔂 😌 🜉 🖳 I 🔉 🛤 松 i 🖏 🔓 🛅
Tree Menu 🕈	🗙 🖣 🚺 Model Vie	w 🔯 Meshe	d Wall Design Force	<				
Design	Elem Node	LCB	ftd1 LCB	ftd2 (kN/m²)	LCB	Sig_cd		
Wall Design 👻	5135 2344	cLCB1	0.00 cLCB	1 17.65	cLCB1	215.06	-	
Load Combinations	5135 2343	cLCB1	0.00 cLCB	1 0.00	cLCB1	179.77	-	
ALL COMBINATION 🗸	5135 6748	cLCB1	128.63 CLCB	1 79.31	cLCB1	217.36	-	
	5136 2342	cLCB1	0.00 cLCB	1 0.00	cLCB1	182.60	-	
🖱 Element 💿 Avg, Nodal	5136 6746	cLCB1	121.48 cLCB	1 106.53	cLCB1	262.95		
e Element	5136 6747	cLCB1	95.26 cLCB 0.00 cLCB	1 17.31	cLCB1	103.38	-	
	5137 6721	cLCB1	4.51 cLCB	1 0.00	cLCB1	2194.92		
Horizontal Vertical Sig ad (appareta)	5137 6757 5137 6756	cLCB1 cLCB1	13.77 cLCB 0.00 cLCB	1 0.00	cLCB1 cLCB1	2239.78 2095.20		Text Editor - [Untitled.rcs]
Tues of Diseles	5138 6750	cLCB1	122.28 cLCB	1 160.95	cLCB1	350.06	File I	Edit View Window Help
Contour Contour	5138 2345	cLCB1 cLCB1	0.00 CLCB	1 137.04 1 17.65	CLCB1 CLCB1	330.70 215.06		
Values	5138 6749	cLCB1	128.63 cLCB	1 79.31	cLCB1	217.36	00001	□ ↔ Ľ, ⊟ ∞ ·□ •□ ⊨ ⊨ ⊨ ⊨ ⊨ ⊨ ⊨ /• /• /• /•
	5139 2346	cLCB1	252.35 CLCB	1 186.18	cLCB1	462.92	00002 -	mides Gon - PC-Most Flowurst Well Docign [#C1318-11 1
⊖ Rebar	5139 6752	cLCB1	0.00 cLCB	1 118.86	cLCB1	416.97	00004 =	
As_reg (m 2/m) Bho reg	5140 6761	cLCB1	0.00 CLCB	1 0.00	cLCB1	1392.62	00005	
Resistance Ratio	5140 2336	cLCB1	0.00 cLCB	1 0.00	cLCB1	1375.14	00007 =	[[[+1]] MESHED WALL DESIGN MAXIMUM RESULT DATA : DOMAIN 2-[1].
Design Result	5140 6743	cLCB1	0.00 CLCB	1 0.00	cLCB1	1366.02	00009 =	
Design Hesuit	5141 6710	cLCB1 cLCB1	0.00 cLCB 4.03 cLCB	1 109.04 1 158.49	cLCB1 cLCB1	370.87	00011	lefernation of Demonstrate
Design Force	5141 6758	cLCB1	0.00 cLCB	1 0.00	cLCB1	1067.48	00012 00013	Information of Parameters. Elem No. : 26189
Update Rebar	5141 6683	cLCB1 cLCB1	0.00 CLCB 0.00 CLCB	1 0.00 1 0.00	cLCB1 cLCB1	1694.43 1720.43	00014	LCB No. : 1 Materials : fc = 31026.4175 KPa.
Apply Close	5142 6743	cLCB1	0.00 cLCB	1 0.00	cLCB1	1366.02	00016	Fy = 275790.3776 KPa. Thickness : t = 0.2500 m
	5142 2335	cLCB1	0.00 CLCB	1 0.00	cLCB1	1254.69	00018	Covering : Dw = 0.0635 m.
	5143 2348	cLCB1	14.29 cLCB	1 0.00	cLCB1	882.27	00019	Sig_y = -338.5435 KPa.
	5143 6753	cLCB1	0.00 CLCB	1 0.00	cLCB1	1736.87	00021	Tau_xy = -222.5199 KPa.
	5143 2349	cLCB1	0.00 cLCB	1 0.00	cLCB1	1490.05	00023	 Required Reinforcement and Concrete stress. (Sig v in Tension or Sig v+Sig v <= Tau vv^2> Rebar Required!)
	5144 6751	cLCB1	9.97 cLCB	1 231.89	cLCB1	421.14	00025	$ftx = Tau_xy - Sig_x = 391.2958$ KPa.
	5144 2346	cLCB1 cLCB1	206.47 cLCB 76.37 cLCB	1 250.47 1 137.04	cLCB1 cLCB1	439.14 330.70	00028	ιιν = μαυ_XY - 319_Y = 301.0034 ΝΡα.
	Meshed Wa	Design Force /	/				00028 00029	f tx = 561.0634 KPa. f'ty = 391.2958 KPa.
	Message Window						00030	Sig_c = 2* Tau_xy = 445.0398 KPa.
	*** End Design b	y ACI318-11				_	00032	rhoy_req = 0.0015
	Total Design	/Checking Tim	e: 10.11 [se	c]			00034	There is a constant of the Data is
Trae Manu Tark Pane							00035	 Iensile Strength provided by Reinforcement. b = 1.0 m. (by Unit Length).
For Help, press F1		and message A	Analysis Message /		Node-	22091 U: 56	00037 00038	Asx_Req = 0.0006 m^2/m. (0.0006 m^2/m.) Asy Reg = 0.0004 m^2/m. (0.0004 m^2/m.)
					, modes		00039	Asx_use = 0.0006 m ² /m. (0.0006 m ² /m.)
							00041	ftnx = Asx_use/(b+t)+fy = 700.5076 KPa.
							00042 00043	ttny = Asy_use/(b+t)+ty = 700.5076 KPa.
							00044	Check the Ratio. Rein Barx : #4 @203 (Hor.)
							00046	Rein. Bar_y : #4 0203 (Ver.)