QUESTIONS:

- 1. Identify all the statements below regarding control charts that are True:
 - A. A control chart is constructed based on acceptance sampling requirements
 - B. If a process is in statistical control, it will never produce a unit outside of the control limits.
 - C. The key concept of rational subgrouping is that the variability within a sample should be minimized resulting in a homogenous sample.
 - D. Variable control charts work in pairs. One controls for the central tendency of the process while the other controls for the variation within the process
 - A, B
 - C, D
 - A, C
 - B, D
- 2. Fill in the blank: A ______ is defined as a collection of units that are all produced under the same conditions.
 - Rational Subgroup
 - Proper Sample Size
 - Heterogenous Sample
 - Acceptance Sample
- 3. The Acme Brick company measures the weight of bricks coming off the production line. 15 bricks are measured per sub-group. Which of the following control charts is most appropriate?
 - X-bar and R chart
 - X-bar and S Chart
 - P Chart
 - C Chart
- 4. Using the following data points from these 5 sub-groups, calculate R-bar:
 - 2
 - 3
 - 4

• 5

Sub-	Sample	Sample	Sample
group	1	2	3
1	12	15	16
2	14	12	13
3	10	13	13
4	14	16	16
5	14	12	16

- You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 225, R-bar is 12, n = 8.
 Identify the upper control limits for the range chart:
 - 5.73
 - 18.23
 - 22.37
 - 24.17

6. You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 225, R-bar is 12, n = 8.
 Identify the lower control limits for the X-bar chart:

- 220.52
- 229.48
- 233.14
- 218.71

7. You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 36, R-bar is 4, n = 5.
 Identify the upper control limits for the X-bar chart:

- 37.12
- 38.31
- 39.32
- 40.58
- 8. You manufacture a widget and use an x-bar and S chart to monitor your process, where you sample 5 units in each subgroup, and s-bar = 4.2. Estimate the population standard deviation for this process.
 - 4.2
 - 2.1
 - 3.9
 - 4.5
- 9. You manufacture a widget and use an x-bar and R chart to monitor your process, where you sample 3 units in each subgroup, and R-bar = 16.0. Estimate the population standard deviation for this process.
 - 16.0
 - 9.5
 - 27.1
 - 13.2

- 10. You're manufacturing a widget and using an X-bar and S chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 12.5, S-bar is 1.6, n = 10.
 Identify the lower control limits for the X-bar chart:
 - 9.65
 - 10.94
 - 11.26
 - 14.06
- 11. You're manufacturing a widget and using an X-bar and S chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 12.5, S-bar is 1.6, n = 10.
 Identify the upper control limits for the S chart:
 - 2.216
 - 2.746
 - 3.186
 - 3.347
- 12. You're manufacturing a widget and using an I-MR to control the critical feature of the product. You use 3 consecutive samples to measure the moving range, which you've assessed the average moving range to be 3.265. What is the upper control limit of the moving range chart?
 - 6.75
 - 8.41
 - 9.81
 - 10.23
- 13. You're manufacturing a widget and using an I-MR where you measure 3 consecutive samples to control the critical feature of the product. Your process has the following attributes: $\overline{X} = 1.25, \overline{MR} = 0.55$ Identify the upper control limits for the I chart:
 - 0.275
 - 1.80
 - 2.225
 - 2.713
- 14. Pencil Makers Incorporated uses an x-bar and R chart of n=5 to monitor the length of pencils coming off the production line. The inspector takes two samples, measures the length and plots their values on the X-bar chart as both data points are outside of the upper control limit and decides to stop the process. What does this mean?
 - Only the process range is out of statistical control
 - Only the process average is out of statistical control
 - Both the average and range are out of statistical control
 - Nothing, the inspector is not executing the control chart appropriately

15. What factor determines which variable control chart should be used?

- Defects v. defectives
- The accuracy of the measurement system being used
- The acceptance sampling plan associated with your product
- The number of units sampled within each subgroup

SOLUTIONS:

- 1. Identify all the statements below regarding control charts that are True:
 - A. A control chart is constructed based on acceptance sampling requirements False
 - B. If a process is in statistical control, it will never produce a unit outside of the control limits. False
 - C. The key concept of rational subgrouping is that the variability within a sample should be minimized resulting in a homogenous sample **True**
 - D. Variable control charts work in pairs. One controls for the central tendency of the process while the other controls for the variation within the process **True**
- A, B
- C, D
- A, C
- B, D
- 2. Fill in the blank: A ______ is defined as a collection of units that are all produced under the same conditions.
 - Rational Subgroup
 - Proper Sample Size
 - Heterogenous Sample
 - Acceptance Sample
- 3. The Acme Brick company measures the weight of bricks coming off the production line. 15 bricks are measured per sub-group. Which of the following control charts is most appropriate?
 - X-bar and R chart
 - X-bar and S Chart
 - P Chart
 - C Chart
- 4. Using the following data points from these 5 sub-groups, calculate R-bar:
 - 2
 - 3
 - 4
 - 5

First, we must solve for the Range value for each sub-group, shown in the far-right hand column.

Sub-	Sample	Sample	Sample	Danga]
group	1	2	3	Range	
1	12	15	16	4]
2	14	12	13	2	
3	10	13	13	3	
4	14	16	16	2	
5	14	12	16	4	
				3	R-B

Then we must take the average value of the 5 sub-group ranges to find the average range value of 3 (R-bar).

5. You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 225, R-bar is 12, n = 8.
 Identify the upper control limits for the range chart:

5.73

- 18.23
- 22.37
- 24.17

First, we must look up the constants required to calculate the control limits for the range chart using the sample size (n=8), and we find $D_3 = 0.136$ and $D_4 = 1.864$.

Now we can calculate the control limits for the Range control chart:

$$UCL_R = D_4 * \overline{R} = 1.864 * 12 = 22.37$$

Subgroup Sample Size	X-Bar Factor	Range Factors		Variance Factor	
n	A ₂	Da	D ₄	d ₂	
2	1.880		3.267	1.128	
3	1.023	23	2.575	1.693	
4	0.729		2.282	2.059	
5	0.577	23	2.115	2.326	
6	0.483	÷	2.004	2.534	
7	0.419	0.076	1.924	2.704	
8	0.373	0.136	1.864	2.847	
9	0.337	0.184	1.816	2.970	
10	0.308	0.223	1.777	3.078	
15	0.223	0.347	1.653	3.472	
20	0.180	0.415	1.585	3.735	
25	0.153	0.459	1.541	3.931	

X-Bar and R Chart

- 6. You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 225, R-bar is 12, n = 8.
 Identify the lower control limits for the X-bar chart:
 - 220.52
 - 229.48
 - 233.14
 - 218.71

Lower Control Limit: $LCL_{\overline{X}} = \overline{\overline{X}} - A_2\overline{R}$

The A2 constant for a subgroup sample size of 8 is 0.373.

$$LCL_{\bar{X}} = \bar{X} - A_2\bar{R} = 225 - 0.373 * 12 = 220.52$$

- 7. You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 36, R-bar is 4, n = 5.
 Identify the upper control limits for the X-bar chart:
 - 37.12
 - 38.31
 - 39.32
 - 40.58

Upper Control Limit: $LCL_{\bar{X}} = \overline{X} + A_2\overline{R}$ The A2 constant for a subgroup sample size of 5 is 0.577 $LCL_{\bar{X}} = \overline{X} - A_2\overline{R} = 36 + 0.577 * 4 = 38.31$

CQE ACADEMY PRACTICE EXAM 6.2

- 8. You manufacture a widget and use an x-bar and S chart to monitor your process, where you sample 5 units in each subgroup, and s-bar = 4.2. Estimate the population standard deviation for this process.
 - 4.2
 - 2.1
 - 3.9
 - 4.5

We divide S-bar by the factor c_4 , which is based on the n=5 sample size.

Population Standard Deviation =
$$\hat{\sigma} = \frac{\bar{s}}{C_4} = \frac{4.2}{0.9400} = 4.5$$

- 9. You manufacture a widget and use an x-bar and R chart to monitor your process, where you sample 3 units in each subgroup, and R-bar = 16.0. Estimate the population standard deviation for this process.
 - 16.0
 - 9.5
 - 27.1
 - 13.2

We divide R-bar by the factor d_2 , which is based on the n=3 sample size.

Population Standard Deviation =
$$\hat{\sigma} = \frac{\overline{R}}{d_2} = \frac{16}{1.693} = 9.5$$

- 10. You're manufacturing a widget and using an X-bar and S chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 12.5, S-bar is 1.6, n = 10.
 Identify the lower control limits for the X-bar chart:
 - 9.65
 - 10.94
 - 11.26
 - 14.06

 $UCL_{\bar{X}} = \bar{X} - A_3\bar{s}$ At a sample size of 10, the A_3 factor = 0.975 $UCL_{\bar{X}} = 12.5 - 1.6 * 0.975 = 10.94$

- 11. You're manufacturing a widget and using an X-bar and S chart to control the critical feature of the product. Your normal process has the following attributes:
 X-double bar is 12.5, S-bar is 1.6, n = 10.

 Identify the upper control limits for the S chart:
 X-double bar is 12.5, S-bar is 1.6, n = 10.
 - 2.216
 - 2.746
 - 3.186
 - 3.347

$$UCL_s = B_4\bar{s}$$

At a sample size of 10, the $B_4 = 1.716$.

$$UCL_s = 1.716 * 1.6 = 2.746$$

- 12. You're manufacturing a widget and using an I-MR to control the critical feature of the product. You use 3 consecutive samples to measure the moving range, which you've assessed the average moving range to be 3.265. What is the upper control limit of the moving range chart?
 - 6.75
 - 8.41
 - 9.81
 - 10.23

$$UCL_{MR} = D_4 \overline{MR}$$

When using three consecutive samples to measure the moving range, the D_4 factor is 2.575.

$$UCL_{MR} = 2.575 * 3.265 = 8.41$$

- 13. You're manufacturing a widget and using an I-MR where you measure 3 consecutive samples to control the critical feature of the product. Your process has the following attributes: $\overline{X} = 1.25$, $\overline{MR} = 0.55$ Identify the upper control limits for the I chart:
 - 0.275
 - 1.80
 - 2.225
 - 2.713

$$UCL_I = \overline{X} + E_2 \overline{MR}$$

When using three consecutive samples to measure the moving range, the E_2 factor is 1.772

$$UCL_I = 1.25 + 1.772 * 0.55 = 2.225$$

CQE ACADEMY PRACTICE EXAM 6.2

- 14. Pencil Makers Incorporated uses an x-bar and R chart of n=5 to monitor the length of pencils coming off the production line. The inspector takes two samples, measures the length and plots their values on the X-bar chart as both data points are outside of the upper control limit and decides to stop the process. What does this mean?
 - Only the process range is out of statistical control
 - Only the process average is out of statistical control
 - Both the average and range are out of statistical control
 - Nothing, the inspector is not executing the control chart appropriately

The sub-group size for this control chart is five. The inspector stops the inspection after only 2 measurements, which is inappropriate.

The inspector should complete the entire sub-group measurement before making a conclusion about the process.

15. What factor determines which variable control chart should be used?

- Defects v. defectives
- The accuracy of the measurement system being used
- The acceptance sampling plan associated with your product
- The number of units sampled within each subgroup