
Module Checklist

Infrastructure as Code
with Terraform

By Techworld with Nana

Video Overview

★ Introduction to Terraform

★ Install Terraform & Local Setup

★ Providers

★ Resources & Data Sources

★ Change/Destroy Resources

★ More Terraform commands

★ Terraform State

★ Terraform Output

★ Variables

★ Environment Variables

★ Initialize Git Repository

★ Demo Project 1: Automate your AWS Infrastructure - Part 1

★ Demo Project 1: Automate your AWS Infrastructure - Part 2

★ Demo Project 1: Automate your AWS Infrastructure - Part 3

★ Provisioners

★ Modules - Part 1

★ Modules - Part 2

★ Modules - Part 3

★ Demo Project 2: Terraform & AWS EKS - Part 1

★ Demo Project 2: Terraform & AWS EKS - Part 2

★ Demo Project 2: Terraform & AWS EKS - Part 3

★ Demo Project 3: Complete CI/CD with Terraform - Part 1

★ Demo Project 3: Complete CI/CD with Terraform - Part 2

★ Demo Project 3: Complete CI/CD with Terraform - Part 3

★ Terraform Remote State

Video Overview

Demo Projects

Git Project https://gitlab.com/nanuchi/terraform-learn

https://gitlab.com/nanuchi/terraform-learn

Check your progress... 1/11

Introduction to Terraform

❏ Watched video

Install Terraform & Local Setup

❏ Watched video
❏ Demo executed - Install Terraform:

❏ Terraform installed
❏ “terraform” project created

Useful Links:

● Guide to install Terraform for different OS:
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://www.terraform.io/downloads.html

● Visual Studio Code Installation: https://code.visualstudio.com/download

Providers

❏ Watched video
❏ Demo executed:

❏ Use AWS Provider

Useful Links:

● Browse Terraform Providers: https://registry.terraform.io/browse/providers
● Project: https://gitlab.com/nanuchi/terraform-learn/-/tree/master

https://learn.hashicorp.com/tutorials/terraform/install-cli
https://www.terraform.io/downloads.html
https://code.visualstudio.com/download
https://registry.terraform.io/browse/providers
https://gitlab.com/nanuchi/terraform-learn/-/tree/master

Check your progress... 2/11

Resources and Data Sources

❏ Watched video
❏ Demo executed

❏ Created new VPC
❏ Created Subnet in that new VPC
❏ Created new Subnet in existing default VPC (with data)

Useful Links:

● Project: https://gitlab.com/nanuchi/terraform-learn/-/tree/master

Change and destroy resources

❏ Watched video
❏ Demo executed :

❏ added tags to existing resources
❏ removed tag
❏ destroyed a resource

Useful Links:

● Project: https://gitlab.com/nanuchi/terraform-learn/-/tree/master

More terraform commands

❏ Watched video
❏ Demo executed :

❏ Executed preview command
❏ Applied config file without preview
❏ Destroyed complete infrastructure

Useful Links:

● Project: https://gitlab.com/nanuchi/terraform-learn/-/tree/master

https://gitlab.com/nanuchi/terraform-learn/-/tree/master
https://gitlab.com/nanuchi/terraform-learn/-/tree/master
https://gitlab.com/nanuchi/terraform-learn/-/tree/master

Check your progress... 3/11

Terraform State

❏ Watched videos
❏ Demo executed

Useful Links:

● Project: https://gitlab.com/nanuchi/terraform-learn/-/tree/master

Terraform Output

❏ Watched video
❏ Demo executed - define output values

Useful Links:

● Project: https://gitlab.com/nanuchi/terraform-learn/-/tree/master

Variables

❏ Watched video
❏ Demo executed:

❏ Passed variables in 3 different ways
❏ Restricted value of variable by defining a type

Useful Links:

● Everything about Input Variables:
https://www.terraform.io/docs/configuration/variables.html

● Project: https://gitlab.com/nanuchi/terraform-learn/-/tree/master

https://gitlab.com/nanuchi/terraform-learn/-/tree/master
https://gitlab.com/nanuchi/terraform-learn/-/tree/master
https://www.terraform.io/docs/configuration/variables.html
https://gitlab.com/nanuchi/terraform-learn/-/tree/master

Check your progress... 4/11

Environment variables

❏ Watched video
❏ Demo executed:

❏ Used environment variables to extract AWS credentials
❏ Set variable using TF_VAR_name environment variable

Useful Links:

● Custom Environment variables:
https://www.terraform.io/docs/commands/environment-variables.html

● Project: https://gitlab.com/nanuchi/terraform-learn/-/tree/master

Initialize Git Repository

❏ Watched video
❏ Demo executed:

❏ Created Remote Git Repository for Terraform Configuration Files
❏ Connected remote Git Repository with local project
❏ Added .gitignore files

Best Practices so far:

● Security: Don’t include sensitive data in the Terraform configuration file! Because it
will be checked in in your git repository.

● Use terraform apply with the configuration file to make infrastructure changes,
instead of executing commands directly. Especially when you work in a team.
Because otherwise, infrastructure’s current state and the desired state represented
in the configuration file do not correspond anymore!

https://www.terraform.io/docs/commands/environment-variables.html
https://gitlab.com/nanuchi/terraform-learn/-/tree/master

Check your progress... 5/11

Demo Project 1: Automate AWS Infrastructure (Part 1, 2 + 3)

❏ Watched video
❏ Demo executed:

❏ Created VPC & Subnet
❏ Created custom Route Table
❏ Added Subnet Association with Route Table
❏ Configured Default/Main Route Table
❏ Created Security Group
❏ Configured Default Security Group
❏ Created EC2 Instance (Fetch AMI, Create ssh key-pair and download .pem

file and restrict permission)
❏ SSH into EC2 instance
❏ Configured ssh key pair in Terraform config file
❏ Created EC2 Instance

- Fetch AMI
- Create ssh key-pair and download .pem file
- restrict permission

❏ SSH into EC2 instance
❏ Automated ssh key-pair - configured ssh key pair in Terraform config file
❏ Configured Terraform to install Docker and run nginx image
❏ Extract shell commands to own shell script
❏ Accessed nginx through Browser

Terraform & AWS

Check your progress... 6/11

Demo Project 1: Automate AWS Infrastructure (Part 1, 2 + 3)

Useful Links:

● Project Repo - Provision EC2 with new components:
https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/deploy-to-ec2

● Project Repo - Provision EC2 with default components:
https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/deploy-to-ec2-default-co
mponents

● EC2 Instance Resource:
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance

● Data Sources Filtering:
https://registry.terraform.io/providers/hashicorp/oci/latest/docs/guides/filters

● Generate a new ssh key: https://www.ssh.com/ssh/keygen/

Best Practices:

● With Terraform: Create own VPC and leave the defaults created by AWS as is
● Security: Store your .pem file ssh private key in .ssh folder. Restrict permission

(only read for our User) on .pem file
● Security: Don’t hardcode public_key in Terraform config file!

https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/deploy-to-ec2
https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/deploy-to-ec2-default-components
https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/deploy-to-ec2-default-components
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance
https://registry.terraform.io/providers/hashicorp/oci/latest/docs/guides/filters
https://www.ssh.com/ssh/keygen/

Check your progress... 7/11

Provisioners

❏ Watched video
❏ Demo executed:

❏ Used “remote-exec” provisioner
❏ Used “file” provisioner
❏ Used “local-exec” provisioner

Useful Links:

● Project Repo:
https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/provisioners

Best Practices:

● Use configuration management tools instead of Terraform provisioners

Modules (Part 1, 2, 3)

❏ Watched videos
❏ Demo executed:

❏ Extracted output values, variables and providers into its own file
❏ Created subnet module and used it in root config file
❏ Created webserver module and used it in root config file
❏ Executed terraform apply successfully

Useful Links:

● Module Creation - Recommended Pattern:
https://learn.hashicorp.com/tutorials/terraform/pattern-module-creation?in=terraf
orm/modules

● Project Repo: https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/modules

Best Practices:

● Terraform Project Structure: Own .tf file for providers, variables, data sources and
output values

● Modules: encapsulate configuration into distinct logical components

https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/provisioners
https://learn.hashicorp.com/tutorials/terraform/pattern-module-creation?in=terraform/modules
https://learn.hashicorp.com/tutorials/terraform/pattern-module-creation?in=terraform/modules
https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/modules

Check your progress... 8/11

Demo Project 2: Terraform & AWS EKS (Part 1, 2 & 3)

❏ Watched videos
❏ Demo executed:

❏ Created the VPC by using the VPC module
❏ Created the EKS cluster and worker nodes by using the EKS module
❏ Configured Kubernetes provider to authenticate with K8s cluster
❏ Applied configurations
❏ Deployed nginx Application/Pod
❏ Terraform destroy (IMPORTANT: delete all your components, if you don’t

want to get charged for a running cluster!)

Useful Links:

● Project Repo: https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/eks
● VPC Module:

https://registry.terraform.io/modules/terraform-aws-modules/vpc/aws/latest
● EKS Cluster Module:

https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/latest
● Kubernetes Provider:

https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs

Terraform & AWS EKS

https://gitlab.com/nanuchi/terraform-learn/-/tree/feature/eks
https://registry.terraform.io/modules/terraform-aws-modules/vpc/aws/latest
https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/latest
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs

Check your progress... 9/11

Demo Project 3: CI/CD with Terraform (Part 1, 2 & 3)

❏ Watched videos
❏ Demo executed:

❏ Created SSH key pair for EC2 Instance
❏ Created Credential in Jenkins
❏ Installed Terraform inside Jenkins Container
❏ Created Terraform configuration files to provision an ec2 server
❏ Created entry-script.sh file to install docker, docker-compose and start

containers through docker-compose command
❏ Adjusted Jenkinsfile to include provision and deployment stage
❏ Included docker login to be able to pull Docker Images from private

Docker repository
❏ Executed CI/CD pipeline successfully

Useful Links:

● Project Repo:
https://gitlab.com/nanuchi/java-maven-app/-/tree/feature/sshagent-terraform

● Install Terraform: https://learn.hashicorp.com/tutorials/terraform/install-cli
● Install docker-compose: https://docs.docker.com/compose/install/
● Terraform environment variables:

https://www.terraform.io/docs/commands/environment-variables.html

Best Practice:

● Include TF configuration files in your project folder

Terraform & Jenkins

https://gitlab.com/nanuchi/java-maven-app/-/tree/feature/sshagent-terraform
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://docs.docker.com/compose/install/
https://www.terraform.io/docs/commands/environment-variables.html

Check your progress... 10/11

Demo Project 3: CI/CD with Terraform (Part 1, 2 & 3)

Useful Commands

● Install Terraform in Jenkins:

add HashiCorp key

curl -fsSL https://apt.releases.hashicorp.com/gpg | apt-key add -

install apt-add-repo command

apt-get install software-properties-common

add the official HashiCorp Linux repository

apt-add-repository "deb [arch=amd64] https://apt.releases.hashicorp.com

$(lsb_release -cs) main"

update and install

apt-get update && apt-get install terraform

verify

terraform -v

Check your progress... 11/11

Terraform Remote State

❏ Watched video
❏ Demo executed:

❏ Configured Remote Storage

Useful Links:

● Project Repo:
https://gitlab.com/nanuchi/java-maven-app/-/tree/feature/sshagent-terraform

● Backends: https://www.terraform.io/docs/backends/
● Remote State: https://www.terraform.io/docs/state/remote.html
● AWS S3: https://aws.amazon.com/s3/

Best Practice:

● Use Remote Terraform State when working in a team
● Use S3 Bucket Versioning
● Security: Enable encryption for the S3 Bucket

https://gitlab.com/nanuchi/java-maven-app/-/tree/feature/sshagent-terraform
https://www.terraform.io/docs/backends/
https://www.terraform.io/docs/state/remote.html
https://aws.amazon.com/s3/

More Resources

More Best Practices

● Use _ (underscore) instead of - (dash) in all resource names, data source

names, variable names, outputs etc.

● Only use lowercase letters and numbers

● Use remote state, instead of on your laptop or in Git

● Use a consistent structure and naming convention

● Don’t hardcode values as much as possible - pass as variables or use data

sources to get a value

More Resources...

