
PEARSON EDEXCEL INTERNATIONAL GCSE (9 –1)

COMPUTER SCIENCE
Student Book
David Waller, Chris Charles, Pete Dring, Alex Hadwen-Bennett, Jason Welch, Shaun Whorton
Series Editor: Ann Weidmann

www.pearson.com/international-schools

Pearson Edexcel International GCSE (9–1) Computer Science provides
comprehensive coverage of the new specifi cation and is designed to supply
students with the best preparation possible for the examination:

• Written by highly experienced Computer Science teachers and authors
• Content is mapped to the specifi cation to provide comprehensive coverage
• Learning is embedded with activities, revision and exam practice throughout
• Signposted transferable skills
• Reviewed by a language specialist to ensure the book is written in a clear

and accessible style
• Glossary of key Computer Science terminology
• eBook included

An online Teacher Resource Pack (ISBN: 9781292306162) provides further
planning, teaching and assessment support.

For Pearson Edexcel International GCSE (9–1) Computer Science specifi cation
(4CP0) for fi rst teaching 2017.

PE
A

R
SO

N
 E

D
E

X
C

E
L IN

T
E

R
N

AT
IO

N
A

L G
C

SE
 (9 –1)

COMPUTER SCIENCE Student B
ook

PEARSON EDEXCEL INTERNATIONAL GCSE (9 –1)

COMPUTER SCIENCE
Student Book
David Waller, Chris Charles, Pete Dring, Alex Hadwen-Bennett, Jason Welch, Shaun Whorton
Series Editor: Ann Weidmann

eBook
included

INFORMATION AND
COMMUNICATION
TECHNOLOGY
Student Book
ISBN: 9780435188931

INFORMATION AND

CVR_iG_Computer_Science_SB_10220.indd 1-3CVR_iG_Computer_Science_SB_10220.indd 1-3 27/05/2020 15:1027/05/2020 15:10

SAM
PLE

PEARSON EDEXCEL INTERNATIONAL
GCSE (9–1)

COMPUTER SCIENCE

SERIES EDITOR
Ann Weidmann

David Waller
Chris Charles
Pete Dring
Alex Hadwen-Bennett
Jason Welch
Shaun Whorton

Student Book

F01 IGCSE Computer Science SB2 Global 10220 Contents.indd 1 23/05/20 5:28 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

Published by Pearson Education Limited, 80 Strand, London, WC2R 0RL.

https://www.pearson.com/international-schools

Copies of official specifications for all Pearson Edexcel qualifications may be found
on the website: https://qualifications.pearson.com

Text © Pearson Education Limited 2020
Designed by Pearson Education Limited 2020
Typeset by © SPi Global
Edited by Hillary Coaster and Sarah Wright
Original illustrations © Pearson Education Limited 2020
Picture research by Integra
Cover design © Pearson Education Limited 2020
With thanks to Sam Hartburn

The right of David Waller, Chris Charles, Pete Dring, Alex Hadwen-Bennett, Jason
Welch, Shaun Whorton to be identified as the authors of this work has been
asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

First published 2020

22 21 20
10 9 8 7 6 5 4 3 2 1

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 978 1 292 31022 0

Copyright notice
All rights reserved. No part of this publication may be reproduced in any form or by
any means (including photocopying or storing it in any medium by electronic means
and whether or not transiently or incidentally to some other use of this publication)
without the written permission of the copyright owner, except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency, 5th Floor, Shackleton House,
4 Battlebridge Lane, London, SE1 2HX (www.cla.co.uk). Applications for the copyright
owner’s written permission should be addressed to the publisher.

Printed in Slovakia by Neografia

Acknowledgements

Text Credits
Loon LLC: Extracts from Loon LLC, © Loon LLC, 256; McKinsey & Company:
Stefan Heck, Sri Kasa, Dickon Pinner, Creating Value in the Semiconductor
industry, © 2011, McKinsey & Company, 264.

Image Credits
(key: b-bottom; c-center; l-left; r-right; t-top)

Cover Image: Shutterstock/PopTika

123RF: Anton Starikov/123RF 160bc, Jan Mikš/123RF 54, Kbuntu/123RF 214,
Lajo_2/123RF 71, Scyther5/123RF 123, Scanrail/123RF 238, Stockyimages/
123RF 69; Alamy Stock Photo: Jonathan Ball/Alamy Stock Photo 168r, Martin
Moxter/imageBROKER/Alamy Stock Photo 248, Paul Broadbent/Alamy Stock
Photo 168l, Richard Levine/Alamy Stock Photo 52t, Stuart Kinlough/Alamy
Stock Photo 2, 32, 108, 158, 200, 242; Python Software Foundation: Copyright
©2001-2019. Python Software Foundation 51, 94, 96, 101; Shutterstock: Adisa/
Shutterstock 160tl, Asharkyu/Shutterstock 245, Anton Gvozdikov/Shutterstock 265,
Burlingham/Shutterstock 34, Baloncici/Shutterstock 106, vii, Bloomicon/
Shutterstock 160br, Brian A Jackson/Shutterstock 175, 226, Brainpencil/
Shutterstock 181, Cristi180884/Shutterstock 125, Chrisdorney/Shutterstock 166,
Crisp/Shutterstock 185, Cybrain/Shutterstock 267t, Cobalt88/Shutterstock 234,
DavidTB/Shutterstock 24, Dja65/Shutterstock 160tc, D-VISIONS/Shutterstock 163,
Dny3d/Shutterstock 234, ESB Professional/Shutterstock 85, Evgeny Karandaev/
Shutterstock 211, Gaby Kooijman/Shutterstock 52b, Gorodenkoff/Shutterstock 172,
GraphicINmotion/Shutterstock 268t, Hxdbzxy/Shutterstock 258, Jerry Zitterman/
Shutterstock 37, Joshua Davenport/Shutterstock 7, Kavione/Shutterstock 160tr,
Luisa Leal Photography/Shutterstock 160bl, Maksym Kapliuk/Shutterstock 25,
Michaeljung/Shutterstock 65, Mmaxer/Shutterstock 219, Moomchak V. Design/
Shutterstock 268b, Nito/Shutterstock 17, Nikita G. Bernadsky/Shutterstock 266b,
Nobeastsofierce/Shutterstock 267b, OlegDoroshin/Shutterstock 5, vii, Platslee/
Shutterstock 129, 142, Pakhnyushchy/Shutterstock 160cl, Phonlamai Photo/
Shutterstock 224, Paul Fleet/Shutterstock 266t, Silverkblackstock/Shutterstock
184, Shutterstock 93, Thinglass/Shutterstock 248, Trong Nguyen/Shutterstock
238, TY Lim/Shutterstock 4, vii, Vlad Kochelaevskiy/Shutterstock 177, 187,
Volodymyr Krasyuk/Shutterstock 235, Wright Studio/Shutterstock 144, Xfilephotos/
Shutterstock 237.

Endorsement statement
In order to ensure that this resource offers high-quality support for the associated
Pearson qualification, it has been through a review process by the awarding
body. This process confirmed that this resource fully covers the teaching and
learning content of the specification at which it is aimed. It also confirms that it
demonstrates an appropriate balance between the development of subject skills,
knowledge and understanding, in addition to preparation for assessment.

Endorsement does not cover any guidance on assessment activities or processes
(e.g. practice questions or advice on how to answer assessment questions)
included in the resource, nor does it prescribe any particular approach to the
teaching or delivery of a related course.

While the publishers have made every attempt to ensure that advice on the
qualification and its assessment is accurate, the official specification and
associated assessment guidance materials are the only authoritative source of
information and should always be referred to for definitive guidance.

Pearson examiners have not contributed to any sections in this resource relevant to
examination papers for which they have responsibility.

Examiners will not use endorsed resources as a source of material for any
assessment set by Pearson. Endorsement of a resource does not mean that the
resource is required to achieve this Pearson qualification, nor does it mean that it
is the only suitable material available to support the qualification, and any resource
lists produced by the awarding body shall include this and other appropriate
resources.

F01 IGCSE Computer Science SB2 Global 10220 Contents.indd 2 22/05/20 6:00 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

iiiCONTENTS

COURSE STRUCTURE� iv

ABOUT THIS BOOK� vi

ASSESSMENT OVERVIEW� viii

UNIT 1: PROBLEM SOLVING� 2

UNIT 2: PROGRAMMING� 32

UNIT 3: DATA� 108

UNIT 4: COMPUTERS� 158

UNIT 5: COMMUNICATION AND THE INTERNET� 200

UNIT 6: THE BIGGER PICTURE� 242

EXAM PREPARATION� 272

APPENDICES � 291

GLOSSARY� 299

INDEX� 306

F01 IGCSE Computer Science SB2 Global 10220 Contents.indd 3 23/05/20 5:58 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

iv COURSE STRUCTURE

PROBLEM
SOLVING� 2

DATA� 108PROGRAMMING� 32

  1.	UNDERSTANDING
ALGORITHMS � 4

  2.	CREATING ALGORITHMS � 12

  3.	SORTING AND SEARCHING
ALGORITHMS� 15

  4.	DECOMPOSITION AND
ABSTRACTION� 23

	 UNIT QUESTIONS� 29

12.	BINARY� 110

13.	DATA REPRESENTATION� 125

14.	DATA STORAGE
AND COMPRESSION� 136

15.	ENCRYPTION� 144

	 UNIT QUESTIONS� 155

  5.	DEVELOP CODE� 34

  6.	MAKING PROGRAMS
EASY TO READ� 51

  7.	STRINGS� 54

  8.	DATA STRUCTURES� 62

  9.	INPUT/OUTPUT� 70

10.	SUBPROGRAMS	� 82

11.	TESTING AND
EVALUATION	� 92

	 UNIT QUESTIONS	� 106

F01 IGCSE Computer Science SB2 Global 10220 Contents.indd 4 20/05/20 7:25 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

THE BIGGER
PICTURE� 242

COMPUTERS� 158 COMMUNICATION
AND THE
INTERNET� 200

16.	MACHINES AND
COMPUTATIONAL
MODELS� 160

17.	HARDWARE� 165

18.	LOGIC� 181

19.	SOFTWARE� 187

20.	PROGRAMMING
LANGUAGES� 194

	 UNIT QUESTIONS� 198

21.	NETWORKS� 202

22.	NETWORK SECURITY� 221

23.	THE INTERNET AND
THE WORLD WIDE WEB� 233

	 UNIT QUESTIONS� 240

24.	COMPUTING AND THE
ENVIRONMENTAL IMPACT
OF TECHNOLOGY� 244

25.	PRIVACY� 250

26.	DIGITAL INCLUSION� 255

27.	PROFESSIONALISM� 258

28.	COMPUTING AND THE
LEGAL IMPACT OF
TECHNOLOGY� 260

29.	CURRENT AND
EMERGING TRENDS� 264

	 UNIT QUESTIONS� 271

APPENDICES� 291

APPENDIX 1
COMMAND WORDS� 291

APPENDIX 2
FLOWCHART SYMBOLS� 293

APPENDIX 3 PSEUDOCODE
COMMAND SET� 294

GLOSSARY� 299

INDEX� 306

EXAM
PREPARATION� 272

PAPER 1: PRINCIPLES
OF COMPUTER SCIENCE� 272

PAPER 2: APPLICATION
OF COMPUTATIONAL
THINKING� 283

vCOURSE STRUCTURE

F01 IGCSE Computer Science SB2 Global 10220 Contents.indd 5 20/05/20 7:25 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

vi ABOUT THIS BOOK

ABOUT THIS BOOK
This book is written for students following the Pearson
Edexcel International GCSE (9–1) Computer Science
specification and covers both years of the course.

The course has been structured so that teaching and learning
can take place in any order, both in the classroom and in any
independent learning. The book contains six units that match
the six areas of content in the specification: Problem Solving,
Programming, Data, Computers, Communication and the
Internet, The Bigger Picture.

Each unit is split into multiple sections to break down
content into manageable chunks and to ensure full
coverage of the specification.

Each unit features a mix of learning and activities.
Summary questions at the end of each chapter help you
to put learning into practice and prepare for the exam.

Paper 1 is Principles of Computer Science and Paper 2 is
Application of Computational Thinking. Knowing how to
apply your learning to both of these will be critical for your
success in the exam. There is a real applied focus to the
book. You will be encouraged to put the theory you are
learning into context and apply what you have learned to
your own practical activities.

110 UNIT 3 DATA 12 BINARY

12 BINARY

◼ Understand that computers use binary to represent data (numbers, text,
sound, graphics) and program instructions

◼ Understand how computers represent and manipulate numbers (unsigned
integers, signed integers [sign and magnitude, two’s complement])

◼ Be able to convert between binary and denary whole numbers (0–255)

◼ Understand how to perform binary arithmetic (adds, shifts [logical and
arithmetic]) and understand the concept of overflow

◼ Understand why hexadecimal notation is used and be able to convert
between hexadecimal and binary

◼ Understand that file storage is measured in bytes and be able to calculate
file sizes

LEARNING OBJECTIVES

Binary is a base-2 numeral system using only two digits: 0 and 1. It is a
positional notation where digits have place values, like the denary or decimal
system that we are familiar with. For example, in the decimal system, each 1 in
the number 111 represents a different value i.e. from left to right they represent
100, 10 and 1.

binary information represented by only
two values (e.g. a voltage or no voltage; on
or off). There are no communication errors
or misunderstandings because there are no
small differences
digital information represented by certain
fixed values (e.g. high, medium or low). Any
signal between these values would be
meaningless and not used. Sending and
receiving systems do not have to be as
accurate as for analogue communication
analogue using signals or information
represented by a quantity (e.g. an electric
voltage or current) that is continuously
variable. Changes in the information being
represented are indicated by changes in
voltage. This method requires very
accurate sending and receiving systems

SUBJECT VOCABULARY

manipulate to handle or control
something in a skilful manner
compressed pressed into a smaller
space
transistor a device that controls
electronic current
intensity the strength of something that
can be measured, e.g. light, sound, heat
frequency the number per time unit, e.g.
number per second
transmit cause something to move from
one place to another

GENERAL VOCABULARY

WHY BINARY? Binary is needed to represent data and program instructions because of the
way in which computers work.

The processor, which processes all of the data and instructions, contains
billions of transistors which are connected together to form circuits.

The transistors act as switches, similar to light switches. They have only two
states: on or off; they either transmit an electric current or they do not. A
system with separate states is said to be digital. If there are two states, the
system is binary. There are no in-between states with different levels of current
as there would be in a dimmer switch, which produces different levels of
brightness in a bulb. A system such as this, where there is a continuous range
between two values, is said to be analogue.

As there are only two states, on or off, the states are represented by the
digits of the binary number system, 1 and 0. All of the data and program
instructions processed by a computer are nothing more than streams of
millions of 1s and 0s.

Numbers, text, graphics and sound are all represented in the same way, as a
series of 1s and 0s. The program instructions that the processor is following
allow it to interpret them in different ways.

M03 IGCSE Computer Science SB2 Global 10220 UNIT3.indd 110 09/05/20 11:16 AM

131UNIT 3 DATA 13 DATA REPRESENTATION

Sound wave High pressure Low pressure▶◼Figure 3.5 Sound waves travelling through
the air from a vibrating bell

REPRESENTATION OF SOUND All sounds are caused by vibrations. As objects such as our vocal cords or
guitar strings vibrate backwards and forwards, they push the air molecules
alongside them, sending a wave of compressed molecules through the air.
When these compression waves, or sound waves, reach our ears they set up
vibrations in tiny sensory hairs in the inner ear. This sends nerve impulses to
the brain, which interprets them as the sounds we hear.

vibrations quickly moving backwards
and forwards about a fi xed point

GENERAL VOCABULARY

FILE SIZES The fi le size for a bitmap image is calculated by fi nding the total number of pixels
and multiplying that by the number of bits used to represent each pixel, or:

Width × Height × Colour depth

The fi le size of the left-hand image on page 125 is:

4288 (width) × 2848 (height) × 24 (bit colour depth) = 293 093 376 bits

That is, 36 636 672 bytes.

This standard allows lifelike images, so it is often referred to as true colour.

This shape is fi lled with a colour named ‘Alice blue’ . In binary you would
have to enter 111100001111100011111111 every time you wanted to use it.
However, as mentioned on page 123, hexadecimal comes to our rescue. Using
hexadecimal, you would only have to enter #F0F8FF.

ACTIVITY 11SKILLS REASONING,
PROBLEM SOLVING

Create expressions and calculate the fi le sizes of the following images.
Express the sizes in bits and bytes.

 a A 256-colour image with a size of 640 × 480 pixels.
 b A true-colour image with a size of 640 × 480 pixels.

IMAGE FILE SIZES
Calculators are not allowed in the
exam so you will be asked to just
create an expression to calculate
fi le sizes without showing a fi nal
value.

KEY POINT

M03 IGCSE Computer Science SB2 Global 10220 UNIT3.indd 131 09/05/20 11:16 AM

Learning objectives
Each section starts with a list of
what you will learn from it. They
are carefully tailored to address
key assessment objectives
central to the course.

Activity
Each chapter includes activities
to embed understanding through
practical tasks and questions.

Key point
Easy to understand, core information
to take away from sections.

Worked example
Key concepts can be demonstrated
using step-by-step walkthroughs.

Extend your knowledge
Push yourself further by looking
beyond the content of the course.

F01 IGCSE Computer Science SB2 Global 10220 Contents.indd 6 20/05/20 7:25 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

viiABOUT THIS BOOK

4 UNIT 1 PROBLEM SOLVING 1 UNDERSTANDING ALGORITHMS

◼ Understand what an algorithm is

◼ Understand what algorithms are used for

◼ Interpret algorithms as flowcharts, pseudocode and written descriptions

◼ Use and describe the purpose of arithmetic operators

◼ Understand how to code an algorithm in a high-level language

LEARNING OBJECTIVES

It is important to be able to construct algorithms and be able to read them
and follow their logic in solving particular problems.

unambiguous this means that the
instructions cannot be misunderstood.
Simply saying ‘turn’ would be ambiguous
(i.e. unclear) because you could turn left or
right. All instructions given to a computer
must be unambiguous or it won’t know
what to do
sequence an ordered set of instructions
algorithm a precise method for solving a
problem

SUBJECT VOCABULARY

1 UNDERSTANDING ALGORITHMS

DID YOU KNOW?
The computer program that created
the algorithm to map travel from
Beijing to Shanghai was following
an algorithm of its own – an
algorithm ordering it how to create
another algorithm!

▶	Figure 1.1 A route calculated by a mapping
program

construct a command to control the
order/flow in which instructions are
executed (e.g. sequences, selection,
repetition)

GENERAL VOCABULARY

AN EXAMPLE OF AN ALGORITHM An interactive map is a useful way to find a route between two locations.
Figure 1.1 shows a route between two cities that was calculated by a mapping
program.

The route on this interactive map has been calculated using an algorithm.

◼	 It is unambiguous in telling the driver exactly what to do, like ‘turn left’,
‘turn right’ or ‘go straight’.

◼	 It is a sequence of steps.
◼	 It can be used again and will always provide the same result.
◼	 It provides a solution to a problem, in this case, how to get from Beijing to

Shanghai.

A solution to a problem with these characteristics is called an algorithm. Most
problems have more than one solution, so different algorithms can be created
for the same problem.

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 4 09/05/20 8:53 AM

5UNIT 1 PROBLEM SOLVING 1 UNDERSTANDING ALGORITHMS

outcome the final result of an action
consistency not changing; always the
same
atlas a book of maps

GENERAL VOCABULARY

SUCCESSFUL ALGORITHMS There are three points to consider when deciding whether an algorithm is
successful or not.

◼	 Accuracy – it must lead to the expected outcome (e.g. create a route from
Beijing to Shanghai).

◼	 Consistency – it must produce the same result each time it is run.
◼	 Efficiency – it must solve the problem in the shortest possible time, using

as few computer resources as possible. In this example, the mapping
software is replacing a manual method. If it were no faster than looking in
an atlas, then it would not be an improvement on the older method. Later
in the unit there is a section on algorithms that are used to sort and search
data. Some of these algorithms are more efficient than others and will sort
the data far more quickly.

Fill kettle with water.
Turn on kettle.
Place coffee in cup.
Wait for water to boil.
Pour water into cup.
Add milk and sugar.
Stir.

ALGORITHM FOR MAKING A CUP OF COFFEE

high-level programming language
a programming language that is similar to
natural human language

SUBJECT VOCABULARY

THE RELATIONSHIP BETWEEN
ALGORITHMS AND PROGRAMS

Algorithms and programs are closely related, but they are not the same. An
algorithm is a detailed design for a solution; a program is when that design is
implemented.

This unit is all about algorithms. We look at how algorithms are implemented
in high-level programming languages in Unit 2.

DISPLAYING AN ALGORITHM We carry out many everyday tasks using algorithms because we are following a
set of instructions to achieve an expected result, for example, making a cup of
coffee. If we have performed the task many times before, we usually carry out
the instructions without thinking. But if we are doing something unfamiliar, such
as putting together a flat-pack chest of drawers, then we follow the instructions
very carefully.

An algorithm can be expressed in different ways.

WRITTEN DESCRIPTIONS
A written description is the simplest way of expressing an algorithm. Here is
an algorithm describing the everyday task of making a cup of instant coffee:

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 5 09/05/20 8:54 AM

Did you know?
Interesting facts to
encourage wider thought
and stimulate discussion.

Subject vocabulary and General vocabulary
Useful words and phrases are colour coded within the main
text and picked out in the margin with concise and simple
definitions. These help understanding of key subject terms
and support students whose first language is not English.

155UNIT 3 DATA UNIT QUESTIONS

 1 a Add together the following 8-bit numbers. (1)

0 1 0 1 1 0 0 1
1 1 1 0 0 1 1 1

 b Identify the problem that this addition has created. (1)

 2 a Carry out a three-place logical right shift on the following binary
 number. 10010011 (2)
 b Explain the effect of performing a right shift on a binary number. (2)
 c Describe the steps needed to convert the binary number 11101110

into a hexadecimal one and show the result. (2)

AO2SKILLS
REASONING,
PROBLEM SOLVING

AO2SKILLS DECISION MAKING,
CRITICAL THINKING

UNIT QUESTIONS

▲◼Figure 3.19 A 36-pixel image of the letter ‘E’

 1 a This is a straightforward question. Carry out the calculation and
write the result in the space provided. Remember to carry over if the
addition of each pair of digits is greater than 1.

 b This just requires a one- or two-word answer.

 2 a Again, carry out the shift and write the result.
 b Here you have to explain what effect the shift will have. You could say

that it is equivalent to multiplying the number by…
 c A longer answer is required. You should show stage by stage how

the conversion is carried out. For example, you could start by saying
what the 8-bit binary number is divided into. You should set out the
explanation clearly and it could be in the form of a diagram.

HINT

 3 Explain what is meant by a ‘pixel’. (2)

 4 The following diagram shows a black and white image consisting of 36 pixels.
 a Explain why 36 bits are needed to represent the pixels in the image. (2)
 b Write the bit pattern needed to represent these pixels. (4)

AO1SKILLS CRITICAL THINKING

AO2SKILLS CRITICAL THINKING,
PROBLEM SOLVING

 c State the number of bits per pixel that would be needed if the image
was 16 colours rather than 2. (1)

M03 IGCSE Computer Science SB2 Global 10220 UNIT3.indd 155 09/05/20 11:16 AM

Assessment objectives
Questions are tagged with
the relevant assessment
objectives that are being
examined.

Skills
Relevant exam questions have
been assigned the key skills that
you will gain from undertaking
them, allowing for a strong focus on
particular academic qualities. These
transferable skills are highly valued
in further study and the workplace.

Summary
Quickly recap the core content of
each section.

Checkpoint
Checkpoints help you to check
and reflect on your learning at the
end of each section. Strengthen
questions help you to consolidate
basic knowledge and understanding.
Challenge questions are more
demanding and ask you to apply
your learning.

Unit questions
These exam-style questions are
found at the end of each unit. They
are tailored to the Pearson Edexcel
specification to allow for the practice
and development of exam writing
technique. They also allow for
practice responding to the command
words used in the exams.

F01 IGCSE Computer Science SB2 Global 10220 Contents.indd 7 20/05/20 7:26 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

viii UNIT 1 THE MARKET SPECIFICATION 1.1.1viii ASSESSMENT OVERVIEW

ASSESSMENT OVERVIEW
The following tables give an overview of the assessment for this course. You should study this information closely
to help ensure that you are fully prepared and know exactly what to expect in each part of the assessment.

AVAILABILITY

January, June and
October

First assessment:
January 2020

PAPER 1

PAPER 2

PERCENTAGE

PERCENTAGE

MARK

MARK

TIME

TIME

AVAILABILITY

AVAILABILITY

June exam series

First assessment June 2019

June exam series

First assessment June 2019

PRINCIPLES OF COMPUTER SCIENCE

Written exam paper

Paper code 4CP0/01

Externally set and assessed by
Pearson Edexcel

Single tier of entry

APPLICATION OF COMPUTATIONAL
THINKING

Practical and written exam paper

Paper code 4CP0/02

Externally set and assessed by
Pearson Edexcel

Single tier of entry

50%

50%

80

80

2 hours

3 hours

ASSESSMENT OBJECTIVES AND WEIGHTINGS
DESCRIPTIONASSESSMENT OBJECTIVE % IN INTERNATIONAL GCSE

AO1

AO2

Demonstrate knowledge and understanding of the key principles of
computer science

Apply knowledge and understanding of key concepts and principles of
computer science

27.5

42.5

30AO3
Analyse problems in computational terms:

• to make reasoned judgements
• to design, program, test, evaluate and refine solutions

F01 IGCSE Computer Science SB2 Global 10220 Contents.indd 8 20/05/20 7:26 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

ixUNIT 1 THE MARKET ixASSESSMENT OVERVIEW

RELATIONSHIP OF ASSESSMENT OBJECTIVES TO UNITS

UNIT NUMBER
ASSESSMENT OBJECTIVE

AO1 AO2 AO3

PAPER 1

PAPER 2

TOTAL FOR INTERNATIONAL GCSE

21.5% 21% 7.5%

6% 21.5% 22.5%

27.5% 42.5% 30%

ASSESSMENT SUMMARY
DESCRIPTIONPAPER 1 MARKS

ASSESSMENT
OBJECTIVES

PAPER 2 MARKS
ASSESSMENT
OBJECTIVES

PRINCIPLES
OF COMPUTER

SCIENCE
PAPER CODE

4CP0/01

APPLICATION OF
COMPUTATIONAL

THINKING
PAPER CODE

4CP0/02

Structure

Paper 1 contributes 50% of the total marks for the Computer Science qualification.

Students must answer all questions.

The paper consists of multiple-choice, short open-response, open-response and
extended open-response answer questions.

The total
number
of marks
available

is 80

The total
number
of marks
available

is 80

Questions will
test the following

Assessment
Objectives:

AO1 – 21.5%
AO2 – 21%
AO3 – 7.5%

Questions will
test the following

Assessment
Objectives:

AO1 – 6%
AO2 – 21.5%
AO3 – 22.5%

Content summary

This paper will primarily assess knowledge and understanding of the basic principles
of computer science, including some coverage of how these principles are applied
when solving problems that relate to a particular situation.

Assessment

This is a single-tier exam paper and all questions cover the full ranges of grades from 9–1.

The assessment duration is 2 hours.

Structure

Paper 2 contributes 50% of the total marks for the Computer Science qualification.

Students must answer all questions.

The paper consists of multiple-choice, short open-response, open-response,
extended open-response answer and task-based questions.

The task-based questions will be carried out using a computer system under supervision.
All other questions requiring a written response will be answered in the paper.

Content summary

This paper will primarily assess the practical application of computational thinking,
whereby learners will create, use and adapt existing algorithms to solve problems in a
particular situation. This paper will also test students’ knowledge and understanding
of the topics.

Assessment

This is a single-tier exam paper and all questions cover the full ranges of grades
from 9–1.

The assessment duration is 3 hours.

A choice of three programming languages will be available (Python, C# or Java).

A pseudocode reference document will be available for learners to reference during
the assessment.

DESCRIPTION

F01 IGCSE Computer Science SB2 Global 10220 Contents.indd 9 20/05/20 7:26 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 2 09/05/20 8:50 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

3

In this unit you will learn about algorithms, which are the basis
of computer programming, and how they can be presented as
flowcharts and pseudocode. You will learn about the basic
constructs of an algorithm such as sequence, selection and
iteration and how these are used to solve problems using
computational thinking. You will also look at completing and
correcting algorithms in addition to algorithms to sort and search
data. In the next unit you will learn how to code these algorithms
using pseudocode and high-level programming languages.

UNIT 1
PROBLEM SOLVING

Assessment Objective 1

Demonstrate knowledge and
understanding of the key
principles of computer
science

Assessment Objective 2

Apply knowledge and
understanding of key
concepts and principles of
computer science

Assessment Objective 3

Analyse problems in
computational terms:
•	to make reasoned

judgements
•	to design, program, test,

evaluate and refine
solutions

UNDERSTANDING ALGORITHMS 4 CREATING ALGORITHMS 12 SORTING AND SEARCHING ALGORITHMS 15

DECOMPOSITION AND ABSTRACTION 23

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 3 09/05/20 8:50 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

4 UNIT 1 PROBLEM SOLVING 1  Understanding algorithms

◼	 Understand what an algorithm is

◼	 Understand what algorithms are used for

◼	 Interpret algorithms as flowcharts, pseudocode and written descriptions

◼	 Use and describe the purpose of arithmetic operators

◼	 Understand how to code an algorithm in a high-level language

LEARNING OBJECTIVES

It is important to be able to construct algorithms and be able to read them
and follow their logic in solving particular problems.

unambiguous this means that the
instructions cannot be misunderstood.
Simply saying ‘turn’ would be ambiguous
(i.e. unclear) because you could turn left or
right. All instructions given to a computer
must be unambiguous or it won’t know
what to do
sequence an ordered set of instructions
algorithm a precise method for solving a
problem

SUBJECT VOCABULARY

1  UNDERSTANDING ALGORITHMS

DID YOU KNOW?
The computer program that created
the algorithm to map travel from
Beijing to Shanghai was following
an algorithm of its own – an
algorithm ordering it how to create
another algorithm!

▶	Figure 1.1 A route calculated by a mapping
program

construct a command to control the
order/flow in which instructions are
executed (e.g. sequences, selection,
repetition)

GENERAL VOCABULARY

AN EXAMPLE OF AN ALGORITHM An interactive map is a useful way to find a route between two locations.
Figure 1.1 shows a route between two cities that was calculated by a mapping
program.

The route on this interactive map has been calculated using an algorithm.

◼	 It is unambiguous in telling the driver exactly what to do, like ‘turn left’,
‘turn right’ or ‘go straight’.

◼	 It is a sequence of steps.
◼	 It can be used again and will always provide the same result.
◼	 It provides a solution to a problem, in this case, how to get from Beijing to

Shanghai.

A solution to a problem with these characteristics is called an algorithm. Most
problems have more than one solution, so different algorithms can be created
for the same problem.

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 4 09/05/20 8:53 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

5UNIT 1 PROBLEM SOLVING 1  Understanding algorithms

outcome the final result of an action
consistency not changing; always the
same
atlas a book of maps

GENERAL VOCABULARY

SUCCESSFUL ALGORITHMS There are three points to consider when deciding whether an algorithm is
successful or not.

◼	 Accuracy – it must lead to the expected outcome (e.g. create a route from
Beijing to Shanghai).

◼	 Consistency – it must produce the same result each time it is run.
◼	 Efficiency – it must solve the problem in the shortest possible time, using

as few computer resources as possible. In this example, the mapping
software is replacing a manual method. If it were no faster than looking in
an atlas, then it would not be an improvement on the older method. Later
in the unit there is a section on algorithms that are used to sort and search
data. Some of these algorithms are more efficient than others and will sort
the data far more quickly.

Fill kettle with water.
Turn on kettle.
Place coffee in cup.
Wait for water to boil.
Pour water into cup.
Add milk and sugar.
Stir.

ALGORITHM FOR MAKING A CUP OF COFFEE

high-level programming language
a programming language that is similar to
natural human language

SUBJECT VOCABULARY

THE RELATIONSHIP BETWEEN
ALGORITHMS AND PROGRAMS

Algorithms and programs are closely related, but they are not the same. An
algorithm is a detailed design for a solution; a program is when that design is
implemented.

This unit is all about algorithms. We look at how algorithms are implemented
in high-level programming languages in Unit 2.

DISPLAYING AN ALGORITHM We carry out many everyday tasks using algorithms because we are following a
set of instructions to achieve an expected result, for example, making a cup of
coffee. If we have performed the task many times before, we usually carry out
the instructions without thinking. But if we are doing something unfamiliar, such
as putting together a flat-pack chest of drawers, then we follow the instructions
very carefully.

An algorithm can be expressed in different ways.

WRITTEN DESCRIPTIONS
A written description is the simplest way of expressing an algorithm. Here is
an algorithm describing the everyday task of making a cup of instant coffee:

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 5 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

6 UNIT 1 PROBLEM SOLVING 1  Understanding algorithms

The flowchart in Figure 1.3 is an alternative way of showing the algorithm for
making a cup of coffee as a written description.

Shows the logical
flow of the algorithm

Indicates an input
or output

Indicates a decision
to be made

▲	Figure 1.2 Flowchart symbols

Indicates a process
to be carried out

Indicates the start or
end of an algorithm

This instruction is
unambiguous – the water

must be boiling.
Stating ‘wait for the water to
heat’ would be ambiguous.

How hot should it be?

This is a process (an action
that has to be performed)

Start

End

Fill kettle
with water Turn on kettle

Place coffee
in cup

Wait for kettle
to boil

Pour water
into cup

Add milk
and sugar

Stir

▶	Figure 1.3 Flowchart of an algorithm to
make a cup of coffee

FLOWCHARTS
Flowcharts can be used to show an algorithm as a diagram. They provide a
more visual display.

There are special symbols that have to be used in a flowchart. You can’t just
make up your own, because nobody else would be able to follow your algorithm.

Figure 1.2 shows the flowchart symbols that should be used.

flowchart shows an algorithm as a
diagram. Each step in the algorithm is
represented by a symbol. Symbols are
linked together with arrows showing the
order in which steps are completed

SUBJECT VOCABULARY

ACTIVITY 1SKILLS REASONING,
PROBLEM SOLVING

Produce a written description of an algorithm for getting to school.
It should start with leaving home and end with arriving at school. For
example, the algorithm could start with ‘Walk to bus stop’.

Check your algorithm with other members of the group. Would your
algorithm work for others? Are there any general statements that are
common to all algorithms?

GETTING TO SCHOOL

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 6 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

7UNIT 1 PROBLEM SOLVING 1  Understanding algorithms

The algorithms you have looked at so far are designed for humans to follow.
Algorithms also form the basis of computer programs. Computers are
mindless machines that simply do exactly what they are told. They follow a set
of instructions, but they can carry out these instructions far more quickly than
humans. That is why they are so useful.

PSEUDOCODE
In addition to flowcharts and written descriptions, algorithms can also be
expressed in pseudocode. The pseudocode can be used to code the solution
in an actual programming language.

It allows the developer to concentrate on the logic and efficiency of
the algorithm without having to bother about the rules of any particular
programming language. It is relatively straightforward to translate an algorithm
written in pseudocode into any high-level programming language.

pseudocode a structured, code-like
language that can be used to describe an
algorithm
developer a person whose job it is to
create new software
logic the principles and reasoning
underlying the constructs and elements to
be applied in solving problems

SUBJECT VOCABULARY

ACTIVITY 3SKILLS PROBLEM SOLVING

A student has created a written algorithm for preparing a bath. Working
with a partner, display the following as a flowchart. You may need to
change the order or add actions.

◼	 Put in the plug.
◼	 Fill the bath to the correct level.
◼	 Check the temperature is OK.

BATH FLOWCHART

ACTIVITY 4SKILLS RESEARCH

Different organisations or examination boards have their own unique
versions of pseudocode. Investigate the Pearson Edexcel pseudocode
that you will need for your International GCSE course and which will be
used in this book.

INVESTIGATING PSEUDOCODE

ACTIVITY 2SKILLS PROBLEM SOLVING

Display the ‘journey to school’ algorithm that you created in Activity 1 as a
flowchart.

SCHOOL JOURNEY FLOWCHART

basis an important idea or fact that
something is based on

GENERAL VOCABULARY

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 7 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

8 UNIT 1 PROBLEM SOLVING 1  Understanding algorithms

operator a character that represents an
action, e.g. ‘x’ represents a multiplication
and ‘/’ a division
descriptive describing something clearly

GENERAL VOCABULARY

variable a ‘container’ used to store data.
The data stored in a variable is referred to
as a value. The value stored in a variable is
not fixed. The same variable can store
different values during the course of a
program and each time a program is run
identifier a unique name given to a
variable or a constant. Using descriptive
names for variables makes code much
easier to read
arithmetic operator an operator
that performs a calculation on two
numbers

SUBJECT VOCABULARY

The pseudocode gives clear step-by-step instructions that the computer
will be expected to carry out. It also introduces some important programming
concepts.

◼	 The numbers entered by the user are stored in two variables with the
identifiers firstNumber and secondNumber.

◼	 The result of adding the numbers together is stored in the variable
total.

◼	 Text has to be placed in quotation marks (single or double) if it is to be
displayed. For example, ‘Please enter the first number’ (or “Please enter
the first number”).

◼	 Quotation marks are not used if a variable is to be displayed. If they were,
the word ‘total’ in the last instruction would be displayed instead of the
number it represents.

◼	 Arithmetic operators are used to perform calculations. Table 1.1 shows
the arithmetic operators.

SEND ‘Please enter the first number’ TO DISPLAY

RECEIVE firstNumber FROM KEYBOARD

SEND ‘Please enter the second number’ TO DISPLAY

RECEIVE secondNumber FROM KEYBOARD

SET total TO firstNumber + secondNumber

SEND total TO DISPLAY

ALGORITHM FOR ADDING TWO NUMBERS

PSEUDOCODE

▲ Figure 1.4 Flowchart showing the adding of two numbers

Total = first number
+ second numberStart End

Enter first
number

Enter second
number Output total

FLOWCHART

Enter first number.
Enter second number.
Calculate total by adding first and second numbers.
Output total.

ALGORITHM FOR ADDING TWO NUMBERS

WRITTEN DESCRIPTION

EXAMPLE OF A SIMPLE ALGORITHM To introduce the Pearson Edexcel pseudocode, here is a simple written
algorithm that asks the user to input two numbers and then outputs the result
of adding them together.

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 8 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

9UNIT 1 PROBLEM SOLVING 1  Understanding algorithms

OPERATOR FUNCTION EXAMPLE

+ Addition: add the values together. 8 + 5 = 13
myScore1 + myScore2

– Subtraction: subtract the second value from the first. 17 – 4 = 13
myScore1 – myScore2

* Multiplication: multiply the values together. 6 * 9 = 54
numberBought * price

/ Real division: divide the first value by the second value
and return the result including decimal places.

13 / 4 = 3.25
totalMarks/numberTests

DIV Quotient: like division, but it only returns the whole
number or integer.

13 DIV 4 = 3
totalMarks DIV numberTests

MOD Modulus/modulo: this will return the remainder of a
division.

13 / 4 = 3 remainder 1
Therefore 13 MOD4 = 1

^ Exponentiation: this is for ‘to the power of’. 3 ^ 3 = 27
It is the same as writing 33

▲ Table 1.1  Arithmetic operators

ARITHMETIC OPERATORS

VARIABLES AND CONSTANTS Variables play an important role in algorithms and programming. The value
stored by a variable can change as a program is running. Variables are
extremely useful in programming because they make it possible for the same
program to process different sets of data.

A constant is the opposite of a variable. It is a ‘container’ that holds a value
that always stays the same. Constants are useful for storing fixed information,
such as the value of pi, the number of litres in a gallon or the number of
months in a year.

Each variable and constant in an algorithm has to have a unique identifier. It
is important to choose descriptive names for identifiers. This will make your
code much easier to read. For example, a variable to hold a user’s first name
could be given the identifier firstName to show the data it contains. If it were
given the identifier X instead, it wouldn’t clearly show what data it contained.

NAMING CONVENTIONS FOR VARIABLES AND CONSTANTS
It is sensible to write identifiers in the same way throughout an algorithm. A
common method is to use ‘camel case’ for compound words (e.g. firstName,
secondName) with no space between words and the second word starting
with a capital letter. Alternatively, you could capitalise the first letter of both
words, e.g. FirstName, SecondName, or separate the words with an
underscore, e.g. first_name, second_name, known as ‘snake case’.

When you chose a variable
name, it should be descriptive of
the data it will hold, e.g. distance
or length. Long variable names
are easier to misspell!

KEY POINT

constant a ‘container’ that holds a value
that never changes; like variables,
constants have unique identifiers

SUBJECT VOCABULARY

quotient a result found by dividing one
quantity by another
modulus the remainder after the division
of one number by another
power the small number written to the right
and above another number to show how
many times it should be multiplied by itself

GENERAL VOCABULARY

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 9 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

10 UNIT 1 PROBLEM SOLVING 1  Understanding algorithms

Whichever method you use for
naming conventions, you must
use it consistently and not keep
switching between the different
methods.

KEY POINT

ACTIVITY 5SKILLS PROBLEM SOLVING,
ANALYSIS

Here is a written description of an algorithm:

Enter the first number.
Enter the second number.
The third number is equal to the first number multiplied by the second
number.
Display the third number.

Express this algorithm in pseudocode.

WRITING ALGORITHMS IN PSEUDOCODE

End

Start

Input
username

NO

YES

YES

Input
password

Does
 username

exist?

NOIs
password
correct?

▲ Figure 1.5 Flowchart of an algorithm

ACTIVITY 6SKILLS PROBLEM SOLVING

This algorithm is displayed as a flowchart.

Produce a written description of this algorithm.

 WRITTEN DESCRIPTIONS OF ALGORITHMS

When you enter a search term
into Google®, a list of links
to websites is returned. But
why are they presented in
that particular order? With a
partner, research the PageRank
algorithm that Google uses to
rate the importance of websites
and write a short report about
your findings.

EXTEND YOUR KNOWLEDGE

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 10 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

11UNIT 1 PROBLEM SOLVING 1  Understanding algorithms

Strengthen
S1	 Produce a written description of an algorithm for borrowing a book

from the library.

S2	 What is the function of each of the seven arithmetic operators?

S3	 What is a variable? Why are they useful?

S4	 What is the difference between a variable and a constant?

Challenge
C1	Produce a flowchart describing an algorithm for making a cheese

sandwich.

C2	Write an algorithm expressed in pseudocode that receives three
numbers from the keyboard, then calculates and displays the average.

SKILLS CRITICAL THINKING

SKILLS DECISION MAKING

SKILLS REASONING

SKILLS CRITICAL THINKING

SKILLS CRITICAL THINKING,
PROBLEM SOLVING

SKILLS PROBLEM SOLVING

CHECKPOINT

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, try the following activities again.

◼	 For S1 re-read ‘The relationship between algorithms and programs’.
◼	 For S2 study Table 1.1.
◼	 For S3 and S4 look again at ‘Variables and constants’.

◼	 An algorithm is a precise method for solving a problem.
◼	 Algorithms can be displayed as written descriptions, flowcharts and in

pseudocode.
◼	 Pseudocode is a structured, code-like language.
◼	 Pseudocode is translated into program code.
◼	 Arithmetic operators are used in calculations.
◼	 Variables and constants are ‘containers’ for storing data. The value

stored in a variable can change, whereas the value of a constant never
changes.

◼	 Selecting descriptive names for identifiers makes code easier to read.

SUMMARY

structured organised so that the parts
work well together

GENERAL VOCABULARY

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 11 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

12 UNIT 1 PROBLEM SOLVING 2  Creating algorithms

In this section you will learn how to create algorithms to solve particular
problems using the constructs of sequence, selection and iteration. You will
also practise displaying algorithms in flowcharts and pseudocode.

◼	 Understand how to create an algorithm to solve a particular problem

◼	 Make use of programming constructs (sequence, selection and iteration) and
use appropriate conventions (flowchart, pseudocode, written description,
draft program code)

LEARNING OBJECTIVES

2  CREATING ALGORITHMS

ALGORITHMS FOR COMPUTERS There was an ambiguous statement in the algorithm for making a cup of
coffee. After filling the kettle with water and adding coffee to the cup, the next
instruction was ‘Wait for water to boil’.

A human can understand that this instruction means they have to keep
checking the kettle over and over again until the water is boiling, but a
computer is unable to understand an instruction like this in the same way. It
would just wait. And wait. Forever.

Even worse, the algorithm didn’t state clearly how to tell the water was boiling.
Through experience, we humans assume the water is boiling when there is
lots of steam, sound and bubbles; or, even better, when the kettle turns itself
off. An algorithm for a computer would have to state that it must wait until the
water reached 100°C.

A version of this part of the algorithm, suitable for a computer, is shown
in Figure 1.6. This example introduces two new constructs from which
algorithms are created. We have already met the construct sequence –
step-by-step instructions in the correct order. To add to this, we now have
selection and iteration.

ambiguous when a statement or
command does not have one obvious
meaning but can be interpreted in different
ways
condition something that must happen
before something else can happen

GENERAL VOCABULARY

construct a smaller part from which
something is built. Letters and numbers
(i.e. a to z and 0 to 9) are the constructs we
use to build our language and convey
meaning. Bricks and cement are the basic
constructs of a building
selection a construct that allows a
choice to be made between different
alternatives
iteration a construct that means a
process is repeated. An action is repeated
until a condition is met or a particular
outcome is reached. It is often referred to
as a ‘loop’

SUBJECT VOCABULARY

Pour water into cup
The computer would also
have to be told how much
water to pour into the cup!

Start

Fill kettle
with water

Turn off kettle

Turn on kettle

NOYES
Is

temperature of
water =
100°C?

▶ Figure 1.6 Part of an algorithm suitable for
a computer for making coffee

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 12 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

13UNIT 1 PROBLEM SOLVING 2  Creating algorithms

DID YOU KNOW?
We use iteration in our daily lives
whenever we carry out an action
over and over again. For example,
at mealtimes we keep on eating
until our plate is empty or we have
had enough to eat.

When we’re travelling by car and the
traffic lights are red, we have to keep
waiting until they change to green.

An actor repeats their lines over and
over again, learning more each time
until they know them all.

REPRESENTING SELECTION AND ITERATION IN A FLOWCHART
Selection and iteration are represented in a flowchart as shown in Figure 1.7.

Is
temperature
of water =

100°C?

These arrows represent the iteration.
If the answer is ‘NO’ then the selection
question is repeated until the answer is
‘YES’ – the desired outcome.There is a question with two

alternatives. This represents
the selection.

NO

YES

▶ Figure 1.7 Selection and
iteration in a flowchart

ACTIVITY 7SKILLS REASONING,
PROBLEM SOLVING

A student is creating a guessing game. A player has to enter a number no
greater than 10. If it is too high, they are informed that they have made an
error. But if it is within the range 1 to 10, they are told whether or not they
have guessed the correct number. (Assume that the correct number is 3.)

Can you make an algorithm to solve this problem and express it as a
written description and a flowchart?

Compare your solution to others in your group.

Check that they are correct and would produce the correct outcome.

Are some of the algorithms more efficient than others? Do they use fewer
commands?

GUESSING GAMES

ACTIVITY 8SKILLS PROBLEM SOLVING,
ANALYSIS

A school uses this algorithm to calculate the grade that students achieve
in end-of-topic tests.

RECEIVE testScore FROM KEYBOARD

IF testScore >= 80 THEN

 SEND ‘A’ TO DISPLAY

ELSE

 IF testScore >= 70 THEN

 SEND ‘B’ TO DISPLAY

 ELSE

 IF testScore >= 60 THEN

 SEND ‘C’ TO DISPLAY

 ELSE

 IF testScore > 0 THEN

 SEND ‘D’ TO DISPLAY

 ELSE

 SEND ‘FAIL’ TO DISPLAY

CALCULATING GRADES

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 13 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

14 UNIT 1 PROBLEM SOLVING 2  Creating algorithms

Strengthen
S1	 How are sequence, selection and iteration used in algorithms? Give

examples to justify your answer.

Challenge
C1	Develop an algorithm using a flowchart that asks the user to enter

their height (in metres) and weight (in kilograms) and displays
their body mass index (BMI). The formula for calculating BMI is
weight/height2.

C2	Develop an algorithm expressed as a flowchart to control the heating
in a house. A thermostat monitors the temperature within the house.
During the week the temperature should be 20°C between 06.00
and 08.30 in the morning and between 17.30 and 22.00 at night.
At weekends it should be 22°C between 08.00 and 23.00. If the
temperature in the house falls below 10°C at any time the boiler is
switched on.

SKILLS CRITICAL THINKING,
DECISION MAKING

SKILLS PROBLEM SOLVING

SKILLS PROBLEM SOLVING

CHECKPOINT

 END IF

 END IF

 END IF

END IF

What would be the output of this algorithm for these test scores: 91, 56
and 78?

ITERATION
When writing programs, it is often necessary to repeat the same set of statements
several times. Instead of making multiple copies of the statements, you can
use iteration to repeat them. The algorithm for making a cup of coffee includes
an instruction to keep waiting until the water in the kettle boils.

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, try the following activities again.

◼	 For S1 have a look at the Subject vocabulary sections in ‘Understanding
algorithms’ and ‘Creating algorithms’.

◼	 The constructs sequence, selection and iteration are the basic
building blocks of algorithms.

SUMMARY

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 14 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

15UNIT 1 PROBLEM SOLVING 3  Sorting and searching algorithms

Whenever we want to find information, we carry out a search. Just imagine the
number of people around the world who are using the same search engine at
the same time. Without efficient searching algorithms, we would have to wait a
long time to be shown the results.

We are on all sorts of lists (for example, school and college, clubs and groups,
voting registers) and all these must be searched to find relevant information.
Sorting information is also important to facilitate efficient searches.

3  SORTING AND SEARCHING ALGORITHMS

◼	 Understand how standard algorithms work (bubble sort, merge sort, linear
search, binary search)

◼	 Understand how the choice of algorithm is influenced by the data
structures and data values that need to be manipulated

◼	 Evaluate the fitness for purpose of algorithms in meeting specified
requirements efficiently, using logical reasoning and test data

LEARNING OBJECTIVES

Two of the most common tasks in computer programs are sorting data into a
particular order and searching for particular items of information.

There might be millions of items of stored data and searching for information
wouldn’t be efficient if the data was not sorted. Imagine the confusion and
difficulty of having to find something in a dictionary that wasn’t in alphabetical
order. Or planning a trip with train timetables that weren’t sorted into time
order. Even small lists such as football league tables or the Top 20 music
charts are much more useful if they are sorted into order.

SORTING ALGORITHMS As sorting is such a widely used procedure, many algorithms have been created
to carry it out. As with all algorithms, some are more efficient than others.

BUBBLE SORT
When data is sorted, different items must be compared with each other and
moved so that they are in either ascending order or descending order.

The bubble sort algorithm starts at one end of the list and compares pairs of
data items. If they are in the wrong order, they are swapped. The comparison of
pairs continues to the end of the list, each complete traversal of the list being
called a ‘pass’. This process is repeated until there have been no swaps during a
pass. This indicates that the items must all be in the correct order.

ascending order this is arranging
items from smallest to largest (e.g. 1, 2, 3)
descending order this is arranging
items from largest to smallest (e.g. 3, 2, 1)
traversal travel across or through
something.

SUBJECT VOCABULARY

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 15 09/05/20 8:54 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

16 UNIT 1 PROBLEM SOLVING 3  Sorting and searching algorithms

The algorithm can be described as follows.

1	 Start at the beginning of the list.
2	 Compare the values in position 1 and position 2 in the list – if they are

not in ascending order then swap them.
3	 Compare the values in position 2 and position 3 in the list and swap if

necessary.
4	 Continue to the end of the list.
5	 If there have been any swaps, repeat steps 1 to 4.

BUBBLE SORT (ASCENDING ORDER)

Here is an example of a bubble sort in action.

WORKED EXAMPLE

▲ Figure 1.8 A bubble sort

Pass 1

4 2 6 1 3
Items 1 and 2 must be

swapped.

2 4 6 1 3
Items 1 and 2 are

swapped.

2 4 6 1 3
Items 2 and 3 are already

in ascending order.

2 4 6 1 3
Items 3 and 4 must be

swapped.

2 4 1 6 3
Items 3 and 4 have been

swapped.

2 4 1 6 3
Items 4 and 5 must now

be swapped.

2 4 1 3 6
Items 4 and 5 have been

swapped.

Pass 2

2 4 1 3 6
Items 1 and 2 are in

correct order.

2 4 1 3 6
Items 2 and 3 must be

swapped.

2 1 4 3 6
Items 2 and 3 have been

swapped.

2 1 4 3 6
Items 3 and 4 must be

swapped.

2 1 3 4 6
Items 3 and 4 have been

swapped.

2 1 3 4 6
Items 4 and 5 do not need

to be swapped.

Pass 3

2 1 3 4 6
Items 1 and 2 must be

swapped.

1 2 3 4 6
Items 1 and 2 have been

swapped.

1 2 3 4 6
All items are now in the

correct order.

DID YOU KNOW?
Do you know why it is called
‘bubble sort’? If you look carefully,
you can see that the largest items
gradually move to the end, like
bubbles rising in water. After the
first pass, the largest number is in
its correct position. Then after the
second pass, the next largest is in
its correct position. This happens on
each pass and so if the algorithm is
to be made more efficient the last
set of comparisons can be left out.

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 16 09/05/20 8:55 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

17UNIT 1 PROBLEM SOLVING 3  Sorting and searching algorithms

It would take a human three passes to carry out this bubble sort. A computer
would need four passes because it must continue until there have been no swaps;
it cannot just look at all of the numbers at once and see that they are all in order.

The bubble sort algorithm can be represented as a flowchart as shown in
Figure 1.9.

Start

End

position = position
+ 1

NO

NO

NO

YES

YES

length = length
of list

position = 1
switch = 0

Swap List item
(position) and List
item (position + 1)

switch = switch + 1

Is List
item (position) >

List item (position
+ 1)?

Is
position =

length?

YES

Is
switch = 0?

▶ Figure 1.9 Bubble sort algorithm written as
a flowchart

ACTIVITY 9SKILLS CRITICAL THINKING

Study the flowchart of the bubble sort algorithm.

Using the variables declared, can you explain the logic behind the
algorithm? How does it function to sort a list?

HOW DOES BUBBLE SORT WORK?

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 17 09/05/20 8:55 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

18 UNIT 1 PROBLEM SOLVING 3  Sorting and searching algorithms

repeatedly many times

GENERAL VOCABULARY

recursion a process that is repeated. For
example, a document can be checked and
edited, checked and edited and so on until
it is perfect

SUBJECT VOCABULARY

MERGE SORT
Merge sort is a sorting algorithm that divides a list into two smaller lists and then
divides these until the size of each list is one. Repeatedly applying a method to
the results of a previous application of the method is called recursion.

In computing, a problem is solved by repeatedly solving smaller parts of
the problem. A part of a program can be run and rerun on the results of the
previous run (e.g. repeatedly dividing a number by 2).

In the exam, you will be expected
to show the intermediate stages
when the algorithms are applied
to data.

KEY POINT

Here is an example of a merge sort which will sort the following list into
ascending order.

4 2 6 1 3 5 78

The list is split into half with recursion to produce a left list and a right list
each time.

8 4 2 6 1 3 5 7

8 4 2 6 1 3 5 7

This continues until there is only one item in each list. Therefore, each list
is sorted into order.

8 4 2 6 1 3 5 7

The left and right lists are now merged through recursion with the items in
the correct order.

4 8 2 6 1 3 5 7

The leftmost items in each list are the lowest items of those lists and the
algorithm compares them – in this case 4 with 2. The 2 is inserted in the
new list and the 4 is then compared with the second number of the right
list – 6. The 4 is inserted and the 6 is compared with the second number
of the left list.

2 4 6 8 1 3 5 7

The algorithm now merges these two lists in the same way to produce the
final sorted list. 1 is compared with 2 and then 2 with 3, 3 with 4, etc.

1 2 3 4 5 6 7 8

WORKED EXAMPLE

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 18 09/05/20 8:55 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

19UNIT 1 PROBLEM SOLVING 3  Sorting and searching algorithms

ACTIVITY 10SKILLS PROBLEM SOLVING

Using a table like the one in the worked example on page 18, show how
the following list would be sorted into descending order using merge sort.

48, 20, 9, 17, 13, 21, 28, 60

USING MERGE SORT

EFFICIENCY OF SORTING ALGORITHMS
This graph compares the performance of the bubble and merge sort algorithms.

▶ Figure 1.10 A graph comparing the
performance of bubble and merge sort
algorithms

Ti
m

e
(s

ec
on

ds
)

0

1

2

3

4

5

6

100 1000 15000 2500000
Number of items

Key

Bubble

Merge

500000

Only two sorting algorithms are
required for the specification:
bubble sort (the slowest) and
merge sort (one of the most
efficient). There are far more, and
many of them are relatively easy
to code. Research the insertion
and selection sorts.

EXTEND YOUR KNOWLEDGE

brute force an algorithm design that
does not include any techniques to improve
performance, but instead relies on
computing power to try all possibilities
until the solution to a problem is found
divide and conquer an algorithm
design that works by dividing a problem
into smaller and smaller sub-problems,
until they are easy to solve. The solutions
to these are then combined to give a
solution to the complete problem

SUBJECT VOCABULARY The bubble and merge sort algorithms demonstrate two alternative
approaches to algorithm design.

The bubble sort algorithm is said to be using brute force because it starts at
the beginning and completes the same task over and over again until it has
found a solution.

The merge sort uses the divide and conquer method because it repeatedly
breaks down the problem into smaller sub-problems, solves those and then
combines the solutions.

The graph shows that a bubble sort is far slower at sorting lists of more
than 1000 items, but for smaller lists the time difference is too small to be of
importance.

As the bubble sort algorithm is easier to code, it could be beneficial to use it
for smaller lists of less than 1000 items.

SEARCHING ALGORITHMS To find a specific item in a list involves carrying out a search. Like sorting,
some methods of searching are more efficient than others.

LINEAR SEARCH
A linear search is a simple algorithm and not very sophisticated. It simply starts
at the beginning of the list and goes through it, item by item, until it finds the
item it is looking for or reaches the end of the list without finding it.

A linear search is sequential because it moves through the list item by item.

sequential following in order, one
after the other

GENERAL VOCABULARY

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 19 09/05/20 8:55 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

20 UNIT 1 PROBLEM SOLVING 3  Sorting and searching algorithms

1	 Start at the first item in the list.
2	 Compare the item with the search item.
3	 If they are the same, then stop.
4	 If they are not, then move to the next item.
5	 Repeat 2 to 4 until the end of the list is reached.

LINEAR SEARCH

BINARY SEARCH
Like a merge sort, a binary search uses a ‘divide and conquer’ method.

In a binary search the middle or median item in a list is repeatedly selected
to reduce the size of the list to be searched – another example of recursion.
If the selected item is too high or too low, then the items below or above that
selected item can be searched.

To use this method, the list must be sorted into ascending or descending
order. It will not work on an unsorted list.

DID YOU KNOW?
You have probably used a binary
search method when trying to
guess a number between two
limits. If you are asked to guess a
number between 1 and 20 you will
probably start at 10, the middle
number. If you are told this is too
high, you will then guess 5, the
middle number between 1 and 10,
and then repeat this method until
you find the correct one.

median the middle number when the
numbers are put in ascending or
descending order (e.g. if there are
13 numbers, then the 7th number is the
median). If there are an even number of
items in a list, the median is the mean of
the middle two numbers (e.g. if there are
10 numbers, add the 5th and 6th numbers
together and divide the result by 2). In a
binary search, the higher of the two
numbers would be chosen

SUBJECT VOCABULARY

1	 Select the median item of the list.
2	 If the median item is equal to the search item, then stop.
3	 If the median is too high, then repeat 1 and 2 with the sub-list to the left.
4	 If the median is too low, then repeat 1 and 2 with the sub-list to the right.
5	 Repeat steps 3 and 4 until the item has been found or all of the items

have been checked.

BINARY SEARCH (ITEMS IN ASCENDING ORDER)

In this list, the search item is the number 13.

3 13 24 27 31 39 45 60 69
SELECT THE

MEDIAN NUMBER.

As this is too high, the sub-list to the left of the median must be searched.

3 13 24 27
THE MEDIAN NUMBER OF THIS
SUB-LIST IS NOW SELECTED.

This is again too high and so the sub-list to the left must be searched.

3 13
THE MEDIAN NUMBER IS
NOW THE SEARCH ITEM.

▲	 Figure 1.11 Binary search including sub-lists

In this example, it took three attempts to find the search item. A linear
search would have accomplished this with only two attempts.

WORKED EXAMPLE

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 20 09/05/20 8:55 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

21UNIT 1 PROBLEM SOLVING 3  Sorting and searching algorithms

ACTIVITY 11SKILLS PROBLEM SOLVING

Display the stages of a binary search, as in the worked example above, to
find the number 13 in this list.

3 9 13 15 21 24 27 30 36 39 42 54 69

Compare your results with those of others in your group. Are all your answers
the same?

USING BINARY SEARCH

EFFICIENCY OF SEARCHING ALGORITHMS
In the example on page 20, the linear search was more efficient because it only
had to carry out two comparisons instead of the three for a binary search. But
is this always the case?

Searching algorithms can be compared by looking at the ‘worst case’ and the
‘best case’ for each one.

If you wanted to find a particular item in a list of 1000 items, these are the
best- and worst-case scenarios for the linear search and binary search
algorithms.

Linear search
A linear search starts at the first item and then works through sequentially.
The best case would be if the item is first in the list.
The worst case would be if it is last in the list.
Therefore, in this example the average would be 500 comparisons.

Binary search
The best case would be if the item is in the median position in the list. The
search would require only one comparison.
For the worst case it would have to choose the following medians until it
finally hit the target.
(This assumes that the target is always smaller than the median.)

Attempt Median

1 500

2 250

3 125

4   63

5   32

6   16

7    8

8    4

9    2

10    1

Therefore, the worst case for the binary search is ten comparisons.

WORKED EXAMPLE

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 21 09/05/20 8:55 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

22 UNIT 1 PROBLEM SOLVING 3  Sorting and searching algorithms

Strengthen
S1	 What are the differences between the ‘bubble sort’ and ‘merge sort’

algorithms?

S2 How does a binary search algorithm find the search item?

Challenge
C1	When might a linear search be preferable to a binary search, even if

the binary search algorithm is more efficient?

SKILLS CRITICAL THINKING

SKILLS DECISION MAKING

SKILLS CRITICAL THINKING

CHECKPOINT

The binary search is therefore far more efficient than the linear search.

So, should a binary search be used every time? That depends on the
circumstances. The binary search has one great disadvantage. The list must
be already sorted into ascending or descending order. Therefore, a sorting
algorithm must be applied before the search.

If the list is to be searched just once then a linear search would be better, but
if there is a large list that will be searched many times then sorting the list and
using a binary search would be better. Once the list has been sorted, new
items can be inserted into the correct places.

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, try the following activities again.

◼	 For S1 have a look at the ‘Sorting algorithms’ section.
◼	 For S2 have a look at the ‘Binary search’ section.

◼	 There are many algorithms for sorting and searching data.
◼	 The choice of algorithm depends on the data that is to be processed.
◼	 If only a small amount of data needs to be processed, then a simpler,

but less efficient search algorithm may be the best choice. The time
difference of the search or sort time will be negligible.

SUMMARY

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 22 09/05/20 8:55 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

23UNIT 1 PROBLEM SOLVING 4  Decomposition and abstraction

4  DECOMPOSITION AND ABSTRACTION

◼	 Analyse a problem, investigate requirements (inputs, outputs, processing,
initialisation) and design solutions

◼	 Decompose a problem into smaller sub-problems

◼	 Understand how abstraction can be used effectively to model aspects of
the real world

◼	 Program abstractions of real-world examples

LEARNING OBJECTIVES

When computer scientists attempt to solve problems by producing algorithms
and coding them into programs, they approach the problems in a particular
way. This method has been given the name ‘computational thinking’. Before
they create a structured solution or algorithm and code it into a program, they
must define and analyse the problems. This section will introduce two of the
thought processes they use – decomposition and abstraction.

thought process the act of using your
mind to consider or think about something

GENERAL VOCABULARY

computational thinking the thought
processes involved in formulating problems
and their solutions so that the solutions are
represented in a form that can be
effectively carried out by a computer
decomposition breaking a problem
down into smaller, more manageable parts,
which are then easier to solve
abstraction the process of removing or
hiding unnecessary detail so that only the
important points remain

SUBJECT VOCABULARY

PROBLEM SOLVING The tasks of a computer scientist include defining and analysing problems;
creating structured solutions – algorithms; and coding the solutions into a
form that can be implemented by a computer. These tasks are part of what is
known as computational thinking.

One of the skills required for computational thinking is algorithm design (which
we’ve covered in detail in this unit). If there is a fault in the algorithm design,
then the program will not work, however good a coder you are. Two other skills
are decomposition and abstraction.

DECOMPOSITION Decomposition is usually the first step in the problem-solving process. Once
a problem has been broken down and the sub-problems have been identified,
algorithms can be developed to solve each of them.

Decomposition means that sub-problems can be worked on by different teams
at the same time. As smaller algorithms are developed for each sub-problem,
it is easier to spot and correct errors. When the algorithm is developed into a
program, code can be used again.

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 23 09/05/20 8:55 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

24 UNIT 1 PROBLEM SOLVING 4  Decomposition and abstraction

A student has been set the task of creating a computer version of the
game ‘noughts and crosses’ (also known as ‘tic-tac-toe’) where a user
plays against the computer.

Create a ‘noughts and crosses’ game.

Design of
interface

showing the
3×3 grid.

How to keep
track of which
squares have

been selected by
‘X’ and ‘0’ and
which are free.

How the
‘computer’ will
decide which

square to select.

How the
‘computer’ will

decide when the
game is over and

who has won.

▶ Figure 1.12 Sub-problems to be solved to create a noughts and crosses computer program

The diagram shows some of the sub-problems that must be solved in
order to solve the complete problem and create a version of the game.

WORKED EXAMPLE

ABSTRACTION We use abstraction all the time in our daily lives. We abstract the essential
features of something so that we can understand what people are trying to
communicate.

Somebody might say, ‘I was walking down the street when I saw a cat’. You
immediately understand what they mean by ‘street’ – probably a road with a
pavement and houses or shops along the side of it. Similarly, you can picture
the cat – a small animal with fur, four legs and a tail. An animal that is basically
‘cattish’. You have extracted the basic properties of animals called cats so that
you can recognise one when you see one, or imagine one when somebody
talks about a cat.

▲ Is this the street and cat you imagined?

abstract to remove something from
somewhere

GENERAL VOCABULARY

What you imagine is very unlikely to match the actual street and cat that the
person experienced. But, because of our ability to abstract, the person did not

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 24 09/05/20 8:56 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

25UNIT 1 PROBLEM SOLVING 4  Decomposition and abstraction

LEVELS OF ABSTRACTION
There are different levels or types of abstraction. The higher the level of
abstraction, the less detail is required. We use abstraction all the time in
accomplishing everyday tasks.

When programmers write the ‘print’ command they do not have to bother
about all of the details of how this will be accomplished. They are removed
from them. They are at a certain level of abstraction.

A driver turning the ignition key to start a car does not have to understand
how the engine works or how the spark to ignite the petrol is generated. It just
happens and they can simply drive the car. That is abstraction.

have to go into unnecessary detail about exactly where they were and what
they saw. They wouldn’t get very far with the story if they did.

When we create algorithms, we abstract the basic details of the problem and
represent them in a way that a computer is able to process.

Yasmin is designing a computer version of a game in which users have to
throw a die to find out their number of moves.

In the computer game, the users can’t have an actual die, so she will have
to design a ‘pretend’ or virtual die that behaves in exactly the same way
as a real-life die.

Yasmin will have to use her powers of abstraction to work out the essential
features of a die and then represent them in computer code.

To represent the die, she will have to create a routine that will select a
random number from 1 to 6 because that’s what a die does.

Yasmin has used abstraction to model a real-life event.

WORKED EXAMPLE

Figure 1.12 showed some of the sub-problems that the problem of
creating a noughts and crosses game could be divided into. The following
could be written at a high level of abstraction.

◼	 The computer goes first. Then the user. This continues until either one
wins, or all of the squares have been used.

Immediately a pattern can be recognised – a loop will be needed.

Inputs and outputs
The following inputs from the user will be needed.

◼	 Start the game.
◼	 Entries for the user.
◼	 Select a new game or finish.

The following outputs will be needed.

◼	 A message to inform the user when it is their turn.
◼	 A message to inform the user if they try to select a square that has

already been used.

AN EXAMPLE – NOUGHTS AND CROSSES

model to make a simple version of
something to show how it works

GENERAL VOCABULARY

▲ A game of noughts and crosses

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 25 09/05/20 8:57 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

26 UNIT 1 PROBLEM SOLVING 4  Decomposition and abstraction

The solution is still at a high level of abstraction and more details will need to
be added.

For example, the programmer will need to decide how the game will record
which player has selected each square; how the computer will decide which
square to select; how the game will decide if the computer or the user has
won.

The programmer will have to go into more and more detail or move to lower
levels of abstraction.

Eventually, the programmer will be able to design an algorithm for the game
and code it using a high-level programming language such as Python or Java.
Even before they start to implement the game, they will need to plan how they
will test the finished program to make sure that it works correctly, what test
data they will use and what outcomes it should produce.

◼	 A message to inform the user if the game is a draw.
◼	 A message to inform the user if they or the computer has won.
◼	 A message to ask the user if they want to play another game or want

to finish.

Processing and initialisation
The following processing will be needed.

◼	 Set up the grid with the nine squares.
◼	 Initialise all variables to a start value.
◼	 Decide which square the computer will select.
◼	 Allow the user to select a square.
◼	 Check if the user has selected an already used square.
◼	 Check if the computer or the user has won.
◼	 Check if all squares have been used and the game is a draw.
◼	 Allow the user to select a new game or finish.

CODING AN ALGORITHM High-level programming languages make it easier for a programmer to write
code. Unfortunately, the processor that has to execute the program cannot
understand the language it is written in. It therefore needs a translator to
translate the code into the only language it does understand – a stream of 1s
and 0s.

These high-level languages are therefore at a high level of abstraction – very
far removed from the actual language of a computer.

The processing can be split into parts. For example, in the example of the
noughts and crosses game there could be separate algorithms for:

◼	 deciding where the computer should make its next selection – it could be
called ‘computer entry’

◼	 checking if the computer or the player has won – it could be called ‘check
if won’

◼	 checking if there are any empty squares left – it could be called ‘check draw’.

These separate algorithms could be used when they are needed. It is efficient
because it means that the same code doesn’t have to be rewritten whenever it
is needed.

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 26 09/05/20 8:57 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

27UNIT 1 PROBLEM SOLVING 4  Decomposition and abstraction

Strengthen
S1	 What is meant by ‘decomposition’? What are the benefits it provides

for programmers?

S2	 What is meant by ‘abstraction’?

S3	 A student is creating a model of the cost of a car journey, a real-
world problem. Write down the important items she will have to
include in her model and how they interact to calculate the cost of
the journey.

Challenge
C1	Can you think of some examples when ‘decomposition’ and

‘abstraction’ are used when solving a problem?

C2	 In your own words, can you explain what is meant by ‘computational
thinking’?

C3	Explain how we use abstraction in our daily lives when we are
communicating with others.

SKILLS CRITICAL THINKING

SKILLS CRITICAL THINKING

SKILLS CRITICAL THINKING,
PROBLEM SOLVING

SKILLS CRITICAL THINKING

SKILLS PROBLEM SOLVING

SKILLS DECISION MAKING

CHECKPOINT

subprogram a self-contained module of
code that performs a specific task. It can
be ‘called’ by the main program when it is
needed

SUBJECT VOCABULARY

decompose to divide something into
smaller parts

GENERAL VOCABULARY

ACTIVITY 12SKILLS REASONING,
PROBLEM SOLVING

In a game, each player spins a wheel that is divided into four colours:
red, blue, green and yellow. Each player has to answer a question
on a particular topic depending on the colour next to a pointer
when the wheel stops. Red is for science, blue for history, green for
general knowledge and yellow for geography. A player scores two
points if they answer correctly on the first attempt and one point for
being correct on the second attempt. The first player to reach 30 points
is the winner.

Your task is to design a computer version of the game for up to four
players. You must analyse the problem and list all of the requirements;
decompose the problem, list all the sub-problems and write a
brief description of each; list all of the input, output and processing
requirements.

One of the requirements that will have to be modelled is the spinning of
the wheel. Using a written description and pseudocode shows how this
could be done.

CREATING A QUIZ GAME

Complete the noughts and
crosses game by coding it in the
language you are studying. See
if you can end up with a working
game.

EXTEND YOUR KNOWLEDGE

These items of code are called subprograms.

In Unit 2, we’ll look in detail at how subprograms are used to reduce the
complexity of programs and to make them easier to understand.

In the die example above, the designer could write a subprogram called ‘die’
that generates a random number from 1 to 6. In the main program the designer
could just call the ‘die’ subprogram without having to think about how to
implement it each time.

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 27 09/05/20 8:57 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

28 UNIT 1 PROBLEM SOLVING 4  Decomposition and abstraction

DID YOU KNOW?
Computer models or ‘simulations’
of real life are widely used. It is
far cheaper and safer to train
pilots on flight simulators than on
real aircraft. They are also used
in weather forecasting, designing
and testing new cars and bridges
and even teaching people to drive.
Computer models are used by all
governments around the world to
experiment with the short and long-
term effects of changing variables
such as tax rates on the economy.

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, re-read the sections about ‘Decomposition’
and ‘Abstraction’.

◼	 Computational thinking is an approach to solving problems, such
as traffic flow in a city, or how many products a business needs to
make and sell to produce a profit. It includes techniques such as
decomposition and abstraction.

◼	 Problems are easier to solve if they are decomposed into smaller
sub-problems.

◼	 Abstraction is used to remove unnecessary detail to make a problem
easier to understand and solve. For example, when modelling traffic
flow in a city, unnecessary details could include the colours of the
vehicles or the ages of the drivers.

◼	 When designing a solution to a problem the inputs, outputs and
processing requirements should be identified at the outset.

SUMMARY

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 28 09/05/20 8:57 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

29UNIT 1 PROBLEM SOLVING UNIT QUESTIONS

Start

End

charge = 0
total = 0

number = 0

charge = £9

total = total + charge

NO

NO

NO

YES

YES

NO

charge = £10
number = number

+ 1

Is age
< 13?

Is age
> = 60?

Input
customer

Output
total

Input
age

A

B

Is
there another

customer in the
group?

total = total – £10
YES

YES

Is
number

> 4?

charge = £5
number = number – 1

▶ Figure 1.13 Flowchart of an algorithm
showing charges in a theme park

UNIT QUESTIONS

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 29 09/05/20 8:57 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

30 UNIT 1 PROBLEM SOLVING UNIT QUESTIONS

The flowchart in Figure 1.13 displays an algorithm used by Holiday Theme
Parks Limited.

1	 Explain how the algorithm calculates the total amount that should
be paid.� (4)

2	 Give two variables that are used in the algorithm.� (2)

3	 In the flowchart, two of the constructs are labelled A and B. State
the type of each construct.� (2)

4	 The Lim family is visiting the park. The family consists of two children,
one aged 8 and one aged 10, their two parents and their grandfather,
who is aged 65. Use the algorithm to calculate how much the family
should have to pay for entry.� (4)

AO2SKILLS PROBLEM SOLVING

AO2SKILLS PROBLEM SOLVING

AO2SKILLS PROBLEM SOLVING

AO2SKILLS PROBLEM SOLVING

Spend some time studying the algorithm to ensure that you fully understand it.

In 1 you are asked to ‘explain’ how the algorithm works. A longer answer is
required, which includes all of the stages of the algorithm. Use the correct
terms to explain the constructs.

In 2 and 3 short answers are sufficient.

In 4 calculate the charge for each person using the rules of the algorithm.
Then calculate the overall charge and check to see if the family qualifies for a
group discount.

HINT

These questions are testing knowledge of the sort and search algorithms.

In question 5, the answer should be set out to show how the data is
progressively sorted using the bubble sort and the result of each pass should
be shown.

Question 6 is to check that you know that this is a recursive method where
the median is repeatedly selected.

HINT

5	 A teacher has stored learner surnames as shown below.

Marek Jackson Bachchan Wilson Abraham French Smith

	 Identify the stages of a bubble sort when applied to this data.� (5)

6	 The teacher has a sorted list of names from another class as shown below.

Azikiwe Bloom Byrne Davidson Gateri Hinton Jackson Linton Smith Wall

	 Identify the stages of a binary search to find the name ‘Jackson’
when applied to this list.� (4)

AO2SKILLS PROBLEM SOLVING

AO2SKILLS PROBLEM SOLVING

recursive method a recursive method
calls a function over and over until a
required goal is met

SUBJECT VOCABULARY

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 30 09/05/20 8:57 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

31UNIT 1 PROBLEM SOLVING UNIT QUESTIONS

7	 Create an algorithm to calculate the cost of sending a parcel.

	 If the weight of the parcel is 2 kg or under then the standard charge is $3.
There is then a charge of $2 for each extra kilogram up to 10 kg. After
10 kg the charge per extra kilogram is $3.

a	 Display your algorithm as a flowchart.� (5)
b	 Construct your algorithm as pseudocode.� (5)

8	 A learner hands in three homework assignments, which were each
given a mark out of 10. All of the marks were different. The following
is part of an algorithm to find the highest mark but some of the
decision symbols are empty.

	 Complete the decision symbols and add ‘YES’ and ‘NO’ labels
where required.� (6)

AO3SKILLS PROBLEM SOLVING

AO3SKILLS PROBLEM SOLVING

9	 A list is made up of the numbers 4, 1, 2, 6, 3, 5.
	 Identify the steps involved when sorting this list using a bubble

sort algorithm.� (2)

AO2SKILLS PROBLEM SOLVING

Input
mark1

Input
mark2

Start

Input mark1,
mark2, mark1

Input
mark3

Input
mark3

M01 IGCSE Computer Science SB2 Global 10220 UNIT1.indd 31 09/05/20 8:57 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 32 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

33

In this unit you will learn about translating algorithms into
programs written in a high-level language using constructs, such
as variables and arrays. You will also look at how programs can
be structured using subprograms and how data input can be
validated to ensure that it is reasonable. Humans are not perfect.
Most programs have one or two errors and you will look at how
programs can be tested, and errors corrected.

UNIT 2
PROGRAMMING
Assessment Objective 1

Demonstrate knowledge and
understanding of the key
principles of computer
science

Assessment Objective 2

Apply knowledge and
understanding of key
concepts and principles of
computer science

Assessment Objective 3

Analyse problems in
computational terms:
•	to make reasoned

judgements
•	to design, program, test,

evaluate and refine
solutions

DEVELOP CODE 34 MAKING PROGRAMS EASY TO READ 51 STRINGS 54

DATA STRUCTURES 62 INPUT/OUTPUT 70 SUBPROGRAMS 82

TESTING AND EVALUATION 92

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 33 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

34 UNIT 2 PROGRAMMING 5  Develop code

5  DEVELOP CODE

◼	 Explain the difference between algorithms and programs

◼	 Code an algorithm in pseudocode and a high-level programming language

◼	 Describe the characteristics of data types and select appropriate data
types for variables

◼	 Use sequencing, selection and iteration constructs in your programs

LEARNING OBJECTIVES

Once an algorithm has been developed to solve a particular problem, it has
to be coded into the programming language that the developer is using. This
usually means that the written descriptions, flowcharts and pseudocode have
to be converted into actual programming code.

As you will be expected to understand, use and edit Pearson Edexcel
pseudocode in the examination, examples will be given in the pseudocode
as well as in Python, Java and C#.

execution the process by which a
computer carries out the instructions of a
computer program

SUBJECT VOCABULARY

▶	A computer programmer at work writing code

Throughout the book, we have
coloured the different
programming languages in
order for you to easily find the
one you are looking for.

The colours are:

Pearson Edexcel pseudocode

Python

Java

C#

PROGRAMMING LANGUAGES

ALGORITHMS AND PROGRAMS As you learnt in Unit 1, an algorithm is a precise method of solving a problem.
It consists of a sequence of unambiguous, step-by-step instructions. A
program is an algorithm that has been converted into program code so that it
can be executed by a computer. A well-written algorithm should be free of
logic errors and easy to code in any high-level language.

As part of this course you will learn to write programs in a high-level
programming language. All high-level programming languages are like natural
human languages, which makes them easier for humans to read and write
but impossible for computers to understand without the help of a translator.
You will learn more about how a program written in a high-level language is
translated into machine code – the language of computers – in Unit 4. The aim
of this unit is to develop your programming skills.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 34 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

35UNIT 2 PROGRAMMING 5  Develop code

DATA TYPES As you learnt in Unit 1, algorithms use variables (named memory locations)
to store values. Variables have a variety of uses. For example, controlling
the number of times a loop is executed, determining which branch of an IF
statement is taken, keeping running totals and holding user input.

When algorithms are converted into programs, the computer needs to be told
what type of data is stored in each variable. Every programming language has
a number of built-in data types.

When writing pseudocode, you don’t have to specify the data types of
variables. However, data types become much more important once you start
programming in a high-level language. This is because the data type of a
variable determines the operations that can be performed on it.

For example, the result of multiplying a value by 5 differs according to its
data type.

assign to give somebody a particular task

GENERAL VOCABULARY

determine to discover facts about
something

GENERAL VOCABULARY

Although you don’t have to declare
the data types of variables in
pseudocode, it is a good idea to do
so. You can simply list the variables
and their data types at the start of
an algorithm, for example:

INTEGER age
REAL weight
BOOLEAN correct
CHARACTER gender

You can also specify the data
type of a variable in the RECEIVE
statement, for example:

RECEIVE age FROM (INTEGER)
KEYBOARD
RECEIVE price FROM (REAL)
KEYBOARD

HINT

integer	 8 * 5 = 40
real	 8.0 * 5 = 40.0
character	 ‘8’ * 5 = ‘88888’

The method of declaring variables differs between programming languages.
Some languages, such as Python, automatically select the appropriate
data type for a variable based on the data assigned to it. Others, such as
Java and C#, require the data type of variables to be declared before the
variables can be used.

VARIABLE INITIALISATION
When a variable is declared, the computer gives it a location in its memory.
Initially, this location is empty, so before a variable can be used it has to be
given a value.

DATA TYPE DESCRIPTION EXAMPLE EXAMPLES OF USE

integer Used to store whole numbers without a fractional part 30 age = 30
number = 5

real or float Used to store numbers with a fractional part (decimal place).
Real numbers are sometimes referred to as floats (short for
floating point)

25.5 weight = 25.5
price = 12.55

Boolean Only has two possible values: True or False False correct = False
lightOn = True

character* A character can be a single letter, a symbol, a number or
even a space. It is one of the four basic data types

‘m’ gender = ‘m’
char = ‘:’

string A set of characters which can include spaces and numbers
and are treated as text rather than numbers

‘the computer’ name = ‘Catherine’
type = ‘liquid’

*Python does not have a character data type.

▲ Table 2.1 Common data types

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 35 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

36 UNIT 2 PROGRAMMING 5  Develop code

initialise to set variables to their starting
values at the beginning of a program or
subprogram
initialisation the process of assigning
an initial value to a variable
assignment statement the SET…TO
command is used to initialise variables in
pseudocode, for example:
SET anotherGo TO 0

SET correct TO False

SUBJECT VOCABULARY You can put an initial value into a variable by:

◼◼ initialising it when the program is run (e.g. SET total TO 0, in
pseudocode)

◼◼ reading a value from a keyboard or other device (e.g. RECEIVE
admissionCharge FROM (INTEGER) KEYBOARD).

Once a variable has been initialised an assignment statement is used to
change its value (e.g. SET total TO total + admissionCharge).

In Python this would be:

total = 0

total = total + admissionCharge

In Java this would be:

Scanner scan = new Scanner(System.in);

int admissionCharge = scan.nextInt();

int total = 0;

total = total + admissionCharge;

In C#, variables must be declared before use. When you declare a variable,
you need to state the data type that the variable will store, for example:

// declare a variable called total that will be used to
store floating point numbers and assign the value 0.0 to it

float total = 0.0;

// add the value stored in the variable admissionsCharge
to the total

total = total + admissionsCharge;

If a variable, such as a loop counter, is intended to hold a running total, then it
should always be initialised to a starting value. Some programming languages
won’t execute if the programmer fails to do this; others will do so but may well
produce some unexpected results.

SKILLS
CRITICAL THINKING,
DECISION MAKING ACTIVITY 1

	1	 Investigate what data types are available in the high-level language
you are studying. Produce a table similar to Table 2.1 to give a
summary of your findings.

	2	 What do you think is an appropriate data type for each of these items?
	 a	 the test score of an individual learner
	 b	 the average score for a group of learners
	 c	 whether or not the pass mark for the test has been achieved.

	3	 Look back over the algorithms you wrote in Unit 1 and find instances
of variable initialisation.

DATA TYPES

intended designed for a certain purpose

GENERAL VOCABULARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 36 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

37UNIT 2 PROGRAMMING 5  Develop code

SKILLS
CRITICAL THINKING,
PROBLEM SOLVING,
DECISION MAKING

ACTIVITY 2

A theme park uses a program to monitor the number of people entering
and exiting the park. The maximum number of visitors at any one time must
not exceed 10 000. When the number of people in the park reaches the
maximum, a ‘Park Full’ message is displayed at the entrance gate. Children
can visit the park free of charge. Adults must pay AED 125 admission. The
program records the amount of money collected at the gate.

	1	 What are the variables needed in the program?

	2	 Select an appropriate data type for each variable and constant.

MONITORING VISITOR NUMBERS

type coercion the process of converting
the value stored in a variable from one data
type to another

SUBJECT VOCABULARY TYPE COERCION
Sometimes the data type of a variable gets changed during program
execution. This is known as type coercion. For example, if an integer
value and a real value are used in an arithmetic operation, the result will
always be a real.

In Python, type coercion is done automatically, for example, the output from the
following program is 3.25.

x = 1

y = 2.25

z = x + y

print(z)

Type coercion is also automatic in Java:

int x = 1;

double y = 2.25;

double z = x + y;

System.out.print(z);

In C# this is generally referred to as casting. As with Python this can be
automatic for many data type conversions and is known as implicit
casting. For more complicated conversions you may need to research
explicit casting.

One frequently used type of explicit casting is converting from a string
to a numeric value. This is used when getting input from a user as
Console.Readline. For example, the following C# code will output 3.25
and demonstrates automatic type coercion.

int x;			 // declares a variable called x that will store integers
double y, z;		� // declares two variables called y and z that will store

floating point numbers
x = 1;

y = 2.25;

z = x + y;

Console.WriteLine(z);

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 37 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

38 UNIT 2 PROGRAMMING 5  Develop code

SELECTION
The selection construct is used to create a branch in a program. The computer
selects which branch to follow based on the outcome of a condition, using an
IF…THEN…ELSE statement. For example, in pseudocode:

A standard IF…THEN…ELSE statement provides two alternatives. If there
are more than two, then in Pearson Edexcel pseudocode a nested IF must
be used. However, many high-level programming languages have an
additional built-in selection construct that does away with the need for
a nested IF statement.

IF day = ‘Saturday’ OR day = ‘Sunday’ THEN

	 SET alarm TO 11

ELSE

	 SET alarm TO 8

END IF

ACTIVITY 3SKILLS
CRITICAL THINKING,
PROBLEM SOLVING,
CREATIVITY

Read the following algorithm written in pseudocode and then answer the
questions below.

RECEIVE number1 FROM (INTEGER) KEYBOARD

RECEIVE number2 FROM (INTEGER) KEYBOARD

SET result1 TO number1 / number2

SEND result1 TO DISPLAY

SET result2 TO number1 MOD number2

SEND result2 TO DISPLAY

SET result3 TO number1 DIV number2

SEND result3 TO DISPLAY

	1	 What does this algorithm do?

	2	 What is the output of the algorithm, given the following inputs:
	 a	 4, 2
	 b	 10, 3
	 c	 20, 6?

Implement this algorithm in the high-level language you are studying.

UNDERSTANDING ALGORITHMS

COMMAND SEQUENCE,
SELECTION AND ITERATION

In Unit 1 you learnt that the three key building blocks of algorithms are
command sequence, selection and iteration. In this unit, you will have the
opportunity to implement these constructs in the high-level programming
language you are studying.

nested IF statement a nested IF
statement consists of one or more IF
statements placed inside each other. A
nested IF is used where there are more
than two possible courses of action

SUBJECT VOCABULARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 38 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

39UNIT 2 PROGRAMMING 5  Develop code

A learner handed in three homework assignments, which were each given a mark out of 10. All the marks were
different. Write an algorithm that would print out the highest mark.

Figure 2.1 shows the algorithm expressed as a flowchart.

Output
mark1

Output
mark3

End

End

Start

Input mark1,
mark2,
mark3

NO

NO NO

YES YES

YES

Is
mark1 >
mark2?

Is
mark1 >
mark3?

Output
mark3

Output
mark2

EndEnd

Is
mark2 >
mark3?

▲ Figure 2.1 Flowchart of an algorithm to print out the highest homework mark

When you are creating nested IF statements, you have to ensure that each one is completed with an END IF
statement at the correct indentation level. Some programming languages do not need an END IF statement and
just use the indentation levels to indicate when statements are grouped.

HINT

In Pearson Edexcel pseudocode, this algorithm could be expressed as:
RECEIVE mark1 FROM KEYBOARD
RECEIVE mark2 FROM KEYBOARD
RECEIVE mark3 FROM KEYBOARD
IF mark1 > mark2 AND mark1 > mark3 THEN
 SEND mark1 TO DISPLAY
ELSE
 IF mark2 > mark1 AND mark2 > mark3 THEN	
 SEND mark2 TO DISPLAY
 ELSE
 IF mark3 > mark1 AND mark3 > mark2 THEN
 Send mark3 TO DISPLAY
 END IF
 END IF
END IF

WORKED EXAMPLE

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 39 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

40 UNIT 2 PROGRAMMING 5  Develop code

In Python, Java and C# this does not have to be done as they have an ‘else if’ statement.

In Python the ‘else if’ statement is elif and the algorithm above could be:

mark1 = input(‘Please enter the first mark’)

mark2 = input(‘Please enter the second mark’)

mark3 = input(‘Please enter the third mark’)

if mark1 > mark2 and mark1 > mark3:

 print(mark1)

elif mark2 > mark1 and mark2 > mark3:

 print(mark2)

elif mark3 > mark1 and mark3 > mark2:

 print(mark3)

Here is the algorithm in Java:
import java.util.*;

class Main {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print(“Please enter the first mark: ”);

 int mark1 = scanner.nextInt();

 System.out.print(“Please enter the second mark: ”);

 int mark2 = scanner.nextInt();

 System.out.print(“Please enter the third mark: ”);

 int mark3 = scanner.nextInt();

 scanner.close();

 if (mark1 > mark2 && mark1 > mark3) {

 System.out.print(mark1);

 } else if (mark2 > mark1 && mark2 > mark3) {

 System.out.print(mark2);

 } else if (mark3 > mark1 && mark3 > mark2) {

 System.out.print(mark3);

 }

 }

}

And in C#:

string mark1String, mark2String, mark3String;

int mark1, mark2, mark3;

Console.WriteLine(“Please enter the first mark”);

mark1String = Console.ReadLine(); // read input into string

mark1 = int.Parse(mark1String); // convert string to integer

Console.WriteLine(“Please enter the second mark”);

mark2String = Console.ReadLine(); // read input into string

mark2 = int.Parse(mark2String); // convert string to integer

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 40 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

41UNIT 2 PROGRAMMING 5  Develop code

Console.WriteLine(“Please enter the third mark”);

mark3String = Console.ReadLine(); // read input into string

mark3 = int.Parse(mark3String); // convert string to integer

if (mark1 > mark2 && mark1 > mark3)

{

 Console.WriteLine(mark1);

}

else if (mark2 > mark1 && mark2 > mark3)

{

 Console.WriteLine(mark2);

}

else if (mark3 > mark1 && mark3 > mark2)

{

 Console.WriteLine(mark3);

}

These examples use relational and logical operators.

RELATIONAL OPERATORS
The relational operators are used to compare two values and in Python, Java
and C# are all the same.

relational operator an operator that
tests the relationship between two entities
logical operator a Boolean operator
using AND, OR and NOT

SUBJECT VOCABULARY

ACTIVITY 4

Look at the following algorithm and answer the questions.

IF score <= highScore THEN

 SEND ‘You haven’t beaten your high score.’ TO DISPLAY

ELSE

 SEND ‘You’ve exceeded your high score!’ TO DISPLAY

END IF

What is the output of the algorithm when

◼◼ score = 5 and highScore = 10?
◼◼ score = 20 and highScore = 10?
◼◼ score = 15 and highScore = 15?

RELATIONAL OPERATOR PYTHON, JAVA, C#

Equal to ==

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=

Not equal to !=

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 41 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

42 UNIT 2 PROGRAMMING 5  Develop code

LOGICAL OPERATORS
AND
If two conditions are joined by the AND operator, then they must both be true
for the whole statement to be true.

OR
If two conditions are joined by the OR operator, then either one must be true for
the whole statement to be true.

NOT
The NOT operator reverses the logic of the AND and OR statements. The
statement IF A = 3 AND B = 6 will be true only if the conditions are met,
i.e. A and B are both equal to the values stated.

The statement IF NOT (A = 3 AND B = 6) will be true whenever both A
and B are NOT equal to the values stated, i.e. either or both are not equal to
those values.

Logical operators in high-level languages.

ACTIVITY 5

A driving school uses this rule to estimate how many lessons a learner will
require.

◼◼ Every learner requires at least 20 lessons.
◼◼ Learners over the age of 18 require more lessons (two additional

lessons for each year over 18).

Create a program in a high-level language that inputs a learner’s age and
calculates the number of driving lessons they will need.

LOOPS
A loop is another name for an iteration. Loops are used to make a computer
repeat a set of instructions more than once. There are two types of loop:
definite and indefinite.

A definite loop is used when you know in advance how often the instructions in
the body of the loop are to be repeated. For example, if you want the computer to
display a character on the screen for a fixed amount of time and then remove it.

An indefinite loop is used when the number of times a loop will need to be
repeated is not known in advance. For example, if you want to give a user the
option of playing a game as often as they want. Indefinite loops are repeated
until a specified condition is reached.

Every programming language has a number of built-in loop constructs. You will
need to explore the ones provided in the language you are studying.

LOGICAL OPERATOR PYTHON JAVA C#

AND and & &&

OR or | ||

NOT not ! !

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 42 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

43UNIT 2 PROGRAMMING 5  Develop code

DEFINITE ITERATION
This is used when the number of iterations, or turns of the loop, is known in
advance.

In the Pearson Edexcel pseudocode there are two ways of doing this using
REPEAT…END REPEAT and FOR…END FOR.

An example of a REPEAT loop is shown below.

REPEAT 50 TIMES

	 SEND ‘*’ TO DISPLAY

END REPEAT

Using a FOR loop, this would be:

FOR times FROM 1 TO 100 DO

	 SEND ‘*’ TO DISPLAY

END FOR

FOR loops can also include a step so that the counting is not consecutive. A
step is included in the following pseudocode example.

FOR times FROM 0 TO 100 STEP 25 DO

	 SEND times TO DISPLAY

END FOR

The output would be 0, 25, 50, 75.

USE EXAMPLE RESULT

Using the
‘range’
command

for x in range(6):

 print(x)

0
1
2
3
4
5

Stipulating a
start number so
that it does not
begin at 0

for x in range(2,6):

 print(x)

2
3
4
5

Using a step by
adding a third
number into the
brackets

for x in range(0,100,25):

 print(x)

To also print 100 you would use:
for x in range(0,101,25):

0
25
50
75

Printing items
from a list

aList = [‘red’, ‘blue’, ‘green’, ‘yellow’, ‘purple’, ‘orange’]

for colour in aList:

 print (colour)

The number of iterations does not have to be given as the length of the list is used.

red
blue
green
yellow
purple
orange

(continued)

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 43 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

44 UNIT 2 PROGRAMMING 5  Develop code

USE EXAMPLE RESULT

Using a for loop for(int x = 0; x < 6; x++) {

 System.out.println(x);

}

0
1
2
3
4
5

Stipulating a
start number so
that it does not
begin at 0

for(int x = 2; x < 6; x++) {

 System.out.println(x);

}

2
3
4
5

Using a step
by adding an
amount to
increase by

for(int x = 0; x < 100; x+=25) {

 System.out.println(x);

}

To also print 100 you would use:
for(int x = 0; x <= 100; x+=25) {

 System.out.println(x);

}

0
25
50
75

Printing items
from a list

String[] aList = {“red”, “blue”, “green”, “yellow”, “purple”,
“orange”};

for(String colour: aList) {

 System.out.println(colour);

}

red
blue
green
yellow
purple
orange

Leaving out
items from the
list

String[] aList = {“red”, “blue”, “green”, “yellow”, “purple”,
“orange”};

for(String colour: aList) {

 if(colour == “yellow”) {

 continue;

 }

 System.out.println(colour);

}

red
blue
green
purple
orange

▲ Table 2.3 Java

USE EXAMPLE RESULT

Leaving out
items from the
list

aList = [‘red’, ‘blue’, ‘green’, ‘yellow’, ‘purple’, ‘orange’]

for colour in aList:

	 if colour == ‘yellow’:

		 continue

 	 print (colour)

red
blue
green
purple
orange

▲ Table 2.2 Python

(continued)

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 44 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

45UNIT 2 PROGRAMMING 5  Develop code

USE EXAMPLE RESULT

Using a for loop for (int i = 0; i <= 5; i++)

{

 Console.WriteLine(i);

}

0
1
2
3
4
5

Stipulating a start
number so that
it does not begin
at 0

for (int i = 2; i <= 5; i++)

{

 Console.WriteLine(i);

}

2
3
4
5

Using a step
by altering the
increment value
of a for loop

for (int i = 0; i < 100; i+= 25)

{

 Console.WriteLine(i);

}

0
25
50
75

Printing items
from an array*

string[] colours = {“red”, “blue”, “green”, “yellow”, “purple”,
“orange”};

foreach (string i in colours)

{

 Console.WriteLine(i);

}

The number of iterations does not have to be given as the length of the array is used.

red
blue
green
yellow
purple
orange

Leaving out items
from the array*

string[] colours = {“red”, “blue”, “green”, “yellow”, “purple”,
“orange”};

foreach (string i in colours)

{

 if (i == “yellow”)

 {

 continue;

 }

 else

 {

 Console.WriteLine(i);

 }

red
blue
green
purple
orange

▲ Table 2.4 C#

ACTIVITY 6SKILLS PROBLEM SOLVING

Produce a program in a high-level language that asks a user to enter a start
number and an end number and then outputs the total of all the numbers in
the range. For example, if the start number was 1 and the end number was
10, the total would be 55 (10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1).

*See pages 62–68 for more information on arrays.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 45 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

46 UNIT 2 PROGRAMMING 5  Develop code

NESTED LOOPS
A nested loop is made of a loop within a loop. When one loop is nested within
another, each iteration of the outer loop causes the inner loop to be executed
until completion.

You should initialise the variable
total to zero before the start of the
loop.

HINT

ACTIVITY 7

1  Python
Look at the following program and then answer the questions below.

for student in range(1, 21):

 sum = 0

 for mark in range(1, 6):

 nextMark = int(input(‘Please enter a mark’))

 sum = sum + nextMark

 averageMark = sum/5

 print(averageMark)

	 a	 What is the purpose of this program?

	 b	 �Why is int used in the line nextMark = int(input(‘Please
enter a mark’))?

2  Java
Look at the following program and then answer the questions below.

import java.util.*;

class Main {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 for(int student = 1; student < 21; student++) {

 int sum = 0;

 for(int mark = 1; mark < 6; mark++) {

 System.out.print(“Please enter a mark: ”);

 int nextMark = scanner.nextInt();

 sum = sum + nextMark;

 }

 double averageMark = sum / 5;

 System.out.println(averageMark);

 }

 scanner.close();

 }

}

	 a	 What is the purpose of this program?

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 46 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

47UNIT 2 PROGRAMMING 5  Develop code

3  C#
int nextMark, sum, averageMark;

string markString;

sum = 0;

for (int mark = 1; mark <= 5; mark++)

{

 Console.WriteLine(“Please enter a mark”);

 markString = Console.ReadLine();

 nextMark = int.Parse(markString);

		 sum = sum + nextMark;

	 }

	 averageMark = sum / 5;

	 Console.WriteLine(averageMark);

	 a	 What is the purpose of the program?

	 b	 �Why is int.Parse used in the line nextMark = int.
Parse(markString);?

ACTIVITY 8SKILLS PROBLEM SOLVING

Produce an algorithm that will print out the times tables (up to 12 times)
for the numbers 2 to 12.

INDEFINITE ITERATION
An indefinite loop is used when the number of times a loop will need to be
repeated is not known in advance. For example, if you want to give a user the
option of playing a game as often as they want. Indefinite loops are repeated
until a specified condition is reached.

Python
For indefinite iteration, Python uses the ‘while’ loop – something is done while
a condition is met.

The following program asks a user to enter a number while the number is less
than 20.

number = 1

while number <= 20:

 number = int(input(‘Please enter a number’))

print(‘You entered a number greater than 20’)

As soon as the number is greater than 20, the program breaks out of the loop
and prints a message for the user.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 47 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

48 UNIT 2 PROGRAMMING 5  Develop code

Java
For indefinite iteration, Java uses a ‘while’ loop – instructions are repeated
while a condition is met.

The following program asks a user to enter a number while the number is less
than 20.

import java.util.*;

class Main {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 int number = 1;

 while(number <= 20) {

 System.out.print(“Please enter a number: ”)

 number = scanner.nextInt();

 }

 System.out.println(“You entered a number greater than 20”)

 scanner.close();

 }

}

C#
string numberString;

int number = 1;

while (number <=20)

{

 Console.WriteLine(“Please enter a number”);

 numberString = Console.ReadLine();

 number = int.Parse(numberString);

}

Console.WriteLine(“You entered a number greater than 20”);

As soon as the number is greater than 20, the program breaks out of the loop
and prints a message for the user.

ACTIVITY 9

What do these two algorithms do? Implement them in the high-level
programming language you are studying.

	 a	 Algorithm A

	 FOR index FROM 1 TO 10 DO

	 SEND index * index * index TO DISPLAY

	 END FOR

	 b	 Algorithm B

	 SET counter TO 10

	 WHILE counter > 0 DO

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 48 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

49UNIT 2 PROGRAMMING 5  Develop code

RANDOM NUMBERS
Random numbers are commonly used in games of chance such as flipping a
coin or rolling a dice. The aim is to make an event random.

All high-level programming languages have functions to create random
numbers.

Python
Python has a random module. The following code will generate a random
number between 1 and 10.

import random

x = random.randint(1, 11)

print(x)

The ‘import’ command is necessary so that the ‘random’ module can be used.

Java
Java can generate a random integer using System.util.Random. The
following code will generate a random number between 1 and 10.

import java.util.*;

class Main {

 public static void main(String[] args) {

 Random r = new Random();

 int x = r.nextInt(10) + 1;

 System.out.println(x);

 }

}

Alternatively, you can generate a random real value using Math.random().

class Main {

 public static void main(String[] args) {

 int x = (int)(Math.random() * 10) + 1;

 System.out.println(x);

 }

}

C#
C# can generate random numbers using the Random Class. The following
code will generate a random number between 1 and 10 and display on
screen.

Random rand = new Random();

randomNumber = rand.Next(1, 11);

Console.WriteLine(randomNumber);

	 SEND counter TO DISPLAY

	 SET counter TO counter - 1

	 END WHILE

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 49 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

50 UNIT 2 PROGRAMMING 5  Develop code

Strengthen
S1	 Why are variables needed?

S2	 Provide examples of the four data types.

S3	 How are selection and iteration implemented in the high-level language
you are studying?

Challenge
C1	Outline the following structural components of a program: variable

and type declarations, command sequences, selection and iteration
constructs.

SKILLS CRITICAL THINKING

SKILLS REASONING

SKILLS CRITICAL THINKING

SKILLS PROBLEM SOLVING

CHECKPOINT

◼◼ A program is an algorithm that has been converted into program code.
◼◼ Pseudocode is far more forgiving than program code.
◼◼ The four basic data types are integer, float/real, Boolean and character.
◼◼ The data type of a variable determines the operations that can be

performed on it.
◼◼ Data types don’t have to be declared in pseudocode but it’s a good

idea to do so.
◼◼ Variable and type declarations, command sequences, selection and

iteration are four of the structural components of a program.

SUMMARY

ACTIVITY 10

Create a guessing-game program with the following specification.
◼◼ The computer generates a random number between 1 and 20.
◼◼ The user is asked to enter a number until they enter this random

number.
◼◼ If their guess is too low or too high they are told.
◼◼ They are told when their guess is correct.
◼◼ They are asked if they want to play another game until their answer

is ‘NO’.

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, try redoing the activities in this section.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 50 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

51UNIT 2 PROGRAMMING 6  Making programs easy to read

6  MAKING PROGRAMS EASY TO READ

◼	 Explain the benefit of producing programs that are easy to read

◼	 Use techniques to improve the readability of code and describe how code works

LEARNING OBJECTIVES

Developers usually work in teams and it is important that they understand how each
other’s code and programs work, especially if there are errors that need correcting.
Code should be written in standard ways and be explained using comments.

▶	Figure 2.2 An example of Python code

CODE READABILITY You should always try to ensure that any code you write is easy to read and
understand. We refer to this as ‘readability’. This benefits you and anyone else
who needs to understand how your programs work.

It is surprising how quickly you forget. Try revisiting the programs you have
already written in this unit and make sure it is still clear to you what they do
and how they work. Imagine how much more difficult it would be to make
sense of a complex program with lots of variables, subprograms, nested loops
and multiple selection statements.

Programming is not a solo activity. Programmers usually work in teams, with
each programmer developing a different part of the program. This only works if
they all adopt a standard approach to writing readable code.

practice the way that you do something

GENERAL VOCABULARY

block of code a grouping of two or
more code statements

SUBJECT VOCABULARY

The programmer who produced the program in Figure 2.2 did not follow good
practice. There are a number of ways that the readability of this code could
be improved.

◼◼ Use descriptive names for variables (e.g. userChoice instead of Num1).
◼◼ Add blank lines between different blocks of code to make them stand out.
◼◼ Add comments that explain what each part of the code does.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 51 18/05/20 11:42 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

52 UNIT 2 PROGRAMMING 6  Making programs easy to read

Table 2.5 lists the techniques you should use to make your programs easy to
read and understand.

▲	Programmers often work in teams; it is vital that any coding they share is clear and error free

DID YOU KNOW?
Microsoft Windows® uses roughly
50 million lines of code – code
readability obviously becomes
more and more important as
programs get larger.

TECHNIQUE DESCRIPTION

Comments Comments should be used to explain what each part
of the program does.

Descriptive
names

Using descriptive identifiers for variables, constants
and subprograms helps to make their purpose clear.

Indentation Indentation makes it easier to see where each block of
code starts and finishes. Getting the indentation wrong
in Python will result in the program not running or not
producing the expected outcomes.

White space Adding blank lines between different blocks of code
makes them stand out.

▲ Table 2.5 Techniques for program clarity

ACTIVITY 11 SKILLS CRITICAL THINKING,
PROBLEM SOLVING,
CREATIVITY

	1	 Program the following algorithm in a high-level language and make it
readable by adding comments and indentation.

		 SET x TO 10

		 WHILE x >= 0 DO

		   IF x > 0

		    SEND x TO DISPLAY

		   ELSE

		    SEND ‘Blast Off’ TO DISPLAY

		    END IF

		   SET x TO x -1

		 END WHILE

REWRITING AND IMPLEMENTING ALGORITHMS

Here’s how to write comments in
Python, Java and C#:

◼	 Python: start each line of a
comment with the # symbol

◼	 Java: start single line comment
with // or start a multi-line
comment with /* and end it
with */

◼	 C#: Same as for Java.

HINT

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 52 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

53UNIT 2 PROGRAMMING 6  Making programs easy to read

▲	Calculators have a number of useful functions

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, look again at Table 2.5.

Strengthen
S1	 Why it is important to make your code easy to read?

S2	 Outline the four techniques that a programmer should use to make
code easy to read.

Challenge
C1	 Revisit the programs you have already written. Do you still understand

what they do and how they work? If not, try to improve their readability.

SKILLS REASONING

SKILLS CRITICAL THINKING

SKILLS PROBLEM SOLVING

CHECKPOINT

◼◼ Using comments, descriptive names, indentation and white space
makes code easier to read.

◼◼ Producing readable code makes it easier to understand what a
program does and how it does it.

SUMMARY

Readability of code is important.
You should always make your
code easy to read.

KEY POINT

	2	 Develop an algorithm for a simple calculator and code it in a high-level
language that:

	 a	 �allows the user to choose from these options: addition, subtraction,
division and multiplication

	 b	 prompts the user to input two numbers
	 c	 performs the calculation and displays the result
	 d	 offers the user the option of performing another calculation.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 53 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

54 UNIT 2 PROGRAMMING 7  Strings

7  STRINGS

◼	 Describe what a string is and explain what strings are used for

◼	 Use iteration to traverse a string

◼	 Concatenate and split strings

LEARNING OBJECTIVES

A string is a data type that is used to represent a sequence of characters,
such as numbers, text, spaces and punctuation. Strings must be enclosed in
quotation marks to distinguish them from variable names. A string could be a
user name, a whole sentence or paragraph of data.

A character is one of the four basic data types. It can be a single letter, a
symbol, a number or even a space. A sequence of characters is called a
string. Although strings can contain different sorts of characters, including
numbers, they are all treated as if they were text.

When a computer executes a program, it needs a way of telling the difference
between a string and an instruction. In most programming languages, this
is achieved by enclosing strings in quotation marks (e.g. ‘johnsmith@mail.
com’, ‘10/04/15’ or ‘123’). Both single ‘ ’ and double “ ” quotation marks are
acceptable, as long as they are used in the same way each time. In the example,
“It’s her book”, the apostrophe is treated as part of the string because double
quotes have been used to enclose the string.

Strings are very useful when communicating with users. For example, asking
them to enter some information into a program or displaying the output of a
program in a format that humans can read and understand.

string a sequence of characters. They can
be letters, numbers, symbols, punctuation
marks or spaces

SUBJECT VOCABULARY

INDEX 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

String C o m p u t e r S c i e n c e

▲	Table 2.6 An example string index

reference to refer to something

GENERAL VOCABULARY

STRING INDEXING Each character in a string has an index number, with the first character at
position 0. You can use the index to reference individual characters in a
string.

Therefore the index position of the letter ‘m’ is 2, even though it is the third
character, as shown in Table 2.6.

Computers start counting at 0. Therefore, although the length of the
string ‘Computer Science’ is 16, the indexes of the characters range
from 0 to 15.

KEY POINT

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 54 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

55UNIT 2 PROGRAMMING 7  Strings

function a subprogram that performs
a specific task and returns a value to the
main program. High-level programming
languages have a number of useful built-in
functions. You can also create your own or
use functions available in online libraries

SUBJECT VOCABULARY

string traversal using a loop to cycle
through each character in a string

SUBJECT VOCABULARY

STRING TRAVERSAL You can use a FOR loop to cycle through each of the characters in a string.
This is known as string traversal.

The following algorithm prints out the word ‘monkey’ letter by letter, displaying
each letter on a separate line.

SET animalName TO ‘monkey’

FOR index = 0 TO LENGTH(animalName) - 1

   SEND animalName[index] TO DISPLAY

END FOR

ACTIVITY 12SKILLS PROBLEM SOLVING,
CREATIVITY,
DECISION MAKING

Create and write a program to check the length of a password. If the
password entered is less than six characters, the program should output
‘The password you have entered is not long enough’; otherwise it should
output ‘Length of password OK’.

CHECKING PASSWORD LENGTH

The loop runs until LENGTH(animalName) - 1 because string indexing
starts at 0 and therefore has to print characters with indexes of 0 to 5.

PYTHON
animalName = ‘monkey’

for index in range 0, len(animalName):

 print(animalName[index])

LENGTH The Pearson Edexcel pseudocode has a built-in LENGTH function, which you
can use to find the number of characters in a string. Therefore:

SET numChars TO LENGTH(myText)

SEND numbChars TO DISPLAY

would print ‘16’. Table 2.7 gives the method for Python, Java and C#.

LANGUAGE METHOD EXAMPLE OUTPUT

Python The function to find the length of a
string is len().

string = ‘Computer Science’

length = len(string)

print(length)

16

Java Each string object has a .length()
method.

String s = “Computer Science”;

int length = s.length();

System.out.println(length);

16

C# The length of a string can be found by
accessing the length property.

string subject = “Computer Science”;

Console.WriteLine(subject.Length);

16

▲ Table 2.7 Finding the length of a string in Python, Java and C#.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 55 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

56 UNIT 2 PROGRAMMING 7  Strings

ACTIVITY 13SKILLS PROBLEM SOLVING,
CREATIVITY,
DECISION MAKING

Write a program that will check if a make of car entered by the user is in
the string ‘The cars present included Ford, Mercedes, Toyota, BMW, Audi
and Renault.’

If the car entered by the user is present, then ‘It is present’ should be
returned or ‘It is not present’, if not.

It should not matter which case the car name is entered by the user.

WHICH CAR?

Using Python you should not use len(animalName) - 1 as the range
command does not include the end number of the loop.

JAVA
class Main {

 public static void main(String[] args) {

 String animalName = “monkey”;

 for(int index = 0; index < animalName.length(); index++) {

 System.out.println(animalName.charAt(index));

 }

 }

}

C#
string animalName = “monkey”;

for (int index = 0; index < animalName.Length; index ++)

{

Console.WriteLine(animalName[index]);

}

OTHER WAYS TO MANIPULATE
STRINGS FINDING A CHARACTER WITH A PARTICULAR INDEX

The index of a character is the position of that character within a string. Note
that indexing starts at 0 not 1. This means the first character will have an index
of 0 and the second character will have an index of 1.

PYTHON
Python uses square brackets to access elements in a string:

string = ‘Computer Science’

print(string[11])

This code would return the character ‘c’.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 56 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

57UNIT 2 PROGRAMMING 7  Strings

JAVA
Java allows you to get a character at a particular index using the charAt
method.
class Main {

 public static void main(String[] args) {

 String string = “Computer Science”;

 System.out.println(string.charAt(11));

 }

}

This code would display the character ‘i’ (the 12th character at index 11).

C#
string text;

text = “Computer Science”;

Console.WriteLine(text[3]);

This code would return the character ‘p’.

CHANGING ALL CHARACTERS TO LOWER CASE
PYTHON
string = ‘Computer Science’

string = string.lower()

print(string)

This code would return ‘computer science’.

JAVA
class Main {

 public static void main(String[] args) {

 String string = “Computer Science”;

 string = string.toLowerCase();

 System.out.println(string);

 }

}

C#
string text;

text = “Computer Science”;

text = text.ToLower();

Console.WriteLine(text);

Would output ‘computer science’.

CHANGING ALL CHARACTERS TO UPPER CASE
PYTHON
string = ‘Computer Science’

string = string.upper()

print(string)

This would return ‘COMPUTER SCIENCE’.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 57 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

58 UNIT 2 PROGRAMMING 7  Strings

JAVA
class Main {

 public static void main(String[] args) {

 String string = “Computer Science”;

 string = string.toUpperCase();

 System.out.println(string);

 }

}

C#
string text;

text = “Computer Science”;

text = text.ToUpper();

Console.WriteLine(text);

This would output ‘COMPUTER SCIENCE’.

EXTRACTING CHARACTERS FROM A STRING
PYTHON
string = ‘Computer Science’

substring = string[3:6]

print(substring)

This code would return ‘put’ as it selects the characters from index 3 to
index 5. Index 6 is not included.

JAVA
class Main {

 public static void main(String[] args) {

 String string = “Computer Science”;

 String substring = string.substring(3,6);

 System.out.println(substring);

 }

}

C#
string text;

text = “Computer Science”;

text = text.Substring(3,4);

Console.WriteLine(text);

This would display ‘pute’ as it selects 4 characters starting at index 3
(remember that the first character is at index 0).

CHECKING A PHRASE IN THE STRING
These examples check to see if the string ‘Computer Science’ contains the
strings ‘put’ and ‘PUT’: ‘put’ is a substring of ‘Computer Science’ but ‘PUT’ is
not, so these examples will display ‘True’ then ‘False’.

Changing strings to upper or
lower case is useful when you are
comparing two strings and the
case does not matter, only the
characters.

HINT

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 58 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

59UNIT 2 PROGRAMMING 7  Strings

PYTHON
string = ‘Computer Science’

present = ‘put’ in string

print(present)

present = ‘PUT’ in string

print(present)

JAVA

class Main {

 public static void main(String[] args) {

 String string = “Computer Science”;

 boolean present = string.contains(“put”);

 System.out.println(present);

 present = string.contains(“PUT”);

 System.out.println(present);

 }

}

C#
You can check if a substring is present in a string using the contains method. If
the substring is present in the string then ‘True’ is returned, otherwise ‘False’ is
returned.

string text;

bool found = false;

text = “Computer Science”;

found = text.Contains(“put”);

Console.WriteLine(found);

This would display ‘True’, as ‘put’ is in ‘Computer Science’.

CONCATENATION Concatenation involves joining two or more items of information together.
Concatenating two strings produces a new string object. It is very useful when
displaying text on screen.

In Pearson Edexcel pseudocode concatenation is done in the following way.

RECEIVE userName FROM (STRING) KEYBOARD

SEND ‘Hello’ & userName TO DISPLAY

Note that literal text is enclosed in speech marks but the variable name is not.
In Python, this would be:

userName = input(‘Please enter your username’)

print(‘Hello’ + userName)

The ‘+’ character is used for concatenation.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 59 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

60 UNIT 2 PROGRAMMING 7  Strings

In Python, you cannot concatenate strings with numbers. For example, the
following would produce an error message.

length = 13

print(‘The length is’ + length)

To overcome this, the number must be converted to a string:
length = 13

print(‘The length is’ + str(length))

In Java, you can concatenate strings with most other data types:

Scanner scanner = new Scanner(System.in);

System.out.println(“Please enter your username:”);

String username = scanner.nextLine();

System.out.println(“Hello” + username);

int length = 13;

System.out.print(“The length is” + length);

In C# this would be:
string userName;

Console.WriteLine(“Please enter your username:”);

userName = Console.ReadLine();

Console.WriteLine(“Hello” + userName);

In C#, you can concatenate with numbers.

COMPARING STRINGS
Comparing strings in Python and C# can be done using the == operator but in
Java you need to use a string object’s equals method:

String food = “pie”;

if(food.equals(“pie”)) {

	 System.out.println(“Yum! I like pie”);

}

SKILLS PROBLEM SOLVING,
CREATIVITY,
DECISION MAKING

ACTIVITY 14

A company wants a program to generate usernames for new employees.
Each username consists of the first four letters of the employee’s
last name and the first letter of their first name joined together. If the
employee’s last name is less than four characters in length a letter ‘X’
is used to fill in for each of the missing characters. Develop a program
that asks the user to input their first and last names and outputs their
username.

CONCATENATING AND SLICING STRINGS

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 60 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

61UNIT 2 PROGRAMMING 7  Strings

Strengthen
S1	 How are individual characters in a string referenced?

S2	 Develop an algorithm that uses a loop to traverse a string.

S3	 How are a string and a non-string concatenated?

Challenge
C1	 Develop a program that asks the user to input a sentence and then

splits it up wherever a space occurs. Each word should then be
displayed on a separate line.

SKILLS CRITICAL THINKING

SKILLS PROBLEM SOLVING,
CREATIVITY

SKILLS CRITICAL THINKING

SKILLS PROBLEM SOLVING,
CREATIVITY

CHECKPOINT

◼◼ A string is a sequence of characters.
◼◼ Each character in a string has a unique index value representing its

position in the string. The first character in a string has the index value 0.
◼◼ High-level programming languages have a built-in length function that

finds the length of a string.
◼◼ A loop is used to traverse a string, character by character.
◼◼ Concatenation is the process of joining two or more strings together.
◼◼ Slicing is the process of extracting part of a string.
◼◼ String formatting is used to control the way text is displayed on screen.

SUMMARY

How confident do you feel about your answers to these questions? If
you’re not sure you answered them well, have another go at the activities in
this section.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 61 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

62 UNIT 2 PROGRAMMING 8  Data structures

A data structure is an organised collection of related elements. There are many
different data structures that can store multiple data items used in programming.
You have already encountered one of them – strings. In this section we will
investigate two more: arrays and records.

8  DATA STRUCTURES

◼	 Describe the structure of one- and two-dimensional arrays and give
examples of their use

◼	 Create and use one- and two-dimensional arrays in programs

◼	 Describe the record data structure and explain what it is used for

◼	 Design record structures

LEARNING OBJECTIVES

Data should be classified and organised into similar types so it can be easily
searched and analysed. They are stored together in data structures, such as
records and arrays.

data structure an organised collection
of related elements. Arrays and records are
two common data structures used in
programming

SUBJECT VOCABULARY

array a structure that contains many
items of data of the same type. The data is
indexed so that a particular item of data
can be easily found
index a number that identifies each
element of an array in Python and Java

SUBJECT VOCABULARY

ARRAYS An array is an organised collection of related values with a single shared
identifier. All the elements in an array are the same data type. Each has a
unique index value denoting its position in the array.

In the Pearson Edexcel pseudocode, an array is initialised using the SET
command. For example, this statement initialises an array called firstNames
with four elements, all of string type. The square brackets denote the start and
end of the array.

SET firstNames TO [‘Ashura’, ‘Bryn’, ‘Eloise’, ‘Mei’]

In most programming languages, arrays are static. A static array has a fixed
size and when it is declared the number of items it can hold must be stated.

For example, array friends [5].

As with strings, arrays have a length indicating the number of items. Here are
the functions to find the length of an array declared as myArray.

PYTHON JAVA C#

len(myArray) myArray.length myArray.Length

Loops can be used to traverse arrays.

ACTIVITY 15

Declare an array with the elements Ford, Mercedes, Toyota, BMW, Audi
and Renault.

In a high-level language, create a program to find the length of the array
and then traverse it, printing out each of the items.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 62 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

63UNIT 2 PROGRAMMING 8  Data structures

PYTHON
In Python, arrays are not commonly used. Instead lists are used but they are
very similar in the way that they operate. Just like an array, a list is created by
adding items, separated by commas, inside square brackets.

Lists are easier to use as they are dynamic – they do not have a fixed size and
can grow as new elements are added. When they are declared they do not
have to be given a size, e.g.:

cars = []

When adding items to an array the append command is used, for example:

cars = []

cars.append(‘Audi’)

print(cars)

would return the following:

[‘Audi’]

Another advantage of lists is that the items do not have to be of the same data
type.

cars = []

cars.append(‘Audi’)

cars.append(3)

print(cars)

would return:

[‘Audi’, 3]

There are many functions in Python for manipulating arrays.

Investigate the following:

max()

min()

slice()

JAVA
Arrays are static data structures, which means that you can’t change the size
of an array to make it bigger or smaller in order to add or remove values.

For example, you can have an array of 5 integers:

int[] integers = {1,2,3,4,5};

The following is not possible with an array:

integers.add(6); or integers.remove(5);

In order to add or remove values you need to use a list which is a dynamic
data structure.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 63 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

64 UNIT 2 PROGRAMMING 8  Data structures

The most common type of list is an ArrayList:

import java.util.*;

class Main {

 public static void main(String[] args) {

 ArrayList<Integer> integers = new ArrayList<Integer>();

 integers.add(1);

 integers.add(2);

 integers.add(3);

 integers.add(4);

 integers.add(5);

 integers.add(6);

 integers.remove(0); �// remove the value at index 0
(not the value 0)

 System.out.println(integers);

 }

}

This example will display [2,3,4,5,6] because the first value will be removed.

Arrays are supported for any data type in Java. For example, you can have an
array of strings:

String[] colours = {“red”, “green”, “blue”};

Or an array of integers:

int[] numbers = {1,2,3,4};

However, you can’t have an array that contains both strings and integers (or
any other mix of data types).

For this, you need to use a vector:
import java.util.*;

class Main {

 public static void main(String[] args) {

 Vector allSorts = new Vector();

 allSorts.add(1);

 allSorts.add(“Two”);

 allSorts.add(true);

 System.out.println(allSorts);

 }

}

This example will output [1, Two true] because the vector allSorts contains
an integer, a string and a Boolean value.

C#
C# supports lists and arrays. The code below uses an array to hold the items.

string[] make = { “Ford”, “Mercedes”, “Toyota”, “BMW”,
“Audi”, “Renault” };

foreach (string currentItem in make)

{

 Console.WriteLine(currentItem);

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 64 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

65UNIT 2 PROGRAMMING 8  Data structures

ACTIVITY 16SKILLS
CRITICAL
THINKING ,
PROBLEM
SOLVING,
CREATIVITY

The following code uses a linear search algorithm.

SET �firstNames TO [‘Ashura’, ‘Bryn’, ‘Eloise’, ‘Mei’, ‘James’, ‘Irena’]

RECEIVE searchName FROM (STRING) KEYBOARD

SET found TO False

SET index TO 0

WHILE �found = False AND index <= (LENGTH(firstNames) – 1) DO

	 IF searchName = firstNames[index] THEN

	   SET found TO True

	 END IF

	 SET index to index + 1

END WHILE

IF found = True THEN

	 SEND searchName & ‘is at position’ & index & ‘in the list’ TO DISPLAY

ELSE

	 SEND searchName & ‘is not in the list’ TO DISPLAY

END IF

Implement this algorithm in the high-level programming language you are studying.

DESCRIBING AND IMPLEMENTING A LINEAR SEARCH ALGORITHM

MULTIDIMENSIONAL ARRAYS
In the array cars = [‘Ford’, ‘Mercedes’, ‘Toyota’, ‘BMW’, ‘Audi’,
‘Renault’] there is only one item at each index position: the name of the
manufacturer.

A multidimensional array is an ‘array of arrays’; each item at an index is
another array.

We declared the above array using this statement, array cars[6].

If we wanted to create a two-dimensional array we could declare it as array
cars[3, 2] so that there is another array at each index to store two items of
information.

Here is an extract from an array named examResults. It has three rows,
each of which stores a set of four exam results. The mark of 47 is located at
examResults [1, 2] – second row, third element along – and the value 80
at examResults [0, 0] – first row, first column.

0 1 2 3

0 80 59 34 89

1 31 11 47 64

2 29 56 13 91

▲	Table 2.8 examResults two-dimensional array

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 65 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

66 UNIT 2 PROGRAMMING 8  Data structures

Each item of data has two indexes. An array to hold this data would be
declared as array[3, 4].

If the array was printed it would be [[80, 59, 34, 89], [31, 11, 47,
64], [29, 56, 13, 91]]. There are square brackets around each set of
results and around the whole array.

In Python, the array would be declared and initialised as:

Scores = [[80, 59, 34, 89], [31, 11, 47, 64], [29, 56, 13, 91]]

In Java, it would be:

int[][] Scores = new int[][] {

 {80, 59, 34, 89},

 {31, 11, 47, 64},

 {29, 56, 13, 91}};

In C# the array would be declared and initialised as:

int[,] Scores= new int[,] { { 80, 59, 34, 89 }, { 31, 11,

47, 64 }, { 29, 56, 13, 91 } };

A teacher has stored the surnames and test scores of a class of
students in a two-dimensional array, e.g. results[[‘Smith, ‘69’],
[‘Jackson’, ‘90’], etc. Create a program that would print out the
names and test scores of all the students who have scored 50 or over in
the test.

Python
results = [[‘Smith’, 69], [‘Jackson’, 90], [‘Dubois’, 30]]

for index in range(0, len(results)):

 if results[index][1] >= 50:

 print(results[index][0] + str(results[index][1]))

In Python each element is written as results[0][1] and not
results[0, 1].

Java
class Main {

 public static void main(String[] args) {

 String[][] results = {

 {“Smith”, “69”},

 {“Jackson”, “90”},

 {“Dubois”, “30”}};

WORKED EXAMPLE

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 66 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

67UNIT 2 PROGRAMMING 8  Data structures

 for(int index = 0; index < results.length; index++) {

 int score = Integer.parseInt(results[index][1]);

 String name = results[index][0];

 if(score >= 50) {

 System.out.println(name + score);

 }

 }

 }

}

In Java, a two-dimensional array has two indexing expressions (e.g.,
results[0][1]). The first index is the row number and the second
index is the column number. Both index expressions count from 0. This
means results[0][1] will get the value in the second column (index 1)
of the first row (index 0), which in the above example would be ‘69’.

C#
string[,] results = new string[,] { { “Smith”, “69” },
{ “Jackson”, “90” }, { “Dubois”, “30” } };

for (int index = 0; index <= results.GetUpperBound(0);
index++)

{

 if (int.Parse(results[index,1]) >= 50)

 {

 Console.WriteLine(results[index,0] + “ ” +
results[index,1]);

 }

}

In C# an array only consists of one data type, hence the student scores
are in double quotes. To be able to check if the student scores are above
50, the score in the array must be cast as an integer using int.Parse.

SKILLS
CRITICAL THINKING,
PROBLEM SOLVING,
CREATIVITY

ACTIVITY 17

	1	 Develop a program that creates and initialises an array to hold these
five sets of marks.

		 80, 59, 34, 89
		 31, 11, 47, 64
		 29, 56, 13, 91
		 55, 61, 48, 0
		 75, 78, 81, 91

	2	 Extend your program so that it calculates and displays the highest
mark, the lowest mark and the average mark achieved.

USING TWO-DIMENSIONAL ARRAYS

All the data values stored in an
array must be of the same data
type. In this case they are all
strings. You will have to convert
the scores to integers to find the
highest. But as Python uses lists
this is not necessary. Strings and
integers can be combined within
the same list.

HINT

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 67 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

68 UNIT 2 PROGRAMMING 8  Data structures

ACTIVITY 18

This two-dimensional array holds the highest score achieved by each
player in each of the three levels of an online game.

	1	 Develop a program that initialises the array and then searches through
it to find the player with the highest score in each of the three levels.

PLAYER LEVEL SCORE

Alexis 1 19

Seema 1 29

Seema 2 44

Lois 1 10

Alexis 2 17

Alexis 3 36

Dion 1 23

Emma 1 27

Emma 2 48

▲ Table 2.9 Example of two-dimensional array

RECORDS We have already said that the elements of an array must all be the same data
type. In contrast, the record data structure stores a set of related values of
different data types.

Each element in a record is known as a field and is referenced using a field name.

Table 2.10 shows how the record data structure works. Each row of the table
holds a set of information about a particular learner (these are the records).
Each column stores one item of information about the learner – their learner
number, their age, their form, etc. (these are the fields). All the values in a
column have the same data type – learnerNum and ‘age’ are integers;
firstName, lastName and ‘form’ are strings.

Programming languages vary in the way they handle the record data structure.

record a data structure that stores a set
of related values of different data types
field an individual element in a record

SUBJECT VOCABULARY

learnerNum firstName lastName AGE FORM

1 Isla Smith 15 10H

2 Shinji Fujita 14 10B

3 Anita Khan 15 10A

4 Abdur Rahman 15 10G

▲	Table 2.10 Example of record data structure

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 68 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

69UNIT 2 PROGRAMMING 8  Data structures

SKILLS
CRITICAL THINKING,
PROBLEM SOLVING,
CREATIVITY

▲ � It is essential to have a way to sort through
the vast amounts of recorded music available

Strengthen
S1	 What is the index of the first element in a one-dimensional array?

S2	 How does a linear search algorithm find an element in a one-
dimensional array?

S3	 How is an element stored in a two-dimensional array referenced?

S4	 How is a nested IF used to traverse a two-dimensional array?

Challenge
C1	Develop a program for a simple address book that uses a two-dimensional

array to store a set of names and email addresses, and allows the user to
search for a person by name and returns their email address.

C2	Develop a program that uses a two-dimensional array to represent a
treasure map consisting of a grid of 4 rows and 4 columns. A random
number function should be used to establish the location of the
treasure. The user must hunt for the treasure by repeatedly entering
the coordinates of squares. The program should tell them when they
have found the treasure and help them in their search by indicating
how close they are.

SKILLS CRITICAL THINKING

SKILLS REASONING

SKILLS REASONING

SKILLS REASONING

SKILLS CRITICAL THINKING,
PROBLEM SOLVING

SKILLS CRITICAL THINKING,
PROBLEM SOLVING

CHECKPOINT

ACTIVITY 19

	1	 A record data structure is to be used to store the details of music
albums. Provide the appropriate data type for these fields:

	 a	 the title of the album
	 b	 the name of the artist
	 c	 the year of release
	 d	 the genre.

	2	 Develop a program that uses a record structure for storing the details
of music albums. It must:

	 a	 have fields for title, artist, year of release and genre
	 b	 allow the user to input the details of new albums
	 c	 allow the user to search for an album by name and display its details.

USING RECORDS TO STORE MUSIC DETAILS

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, try redoing activities 15–19.

◼◼ A data structure is an organised collection of related elements. Arrays
and records are common data structures.

◼◼ A one-dimensional array is a list of elements, each of which has a
unique index value representing its position in the list.

◼◼ A two-dimensional array is a matrix of rows and columns. Each
element in the array has a unique pair of indices, one to identify the
row and one the column in which it is located.

◼◼ All the elements in an array have the same data type (Python uses lists).
◼◼ A record consists of a collection of fields. The values stored in a

record can be of different data types.

SUMMARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 69 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

70 UNIT 2 PROGRAMMING 9  Input/output

◼	 Explain the need for validation

◼	 Write code that validates user input

◼	 Write code that accepts and responds appropriately to user input

◼	 Write code that reads to and writes from a text file

LEARNING OBJECTIVES

All program data has to be entered (input) and information is output. The
input could be automatic, e.g. from a sensor, but is often provided by human
users. It is essential that this input is checked to ensure that it is what could
reasonably be expected and falls within a certain range. Incorrect input could
cause problems or even catastrophes.

9  INPUT/OUTPUT

validation to check that the data entered
by a user or from a file meets specified
requirements

SUBJECT VOCABULARY

USER INPUT Most programs require some form of input either from a user or from a file. You
already know how to receive user input from a keyboard.

A program can be made much more ‘user friendly’ by displaying helpful messages
informing users of what they are expected to enter and confirming successful input.

VALIDATION
It is important to ensure that data entered by the user is valid, as invalid data
can cause a program to behave unexpectedly or even stop altogether. If the
data entered into a program is incorrect, the output it produces will also be
wrong. This is sometimes called the Garbage In, Garbage Out (GIGO) principle.

Any program that requires data entry should have appropriate forms of
validation built in. But validation can’t guarantee that the data entered is
correct. It can only make sure that it is reasonable.

There are a number of different types of validation.

RANGE CHECK
A range check is used to ensure that the data entered is within a specified range.
Study this algorithm, written in Pearson Edexcel pseudocode which checks that
the number entered is between 1 and 10.

BOOLEAN valid

SET validNum TO False

WHILE validNum = False DO

  � SEND ‘Please enter a number between 1 and 10:’ TO
DISPLAY

   RECEIVE number FROM (INTEGER) KEYBOARD

   IF number >= 1 AND number <= 10 THEN

     SET validNum TO True

   END IF

END WHILE

SEND ‘You have entered:’ & number TO DISPLAY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 70 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

71UNIT 2 PROGRAMMING 9  Input/output

The algorithm uses a Boolean variable named validNum as a status flag. It is
initially set to False. The WHILE loop continues running until validNum is equal to
True. An IF statement determines if the value of validNum should be set to True.

ACTIVITY 20SKILLS
CRITICAL THINKING,
PROBLEM SOLVING

Implement the range check algorithm in the high-level programming
language you are studying.

IMPLEMENTING RANGE CHECKS

PRESENCE CHECK
Another type of validation is a presence check. This simply ensures that a
value has been entered, preventing the user from leaving an input blank.

This algorithm asks the user to input their name and uses a presence check to
ensure they have entered a value. Any value will cause the loop to finish. It will
keep asking the user to input their name until they input a value.

SET userName TO ‘ ’

WHILE userName = ‘ ’ DO

   RECEIVE userName FROM (STRING) KEYBOARD

END WHILE

SEND ‘Hello’ & userName TO DISPLAY

predefined already defined before the
start of something

GENERAL VOCABULARY LOOK-UP CHECK
A look-up check is used to test that a value is one of a predefined set of
acceptable values. The list of acceptable values can be stored in a one-
dimensional array.

This algorithm stores a list of valid form names in an array. It compares the
form name entered by the user with the values in the array.

SET arrayForms TO [‘7AXB’, ‘7PDB’, ‘7ARL’, ‘7JEH’]

RECEIVE form FROM (STRING) KEYBOARD

SET valid TO False

SET index TO 0

SET length TO LENGTH(arrayForms)

WHILE valid = False AND index < length DO

 IF form = arrayForms[index] THEN

 SET valid TO True

 END IF

 SET index TO index + 1

END WHILE

ACTIVITY 21SKILLS
CRITICAL THINKING,
PROBLEM SOLVING

Implement the presence check algorithm in the high-level programming
language you are studying.

IMPLEMENTING A PRESENCE CHECK

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 71 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

72 UNIT 2 PROGRAMMING 9  Input/output

SKILLS
CRITICAL THINKING,
PROBLEM SOLVING ACTIVITY 22

Implement the look-up check algorithm in the high-level programming
language you are studying.

IMPLEMENTING A LOOK-UP CHECK

LENGTH CHECK
It is sometimes necessary to check that the length of a value entered falls
within a specified range. For example, all UK postcodes are between six and
eight characters long, so validation could be used to check that the length
of a postcode entered is within this range. Needless to say, that doesn’t
necessarily mean it is correct.

RECEIVE postCode FROM (STRING) KEYBOARD

SET length TO LENGTH(postCode)

IF length >= 6 AND length <= 8 THEN

   SEND ‘Valid’ TO DISPLAY

ELSE

   SEND ‘Invalid’ TO DISPLAY

END IF

ACTIVITY 23SKILLS CRITICAL THINKING

Implement the length check algorithm in the high-level programming
language you are studying.

IMPLEMENTING A LENGTH CHECK

TESTING VALIDATION RULES It is important to test your validation rules to ensure they work as expected.
You should use:

Normal data – This is data that is within the limits of what should be accepted
by the program. For example, a password with seven characters fulfils the
validation rule that states that passwords must be between six and eight
characters in length.

Boundary data – This is data that is at the outer limits of what should be
accepted by the program. For example, if a validation rule specifies that the
range of acceptable values is >= 75 AND <= 100, then a value of 100 is at the
upper limit and a value of 75 at the lower.

IF valid = True THEN

 SEND ‘Valid form’ TO DISPLAY

ELSE

 SEND ‘The form you entered does not exist.’ TO DISPLAY

END IF

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 72 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

73UNIT 2 PROGRAMMING 9  Input/output

erroneous not correct; based on
incorrect information

GENERAL VOCABULARY Erroneous data – This is data that should not be accepted by the program.
For example, a value of 0 should not be accepted by either of the validation
rules given above.

text file a sequence of lines, each of
which consists of a sequence of characters

SUBJECT VOCABULARY

WORKING WITH TEXT FILES The programs you have created so far haven’t required a huge amount of data
entry, but imagine typing a set of test results for everyone in your computer
science class. It would take a considerable amount of time to do and – even
worse – when the program terminates, all of the data will be lost. Should you
need to use it again you’d have to re-enter it. This is where storing data in an
external file comes in really useful. If the data you enter is stored in an external
text file you can access it as often as you like without having to do any further
keying in.

Commas are used to separate individual values on a line and a special
character is used to denote the end of a line.

Text files provide permanent storage for data. This means that the data can
be reused without having to be retyped. Data can be read from, written to and
appended to a file.

PYTHON
To access a text file, you must first give it a file handle, e.g. myFile.

Files can be opened to read from them, to write to them or to append data to
them (Table 2.11).

myFile = open(‘names.txt’, ‘r’) Open a file named
names.txt so that the
data can be read.

myFile = open(‘names.txt’, ‘w’) Open a file named
names.txt to be written
to and create a new file if
it does not exist.

Unfortunately, if the file did
exist it would overwrite all
of its data.

myFile = open(‘names.txt’, ‘a’) Open a file named
names.txt to add data
to it.

▲	Table 2.11 Using text files

After a file has been opened it must be closed. The data is not written to a file
until this command is executed.

The following program would create a text file called ‘names’ and add two
items of data.

myFile = open(‘names.txt’, ‘w’)

myFile.write(‘First item’)

myFile.write(‘Second item’)

myFile.close()

file handle a label that is assigned to a
resource needed by the program. It can
only access the file through the computer’s
operating system
overwritten if a file exists on the
computer and a new file is created with the
same name, the new file is kept and the
old file is written over and lost

SUBJECT VOCABULARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 73 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

74 UNIT 2 PROGRAMMING 9  Input/output

The file it creates would be: ‘First itemSecond item’.

There is nothing to separate the two items of data. Therefore, it is useful to add
a character such as a ‘,’ or a ‘;’ between them.

myFile = open(‘names.txt’, ‘w’)

myFile.write(‘First item’ + ‘,’)

myFile.write(‘Second item’ + ‘,’)

myFile.close()

The file created would be: ‘First item,Second item’.

It is important to separate the data items so that they can be read back into a
data structure.

The following program would write the contents of an array into a text file
called cars.txt with a comma between them.

Alist = [‘BMW’, ‘Toyota’, ‘Audi’, ‘Renault’, ‘Rover’]

myFile = open(‘cars.txt’, ‘w’)

for index in range(len(Alist)):

 myFile.write((Alist[index]) + ‘,’)

myFile.close()

The file can be read back into an array in the following way.

Blist = []

myFile = open(‘cars.txt’, ‘r’)

Blist = myFile.read().split(‘,’)

MyFile.close()

Blist = myFile.read().split(‘,’) reads the data and splits it into
separate items where there is a ‘,’.

JAVA
Java programs that read and write to files often start with:

import system.io.*

This allows your Java code to access files such as File and FileReader,
FileWriter from the system.io namespace.

import java.io.*;

class Main {

 public static void main(String[] args) {

 try {

 FileWriter fw = new FileWriter(“names.txt”);

 fw.write(“First item”);

 fw.write(“Second item”);

 fw.close();

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 74 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

75UNIT 2 PROGRAMMING 9  Input/output

 } catch (IOException e) {

 System.out.println(“Could not write to file”);

 }

 }

}

This example will write two strings to the file names.txt, which would then
contain: First itemSecond item.

It is useful to separate each data value in a file with a comma (,) or new line
(\n) so that they can then be read back into an array or opened as a comma
separated value (CSV) file to be edited in a spreadsheet program:

import java.io.*;

class Main {

 public static void main(String[] args) {

 try {

 FileWriter fw = new FileWriter(“names.txt”);

 fw.write(“First item,”);

 fw.write(“Second item\n”);

 fw.close();

 } catch (IOException e) {

 System.out.println(“Could not write to file”);

 }

 }

}

Note that the two examples above contain try…catch blocks of code.
These are necessary in Java because file input or output can often cause
runtime errors and Java needs to know what to do instead of crashing
the program.

The following program will write the contents of an array of car brands into a
file called cars.txt with each value separated by a comma:

import java.io.*;

class Main {

 public static void main(String[] args) {

 String[] cars = {“BMW”, “Toyota”, “Audi”, “Renault”,
“Rover”};

 try {

 FileWriter fw = new FileWriter(“cars.txt”);

 for(int index = 0; index < cars.length; index++) {

 fw.write(cars[index] + “,”);

 }

 fw.close();

 } catch (IOException e) {

 System.out.println(“Could not write to file”);

 }

 }

}

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 75 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

76 UNIT 2 PROGRAMMING 9  Input/output

The file can be read back into an array in the following way:

import java.io.*;

import java.util.*;

class Main {

 public static void main(String[] args) {

 String[] cars;

 try {

 File file = new File(“cars.txt”);

 Scanner scanner = new Scanner(file);

 String line = scanner.nextLine();

 // split each line into an array of strings

 cars = line.split(“,”);

 // display each car brand

 for(int index = 0; index < cars.length; index++) {

 System.out.println(cars[index]);

 }

 scanner.close();

 } catch (IOException e) {

 System.out.println(“Could not read from file”);

 }

 }

}

C#
In C#, you’re likely to use the File class for reading and writing files. To use the
File class you will need to add the line Using System.IO; at the top of your
C# program, usually under the existing Using System; line. The File class
provides over 50 different methods for working with files, so this section only
provides an introduction to some of the basic methods.

WRITING TO A FILE
C#
The following program creates a file called “names.txt” and adds two items
of data.

StreamWriter sw = new StreamWriter(“names.txt”);

sw.Write(“First Item”);

sw.Write(“Second Item”);

sw.Close();

The file it creates would contain: First itemSecond item. There is nothing
to separate the two items of data. Therefore, it is useful to add a character such
as a comma or semicolon between them. The file created would then contain:
First item,Second item. It is important to separate the data items so that
they can be read back into a data structure.

The following program would write the contents of an array into a text file
called cars.csv with a comma between each item.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 76 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

77UNIT 2 PROGRAMMING 9  Input/output

string[] makes = {“BMW”, “Toyota”, “Audi”, “Renault”, “Rover”};

StreamWriter sw = new StreamWriter(“cars.csv”);

foreach (string currentItem in makes)

{

 sw.Write(currentItem + “,”);

}

sw.Close();

The file can be read back into an array using:

string[] makes = File.ReadAllText(“z:cars.txt”).Split(‘,’);

ACTIVITY 24

A student has coded a computer game which stores the five highest
scores in an array. She now wants to save those scores to a file and load
them back in when the game is run again.

Write a program that will save the array of scores to a suitable text file and
then load them back in again. Run your program to check that it is working
as intended.

PYTHON
A two-dimensional array can be stored in a text file in a similar way.

A teacher stores the names of students and their test scores in a two-
dimensional array.

Slist = [[‘Faruq’, 60], [‘Jalila’, 90]]

The names and scores can be saved in a text file:

Slist = [[‘Faruq’, 60], [‘Jalila’, 90]]

myFile = open(‘results.txt’, ‘w’)

for x in range(len(Slist)):

 myFile.write(Slist[x][0] + ‘,’)

 new = str(Slist[x][1])

 myFile.write(new + ‘,’)

myFile.close()

It is easier to copy the items from a text file into a two-dimensional array in
two stages.

First, copy them into a one-dimensional array:

Blist = []

myFile = open(“results.txt”, “r”)

Blist = myFile.read().split(‘,’)

myFile.close()

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 77 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

78 UNIT 2 PROGRAMMING 9  Input/output

Second, move them into a two-dimensional array:

newList = []

for index in range(0, len(Blist) - 1, 2):

 newLlist.append([Blist[index], Blist[index + 1]])

A step of 2 is used as each record in the two-dimensional array contains
2 items from the one-dimensional array.

JAVA
The following code writes the student test scores to a file:

import java.io.*;

import java.util.*;

class Main {

 public static void main(String[] args) {

 // store student scores in a 2d array

 String[][] studentScores = {

 {“Faruq”, “60”},

 {“Jalila”, “90”}

 };

 // write scores to a file

 try {

 FileWriter fw = new FileWriter(“results.txt”);

 for(int row = 0; row < studentScores.length; row++) {

 // write student’s name

 fw.write(studentScores[row][0] + “,”);

 // write student’s score

 fw.write(studentScores[row][1] + “\n”);

 }

 fw.close();

 } catch (IOException e) {

 System.out.println(“Could not write to file”);

 }

 }

}

The following code reads the test scores back into a two-dimensional array:

import java.io.*;

import java.util.*;

class Main {

 public static void main(String[] args) {

 // list of arrays of strings to store results

 ArrayList<String[]> results = new ArrayList<String[]>();

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 78 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

79UNIT 2 PROGRAMMING 9  Input/output

 // read scores from a file

 try {

 File file = new File(“results.txt”);

 Scanner scanner = new Scanner(file);

 // read each line from the file

 while(scanner.hasNextLine()) {

 String line = scanner.nextLine();

 // �split line into name and score and add it to
the list

 String[] singleStudent = line.split(“,”);

 results.add(singleStudent);

 }

 scanner.close();

 } catch (IOException e) {

 System.out.println(“Could not read from file”);

 }

 // display scores for each student

 for(int i = 0; i < results.size(); i++) {

 System.out.println(results.get(i)[0] + “: ” +
results.get(i)[1]);

 }

 }

}

In the above example, a list is used instead of an array because a list is a
dynamic data structure. This allows us to add new items as we read them from
the file, which we couldn’t do with an array.

C#
string[,] grades = new string[,] { { “Faruq”, “60” }, {
“Jalila”, “90” } };

StreamWriter sw = new StreamWriter(“grades.csv”);

for (int i = 0; i < grades.GetLength(0); i++)

{

 sw.WriteLine(grades[i, 0] + “,” + grades[i,1]);

}

sw.Close();

}

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 79 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

80 UNIT 2 PROGRAMMING 9  Input/output

Reading back in to two-dimenional array:

// read all of file into array

string[] allLines = System.IO.File.ReadAllLines(“grades.
csv”);

int length = allLines.Length;

string[,] grades;

grades = new string[length, 2];

// for each line in array containing all lines from the
file, split using delimiter and assign to 2d array

for (int i = 0; i < length; i++)

{

 string[] temp = allLines[i].Split(‘,’);

 grades[i, 0] = temp[0];

 grades[i, 1] = temp[1];

}

ACTIVITY 25

In Activity 24, only the high scores were saved. Change your program
so that high scores and the names of the players who attained them are
stored.

Strengthen
S1	 What might happen if a program doesn’t include validation on user input?

S2	 Can you think of a data structure that is suitable for storing a list of
values used in a look-up check?

S3	 Show how your name, date of birth and favourite colour would be
stored in a text file.

S4	 Why is it beneficial to write data to a text file?

Challenge
C1	Develop a program that:

◼◼ writes a set of employee records consisting of employee number,
name and department to a text file

◼◼ reads in the stored records from the text file
◼◼ allows the user to search for an employee’s details.

SKILLS REASONING

SKILLS CRITICAL THINKING

SKILLS PROBLEM SOLVING

SKILLS REASONING

SKILLS PROBLEM SOLVING

CHECKPOINT

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 80 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

81UNIT 2 PROGRAMMING 9  Input/output

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, try redoing the activities in this section.

◼◼ Validation techniques should be used to ensure that data entered
by a user or from a file is valid. They can’t guarantee that the data is
correct, only that it is reasonable.

◼◼ A range check is used to ensure that data is within a specified range.
◼◼ A length check is used to ensure that data has a length within a

specified range.
◼◼ A presence check is used to ensure the user has entered some data.
◼◼ When users are required to choose from a list of options, their input

should be validated to ensure that their choice is valid.
◼◼ Large sets of data are normally stored in text files. The advantage of

writing data to a file is that the data is not lost when the program is
terminated. It can be read in from the file whenever it is needed.

SUMMARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 81 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

82 UNIT 2 PROGRAMMING 10  Subprograms

A subprogram is a self-contained module of code that performs a specific
task. For example, a high-level programming language could provide a
predefined subprogram that calculates the average of a set of numbers. A
programmer can use this subprogram in any program they write without
needing to know how it works. In other words, subprograms support the
process of abstraction.

◼	 Describe what a subprogram is

◼	 Explain the benefits of using subprograms

◼	 Explain the difference between global and local variables

◼	 Explain the concept of passing data into and out of subprograms

◼	 Create subprograms that use parameters

◼	 Write code that uses user-defined and pre-existing subprograms

LEARNING OBJECTIVES

When programs are being coded, they should be as structured as possible
so that people reading them can quickly understand their logic. One way
of doing this is to use self-contained modules, which can be reused where
possible. This ensures that programs are shorter, as commands do not have
to be repeated several times. These modules can then be called when they
are needed.

10  SUBPROGRAMS

A function returns a value to the main program that called it.

FUNCTION dice ()	 # This is the start of the function.
   simDie = RANDOM(6)	� # This statement uses the

predefined function RANDOM
to generate a random number
between 1 and 6 which is stored
in the variable simDie.

RETURN simDie	� # This returns the value of the
variable simDie to the main
program.

END FUNCTION	� # This ends the definition of the
function.

This function is called by the main program like this.

dieThrow = dice()

The value returned by the function is stored in the variable dieThrow.

EXAMPLE FUNCTIONS

DID YOU KNOW?
In a flowchart, a subprogram is
represented by this symbol.

Die

▲	Figure 2.3 The symbol for a subprogram
in a flowchart

FUNCTIONS

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 82 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

83UNIT 2 PROGRAMMING 10  Subprograms

In high-level programming languages, this would be written as:

PYTHON
def dice()

	 simDie = random.randint(1, 7)

	 return simDie

It would be called from the main program by:

dieThrow = dice()

JAVA
import java.util.*;

class Main {

 // define the function

 public static int dice() {

 Random r = new Random();

 return 1 + r.nextInt(6);

 }

 public static void main(String[] args) {

 // call the function

 int dieThrow = dice();

 System.out.println(dieThrow);

 }

}

C#
As C# is an OOP language it has methods rather than functions. There are a
number of ways of implementing methods, but it could be written like this:

public static int dice()

{

 Random random = new Random();

 return random.Next(1, 7);

}

It would be called from the main program by: int value = dice();.

local variable a variable that is
accessed only from within the subprogram
in which it is created
global variable a variable that can be
accessed from anywhere in the program,
including inside subprograms

SUBJECT VOCABULARY

LOCAL AND GLOBAL VARIABLES Notice that there are two variables that store the random number
generated by the function. In the function itself, the variable simDie is
used. This variable only exists within the function and is referred to as a
local variable.

In the main program the value returned by the function is stored in the variable
dieThrow. It can be used anywhere within the main program and is therefore
referred to as a global variable.

PROCEDURES
Unlike a function, a procedure does not return a value to the main program.

OOP language an object-oriented
programming language. Instead of data
structures and separate program
structures, both data and program
elements are combined into one structure
called an object

SUBJECT VOCABULARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 83 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

84 UNIT 2 PROGRAMMING 10  Subprograms

In the dice example, a procedure would be written in pseudocode as:

PROCEDURE averageScore(score1, score2, score3)

BEGIN PROCEDURE

   SET total TO score1 + score2 + score3

   SET average TO total / 3

   SEND average TO DISPLAY

END PROCEDURE

Python
In Python, it would be exactly the same without the return command.

PROCEDURE dice()

 simDie = RANDOM(6)

 SEND simDIE TO DISPLAY

END PROCEDURE

Java
Because a procedure doesn’t return a value, Java uses the void keyword
to indicate that a subprogram doesn’t return a value.

import java.util.*;

class Main {

 // define the procedure

 public static void dice() {

 Random r = new Random();

 System.out.println(1 + r.nextInt(6));

 }

 public static void main(String[] args) {

 // call the procedure

 dice();

 }

}

C#
In C#, the equivalent to a procedure is a method that doesn’t return a
value. For example:

public static void dice()

{

 Random random = new Random();

 int value = random.Next(1, 7);

 Console.WriteLine(value);

}

EXAMPLE PROCEDURE

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 84 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

85UNIT 2 PROGRAMMING 10  Subprograms

parameter the names of the variables
that are used in the subroutine to store the
data passed from the main program as
arguments

SUBJECT VOCABULARY

ARGUMENTS AND PARAMETERS Data for the functions and procedures to work on can be passed from the
main program as arguments. The function accepts them as parameters.

PYTHON
Function rectangle

def rectangle(length, width):

 area = length * width

 return area

#Main program

rectangleLength = int(input(‘Please enter the length of
the rectangle’))

rectangleWidth = int(input(‘Please enter the width of the
rectangle’))

rectangleArea = rectangle(rectangleLength, rectangleWidth)

print(rectangleArea)

JAVA
import java.util.*;

class Main {

 // define the rectangle function

 public static int rectangle(int length, int width) {

 int area = length * width;

 return area;

 }

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print(“Please enter the length of the
rectangle: ”);

 int rectangleLength = scanner.nextInt();

 System.out.print(“Please enter the width of the rectangle: ”);

 int rectangleWidth = scanner.nextInt();

 scanner.close();

 int rectangleArea = rectangle(rectangleLength,
rectangleWidth);

 System.out.println(rectangleArea);

 }

}

C#
public static void Main()

{

 string lengthString, widthString;

 int length, width, rectangleArea;

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 85 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

86 UNIT 2 PROGRAMMING 10  Subprograms

 Console.WriteLine(“Please enter the length of the rectangle”);

 lengthString = Console.ReadLine();

 length = int.Parse(lengthString);

 Console.WriteLine(“Please enter the width of the rectangle”);

 widthString = Console.ReadLine();

 width = int.Parse(widthString);

 rectangleArea = rectangle(length, width);

 Console.WriteLine(rectangleArea);

}

public static int rectangle(int length, int width)

{

 int area;

 area = length * width;

 return area;

}

In this example, two data items are passed to the function – rectangleLength
and rectangleWidth. These are called arguments.

The function receives them as parameters called length and width when the
function is declared.

In the function, a variable is declared – area. This is called a local variable and
its scope is within the function. If you tried to use it in the main program you
would get an error message.

Lots of arguments can be passed to the function and many values can be
returned.

In the following example, two values are requested and returned.

PYTHON
Function rectangle

def rectangle(length, width):

 area = length * width

 circumference = (2 * length) + (2 * width)

 return area, circumference

#Main program

rectangleLength = int(input(‘Please enter the length of
the rectangle’))

rectangleWidth = int(input(‘Please enter the width of the
rectangle’))

rectangleArea, rectangleCircumference = rectangle
(rectangleLength, rectangleWidth)

print(rectangleArea)

print(rectangleCircumference)

scope the region of code within which a
variable is visible

SUBJECT VOCABULARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 86 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

87UNIT 2 PROGRAMMING 10  Subprograms

JAVA
In Java, functions can only return one value so if you need to return more than
one value, you need to put them in a list or array.

import java.util.*;

class Main {

 �// returns an array of the area and perimeter of a rectangle

 public static int[] rectangle(int length, int width) {

 int area = length * width;

 int perimeter = 2 * (length + width);

 return new int[]{area, perimeter};

 }

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print(“Please enter the length of the
rectangle: ”);

 int rectangleLength = scanner.nextInt();

 System.out.print(“Please enter the width of the
rectangle: ”);

 int rectangleWidth = scanner.nextInt();

 scanner.close();

 int[] results = rectangle(rectangleLength,
rectangleWidth);

 int rectangleArea =results[0];

 int rectanglePerimeter = results[1];

 System.out.println(“Area: ” + rectangleArea);

 System.out.println(“Perimeter: ” + rectanglePerimeter);

 }

}

C#
Methods in C# can’t return multiple values unless you use By Reference,
which is beyond the scope of this book.

ACTIVITY 26

From the above example, list:

	a	 the global variables
	b	 the local variables
	c	 the arguments
	d	 the parameters.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 87 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

88 UNIT 2 PROGRAMMING 10  Subprograms

For a system login and password control, the main program could have a
menu system like this:

	1	 Register as a new user
	2	 Login
	3	 Change your password
	4	 Exit.

Now that we are using structured programming using procedures,
it is relatively easy to direct a user to the part of the program
they need.

The user enters a number between 1 and 4 and is directed to the correct
section:

Python
print (“1. Register as a new user”)

print (“2. Login.”)

print (“3. Change your password.”)

print (“4. Exit.”)

choice = int(input(‘Please select a menu option.’))

if choice == 1:

 newUser()

elif choice == 2:

 login()

elif choice == 3:

 changePassword()

elif choice == 4:

 exit()

else:

 print(‘Incorrect option. Try again.’)

Java
import java.util.*;

class Main {

 // procedures can be implemented later

 // just shown here to illustrate the structure

 public static void newUser() {}

 public static void login() {}

 public static void changePassword() {}

 public static void exit() {}

 public static void main(String[] args) {

 // display main menu

 System.out.println(“1. Register as a new user”);

WORKED EXAMPLE

SUBPROGRAMS AND MENUS Functions and procedures are useful when using menus in a program. When a
user selects a menu option, they can be sent to a particular function or procedure.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 88 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

89UNIT 2 PROGRAMMING 10  Subprograms

 System.out.println(“2. Login”);

 System.out.println(“3. Change your password”);

 System.out.println(“4. Exit”);

 // get user input

 Scanner scanner = new Scanner(System.in);

 int choice = scanner.nextInt();

 switch(choice) {

 // Register as a new user

 case 1:

 newUser();

 break;

 // Login

 case 2:

 login();

 break;

 // change password

 case 3:

 changePassword();

 break;

 // exit

 case 4:

 exit();

 break;

 // anything else

 default:

 System.out.println(“Incorrect option, try
again”);

 break;

 }

 scanner.close();

 }

}

C#
string choiceString;

int choice;

Console.WriteLine(“1. Register as a new user”);

Console.WriteLine(“2. Login”);

Console.WriteLine(“3. Change your password”);

Console.WriteLine(“4. Exit”);

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 89 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

90 UNIT 2 PROGRAMMING 10  Subprograms

Console.WriteLine(“Please select a menu option”);

choiceString = Console.ReadLine();

choice = int.Parse(choiceString);

if (choice == 1)

{

 newUser();

}

else if (choice == 2)

{

 login();

}

else if (choice == 3)

{

 changePassword();

}

else if (choice == 4)

{

 exit();

}

else

{

 Console.WriteLine(“Incorrect option. Try again”);

}

ACTIVITY 27

	a	 Describe the purpose of the program in the worked example above
and explain how it functions.

	b	 If the user inputs an incorrect option, they receive an error message
and then the program terminates. Edit the program so that the
program will run until a suitable option is input.

THE BENEFITS OF USING
SUBPROGRAMS Repeated sections of code need only be written once and called when

necessary. This shortens the development time of a program and means that
the finished program will occupy less memory space when it is run.

Subprograms also improve the structure of the code, making it easier to
read through and follow what is happening. It’s less complicated to check
your code and debug your program if you use subprograms because each
subprogram can be coded, inspected and tested independently. If changes
have to be made at a later date it is easier to change a small module than
having to work through the whole program.

In large development teams different members can be working independently
on different subprograms. They can use and develop standard libraries of
subroutines that can be reused in other programs.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 90 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

91UNIT 2 PROGRAMMING 10  Subprograms

built-in functions functions that are
provided in most high-level programming
languages to perform common tasks

SUBJECT VOCABULARY

BUILT-IN FUNCTIONS In addition to user-written subprograms, most high-level programming
languages have a set of built-in functions for common tasks. These are
designed to save the programmer time, such as functions that print, count the
number of characters in a string and generate random numbers.

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, try redoing the activities in this section.

Strengthen
S1	 What are the benefits of using subprograms?

S2	 What is meant by the scope of a variable? Use your own examples.

S3	 What happens when a global variable and a local variable share the
same name?

S4	 Provide an example of a common built-in function.

Challenge
C1	Create and implement a calculator program that:

◼◼ allows the user to enter a set of numbers
◼◼ uses separate functions to calculate the mean, mode and median
◼◼ allows the user to select which function they want
◼◼ uses appropriate validation.

SKILLS CRITICAL THINKING

SKILLS REASONING

SKILLS REASONING

SKILLS CRITICAL THINKING

SKILLS PROBLEM SOLVING

CHECKPOINT

◼◼ A subprogram is a section of code within a larger piece of code that
performs a specific task. It can be used at any point in the program.

◼◼ A function is a subprogram that returns a value to the main program.
◼◼ A procedure is a subprogram that does not return a value to the main

program.
◼◼ Parameters are values that are passed to a subprogram when it is called.
◼◼ Local variables can only be accessed from within the subprogram in

which they are created.
◼◼ Global variables can be accessed anywhere in the program, including

inside subprograms.
◼◼ Built-in functions are functions provided in a high-level programming

language to perform common tasks.

SUMMARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 91 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

92 UNIT 2 PROGRAMMING 11  Testing and evaluation

◼	 Describe different types of error in programs

◼	 Design and use test plans and test data

◼	 Determine what value a variable will hold at a given point in
a program

◼	 Evaluate the strengths and weaknesses of a program and suggest
improvements

LEARNING OBJECTIVES

11  TESTING AND EVALUATION

DID YOU KNOW?
The Ariane 5 space rocket was
launched by the European Space
Agency in 1996. Its flight lasted
39 seconds before it exploded. Data
about velocity was stored in 16-bit
variable. This had been fine for the
Ariane 4 but the 5 model was much
faster and the value was too large.
This one software error set of a chain
of events leading to self-destruction.

LOGIC ERRORS Logic errors occur when the thinking behind an algorithm is incorrect so that
the output isn’t what is expected or intended. Ideally, logic errors should be
identified and fixed at the design stage.

The following algorithm is intended to work out whether a learner has passed a
test. Learners need a score of 80 or above to pass. However, a logic error in the
algorithm means that it produces an incorrect and unexpected result.

IF testScore <= 80 THEN

   SEND ‘Pass’ TO DISPLAY

ELSE

   SEND ‘Failed’ TO DISPLAY

END IF

Research other problems and
disasters that have been caused
by software failures.

EXTEND YOUR KNOWLEDGE

However carefully an algorithm has been created and coded into a
program, there will always be mistakes and errors. Before a program goes
live, it should be thoroughly tested and evaluated to ensure it meets the
requirements.

Here is an algorithm to find the average of two numbers.

RECEIVE number1 FROM KEYBOARD

RECEIVE number2 FROM KEYBOARD

SET average TO number1 + number2 / 2

SEND average TO DISPLAY

This seems logical. Two numbers are input, they are added together and
then they are divided by 2.

However, if this algorithm was given 12 and 6 as the two numbers it would
return 15 as the average instead of 9. There is a logic error.

Instead of adding the two numbers and then dividing by 2, as the
developer intended, it is dividing the second number by 2 and then adding
the result to the first number.

The developer should have written the third line as:

SET average TO (number1 + number2) / 2

WORKED EXAMPLE

DID YOU KNOW?
In computer programming the
order of precedence (the order in
which you do each calculation) is
the same as in mathematics and
science – BIDMAS.

This is how 32 × 9 + (5 − 2) would
be evaluated.

Brackets	 32 × 9 + (3)
Indices		 9 × 9 + (3)
Division
Multiplication	 81 + (3)
Addition	 84
Subtraction

To calculate 24/3 – 2, the division
would be calculated before the
subtraction.

24/3 = 8
8 – 2 = 6

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 92 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

93UNIT 2 PROGRAMMING 11  Testing and evaluation

ACTIVITY 28SKILLS PROBLEM SOLVING

This is part of a larger algorithm designed to ensure that input data
falls within a certain range. It is part of a school management system. It
checks that the ‘year group’ entry is acceptable. It has students aged 11
to 18 years with year groups of 7 to 13.

The staff using the system congratulated themselves on never making
an error when entering the year group. However, when student lists were
printed out, they immediately received complaints.

With a partner, discuss this algorithm and find the logic error in the algorithm?

Start

Input
yearGroup

YES

Is
yearGroup >=
7 OR <= 13?

▲ Figure 2.4 Flowchart showing an error in an algorithm

LOGIC ERRORS

Study this algorithm.

WHILE index < 10 DO

	 SET index TO 1

	 SEND index TO DISPLAY

	 SET index TO index + 1

END WHILE

The expected output is 1, 2, 3, 4, 5, 6, 7, 8, 9.

But there is a logic error. The variable ‘index’ is initialised in the wrong
place. It should be done before the start of the WHILE loop.

This algorithm would loop forever because at each turn in the loop
the variable index is set to 1. It will never reach 10. This is an

WORKED EXAMPLE

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 93 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

94 UNIT 2 PROGRAMMING 11  Testing and evaluation

ACTIVITY 29SKILLS REASONING,
PROBLEM SOLVING

Find and correct the errors in these algorithms.

Example 1
SET index TO 1

WHILE index < 10

 SEND index TO DISPLAY

END WHILE

Example 2
SET index TO 1

WHILE index < 10

 SEND index TO DISPLAY

 SET index TO index - 1

END WHILE

Example 3
SET index TO 1

WHILE index < 1

 SEND index TO DISPLAY

 SET index TO index + 1

END WHILE

FINDING AND CORRECTING ERRORS

logic error an error in an algorithm that
results in incorrect or unexpected
behaviour
trace table a technique used to identify
any logic errors in algorithms. Each column
represents a variable or output and each
row a value of that variable

SUBJECT VOCABULARY

Create a trace table for the following algorithm written in Pearson Edexcel
pseudocode.

SET number TO 3

FOR index FROM 1 TO 5 DO

 SET number1 TO number * index

 SET number2 TO number1 * 2

 IF number2 > 20 THEN

 SEND number2 TO DISPLAY

 END IF

END FOR

WORKED EXAMPLE

TRACE TABLES
The formal way of checking the logic of an algorithm is to use a trace table.

example of an ‘infinite loop’. The algorithm should have been written
as shown below.

SET index TO 1

WHILE index < 10

	 SEND index TO DISPLAY

	 SET index TO index + 1

END WHILE

infinite loop a loop that is never-ending
since the condition required to terminate
the loop is never reached

SUBJECT VOCABULARY

terminate to cause something to end or
stop

GENERAL VOCABULARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 94 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

95UNIT 2 PROGRAMMING 11  Testing and evaluation

This algorithm can be traced as in Table 2.12.

NUMBER INDEX NUMBER1 NUMBER2 OUTPUT

3

3 1   3   6

3 2   6 12

3 3   9 18

3 4 12 24 24

3 5 15 30 30

▲ Table 2.12 Trace table

The value of the variable number remains at 3 throughout, but as the
index increases from 1 to 5, then so do the values of number1 and
number2.

When the value of number2 is greater than 20, its value is output.

Here is a program.

Python
y = 2

for x in range(1, 7):

	 y = y + x

print(y)

Java
class Main {

 public static void main(String[] args) {

 int y = 2;

 for(int x = 1; x < 7; x++) {

 y += x;

 }

 System.out.println(y);

 }

}

WORKED EXAMPLE

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 95 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

96 UNIT 2 PROGRAMMING 11  Testing and evaluation

C#
int number = 3;

int number1, number2;

for (int index = 1; index <= 5; index++)

{

 number1 = number * index;

 number2 = number1 * 2;

 if (number2 > 20)

 {

 Console.WriteLine(number2);

 }

}

X Y OUTPUT EXPLANATION

1   2 When the loop starts, X becomes 1 and Y
already is equal to 2.

2   3 When X is incremented to 2, Y is equal to 3
(2+1) from the previous loop.

3   5 When X is incremented to 3, Y= 3 + 2 from the
previous loop.

4   8

Explanations as above.5 12

6 17

6 23 23 The final value of Y is output.

▲ Table 2.13 Trace table of the programs above

ACTIVITY 30

Complete a trace table for this program written in a high-level
language.

Python
number1 = 2

number2 = 3

for index in range(1, 6)

	 number1 = number1 * index

	 number2 = number2 + number1

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 96 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

97UNIT 2 PROGRAMMING 11  Testing and evaluation

ACTIVITY 31SKILLS PROBLEM SOLVING

The following program is intended to count the number of female
learners in a class.

Python
gender = [‘M’, ‘M’, ‘F’, ‘M’, ‘F’, ‘F’, ‘M’, ‘F’, ‘M’, ‘F’]

length = len(gender)

count = 0

for index in range(length):

	 if gender[index] ‘F’:

		 count = count + 1

Java
class Main {

 public static void main(String[] args) {

 String[] gender = {“M”, “M”, “F”, “M”, “F”, “F”,
“M”, “F”, “M”, “F”};

 int length = gender.length;

 int count = 0;

 for(int index = 0; index < length; index++) {

 if(gender[index].equals(“F”)) {

 count++;

 }

 }

 }

}

Java
class Main {

 public static void main(String[] args) {

 int number1 = 2;

 int number2 = 3;

 for(int index = 1; index < 6; index++) {

 number1 = number1 * index;

 number2 = number2 + number1;

 }

 }

}

C#
int number1 = 2;

int number2 = 3;

for (int index = 1; index < 6; index++)

{

	 number1 = number1 * index;

	 number2 = number2 + number1;

}

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 97 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

98 UNIT 2 PROGRAMMING 11  Testing and evaluation

C#
int length, count;

char[] gender;

gender = new char[]{ ‘M’, ‘M’, ‘F’, ‘M’, ‘F’, ‘F’, ‘M’,
‘F’, ‘M’, ‘F’ };

count = 0;

length = gender.Length;

for (int index = 0; index < length; index++)

{

 if (gender[index] == ‘F’)

 {

 count += 1;

 }

}

	1	 Create and complete a trace table for this algorithm.
	2	 Create a trace table for the algorithm below using the following

sample data: 3, 12, 21, 28, 0.

Python
total = 0

number = int(input(‘Please enter the number’)

while number > 0:

	 total = total + number

	 number = int(input(‘Please enter the number’)

print total

Java
import java.util.*;

class Main {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 int total = 0;

 System.out.print(“Please enter the number: “);

 int number = scanner.nextInt();

 while(number > 0) {

 total += number;

 number = scanner.nextInt();

 }

 System.out.println(total);

 }

}

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 98 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

99UNIT 2 PROGRAMMING 11  Testing and evaluation

C#
int total = 0;

int number;

string numberString;

Console.WriteLine(“Please enter the number”);

numberString = Console.ReadLine();

number = int.Parse(numberString);

while (number > 0)

{

 total += number;

 Console.WriteLine(“Please enter the number”);

 numberString = Console.ReadLine();

 number = int.Parse(numberString);

}

Console.WriteLine(total);

runtime error an error that occurs while
the program is running – the operation the
computer is asked to do is impossible to
execute

SUBJECT VOCABULARY

RUNTIME ERRORS Runtime errors occur during program execution and are the most difficult to
predict and spot.

This program is designed to take two numbers, divide the first number by
the second number and output the result. It will work as intended at least
some of the time. However, if the user entered 5 and 0, a runtime error
would occur because it is impossible for the computer to divide 5 by 0.

Python
firstNumber = int(input(‘Please enter the first number’)

secondNumber = int(input(‘Please enter the second
number’)

result = firstNumber / secondNumber

print(result)

SYNTAX ERRORS Syntax errors occur when the grammar rules of a programming language are
not followed.

They prevent the code from being compiled or translated.

Examples of syntax errors are:

◼◼ writing ‘prnit’ instead of ‘print’
◼◼ missing out a closing bracket
◼◼ missing out quotation marks.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 99 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

100 UNIT 2 PROGRAMMING 11  Testing and evaluation

Java
import java.util.*;

class Main {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print(“Please enter the first number: ”);

 int firstNumber = scanner.nextInt();

 System.out.print(“Please enter the second number: ”);

 int secondNumber = scanner.nextInt();

 scanner.close();

 // do the division (converting all integers to reals)

 double result = (double)firstNumber / (double)
secondNumber;

 System.out.println(result);

 }

}

C#
int firstNumber, secondNumber, result;

string firstNumberString, secondNumberString;

Console.WriteLine(“Please enter the first number”);

firstNumberString = Console.ReadLine();

firstNumber = int.Parse(firstNumberString);

Console.WriteLine(“Please enter the second number”);

secondNumberString = Console.ReadLine();

secondNumber = int.Parse(secondNumberString);

result = firstNumber / secondNumber;

Console.WriteLine(result);

ERROR SUMMARY This table gives a summary of the three types of error you are likely to encounter.

TYPE OF ERROR DESCRIPTION

Logic The program seems to run normally; however, there is an error in the logic of the program, which
means it does not produce the result you expect.

Syntax Syntax refers to the rules of the programming language. A syntax error means that part of the code
breaks the rules of the language, which stops it running.

Runtime An error that occurs when the computer tries to run code that it cannot execute.

▲	Table 2.14 Summary of the three types of error you are likely to encounter

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 100 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

101UNIT 2 PROGRAMMING 11 TESTING AND EVALUATION

Here are some error messages that you are likely to see in popular IDEs.

IDLE (a popular Python IDE)

◼	 SyntaxError: invalid syntax – part of the code breaks one of the rules
of the programming language.

◼	 IndentationError: expected an indented block – statements after a
colon must be indented.

◼	 TypeError: Can’t convert ‘int’ object to str implicitly – trying to join a
string and an integer together.

◼	 ZeroDivisionError: integer division or modulo by zero – trying to
divide a value by 0.

◼	 NameError: name is not defi ned – referring to a variable or subprogram
that does not exist.

Eclipse (a popular Java IDE)

◼	 ; expected – each statement should end with a semicolon.
◼	 Cannot fi nd symbol – referring to a variable or subprogram that does not

exist.
◼	 Incompatible types – trying to mix data of diff erent types, for example a

string and an integer.

HINT

Integrated Development
Environment (IDE) a package that helps
programmers to develop program code. It has
a number of useful tools, including a source
code editor and a debugger
debugger a computer program that
assists in the detection and correction of
errors in other computer programs

SUBJECT VOCABULARY

USING AN INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

You probably already have fi rst-hand experience of using an Integrated
Development Environment (IDE) when writing code. It’s defi nitely worth
taking some time to get to know the IDE that comes with the language you are
using. Useful features such as syntax highlighting, code auto complete and
auto indent will help to make your programming experience far less stressful,
especially at the beginning.

One of the most useful features of an IDE is the debugger. One of its tasks
is to fl ag up syntax errors in the code and issue helpful error messages. It is
really important that you get lots of practice interpreting error messages and
fi xing errors in your code.

▶	Figure 2.5 A syntax error fl agged up by an
IDE in Python code

THE TEST PLAN At the start of a programming project, it is crucial to make a list of the
requirements that the program is expected to meet. Throughout the
development phase of the project, you should regularly refer back to this list of
requirements to check that you are on track to achieve them.

Deciding how to test the fi nished program to make sure that it fully meets
the requirements can’t be left to the last moment either. As part of the design
stage, you should create a test plan listing the tests you will carry out, the data
that will be used for each test and the expected result.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 101 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

102 UNIT 2 PROGRAMMING 11  Testing and evaluation

This algorithm converts an exam mark into a grade. It should only accept
marks between 0 and 100.

The test plan extract in Table 2.15 shows some of the tests that have been
planned for the finished program to ensure that it meets all the requirements.

Only the first four columns of the test plan table can be completed at the design
stage. The remaining columns are filled in when the program is complete.

At the start, it’s unlikely that you’ll know every test that will be needed to
ensure the program works as intended. The test plan is not a fixed document.
If additional tests are required, they should be added to the test plan.

TEST NO. PURPOSE OF THE TEST TEST DATA EXPECTED RESULT ACTUAL RESULT
ACTION NEEDED/

COMMENTS

1 To check correct conversion of
valid mark

0
55
65
75
85

‘FAIL’
‘D’
‘C’
‘B’
‘A’

2 To check correct conversion of
boundary mark

0
1, 59
60, 69
70, 79
80, 100

‘FAIL’
‘D’
‘C’
‘B’
‘A’

3 To check response to erroneous
mark

–5
105

Error message
Error message

▲ Table 2.15 Test plan extract

RECEIVE examMark FROM (INTEGER) KEYBOARD

IF examMark >= 80 THEN

   SEND ‘A’ TO DISPLAY

ELSE

   IF examMark >= 70 THEN

     SEND ‘B’ TO DISPLAY

   ELSE

     IF examMark >= 60 THEN

       SEND ‘C’ TO DISPLAY

     ELSE

       IF examMark > 0 THEN

         SEND ‘D’ TO DISPLAY

       ELSE

         SEND ‘FAIL’ TO DISPLAY

       END IF

     END IF

   END IF

END IF

MARKS TO GRADES

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 102 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

103UNIT 2 PROGRAMMING 11  Testing and evaluation

Normal data Data that is well within the limits of
what should be accepted by the
program.

Test 1 uses normal data to check if marks are
converted into grades correctly (e.g. a mark of 65
should be converted to a grade C).

Boundary data Data that is at the outer limits of what
should be accepted by the program.

Test 2 uses boundary data to check that the program
works correctly with marks at the upper and lower
boundaries (e.g. a mark of 60 and a mark of 69 should
both convert to a grade C).

Erroneous data Data that should not be accepted by
the program.

Test 3 uses erroneous data to check that the program
does not accept it.

▲ Table 2.16 Test data categories

Testing is just as important as writing code because it ensures that the finished
program works correctly and fully meets the requirements. You should use a
‘bottom up’ approach to testing (i.e. test each subprogram as you develop it
and then test the whole program once it is finished).

Here is the completed test plan for the grade calculator program. As you can
see, the expected result was not produced when the program was tested with
erroneous data. A range check had to be added to the program to ensure that
only marks between 0 and 100 can be entered.

TEST NO. PURPOSE OF THE TEST TEST DATA EXPECTED RESULT ACTUAL RESULT
ACTION NEEDED/
COMMENTS

1 To check correct
conversion of valid
mark

0
55
65
75
85

‘FAIL’
‘D’
‘C’
‘B’
‘A’

‘FAIL’
‘D’
‘C’
‘B’
‘A’

None

2 To check correct
conversion of boundary
mark

0
1, 59
60, 69
70, 79
80, 100

‘FAIL’
‘D’
‘C’
‘B’
‘A’

‘FAIL’
‘D’
‘C’
‘B’
‘A’

None

3 To check response to
erroneous mark

–5
105

Error message
Error message

‘FAIL’
‘A’

A range check has
been added to ensure
that only valid marks
can be added.

▲ Table 2.17 The completed test plan for the grade calculator program

If a test produces the expected result, you can simply write ‘None’ in the
‘Action needed/comments’ column. If, however, that is not the case then you
should instead note what went wrong and what you did to put it right.

It is important to select suitable test data for the tests. Test data falls into
three different categories: normal, boundary and erroneous.

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 103 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

104 UNIT 2 PROGRAMMING 11  Testing and evaluation

After you have carried out all of the tests and made all the necessary changes,
the program should be retested. This is to ensure that the improvements you
have made haven’t introduced any new errors into the program.

the program – have
The e�ciency of

loops and subprograms
been used to avoid
unnecessary code

repetition?

Usability – is the
program easy to use?

Validation – has
appropriate validation

been applied to user input?

Evaluating programs

Code readability –
have meaningful

identifiers, comments
and white space been
used appropriately?

Requirements –
does the program meet

all the requirements
set at the start of

the project?

▶	Figure 2.6 Consider the aspects shown
when evaluating a program

EVALUATING PROGRAMS You need to be able to identify the strengths and weaknesses of your own
programs as well as those created by other programmers. This will enable you
to identify techniques that work well and aspects that could be improved.

SKILLS PROBLEM SOLVING ACTIVITY 32

	1	 Develop an algorithm for a simple guessing game. The algorithm must:
	 a	 generate a random number between 1 and 6
	 b	 ask the user to input a number between 1 and 6
	 c	 reject any values outside the acceptable range
	 d	 �display ‘Well Done’ if the user guesses correctly or ‘Try Again’ if

their guess is incorrect.

	2	 Develop a test plan for this guessing game program.

	3	 Can you write the guessing game program in the high-level programming
language you are studying?

	4	 Test your program by carrying out the tests you planned. Ensure you
update your test plan after completing each test.

CREATING A GUESSING GAME ALGORITHM

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 104 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

105UNIT 2 PROGRAMMING 11  Testing and evaluation

How confident do you feel about your answers to these questions? If you’re
not sure you answered them well, try completing Activities 28–32.

Strengthen
S1	 What are the three types of error associated with program development?

Can you identify the stage(s) of development at which they are most likely
to occur?

S2	 Outline the function of a trace table.

S3	 What are the features of an IDE that help programmers write error-free
code?

S4	 What is the function of a test plan in program development?

S5	 What is meant by normal, boundary and erroneous data?

S6	 Why might it be necessary to retest a program once all the planned
tests are completed?

Challenge
C1	Think of a problem which could be solved using a computer program.

What are the requirements for the program? Create a solution and
draw up a test plan for it.

C2	Develop and implement the program. Conduct your planned tests and
make any necessary changes to your program, ensuring your test plan
is kept up to date.

C3	Reflect on your program and provide an evaluation.

SKILLS CRITICAL THINKING,
REASONING

SKILLS CRITICAL THINKING

SKILLS REASONING

SKILLS CRITICAL THINKING

SKILLS CRITICAL THINKING

SKILLS REASONING

SKILLS PROBLEM SOLVING

SKILLS PROBLEM SOLVING

SKILLS REASONING

CHECKPOINT

◼◼ Logic errors occur when there is an error in the logic of the code,
causing the program to produce an unexpected result.

◼◼ A syntax error occurs when part of the code breaks the rules of the
programming language.

◼◼ A runtime error occurs while the program is running and it is asked to
do something that is impossible to do.

◼◼ Trace tables can be used to manually trace the execution of an
algorithm, allowing you to track the changes in variable values.

◼◼ Before creating a program, it is important to produce a test plan that
outlines how the final program will be tested to ensure it meets the
requirements.

◼◼ Evaluating a program involves considering its strengths and weaknesses
and identifying areas for improvement.

SUMMARY

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 105 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

106 UNIT 2 PROGRAMMING UNIT QUESTIONS

UNIT QUESTIONS

 1	 a	 �Identify the line number(s) that show one example of each of these
structural components in the program below:� (6)

◼◼ variable initialisation
◼◼ type declaration
◼◼ selection
◼◼ iteration
◼◼ data structure
◼◼ subprogram.

  1	 SET valuesArray TO [3, 9, 12, 16, 4, 98]

  2	 REAL max

  3
  4	 FUNCTION maxCalc(values)

  5	 BEGIN FUNCTION

  6	 	 SET length TO LENGTH(values)

  7	 	 SET max TO 0

  8	 	 FOR index = 0 TO length - 1 DO

  9	 	 	 IF values[index] > max THEN

10	 	 	 SET max TO values[index]

11	 	 	 END IF

12	 	 END FOR

13	 RETURN max

14	 END FUNCTION

15
16	 SET max TO maxCalc(valuesArray)

	 SEND max TO DISPLAY

	 b	 Identify the line number where a subprogram call is made.� (1)

Question 1 is testing your ability to identify the seven key structural
components of a program. Make sure you have identified the line numbers
in which the components can be found.

HINT

	2	 Describe what this algorithm does.� (2)

		 SET scores TO [45, 67, 34, 98, 52]

		 SET length TO LENGTH(scores)

		 SET count TO 0

		 FOR index FROM 0 TO length – 1 DO

		    IF scores[index] >= 50 THEN

		      SET count TO count + 1

		    END IF

		 END FOR

AO2SKILLS CRITICAL THINKING,
REASONING

AO3SKILLS CRITICAL THINKING,
REASONING

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 106 20/05/20 3:18 PM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

107UNIT 2 PROGRAMMING UNIT QUESTIONS

	3	 Draw and complete a trace table for this algorithm with these column
headings:� (5)

◼◼ length
◼◼ count
◼◼ index
◼◼ scores[index].

Question 3 tests your ability to trace an algorithm using a trace table.
Remember each variable change should be recorded and each time a line of
code alters the value of a variable or variables a new row of the trace table
should be completed.

HINT

	4	 Open file Q01a. Answer these questions about the code.

	 a	 State the name of a user-defined subprogram.� (1)
	 b	 State the name of one in-built subprogram.� (1)
	 c	 State the names of one input parameter.� (1)
	 d	 State the name of a global variable.� (1)
	 e	 State the name of a local variable.� (1)
	 f	 State the line number of the command that ‘calls’ the variable.� (1)

These questions are asking you to ‘state’ various elements in the program.
You do not have to describe them or explain how they function.

HINT

	5	 Open file Q02a. Answer these questions about the code.
		 A data structure has been used to store the results of a survey to find

favourite brands of automobiles.
		 They have been stored in ascending order.

	 a	 Name this type of data structure.� (1)
	 b	 �The user is asked to enter the name of a brand and their input is

converted into upper case. Explain why this is done.� (2)
	 c	 �Complete the program to search for the brand name entered in the data

structure. If it is present, then the program should inform the user of its
position, e.g. Audi is in position 1.

		 The user should also be informed if it is not in the list.
		 Save your completed program as Q02b.� (6)

This question is asking you to traverse a list to find a particular item. When
you print out the result text and variables have to be concatenated.

HINT

	  6	 Open file Q03a.

		 It shows a list of users and their (not very strong) passwords stored in a
list. Complete the program so that a user can enter their user name. If the
name exists, then they should be asked for their password. They should be
informed of the following:

◼◼ if the username and password are correct
◼◼ if the name they entered is not recognised.� (10)

The question requires you to use a loop and selection.

HINT

AO2SKILLS CRITICAL THINKING,
PROBLEM SOLVING,
REASONING

AO2SKILLS CRITICAL THINKING,
REASONING

SKILLS AO2

AO3

CRITICAL THINKING,
PROBLEM SOLVING,
REASONING

AO3SKILLS PROBLEM SOLVING

M02 IGCSE Computer Science SB2 Global 10220 UNIT2.indd 107 18/05/20 11:43 AM

Sa
m

pl
e

m
at

er
ia

l.
N

ot
 fo

r
re

sa
le

, c
ir

cu
la

tio
n

or
 d

is
tr

ib
ut

io
n

in
 w

ho
le

 o
r

in
 p

ar
t.

©
 P

ea
rs

on
 2

02
0.

	F01IGC~1
	M01IGC~1
	M02IGC~1

