Topic: Quadrant of the angle

Question: Which two axes make up the boundary of the third quadrant?

Answer choices:

A The positive horizontal axis and the negative vertical axis
B The negative horizontal axis and the negative vertical axis
C The positive horizontal axis and the positive vertical axis
D The negative horizontal axis and the positive vertical axis

Solution: B

As shown in the shaded region of the figure, the third quadrant is bounded by the negative horizontal axis and the negative vertical axis.

Topic: Quadrant of the angle

Question: In which quadrant is the angle located?
$-1,600^{\circ}$

Answer choices:

A First quadrant
B Second quadrant
C Third quadrant
D Fourth quadrant

Solution: C

To answer this question, we can use our tried-and-true method of finding an angle in the range 0° to 360° that differs from an angle of $-1,600^{\circ}$ by some integer multiple of 360°.

Since the given angle is negative, we need to add positive integer multiples of 360° to $-1,600^{\circ}$ to find such an angle.

$$
\begin{aligned}
& -1,600^{\circ}+360^{\circ}=-1,240^{\circ} \\
& -1,600^{\circ}+2\left(360^{\circ}\right)=-1,240^{\circ}+360^{\circ}=-880^{\circ} \\
& -1,600^{\circ}+3\left(360^{\circ}\right)=-880^{\circ}+360^{\circ}=-520^{\circ} \\
& -1,600^{\circ}+4\left(360^{\circ}\right)=-520^{\circ}+360^{\circ}=-160^{\circ} \\
& -1,600^{\circ}+5\left(360^{\circ}\right)=-160^{\circ}+360^{\circ}=200^{\circ}
\end{aligned}
$$

Note that 200° is in the range 0° to 360°; in particular,

$$
180^{\circ}<200^{\circ}<270^{\circ}
$$

An angle of 180° is on the negative horizontal axis, and an angle of 270° is on the negative vertical axis. Thus an angle of 200° is in the third quadrant. Since $-1,600^{\circ}$ differs from 200° by an integer multiple of 360°, an angle of $-1,600^{\circ}$ is also in the third quadrant.

