Yerynherth.org
 Algebra-Expressions and Formulas

The video covers the following exercises. Please print this sheet and work along!
$x=4$
$x+y-2 z$
$2(x+y)$
$\frac{x^{2}-4 y}{2-4 z}$
$y=-3$
$\mathrm{z}=2.5$

Please write the appropriate expression for the area of the given circle:
$A=\pi r^{2}$

Algebra 2
Name \qquad
Chapter 1 Notes

> Date

EQUATIONS AND INEQUALITIES

1.1: Expressions and Formulas

Order of Operations - PEMDAS
Parenthesis Exponents Multiplication/Division Addition Subtraction

KeyConcept Order of Operations

Step 1 Evaluate the expressions inside grouping symbols.
Step 2 Evaluate all powers.
Step 3 Multiply and/or divide from left to right.
Step 4 Add and/or subtract from left to right.

Ex\#1: Evaluate the following expressions if $m=12$ and $q=-1$
a) $m+(3-q)^{2}$
b) $m+2 q+4$

Ex\#2: Evaluate the following expressions if $a=5$ and $b=-3.2$
C) $a+b^{2}(b-a)$

Ex\#3: Evaluate the following expression if $h=4, j=-1$, and $k=0.5$

$$
\frac{j^{2}-3 h^{2} k}{j^{3}+2}
$$

Formula - a mathematical "sentence" that creates relationships between certain values

The formula $F=\frac{9}{5} C+32$ represents the conversion of temperature from Celsius to Fahrenheit. Ex\#4: What is the Fahrenheit equivalent of $40^{\circ} \mathrm{C}$?

Yedynketh.019g

Algebra - Properties of Real Numbers

The video covers the following information. Please print this sheet and work along!
List of number categories:
Natural \#s -
Whole \#s -

Integer \#s -
Rational \#s -

Irrational \#s -

Please list which number categories each of the following are:
5
1.2
1.22
-3
$\sqrt{36}$
$\sqrt{37}$

Yedynketh.019g

Algebra - Properties of Numbers

The video covers the following exercises. Please print this sheet and work along!

Reflexive Property -
Symmetric Property -
Transitive Property -
Substitution Property -
$a+\ldots=a$ is the \qquad
a. \qquad $=a$ is the \qquad
$\mathrm{a}+\ldots=0$ is the \qquad , example: $-3+\ldots=0$
$\mathrm{a} \cdot \ldots=1$ is the \qquad , example: 4 . \qquad $=1$

This number is often called the \qquad .
\qquad
\qquad - \qquad
\qquad
\qquad - \qquad
This is called The \qquad Property of \qquad .

Commutative Property -

Associative Property -

Please perform the math operations, and state the property you used in each step.

$$
\begin{gathered}
6(3-2)+4 \cdot \frac{1}{4}+12(7-7) \\
6(1)+4 \cdot \frac{1}{4}+12(7-7) \\
6(1)+4 \cdot \frac{1}{4}+12(0) \\
6+4 \cdot \frac{1}{4}+12(0) \\
6+1+12(0) \\
6+1+0 \\
7 \\
+
\end{gathered}
$$

Example	$\mathrm{x}=?$	Property
$7 \cdot \mathrm{x}=0$		
$\mathrm{x}+3=10+3$		
$4+\mathrm{x}=4$		
$2+10=10+\mathrm{x}$		
$4+\mathrm{x}=0$		
$\mathrm{x} \cdot 1=5$ OR $1 \cdot \mathrm{x}=5$		
$5 \cdot \mathrm{x}=1$		

1.2: Properties of Real Numbers

Real numbers are classified in a variety of ways.
Natural numbers: 1, 2, 3, \ldots
Whole numbers: all Natural numbers, and 0 . So, $0,1,2,3, \ldots$
Integers: all Whole numbers, and the negative countable numbers: $\ldots,-3,-2,-1,0,1,2,3, \ldots$
Rational numbers: all Integers, and ratios of integers, so fractions, ending decimals, and repeating decimals

Irrational numbers: cannot be represented by a ratio of integers. They're decimals that continue on without a pattern. Common examples include $\sqrt{ }$ and π.

KeyConcept Real Numbers (R)

Letter	Set	Examples
Q	rationals	$0.125,-\frac{7}{8}, \frac{2}{3}=0.66 \ldots$
I	irrationals	$\pi=3.14159 \ldots$ $\sqrt{3}=1.73205 \ldots$
Z	integers	$-5,17,-23,8$
W	wholes	$2,96,0, \sqrt{36}$
N	naturals	$3,17,6,86$

Ex\#1: Name all of the sets of numbers to which each number belongs.
a) -185
b) $\sqrt{49}$
c) $\sqrt{95}$
d) $-\frac{7}{8}$
e) 0
f) $0.5 \overline{8}$

Real Number Properties (and Examples)

For any real numbers, a, b, and c		
Property	Addition	Multiplication
Commutative	$\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$	$\mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}$
Associative	$(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})$	$(\mathrm{a} \cdot \mathrm{b}) \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c})$
Identity	$\mathrm{a}+0=\mathrm{a}$	$\mathrm{a} \cdot 1=\mathrm{a}$
Inverse	$\mathrm{a}+(-\mathrm{a})=0$	$\mathrm{a} \cdot \frac{1}{a}$
Distributive	$\underline{a}(\mathrm{~b}+\mathrm{c})=\underline{a b}+\underline{a c}$	

Ex:\#2: Please name the property illustrated by each of the following.
a) $(6 \cdot 8) \cdot 5=6 \cdot(8 \cdot 5)$
b) $84+16=16+84$
c) $(12+5) 6=12 \cdot 6+5 \cdot 6$

Ex\#3: Please find the additive and multiplicative inverses of each of the following numbers.
a) $\quad-7$
b) $\quad 0.8$ (hint: turn into a fraction)

Ex\#4: Please simplify the following expressions.
a) $\quad-2 a+4 a(8-3 a)$
b) $3(4 x-2 y)-2(3 x+y)$

Yaykhath.org Algebra - Solving Equations

The video covers the following exercises. Please print this sheet and work along!
Math Property:
Reflexive -
Symmetry -
Transitive -
Substitution -

Addition -
Subtraction -
Multiplication -
Division -

$$
2 x-1=13
$$

$$
\frac{2}{3} x=30
$$

if $3 x-3=1 / 4$, then what is $3 x+7$?
$V=\frac{1}{3} \pi r^{2} h$
Please solve for h.

1.3a: Solving Equations

Translating Verbal Expressions and Algebraic Expressions

Ex\#1:

a) Please translate the verbal expressions into an algebraic expressions. three times the difference of a number and eight
the cube of a number increased by 4 times the same number
b) Please translate the algebraic expression into a verbal expression.

$$
p^{3}+4 p
$$

Ex\#2: Please write a verbal sentence to represent the equation.

$$
2 c=c^{2}-4
$$

Properties of Equality - common math operations, used to solve equations

For any real numbers, a, b, and c		
Property	Using only symbols	Additional examples
Reflexive	$\mathrm{a}=\mathrm{a}$	$b+8=b+8$
Symmetric	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{b}=\mathrm{a}$	$\begin{array}{ll} \text { If } & 2 b+c=20, \\ \text { Then } & 20=2 b+c \\ \hline \end{array}$
Transitive	If $a=b$, and $b=c$, then $\mathrm{a}=\mathrm{c}$	$\begin{array}{lr} \text { If } & 2 a+12=30, \\ \text { and } & 30=5 c-8, \\ \text { then } & 2 a+12=5 c-8 \end{array}$
Substitution	If $a=b$, then a can be replaced by b b can be replaced by a	If $\quad(5+2) x=21$, Then $7 x=21$

Ex\#3: Please name the property illustrated by the following statement.
If $-11 a+2=-3 a$, then $-3 a=-11 a+2$

Additional Properties of Equality

"Whatever operation you do to one side of the equation, you must do to the other."

For any real number 'a'		
Property		Example
Addition	if then	$\begin{aligned} a & =a \\ a+8 & =a+8 \end{aligned}$
Subtraction	if then	$\begin{aligned} a & =a \\ a-4 & =a-4 \end{aligned}$
Multiplication	if then	$\begin{aligned} a & =a \\ a \cdot 3 & =a \cdot 3 \end{aligned}$
Division	if then	$\begin{aligned} a & =a \\ a \div 7 & =a \div 7 \end{aligned}$

Ex\#4: Please solve the following equations, noting which property of equality is being utilized.
a) $x-14.29=25$
b) $\frac{2}{3} y=-18$
c) $\quad-10 x+3(4 x-2)=6$

Ex\#5: Please solve for h in the following formula for area of a trapezoid. $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$ Please note the property used for each step.

Yelynherth.0rg

Algebra - Solving Equations (word problem)

If Suzy sells a total of 50 fruits in a day, and sells 8 more apples than plums...
(what will be the question?)

1.3b: Solving Equations (word problems)

Ex. \#1: Suppose that in my coffee shop, one day I sell 12 more regular coffees than decaffeinated. The total cups I sold that day were 60. How many of each kind of coffee did I sell?
(Hint: you can either play around with numbers to guess and check, or assign variables, such as D for the number of decaf cups sold.)

Ex. \#2: Supplementary angles are defined as 2 angles that sum to 180°. Suppose that one angle is 3 times larger than its supplement. What are the measures of the 2 angles?
(Same hint as above. Maybe start with 100° and 80°. They're supplementary, but 100 is not 3 times as large as 80 . So tinker with the numbers until one angle is 3 times larger than the other. Or, you can set variables to represent each of the 2 angles.)

Algebra Absolute Value Equations YAY MATH!

The following problems are solved in the video:
$|x+6|=18$

$$
\left|\frac{1}{2} x-1\right|=2
$$

$3|x+6|=36$ $|3 x-1|=-450$
$|3 t-5|=2 t$
$|x-3|+7=2$

1.4: Solving Absolute Value Equations

The absolute value of a number is its distance from zero on a number line. Since distance is always non-negative, absolute values are always non-negative.

Symbol: $\quad|x|$
Another way of understanding it is that the absolute value bars are like a "positivity machine." Any number that enters the positivity machine will come out positive. Zero will come out as zero.

Ex \#1: Please evaluate the following if $x=-2$.
a. $|4 x+3|-3 \frac{1}{2}$
b. $-2|3-x|+8$

Solving Absolute Value Equations - "BIFURCATE" - meaning, dividing into two branches

$$
|x-5|=3
$$

(then solve both branches)
Ex \#2: Please solve each equation. Then graph your solution(s) on a number line.
a) $\quad|x+3|=6$
b) $\quad|x-7|=4$

No solution?

We know that an absolute value is always equal to a positive number.
Thus, whenever an absolute value equation equals a negative number, there is no solution.
Here are some examples of an equation having "no solution" for the variable, 'a'.
$|a|=-8$
(there is no number that a can be that would make the equation true)

$$
\begin{aligned}
-2|3 a|=8 & \text { (divide both sides by }-2, \text { to } \\
& \text { see that abs. value }=\text { neg.) }
\end{aligned}
$$

Ex \#3: Extraneous Solutions - When an absolute value expression is set equal to an expression containing a variable, extraneous solutions may be encountered.
(Hint: first combine like terms. Then isolate the absolute value. Then bifurcate, and solve each.)

$$
2|x+1|-x=3 x-4
$$

Yedynherh.org

Algebra - Solving Inequalities

The video covers the following exercises. Please print this sheet and work along!
Add 3 to both sides $2<6$

Divide both sides by 2
$2<6$
Multiply both sides by -1
$2<6$
$-3 x+1>22$
$10>-2 x$

$$
x \leq \frac{3-x}{2}
$$

$$
\frac{2 x-6}{4}>\frac{x-3}{2}
$$

(please circle one)

"at least" means:	$<$	\leq	\geq	
"at most" means:	$<$	\leq	\geq	$>$
"no more than" means:	$<$	\leq	\geq	$>$
"no less than" means:	$<$	\leq	\geq	$>$

1.5: Solving Inequalities

Adding and subtracting the same amount to each side of an inequality DOES / DOES NOT reverse the direction of the inequality sign.

Ex\#1: Please solve the inequalities. Then graph the solution set.
a) $5 x-3>4 x+2$

b) $4 x-15 \leq 21$

(circle one)
Multiplying or dividing by a positive number DOES / DOES NOT reverse the inequality sign. Multiplying or dividing by a negative number DOES / DOES NOT reverse the inequality sign. Ex\#2: Please solve and graph on the number line.
a) $\quad-4.2 x \leq 29.4$

b) $\quad-3 x \leq \frac{-4 x+22}{5}$

Algebra Absolute Value Inequalities YAY MATH!

The following problems are solved in the video:
$3 \mathrm{x}+1<7$ OR $7<2 \mathrm{x}-9$
$|x+2|>3$
$|2 x-9| \leq 27$

$$
|5 x|+10<3
$$

$$
|5 x|>-7
$$

1.6: Solving Compound and Absolute Value Inequalities

A compound inequality consists of two inequalities joined by the word "and" or "or."

$$
x \geq-4 \text { and } x<3
$$

The compound inequality above involves "and". This means that BOTH statements need to be true. How would you graph all the numbers that are BOTH ≥-4 and <3 ?

"And" inequalities may also be rewritten in the following ways:
$4 x+8 \geq-12$ and $4 x+8 \leq 32 \quad$ can be condensed to: $-12 \leq 4 x+8 \leq 32$

Ex\#1: Please solve and graph.
$-5 \geq 3 x-2>-14$

"Or" Inequalities is the union of the solution sets.

$$
x \geq 5 \text { or } x<-3
$$

The compound inequality above involves "or". This means that ONE or BOTH of the statements need to be true. How would you graph all the numbers that are EITHER ≥ 5 or <-3 ?

Ex\#2: Please solve and graph the inequality.

$$
5 \mathrm{j} \geq 15 \text { or }-3 \mathrm{j} \geq 21
$$

Absolute Value Inequalities - time to BIFURCATE into 2 separate statements

Ex\#3: Please solve and graph.
a) $\quad|x|<6$

b) $\quad|x| \geq 6$

c) $\quad|x-4| \leq 6$

d) $\quad|x+7|>2$

e) $\quad|8 x+3| \leq 4$

f) $|x+3| \leq-6 \quad$ (Hint: can an absolute value expression ever be less than -6 ?)

g) $|x+3|>-6$ (Hint: how often is an absolute value expression greater than $-6 ?$)

Remember to look for open circles or closed circles to decide which inequality to use, < vs \leq
$>$ vs \geq

Let's check for understanding:

(circle one)
DO / DON'T include "or equal to" (as in, s)
DO / DON'T include "or equal to"

To create an absolute value inequality, use this guide for "AND" problems:

$$
\mid x \text { - middle } \# \mid \leq \text { distance from middle to each value }
$$

And use this for "OR" problems:

$$
\mid x \text { - middle } \# \mid>\text { distance from middle to each value }
$$

Remember this fun guide:
$<, \leq$ less than "less thAND" $>, \geq$ greater than "greatOR"
(so these abs. val. inequalities involve AND)
(these abs. val. inequalities involve OR)

Ex\#4: What is the absolute value inequality represented in each graph below?

a) \qquad b)

Algebra 2
Chapter 1 Practice Test

Name \qquad
Date \qquad

Please evaluate each expression.

$$
\text { 1) } \frac{16-3 \cdot 2}{1+4}
$$

1) \qquad
2) $21+[6-12 \div 3]$
3) \qquad
4) $\frac{3}{4}(11-7)^{2}$
5) \qquad

Please evaluate each expression if $a=3, b=-4$, and $c=\frac{1}{4}$.
4) $a^{2}(b-a)$
4) \qquad
5) $\frac{8 c+a b}{c}$
5) \qquad

Please complete the table below by placing a check mark or X to indicate all sets of numbers that apply to the value of each expression.

		\mathbf{R} real	\mathbf{I} irrational	\mathbf{Q} rational	\mathbf{Z} integer	\mathbf{W} whole	\mathbf{N} natural
6$)$	0.4						
7$)$	$\sqrt{\frac{1}{4}}$						
8$)$	$-\sqrt{7}$						
9$)$	-15						

10) What are the additive and multiplicative inverses of $1 \frac{2}{3}$?
11) Additive: \qquad
\qquad

Please name the property illustrated by each equation or statement.
11) If $x-2=5$, then $x=7$.
11) \qquad
12) $(3 \cdot 4) \cdot 9=3 \cdot(4 \cdot 9)$
12) \qquad
13) If $a=b$ and $b=-2$, then $a=-2$.
13) \qquad

Please solve each equation or formula for the specified variable.
14) $y(x+z)-v=3 d$ for y
14) \qquad
15) $\frac{10 z+x}{y}=4 \quad$ for x
15) \qquad

Please solve each equation.
16) $6 m-4=-46$
16) \qquad
17) $\frac{d}{2}+\frac{d}{4}=3$
17)
18) $5-(2 w-8)=6 w-9$
18)
19) $|x-3|=1$
19)
20) $\quad 2|3 e-2|=14$
20)
21) $|3 x-8|=-15$
21)

Please solve each inequality. Then graph the solution set on a number line.
22) $-3 y-4 \geq-7$
22) \qquad
23) $|2 x+3| \geq 11$
23)
24) $|3 x-4|<-7$
24)

25) $2 a+12 \leq 6$ or $3 a-1>-13$
25)

