Homework \#1

Note: Some of these problems are taken from Orbital Mechanics for Engineering Students by Howard Curtis

1. If \boldsymbol{R}, in meters, is given by $\boldsymbol{R}=3 t^{4} \widehat{\boldsymbol{I}}+2 t^{3} \widehat{\boldsymbol{J}}+9 t^{2} \widehat{\boldsymbol{K}}$, where t is time in seconds, calculate \dot{R} at $\mathrm{t}=2 \mathrm{sec}$.
2. A satellite is in a circular, 350 km orbit (i.e., it is 350 km above the earth's surface).

Calculate
(a) the speed in km / s;
(b) the period.
3. An unmanned satellite orbits the earth with a perigee radius of 7000 km and an apogee radius of 70000 km . Calculate
(a) the eccentricity of the orbit;
(b) the semimajor axis of the orbit (km);
(c) the period of the orbit (hours);
(d) the specific energy (E) of the orbit $\left(\mathrm{km}^{2} / \mathrm{s}^{2}\right)$;
(e) the true anomaly at which the altitude is 1000 km (degrees);
(f) the speed at perigee and apogee (km / s).
4. A satellite is launched into earth orbit at an altitude of 640 km with a speed of $9.2 \mathrm{~km} / \mathrm{s}$ and a flight path angle of 10°. Calculate the true anomaly of the launch point and the period of the orbit.
5. A satellite is in a circular orbit at an altitude of 320 km above the earth's surface. If an onboard rocket provides a delta-v (velocity increase) of $500 \mathrm{~m} / \mathrm{s}$ in the direction of the satellite's motion, calculate the altitude of the new orbit's apogee.

