YayMath.org

Algebra - Expressions and Formulas

The video covers the following exercises. Please print this sheet and work along!

$$\begin{array}{ccc} x = 4 & x + y - 2z & 2(x + y) \\ y = -3 & & \\ z = 2.5 & & \\ \end{array} \end{array}$$

Please write the appropriate expression for the area of the given circle:

Yay!	Matk	l.org
------	------	-------

Algebra 2 Chapter 1 Notes		Name Date	
	EQUATIONS AND INEQU	ALITIES	
1.1: Expressions and Fo	<u>rmulas</u>		
Order of Operations – Pl Parenthesis Exponent	EMDAS ts Multiplication/Division	A ddition	S ubtraction
KeyConcept Order of O	perations		
Step 1 Evaluate the expre	ssions inside grouping symbols.		
Step 2 Evaluate all powers.			
Step 3 Multiply and/or divide from left to right.			
Step 4 Add and/or subtrac	ct from left to right.		

Ex#1: Evaluate the following expressions if m = 12 and q = -1

a)
$$m + (3-q)^2$$
 b) $m + 2q + 4$

Ex#2: Evaluate the following expressions if a = 5 and b = -3.2c) $a + b^2(b - a)$ Ex#3: Evaluate the following expression if h = 4, j = -1, and k = 0.5

$$\frac{j^2-3h^2k}{j^3+2}$$

Formula - a mathematical "sentence" that creates relationships between certain values

The formula $F = \frac{9}{5}C + 32$ represents the conversion of temperature from Celsius to Fahrenheit. Ex#4: What is the Fahrenheit equivalent of $40^{\circ}C$?

Ex#5: What is the Celsius equivalent of $41^{\circ}F$?

YayMath.org

Algebra - Properties of Real Numbers

The video covers the following information. Please print this sheet and work along!

List of number categories:

Natural #s –

Whole #s -

Integer #s –

Rational #s -

Irrational #s -

Please list which number categories each of the following are:

1.2 $1.\overline{22}$ -3 $\sqrt{36}$

5

 $\sqrt{37}$

Algebra - Properties of Numbers

The video covers the following exercises. Please print this sheet and work along!

Reflexive Property –				
Symmetric Property –				
Transitive Property –				
Substitution Property –				
a + = a is the		_		
$a \cdot __= a is the __$		_		
a + = 0 is the		_, example:	-3 +=	0
$a \cdot ___= 1$ is the		_, example:	4 ·= 1	
This number is often called the _		<u> </u> .		
	. <u> </u>		_=	
This is called The	_ Property of			
Commutative Property –				
Associative Property –				

Please perform the math operations, and state the property you used in each step.

$$6(3-2)+4\cdot\frac{1}{4}+12(7-7)$$

$$6(1) +4\cdot\frac{1}{4}+12(7-7)$$

$$6(1) +4\cdot\frac{1}{4}+12(0)$$

$$6 + 4\cdot\frac{1}{4}+12(0)$$

$$6 + 1 + 12(0)$$

$$6 + 1 + 12(0)$$

$$7 + 0$$

$$7$$

Example	$\mathbf{x} = ?$	Property
$7 \cdot \mathbf{x} = 0$		
x + 3 = 10 + 3		
4 + x = 4		
2 + 10 = 10 + x		
4 + x = 0		
$\mathbf{x} \cdot 1 = 5 \text{OR} 1 \cdot \mathbf{x} = 5$		
$5 \cdot \mathbf{x} = 1$		

1.2: Properties of Real Numbers

Real numbers are classified in a variety of ways.

Natural numbers: 1, 2, 3, ...

Whole numbers: all Natural numbers, and 0. So, 0, 1, 2, 3, ...

Integers: all Whole numbers, and the negative countable numbers: ..., -3, -2, -1, 0, 1, 2, 3, ...

Rational numbers: all Integers, and *ratios* of integers, so fractions, ending decimals, and repeating decimals

Irrational numbers: cannot be represented by a ratio of integers. They're decimals that continue on without a pattern. Common examples include $\sqrt{}$ and π .

Sevence Part Real Numbers (R)				
R	Letter	Set	Examples	
	Q	rationals	$0.125, -\frac{7}{8}, \frac{2}{3} = 0.66\dots$	
	I	irrationals	$\pi = 3.14159 \dots$ $\sqrt{3} = 1.73205 \dots$	
	Z	integers	-5, 17, -23, 8	
	w	wholes	2, 96, 0, $\sqrt{36}$	
	N	naturals	3, 17, 6, 86	

Ex#1: Name all of the sets of numbers to which each number belongs.

a) -185 b) $\sqrt{49}$ c) $\sqrt{95}$ d) $-\frac{7}{8}$

For any real numbers, a, b, and c					
Property	Property Addition Multiplication				
Commutative	a + b = b + a	a • b = b • a			
Associative	(a + b) + c = a + (b + c)	(a • b) • c = a • (b • c)			
Identity	a + 0 = a	a•1=a			
Inverse	a + (-a) = 0	a • <u>1</u> a			
Distributive $\underline{a}(b + c) = \underline{a}b + \underline{a}c$					

Real Number Properties (and Examples)

Ex:#2: Please name the property illustrated by each of the following.

a) $(6 \cdot 8) \cdot 5 = 6 \cdot (8 \cdot 5)$

- b) 84+16=16+84
- c) $(12+5)6 = 12 \cdot 6 + 5 \cdot 6$

Ex#3: Please find the additive and multiplicative inverses of each of the following numbers.

a) -7 b) 0.8 (hint: turn into a fraction)

Ex#4: Please simplify the following expressions.

a) -2a + 4a(8-3a) b) 3(4x-2y) - 2(3x+y)

Algebra - Solving Equations

The video covers the following exercises. Please print this sheet and work along!

Math Property:

Reflexive –

Symmetry –

Transitive –

Substitution -

Addition –

Subtraction -

Multiplication -

Division –

2x - 1 = 13

$$\frac{2}{3}x = 30$$

if 3x - 3 = 1/4, then what is 3x + 7?

$$V = \frac{1}{3}\pi r^2 h$$

Please solve for *h*.

1.3a: Solving Equations

Translating Verbal Expressions and Algebraic Expressions

Ex#1:

a) Please translate the verbal expressions into an algebraic expressions.

three times the difference of a number and eight

the cube of a number increased by 4 times the same number

b) Please translate the algebraic expression into a verbal expression.

 $p^{3} + 4p$

Ex#2: Please write a verbal sentence to represent the equation.

 $2c = c^2 - 4$

Properties of Equality – common math operations, used to solve equations

For any real numbers, a, b, and c				
Property	Using only symbols	Additional examples		
Reflexive	a = a	b + 8 = b + 8		
Symmetric	If a = b, then b = a	If $2b + c = 20$, Then $20 = 2b + c$		
Transitive	If a = b, and b = c, then a = c	If $2a + 12 = 30$,and $30 = 5c - 8$,then $2a + 12 = 5c - 8$		
Substitution	If a = b, then a can be replaced by b b can be replaced by a	lf (5 + 2) x = 21, Then 7 x = 21		

Ex#3: Please name the property illustrated by the following statement.

If -11a + 2 = -3a, then -3a = -11a + 2

Additional Properties of Equality

"Whatever operation you do to one side of the equation, you must do to the other."

For any real number 'a'			
Property	Example		
Addition	if a = a then a + 8 = a + 8		
Subtraction	if a = a then a – 4 = a – 4		
Multiplication	if a = a then a • 3 = a • 3		
Division	if a = a then a ÷ 7 = a ÷ 7		

Ex#4: Please solve the following equations, noting which property of equality is being utilized.

a)
$$x - 14.29 = 25$$
 b) $\frac{2}{3}y = -18$

c) -10x+3(4x-2)=6

Ex#5: Please solve for *h* in the following formula for area of a trapezoid. $A = \frac{1}{2}h(b_1 + b_2)$ Please note the property used for each step.

YayMath.org

Algebra - Solving Equations (word problem)

If Suzy sells a total of 50 fruits in a day, and sells 8 more apples than plums...

(what will be the question?)

1.3b: Solving Equations (word problems)

Ex. #1: Suppose that in my coffee shop, one day I sell 12 *more* regular coffees than decaffeinated. The total cups I sold that day were 60. How many of each kind of coffee did I sell?

(Hint: you can either play around with numbers to guess and check, or assign variables, such as D for the number of decaf cups sold.)

Ex. #2: Supplementary angles are defined as 2 angles that sum to 180°. Suppose that one angle is 3 times larger than its supplement. What are the measures of the 2 angles?

(Same hint as above. Maybe start with 100° and 80°. They're supplementary, but 100 is not 3 times as large as 80. So tinker with the numbers until one angle is 3 times larger than the other. Or, you can set variables to represent each of the 2 angles.)

Algebra Absolute Value Equations YAY MATH!

The following problems are solved in the video:

$$|x+6| = 18$$
 $\left|\frac{1}{2}x-1\right| = 2$

$$3|x+6| = 36 \qquad |3x-1| = -450$$

$$|3t-5| = 2t$$

$$|x-3|+7=2$$

1.4: Solving Absolute Value Equations

The *absolute value* of a number is its *distance from zero* on a number line. Since distance is always non-negative, absolute values are always non-negative.

Symbol: |x|

Another way of understanding it is that the absolute value bars are like a "positivity machine." Any number that enters the positivity machine will come out *positive*. Zero will come out as zero.

Ex #1: Please evaluate the following if x = -2.

a.
$$|4x+3|-3\frac{1}{2}$$
 b. $-2|3-x|+8$

Solving Absolute Value Equations – "BIFURCATE" – meaning, dividing into two branches

(then solve both branches)

Ex #2: Please solve each equation. Then graph your solution(s) on a number line.

a)
$$|x+3|=6$$
 b) $|x-7|=4$

No solution?

We know that an absolute value is always equal to a positive number.

Thus, whenever an absolute value equation equals a *negative number*, there is *no solution*.

Here are some examples of an equation having "no solution" for the variable, 'a'.

a = -8

(there is no number that a can be that would make the equation true)

-2|3a| = 8 (divide both sides by -2, to see that abs. value = neg.)

Ex #3: **Extraneous Solutions** – When an absolute value expression is set equal to an expression containing a variable, *extraneous solutions* may be encountered.

(Hint: first combine like terms. Then isolate the absolute value. Then bifurcate, and solve each.)

$$2|x+1|-x=3x-4$$

Algebra - Solving Inequalities

The video covers the following exercises. Please print this sheet and work along!

Add 3 to both sides $2 < 6$	Divide both sides by 2 2 < 6	Multiply both sides by -1 2 < 6
3x + 1 > 22	-3x + 1 > 22	10 > -2x

(please circle one)

$$x \le \frac{3-x}{2}$$
 $\frac{2x-6}{4} > \frac{x-3}{2}$

"at least" means:	<	\leq	\geq	>
"at most" means:	<	\leq	\geq	>
"no more than" means:	<	\leq	\geq	>
"no less than" means:	<	\leq	\geq	>

1.5: Solving Inequalities

(circle one) Adding and subtracting the same amount to each side of an inequality **DOES / DOES NOT** reverse the direction of the inequality sign.

Ex#1: Please solve the inequalities. Then graph the solution set.

(circle one) Multiplying or dividing by a *positive number* DOES / DOES NOT reverse the inequality sign. Multiplying or dividing by a *negative number* DOES / DOES NOT reverse the inequality sign. Ex#2: Please solve and graph on the number line.

a)
$$-4.2x \le 29.4$$

Algebra Absolute Value Inequalities YAY MATH!

The following problems are solved in the video:

3x + 1 < 7 OR 7 < 2x - 9

|x+2| > 3

 $|2x-9| \le 27$

|5x| + 10 < 3

|5x| > -7

1.6: Solving Compound and Absolute Value Inequalities

A *compound inequality* consists of two inequalities joined by the word "and" or "or."

$$x \ge -4$$
 and $x < 3$

The compound inequality above involves "and". This means that BOTH statements need to be true. How would you graph all the numbers that are BOTH ≥ -4 and < 3?

-10 -5 0 5 10 x

"And" inequalities may also be rewritten in the following ways:

 $4x+8 \ge -12$ and $4x+8 \le 32$ can be condensed to: $-12 \le 4x+8 \le 32$

Ex#1: Please solve and graph.

 $-5 \geq 3x - 2 > -14$

-10 -5 0 5 10 x

"Or" Inequalities is the union of the solution sets.

$$x \ge 5$$
 or $x < -3$

The compound inequality above involves "or". This means that ONE or BOTH of the statements need to be true. How would you graph all the numbers that are EITHER \geq 5 or < -3?

Ex#2: Please solve and graph the inequality.

 $5j \ge 15$ or $-3j \ge 21$

Absolute Value Inequalities - time to BIFURCATE into 2 separate statements

Ex#3: Please solve and graph.

 $x \ge 6$

b)

Remember to look for open circles or closed circles to decide which inequality to use, < vs ≤ > vs ≥

Let's check for understanding:

(circle one) When using graphs, *open circles* over the numbers DO / DON'T include "or equal to" (as in, ≤) When using graphs, *closed circles* over the numbers DO / DON'T include "or equal to"

To create an absolute value inequality, use this guide for "AND" problems:

 $|x - \text{middle } \#| \leq \text{distance from middle to each value}$

And use this for "OR" problems:

$$|x - \text{middle } \#| > \text{distance from middle to each value}$$

Remember this fun guide:

<, ≤ less than "less th<u>AND</u>"

(so these abs. val. inequalities involve AND)

>, ≥	greater than	"greatOR"
,	J	J

(these abs. val. inequalities involve OR)

Ex#4: What is the absolute value inequality represented in each graph below?

a)_____

b) _____

Algebra 2 Chapter 1 Practice Test Name _____

Date _____

Please	e evaluate each expression.			
1)	$\frac{16-3\cdot 2}{1+4}$	1)		
2)	$21 + [6 - 12 \div 3]$	2)		
3)	$\frac{3}{4}(11-7)^2$	3)		
Please	Please evaluate each expression if $a = 3$, $b = -4$, and $c = \frac{1}{4}$.			
4)	$a^2(b-a)$	4)		
5)	$\frac{8c+ab}{c}$	5)		

Please complete the table below by placing a check mark or X to indicate all sets of numbers that apply to the value of each expression.

		R	I	Q	Z	W	Ν
		real	irrational	rational	integer	whole	natural
6)	0.4						
7)	$\sqrt{\frac{1}{4}}$						
8)	-√7						
9)	-15						

10) What are the additive and multiplicative inverses of $1\frac{2}{3}$? 10) Additive: _____

Multiplicative: _____

Please name the property illustrated by each equation or statement.						
11)	If $x - 2 = 5$, then $x = 7$.	11)				
12)	$(3\cdot 4)\cdot 9=3\cdot (4\cdot 9)$	12)				
13)	If $a = b$ and $b = -2$, then $a = -2$.	13)				
Pleas	e solve each equation or formula for the specified variable.					
14)	y(x+z)-v=3d for y	14)				
15)	$\frac{10z+x}{y} = 4 \text{for } x$	15)				
Please solve each equation.						
16)	6m - 4 = -46	16)				
17)	$\frac{d}{2} + \frac{d}{4} = 3$	17)				

19) |x-3|=1

20) 2|3e-2|=14

21) |3x-8| = -15

19)_____

20)_____

21)_____

18)_____

Please solve each inequality. Then graph the solution set on a number line.						
22)	-3 <i>y</i> -4≥-7	4	22)			
23)	$ 2x+3 \geq 11$	•	23)			
24)	$\left 3x-4\right <-7$	4	24)			
25) 2a	a+12≤6 or 3a-1>-13	4	25)			