
www.ebooksworld.in

www.ebooksworld.in

Understanding

LINUX
NETWORK

INTERNALS

www.ebooksworld.in

Other Linux resources from O’Reilly

Related titles Linux in a Nutshell

Linux Network
Administrator’s Guide

Running Linux

Linux Device Drivers

Understanding the Linux
Kernel

Building Secure Servers with
Linux

LPI Linux Certification in a
Nutshell

Learning Red Hat Linux

Linux Server HacksTM

Linux Security Cookbook

Managing RAID on Linux

Linux Web Server CD
Bookshelf

Building Embedded Linux
Systems

Linux Books
Resource Center

linux.oreilly.com is a complete catalog of O’Reilly’s books on
Linux and Unix and related technologies, including sample
chapters and code examples.

ONLamp.com is the premier site for the open source web plat-
form: Linux, Apache, MySQL, and either Perl, Python, or PHP.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

www.ebooksworld.in

Understanding

LINUX
NETWORK

INTERNALS

Christian Benvenuti

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.ebooksworld.in

Understanding Linux Network Internals
by Christian Benvenuti

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram

Production Editor: Philip Dangler

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Printing History:

December 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Linux series designations, Understanding Linux Network Internals, images of
the American West, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

[M]

ISBN: 978-0-596-00255-8 [5/08]

www.ebooksworld.in

v

Table of Contents

Preface . xv

Part I. General Background

1. Introduction . 3
Basic Terminology 3
Common Coding Patterns 4
User-Space Tools 18
Browsing the Source Code 19
When a Feature Is Offered as a Patch 20

2. Critical Data Structures . 22
The Socket Buffer: sk_buff Structure 22
net_device Structure 43
Files Mentioned in This Chapter 57

3. User-Space-to-Kernel Interface . 58
Overview 58
procfs Versus sysctl 60
ioctl 67
Netlink 70
Serializing Configuration Changes 71

www.ebooksworld.in

vi | Table of Contents

Part II. System Initialization

4. Notification Chains . 75
Reasons for Notification Chains 75
Overview 77
Defining a Chain 78
Registering with a Chain 78
Notifying Events on a Chain 79
Notification Chains for the Networking Subsystems 81
Tuning via /proc Filesystem 82
Functions and Variables Featured in This Chapter 83
Files and Directories Featured in This Chapter 83

5. Network Device Initialization . 84
System Initialization Overview 84
Device Registration and Initialization 86
Basic Goals of NIC Initialization 86
Interaction Between Devices and Kernel 87
Initialization Options 93
Module Options 93
Initializing the Device Handling Layer: net_dev_init 94
User-Space Helpers 96
Virtual Devices 100
Tuning via /proc Filesystem 103
Functions and Variables Featured in This Chapter 104
Files and Directories Featured in This Chapter 105

6. The PCI Layer and Network Interface Cards . 106
Data Structures Featured in This Chapter 106
Registering a PCI NIC Device Driver 108
Power Management and Wake-on-LAN 109
Example of PCI NIC Driver Registration 110
The Big Picture 112
Tuning via /proc Filesystem 114
Functions and Variables Featured in This Chapter 114
Files and Directories Featured in This Chapter 115

www.ebooksworld.in

Table of Contents | vii

7. Kernel Infrastructure for Component Initialization . 116
Boot-Time Kernel Options 116
Module Initialization Code 122
Optimized Macro-Based Tagging 125
Boot-Time Initialization Routines 128
Memory Optimizations 130
Tuning via /proc Filesystem 134
Functions and Variables Featured in This Chapter 134
Files and Directories Featured in This Chapter 135

8. Device Registration and Initialization . 136
When a Device Is Registered 137
When a Device Is Unregistered 138
Allocating net_device Structures 138
Skeleton of NIC Registration and Unregistration 140
Device Initialization 141
Organization of net_device Structures 145
Device State 147
Registering and Unregistering Devices 149
Device Registration 154
Device Unregistration 156
Enabling and Disabling a Network Device 159
Updating the Device Queuing Discipline State 161
Configuring Device-Related Information from User Space 166
Virtual Devices 169
Locking 171
Tuning via /proc Filesystem 171
Functions and Variables Featured in This Chapter 172
Files and Directories Featured in This Chapter 173

Part III. Transmission and Reception

9. Interrupts and Network Drivers . 177
Decisions and Traffic Direction 178
Notifying Drivers When Frames Are Received 178
Interrupt Handlers 183
softnet_data Structure 206

www.ebooksworld.in

viii | Table of Contents

10. Frame Reception . 210
Interactions with Other Features 211
Enabling and Disabling a Device 211
Queues 212
Notifying the Kernel of Frame Reception: NAPI and netif_rx 212
Old Interface Between Device Drivers and Kernel: First Part of netif_rx 219
Congestion Management 225
Processing the NET_RX_SOFTIRQ: net_rx_action 228

11. Frame Transmission . 239
Enabling and Disabling Transmissions 241

12. General and Reference Material About Interrupts . 261
Statistics 261
Tuning via /proc and sysfs Filesystems 262
Functions and Variables Featured in This Part of the Book 263
Files and Directories Featured in This Part of the Book 265

13. Protocol Handlers . 266
Overview of Network Stack 266
Executing the Right Protocol Handler 274
Protocol Handler Organization 278
Protocol Handler Registration 279
Ethernet Versus IEEE 802.3 Frames 281
Tuning via /proc Filesystem 293
Functions and Variables Featured in This Chapter 293
Files and Directories Featured in This Chapter 294

Part IV. Bridging

14. Bridging: Concepts . 297
Repeaters, Bridges, and Routers 297
Bridges Versus Switches 299
Hosts 300
Merging LANs with Bridges 300
Bridging Different LAN Technologies 302
Address Learning 302
Multiple Bridges 305

www.ebooksworld.in

Table of Contents | ix

15. Bridging: The Spanning Tree Protocol . 310
Basic Terminology 311
Example of Hierarchical Switched L2 Topology 311
Basic Elements of the Spanning Tree Protocol 314
Bridge and Port IDs 321
Bridge Protocol Data Units (BPDUs) 323
Defining the Active Topology 328
Timers 335
Topology Changes 340
BPDU Encapsulation 344
Transmitting Configuration BPDUs 346
Processing Ingress Frames 347
Convergence Time 349
Overview of Newer Spanning Tree Protocols 350

16. Bridging: Linux Implementation . 355
Bridge Device Abstraction 355
Important Data Structures 359
Initialization of Bridging Code 360
Creating Bridge Devices and Bridge Ports 361
Creating a New Bridge Device 362
Bridge Device Setup Routine 362
Deleting a Bridge 364
Adding Ports to a Bridge 364
Enabling and Disabling a Bridge Device 367
Enabling and Disabling a Bridge Port 368
Changing State on a Bridge Port 370
The Big Picture 371
Forwarding Database 373
Handling Ingress Traffic 375
Transmitting on a Bridge Device 380
Spanning Tree Protocol (STP) 380
netdevice Notification Chain 389

17. Bridging: Miscellaneous Topics . 391
User-Space Configuration Tools 391
Tuning via /proc Filesystem 396
Tuning via /sys Filesystem 396
Statistics 398

www.ebooksworld.in

x | Table of Contents

Data Structures Featured in This Part of the Book 398
Functions and Variables Featured in This Part of the Book 403
Files and Directories Featured in This Part of the Book 405

Part V. Internet Protocol Version 4 (IPv4)

18. Internet Protocol Version 4 (IPv4): Concepts . 409
IP Protocol: The Big Picture 409
IP Header 411
IP Options 414
Packet Fragmentation/Defragmentation 420
Checksums 432

19. Internet Protocol Version 4 (IPv4): Linux Foundations and Features 439
Main IPv4 Data Structures 439
General Packet Handling 443
IP Options 453

20. Internet Protocol Version 4 (IPv4): Forwarding and Local Delivery 466
Forwarding 466
Local Delivery 472

21. Internet Protocol Version 4 (IPv4): Transmission . 473
Key Functions That Perform Transmission 474
Interface to the Neighboring Subsystem 510

22. Internet Protocol Version 4 (IPv4): Handling Fragmentation 511
IP Fragmentation 512
IP Defragmentation 521

23. Internet Protocol Version 4 (IPv4): Miscellaneous Topics 536
Long-Living IP Peer Information 536
Selecting the IP Header’s ID Field 540
IP Statistics 541
IP Configuration 545
IP-over-IP 550
IPv4: What’s Wrong with It? 551
Tuning via /proc Filesystem 553
Data Structures Featured in This Part of the Book 555

www.ebooksworld.in

Table of Contents | xi

Functions and Variables Featured in This Part of the Book 565
Files and Directories Featured in This Part of the Book 568

24. Layer Four Protocol and Raw IP Handling . 569
Available L4 Protocols 569
L4 Protocol Registration 571
L3 to L4 Delivery: ip_local_deliver_finish 574
IPv4 Versus IPv6 582
Tuning via /proc Filesystem 583
Functions and Variables Featured in This Chapter 583
Files and Directories Featured in This Chapter 583

25. Internet Control Message Protocol (ICMPv4) . 585
ICMP Header 586
ICMP Payload 587
ICMP Types 588
Applications of the ICMP Protocol 595
The Big Picture 598
Protocol Initialization 599
Data Structures Featured in This Chapter 600
Transmitting ICMP Messages 602
Receiving ICMP Messages 611
ICMP Statistics 617
Passing Error Notifications to the Transport Layer 619
Tuning via /proc Filesystem 620
Functions and Variables Featured in This Chapter 622
Files and Directories Featured in This Chapter 622

Part VI. Neighboring Subsystem

26. Neighboring Subsystem: Concepts . 625
What Is a Neighbor? 625
Reasons That Neighboring Protocols Are Needed 628
Linux Implementation 634
Proxying the Neighboring Protocol 637
When Solicitation Requests Are Transmitted and Processed 640
Neighbor States and Network Unreachability Detection (NUD) 642

www.ebooksworld.in

xii | Table of Contents

27. Neighboring Subsystem: Infrastructure . 651
Main Data Structures 651
Common Interface Between L3 Protocols and Neighboring Protocols 655
General Tasks of the Neighboring Infrastructure 666
Reference Counts on neighbour Structures 670
Creating a neighbour Entry 671
Neighbor Deletion 673
Acting As a Proxy 679
L2 Header Caching 683
Protocol Initialization and Cleanup 687
Interaction with Other Subsystems 688
Interaction Between Neighboring Protocols and L3 Transmission
Functions 692
Queuing 696

28. Neighboring Subsystem: Address Resolution Protocol (ARP) 699
ARP Packet Format 700
Example of an ARP Transaction 702
Gratuitous ARP 702
Responding from Multiple Interfaces 707
Tunable ARP Options 708
ARP Protocol Initialization 714
Initialization of a neighbour Structure 716
Transmitting and Receiving ARP Packets 722
Processing Ingress ARP Packets 726
Proxy ARP 735
Examples 740
External Events 742
ARPD 744
Reverse Address Resolution Protocol (RARP) 746
Improvements in ND (IPv6) over ARP (IPv4) 748

29. Neighboring Subsystem: Miscellaneous Topics . 749
System Administration of Neighbors 749
Tuning via /proc Filesystem 752
Data Structures Featured in This Part of the Book 757
Files and Directories Featured in This Part of the Book 774

www.ebooksworld.in

Table of Contents | xiii

Part VII. Routing

30. Routing: Concepts . 777
Routers, Routes, and Routing Tables 778
Essential Elements of Routing 781
Routing Table 793
Lookups 798
Packet Reception Versus Packet Transmission 800

31. Routing: Advanced . 802
Concepts Behind Policy Routing 802
Concepts Behind Multipath Routing 808
Interactions with Other Kernel Subsystems 815
Routing Protocol Daemons 819
Verbose Monitoring 821
ICMP_REDIRECT Messages 822
Reverse Path Filtering 828

32. Routing: Linux Implementation . 830
Kernel Options 830
Main Data Structures 834
Route and Address Scopes 837
Primary and Secondary IP Addresses 841
Generic Helper Routines and Macros 842
Global Locks 843
Routing Subsystem Initialization 844
External Events 845
Interactions with Other Subsystems 858

33. Routing: The Routing Cache . 861
Routing Cache Initialization 861
Hash Table Organization 862
Major Cache Operations 864
Multipath Caching 873
Interface Between the DST and Calling Protocols 879
Flushing the Routing Cache 885
Garbage Collection 886
Egress ICMP REDIRECT Rate Limiting 896

www.ebooksworld.in

xiv | Table of Contents

34. Routing: Routing Tables . 898
Organization of Routing Hash Tables 898
Routing Table Initialization 904
Adding and Removing Routes 905
Policy Routing and Its Effects on Routing Table Definitions 910

35. Routing: Lookups . 912
High-Level View of Lookup Functions 912
Helper Routines 913
The Table Lookup: fn_hash_lookup 914
fib_lookup Function 919
Setting Functions for Reception and Transmission 920
General Structure of the Input and Output Routing Routines 923
Input Routing 924
Output Routing 933
Effects of Multipath on Next Hop Selection 941
Policy Routing 944
Source Routing 946
Policy Routing and Routing Table Based Classifier 948

36. Routing: Miscellaneous Topics . 952
User-Space Configuration Tools 952
Statistics 958
Tuning via /proc Filesystem 958
Enabling and Disabling Forwarding 966
Data Structures Featured in This Part of the Book 968
Functions and Variables Featured in This Part of the Book 986
Files and Directories Featured in This Part of the Book 989

Index . 991

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xv

Preface

Today more than ever before, networking is a hot topic. Any electronic gadget in its
latest generation embeds some kind of networking capability. The Internet contin-
ues to broaden in its population and opportunities. It should not come as a surprise
that a robust, freely available, and feature-rich operating system like Linux is well
accepted by many producers of embedded devices. Its networking capabilities make
it an optimal operating system for networking devices of any kind. The features it
already has are well implemented, and new ones can be added easily. If you are a
developer for embedded devices or a student who would like to experiment with
Linux, this book will provide you with good fodder.

The performance of a pure software-based product that uses Linux cannot compete
with commercial products that can count on the help of specialized hardware. This
of course is not a criticism of software; it is a simple recognition of the consequence
of the speed difference between dedicated hardware and general-purpose CPUs.
However, Linux can definitely compete with low-end commercial products that are
entirely software-based. Of course, simple extensions to the Linux kernel allow ven-
dors to use Linux on hybrid systems as well (software and hardware); it is only a
matter of writing the necessary device drivers.

Linux is also often used as the operating system of choice for the implementation of
university projects and theses. Not all of them make it to the official kernel (not right
away, at least). A few do, and others are simply made available online as patches to
the official kernel. Isn’t it a great satisfaction and reward to see your contribution to
the Linux kernel being used by potentially millions of users? There is only one draw-
back: if your contribution is really appreciated, you may not be able to cope with the
numerous emails of thanks or requests for help.

The momentum for Linux has been growing continually over the past years, and
apparently it can only keep growing.

I first encountered Linux at the University of Bologna, where I was a grad student in
computer science around 10 years ago. What a wonderful piece of software! I could

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

work on my image processing projects at home on an i286/486 computer without
having to compete with other students for access to the few Sun stations available at
the university labs.

Since then, my marriage to Linux has never seen a gray day. It has even started to dis-
place my fond memories of the glorious C64 generation, when I was first introduced
to programming with Assembly language and the various dialects of BASIC. Yes, I
belong to the C64 generation, and to some extent I can compare the joy of my first
programming experiences with the C64 to my first journeys into the Linux kernel.

When I was first introduced to the beautiful world of networking, I started playing
with the tools available on Linux. I also had the fortune to work for a UNESCO cen-
ter in Italy where I helped develop their networking courses, based entirely on Linux
boxes. That gave me access to a good lab equipped with all sorts of network devices
and documentation, plus plenty of Linux enthusiasts to learn from and to collabo-
rate with.

Unfortunately for my own peace of mind (but fortunately, I hope, for the reader of
this book who benefits from the results), I am the kind of person that likes to under-
stand everything and takes very little for granted. So at UNESCO, I started looking
into the kernel code. This not only proved to be a good way to burn in my knowl-
edge, but it also gave me more confidence in making use of user-space configuration
tools: whenever a configuration tool did not provide a specific option, I usually knew
whether it would be possible to add it or whether it would have required significant
changes to the kernel. This kind of study turns into a path without an end: you
always want more.

After developing a few tools as extensions to the Linux kernel (some revision of ver-
sions 2.0 and 2.2), my love for operating systems and networking led me to the Sili-
con Valley (Cisco Systems). When you learn a language, be it a human language or a
computer programming language, a rule emerges: the more languages you know, the
easier it becomes to learn new ones. You can identify each one’s strengths and weak-
nesses, see the reasons behind design compromises, etc. The same applies to operat-
ing systems.

When I noticed the lack of good documentation about the networking code of the
Linux kernel and the availability of good books for other parts of the kernel, I
decided to try filling in the gap—or at least part of it. I hope this book will give you
the starting documentation that I would have loved to have had years ago.

I believe that this book, together with O’Reilly’s other two kernel books (Under-
standing the Linux Kernel and Linux Device Drivers), represents a good starting point
for anyone willing to learn more about the Linux kernel internals. They complement
each other and, when they do not address a given feature, point the reader to exter-
nal documentation sources (when available).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

However, I still suggest you make some coffee, turn on the music, and spend some
time on the source code trying to understand how a given feature is implemented. I
believe the knowledge you build in this way lasts longer than that built in any other
way. Shortcuts are good, but sometimes the long way has its advantages, too.

The Audience for This Book
This book can help those who already have some knowledge of networking and
would like to see how the engine of the Internet—that is, the Internet Protocol (IP)
and its friends—is implemented on a first-class operating system. However, there is a
theoretical introduction for each topic, so newcomers will be able to get up to speed
quickly, too. Complex topics are accompanied by enough examples to make them
easier to follow.

Linux doesn’t just support basic IP; it also has quite a few advanced features. More
important, its implementation must be sophisticated enough to play nicely with
other kernel features such as symmetric multiprocessing (SMP) and kernel preemp-
tion. This makes the networking code of the Linux kernel a very good gym in which
to train and keep your networking knowledge in shape.

Moreover, if you are like me and want to learn everything, you will find enough
details in this book to keep you satisfied for quite a while.

Background Information
Some knowledge of operating systems would help. The networking code, like any
other component of the operating system, must follow both common sense and
implicit rules for coexistence with the rest of the kernel, including proper use of lock-
ing; fair use of memory and CPU; and an eye toward modularity, code cleanliness,
and good performance. Even though I occasionally spend time on those aspects, I
refer you to the other two O’Reilly kernel books mentioned earlier for a deeper and
detailed discussion on generic operating system services and design.

Some knowledge of networking, and especially IP, would also help. However, I think
the theory overview that precedes each implementation description in this book is
sufficient to make the book self-contained for both newcomers and experienced
readers.

The theoretical description of the topics covered in the book does not require any
programming experience. However, the descriptions of the associated implementa-
tions require an intermediate knowledge of the C language. Chapter 1 will go through
a series of coding conventions and tricks that are often used in the code, which
should help especially those with less experience with C and kernel programming.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

Organization of the Material
Some aspects of networking code require as many as seven chapters, while for other
aspects one chapter is sufficient. When the topic is complex or big enough to span
different chapters, the part of the book devoted to that topic always starts with a
concept chapter that covers the theory necessary to understand the implementation,
which is described in another chapter. All of the reference and secondary material is
usually located in one miscellaneous chapter at the end of the part. No matter how
big the topic is, the same scheme is used to organize its presentation.

For each topic, the implementation description includes:

• The big picture, which shows where the described kernel component falls in the
network stack.

• A brief description of the main data structures and a figure that shows how they
relate to each other.

• A description of which other kernel features the component interfaces with—for
example, by means of notification chains or data structure cross-references. The
firewall is an example of such a kernel feature, given the numerous hooks it has
all over the networking code.

• Extensive use of flow charts and figures to make it easier to go through the code
and extract the logic from big and seemingly complex functions.

The reference material always includes:

• A detailed description of the most important data structures, field by field

• A table with a brief description of all functions, macros, and data structures,
which you can use as a quick reference

• A list of the files mentioned in the chapter, with their location in the kernel
source tree

• A description of the interface between the most common user-space tools used
to configure the topic of the chapter and the kernel

• A description of any file in /proc that is exported

The Linux kernel’s networking code is not just a moving target, but a fast runner.
The book does not cover all of the networking features. New ones are probably
being added right now while you are reading. Many new features are driven by the
needs of single users or organizations, or as university projects, but they find their
way into the official kernel when they’re considered useful for a large audience.
Besides detailing the implementation of a subset of those features, I try to give you
an idea of what the generic implementation of a feature might look like. This will
help you greatly in understanding changes to the code and learning how new fea-
tures are implemented. For example, given any feature, you need to take the follow-
ing points into consideration:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

• How do you design the data structures and the locking semantics?

• Is there a need for a user-space configuration tool? If so, is it going to interact
with the kernel via an existing system call, an ioctl command, a /proc file, or the
Netlink socket?

• Is there any need for a new notification chain, and is there a need to register to
an already existing chain?

• What is the relationship with the firewall?

• Is there any need for a cache, a garbage collection mechanism, statistics, etc.?

Here is the list of topics covered in the book:

Interface between user space and kernel
In Chapter 3, you will get a brief overview of the mechanisms that networking
configuration tools use to interact with their counterparts inside the kernel. It
will not be a detailed discussion, but it will help you to understand certain parts
of the kernel code.

System initialization
Part II describes the initialization of key components of the networking code,
and how network devices are registered and initialized.

Interface between device drivers and protocol handlers
Part III offers a detailed description of how ingress (incoming or received) pack-
ets are handed by the device drivers to the upper-layer protocols, and vice versa.

Bridging
Part IV describes transparent bridging and the Spanning Tree Protocol, the L2
(Layer two) counterpart of routing at L3 (Layer three).

Internet Protocol Version 4 (IPv4)
Part V describes how packets are received, transmitted, forwarded, and deliv-
ered locally at the IPv4 layer.

Interface between IPv4 and the transport layer (L4) protocols
Chapter 20 shows how IPv4 packets addressed to the local host are delivered to
the transport layer (L4) protocols (TCP, UDP, etc.).

Internet Control Message Protocol (ICMP)
Chapter 25 describes the implementation of ICMP, the only transport layer (L4)
protocol covered in the book.

Neighboring protocols
These find local network addresses, given their IP addresses. Part VI describes
both the common infrastructure of the various protocols and the details of the
ARP neighboring protocol used by IPv4.

Routing
Part VII, the biggest one of the book, describes the routing cache and tables.
Advanced features such as Policy Routing and Multipath are also covered.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

What Is Not Covered
For lack of space, I had to select a subset of the Linux networking features to cover.
No selection would make everyone happy, but I think I covered the core of the net-
working code, and with the knowledge you can gain with this book, you will find it
easier to study on your own any other networking feature of the kernel.

In this book, I decided to focus on the networking code, from the interface between
device drivers and the protocol handlers, up to the interface between the IPv4 and L4
protocols. Instead of covering all of the features with a compromise on quality, I pre-
ferred to keep quality as the first goal, and to select the subset of features that would
represent the best start for a journey into the kernel networking implementation.

Here is a partial list of the features I could not cover for lack of space:

Internet Protocol Version 6 (IPv6)
Even though I do not cover IPv6 in the book, the description of IPv4 can help
you a lot in understanding the IPv6 implementation. The two protocols share
naming conventions for functions and often for variables. Their interface to Net-
filter is also similar.

IP Security protocol
The kernel provides a generic infrastructure for cryptography along with a col-
lection of both ciphers and digest algorithms. The first interface to the crypto-
graphic layer was synchronous, but the latest improvements are adding an
asynchronous interface to allow Linux to take advantage of hardware cards that
can offload the work from the CPU.

The protocols of the IPsec suite—Authentication Header (AH), Encapsulating-
Security Payload (ESP), and IP Compression (IPcomp)—are implemented in the
kernel and make use of the cryptographic layer.

IP multicast and IP multicast routing
Multicast functionality was implemented to conform to versions 2 and 3 of the
Internet Group Management Protocol (IGMP). Multicast routing support is also
present, conforming to versions 1 and 2 of Protocol Independent Multicast (PIM).

Transport layer (L4) protocols
Several L4 protocols are implemented in the Linux kernel. Besides the two well-
known ones, UDP and TCP, Linux has the newer Stream Control Transmission
Protocol (SCTP). A good description of the implementation of those protocols
would require a new book of this size, all on its own.

Traffic Control
This is the Quality of Service (QoS) layer of Linux, another interesting and pow-
erful component of the kernel’s networking code. Traffic control is imple-
mented as a general infrastructure and as a collection of traffic classifiers and
queuing disciplines. I briefly describe it and the interface it provides to the main
transmission routine in Chapter 11. A great deal of documentation is available at
http://lartc.org.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Netfilter
The firewall code infrastructure and its extensions (including the various NAT
flavors) is not covered in the book, but I describe its interaction with most of the
networking features I cover. At the Netfilter home page, http://www.netfilter.org,
you can find some interesting documentation about its kernel internals.

Network filesystems
Several network filesystems are implemented in the kernel, among them NFS
(versions 2, 3, and 4), SMB, Coda, and Andrew. You can read a detailed descrip-
tion of the Virtual File System layer in Understanding the Linux Kernel, and then
delve into the source code to see how those network filesystems interface with it.

Virtual devices
The use of a dedicated virtual device underlies the implementation of network-
ing features. Examples include 802.1Q, bonding, and the various tunneling pro-
tocols, such as IP-over-IP (IPIP) and Generalized Routing Encapsulation (GRE).
Virtual devices need to follow the same guidelines as real devices and provide the
same interface to other kernel components. In different chapters, where needed,
I compare real and virtual device behaviors. The only virtual device that is
described in detail is the bridge interface, which is covered in Part IV.

DECnet, IPX, AppleTalk, etc.
These have historical roots and are still in use, but are much less commonly used
than IP. I left them out to give more space to topics that affect more users.

IP virtual server
This is another interesting piece of the networking code, described at http://
www.linuxvirtualserver.org/. This feature can be used to build clusters of servers
using different scheduling algorithms.

Simple Network Management Protocol (SNMP)
No chapter in this book is dedicated to SNMP, but for each feature, I give a
description of all the counters and statistics kept by the kernel, the routines used
to manipulate them, and the /proc files used to export them, when available.

Frame Diverter
This feature allows the kernel to kidnap ingress frames not addressed to the local
host. I will briefly mention it in Part III. Its home page is http://diverter.
sourceforge.net.

Plenty of other network projects are available as separate patches to the kernel, and I
can’t list them all here. One that I find particularly fascinating and promising, espe-
cially in relation to the Linux routing code, is the highly configurable Click router,
currently offered at http://pdos.csail.mit.edu/click/.

Because this is a book about the kernel, I do not cover user-space configuration
tools. However, for each topic, I describe the interface between the most common
user-space configuration tools and the kernel.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

Conventions Used in This Book
The following is a list of the typographical conventions used in this book:

Italic
Used for file and directory names, program and command names, command-line
options, URLs, and new terms

Constant Width
Used in examples to show the contents of files or the output from commands,
and in the text to indicate words that appear in C code or other literal strings

Constant Width Italic
Used to indicate text within commands that the user replaces with an actual
value

Constant Width Bold
Used in examples to show commands or other text that should be typed literally
by the user

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

This is a warning. It helps you solve and avoid annoying problems.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. The code samples are covered by a
dual BSD/GPL license.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Understanding Linux Network
Internals, by Christian Benvenuti. Copyright 2006 O’Reilly Media, Inc., 0-596-
00255-6.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/understandlni/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
This book would not have been possible without an interesting topic to talk about,
and an audience. The interesting topic is Linux, this modern operating system that
anyone has an opportunity to be part of, and the audience is the incredible number
of users that often decide not only to take advantage of the good work of others, but
also to contribute to its success by getting involved in its development. I have always
loved sharing knowledge and passion for the things I like, and with this book, I have
tried my best to add a lane or two to the highway that takes interested people into
the wonderful world of the Linux kernel.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xxiv | Preface

Of course, I did not do everything while lying in a hammock by the beach, with an
ice cream in one hand and a mouse in the other. It took quite a lot of work to investi-
gate the reasons behind some of the implementation choices. It is incredible how
much information you can dig out of the development mailing lists, and how much
people are willing to share their knowledge when you show genuine interest in their
work.

For sure, this book would not be what it is without the great help and suggestions of
my editor, Andy Oram. Due to the frequent changes that the networking code expe-
riences, a few chapters had to undergo substantial updates during the writing of the
book, but Andy understood this and helped me get to the finish line.

I also would like to thank all of those people that supported me in this effort, and
Cisco Systems for giving me the flexibility I needed to work on this book.

A special thanks also goes to the technical reviewers for being able to review a book
of this size in a short amount of time, still providing useful comments that allowed
me to catch errors and improve the quality of the material. The book was reviewed
by Jerry Cooperstein, Michael Boerner, and Paul Kinzelman (in alphabetical order,
by first name). I also would like to thank Francois Tallet for reviewing Part IV and
Andi Kleen for his feedback on Part V.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART I

I.General Background

The information in this part of the book represents the basic knowledge you need to
understand the rest of the book comfortably. If you are already familiar with the
Linux kernel, or you are an experienced software engineer, you will be able to go
pretty quickly through these chapters. For other readers, I suggest getting familiar
with this material before proceeding with the following parts of the book:

Chapter 1, Introduction
The bulk of this chapter is devoted to introducing a few of the common pro-
gramming patterns and tricks that you’ll often meet in the networking code.

Chapter 2, Critical Data Structures
In this chapter, you can find a detailed description of two of the most important
data structures used by the networking code: the socket buffer sk_buff and the
network device net_device.

Chapter 3, User-Space-to-Kernel Interface
The discussion of each feature in this book ends with a set of sections that shows
how user-space configuration tools and the kernel communicate. The informa-
tion in this chapter can help you understand those sections better.

www.ebooksworld.in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3

Chapter 1 CHAPTER 1

Introduction

To do research in the source code of a large project is to enter a strange, new land
with its own customs and unspoken expectations. It is useful to learn some of the
major conventions up front, and to try interacting with the inhabitants instead of
merely standing back and observing.

The bulk of this chapter is devoted to introducing you to a few of the common pro-
gramming patterns and tricks that you’ll often meet in the networking code.

I encourage you, when possible, to try interacting with a given part of the kernel net-
working code by means of user-space tools. So in this chapter, I’ll give you a few
pointers as to where you can download those tools if they’re not already installed on
your preferred Linux distribution, or if you simply want to upgrade them to the lat-
est versions.

I’ll also describe some tools that let you find your way gracefully through the enor-
mous kernel code. Finally, I’ll explain briefly why a kernel feature may not be inte-
grated into the official kernel releases, even if it is widely used in the Linux
community.

Basic Terminology
In this section, I’ll introduce terms and abbreviations that are going to be used exten-
sively in this book.

Eight-bit quantities are normally called octets in the networking literature. In this
book, however, I use the more familiar term byte. After all, the book describes the
behavior of the kernel rather than some network abstraction, and kernel developers
are used to thinking in terms of bytes.

The terms vector and array will be used interchangeably.

When referring to the layers of the TCP/IP network stack, I will use the abbrevia-
tions L2, L3, and L4 to refer to the link, network, and transport layers, respectively.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introduction

The numbers are based on the famous (if not exactly current) seven-layer OSI model.
In most cases, L2 will be a synonym for Ethernet, L3 for IP Version 4 or 6, and L4 for
UDP, TCP, or ICMP. When I need to refer to a specific protocol, I’ll use its name
(i.e., TCP) rather than the generic Ln protocol term.

In different chapters, we will see how data units are received and transmitted by the
protocols that sit at a given layer in the network stack. In those contexts, the terms
ingress and input will be used interchangeably. The same applies to egress and out-
put. The action of receiving or transmitting a data unit may be referred to with the
abbreviations RX and TX, respectively.

A data unit is given different names, such as frame, packet, segment, and message,
depending on the layer where it is used (see Chapter 13 for more details). Table 1-1
summarizes the major abbreviations you’ll see in the book.

Common Coding Patterns
Each networking feature, like any other kernel feature, is just one of the citizens
inside the kernel. As such, it must make proper and fair use of memory, CPU, and all
other shared resources. Most features are not written as standalone pieces of kernel
code, but interact with other kernel components more or less heavily depending on
the feature. They therefore try, as much as possible, to follow similar mechanisms to
implement similar functionalities (there is no need to reinvent the wheel every time).

Some requirements are common to several kernel components, such as the need to
allocate several instances of the same data structure type, the need to keep track of
references to an instance of a data structure to avoid unsafe memory deallocations,
etc. In the following subsections, we will view common ways in Linux to handle such
requirements. I will also talk about common coding tricks that you may come across
while browsing the kernel’s code.

This book uses subsystem as a loose term to describe a collection of files that imple-
ment a major set of features—such as IP or routing—and that tend to be maintained
by the same people and to change in lockstep. In the rest of the chapter, I’ll also use

Table 1-1. Abbreviations used frequently in this book

Abbreviation Meaning

L2 Link layer (e.g., Ethernet)

L3 Network layer (e.g., IP)

L4 Transport layer (e.g., UDP/TCP/ICMP)

BH Bottom half

IRQ Interrupt

RX Reception

TX Transmission

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Coding Patterns | 5

the term kernel component to refer to these subsystems, because the conventions dis-
cussed here apply to most parts of the kernel, not just those involved in networking.

Memory Caches
The kernel uses the kmalloc and kfree functions to allocate and free a memory block,
respectively. The syntax of those two functions is similar to that of the two sister
calls, malloc and free, from the libc user-space library. For more details on kmalloc
and kfree, please refer to Linux Device Drivers (O’Reilly).

It is common for a kernel component to allocate several instances of the same data
structure type. When allocation and deallocation are expected to happen often, the
associated kernel component initialization routine (for example, fib_hash_init for
the routing table) usually allocates a special memory cache that will be used for the
allocations. When a memory block is freed, it is actually returned to the same cache
from which it was allocated.

Some examples of network data structures for which the kernel maintains dedicated
memory caches include:

Socket buffer descriptors
This cache, allocated by skb_init in net/core/sk_buff.c, is used for the allocation
of sk_buff buffer descriptors. The sk_buff structure is probably the one that reg-
isters the highest number of allocations and deallocations in the networking sub-
system.

Neighboring protocol mappings
Each neighboring protocol uses a memory cache to allocate the data structures
that store L3-to-L2 address mappings. See Chapter 27.

Routing tables
The routing code uses two memory caches for two of the data structures that
define routes. See Chapter 32.

Here are the key kernel functions used to deal with memory caches:

kmem_cache_create
kmem_cache_destroy

Create and destroy a cache.

kmem_cache_alloc
kmem_cache_free

Allocate and return a buffer to the cache. They are usually called via wrappers,
which manage the requests for allocation and deallocation at a higher level. For
example, the request to free an instance of an sk_buff buffer with kfree_skb ends
up calling kmem_cache_free only when all the references to the buffer have been
released and all the necessary cleanup has been done by the interested sub-
systems (for instance, the firewall).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introduction

The limit on the number of instances that can be allocated from a given cache (when
present) is usually enforced by the wrappers around kmem_cache_alloc, and are some-
times configurable with a parameter in /proc.

For more details on how memory caches are implemented and how they interface to
the slab allocator, please refer to Understanding the Linux Kernel (O’Reilly).

Caching and Hash Tables
It is pretty common to use a cache to increase performance. In the networking code,
there are caches for L3-to-L2 mappings (such as the ARP cache used by IPv4), for the
routing table cache, etc.

Cache lookup routines often take an input parameter that says whether a cache miss
should or should not create a new element and add it to the cache. Other lookup
routines simply add missing elements all the time.

Caches are often implemented with hash tables. The kernel provides a set of data
types, such as one-way and bidirectional lists, that can be used as building blocks for
simple hash tables.

The standard way to handle inputs that hash to the same value is to put them in a
list. Traversing this list takes substantially longer than using the hash key to do a
lookup. Therefore, it is always important to minimize the number of inputs that hash
to the same value.

When the lookup time on a hash table (whether it uses a cache or not) is a critical
parameter for the owner subsystem, it may implement a mechanism to increase the
size of the hash table so that the average length of the collision lists goes down and
the average lookup time improves. See the section “Dynamic resizing of per-netmask
hash tables” in Chapter 34 for an example.

You may also find subsystems, such as the neighboring layer, that add a random
component (regularly changed) to the key used to distribute elements in the cache’s
buckets. This is used to reduce the damage of Denial of Service (DoS) attacks aimed
at concentrating the elements of a hash table into a single bucket. See the section
“Caching” in Chapter 27 for an example.

Reference Counts
When a piece of code tries to access a data structure that has already been freed, the
kernel is not very happy, and the user is rarely happy with the kernel’s reaction. To
avoid those nasty problems, and to make garbage collection mechanisms easier and
more effective (see the section “Garbage Collection” later in this chapter), most data
structures keep a reference count. Good kernel citizens increment and decrement the
reference count of every data structure every time they save and release a reference,
respectively, to the structure. For any data structure type that requires a reference

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Coding Patterns | 7

count, the kernel component that owns the structure usually exports two functions
that can be used to increment and decrement the reference count. Such functions are
usually called xxx_hold and xxx_release, respectively. Sometimes the release func-
tion is called xxx_put instead (e.g., dev_put for net_device structures).

While we like to assume there are no bad citizens in the kernel, developers are
human, and as such they do not always write bug-free code. The use of the reference
count is a simple but effective mechanism to avoid freeing still-referenced data struc-
tures. However, it does not always solve the problem completely. This is the conse-
quence of forgetting to balance increments and decrements:

• If you release a reference to a data structure but forget to call the xxx_release
function, the kernel will never allow the data structure to be freed (unless
another buggy piece of code happens to call the release function an extra time by
mistake!). This leads to gradual memory exhaustion.

• If you take a reference to a data structure but forget to call xxx_hold, and at some
later point you happen to be the only reference holder, the structure will be pre-
maturely freed because you are not accounted for. This case definitely can be
more catastrophic than the previous one; your next attempt to access the struc-
ture can corrupt other data or cause a kernel panic that brings down the whole
system instantly.

When a data structure is to be removed for some reason, the reference holders can be
explicitly notified about its going away so that they can politely release their refer-
ences. This is done through notification chains. See the section “Reference Counts”
in Chapter 8 for an interesting example.

The reference count on a data structure typically can be incremented when:

• There is a close relationship between two data structure types. In this case, one
of the two often maintains a pointer initialized to the address of the second one.

• A timer is started whose handler is going to access the data structure. When the
timer is fired, the reference count on the structure is incremented, because the
last thing you want is for the data structure to be freed before the timer expires.

• A successful lookup on a list or a hash table returns a pointer to the matching
element. In most cases, the returned result is used by the caller to carry out some
task. Because of that, it is common for a lookup routine to increase the reference
count on the matching element, and let the caller release it when necessary.

When the last reference to a data structure is released, it may be freed because it is
not needed anymore, but not necessarily.

The introduction of the new sysfs filesystem has helped to make a good portion of
the kernel code more aware of reference counts and consistent in its use of them.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introduction

Garbage Collection
Memory is a shared and limited resource and should not be wasted, particularly in
the kernel because it does not use virtual memory. Most kernel subsystems imple-
ment some sort of garbage collection to reclaim the memory held by unused or stale
data structure instances. Depending on the needs of any given feature, you will find
two main kinds of garbage collection:

Asynchronous
This type of garbage collection is unrelated to particular events. A timer that
expires regularly invokes a routine that scans a set of data structures and frees
the ones considered eligible for deletion. The conditions that make a data struc-
ture eligible for deletion depend on the features and logic of the subsystem, but a
common criterion is the presence of a null reference count.

Synchronous
There are cases where a shortage of memory, which cannot wait for the asyn-
chronous garbage collection timer to kick in, triggers immediate garbage collec-
tion. The criteria used to select the data structures eligible for deletion are not
necessarily the same ones used by asynchronous cleanup (for instance, they
could be more aggressive). See Chapter 33 for an example.

In Chapter 7, you will see how the kernel manages to reclaim the memory used by
initialization routines and that is no longer needed after they have been executed.

Function Pointers and Virtual Function Tables (VFTs)
Function pointers are a convenient way to write clean C code while getting some of
the benefits of the object-oriented languages. In the definition of a data structure type
(the object), you include a set of function pointers (the methods). Some or all manipu-
lations of the structure are then done through the embedded functions. C-language
function pointers in data structures look like this:

struct sock {
 ...
 void (*sk_state_change)(struct sock *sk);
 void (*sk_data_ready)(struct sock *sk, int bytes);
 ...

};

A key advantage to using function pointers is that they can be initialized differently
depending on various criteria and the role played by the object. Thus, invoking sk_
state_change may actually invoke different functions for different sock sockets.

Function pointers are used extensively in the networking code. The following are
only a few examples:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Coding Patterns | 9

• When an ingress or egress packet is processed by the routing subsystem, it ini-
tializes two routines in the buffer data structure. You will see this in Chapter 35.
Refer to Chapter 2 for a complete list of function pointers included in the sk_
buff data structure.

• When a packet is ready for transmission on the networking hardware, it is
handed to the hard_start_xmit function pointer of the net_device data struc-
ture. That routine is initialized by the device driver associated with the device.

• When an L3 protocol wants to transmit a packet, it invokes one of a set of func-
tion pointers. These have been initialized to a set of routines by the address reso-
lution protocol associated with the L3 protocol. Depending on the actual routine
to which the function pointer is initialized, a transparent L3-to-L2 address reso-
lution may take place (for example, IPv4 packets go through ARP). When the
address resolution is unnecessary, a different routine is used. See Part VI for a
detailed discussion on this interface.

We see in the preceding examples how function pointers can be employed as inter-
faces between kernel components or as generic mechanisms to invoke the right func-
tion handler at the right time based on the result of something done by a different
subsystem. There are cases where function pointers are also used as a simple way to
allow protocols, device drivers, or any other feature to personalize an action.

Let’s look at an example. When a device driver registers a network device with the
kernel, it goes through a series of steps that are needed regardless of the device type.
At some point, it invokes a function pointer on the net_device data structure to let
the device driver do something extra if needed. The device driver could either initial-
ize that function pointer to a function of its own, or leave the pointer NULL because
the default steps performed by the kernel are sufficient.

A check on the value of a function pointer is always necessary before executing it to
avoid NULL pointer dereferences, as shown in this snapshot from register_
netdevice:

 if (dev->init && dev->init(dev) != 0) {
 ...
 }

Function pointers have one main drawback: they make browsing the source code a
little harder. While going through a given code path, you may end up focusing on a
function pointer call. In such cases, before proceeding down the code path, you need
to find out how the function pointer has been initialized. It could depend on differ-
ent factors:

• When the selection of the routine to assign to a function pointer is based on a
particular piece of data, such as the protocol handling the data or the device
driver a given packet is received from, it is easier to derive the routine. For exam-
ple, if a given device is managed by the drivers/net/3c59x.c device driver, you can
derive the routine to which a given function pointer of the net_device data

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Introduction

structure is initialized by reading the device initialization routine provided by the
device driver.

• When the selection of the routine is based instead on more complex logic, such
as the state of the resolution of an L3-to-L2 address mapping, the routine used at
any time depends on external events that cannot be predicted.

A set of function pointers grouped into a data structure are often referred to as a vir-
tual function table (VFT). When a VFT is used as the interface between two major
subsystems, such as the L3 and L4 protocol layers, or when the VFT is simply
exported as an interface to a generic kernel component (set of objects), the number
of function pointers in it may swell to include many different pointers that accom-
modate a wide range of protocols or other features. Each feature may end up using
only a few of the many functions provided. You will see an example in Part VI. Of
course, if this use of a VFT is taken too far, it becomes cumbersome and a major
redesign is needed.

goto Statements
Few C programmers like the goto statement. Without getting into the history of the
goto (one of the longest and most famous controversies in computer programming),
I’ll summarize some of the reasons the goto is usually deprecated, but why the Linux
kernel uses it anyway.

Any piece of code that uses goto can be rewritten without it. The use of goto state-
ments can reduce the readability of the code, and make debugging harder, because at
any position following a goto you can no longer derive unequivocally the conditions
that led the execution to that point.

Let me make this analogy: given any node in a tree, you know what the path from
the root to the node is. But if you add vines that entwine around branches ran-
domly, you do not always have a unique path between the root and the other nodes
anymore.

However, because the C language does not provide explicit exceptions (and they are
often avoided in other languages as well because of the performance hit and coding
complexity), carefully placed goto statements can make it easier to jump to code that
handles undesired or peculiar events. In kernel programming, and particularly in net-
working, such events are very common, so goto becomes a convenient tool.

I must defend the kernel’s use of goto by pointing out that developers have by no
means gone wild with it. Even though there are more than 30,000 instances, they are
mainly used to handle different return codes within a function, or to jump out of
more than one level of nesting.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Coding Patterns | 11

Vector Definitions
In some cases, the definition of a data structure includes an optional block at the
end. This is an example:

struct abc {
 int age;
 char *name[20];
 ...
 char placeholder[0];
}

The optional block starts with placeholder. Note that placeholder is defined as a
vector of size 0. This means that when abc is allocated with the optional block,
placeholder points to the beginning of the block. When no optional block is
required, placeholder is just a pointer to the end of the structure; it does not con-
sume any space.

Thus, if abc is used by several pieces of code, each one can use the same basic defini-
tion (avoiding the confusion of doing the same thing in slightly different ways) while
extending abc differently to personalize its definition according to its needs.

We will see this kind of data structure definition a few times in the book. One exam-
ple is in Chapter 19.

Conditional Directives (#ifdef and family)
Conditional directives to the compiler are sometimes necessary. An excessive use of
them can reduce the readability of the code, but I can state that Linux does not abuse
them. They appear for different reasons, but the ones we are interested in are those
used to check whether a given feature is supported by the kernel. Configuration tools
such as make xconfig determine whether the feature is compiled in, not supported at
all, or loadable as a module.

Examples of feature checks by #ifdef or #if defined C preprocessor directives are:

To include or exclude fields from a data structure definition
struct sk_buff {
 ...
#ifdef CONFIG_NETFILTER_DEBUG
 unsigned int nf_debug;
#endif
 ...
}

In this example, the Netfilter debugging feature requires an nf_debug field in the
sk_buff structure. When the kernel does not have support for Netfilter debug-
ging (a feature needed by only a handful of developers), there is no need to
include the field, which would just take up more memory for every network
packet.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Introduction

To include or exclude pieces of code from a function
int ip_route_input(...)
{
 ...
 if (rth->fl.fl4_dst == daddr &&
 rth->fl.fl4_src == saddr &&
 rth->fl.iif == iif &&
 rth->fl.oif == 0 &&
#ifndef CONFIG_IP_ROUTE_FWMARK
 rth->fl.fl4_fwmark == skb->nfmark &&
#endif
 rth->fl.fl4_tos == tos) {
 ...
 }
}

The routing cache lookup routine ip_route_input, described in Chapter 33,
checks the value of the tag set by the firewall only when the kernel has been
compiled with support for the “IP: use netfilter MARK value as routing key”
feature.

To select the right prototype for a function
#ifdef CONFIG_IP_MULTIPLE_TABLES
struct fib_table * fib_hash_init(int id)
#else
struct fib_table * _ _init fib_hash_init(int id)
{
 ...
}

In this example, the directives are used to add the _ _init tag* to the prototype
when the kernel does not have support for Policy Routing.

To select the right definition for a function
#ifndef CONFIG_IP_MULTIPLE_TABLES
...
static inline struct fib_table *fib_get_table(int id)
{
 if (id != RT_TABLE_LOCAL)
 return ip_fib_main_table;
 return ip_fib_local_table
}
...
#else
...
static inline struct fib_table *fib_get_table(int id)
{
 if (id == 0)
 id = RT_TABLE_MAIN;
 return fib_tables[id];
}

* See Chapter 7 for a description of this macro.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Coding Patterns | 13

...
#endif

Note that this case differs from the previous one. In the previous case, the func-
tion body lies outside the #ifdef/#endif blocks, whereas in this case, each block
contains a complete definition of the function.

The definition or initialization of variables and macros can also use conditional
compilation.

It is important to know about the existence of multiple definitions of certain func-
tions or macros, whose selection at compile time is based on a preprocessor macro as
in the preceding examples. Otherwise, when you look for a function, variable, or
macro definition, you may be looking at the wrong one.

See Chapter 7 for a discussion of how the introduction of special macros has
reduced, in some cases, the use of conditional compiler directives.

Compile-Time Optimization for Condition Checks
Most of the time, when the kernel compares a variable against some external value to
see whether a given condition is met, the result is extremely likely to be predictable.
This is pretty common, for example, with code that enforces sanity checks. The ker-
nel uses the likely and unlikely macros, respectively, to wrap comparisons that are
likely to return a true (1) or false (0) result. Those macros take advantage of a feature
of the gcc compiler that can optimize the compilation of the code based on that
information.

Here is an example. Let’s suppose you need to call the do_something function, and
that in case of failure, you must handle it with the handle_error function:

err = do_something(x,y,z);
if (err)
 handle_error(err);

Under the assumption that do_something rarely fails, you can rewrite the code as
follows:

err = do_something(x,y,z);
if (unlikely(err))
 handle_error(err);

An example of the optimization made possible by the likely and unlikely macros is
in handling options in the IP header. The use of IP options is limited to very specific
cases, and the kernel can safely assume that most IP packets do not carry IP options.
When the kernel forwards an IP packet, it needs to take care of options according to
the rules described in Chapter 18. The last stage of forwarding an IP packet is taken
care of by ip_forward_finish. This function uses the unlikely macro to wrap the
condition that checks whether there is any IP option to take care of. See the section
“ip_forward_finish Function” in Chapter 20.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Introduction

Mutual Exclusion
Locking is used extensively in the networking code, and you are likely to see it come
up as an issue under every topic in this book. Mutual exclusion, locking mecha-
nisms, and synchronization are a general topic—and a highly interesting and com-
plex one—for many types of programming, especially kernel programming. Linux
has seen the introduction and optimization of several approaches to mutual exclu-
sion over the years. Thus, this section merely summarizes the locking mechanisms
seen in networking code; I refer you to the high-quality, detailed discussions avail-
able in O’Reilly’s Understanding the Linux Kernel and Linux Device Driver.

Each mutual exclusion mechanism is the best choice for particular circumstances.
Here is a brief summary of the alternative mutual exclusion approaches you will see
often in the networking code:

Spin locks
This is a lock that can be held by only one thread of execution at a time. An
attempt to acquire the lock by another thread of execution makes the latter loop
until the lock is released. Because of the waste caused by looping, spin locks are
used only on multiprocessor systems, and generally are used only when the
developer expects the lock to be held for short intervals. Also because of the
waste caused to other threads, a thread of execution must not sleep while hold-
ing a spin lock.

Read-write spin locks
When the uses of a given lock can be clearly classified as read-only and read-
write, the use of read-write spin locks is preferred. The difference between spin
locks and read-write spin locks is that in the latter, multiple readers can hold the
lock at the same time. However, only one writer at a time can hold the lock, and
no reader can acquire it when it is already held by a writer. Because readers are
given higher priority over writers, this type of lock performs well when the num-
ber of readers (or the number of read-only lock acquisitions) is a good deal big-
ger than the number of writers (or the number or read-write lock acquisitions).

When the lock is acquired in read-only mode, it cannot be promoted to read-
write mode directly: the lock must be released and reacquired in read-write
mode.

Read-Copy-Update (RCU)
RCU is one of the latest mechanisms made available in Linux to provide mutual
exclusion. It performs quite well under the following specific conditions:

• Read-write lock requests are rare compared to read-only lock requests.

• The code that holds the lock is executed atomically and does not sleep.

• The data structures protected by the lock are accessed via pointers.

The first condition concerns performance, and the other two are at the base of
the RCU working principle.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Coding Patterns | 15

Note that the first condition would suggest the use of read-write spin locks as an
alternative to RCU. To understand why RCU, when its use is appropriate, per-
forms better than read-write spin locks, you need to consider other aspects, such
as the effect of the processor caches on SMP systems.

The working principle behind the design of RCU is simple yet powerful. For a
clear description of the advantages of RCU and a brief description of its imple-
mentation, refer to an article published by its author, Paul McKenney, in the
Linux Journal (http://linuxjournal.com/article/6993).* You can also refer to
Understanding the Linux Kernel and Linux Device Drivers.

An example where RCU is used in the networking code is the routing sub-
system. Lookups are more frequent than updates on the cache, and the routine
that implements the routing cache lookup does not block in the middle of the
search. See Chapter 33.

Semaphores are offered by the kernel but are rarely used in the networking code cov-
ered in this book. One example, however, is the code used to serialize configuration
changes, which we will see in action in Chapter 8.

Conversions Between Host and Network Order
Data structures spanning more than one byte can be stored in memory with two dif-
ferent formats: Little Endian and Big Endian. The first format stores the least signifi-
cant byte at the lowest memory address, and the second does the opposite. The
format used by an operating system such as Linux depends on the processor in use.
For example, Intel processors follow the Little Endian model, and Motorola proces-
sors use the Big Endian model.

Suppose our Linux box receives an IP packet from a remote host. Because it does not
know which format, Little Endian or Big Endian, was used by the remote host to ini-
tialize the protocol headers, how will it read the header? For this reason, each proto-
col family must define what “endianness” it uses. The TCP/IP stack, for example,
follows the Big Endian model.

But this still leaves the kernel developer with a problem: she must write code that can
run on many different processors that support different endianness. Some proces-
sors might match the endianness of the incoming packet, but those that do not
require conversion to the endianness used by the processor.

Therefore, every time the kernel needs to read, save, or compare a field of the IP
header that spans more than one byte, it must first convert it from network byte
order to host byte order or vice versa. The same applies to the other protocols of the

* For more documentation, you can refer to the following URL maintained by the author: http://www.rdrop.
com/users/paulmck/rclock.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Introduction

TCP/IP stack. When both the protocol and the local host are Big Endian, the conver-
sion routines are simply no-ops because there is no need for any conversion. They
always appear in the code to make the code portable; only the conversion routines
themselves are platform dependent. Table 1-2 lists the main macros used for the con-
version of two-byte and four-byte fields.

The macros are defined in the generic header file include/linux/byteorder/generic.h.
This is how each architecture tailors the definition of those macros based on their
endianness:

• For each architecture there is a byteorder.h file in the per-architecture directory
include/asm-XXX/.

• That file includes either include/linux/byteorder/big_endian.h or include/linux/
byteorder/little_endian.h, depending on the processor’s endianness.

• Both little_endian.h and big_endian.h include the generic file include/linux/
byteorder/generic.h. The definitions of the macros in Table 1-2 are based on
other macros that are defined differently by little_endian.h and big_endian.h, and
this is how the endianness of the architecture influences the definition of the
macros of Table 1-2.

For each macro xxx in Table 1-2 there is a sister macro, _ _constant_xxx, that is used
when the input field is a constant value, such as an element of an enumeration list
(see the section “ARP Protocol Initialization” in Chapter 28 for an example). Note
that the macros in Table 1-2 are commonly used in the kernel code even when their
input is a constant value (see the section “Setting the Ethernet Protocol and Length”
in Chapter 13 for an example).

We said earlier in the section that endianness is important when a data field spans
more than one byte. Endianness is actually important also when a field of one or
more bytes is defined as a collection of bitfields. See, for example, what the IPv4
header looks like in Figure 18-2 in Chapter 18, and how the kernel defines the
iphdr structure in include/linux/ip.h. The kernel defines _ _LITTLE_ENDIAN_BITFIELD
and _ _BIG_ENDIAN_BITFIELD, respectively, in the little_endian.h and big_endian.h
files mentioned earlier.

Table 1-2. Byte-ordering conversion routines

Macro Meaning (short is 2 bytes, long is 4 bytes)

htons Host-to-network byte order (short)

htonl Host-to-network byte order (long)

ntohs Network-to-host byte order (short)

ntohl Network-to-host byte order (long)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Coding Patterns | 17

Catching Bugs
A few functions are supposed to be called under specific conditions, or are not sup-
posed to be called under certain conditions. The kernel uses the BUG_ON and BUG_TRAP
macros to catch cases where such conditions are not met. When the input condition
to BUG_TRAP is false, the kernel prints a warning message. BUG_ON instead prints an
error message and panics.

Statistics
It is a good habit for a feature to collect statistics about the occurrence of specific
conditions, such as cache lookup successes and failures, memory allocation suc-
cesses and failures, etc. For each networking feature that collects statistics, this book
lists and describes each counter.

Measuring Time
The kernel often needs to measure how much time has passed since a given moment.
For example, a routine that carries on a CPU-intensive task often releases the CPU
after a given amount of time. It will continue its job when it is rescheduled for execu-
tion. This is especially important in kernel code, even though the kernel supports
kernel preemption. A common example in the networking code is given by the rou-
tines that implement garbage collection. We will see plenty in this book.

The passing of time in kernel space is measured in ticks. A tick is the time between
two consecutive expirations of the timer interrupt. The timer takes care of different
tasks (we are not interested in them here) and regularly expires HZ times per second.
HZ is a variable initialized by architecture-dependent code. For example, it is initial-
ized to 1,000 on i386 machines. This means that the timer interrupt expires 1,000
times per second when Linux runs on an i386 system, and that there is one millisec-
ond between two consecutive expirations.

Every time the timer expires it increments the global variable called jiffies. This
means that at any time, jiffies represents the number of ticks since the system
booted, and the generic value n*HZ represents n seconds of time.

If all a function needs is to measure the passing of time, it can save the value of
jiffies into a local variable and later compare the difference between jiffies and
that timestamp against a time interval (expressed in number of ticks) to see how
much time has passed since measurement started.

The following example shows a function that needs to do some kind of work but
does not want to hold the CPU for more than one tick. When do_something says the
work is completed by setting job_done to a nonzero value, the function can return:

unsigned long start_time = jiffies;
int job_done = 0;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Introduction

do {
 do_something(&job_done);
 If (job_done)
 return;
while (jiffies – start_time < 1);

For a couple of examples involving real kernel code using jiffies, see the section
“Backlog Processing: The process_backlog Poll Virtual Function” in Chapter 10, or
the section “Asynchronous cleanup: the neigh_periodic_timer function” in
Chapter 27.

User-Space Tools
Different tools can be used to configure the many networking features available on
Linux. As mentioned at the beginning of the chapter, you can make thoughtful use of
these tools to manipulate the kernel for learning purposes and to discover the effects
of these changes.

The following tools are the ones I will refer often to in this book:

iputils
Besides the perennial command ping, iputils includes arping (used to generate
ARP requests), the Network Router Discovery daemon rdisc, and others.

net-tools
This is a suite of networking tools, where you can find the well-known ifconfig,
route, netstat, and arp, but also ipmaddr, iptunnel, ether-wake, netplugd, etc.

IPROUTE2
This is the new-generation networking configuration suite (although it has been
around for a few years already). Through an omnibus command named ip, the
suite can be used to configure IP addresses and routing along with all of its
advanced features, neighboring protocols, etc.

IPROUTE2’s source code can be downloaded from http://linux-net.osdl.org/index.
php/Iproute2, and the other packages can be downloaded from the download server
of most Linux distributions.

These packages are included by default on most (if not all) Linux distributions.
Whenever you do not understand how the kernel code processes a command from
user space, I encourage you to look at the user-space tool source code and see how
the command from the user is packaged and sent to the kernel.

At the following URLs, you can find good documentation on how to use the afore-
mentioned tools, including active mailing lists:*

* I do not cover the firewall infrastructure design in this book, but I often show where the firewall hooks are
located when analyzing various network protocols and layers.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Browsing the Source Code | 19

• http://lartc.org

• http://www.policyrouting.org

• http://www.netfilter.org

If you want to follow the latest changes in the networking code, keep an eye on the
following mailing list:

• The Linux Network Development List Archives (http://oss.sgi.com/projects/
netdev/archive)

Other, more specific URLs will be given in the associated chapters.

Browsing the Source Code
The Linux kernel has gotten pretty big, and browsing the code with our old friend
grep is definitely not a good idea anymore. Nowadays you can count on different
pieces of software to make your journey into the kernel code a better experience.

One that I would like to suggest to those that do not know it already is cscope, which
you can download from http://cscope.sourceforge.net. It is a simple yet powerful tool
for searching, for example, where a function or variable is defined, where it is called,
etc. Installing the tool is straightforward and you can find all the necessary instruc-
tions on the web site.

Each of us has his preferred editor, and probably the majority of us are fans of some
form of either Emacs or vi. Both editors can use a special file called a “tags” file, to
allow the user to move through source code. (cscope also uses a similar database file.)
You can easily create such files with a synonymous target in the kernel root tree’s
makefile. The three databases: TAGS, tags, and cscope.out, are created, respectively,
with make TAGS, make tags, and make cscope.*

Be aware that those files are pretty big, especially the one used by cscope. Therefore,
make sure before building the file that you have a lot of free disk space.

If you are already using other source navigation tools, fine. But if you are not using
any and have been lazy so far, it is time to say goodbye to grep and invest 15 minutes
in learning how to use the aforementioned tools—they are well worth it.

Dead Code
The kernel, like any other large and dynamic piece of software, includes pieces of
code that are no longer invoked. Unfortunately, you rarely see comments in the code
that tell you this. You may sometimes find yourself having trouble trying to under-
stand how a given function is used or a given variable is initialized simply because

* The tags and TAGS files are created with the help of the ctags utility.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Introduction

you are looking at dead code. If you are lucky, that code does not compile and you
can guess its out-of-date status. Other times you may not be that lucky.

Each kernel subsystem is supposed to be assigned one or more maintainers. How-
ever, some maintainers simply have too much code to look at, and insufficient free
time to do it. Other times they may have lost interest in maintaining their sub-
systems but could not find any substitutes for their role. It is therefore good to keep
this in mind when looking at code that seems to do something strange or that simply
does not adhere to general, common-sense programming rules.

In this book, I tried, whenever meaningful, to alert you about functions, variables,
and data structure fields that are not used, perhaps because they were left behind
when removing a feature or because they were introduced for a new feature whose
coding was never completed.

When a Feature Is Offered as a Patch
The kernel networking code is continuously evolving. Not only does it integrate new
features, but existing components sometimes undergo design changes to achieve
more modularity and higher performance. This obviously makes Linux very attrac-
tive as an embedded operating system for network appliance products (routers,
switches, firewalls, load balancers, etc.).

Because anyone can develop a new feature for the Linux kernel, or extend or reim-
plement an existing one, the greatest thrill for any “open” developer is to see her
work make it to the official kernel release. Sometimes, however, that is not possible
or it may take a long time, even when a project has valuable features and is well
implemented. Common reasons include:

• The code may not have been written following the guidelines in Documentation/
CodingStyle.

• Another major project that provides the same functionality has been around for
some time and has already received the green light from the Linux community
and from the key kernel developers that maintain the associated kernel area.

• There is too much overlap with another kernel component. In a case like this,
the best approach is to remove the redundant functionality and use existing
functionality where possible, or to extend the latter so that it can be used in new
contexts. This situation underlines the importance of modularity.

• The size of the project and the amount of work required to maintain it in a
quick-changing kernel may lead the new project’s developers to keep it as a sepa-
rate patch and release a new version only once in a while.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

When a Feature Is Offered as a Patch | 21

• The feature would be used only in very specific scenarios, considered not neces-
sary in a general-purpose operating system. In this case, a separate patch is often
the best solution.

• The overall design may not satisfy some key kernel developers. These experts
usually have the big picture in mind, concerning both where the kernel is and
where it is going. Often, they request design changes to make a feature fit into
the kernel the right way.

Sometimes, overlap between features is hard to remove completely, perhaps, for
example, because a feature is so flexible that its different uses become apparent only
after some time. For example, the firewall has hooks in several places in the network
stack. This makes it unnecessary for other features to implement any filtering or
marking of data packets going in any direction: they can simply rely on the firewall.
Of course, this creates dependencies (for example, if the routing subsystem wants to
mark traffic matching specific criteria, the kernel must include support for the fire-
wall). Also, the firewall maintainers must be ready to accept reasonable enhance-
ment requests when they are deemed to be required by other kernel features.
However, the compromise is often worth the gain: less redundant code means fewer
bugs, easier code maintenance, simplified code paths, and other benefits.

An example of a recent cleanup of feature overlap is the removal of stateless Net-
work Address Translation (NAT) support by the routing code in version 2.6 of the
kernel. The developers realized that the stateful NAT support in the firewall is more
flexible, and therefore that it was no longer worthwhile maintaining stateless NAT
code (although it is faster and consumes less memory). Note that a new module
could be written for Netfilter at any time to provide stateless NAT support if
necessary.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

22

Chapter 2CHAPTER 2

Critical Data Structures

A few key data structures are referenced throughout the Linux networking code.
Both when reading this book and when studying the source code directly, you’ll need
to understand the fields in these data structures. To be sure, going over data struc-
tures field by field is less fun than unraveling functions, but it’s an important founda-
tion to have. “Show me your data,” said the legendary software engineer, Frederick
P. Brooks.

This chapter introduces the following data structures, and mentions some of the
functions and macros that manipulate them:

struct sk_buff
This is where a packet is stored. The structure is used by all the network layers
to store their headers, information about the user data (the payload), and other
information needed internally for coordinating their work.

struct net_device
Each network device is represented in the Linux kernel by this data structure,
which contains information about both its hardware and its software configura-
tion. See Chapter 8 for details on when and how net_device data structures are
allocated.

Another critical data structure for Linux networking is struct sock, which stores the
networking information for sockets. Because this book does not cover sockets, I have
not included sock in this chapter.

The Socket Buffer: sk_buff Structure
This is probably the most important data structure in the Linux networking code,
representing the headers for data that has been received or is about to be transmit-
ted. Defined in the <include/linux/skbuff.h> include file, it consists of a tremendous
heap of variables that try to be all things to all people.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 23

The structure has changed many times in the history of the kernel, both to add new
options and to reorganize existing fields into a cleaner layout. Its fields can be classi-
fied roughly into the following categories:

• Layout

• General

• Feature-specific

• Management functions

This structure is used by several different network layers (MAC or another link pro-
tocol on the L2 layer, IP on L3, TCP or UDP on L4), and various fields of the struc-
ture change as it is passed from one layer to another. L4 appends a header before
passing it to L3, which in turn puts on its own header before passing it to L2.
Appending headers is more efficient than copying the data from one layer to another.
Since adding space to the beginning of a buffer—which means changing the variable
that points to it—is a complicated operation, the kernel provides the skb_reserve
function (described later in this chapter) to carry it out. Thus, one of the first things
done by each protocol, as the buffer passes down through layers, is to call skb_
reserve to reserve space for the protocol’s header.* In the later section “Data reserva-
tion and alignment: skb_reserve, skb_put, skb_push, and skb_pull,” we will see an
example of how the kernel makes sure enough space is reserved at the head of the
buffer to allow each layer to add its own header while the buffer traverses the layers.

When the buffer passes up through the network layers, each header from the old
layer is no longer of interest. The L2 header, for instance, is used only by the device
drivers that handle the L2 protocol, so it is of no interest to L3. Instead of removing
the L2 header from the buffer, the pointer to the beginning of the payload is moved
ahead to the beginning of the L3 header, which requires fewer CPU cycles.

The rest of this section explains a basic principle about conditional (optional) fields,
and then covers each of the categories just listed.

Networking Options and Kernel Structures
As you can see from glancing at TCP/IP specifications or configuring a kernel, net-
work code provides an enormous number of options that are useful but not always
required, such as a Firewall, Multicasting, and other features. Most of these options
require additional fields in kernel data structures. Therefore, sk_buff is peppered
with C preprocessor #ifdef directives. For example, near the bottom of the sk_buff
definition you can find:

struct sk_buff {

* skb_reserve is also used by device drivers to align the IP header of ingress frames. See Chapter 10.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Critical Data Structures

#ifdef CONFIG_NET_SCHED
 _ _u32 tc_index;
#ifdef CONFIG_NET_CLS_ACT
 _ _u32 tc_verd;
 _ _u32 tc_classid;
#endif
#endif
}

This shows that the field tc_index is part of the data structure only if the CONFIG_NET_
SCHED symbol is defined at compile time, which means that the right option (in this
example, “Device Drivers ➝ Networking support ➝ Networking options ➝ QoS and/
or fair queueing”) has been enabled with some version of make config by an adminis-
trator or by an automated installation utility.

The previous example actually shows two nested options: the fields used by CONFIG_
NET_CLS_ACT (packet classifier) are considered for inclusion only if support for “QoS
and/or fair queueing” is present.

Notice, by the way, that the QoS option cannot be compiled as a module. The rea-
son is that most of the consequences of enabling the option will not be reversible
after the kernel is compiled. In general, any option that causes a change in a kernel
data structure (such as adding the tc_index field to the sk_buff structure) renders the
option unfit to be compiled as a module.

You’ll often want to find out which compile option from make config or its variants
is associated with a given #ifdef symbol, to understand when a block of code is
included in the kernel. The fastest way to make the association, in the 2.6 kernels, is
to look for the symbol in the kconfig files that are spread all over the source tree (one
per directory). In 2.4 kernels, you can consult the file Documentation/Configure.help.

Layout Fields
A few of the sk_buff’s fields exist just to facilitate searching and to organize the data
structure itself. The kernel maintains all sk_buff structures in a doubly linked list.
But the organization of this list is somewhat more complicated than that of a tradi-
tional doubly linked list.

Like any doubly linked list, this one is tied together by next and prev fields in each
sk_buff structure, the next field pointing forward and the prev field pointing back-
ward. But this list has another requirement: each sk_buff structure must be able to
find the head of the whole list quickly. To implement this requirement, an extra
structure of type sk_buff_head is inserted at the beginning of the list, as a kind of
dummy element. The sk_buff_head structure is:

struct sk_buff_head {
 /* These two members must be first. */
 struct sk_buff * next;
 struct sk_buff * prev;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 25

 _ _u32 qlen;
 spinlock_t lock;
};

qlen represents the number of elements in the list. lock is used to prevent simulta-
neous accesses to the list and is described in the section “List management func-
tions,” later in this chapter.

The first two elements of both sk_buff and sk_buff_head are the same: the next and
prev pointers. This allows the two structures to coexist in the same list, even though
sk_buff_head is positively skimpy in comparison to sk_buff. In addition, the same
functions can be used to manipulate both sk_buff and sk_buff_head.

To add to the complexity, every sk_buff structure contains a pointer to the single sk_
buff_head structure. This pointer has the field name list. See Figure 2-1 for help
finding your way around these data structures.

Other interesting fields of sk_buff follow:

struct sock *sk
This is a pointer to a sock data structure of the socket that owns this buffer. This
pointer is needed when data is either locally generated or being received by a
local process, because the data and socket-related information is used by L4
(TCP or UDP) and by the user application. When a buffer is merely being for-
warded (that is, neither the source nor the destination is on the local machine),
this pointer is NULL.

unsigned int len
This is the size of the block of data in the buffer. This length includes both the
data in the main buffer (i.e., the one pointed to by head) and the data in the

Figure 2-1. List of sk_buff elements

next

prev

qlen=4

lock

struct sk_buff_head

next

prev

list

sk

struct sk_buff

next

prev

list

sk

struct sk_buff

next

prev

list

sk

struct sk_buff

next

prev

list

sk

struct sk_buff

...

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Critical Data Structures

fragments.* Its value changes as the buffer moves from one network layer to the
next, because headers are discarded while moving up in the stack and are added
while moving down the stack. len accounts for protocol headers as well, as
shown in Figure 2-8 in the section “Data reservation and alignment: skb_reserve,
skb_put, skb_push, and skb_pull.”

unsigned int data_len
Unlike len, data_len accounts only for the size of the data in the fragments.

unsigned int mac_len
This is the size of the MAC header.

atomic_t users
This is the reference count, or the number of entities using this sk_buff buffer.
The main use of this parameter is to avoid freeing the sk_buff structure when
someone is still using it. For this reason, each user of the buffer should incre-
ment and decrement this field when necessary. This counter covers only the
users of the sk_buff data structure; the buffer containing the actual data is cov-
ered by a similar field (dataref) that will be introduced later in the chapter, in
the section “The skb_shared_info structure and the skb_shinfo function.”

users is sometimes incremented and decremented directly with the atomic_inc
and atomic_dec functions, but most of the time it is manipulated with skb_get
and kfree_skb.

unsigned int truesize
This field represents the total size of the buffer, including the sk_buff structure
itself. It is initially set by the function alloc_skb to len+sizeof(sk_buff) when
the buffer is allocated for a requested data space of len bytes.

struct sk_buff *alloc_skb(unsigned int size,int gfp_mask)
{

 skb->truesize = size + sizeof(struct sk_buff);

}

The field gets updated whenever skb->len is increased.

unsigned char *head
unsigned char *end
unsigned char *data
unsigned char *tail

These represent the boundaries of the buffer and the data within it. When each
layer prepares the buffer for its activities, it may allocate more space for a header
or for more data. head and end point to the beginning and end of the space allo-
cated to the buffer, and data and tail point to the beginning and end of the
actual data. See Figure 2-2. The layer can then fill in the gap between head and

* See Chapter 21 for a discussion of fragmented buffers.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 27

data with a protocol header, or the gap between tail and end with new data.
You will see in the later section “Allocating memory: alloc_skb and dev_alloc_
skb” that the buffer on the right side of Figure 2-2 includes an additional header
at the bottom.

void (*destructor)(...)
This function pointer can be initialized to a routine that performs some activity
when the buffer is removed. When the buffer does not belong to a socket, the
destructor is usually not initialized. When the buffer belongs to a socket, it is
usually set to sock_rfree or sock_wfree (by the skb_set_owner_r and skb_set_
owner_w initialization functions, respectively). The two sock_xxx routines are
used to update the amount of memory held by the socket in its queues.

General Fields
This section covers the majority of sk_buff fields, which are not associated with spe-
cific kernel features:

struct timeval stamp
This is usually meaningful only for a received packet. It is a timestamp that rep-
resents when a packet was received or (occasionally) when one is scheduled for
transmission. It is set by the function netif_rx with net_timestamp, which is
called by the device driver after the reception of each packet and is described in
Chapter 21.

struct net_device *dev
This field, whose type (net_device) will be described in more detail later in the
chapter, describes a network device. The role of the device represented by dev
depends on whether the packet stored in the buffer is about to be transmitted or
has just been received.

Figure 2-2. head/end versus data/tail pointers

Data

tailroom

headroom

. . .
head
data
tail
end
. . .

struct sk_buff

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Critical Data Structures

When a packet is received, the device driver updates this field with the pointer to
the data structure representing the receiving interface, as illustrated by the fol-
lowing piece of code from vortex_rx, the function called by the driver of the
3c59x Ethernet card series when receiving a frame (in drivers/net/3c59x.c):

static int vortex_rx(struct net_device *dev)
{

 skb->dev = dev;

 skb->protocol = eth_type_trans(skb, dev);
 netif_rx(skb); /* Pass the packet to the higher layer */

}

When a packet is to be transmitted, this parameter represents the device through
which it will be sent out. The code that sets the value is more complicated than
the code for receiving a packet, so I will postpone a discussion until Chapter 21
and Chapter 35.

Some network features allow a few devices to be grouped together to represent a
single virtual interface (that is, one that is not directly associated with a hard-
ware device), served by a virtual device driver. When the device driver is
invoked, the dev parameter points to the virtual device’s net_device data struc-
ture. The driver chooses a specific device from its group and changes the dev
parameter to point to the net_device data structure of that device. Under these
circumstances, therefore, the pointer to the transmitting device may be changed
during packet processing.

struct net_device *input_dev
This is the device the packet has been received from. It is a NULL pointer when
the packet has been generated locally. For Ethernet devices, it is initialized in
eth_type_trans (see Chapters 10 and 13). It is used mainly by Traffic Control.

struct net_device *real_dev
This field is meaningful only for virtual devices, and represents the real device
the virtual one is associated with. The Bonding and VLAN interfaces use it, for
example, to remember where the real device ingress traffic is received from.

union {...} h
union {...} nh
union {...} mac

These are pointers to the protocol headers of the TCP/IP stack: h for L4, nh for
L3, and mac for L2. Each field points to a union of various structures, one struc-
ture for each protocol understood by the kernel at that layer. For instance, h is a
union that includes a field for the header of each L4 protocol understood by the
kernel. One member of each union is called raw and is used for initialization; all
later accesses are through the protocol-specific members.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 29

When receiving a data packet, the function responsible for processing the layer n
header receives a buffer from layer n-1 with skb->data pointing to the beginning
of the layer n header. The function that handles layer n initializes the proper
pointer for this layer (for instance, skb->nh for L3 handlers) to preserve the skb->
data field, because the contents of this pointer will be lost during the processing
at the next layer, when skb->data is initialized to a different offset within the
buffer. The function then completes the layer n processing and, before passing
the packet to the layer n+1 handler, updates skb->data to make it point to the
end of the layer n header, which is the beginning of the layer n+1 header (see
Figure 2-3).

Sending a packet reverses this process, with the added complexity of adding a
new header at each layer.

struct dst_entry dst
This is used by the routing subsystem. Because the data structure is quite com-
plex and requires knowledge of how other subsystems work, I’ll postpone a
description of it until Part VII.

char cb[40]
This is a “control buffer,” or storage for private information, maintained by each
layer for internal use. It is statically allocated within the sk_buff structure (cur-
rently with a size of 40 bytes) and is large enough to hold whatever private data
is needed by each layer. In the code for each layer, access is done through mac-
ros to make the code more readable. TCP, for example, uses that space to store a
tcp_skb_cb data structure, which is defined in include/net/tcp.h:

struct tcp_skb_cb {

 _ _u32 seq; /* Starting sequence number */
 _ _u32 end_seq; /* SEQ + FIN + SYN + datalen*/
 _ _u32 when; /* used to compute rtt's */
 _ _u8 flags; /* TCP header flags. */

};

Figure 2-3. Header’s pointer initializations while moving from layer two to layer three

(a) Before

Ethernet
header

(MAC-L2)

IP
header

(L3)

TCP
header

(L4)
.

skb -> mac

skb -> data

(b) After

Ethernet
header

(MAC-L2)

IP
header

(L3)

TCP
header

(L4)
.

skb -> mac

skb -> data

skb -> nh

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Critical Data Structures

And this is the macro used by the TCP code to access the structure. The macro
consists simply of a pointer cast:

#define TCP_SKB_CB(_ _skb) ((struct tcp_skb_cb *)&((_ _skb)->cb[0]))

Here is an example where the TCP subsystem fills in the structure upon receipt
of a segment:

int tcp_v4_rcv(struct sk_buff *skb)
{

 th = skb->h.th;
 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
 skb->len - th->doff * 4);
 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
 TCP_SKB_CB(skb)->when = 0;
 TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;
 TCP_SKB_CB(skb)->sacked = 0;

}

To see how the parameters in the cb buffer are retrieved, take a look at the func-
tion tcp_transmit_skb in net/ipv4/tcp_output.c. That function is used by TCP to
push a data segment down to the IP layer for transmission.

In Chapter 22, you will also see how IPv4 uses cb to store information about IP
fragmentation.

unsigned int csum
unsigned char ip_summed

These represent the checksum and associated status flag. Their use is described
in Chapter 19.

unsigned char cloned
A boolean flag that, when set, indicates that this structure is a clone of another
sk_buff buffer. See the later section “Cloning and copying buffers.”

unsigned char pkt_type
This field classifies the type of frame based on its L2 destination address. The
possible values are listed in include/linux/if_packet.h. For Ethernet devices, this
parameter is initialized by the function eth_type_trans, which is described in
Chapter 13.

The main values it can be assigned are:

PACKET_HOST
The destination address of the received frame is that of the receiving inter-
face; in other words, the packet has reached its destination.

PACKET_MULTICAST
The destination address of the received frame is one of the multicast
addresses to which the interface is registered.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 31

PACKET_BROADCAST
The destination address of the received frame is the broadcast address of the
receiving interface.

PACKET_OTHERHOST
The destination address of the received frame does not belong to the ones
associated with the interface (unicast, multicast, and broadcast); thus, the
frame will have to be forwarded if forwarding is enabled, and dropped oth-
erwise.

PACKET_OUTGOING
The packet is being sent out; among the users of this flag are the Decnet pro-
tocol and the function that gives each network tap a copy of the outgoing
packet (see dev_queue_xmit_nit in Chapter 11).

PACKET_LOOPBACK
The packet is being sent out to the loopback device. Thanks to this flag,
when dealing with the loopback device, the kernel can skip some operations
needed for real devices.

PACKET_FASTROUTE
The packet is being routed using the Fastroute feature. Fastroute support is
not available anymore in 2.6 kernels.

Chapter 13 details how those values are set based on the L2 destination address
value.

_ _u32 priority
This indicates the Quality of Service (QoS) class of a packet being transmitted or
forwarded. If the packet is generated locally, the socket layer defines the
priority value. If instead the packet is being forwarded, the function rt_
tos2priority (called from the ip_forward function) defines the value of the field
according to the value of the Type of Service (ToS) field in the IP header itself.
The value of this parameter has nothing to do with the DiffServ Code Point
(DSCP) described in Chapter 18. I will discuss its role in the section “ip_for-
ward Function” in Chapter 20.

unsigned short protocol
This is the protocol used at the next-higher layer from the perspective of the
device driver at L2. Typical protocols listed here are IP, IPv6, and ARP; a com-
plete list is available in include/linux/if_ether.h. Since each protocol has its own
function handler for the processing of incoming packets, this field is used by the
driver to inform the layer above it what handler to use. Each driver calls netif_rx
to invoke the handler for the upper network layer, so the protocol field must be
initialized before that function is invoked. See Chapters 10 and 13 for more detail.

unsigned short security
This is the security level of the packet. This field was originally introduced for
use with IPsec but is no longer used.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Critical Data Structures

Feature-Specific Fields
The Linux kernel is modular, allowing you to select what to include and what to
leave out. Thus, some fields are included in the sk_buff data structure only if the ker-
nel is compiled with support for particular features such as firewalling (Netfilter) or
QoS:

unsigned long nfmark
_ _u32 nfcache
_ _u32 nfctinfo
struct nf_conntrack *nfct
unsigned int nfdebug
struct nf_bridge_info *nf_bridge

These parameters are used by Netfilter (the firewall code), and more specifically
by the kernel option “Device Drivers ➝ Networking support ➝ Networking
options ➝ Network packet filtering” and its two suboptions, “Network packet
filtering debugging” and “Bridged IP/ARP packets filtering.”

union {...} private
This union is used by the High Performance Parallel Interface (HIPPI). The asso-
ciated kernel option is “Device Drivers ➝ Networking support ➝ Network device
support ➝ HIPPI driver support.”

_ _u32 tc_index
_ _u32 tc_verd
_ _u32 tc_classid

These parameters are used by the Traffic Control, and more specifically by the
kernel option “Device Drivers ➝ Networking support ➝ Networking options ➝

QoS and/or fair queueing” and its suboption, “Packet classifier API.”

struct sec_path *sp
This is used by the IPsec protocol suite to keep track of transformations.

Management Functions
Lots of functions, usually very short and simple, are offered by the kernel to manipu-
late sk_buff elements or lists of elements. With the help of Figure 2-4, I’ll describe
the most important ones. First we will see the functions used to allocate and free
buffers, and then the ones used to manipulate the pointers (i.e., skb->data) to reserve
space at the head or at the tail of a frame.

If you take a look at the files include/linux/skbuff.h and net/core/skbuff.c, you will
notice that almost all of the functions exist in two versions, with names like do_
something and _ _do_something. Usually, the first one is a wrapper that adds extra
sanity checks or locking mechanisms around a call to the second one. The internal
_ _do_something form is generally not called directly (unless specific conditions are
met—i.e., lock requirements, to name one). Exceptions to that rule are usually
poorly coded functions that will be fixed eventually.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 33

Allocating memory: alloc_skb and dev_alloc_skb

alloc_skb is the main function for the allocation of buffers and is defined in net/core/
skbuff.c. We have already seen that the data buffer and the header (the sk_buff data
structure) are two different entities, which means that creating a single buffer
involves two allocations of memory (one for the buffer and one for the sk_buff
structure).

Figure 2-4. Before and after: (a)skb_put, (b)skb_push, (c)skb_pull, and (d)skb_reserve

skb -> len

n

(a1) (a2)

n

(b1) (b2)

n

(c1)

n

(c2)

skb -> data
skb -> tail

(d1)

n

(d2)

skb -> data
skb -> tail

skb -> tailskb -> tail

skb -> data

skb -> data

skb -> data

skb -> data

skb -> data

skb -> data

skb -> tail skb -> tail

skb -> tail

skb -> tail

skb -> len

skb -> len
skb -> len

skb -> lenskb -> len

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Critical Data Structures

alloc_skb takes an sk_buff data structure from a cache by calling the function kmem_
cache_alloc, and gets a data buffer by calling kmalloc, which also uses cached mem-
ory if it is available. The code (slightly simplified) is:

 skb = kmem_cache_alloc(skbuff_head_cache, gfp_mask & ~_ _GFP_DMA);

 size = SKB_DATA_ALIGN(size);
 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);

Before calling kmalloc, the size parameter is tuned with the macro SKB_DATA_ALIGN to
force alignment. Before returning, the function initializes a few parameters in the
structure, producing the final result shown in Figure 2-5.

At the bottom of the memory block on the right side of Figure 2-5 you can see the
padding area introduced to force the alignment. The skb_shared_info block is mainly
used to handle IP fragments and is described later in this chapter. The fields shown
on the left side of the figure were explained earlier.

dev_alloc_skb is the buffer allocation function meant for use by device drivers and
expected to be executed in interrupt mode. It is simply a wrapper around alloc_skb
that adds 16 bytes to the requested size for optimization reasons and asks for an
atomic operation (GFP_ATOMIC) since it will be called from within an interrupt han-
dler routine:

static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
 return _ _dev_alloc_skb(length, GFP_ATOMIC);
}

static inline
struct sk_buff *_ _dev_alloc_skb(unsigned int length, int gfp_mask)
{
 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
 if (likely(skb))

Figure 2-5. alloc_skb function

Padding

struct
skb_shared_infolen=0

. . .
head
data
tail
end
. . .

struct sk_buff

size SKB_DATA_ALIGN(size)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 35

 skb_reserve(skb, 16);
 return skb;
}

This definition of _ _dev_alloc_skb is the default one used when there is no
architecture-specific definition.

Freeing memory: kfree_skb and dev_kfree_skb

These two functions release a buffer, which results in its return to the buffer pool
(cache). kfree_skb is both called directly and invoked through the dev_kfree_skb
wrapper. The latter is defined for use by device drivers, to have a name that parallels
dev_alloc_skb but consists of a simple macro that does nothing but call kfree_skb.
This basic function releases a buffer only when the skb->users counter is 1 (when no
users of the buffer are left). Otherwise, the function simply decrements that counter.
So if a buffer had three users, only the third call to dev_kfree_skb or kfree_skb would
free memory.

The flowchart in Figure 2-6 shows all the steps involved in freeing a buffer. As you
will see in Chapter 33, an sk_buff structure can hold a reference on a dst_entry data
structure. When the sk_buff structure is freed, therefore, dst_release also has to be
called to decrement the reference count on the associated dst_entry data structure.

When the destructor function pointer has been initialized, it is called here (see the
section “Layout Fields” earlier in this chapter).

We have seen in Figure 2-5 what a simple scenario looks like: an sk_buff data struc-
ture is associated to another memory block where the actual data is stored. However,
the skb_shared_info data structure at the bottom of that data block, as shown in
Figure 2-5, can hold pointers to other memory fragments. See Chapter 21 for some
examples. kfree_skb releases the memory held by those fragments as well, when they
are present. Finally, the sk_buff data structure is returned to the skbuff_head_cache
cache.

Data reservation and alignment: skb_reserve, skb_put, skb_push, and skb_pull

skb_reserve reserves some space (headroom) at the head of the buffer and is com-
monly used to allow the insertion of a header or to force data to be aligned on some
boundary. The function shifts the data and tail pointers (discussed earlier in the sec-
tion “Layout Fields”) that mark the beginning and the end of the payload, respec-
tively. Figure 2-4(d) shows the result of calling skb_reserve(skb,n). This function is
usually called soon after the allocation of the buffer, when data and tail are still the
same.

If you look at the receive function of one of the Ethernet drivers (for instance,
vortex_rx in drivers/net/3c59x.c) you will see that they all use the following com-
mand before storing any data in the buffer they have just allocated:

skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Critical Data Structures

Because they know that they are about to copy an Ethernet frame that has a header
14 octets long into the buffer, the argument of 2 shifts the head of the buffer 2 bytes.
This keeps the IP header, which follows immediately after the Ethernet header,
aligned on a 16-byte boundary from the beginning of the buffer, as shown in
Figure 2-7.

Figure 2-6. kfree_skb function

Decrement skh refcnt
(skb->users)

Is skb refent
=0 ?

Is skb in
a list?

Is skb ->
destructor
initialized?

Is skb a
clone?

Decrement refcnt on
data (dataref)

Is refcnt
dataref=0?

Return skb to the
cache

Free the main buffer
and any fragments

Return

Print warning msg
(likely to be a bug)

Execute destructor

No

Yes

No

Yes

skb_release_dataNo

Yes

Yes

Yes

No

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 37

Figure 2-8 shows an example of using skb_reserve in the opposite direction, during
data transmission.

Figure 2-7. (a) before skb_reserve, (b) after skb_reserve, and (c) after copying the frame on the
buffer

Figure 2-8. Buffer that is filled in while traversing the stack from the TCP layer down to the link
layer

Ethernet
 header

IP payload

len=L
. . .

head
data
tail
end
. . .

struct sk_buff

Padding

IP header

2

14

L

len=0
. . .

head
data
tail
end
. . .

struct sk_buff

Padding 22len=0
. . .

head
data
tail
end
. . .

struct sk_buff

(a) (b) (c)

TCP payload

len=L1
. . .

head
data
tail
end
. . .

struct sk_buff

len=0
. . .

head
data
tail
end
. . .

struct sk_buff

len=0
. . .

head
data
tail
end
. . .

struct sk_buff

(a) (b) (c)

(d) (e) (f)

L1

IP header

TCP payload

len=L4
. . .

head
data
tail
end
. . .

struct sk_buff

Ethernet
header

TCP header L4

M
AX

_T
CP

_H
EA

DE
R

IP header

TCP payload

len=L3
. . .

head
data
tail
end
. . .

struct sk_buff

TCP header
L3

TCP payload

len=L2
. . .

head
data
tail
end
. . .

struct sk_buff

TCP header

L2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Critical Data Structures

1. When TCP is asked to transmit some data, it allocates a buffer following certain
criteria (TCP Maximum Segment Size (mss), support for scatter gather I/O, etc.).

2. TCP reserves (with skb_reserve) enough space at the head of the buffer to hold
all the headers of all layers (TCP, IP, link layer). The parameter MAX_TCP_HEADER is
the sum of all headers of all levels and is calculated taking into account the
worst-case scenarios: because the TCP layer does not know what type of inter-
face will be used for the transmission, it reserves the biggest possible header for
each layer. It even accounts for the possibility of multiple IP headers (because
you can have multiple IP headers when the kernel is compiled with support for
IP over IP).

3. The TCP payload is copied into the buffer. Note that Figure 2-8 is just an exam-
ple. The TCP payload could be organized differently; for example, it could be
stored as fragments. In Chapter 21, we will see what a fragmented buffer (also
commonly called a paged buffer) looks like.

4. The TCP layer adds its header.

5. The TCP layer hands the buffer to the IP layer, which adds its header as well.

6. The IP layer hands the IP packet to the neighboring layer, which adds the link
layer header.

Note that while the buffer travels down the network stack, each protocol moves
skb->data down, copies in its header, and updates skb->len. All of this is accom-
plished with the functions we saw in Figure 2-4.

Note that the skb_reserve function does not really move anything into or within the
data buffer; it simply updates the two pointers as depicted in Figure 2-4(d).

static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
{
 skb->data+=len;
 skb->tail+=len;
}

skb_push adds one block of data to the beginning of the buffer, and skb_put adds one
to the end. Like skb_reserve, these functions don’t really add any data to the buffer;
they simply move the pointers to its head or tail. The new data is supposed to be
copied explicitly by other functions. skb_pull removes a block of data from the head
of the buffer by moving the head pointer forward. Figure 2-4 shows how these func-
tions work.

The skb_shared_info structure and the skb_shinfo function

As shown in Figure 2-5, there is a structure called skb_shared_info at the end of the
data buffer that keeps additional information about the data block. The data

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 39

structure immediately follows the end pointer that marks the end of the data. This is
the definition of the data structure:

struct skb_shared_info {
 atomic_t dataref;
 unsigned int nr_frags;
 unsigned short tso_size;
 unsigned short tso_seqs;
 struct sk_buff *frag_list;
 skb_frag_t frags[MAX_SKB_FRAGS];
};

dataref represents the number of “users” of the data block and is described in the
next section, “Cloning and copying buffers.” nr_frags, frag_list, and frags are used
to handle IP fragments and are described in Chapter 21. The skb_is_nonlinear rou-
tine can be used to check whether the buffer is fragmented, and skb_linearize* can
be used to collapse the fragments into a single flat buffer. Collapsing the fragments
involves copying, which introduces a performance penalty.

Some network interface cards (NICs) can handle in hardware some of the tasks that
have traditionally been done by the CPU. The most common example is the compu-
tation of the L3 and L4 checksums. Some NICs can even maintain the L4 protocol’s
state machines. For the sake of the code shown here, we are interested in TCP seg-
mentation offload, where the NIC implements a subset of the TCP layer. tso_size
and tso_seqs are used by this feature.

Note that there is no field inside the sk_buff structure pointing at the skb_shared_
info data structure. To access that structure, functions need to use the skb_shinfo
macro, which simply returns the end pointer:

#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))

The following statement, for instance, shows how the macro is used to increment a
field of the private block:

skb_shinfo(skb)->nr_frags++;

Cloning and copying buffers

When the same buffer needs to be processed independently by different consumers,
and they may need to change the content of the sk_buff descriptor (the h and nh
pointers to the protocol headers), the kernel does not need to make a complete copy
of both the sk_buff structure and the associated data buffers. Instead, to be more
efficient, the kernel can clone the original, which consists of making a copy of the sk_
buff structure only and playing with the reference counts to avoid releasing the
shared data block prematurely. Buffer cloning is done with the skb_clone function.

* See the section “dev_queue_xmit Function” in Chapter 11 for an example of its use.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Critical Data Structures

An example of a situation using cloning is when an ingress packet needs to be deliv-
ered to multiple recipients, such as the protocol handler and one or more network
taps (see Chapter 21).

The sk_buff clone is not linked to any list and has no reference to the socket owner.
The field skb->cloned is set to 1 in both the clone and the original buffer. skb->users
is set to 1 in the clone so that the first attempt to remove it succeeds, and the num-
ber of references (dataref) to the buffer containing the data is incremented (since
now there is one more sk_buff data structure pointing to it). Figure 2-9 shows an
example of a cloned buffer.

The skb_clone routine can be used to check the cloned status of an skb buffer.

Figure 2-9 shows an example of a fragmented buffer—that is to say, a buffer that has
some data stored in data fragments linked with the frags array. We will see how
fragmented buffers are used in Chapter 21; for now, let’s not bother with those
details.

The skb_share_check routine can be used to check the reference count skb->users
and clone the buffer skb when the users field says the buffer is shared.

When a buffer is cloned, the contents of the data block cannot be modified. This
means that code can access the data without any need for locking. When, however, a
function needs to modify not only the contents of the sk_buff structure but the data
too, it needs to clone the data block as well. In this case, the programmer has two
options. When he knows he needs to modify only the contents of the data in the area
between skb->start and skb->end, he can use pskb_copy to clone just that area. When

Figure 2-9. skb_clone function

tailroom

headroom

. . .
head
data
tail
end

struct sk_buff

dataref=2
nr_frag = 1

frags

skb

head
data
tail
end

users = 1

struct sk_buff

Clone

struct skb_shared_info

DATA

sk_shinfo(skb)sk_shinfo(clone)

DATA S1

. . .

page
page_offset=0
size=S1

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Socket Buffer: sk_buff Structure | 41

he thinks he may need to modify the content of the fragment data blocks too, he
must use skb_copy. The result of both pskb_copy and skb_copy is shown in
Figure 2-10. You will see in Chapter 21 that the skb_shared_info data structure can
include a list of sk_buff structures too (linked to a field called frag_list). That list is
handled by pskb_copy and skb_copy in the same way as the frags array (this detail has
been omitted from Figure 2-10 to keep the latter more readable).

You may not be able to appreciate all of the details in Figures 2-9 and 2-10 at this
point. Later in the book, especially once you have gone through Part V, everything
will make more sense.

Figure 2-10. (a) pskb_copy function and (b) skb_copy function

. . .
head
data
tail
end
. . .

DATA

headroom

nr_frags=1
dataref=1

frags

. . .

skb_shinfo(skb)

(b)

page
page_offset=0
size=S1

Data S1

struct sk_buff

tailroom

struct
skb_shared_info

skb

Data
(copied)

DATA
(copied)

headroom

nr_frags=1
dataref=1

frags

. . .

page
page_offset=0
size=S1

tailroom

. . .
head
data
tail
end
. . .

skb_shinfo(new)

struct sk_buff
new

. . .
head
data
tail
end
. . .

DATA

headroom

nr_frags=1
dataref=1

frags

. . .

skb_shinfo(skb)

(a)

page
page_offset=0
size=S1

Data S1

struct sk_buff

tailroom

struct
skb_shared_info

skb

DATA
(copied)

headroom

nr_frags=1
dataref=1

frags

. . .

page
page_offset=0
size=S1

tailroom

. . .
head
data
tail
end
. . .

skb_shinfo(new)

struct sk_buff
new

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Critical Data Structures

While discussing the various topics of this book, I will sometimes emphasize that a
given function needs to clone or copy a buffer. When deciding to make a clone or
copy of a buffer, programmers of each subsystem cannot anticipate whether other
kernel components (or other users of their subsystems) will need the original infor-
mation in that buffer. The kernel is very modular and changes in a very dynamic and
unpredictable way, so each subsystem is ignorant of what other subsystems may do
with a buffer. Therefore, the programmers of each subsystem just keep track of any
modifications they make to the buffer, and take care to make a copy before modify-
ing anything in case some other part of the kernel needs the original information.

List management functions

These functions manipulate the lists of sk_buff elements, also called queues. For a
complete list of functions, see <include/linux/skbuff.h> and <net/core/skbuff.c>.
Some of the most commonly used functions are:

skb_queue_head_init
Initializes an sk_buff_head with an empty queue of elements.

skb_queue_head, skb_queue_tail
Adds one buffer to the head or to the tail of a queue, respectively.

skb_dequeue, skb_dequeue_tail
Dequeues an element from the head or from the tail, respectively. The second
function should probably have been called skb_dequeue_head to be consistent
with the names of the other queueing functions.

skb_queue_purge
Empties a queue.

skb_queue_walk
Runs a loop on each element of a queue in turn.

All functions of this class must be executed atomically—that is, they must grab the
spin lock provided by the sk_buff_head structure for the queue. Otherwise, they
could be interrupted by asynchronous events that enqueue or dequeue elements
from the queues, such as functions invoked by expired timers, which would lead to
race conditions.

Thus, each function is implemented as follows:

static inline function_name (parameter_list)
{
 unsigned long flags;

 spin_lock_irqsave(...);
_ _function_name (parameter_list)

 spin_unlock_irqrestore(...);
}

The function consists of a wrapper that grabs the lock, does its work by invoking a
function whose name begins with two underscores, and releases the lock.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

net_device Structure | 43

net_device Structure
The net_device data structure stores all information specifically regarding a network
device. There is one such structure for each device, both real ones (such as Ethernet
NICs) and virtual ones (such as bonding* or VLAN†). In this section, I will use the
words interface and device interchangeably, even though the difference between them
is important in other contexts.

The net_device structures for all devices are put into a global list to which the global
variable dev_base points. The data structure is defined in include/linux/netdevice.h.
The registration of network devices is described in Chapter 8. In that chapter, you
can find details on how and when most of the net_device fields are initialized.

Like sk_buff, this structure is quite big and includes many feature-specific parame-
ters, along with parameters from many different layers. For this reason, the overall
organization of the structure will probably see some changes soon for optimization
reasons.

Network devices can be classified into types such as Ethernet cards and Token Ring
cards. While certain fields of the net_device structure are set to the same value for all
devices of the same type, some fields must be set differently by each model of device.
Thus, for almost every type, Linux provides a general function that initializes the
parameters whose values stay the same across all models. Each device driver invokes
this function in addition to setting those fields that have unique values for its model.
Drivers can also overwrite fields that were already initialized by the kernel (for
instance, to improve performance). You can find more details in Chapter 8.

The fields of the net_device structure can be classified into the following categories:

• Configuration

• Statistics

• Device status

• List management

• Traffic management

• Feature specific

• Generic

• Function pointers (or VFT)

* Bonding, also called EtherChannel (Cisco terminology) and trunking (Sun terminology), allows a set of inter-
faces to be grouped together and be treated as a single interface. This feature is useful when a system needs
to support point-to-point connections at a high bandwidth. A nearly linear speedup can be achieved, with
the virtual interface having a throughput nearly equal to the sum of the throughputs of the individual inter-
faces.

† VLAN stands for Virtual LAN. The use of VLANs is a convenient way to isolate traffic using the same L2
switch in different broadcast domains by means of an additional tag, called the VLAN tag, that is added to
the Ethernet frames. You can find an introduction to VLANs and their use with Linux at http://www.
linuxjournal.com/article/7268.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Critical Data Structures

Identifiers
The net_device structure includes three identifiers, not to be confused:

int ifindex
A unique ID, assigned to each device when it is registered with a call to dev_new_
index.

int iflink
This field is mainly used by (virtual) tunnel devices and identifies the real device
that will be used to reach the other end of the tunnel.

unsigned short dev_id
Currently used by IPv6 with the zSeries OSA NICs. The field is used to differen-
tiate between virtual instances of the same device that can be shared between dif-
ferent OSes concurrently. See comments in net/ipv6/addrconf.c.

Configuration
Some of the configuration fields are given a default value by the kernel that depends
on the class of network device, and some fields are left to the driver to fill. The driver
can change defaults, as mentioned earlier, and some fields can even be changed at
runtime by commands such as ifconfig and ip. In fact, several parameters—base_
addr, if_port, dma, and irq—are commonly set by the user when the module for the
device is loaded. On the other hand, these parameters are not used by virtual devices.

char name[IFNAMSIZ]
Name of the device (e.g., eth0).

unsigned long mem_start
unsigned long mem_end

These fields describe the shared memory used by the device to communicate
with the kernel. They are initialized and accessed only within the device driver;
higher layers do not need to care about them.

unsigned long base_addr
The beginning of the I/O memory mapped to the device’s own memory.

unsigned int irq
The interrupt number used by the device to talk to the kernel. It can be shared
among multiple devices. Drivers use the request_irq function to allocate this
variable and free_irq to release it.

unsigned char if_port
The type of port being used for this interface. See the next section, “Interface
types and ports.”

unsigned char dma
The DMA channel used by the device (if any). To obtain and release a DMA
channel from the kernel, the file kernel/dma.c defines the functions request_dma

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

net_device Structure | 45

and free_dma. To enable or disable a DMA channel after obtaining it, the func-
tions enable_dma and disable_dma are provided in various include/asm-
architecture files (e.g., include/asm-i386). The routines are used by ISA devices;
Peripheral Component Interconnect (PCI) devices do not need them because
they use others instead.

DMA is not available for all devices because some buses don’t use it.

unsigned short flags
unsigned short gflags
unsigned short priv_flags

Some bits in the flags field represent capabilities of the network device (such as
IFF_MULTICAST) and others represent changing status (such as IFF_UP or IFF_
RUNNING). You can find the complete list of these flags in include/linux/if.h. The
device driver usually sets the capabilities at initialization time, and the status
flags are managed by the kernel in response to external events. The settings of
the flags can be viewed through the familiar ifconfig command:
bash# ifconfig lo
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:198 errors:0 dropped:0 overruns:0 frame:0
 TX packets:198 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

In this example, the words UP LOOPBACK RUNNING correspond to the flags IFF_UP,
IFF_LOOPBACK, and IFF_RUNNING.

priv_flags stores flags that are not visible to the user space. Right now this field
is used by the VLAN and Bridge virtual devices. gflags is almost never used and
is there for compatibility reasons. Flags can be changed through the dev_change_
flags function.

int features
Another bitmap of flags used to store some other device capabilities. It is not
redundant for this data structure to contain multiple flag variables. The features
field reports the card’s capabilities for communicating with the CPU, such as
whether the card can do DMA to high memory, or checksum all the packets in
hardware. The list of the possible features is defined inside the structure net_
device itself. This parameter is initialized by the device driver. You can find the
list of NETIF_F_XXX features, along with good comments, inside the net_device
data structure definition.

unsigned mtu
MTU stands for Maximum Transmission Unit and it represents the maximum
size of the frames that the device can handle. Table 2-1 shows the values for the
most common network technologies.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Critical Data Structures

The Ethernet MTU deserves a little clarification. The Ethernet frame specifica-
tion defines the maximum payload size as 1,500 bytes. Sometimes you find the
Ethernet MTU defined as 1,518 or 1,514: the first is the maximum size of an
Ethernet frame including the header, and the second includes the header but not
the frame check sequence (4 bytes of checksum).

In 1998, Alteon Networks (acquired by Nortel Networks in 2000) promoted an
initiative to increase the maximum payload of Ethernet frames to 9 KB. This pro-
posal was later formalized with an IETF Internet draft, but the IEEE never
accepted it. Frames exceeding the 1,500 bytes of payload in the IEEE specifica-
tion are commonly called jumbo frames and are used with Gigabit Ethernet to
increase throughput. This is because bigger frames mean fewer frames for large
data transfers, fewer interrupts, and therefore less CPU usage, less header over-
head, etc.). For a discussion of the benefits of increasing the Ethernet MTU and
why IEEE does not agree on standardizing this extension, you can read the white
paper “Use of Extended Frame Sizes in Ethernet Networks” that can be found
with an Internet search, as well as at http://www.ietf.org/proceedings/01aug/I-D/
draft-ietf-isis-ext-eth-01.txt.

unsigned short type
The category of devices to which it belongs (Ethernet, Frame Relay, etc.).
include/linux/if_arp.h contains the complete list of possible types.

unsigned short hard_header_len
The size of the device header in octets. The Ethernet header, for instance, is 14
octets long. The length of each device header is defined in the header file for that
device. For Ethernet, for instance, ETH_HLEN is defined in <include/linux/if_ether.h>.

Table 2-1. MTU values for different device types

Device type MTU

PPP 296

SLIP 296

Ethernet 1,500

ISDN 1,500

PLIP 1,500 (ether_setup)

Wavelan 1,500 (ether_setup)

EtherChannel 2,024

FDDI 4,352

Token Ring 4 MB/s (IEEE 802.5) 4,464

Token Bus (IEEE 802.4) 8,182

Token Ring 16 MB/s (IBM) 17,914

Hyperchannel 65,535

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

net_device Structure | 47

unsigned char broadcast[MAX_ADDR_LEN]
The link layer broadcast address.

unsigned char dev_addr[MAX_ADDR_LEN]
unsigned char addr_len

dev_addr is the device link layer address; do not confuse it with the L3 or IP
address. The address’s length in octets is given by addr_len. The value of addr_
len depends on the type of device. Ethernet addresses are six octets long.

int promiscuity
See the later section “Promiscuous mode.”

Interface types and ports

Some devices come with more than one connector (the most common combination
is BNC + RJ45) and allow the user to select one of them depending on her needs.
This parameter is used to set the port type for the device. When the device driver is
not forced by configuration commands to select a specific port type, it simply
chooses a default one. There are also cases where a single device driver can handle
different interface models; in those situations, the interface can discover the port type
to use by simply trying all of them in a specific order. This piece of code shows how
one device driver sets the interface mode depending on how it has been configured:

 switch (dev->if_port) {
 case IF_PORT_10BASE2:
 writeb((readb(addr) & 0xf8) | 1, addr);
 break;
 case IF_PORT_10BASET:
 writeb((readb(addr) & 0xf8), addr);
 break;
 }

Promiscuous mode

Certain network administration tasks require a system to receive all the frames that
travel across a shared cable, not just the ones directly addressed to it; a device that
receives all packets is said to be in promiscuous mode. This mode is needed, for
instance, by applications that check performance or security breaches on their local
network segment. Promiscuous mode is also used by bridging code (see Part IV).
Finally, it has obvious value to malicious snoopers, unfortunately; for this reason, no
data is secure from other users on a local network unless it is encrypted.

The net_device structure contains a counter named promiscuity that indicates a
device is in promiscuous mode. The reason it is a counter rather than a simple flag is
that several clients may ask for promiscuous mode; therefore, each increments the
counter when entering the mode and decrements the counter when leaving the
mode. The device does not leave promiscuous mode until the counter reaches zero.
Usually the field is manipulated by calling the function dev_set_promiscuity.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Critical Data Structures

Whenever promiscuity is nonzero (such as through a call to dev_set_promiscuity),
the IFF_PROMISC bit flag of flags is also set and is checked by the functions that con-
figure the interface.

The following piece of code, taken from the drivers/net/3c59x.c driver, shows how
the different receive modes are set based on the flags (bits) in the flags field:

static void set_rx_mode(struct net_device *dev)
{
 int ioaddr = dev->base_addr;
 int new_mode;

 if (dev->flags & IFF_PROMISC) {
 if (corqscreq_debug > 3)
 printk("%s: Setting promiscuous mode.\n", dev->name);
 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast | RxProm;
 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast;
 } else
 new_mode = SetRxFilter | RxStation | RxBroadcast;

 outw(new_mode, ioaddr + EL3_CMD);
}

When the IFF_PROMISC flag is set, the new_mode variable is initialized to accept the traf-
fic addressed to the card (RxStation), multicast traffic (RxMulticast), broadcast traf-
fic (RxBroadcast), and all the other traffic (RxProm). EL3_CMD is the offset to the ioaddr
memory address that represents where commands are supposed to be copied when
interacting with the device.

Statistics
Instead of providing a collection of fields to keep statistics, the net_device structure
includes a pointer named priv that is set by the driver to point to a private data
structure storing information about the interface. The private data consists of statis-
tics such as the number of packets transmitted and received and the number of errors
encountered.

The format of the structure pointed at by priv depends both on the device type and
on the particular model: thus, different Ethernet cards may use different private
structures. However, nearly all structures include a field of type net_device_stats
(defined in include/linux/netdevice.h) that contains statistics common to all the net-
work devices and that can be retrieved with the method get_stats, described later.

Wireless devices behave so differently from wired devices that wireless ones do not
find the net_device_stats data structure appropriate. Instead, they provide a field of
type iw_statistics that can be retrieved using a method called get_wireless_stats,
described later.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

net_device Structure | 49

The data structure to which priv points sometimes has a name reflecting the inter-
face (e.g., vortex_private for the Vortex and Boomerang series, also called the 3c59x
family), and other times is simply called net_local. Still, the fields in net_local are
defined uniquely by each device driver.

The private data structure may be more or less complex depending on the card’s capa-
bilities and on how much the device driver writer is willing to employ sophisticated
statistics and complex design to enhance performance. Compare, for instance, the
generic net_local structure used by the 3c507 Ethernet card in drivers/net/3c507.c
with the highly detailed vortex_private structure used by the 3c59x Ethernet card in
drivers/net/3c59x.c. Both, however, include a field of type net_device_stats.

As you will see in Chapter 8, the private data structure is sometimes appended to the
net_device structure itself (requiring only one malloc for both) and sometimes allo-
cated as a separate block.

Device Status
To control interactions with the NIC, each device driver has to maintain information
such as timestamps and flags indicating what kind of behavior the interface requires.
In a symmetric multiprocessing (SMP) system, the kernel also has to make sure that
concurrent accesses to the same device from different CPUs are handled correctly. Sev-
eral fields of the net_device structure are dedicated to these types of information:

unsigned long state
A set of flags used by the network queuing subsystem. They are indexed by the
constants in the enum netdev_state_t, which is defined in include/linux/
netdevice.h and defines constants such as _ _LINK_STATE_XOFF for each bit. Indi-
vidual bits are set and cleared using the general functions set_bit and clear_bit,
usually invoked through a wrapper that hides the details of the bit used. For
example, to stop a device queue, the subsystem invokes netif_stop_queue, which
looks like this:

static inline void netif_stop_queue(struct net_device *dev)
{
 ...
 set_bit(_ _LINK_STATE_XOFF, &dev->state);
}

The Traffic Control subsystem is briefly introduced in Chapter 11.

enum {...} reg_state
The registration state of the device. See Chapter 8.

unsigned long trans_start
The time (measured in jiffies) when the last frame transmission started. The
device driver sets it just before starting transmission. The field is used to detect
problems with the card if it does not finish transmission after a given amount of
time. An overly long transmission means there is something wrong; in that case,
the driver usually resets the card.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Critical Data Structures

unsigned long last_rx
The time (measured in jiffies) when the last packet was received. At the moment,
it is not used for any specific purpose, but is available in case of need.

struct net_device *master
Some protocols exist that allow a set of devices to be grouped together and be
treated as a single device. These protocols include EQL (Equalizer Load-bal-
ancer for serial network interfaces), Bonding (also called EtherChannel and
trunking), and the TEQL (true equalizer) queuing discipline of Traffic Control.
One of the devices in the group is elected to be the so-called master, which plays
a special role. This field is a pointer to the net_device data structure of the mas-
ter device of the group. If the interface is not a member of such a group, the
pointer is simply NULL.

spinlock_t xmit_lock
int xmit_lock_owner

The xmit_lock lock is used to serialize accesses to the driver function hard_start_
xmit. This means that each CPU can carry out only one transmission at a time on
any given device. xmit_lock_owner is the ID of the CPU that holds the lock. It is
always 0 on single-processor systems and –1 when the lock is not taken on SMP
systems. It is possible to have lockless transmissions, too, when the device driver
supports it. See Chapter 11 for both the lock and the lockless cases.

void *atalk_ptr
void *ip_ptr
void *dn_ptr
void *ip6_ptr
void *ec_ptr
void *ax25_ptr

These six fields are pointers to data structures specific to particular protocols,
each data structure containing parameters that are used privately by that proto-
col. ip_ptr, for instance, points to a data structure of type in_device (even
though it is declared as void *) that contains different IPv4-related parameters,
among them the list of IP addresses configured on the interface (see Chapter 19).
Other sections of this book describe the fields of the data structures used by pro-
tocols covered in the book. Most of the time only one of these fields is in use.

List Management
net_device data structures are inserted into a global list and into two hash tables, as
described in Chapter 8. The following fields are used to accomplish these tasks:

struct net_device *next
Links each net_device data structure to the next in the global list.

struct hlist_node name_hlist
struct hlist_node index_hlist

Link the net_device structure to the bucket’s list of two hash tables.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

net_device Structure | 51

Link Layer Multicast
Multicast is a mechanism used to deliver data to multiple recipients. Multicasting
can be available both at the L3 network layer (i.e., IP) and at the L2 link layer (i.e.,
Ethernet). In this section, we are concerned with the latter.

Link layer multicast delivery can be achieved by using special addresses or control
information in the link layer header. (When it is not supported by the link layer proto-
col, it may be emulated.) Ethernet natively supports multicasting: we will see in
Chapter 13 how an Ethernet address can be classified as unicast, multicast, or
broadcast.

Multicast addresses are distinguished from the range of other addresses by a specific
bit. This means that 50% of the possible addresses are multicast, and 50% of 248 is a
huge number! When an interface is asked to join a lot of multicast groups (each iden-
tified by a multicast address), it may be more efficient and faster for it to simply lis-
ten to all the multicast addresses instead of maintaining a long list and wasting time
filtering ingress L2 multicast frames based on the list. One of the flags in the net_
device data structure indicates whether the device should listen to all addresses. The
decision about when to set or clear this flag is controlled by the allmulti field shown
in this section.

Each device keeps an instance of the dev_mc_list structure for each link layer multi-
cast address it listens to. Link layer multicast addresses can be added and removed
with the functions dev_mc_add and dev_mc_delete, respectively. Relevant fields in the
net-device structure include:

struct dev_mc_list *mc_list
Pointer to the head of this device’s list of dev_mc_list structures.

int mc_count
The number of multicast addresses for this device, which is also the length of the
list to which mc_list points.

int allmulti
When nonzero, causes the device to listen to all multicast addresses. Like
promiscuity, discussed earlier in this chapter, allmulti is a reference count
rather than a simple Boolean. This is because multiple facilities (VLANs and
bonding devices, for instance) may independently require listening to all
addresses. When the variable goes from 0 to nonzero, the function dev_set_
allmulti is called to instruct the interface to listen to all multicast addresses. The
opposite happens when allmulti goes to 0.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: Critical Data Structures

Traffic Management
The Traffic Control subsystem of Linux has grown quite a lot and represents one of
the strengths of the Linux kernel. The associated kernel option is “Device drivers ➝

Networking support ➝ Networking options ➝ QoS and/or fair queueing.” Relevant
fields in the net-device structure include:

struct net_device *next_sched
Used by one of the software interrupts described in Chapter 11.

struct Qdisc *qdisc
struct Qdisc *qdisc_sleeping
struct Qdisc *qdisc_ingress
struct list_head qdisc_list

These fields are used to manage the ingress and egress packet queues and access
to the device from different CPUs.

spinlock_t queue_lock
spinlock_t ingress_lock

The Traffic Control subsystem defines a private egress queue for each network
device. queue_lock is used to avoid simultaneous accesses to it (see Chapter 11).
ingress_lock does the same for ingress traffic.

unsigned long tx_queue_len
The length of the device’s transmission queue. When Traffic Control support is
present in the kernel, tx_queue_len may not be used (only a few queuing disci-
pline use it). Table 2-2 shows the values used for the most common device types.
Its value can be tuned with the sysfs filesystem (see the /sys/class/net/device_
name/ directories).

Table 2-2. tx_queue_len values for different device types

Device type tx_queue_len

Ethernet 1,000

Token Ring 100

EtherChannel 100

Fibre Channel 100

FDDI 100

TEQL (true link equalizer)a 100

ISDN 30

HIPPI 25

PLIP 10

SLIP 10

AX25 10

EQL (Equalizer load balancer for serial network interfaces) 5

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

net_device Structure | 53

Depending on the queuing discipline—the strategy used to queue incoming and
outgoing packets—in use, tx_queue_len may or may not be used. It is usually
used when the queue type is FIFO (First In, First Out) or something else rela-
tively simple.

Note that all devices with a queue length of 0 are virtual devices: they rely on the
associated real devices to do any queuing (with the exception of the loopback
device, which does not need it because it is internal to the kernel and delivers all
traffic immediately).

Feature Specific
As we saw when describing sk_buff, a few parameters are included in the definition
of net_device only if the features they belong to have been included in the kernel:*

struct divert_blk *divert
Diverter is a feature that allows you to change the source and destination
addresses of the incoming packet. This makes it possible to reroute traffic with
specific characteristics specified by the configuration to a different interface or a
different host. To work properly and to make sense, diverter needs other features
such as bridging. The data structure pointed to by this field stores the parameters
needed by the diverter feature. The associated kernel option is “Device drivers ➝

Networking support ➝ Networking options ➝ Frame Diverter.”

struct net_bridge_port *br_port
Extra information needed when the device is configured as a bridged port. The
bridging code and the Spanning Tree Protocol (STP) are covered in Part IV. The
associated kernel option is “Device drivers ➝ Networking support ➝ Network-
ing options ➝ 802.1d Ethernet Bridging.”

Generic PPP 3

Bonding 0

Loopback 0

Bridge 0

VLAN 0

a TEQL is one of the queuing disciplines you can configure with Traffic Control (the QoS layer).

* The fields are actually included only when the associated feature is part of the kernel. See, for example,
br_port.

Table 2-2. tx_queue_len values for different device types (continued)

Device type tx_queue_len

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: Critical Data Structures

void (*vlan_rx_register)(...)
void (*vlan_rx_add_vid)(...)
void (*vlan_rx_kill_vid)(...)

These three function pointers are used by the VLAN code to register a device as
VLAN tagging capable (see net/8021q/vlan.c), add a VLAN to the device, and
delete the VLAN from the device, respectively. The associated kernel option is
“Device drivers ➝ Networking support ➝ Networking options ➝ 802.1Q VLAN
Support.”

int netpoll_rx
void (*poll_controller)(...)

Used by the optional Netpoll feature that is briefly mentioned in Chapter 10.

Generic
In addition to the list management fields of the net_device structure discussed ear-
lier, a few other fields are used to manage structures and make sure they are removed
when they are not needed:

atomic_t refcnt
Reference count. The device cannot be unregistered until this counter has gone
to zero (see Chapter 8).

int watchdog_timeo
struct timer_list watchdog_timer

Along with the tx_timeout variable discussed earlier, these fields implement the
timer discussed in the section “Watchdog timer” in Chapter 11.

int (*poll)(...)
struct list_head poll_list
int quota
int weight

Used by the NAPI feature described in Chapter 10.

const struct iw_handler_def *wireless_handlers
struct iw_public_data *wireless_data

Additional parameters and function pointers used by wireless devices. See also
get_wireless_stats.

struct list_head todo_list
The registration and unregistration of a network device is done in two steps.
todo_list is used to handle the second one. See Chapter 8.

struct class_device class_dev
Used by the new generic kernel driver infrastructure.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

net_device Structure | 55

Function Pointers
We saw in Chapter 1 that the networking code makes heavy use of function point-
ers. The net_device data structure includes quite a few of them. Such functions are
used mainly to:

• Transmit and receive a frame

• Add or parse the link layer header on a buffer

• Change a part of the configuration

• Retrieve statistics

• Interact with a specific feature

A few function pointers were already introduced in the previous sections when
describing the fields used to accomplish a specific task. Here are the generic ones:

struct ethtool_ops *ethtool_ops
Pointer to a set of function pointers used to set or get the configuration of differ-
ent device parameters. See the section “Ethtool” in Chapter 8.

int (*init)(...)
void (*uninit)(...)
void (*destructor)(...)
int (*open)(...)
int (*stop)(...)

Used to initialize, clean up, destroy, enable, and disable a device. Not all of them
are always used. See Chapter 8.

struct net_device_stats* (*get_stats)(...)
struct iw_statistics* (*get_wireless_stats)(...)

Some statistics collected by the device driver can be displayed with user-space
applications such as ifconfig and ip, and others are strictly used by the kernel and
are discussed in the section “Device Status” earlier in this chapter. These two
methods are used to collect statistics. get_stats operates on a normal device and
get_wireless_stats on a wireless device. See also the earlier section “Statistics.”

int (*hard_start_xmit)(...)
Used to transmit a frame. See Chapter 11.

int (*hard_header)(...)
int (*rebuild_header)(...)
int (*hard_header_cache)(...)
void (*header_cache_update)(...)
int (*hard_header_parse)(...)
int (*neigh_setup)(...)

Used by the neighboring layer. See the sections “Methods Provided by the
Device Driver” and “Neighbor Initialization” in Chapter 27.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: Critical Data Structures

int (*do_ioctl)(...)
ioctl is the system call used to issue commands to devices (see Chapter 3). This
method is called to process some of the ioctl commands (see Chapter 8).

void (*set_multicast_list)(...)
We have already seen in the section “Link Layer Multicast” that mc_list and mc_
count are used to manage the list of L2 multicast addresses. This method is used
to ask the device driver to configure the device to listen to those addresses. Usu-
ally it is not called directly, but through wrappers such as dev_mc_upload or its
lockless version, _ _dev_mc_upload. When a device cannot install a list of multi-
cast addresses, it simply enables all of them.

int (*set_mac_address)(...)
Changes the device MAC address. When the device does not provide this capa-
bility (as in the case of Bridge virtual devices), it is set to NULL.

int (*set_config)(...)
Configures driver parameters, such as the hardware parameters irq, io_addr, and
if_port. Higher-layer parameters (such as protocol addresses) are handled by
do_ioctl. Not many devices use this method, especially among the new devices
that are better able to implement probe functions. A good example with some
documentation can be found in sis900_set_config in drivers/net/sis900.c.

int (*change_mtu)(...)
Changes the device MTU (see the description of mtu in the earlier section, “Con-
figuration”). Changing this field has no effect on the device driver but simply
forces the kernel software to respect the new MTU and to handle fragmentation
accordingly.

void (*tx_timeout)(...)
The method invoked at the expiration of the watchdog timer, which determines
whether a transmission is taking a suspiciously long time to complete. The
watchdog timer is not even started unless this method is defined. See the section
“Watchdog timer” in Chapter 11 for more information.

int (*accept_fastpath)(...)
Fast switching (also called FASTROUTE) was a kernel feature that allowed
device drivers to route incoming traffic during interrupt context using a small
cache (bypassing all the software layers). Fast switching is no longer supported,
starting with the 2.6.8 kernel. This method was used to test whether the fast-
switching feature could be used on the device.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Files Mentioned in This Chapter | 57

Files Mentioned in This Chapter
Figure 2-11 shows the main files referenced in this chapter. The missing ones will be
introduced in upcoming chapters.

Figure 2-11. Files referenced in this chapter

Root
(usually /usr/src/linux)

Documentation include

linux
if.h
if_packet.h
if_ether.h
skbuff.h
netdevice.h
slab.h
if_arp.h

kernel
time.c
dma.c

mm
slab.c

drivers

net
3c59x.c
tulip.c
sys9000.c

net

core
skbuff.c

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

58

Chapter 3CHAPTER 3

User-Space-to-Kernel
Interface

In this chapter, I’ll briefly introduce the main mechanisms that user-space applica-
tions can use to communicate with the kernel or read information exported by it. We
will not look at the details of their implementations, because each mechanism would
deserve a chapter of its own. The purpose of this chapter is to give you enough point-
ers to the code and to external documentation so that you can further investigate the
topic if interested. For example, with this chapter, you have the information you
need to find how and where a given directory is added to /proc, kernel handler which
processes a given ioctl command, and what functions are provided by Netlink, cur-
rently the preferred interface for user-space network configuration.

This chapter focuses only on the mechanisms that I will often mention in the book
when talking about the interface between the user-space configuration commands
such as ifconfig and route and the kernel handlers that apply the requested configura-
tions. For an analysis of the generic messaging systems available for intrakernel com-
munication as well as kernel-to-user-space communication, please refer to
Understanding the Linux Kernel (O’Reilly).

The discussion of each feature in this book ends with a set of sections that show how
user-space configuration tools and the kernel communicate. The information in this
chapter can help you understand those sections better.

Overview
The kernel exports internal information to user space via different interfaces. Besides
the classic set of system calls the application programmer can use to ask for specific
information, there are three special interfaces, two of which are virtual filesystems:

procfs (/proc filesystem)
This is a virtual filesystem, usually mounted in /proc, that allows the kernel to
export internal information to user space in the form of files. The files don’t
actually exist on disk, but they can be read through cat or more and written to

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Overview | 59

with the > shell redirector; they even can be assigned permission like real files.
The components of the kernel that create these files can therefore say who can
read from or write to any file. Directories cannot be written (i.e., no user can add
or remove a file or a directory to or from any directory in /proc).

The default kernel that comes with most (if not all) Linux distributions includes
support for procfs. It cannot be compiled as a module. The associated kernel
option from the configuration menu is “Filesystems ➝ Pseudo filesystems ➝ /proc
file system support.”

sysctl (/proc/sys directory)
This interface allows user space to read and modify the value of kernel variables.
You cannot use it for every kernel variable: the kernel has to explicitly say what
variables are visible through this interface. From user space, you can access the
variables exported by sysctl in two ways. One is the sysctl system call (see man
sysctl) and the other one is procfs. When the kernel has support for procfs, it
adds a special directory (/proc/sys) to /proc that includes a file for each kernel
variable exported by sysctl.

The sysctl command that comes with the procps package can be used to config-
ure variables exported with the sysctl interface. The command talks to the ker-
nel by writing to /proc/sys.

The default kernel that comes with most (if not all) Linux distributions includes
support for sysctl. It cannot be compiled as a module. The associated kernel
option from the configuration menu is “General setup ➝ Sysctl support.”

sysfs (/sys filesystem)
procfs and sysctl have been abused over the years, and this has led to the intro-
duction of a newer filesystem: sysfs. sysfs exports plenty of information in a very
clean and organized way. You can expect part of the information currently
exported with sysctl to migrate to sysfs.

sysfs is available only with kernels starting at 2.6. The default kernel that comes
with most (if not all) Linux distributions includes support for sysfs. It cannot be
compiled as a module. The associated kernel option from the configuration
menu is “Filesystems ➝ Pseudo filesystems ➝ sysfs filesystem support (NEW).”
The option is visible only if you first enable the following option: “General setup
➝ Configure standard kernel features (for small systems).”

You can find a detailed analysis of sysfs in the latest edition of the O’Reilly book
Linux Device Drivers. In Chapter 17, we will see how the bridging code uses it.

You also use the following interfaces to send commands to the kernel, either to con-
figure something or to dump the configuration of something else:

ioctl system call
The ioctl (input/output control) system call operates on a file and is usually
used to implement operations needed by special devices that are not provided by

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: User-Space-to-Kernel Interface

the standard filesystem calls. ioctl can be passed a socket descriptor too, as
returned by the socket system call, and that is how it is used by the networking
code. This interface is used by old-generation commands like ifconfig and route,
among others.

Netlink socket
This is the newest and preferred mechanism for networking applications to com-
municate with the kernel. Most commands in the IPROUTE2 package use it.
Netlink represents for Linux what the routing socket represents in the BSD
world.

Most network kernel features can be configured using either Netlink or ioctl inter-
faces, because the kernel supports both the newer configuration tools (IPROUTE2)
and the legacy ones (ifconfig, route, etc.).

procfs Versus sysctl
Both procfs and sysctl export kernel-internal information, but procfs mainly exports
read-only data, while most sysctl information is writable too (but only by the
superuser).

As far as exporting read-only data, the choice between procfs and sysctl depends on
how much information is supposed to be exported. Files associated with a simple
kernel variable or data structure are exported with sysctl. The others, which are asso-
ciated with more complex data structures and may need special formatting, are
exported with procfs. Examples of the latter category are caches and statistics.

procfs
Most networking features register one or more files in /proc when they get initial-
ized, either at boot time or at module load time. When a user reads the file, it causes
the kernel to indirectly run a set of kernel functions that return some kind of output.
The files registered by the networking code are located in /proc/net.

Directories in /proc can be created with proc_mkdir. Files in /proc/net can be regis-
tered and unregistered with proc_net_fops_create and proc_net_remove, defined in
include/linux/proc_fs.h. These two routines are wrappers around the generic APIs
create_proc_entry and remove_proc_entry. In particular, proc_net_fops_create takes
care of creating the file (with proc_net_create) and initializing its file operation han-
dlers. Let’s look at an example.

This is how the ARP protocol registers its arp file in /proc/net:

static struct file_operations arp_seq_fops = {
 .owner = THIS_MODULE,
 .open = arp_seq_open,
 .read = seq_read,

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

procfs Versus sysctl | 61

 .llseek = seq_lseek,
 .release = seq_release_private,
};

static int _ _init arp_proc_init(void)
{
 if (!proc_net_fops_create("arp", S_IRUGO, &arp_seq_fops))
 return -ENOMEM;
 return 0;
}

The three input parameters to proc_net_fops_create tell you that the filename is arp,
it must be assigned read permission only, and the set of file operation handlers is
arp_seq_ops. When a user reads the file, the use of the file_operations data struc-
ture allows procfs to return data to the user in chunks. This is useful when the data
consists of a collection of objects of the same type. For example, the ARP cache is
returned one entry at a time, the routing table is returned one route at a time, etc.

The routine to which open is initialized (arp_seq_open in the previous example)
makes another important initialization: it registers an array of function pointers that
includes all the routines procfs uses to walk through the data that is to be returned to
the user: one routine to start the dump, another to advance one item, and another
one to dump one item. Those routines internally take care of saving the necessary
context information (in this example, how much of the ARP cache has been dumped
already) needed to remember what point the dump is at and to resume it from the
right position.

static struct seq_operations arp_seq_ops = {
 .start = clip_seq_start,
 .next = neigh_seq_next,
 .stop = neigh_seq_stop,
 .show = clip_seq_show,
};

static int arp_seq_open(struct inode *inode, struct file *file)
{
 ...
 rc = seq_open(file, &arp_seq_ops);
 ...
}

sysctl: Directory /proc/sys
What the user sees as a file somewhere under /proc/sys is actually a kernel variable.
For each variable, the kernel can define:

• Where to place it in /proc/sys. Variables associated with the same kernel com-
ponent or feature are usually located within a common directory. For instance,
in /proc/sys/net/ipv4 you can find IPv4-related files.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: User-Space-to-Kernel Interface

• What name to give it. Most of the time, the files are simply given the same name
as the associated kernel variables, but sometimes their name is changed to be a
little more user friendly.

• The permission. A file may, for instance, be readable by anyone but modified
only by the superuser.

The content of the variables exported in /proc/sys can be read or written by accessing
the associated file (provided that you have the necessary permissions), or more
directly with the sysctl system call.

Some directories and files are defined statically at boot time; others are added at run-
time. Examples of events that lead to the runtime creation of directories or files are:

• When a kernel module implements a new feature or a protocol is loaded or
unloaded.

• When a new network device is registered or unregistered. There are configura-
tion parameters (and thus files in /proc/sys) that have one instance per device.
For example, the directories /proc/sys/net/ipv4/conf (discussed in Chapter 36)
and /proc/sys/net/ipv4/neigh (discussed in Chapter 29) have one subdirectory for
each registered network device.

Both files and directories in /proc/sys are defined with ctl_table structures. ctl_table
structures are registered and unregistered with the register_sysctl_table and
unregister_sysctl_table functions, defined in kernel/sysctl.c.

Here are the key fields of ctl_data:

const char *procname
Filename that will be used in /proc/sys.

int maxlen
Size of the kernel variable that is exported.

mode_t mode
Permissions to be assigned to the associated file or directory in /proc/sys.

ctl_table *child
Used to build the parent-child relationships between directories and files. We
will see examples later in this section.

proc_handler
Function that performs the read or write operation when you read from or write
to a file in /proc/sys. All ctl_instances associated with files (i.e., the leaves of the
tree) must have proc_handler initialized. Directories are assigned a default one
by the kernel.

strategy
Function that can optionally be initialized to a routine that performs additional
formatting of data before displaying or storing it. It is invoked when the file in
/proc/sys is accessed with the sysctl system call.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

procfs Versus sysctl | 63

extra1
extra2

Two optional parameters commonly used to define the minimum and maxi-
mum values for the variable. I’ll often refer to these two parameters as the min/
max parameters.

Depending on what kind of variable is associated with a file, proc_handler and
strategy are initialized differently. For example, proc_dointvec is the proc_handler
routine to use when the kernel variable consists of one or more integer values. Tables
3-1 and 3-2 list some of the routines that can be used to initialize proc_handler and
strategy, respectively. All routines are defined and well commented in kernel/sysctl.c.

It is not uncommon for a strategy or proc_handler function to be initialized to a rou-
tine that is a wrapper around one of the routines in Tables 3-1 or 3-2. The wrapper
may be necessary to add some kind of logic or sanity check that depends on the
meaning of the associated kernel variable. An example is in the next section.

Anytime we look at the procfs interface for the configuration of any of the features
covered in this book, I will always refer to the proc_handler function for simplicity.

Table 3-1. Routines for initializing proc_handler

Function Description

proc_dostring Reads/writes a string.

proc_dointvec Reads/writes an array of one or more integers.

proc_dointvec_minmax Similar to proc_dointvec, but makes sure the input falls within a min/max range.
Values that do not respect the range are rejected.

proc_dointvec_jiffies Reads/writes an array of integers. The kernel variable is expressed in jiffies but is
converted into seconds before being returned to the user, and vice versa.

proc_dointvec_ms_jiffies Reads/writes an array of integers. The kernel variable is expressed in jiffies but is
converted into milliseconds before being returned to the user, and vice versa.

proc_doulongvec_minmax Similar to proc_dointvec_minmax, but the values are longs rather than integers.

proc_doulongvec_ms_
jiffies_minmax

Reads/writes an array of longs. The kernel variable is expressed in jiffies but is
converted into milliseconds before being returned to the user, and vice versa. The ker-
nel variable must be assigned values within a min/max range.

Table 3-2. Routines for initializing strategy

Function Description

sysctl_string Reads/writes a string

sysctl_intvec Reads/writes an array of integers and makes sure that they respect the min/max range

sysctl_jiffies Reads/writes a value expressed in jiffies and converts it into seconds

sysctl_ms_jiffies Reads/writes a value expressed in jiffies and converts it into milliseconds

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: User-Space-to-Kernel Interface

Examples of ctl_table initialization

Let’s first see what the initialization of a ctl_table structure for a file and a directory
looks like, and then how they are actually used.

This is the initialization of the ctl_table instance used for the /proc/sys/net/ipv4/conf/
default/forwarding file, defined in net/ipv4/devinet.c. Its use is described in
Chapter 36.

 {
 .ctl_name = NET_IPV4_CONF_FORWARDING,
 .procname = "forwarding",
 .data = &ipv4_devconf.forwarding,
 .maxlen = sizeof(int),
 .mode = 0644,
 .proc_handler = &devinet_sysctl_forward,
 }

From this snapshot, you can’t really tell where in /proc/sys the file will be placed. We
will see in a moment how you can find that information. What you can tell from the
code is that the file is called forwarding, the kernel variable whose value is exported
with the forwarding file is ipv4_devconf.forwarding (a field within a more complex
structure), the parameter is declared as an integer, the permissions on the file are
0644 (i.e., read permission for anyone, write permission for the superuser only), and
the proc_handler routine is initialized to devinet_sysctl_forward.

Now let’s see an example of a declaration of a directory from kernel/sysctl.c:

 {
 .ctl_name = CTL_NET,
 .procname = "net",
 .mode = 0555,
 .child = net_table,
 }

This is the ctl_table instance that defines the directory /proc/sys/net. No proc_handler
is needed this time (the kernel provides a default one that suits the needs of all directo-
ries), but there is a child field instead. child is a pointer to another ctl_table
instance, which is nothing but the head element of a list of ctl_table instances (there
will be one instance for each file or subdirectory created within the net directory).

Registering a file in /proc/sys

We saw that a file can be registered to and unregistered from /proc/sys with
register_sysctl_table and unregister_sysctl_table, respectively. The registration
function, well documented in the source code, requires two input parameters:

• A pointer to a ctl_table instance

• A flag that tells where to put the new element in the list of ctl_table instances
located in the same directory: at the head (1) or at the tail (0)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

procfs Versus sysctl | 65

Note that the input to register_sysctl_table does not include a reference to the loca-
tion in the /proc/sys filesystem where the input ctl_table is added. The reason is that
all insertions are made into the /proc/sys directory. If you wanted to register a file into
a subdirectory of /proc/sys, you would need to provide the full path by building a tree
(by means of multiple ctl_table instances linked with the child field) and pass to
register_sysctl_table the ctl_table instance that represents the root of the tree you
have built. When any of the nodes of the tree do not exist already, they are created.

Let’s take two examples, starting with a simpler one. This piece of code from drivers/
scsi/scsi_sysctl.c shows how the file logging_level is defined and placed in the /proc/
sys/dev/scsi/ directory:

static ctl_table scsi_table[] = {
 { .ctl_name = DEV_SCSI_LOGGING_LEVEL,
 .procname = "logging_level",
 .data = &scsi_logging_level,
 .maxlen = sizeof(scsi_logging_level),
 .mode = 0644,
 .proc_handler = &proc_dointvec },
 { }
};

static ctl_table scsi_dir_table[] = {
 { .ctl_name = DEV_SCSI,
 .procname = "scsi",
 .mode = 0555,
 .child = scsi_table },
 { }
};

static ctl_table scsi_root_table[] = {
 { .ctl_name = CTL_DEV,
 .procname = "dev",
 .mode = 0555,
 .child = scsi_dir_table },
 { }
};

int _ _init scsi_init_sysctl(void)
{
 scsi_table_header = register_sysctl_table(scsi_root_table, 1) :
}

Note that register_sysctl_table is passed scsi_root_table, which is the root of the
ctl_table tree defined in the code. The result is shown in Figure 3-1.

Note also that if later you wanted to add another file to the same directory—say,
abc—you would need to define a similar tree (i.e., the same two ctl_table instances
for the dev and scsi directories, plus one new ctl_table instance for the new file abc).

What developers sometimes do to simplify the addition of new files to an already
existing directory is to define a template and reuse it any time a new file is to be

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: User-Space-to-Kernel Interface

added to the same directory. The good part about using templates is that the ctl_
table instances that are used to navigate the directories (e.g., scsi_root_table and
scsi_dir_table in the previous example) need to be initialized only once: after that,
every time you add a new file you will initialize only the leaf nodes (i.e., the real
files). See, for example, how the neighboring subsystem defines neigh_sysctl_
template and uses it with neigh_sysctl_register in net/core/neighbour.c (see also
Chapter 29).

Core networking files and directories

Figure 3-2 shows the main directories used by the networking code in /proc/sys. For
each one, it tells you in what chapter its files are described.

Let’s see, based on what we saw in the previous section, how the tree rooted in net is
defined and registered at boot time.

For each directory in Figure 3-2, and for each file in those directories, there is an
instance of ctl_table. Figure 3-3 shows where the ctl_table instances of most of the

Figure 3-1. Registration of the /proc/sys/dev/scsi/logging_level file

Figure 3-2. Core directories in /proc/sys/net

/

proc

sys

dev

scsi

logging_level

scsi_root_table
.procname=dev
.child

scsi_dir_table
.procname=scsi
.child

scsi_table
.procname=logging_level

instances of
struct ctl_table

/

proc

sys

net

bridge
(Chapter 17)

ipv4
(Chapter 23)

core
(Chapter 12)

route
(Chapter 36)

neigh
(Chapter 29)

conf
(Chapter 36)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ioctl | 67

directories in Figure 3-2 are defined, and what the child-parent relationships are. Not
all directories have been included to make the figure more readable.

The three boxes in Figure 3-3 show three examples of ctl_table initializations. Note
that:

• The netdev_max_backlog file is assigned a proc_handler routine but not a
strategy routine. Because netdev_max_backlog is an integer, the input from the
user is read with proc_dointvec.

• The min_delay file is assigned both the proc_handler and strategy routines.
Because the kernel variable ip_rt_min_delay is expressed in jiffies but the user
input and output are in seconds, the two routines take care of converting sec-
onds to jiffies.

• The ip_local_port_range file is an interesting case. It is used to allow the user to
configure a range, defined as two values. The range must respect a minimum and
a maximum value. Therefore, the strategy and proc_handler routines selected
are able to manage an array of integer values (two of them in this case). These
values, extra1 and extra2, express the range and are used to make sure that the
input from the user respects it.

ioctl
At the top of Figure 3-4, you can see how an ioctl call is issued. Let’s see an exam-
ple involving ifconfig.

We said earlier that the ifconfig command uses ioctl to communicate with the ker-
nel. For example, when the system administrator types a command like ifconfig eth0
mtu 1250 to change the MTU of the interface eth0, ifconfig opens a socket, initializes
a local data structure with the information received from the system administrator
(data in the example), and passes it to the kernel with an ioctl call. SIOCSIFMTU is the
command identifier.

 struct ifreq data;
 fd = socket(PF_INET, SOCK_DGRAM, 0);
 < ... initialize "data" ...>
 err = ioctl(fd, SIOCSIFMTU, &data);

ioctl commands are processed by the kernel in different places. Figure 3-4 shows
how the most common ioctl commands used by the networking code are dis-
patched by sock_ioctl and routed to the right function handler. We will not see how
sock_ioctl is invoked or how transport protocols like UDP and TCP register their
handlers. If you desire to dig into this part of the code, you can use the figure as a
starting point. For the routines that we cover in this book, the figure provides a refer-
ence to the right chapter.

The name of the ioctl commands in the figure is parsed (split into components) for
your convenience. For example, the command used to add a route to a routing table,

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: User-Space-to-Kernel Interface

SIOCADDRT, is shown as SIOC ADD RT to emphasize the two interesting compo-
nents: ADD, which says you are adding something, and RT, which says a route is
what you are adding. Most commands follow this syntax. Often, when a given object
type can be both read and written, you have one more component in the command
name: G for get or S for set. The two commands that add and remove an IP address
from an interface, SIOCGIFADDR and SIOCSIFADDR, are an example. SIOCSIFMTU, which
we saw in the earlier ifconfig example, sets (S) the interface’s (IF) maximum trans-

Figure 3-3. Creation of the core directories in /proc/sys/net

kernel/sysctl.c

.procname= "net"
.child= net_table

. . .

root_table

. . .

net/sysctl_net.c

.procname= "ipv4"
.child= ipv4_table

. . .

net_table

. . .

net/ipv4/sysctl_net.c

.procname= "route"
.child= ipv4_route_table

. . .

ipv4_table

. . .

net/ipv4/route.c

. . .

ipv4_route_table

. . .

net/core/sysctl_net_core.c

. . .

core_table

. . .

.procname

.data

.maxlen

.mode

.proc_handler

="netdev_max_backlog"
=&netdev_max_backlog
=sizeof(int)
=0644(i.e., -rw-r-r-)
=&proc_dointvec

.procname

.data

.maxlen

.mode

.proc_handler

.strategy

="min_delay"
=&ip_rt_min_delay
=sizeof(int)
=0644(i.e., -rw-r-r-)
=&proc_dointvec_jiffies
=&sysctl_jiffies

.procname= "core"
.child= core_table

.procname

.data

.maxlen

.mode

.proc_handler

.strategy

.extra1

.extra2

="ip_local_port_range"
=&sysctl_local_port_range
=sizeof(sysctl_local_port_range)
=0644(i.e., -rw-r-r-)
=&proc_dointvec_minmax
=&sysctl_invec
=ip_local_port_range_min
=ip_local_port_range_max

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ioctl | 69

port unit (MTU). SIOCSIFMTU, which is taken care of by dev_ioctl, does not appear in
Figure 3-4.

Networking ioctl commands are listed in include/linux/sockios.h. Device drivers can
define new (private) commands with codes in the range SIOCDEVPRIVATE through
SIOCDEVPRIVATE+15. See, for example, how the four private commands used with

Figure 3-4. Dispatching ioctl commands

Kernel

User space

ioctl
command

sock_ioctl

sockfd = socket(family, type, protocol);
err = ioctl(sockfd, command, . . .);

SIOC G IF BR
SIOC S IF BR
SIOC BR ADD BR
SIOC BR DEL BR

From SIOC DEV PRIVATE to SIOC DEV PRIVATE+15
and
From SIOC IW FIRST to SIOC IW LAST

SIOC G IF VLAN
SIOC S IF VLAN

br_ioctl_hook
(Chapter 17)

br_vlan_hook divert_ioctl

SIOC G IF DIVERT
SIOC S IF DIVERT

SIOC ADD DLCI
SIOC DEL DLCI

dlci_ioctl_hook

Socket
family

Anything else
(sock -> ops -> ioctl)

.PF_INET

Socket
type

.SOCK_STREAM
SOCK_DGRAM
SOCK_RAW

ioctl
command

inet_ioctl

SIOC G IF ADDR
SIOC S IF ADDR

SIOC G IF BR ADDR
SIOC S IF BR ADDR

SIOC G IF NETMASK
SIOC S IF NETMASK

SIOC G IF DST ADDR
SIOC S IF DST ADDR

SIOC S IF P FLAGS
SIOC G IF P FLAGS

SIOC S IF FLAGS

devinet_ioctl arp_ioctl
(Chapter 29)

ip_rt_ioctl
(Chapter 36)

SIOC D ARP
SIOC G ARP
SIOC S ARP

SIOC ADD RT
SIOC DEL RT
SIOC RT MSG

Anything else

Socket
protocol

IPPROTO_TCP IPPROTO_UDP

. . .[tcp_ioctl]
Is the command

supported?

[udp_ioctl]
Is the command

supported?

No No

Yes Yes

Let the protocol
process the
command

Let the protocol
process the
command

dev_ioctl

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: User-Space-to-Kernel Interface

(virtual) tunnel devices are defined in include/linux/if_tunnel.h. The use of private
ioctl commands is deprecated and discouraged, however.

Protocols can also define private commands in the range SIOCPROTOPRIVATE through
SIOCPROTOPRIVATE+15.

Netlink
The Netlink socket, well described in RFC 3549, represents the preferred interface
between user space and kernel for IP networking configuration. Netlink can also be
used as an intrakernel messaging system as well as between multiple user-space
processes.

With Netlink sockets you can use the standard socket APIs to open, close, transmit
on, and receive from a socket. Let’s quickly review the prototype of the socket sys-
tem call:

int socket(int domain, int type, int protocol)

For details on what the three arguments are initialized to with TCP/IP sockets (i.e.,
domain PF_INET), you can use the man socket command.

As with any other socket, when you open a Netlink socket, you need to provide the
domain, type, and protocol arguments. Netlink uses the new PF_NETLINK protocol
family (domain), supports only the SOCK_DGRAM type, and defines several protocols,
each one used for a different component (or a set of components) of the networking
stack. For example, the NETLINK_ROUTE protocol is used for most networking fea-
tures, such as routing and neighboring protocols, and NETLINK_FIREWALL is used for
the firewall (Netfilter). The Netlink protocols are listed in the NETLINK_XXX enumera-
tion list in include/linux/netlink.h.

With Netlink sockets, endpoints are usually identified by the ID of the process that
opened the sockets (PID), where the special value 0 identifies the kernel. Among
Netlink’s features is the ability to send both unicast and multicast messages: the des-
tination endpoint address can be a PID, a multicast group ID, or a combination of
the two. The kernel defines Netlink multicast groups for the purpose of sending out
notifications about particular kinds of events, and user programs can register to
those groups if they are interested in them. The groups are listed in the enumeration
list RTMGRP_XXX in include/linux/rtnetlink.h. Among them are the RTMGRP_IPV4_ROUTE
and RTMGRP_NEIGH groups, used respectively for notifications regarding changes to the
routing tables and to the L3-to-L2 address mappings. We will see how these two
groups are used in Parts VI and VII.

Another interesting feature is the ability to send both positive and negative acknowl-
edgments.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Serializing Configuration Changes | 71

One of the advantages of Netlink over other user-kernel interfaces such as ioctl is
that the kernel can initiate a transmission instead of just returning information in
answer to user-space requests.

Serializing Configuration Changes
Any time you apply a configuration change, the handler that takes care of it inside
the kernel acquires a semaphore (rtnl_sem) that ensures exclusive access to the data
structures that store the networking configuration. This is true regardless of whether
the configuration is applied via ioctl or Netlink.

www.ebooksworld.in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART II

II.System Initialization

In this part of the book, we will see how and when network devices are initialized
and registered with the kernel. I’ll put special emphasis on Peripheral Component
Interconnect (PCI) devices, both because they are increasingly common and because
they have special requirements.

Many tasks related to the network interface card (NIC) have to be accomplished
before getting a network up and running. First, key kernel components need to be
initialized. Then device drivers must initialize and register all the devices they are
responsible for and allocate the resources the kernel will use to communicate with
them (IRQ, I/O ports, etc.).

It’s important to distinguish between two kinds of registration. First, when a device
is discovered, it is registered with the kernel as a generic device. Second, an NIC
device is registered with the network stack as a network device. For example, a PCI
Ethernet card is registered both as a generic PCI device with the PCI layer, and as an
Ethernet card (where the device gets a name such as eth0) with the network stack.
The first kind of registration is covered in Chapter 6 and the second in Chapter 8.

Here is what is covered in each chapter:

Chapter 4, Notification Chains
The mechanism that kernel components use to notify each other about specific
events.

Chapter 5, Network Device Initialization
How network devices are initialized.

Chapter 6, The PCI Layer and Network Interface Cards
How PCI device drivers register with the kernel, and how PCI devices are identi-
fied and associated with their drivers.

Chapter 7, Kernel Infrastructure for Component Initialization
The kernel mechanism that ensures that the necessary initialization functions are
invoked at boot time or module load time. We’ll learn how initialization rou-
tines can be tagged with special macros to optimize memory usage and therefore

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

reduce the size of the kernel image. We will also see how the kernel can be
passed boot options and how these can be used to configure NICs.

Chapter 8, Device Registration and Initialization
How devices are registered with the kernel and initialized.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

75

Chapter 4 CHAPTER 4

Notification Chains

The kernel’s many subsystems are heavily interdependent, so an event detected or
generated by one of them could be of interest to others. To fulfill the need for inter-
action, Linux uses so-called notification chains.

In this chapter, we will see:

• How notification chains are declared and what chains are defined by the net-
working code

• How a kernel subsystem can register to a notification chain

• How a kernel subsystem generates a notification on a chain

Note that notification chains are used only between kernel subsystems. Notifica-
tions between kernel and user space rely on other mechanisms, such as those intro-
duced in Chapter 3.

Reasons for Notification Chains
Suppose we had the Linux router in Figure 4-1 with four interfaces. The figure shows
the relationship between the router and five networks, along with a simplified ver-
sion of its routing table.

Let’s look at some examples of the topology in Figure 4-1. Network A is directly con-
nected to RT on interface eth0, and network F is not directly connected to RT, but
RT’s eth3 is directly connected to another router that has an interface with address
IP1, and that second router knows how to reach network F. The other cases are simi-
lar. In short, some networks are directly connected and others require the help of one
or more additional routers to be reached.

For a detailed description of how the routing code handles this situation, refer to
Part VII. In this chapter, we will concentrate on the role of notification chains. Sup-
pose that interface eth3 went down, due to a break in the network, an administrative
command (such as ifconfig eth3 down) or a hardware failure. Networks D, E, and F

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 4: Notification Chains

would become unreachable by RT (and by systems in A, B, and C relying on RT for
their connections) and should be removed from the routing table. Who is going to
tell the routing subsystem about that interface failure? A notification chain.

Figure 4-2 shows a slightly more complicated example where the routing subsystem
interacts with dynamic routing protocols—protocols that can adjust the routing
table or tables* to the network topology and therefore cope with interface failures
when the topology allows it (i.e., when there are redundant paths).

In Figure 4-2, network F could be reached by RT by passing through both network A
and network E. E was chosen initially because of its smaller cost,† but now that E is
no longer reachable, the routing table should update the route for network F to go
through network A. The basis for such a decision could include local host events,
such as device registration and unregistration, as well as complex factors in router

Figure 4-1. Example of Linux router

* It is possible to have multiple routing tables at the same time. We will cover this feature in Chapter 31.

Figure 4-2. Example of a Linux router with dynamic routing protocols

† The cost of a link is one of the metrics that routing protocols can use to compare links and choose among
them. See Chapter 30.

Network F

RT

Network D

Network A

Network C

Network B
eth3 eth1

eth0

eth2

IP1

Network E

Network Gateway Interface

A none eth0
B none eth1
C none eth2

D IP1 eth3

E none eth3
F IP1 eth3
RT’s routing table

Network F

RT

Network A

eth3 eth1

eth0

eth2

IP1

Network E

RT's routing table

IP2

F IP2 eth0

Network Gateway Interface

A none eth0
B none eth1
C none eth2

D IP1 eth3

E none eth3
F IP1 eth3

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Overview | 77

configuration and the routing protocols used. In any case, the routing subsystem that
manages the tables must be informed of the relevant information by some other sub-
system, demonstrating the need for notification chains.

Overview
A notification chain is simply a list of functions to execute when a given event
occurs. Each function lets one other subsystem know about an event that occurred
within, or was detected by, the subsystem calling the function.

Thus, for each notification chain there is a passive side (the notified) and an active
side (the notifier), as in the so-called publish-and-subscribe model:

• The notified are the subsystems that ask to be notified about the event and that
provide a callback function to invoke.

• The notifier is the subsystem that experiences an event and calls the callback
function.

The functions executed are chosen by the notified subsystems. It is never up to the
owner of the chain (the subsystem that generates the notifications) to decide what
functions to execute. The owner simply defines the list; any kernel subsystem can
register a callback function with that chain to receive the notification.

The use of notification chains makes the source code easier to write and maintain.
Imagine how a generic routine might notify external subsystems about an event with-
out using notification chains:

If (subsystem_X_enabled) {
 do_something_1
}
if (subsystem_Y_enabled) {
 do_something_2
}
If (subsystem_Z_enabled) {
 do_something_3
}
...

In other words, a conditional clause would have to be included for every possible
subsystem that might be interested in an event, and the maintainer of this subsystem
would have to add a new clause every time somebody else added a subsystem to the
kernel.

No subsystem maintainer is expected to keep track of every subsystem added to the
kernel. However, each subsystem maintainer should know:

• The kinds of events from other subsystems he is interested in

• The kinds of events he knows about and that other subsystems may be
interested in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 4: Notification Chains

Thus, notification chains allow each subsystem to share the occurrence of an event
with others, without having to know what the others are and why they are
interested.

Defining a Chain
The elements of the notification chain’s list are of type notifier_block, whose defini-
tion is the following:

struct notifier_block
{
 int (*notifier_call)(struct notifier_block *self, unsigned long, void *);
 struct notifier_block *next;
 int priority;
};

notifier_call is the function to execute, next is used to link together the elements of
the list, and priority represents the priority of the function. Functions with higher
priority are executed first. But in practice, almost all registrations leave the priority
out of the notifier_block definition, which means it gets the default value of 0 and
execution order ends up depending only on the registration order (i.e., it is a semiran-
dom order). The return values of notifier_call are listed in the upcoming section,
“Notifying Events on a Chain.”

Common names for notifier_block instances are xxx_chain, xxx_notifier_chain,
and xxx_notifier_list.

Registering with a Chain
When a kernel component is interested in the events of a given notification chain, it
can register it with the general function notifier_chain_register. The kernel also
provides a set of wrappers around notifier_chain_register, some of which are
shown in Table 4-1.

Table 4-1 lists the main APIs and the associated wrappers used to register and unreg-
ister to the three chains inetaddr_chain, inet6addr_chain, and netdev_chain.

Table 4-1. Main functions and wrappers for a few chains

Operation Function prototype

Registration int notifier_chain_register(struct notifier_block **list, struct
notifier_block *n)

Wrappers

inetaddr_chain register_inetaddr_notifier

inet6addr_chain register_inet6addr_notifier

netdev_chain register_netdevice_notifier

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Notifying Events on a Chain | 79

For each chain, the notifier_block instances are inserted into a list, which is sorted
by priority. Elements with the same priority are sorted based on insertion time: new
ones go to the tail.

Accesses to the notification chains are protected by the notifier_lock lock. The use
of a single lock for all the notification chains is not a big constraint and does not
affect performance, because subsystems usually register their notifier_call func-
tions only at boot time or at module load time, and from that moment on access the
lists in a read-only manner (that is, shared).

Because the notifier_chain_register function is called to insert callbacks into all
lists, it requires that the list be specified as an input parameter. However, this func-
tion is rarely called directly; generic wrappers are used instead.

int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
{
 write_lock(¬ifier_lock);
 while(*list)
 {
 if(n->priority > (*list)->priority)
 break;
 list= &((*list)->next);
 }
 n->next = *list;
 *list=n;
 write_unlock(¬ifier_lock);
 return 0;
}

Notifying Events on a Chain
Notifications are generated with notifier_call_chain, defined in kernel/sys.c. This
function simply invokes, in order of priority, all the callback routines registered
against the chain. Note that callback routines are executed in the context of the pro-
cess that calls notifier_call_chain. A callback routine could, however, be imple-

Unregistration int notifier_chain_unregister(struct notifier_block **nl, struct
notifier_block *n)

Wrappers

inetaddr_chain unregister_inetaddr_notifier

inet6addr_chain unregister_inet6addr_notifier

netdev_chain unregister_netdevice_notifier

Notification int notifier_call_chain(struct notifier_block **n, unsigned long
val, void *v)

Table 4-1. Main functions and wrappers for a few chains (continued)

Operation Function prototype

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 4: Notification Chains

mented so that it queues the notification somewhere and wakes up a process that
will look at it.

int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
{
 int ret = NOTIFY_DONE;
 struct notifier_block *nb = *n;

 while (nb)
 {
 ret = nb->notifier_call(nb, val, v);
 if (ret & NOTIFY_STOP_MASK)
 {
 return ret;
 }
 nb = nb->next;
 }
 return ret;
}

This is the meaning of its three input parameters:

n
Notification chain.

val
Event type. The chain itself identifies a class of events; val unequivocally identi-
fies an event type (i.e., NETDEV_REGISTER).

v
Input parameter that can be used by the handlers registered by the various cli-
ents. This can be used in different ways under different circumstances. For
instance, when a new network device is registered with the kernel, the associ-
ated notification uses v to identify the net_device data structure.

The callback routines called by notifier_call_chain can return any of the NOTIFY_XXX
values defined in include/linux/notifier.h:

NOTIFY_OK
Notification was processed correctly.

NOTIFY_DONE
Not interested in the notification.*

NOTIFY_BAD
Something went wrong. Stop calling the callback routines for this event.

NOTIFY_STOP
Routine invoked correctly. However, no further callbacks need to be called for
this event.

* This return value is sometimes improperly used in place of NOTIFY_OK.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Notification Chains for the Networking Subsystems | 81

NOTIFY_STOP_MASK
This flag is checked by notifier_call_chain to see whether to stop invoking the
callback routines, or keep going. Both NOTIFY_BAD and NOTIFY_STOP include this
flag in their definitions.

notifier_call_chain captures and returns the return value received by the last call-
back routine invoked. This is true regardless of whether all the callbacks have been
invoked, or one of them interrupted the loop due to a return value of NOTIFY_BAD or
NOTIFY_STOP.

Note that it is possible for notifier_call_chain to be called for the same notification
chain on different CPUs at the same time. It is the responsibility of the callback func-
tions to take care of mutual exclusion and serialization where needed.

Notification Chains for the Networking Subsystems
The kernel defines at least 10 different notification chains. Here we are interested in
the ones that are used to signal events of particular importance to the networking
code. The main ones are:

inetaddr_chain
Sends notifications about the insertion, removal, and change of an Internet Pro-
tocol Version 4 (IPv4) address on a local interface. Chapter 23 describes when
such notifications are generated. Internet Protocol Version 6 (IPv6) uses a simi-
lar chain (inet6addr_chain).

netdev_chain
Sends notifications about the registration status of network devices. Chapter 8
describes when such notifications are generated.

For these chains, and others used by the networking subsystems, their purposes and
uses are described in the chapter about the relevant notifier subsystem.

The networking code can register to notifications generated by other kernel compo-
nents, too. For example, some NIC device drivers register with the reboot_notifier_
list chain, which is a chain that warns when the system is about to reboot.

Wrappers
Most notification chains come with a set of wrappers used to register to them and
unregister from them. For example, this is the wrapper used to register to netdev_
chain:

int register_netdevice_notifier(struct notifier_block *nb)
{
 return notifier_chain_register(&netdev_chain, nb);
}

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 4: Notification Chains

Common names for wrappers include [un]register_xxx_notifier, xxx_[un]register_
notifier, and xxx_[un]register.

Examples
Registrations to notification chains usually take place when the interested kernel
component is initialized. For example, the following snapshot from net/ipv4/fib_
frontend.c shows ip_fib_init, which is the initialization routine used by the routing
code that is described in the section “Routing Subsystem Initialization” in Chapter 32:

static struct notifier_block fib_inetaddr_notifier = {
 .notifier_call = fib_inetaddr_event,
};

static struct notifier_block fib_netdev_notifier = {
 .notifier_call = fib_netdev_event,
};

void _ _init ip_fib_init(void)
{

 register_netdevice_notifier(&fib_netdev_notifier);
 register_inetaddr_notifier(&fib_inetaddr_notifier);
}

The routing code registers to both of the chains introduced in the earlier section,
“Notification Chains for the Networking Subsystems.” The routing tables are
affected both by changes to locally configured IP addresses and by changes to the
registration status of local devices.

Tuning via /proc Filesystem
There is no file of interest in /proc as far as this chapter is concerned.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Files and Directories Featured in This Chapter | 83

Functions and Variables Featured in This Chapter
Table 4-2 summarizes the functions and data structures introduced in this chapter.

Files and Directories Featured in This Chapter
Figure 4-3 lists the files referred to in this chapter.

Table 4-2. Functions, macros, and data structures used for notification chains

Name Description

Functions and macros

notifier_chain_register + wrappers
notifier_chain_unregister + wrappers
notifier_call_chain

The first two functions register and unregister a callback handler for a
notification chain. The third sends out all the notifications about
events in a specific class.

Data structure

struct notifier_block Defines the handler for a notification. It includes the callback function
to invoke.

Figure 4-3. Files related to notification chains

net include

root
(usually/usr/src/linux)

kernel

sys.ccore ipv4

dev.c devinet.c

linux

notifier.h

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

84

Chapter 5CHAPTER 5

Network Device
Initialization

The flexibility of modern operating systems introduces complexity into initializa-
tion. First, a device driver can be loaded as either a module or a static component of
the kernel. Furthermore, devices can be present at boot time or inserted (and
removed) at runtime: the latter type of device, called a hot-pluggable device, includes
USB, PCI CardBus, IEEE 1394 (also called FireWire by Apple), and others. We’ll see
how hot-plugging affects what happens in both the kernel and the user space.

In this first chapter, we will cover:

• A piece of the core networking code initialization.

• The initialization of an NIC.

• How an NIC uses interrupts, and how IRQ handlers can be allocated and
released. We will also look at how drivers can share IRQs.

• How the user can provide configuration parameters to device drivers loaded as
modules.

• Interaction between user space and kernel during device initialization and con-
figuration. We will look at how the kernel can run a user-space helper to either
load the correct device driver for an NIC or apply a user-space configuration. In
particular, we will look at the Hotplug feature.

• How virtual devices differ from real ones with regard to configuration and inter-
action with the kernel.

System Initialization Overview
It’s important to know where and how the main network-related subsystems are ini-
tialized, including device drivers. However, because this book is concerned only with
the networking aspect of such initializations, I will not cover device drivers in gen-
eral, or generic kernel services (e.g., memory management). For an understanding of
that background, I recommend that you read Linux Device Drivers and Understand-
ing the Linux Kernel, both published by O’Reilly.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

System Initialization Overview | 85

Figure 5-1 shows briefly where, and in what sequence, some of the kernel sub-
systems are initialized at boot time (see init/main.c).

When the kernel boots up, it executes start_kernel, which initializes a bunch of sub-
systems, as partially shown in Figure 5-1. Before start_kernel terminates, it invokes
the init kernel thread, which takes care of the rest of the initializations. Most of the
initialization activities related to this chapter happen to be inside do_basic_setup.

Among the various initialization tasks, we are mainly interested in three:

Boot-time options
Two calls to parse_args, one direct and one indirect via parse_early_param, han-
dle configuration parameters that a boot loader such as LILO or GRUB has
passed to the kernel at boot time. We will see how this task is handled in the sec-
tion “Boot-Time Kernel Options.”

Interrupts and timers
Hardware and software interrupts are initialized with init_IRQ and softirq_
init, respectively. Interrupts are covered in Chapter 9. In this chapter, we will
see just how device drivers register a handler with an IRQ and how IRQ han-
dlers are organized in memory. Timers are also initialized early in the boot pro-
cess so that later tasks can use them.

Initialization routines
Kernel subsystems and built-in device drivers are initialized by do_initcalls.
free_init_mem frees a piece of memory that holds unneeded code. This optimiza-
tion is possible thanks to smart routine tagging. See Chapter 7 for more details.

run_init_process determines the first process run on the system, the parent of all
other processes; it has a PID of 1 and never halts until the system is done. Normally
the program run is init, part of the SysVinit package. However, the administrator can
specify a different program through the init= boot time option. When no such
option is provided, the kernel tries to execute the init command from a set of well-
known locations, and panics if it cannot find any. The user can also provide boot-
time options that will be passed to init (see the section “Boot-Time Kernel Options”).

Figure 5-1. Kernel initialization

<start_kernel>
. . .
parse_early_param();
 parse_args(. . .)
parse_args(. . .)
. . .
init_IRQ();
init_timers();
softirq_init();
. . .
rest_init();
 kernel_thread(init,. . .)

<init>

. . .
do_basic_setup();
. . .
free_init_mem();
. . .
run_init_process(. . .)

<do_basic_setup>
user modehelper_init()
. . .
driver_init()
. . .
sock_init();
. . .
do_initcalls();

fn 1
. . .
fn i (net_dev_init)
. . .
fn n

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 5: Network Device Initialization

Device Registration and Initialization
For a network device to be usable, it must be recognized by the kernel and associ-
ated with the correct driver. The driver stores, in private data structures, all the infor-
mation needed to drive the device and interact with other kernel components that
require the device. The registration and initialization tasks are taken care of partially
by the core kernel and partially by the device driver. Let’s go over the initialization
phases:

Hardware initialization
This is done by the device driver in cooperation with the generic bus layer (e.g.,
PCI or USB). The driver, sometimes alone and sometimes with the help of user-
supplied parameters, configures such features of each device as the IRQ and I/O
address so that they can interact with the kernel. Because this activity is closer to
the device drivers than to the higher-layer protocols and features, we will not
spend much time on it. We will see one example for the PCI layer.

Software initialization
Before the device can be used, depending on what network protocols are enabled
and configured, the user may need to provide some other configuration parame-
ters, such as IP addresses. This task is addressed in other chapters.

Feature initialization
The Linux kernel comes with lots of networking options. Because some of them
need per-device configuration, the device initialization boot sequence must take
care of them. One example is Traffic Control, the subsystem that implements
Quality of Service (QoS) and that decides, therefore, how packets are queued on
and dequeued from the device egress’s queue (and with some limitations, also
queued on and dequeued from the ingress’s queue).

We already saw in Chapter 2 that the net_device data structure includes a set of
function pointers that the kernel uses to interact with the device driver and special
kernel features. The initialization of these functions depends in part on the type of
device (e.g., Ethernet) and in part on the device’s make and model. Given the popu-
larity of Ethernet, this chapter focuses on the initialization of Ethernet devices (but
other devices are handled very similarly).

Chapter 8 goes into more detail on how device drivers register their devices with the
networking code.

Basic Goals of NIC Initialization
Each network device is represented in the Linux kernel by an instance of the net_
device data structure. In Chapter 8, you will see how net_device data structures are
allocated and how their fields are initialized, partly by the device driver and partly by

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interaction Between Devices and Kernel | 87

core kernel routines. In this chapter, we focus on how device drivers allocate the
resources needed to establish device/kernel communication, such as:

IRQ line
As you will see in the section “Interaction Between Devices and Kernel,” NICs
need to be assigned an IRQ and to use it to call for the kernel’s attention when
needed. Virtual devices, however, do not need to be assigned an IRQ: the loop-
back device is an example because its activity is totally internal (see the later sec-
tion “Virtual Devices”).

The two functions used to request and release IRQ lines are introduced in the
later section “Hardware Interrupts.” As you will see in the later section “Tuning
via /proc Filesystem,” the /proc/interrupts file can be used to view the status of
the current assignments.

I/O ports and memory registration
It is common for a driver to map an area of its device’s memory (its configura-
tion registers, for example) into the system memory so that read/write opera-
tions by the driver will be made on system memory addresses directly; this can
simplify the code. I/O ports and memory are registered and released with
request_region and release_region, respectively.

Interaction Between Devices and Kernel
Nearly all devices (including NICs) interact with the kernel in one of two ways:

Polling
Driven on the kernel side. The kernel checks the device status at regular inter-
vals to see if it has anything to say.

Interrupt
Driven on the device side. The device sends a hardware signal (by generating an
interrupt) to the kernel when it needs the kernel’s attention.

In Chapter 9, you can find a detailed discussion of NIC driver design alternatives as
well as software interrupts. You will also see how Linux can use a combination of
polling and interrupts to increase performance. In this chapter, we will look only at
the interrupt-based case.

I won’t go into detail on how interrupts are reported by the hardware, the difference
between hardware exceptions and device interrupts, how the driver and bus kernel
infrastructures are designed, etc.; you can refer to Linux Device Drivers and Under-
standing the Linux Kernel for those topics. But I’ll give a brief overview on interrupts
to help you understand how device drivers initialize and register the devices they are
responsible for, with special attention to the networking aspect.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 5: Network Device Initialization

Hardware Interrupts
You do not need to know the low-level background about how hardware interrupts
are handled. However, there are details worth mentioning because they can make it
easier to understand how NIC device drivers are written, and therefore how they
interact with the upper networking layers.

Every interrupt runs a function called an interrupt handler, which must be tailored to
the device and therefore is installed by the device driver. Typically, when a device
driver registers an NIC, it requests and assigns an IRQ. It then registers and (if the
driver is unloaded) unregisters a handler for a given IRQ with the following two
architecture-dependent functions. They are defined in kernel/irq/manage.c and are
overridden by architecture-specific functions in arch/XXX/kernel/irq.c, where XXX is the
architecture-specific directory:

int request_irq(unsigned int irq, void (*handler)(int, void*, struct
pt_regs*), unsigned long irqflags, const char * devname, void *dev_id)

This function registers a handler, first making sure that the requested interrupt is
a valid one, and that it is not already allocated to another device unless both
devices understand shared IRQs (see the later section “Interrupt sharing”).

void free_irq(unsigned_int irq, void *dev_id)
Given the device identified by dev_id, this function removes the handler and dis-
ables the IRQ line if no more devices are registered for that IRQ. Note that to
identify the handler, the kernel needs both the IRQ number and the device iden-
tifier. This is especially important with shared IRQs, as explained in the later
section “Interrupt sharing.”

When the kernel receives an interrupt notification, it uses the IRQ number to find
out the driver’s handler and then executes this handler. To find handlers, the kernel
stores the associations between IRQ numbers and function handlers in a global table.
The association can be either one-to-one or one-to-many, because the Linux kernel
allows multiple devices to use the same IRQ, a feature described in the later section
“Interrupt sharing.”

In the following sections, you will see common examples of the information
exchanged between devices and drivers by means of interrupts, and how an IRQ can
be shared by multiple devices under some conditions.

Interrupt types

With an interrupt, an NIC can tell its driver several different things. Among them
are:

Reception of a frame
This is the most common and standard situation.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interaction Between Devices and Kernel | 89

Transmission failure
This kind of notification is generated on Ethernet devices only after a feature
called exponential binary backoff has failed (this feature is implemented at the
hardware level by the NIC). Note that the driver will not relay this notification
to higher network layers; they will come to know about the failure by other
means (timer timeouts, negative ACKs, etc.).

DMA transfer has completed successfully
Given a frame to send, the buffer that holds it is released by the driver once the
frame has been uploaded into the NIC’s memory for transmission on the
medium. With synchronous transmissions (no DMA), the driver knows right
away when the frame has been uploaded on the NIC. But with DMA, which uses
asynchronous transmissions, the device driver needs to wait for an explicit inter-
rupt from the NIC. You can find an example of each case at points where dev_
kfree_skb* is called within the driver code drivers/net/3c59x.c (DMA) and drivers/
net/3c509.c (non-DMA).

Device has enough memory to handle a new transmission
It is common for an NIC device driver to disable transmissions by stopping the
egress queue when that queue does not have sufficient free space to hold a frame
of maximum size (e.g., 1,536 bytes for an Ethernet NIC). The queue is then re-
enabled when memory becomes available. The rest of this section goes into this
case in more detail.

The final case in the previous list covers a sophisticated way of throttling transmis-
sions in a manner that can improve efficiency if done properly. In this system, a
device driver disables transmissions for lack of queuing space, asks the NIC to issue
an interrupt when the available memory is bigger than a given amount (typically the
device’s Maximum Transmission Unit, or MTU), and then re-enables transmissions
when the interrupt comes.

A device driver can also disable the egress queue before a transmission (to prevent
the kernel from generating another transmission request on the device), and re-
enable it only if there is enough free memory on the NIC; if not, the device asks for
an interrupt that allows it to resume transmission at a later time. Here is an example
of this logic, taken from the el3_start_xmit routine, which the drivers/net/3c509.c
driver installs as its hard_start_xmit† function in its net_device structure:

static int
el3_start_xmit(struct sk_buff *skb, struct net_device *dev)
{

 netif_stop_queue (dev);

* Chapter 11 describes this function in detail.

† The hard_start_xmit virtual function is described in Chapter 11.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 5: Network Device Initialization

 if (inw(ioaddr + TX_FREE) > 1536)
 netif_start_queue(dev);
 else
 outw(SetTxThreshold + 1536, ioaddr + EL3_CMD);

}

The driver stops the device queue with netif_stop_queue, thus inhibiting the kernel
from submitting further transmission requests. The driver then checks whether the
device’s memory has enough free space for a packet of 1,536 bytes. If so, the driver
starts the queue to allow the kernel once again to submit transmission requests; oth-
erwise, it instructs the device (by writing to a configuration register with an outw call)
to generate an interrupt when that condition will be met. An interrupt handler will
then re-enable the device queue with netif_start_queue so that the kernel can restart
transmissions.

The netif_xxx_queue routines are described in the section “Enabling and Disabling
Transmissions” in Chapter 11.

Interrupt sharing

IRQ lines are a limited resource. A simple way to increase the number of devices a
system can host is to allow multiple devices to share a common IRQ. Normally, each
driver registers its own handler to the kernel for that IRQ. Instead of having the ker-
nel receive the interrupt notification, find the right device, and invoke its handler, the
kernel simply invokes all the handlers of those devices that registered for the same
shared IRQ. It is up to the handlers to filter spurious invocations, such as by reading
a registry on their devices.

For a group of devices to share an IRQ line, all of them must have device drivers
capable of handling shared IRQs. In other words, each time a device registers for an
IRQ line, it needs to explicitly say whether it supports interrupt sharing. For exam-
ple, the first device that registers for one IRQ, saying something like “assign me IRQ
n and use this routine fn as the handler,” must also specify whether it is willing to
share the IRQ with other devices. When another device driver tries to register the
same IRQ number, it is refused if either it, or the driver to which the IRQ is cur-
rently assigned, is incapable of sharing IRQs.

Organization of IRQs to handler mappings

The mapping of IRQs to handlers is stored in a vector of lists, one list of handlers for
each IRQ (see Figure 5-2). A list includes more than one element only when multiple
devices share the same IRQ. The size of the vector (i.e., the number of possible IRQ
numbers) is architecture dependent and can vary from 15 (on an x86) to more than
200. With the introduction of interrupt sharing, even more devices can be supported
on a system at once.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interaction Between Devices and Kernel | 91

The section “Hardware Interrupts” already introduced the two functions provided
by the kernel to register and unregister a handler, respectively. Let’s now see the data
structure used to store the mappings.

Mappings are defined with irqaction data structures. The request_irq function
introduced in the earlier section “Hardware Interrupts” is a wrapper around setup_
irq, which takes an irqaction structure as input and inserts it into the global irq_
desc vector. irq_desc is defined in kernel/irq/handler.c and can be overridden in the
per-architecture files arch/XXX/kernel/irq.c. setup_irq is defined in kernel/irq/manage.c
and can be overridden in the per-architecture files arch/XXX/kernel/irq.c.

The kernel function that handles interrupts and passes them to drivers is architec-
ture dependent. It is called handle_IRQ_event on most architectures.

Figure 5-2 shows how irqaction instances are stored: there is an instance of irq_desc
for each possible IRQ and an instance of irqaction for each successfully registered
IRQ handler. The vector of irq_desc instances is called irq_desc as well, and its size
is given by the architecture-dependent symbol NR_IRQS.

Note that when you have more than one irqaction instance for a given IRQ number
(that is, for a given element of the irq_desc vector), interrupt sharing is required
(each structure must have the SA_SHIRQ flag set).

Let’s see now what information is stored about IRQ handlers in the fields of an
irqaction data structure:

void (*handler)(int irq, void *dev_id, struct pt_regs *regs)
Function provided by the device driver to handle notifications of interrupts:
whenever the kernel receives an interrupt on line irq, it invokes handler. Here
are the function’s input parameters:

int irq
IRQ number that generated the notification. Most of the time it is not used
by the NICs’ device drivers to accomplish their job; the device ID is
sufficient.

Figure 5-2. Organization of IRQ handlers

*action

*action

*next
. . .

struct irq_action

*next
. . .

SA_SHIRQ

struct irq_action

*next
. . .

SA_SHIRQ

struct irq_actionstruct irq_desc

NR
_I

RQ
S

irq_desc

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 5: Network Device Initialization

void *dev_id
Device identifier. The same driver can be responsible for different devices at
the same time, so it needs the device ID to process the notification correctly.

struct pt_regs *regs
Structure used to save the content of the processor’s registers at the moment
the interrupt interrupted the current process. It is normally not used by the
interrupt handler.

unsigned long flags
Set of flags. The possible values SA_XXX are defined in include/asm-XXX/signal.h.
Here are the main ones from the x86 architecture file:

SA_SHIRQ
When set, the device driver can handle shared IRQs.

SA_SAMPLE_RANDOM
When set, the device is making itself available as a source of random events.
This can be useful to help the kernel generate random numbers for internal
use, and is called contributing to system entropy. This is further described in
the later section “Initializing the Device Handling Layer: net_dev_init.”

SA_INTERRUPT
When set, the handler runs with interrupts disabled on the local proces-
sor. This should be specified only for handlers that can get done very
quickly. See one of the handle_IRQ_event instances for an example (for
instance, /kernel/irq/handle.c).

There are other values, but they are either obsolete or used only by particular
architectures.

void *dev_id
Pointer to the net_device data structure associated with the device. The reason it
is declared void * is that NICs are not the only devices to use IRQs. Because var-
ious device types use different data structures to identify and represent device
instances, a generic type declaration is used.

struct irqaction *next
All the devices sharing the same IRQ number are linked together in a list with
this pointer.

const char *name
Device name. You can read it by dumping the contents of /proc/interrupts.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Module Options | 93

Initialization Options
Both components built into the kernel and components loaded as modules can be
passed input parameters so that users can fine-tune the functionality implemented by
the components, override defaults compiled into them, or change them from one sys-
tem boot to the next. The kernel provides two kinds of macros to define options:

Module options (macros of the module_param family)
These define options you can provide when you load a module. When a compo-
nent is built into the kernel, you cannot provide values for these options at ker-
nel boot time. However, with the introduction of the /sys filesystem, you can
configure the options via those files at runtime. The /sys interface is relatively
new, compared to the /proc interface. The later section “Module Options” goes
into a little more detail on these options.

Boot-time kernel options (macros of the _ _setup family)
These define options you can provide at boot time with a boot loader. They are
used mainly by modules that the user can build into the kernel, and kernel com-
ponents that cannot be compiled as modules. You will see those macros in the
section “Boot-Time Kernel Options” in Chapter 7.

It is interesting to note that a module can define an initialization option in both
ways: one is effective when the module is built-in and the other is effective when the
module is loaded separately. This can be a little confusing, especially because differ-
ent modules can define passing parameters of the same name at module load time
without any risk of name collision (i.e., the parameters are passed just to the module
being loaded), but if you pass those parameters at kernel boot time, you must make
sure there is no name collision between the various modules’ options.

We will not go into detail on the pros and cons of the two approaches. You can
look at the drivers/block/loop.c driver for a clear example using both module_param
and _ _setup.

Module Options
Kernel modules define their parameters by means of macros such as module_param;
see include/linux/moduleparam.h for a list. module_param requires three input parame-
ters, as shown in the following example from drivers/net/sis900.c:

...
module_param(multicast_filter_limit, int, 0444);
module_param(max_interrupt_work, int, 0444);
module_param(debug, int, 0444);
...

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 5: Network Device Initialization

The first input parameter is the name of the parameter to be offered to the user. The
second is the type of the parameter (e.g., integer), and the third represents the per-
missions assigned to the file in /sys to which the parameter will be exported.

This is what you would get when listing the module’s directory in /sys:

[root@localhost src]# ls -la /sys/module/sis900/parameters/
total 0
drwxr-xr-x 2 root root 0 Apr 9 18:31 .
drwxr-xr-x 4 root root 0 Apr 9 18:31 ..
-r--r--r-- 1 root root 0 Apr 9 18:31 debug
-r--r--r-- 1 root root 4096 Apr 9 18:31 max_interrupt_work
-r--r--r-- 1 root root 4096 Apr 9 18:31 multicast_filter_limit
[root@localhost src]#

Each module is assigned a directory in /sys/modules. The subdirectory /sys/modules/
module/parameters holds a file for each parameter exported by module. The previous
snapshot from drivers/net/sis900.c shows three options that are readable by anyone,
but not writable (they cannot be changed).

Permissions on /sys files (and on /proc files, incidentally) are defined using the same
syntax as common files, so you can specify read, write, and execute permissions for
the owner, the group, and everybody else. A value of 400 means, for example, read
access for the owner (who is the root user) and no other access for anyone. When a
value of 0 is assigned, no one has any permissions and you would not even see the
file in /sys.

If the component programmer wants the user to be able to read the values of param-
eters, she must give at least read permission. She can also provide write permission to
allow users to modify values. However, take into account that the module that
exports the parameter is not notified about any change to the file, so the module
must have a mechanism to detect the change or be able to cope with changes.

For a detailed description of the /sys interface, refer to Linux Device Drivers.

Initializing the Device Handling Layer: net_dev_init
An important part of initialization for the networking code, including Traffic Con-
trol and per-CPU ingress queues, is performed at boot time by net_dev_init, defined
in net/core/dev.c:

static int _ _init net_dev_init(void)
{
 ...
}
subsys_initcall(net_dev_init);

See Chapter 7 for how the subsys_initcall macros ensure that net_dev_init runs
before any NIC device drivers register themselves, and why this is important. You
also will see why net_dev_init is tagged with the _ _init macro.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Initializing the Device Handling Layer: net_dev_init | 95

Let’s walk through the main parts of net_dev_init:

• The per-CPU data structures used by the two networking software interrupts
(softirqs) are initialized. In Chapter 9, we will see what a softirq is and go into
detail on how the networking code uses softirqs.

• When the kernel is compiled with support for the /proc filesystem (which is the
default configuration), a few files are added to /proc with dev_proc_init and
dev_mcast_init. See the later section “Tuning via /proc Filesystem” for more
details.

• netdev_sysfs_init registers the net class with sysfs. This creates the directory /sys/
class/net, under which you will find a subdirectory for each registered network
device. These directories include lots of files, some of which used to be in /proc.

• net_random_init initializes a per-CPU vector of seeds that will be used when gen-
erating random numbers with the net_random routine. net_random is used in dif-
ferent contexts, described later in this section.

• The protocol-independent destination cache (DST), described in Chapter 33, is
initialized with dst_init.

• The protocol handler vector ptype_base, used to demultiplex ingress traffic, is
initialized. See Chapter 13 for more details.

• When the OFFLINE_SAMPLE symbol is defined, the kernel sets up a function to run
at regular intervals to collect statistics about the devices’ queue lengths. In this
case, net_dev_init needs to create the timer that runs the function regularly. See
the section “Average Queue Length and Congestion-Level Computation” in
Chapter 10.

• A callback handler is registered with the notification chain that issues notifica-
tions about CPU hotplug events. The callback used is dev_cpu_callback. Cur-
rently, the only event processed is the halting of a CPU. When this notification is
received, the buffers in the CPU’s ingress queue are dequeued and are passed to
netif_rx. See Chapter 9 for more detail on per-CPU ingress queues.

Random number generation is a support function that the kernel performs to help
randomize some of its own activity. You will see in this book that many networking
subsystems use randomly generated values. For instance, they often add a random
component to the delay of timers, making it less likely for timers to run simulta-
neously and load down the CPU with background processing. Randomization can
also defend against a Denial of Service (DoS) attack by someone who tries to guess
the organization of certain data structures.

The degree to which the kernel’s numbers can be considered truly random is called
system entropy. It is improved through contributions by kernel components whose
activity has a nondeterministic aspect, and networking often falls in this category.
Currently, only a few NIC device drivers contribute to system entropy (see earlier
discussion on SA_SAMPLE_RANDOM). A patch for kernel 2.4 adds a compile time option

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 5: Network Device Initialization

that you can use to enable or disable the contribution to system entropy by NICs.
Search the Web using the keyword “SA_SAMPLE_NET_RANDOM,” and you will
find the current version.

Legacy Code
I mentioned in the previous section that the subsys_initcall macros ensure that
net_dev_init is executed before any device driver has a chance to register its
devices. Before the introduction of this mechanism, the order of execution used to
be enforced differently, using the old-fashioned mechanism of a one-time flag.

The global variable dev_boot_phase was used as a Boolean flag to remember whether
net_dev_init had to be executed. It was initialized to 1 (i.e., net_dev_init had not
been executed yet) and was cleared by net_dev_init. Each time register_netdevice
was invoked by a device driver, it checked the value of dev_boot_phase and executed
net_dev_init if the flag was set, indicating the function had not yet been executed.

This mechanism is not needed anymore, because register_netdevice cannot be
called before net_dev_init if the correct tagging is applied to key device drivers’ rou-
tines, as described in Chapter 7. However, to detect wrong tagging or buggy code,
net_dev_init still clears the value of dev_boot_phase, and register_netdevice uses
the macro BUG_ON to make sure it is never called when dev_boot_phase is set.*

User-Space Helpers
There are cases where it makes sense for the kernel to invoke a user-space applica-
tion to handle events. Two such helpers are particularly important:

/sbin/modprobe
Invoked when the kernel needs to load a module. This helper is part of the
module-init-tools package.

/sbin/hotplug
Invoked when the kernel detects that a new device has been plugged or
unplugged from the system. Its main job is to load the correct device driver
(module) based on the device identifier. Devices are identified by the bus they
are plugged into (e.g., PCI) and the associated ID defined by the bus specifica-
tion.† This helper is part of the hotplug package.

The kernel provides a function named call_usermodehelper to execute such user-
space helpers. The function allows the caller to pass the application a variable number

* The use of the macros BUG_ON and BUG_TRAP is a common mechanism to make sure necessary conditions are
met at specific code points, and is useful when transitioning from one design to another.

† See the section “Registering a PCI NIC Device Driver” in Chapter 6 for an example involving PCI.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

User-Space Helpers | 97

of both arguments in arg[] and environment variables in env[]. For example, the first
argument arg[0] tells call_usermodehelper what user-space helper to launch, and
arg[1] can be used to tell the helper itself what configuration script to use (often called
the user-space agent). We will see an example in the later section “/sbin/hotplug.”

Figure 5-3 shows how two kernel routines, request_module and kobject_hotplug,
invoke call_usermodehelper to invoke /sbin/modprobe and /sbin/hotplug, respec-
tively. It also shows examples of how arg[] and envp[] are initialized in the two
cases. The following subsections go into a little more detail on each of those two
user-space helpers.

Figure 5-3. Event propagation from kernel to user space

Kernel

arg[0]=/sbin/modprobe
...

arg[1]=<module_name>(i.e.,”eth0”)

request_module
(kernel/kmod.c)

arg[0]=/sbin/hotplug
arg[1] = x, with x from {net, pci, usb, ieee1394, ...}

env[0] HOME = /
env [1] PATH = . . .
env [2] ACTION = {addd, remove, . . .}
. . .
env[i] INTERFACE = {i.e., eth0}
.

kobject_hotplug
(lib/kobject_uevent.c)

call_usermodehelper

arg[0]

User space

/sbin/modprobe

/etc/modprobe.conf
. . .
alias eth0 3c59x
. . .

insmod 3c59x

/sbin/hotplug

arg[1]

Is $INTERFACE
initialized? $ACTION

Invoke the right
configuration script

(i.e./sbin/{ifup, ifdown, etc})

ERROR

No
Yes

REGISTER

UNREGISTER modules.pcimap
modules.usbmap
modules.ieee1394map
...

Directory:/lib/modules/<kernel_version>

Directory:/etc/hotplug

net.agent
ieee1394. agent pci. agent usb. agent

net ieee1394 pci usb

“eth0”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 5: Network Device Initialization

kmod
kmod is the kernel module loader that allows kernel components to request the load-
ing of a module. The kernel provides more than one routine, but here we’ll look only
at request_module. This function initializes arg[1] with the name of the module to
load. /sbin/modprobe uses the configuration file /etc/modprobe.conf to do various
things, one of which is to see whether the module name received from the kernel is
actually an alias to something else (see Figure 5-3).

Here are two examples of events that would lead the kernel to ask /sbin/modprobe to
load a module:

• When the administrator uses ifconfig to configure a network card whose device
driver has not been loaded yet—say, for device eth0*—the kernel sends a request
to /sbin/modprobe to load the module whose name is the string "eth0". If /etc/
modprobe.conf contains the entry "alias eth0 3c59x", /sbin/modprobe tries load-
ing the module 3c59x.ko.

• When the administrator configures Traffic Control on a device with the
IPROUTE2 package’s tc command, it may refer to a queuing discipline or a clas-
sifier that is not in the kernel. In this case, the kernel sends /sbin/modprobe a
request to load the relevant module.

For more details on modules and kmod, refer to Linux Device Drivers.

Hotplug
Hotplug was introduced into the Linux kernel to implement the popular consumer
feature known as Plug and Play (PnP). This feature allows the kernel to detect the
insertion or removal of hot-pluggable devices and to notify a user-space application,
giving the latter enough details to make it able to load the associated driver if needed,
and to apply the associated configuration if one is present.

Hotplug can actually be used to take care of non-hot-pluggable devices as well, at
boot time. The idea is that it does not matter whether a device was hot-plugged on a
running system or if it was already plugged in at boot time; the user-space helper is
notified in both cases. The user-space application decides whether the event requires
any action on its part.

Linux systems, like most Unix systems, execute a set of scripts at boot time to initial-
ize peripherals, including network devices. The syntax, names, and locations of these
scripts change with different Linux distributions. (For example, distributions using
the System V init model have a directory per run level in /etc/rc.d/, each one with its
own configuration file indicating what to start. Other distributions are either based

* Note that because the device driver has not been loaded yet, eth0 does not exist yet either.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

User-Space Helpers | 99

on the BSD model, or follow the BSD model in compatibility mode with System V.)
Therefore, notifications for devices already present at boot time may be ignored
because the scripts will eventually configure the associated devices.

When you compile the kernel modules, the object files are placed by default in the
directory /lib/modules/kernel_version/, where kernel_version is, for instance, 2.6.12.
In the same directory you can find two interesting files: modules.pcimap and modules.
usbmap. These files contain, respectively, the PCI IDs* and USB IDs of the devices
supported by the kernel. The same files include, for each device ID, a reference to the
associated kernel module. When the user-space helper receives a notification about a
hot-pluggable device being plugged, it uses these files to find out the correct device
driver.

The modules.xxxmap files are populated from ID vectors provided by device drivers.
For example, you will see in the section “Example of PCI NIC Driver Registration” in
Chapter 6 how the Vortex driver initializes its instance of pci_device_id. Because
that driver is written for a PCI device, the contents of that table go into the modules.
pcimap file.

If you are interested in the latest code, you can find more information at http://linux-
hotplug.sourceforge.net.

/sbin/hotplug

The default user-space helper for Hotplug is the script† /sbin/hotplug, part of the Hot-
plug package. This package can be configured with the files located in the default
directories /etc/hotplug/ and /etc/hotplug.d/.

The kobject_hotplug function is invoked by the kernel to respond to the insertion and
removal of a device, among other events. kobject_hotplug initializes arg[0] to /sbin/
hotplug and arg[1] to the agent to be used: /sbin/hotplug is a simple script that dele-
gates the processing of the event to another script (the agent) based on arg[1].

The user-space helper agents can be more or less complex based on how fancy you
want the auto-configuration to be. The scripts provided with the Hotplug package
try to recognize the Linux distribution and adapt the actions to their configuration
file’s syntax and location.

Let’s take networking, the subject of this book, as an example of hotplugging. When
an NIC is added to or removed from the system, kobject_hotplug initializes arg[1] to
net, leading /sbin/hotplug to execute the net.agent agent.

* The section “Example of PCI NIC Driver Registration” in Chapter 6 gives a brief description of a PCI device
identifier.

† The administrator can write his own scripts or use the ones provided by the most common Linux
distributions.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 5: Network Device Initialization

Unlike the other agents shown in Figure 5-3, net.agent does not represent a medium
or bus type. While the net agent is used to configure a device, other agents are used
to load the correct modules (device drivers) based on the device identifiers.

net.agent is supposed to apply any configuration associated with the new device, so it
needs the kernel to provide at least the device identifier. In the example shown in
Figure 5-3, the device identifier is passed by the kernel through the INTERFACE envi-
ronment variable.

To be able to configure a device, it must first be created and registered with the ker-
nel. This task is normally driven by the associated device driver, which must there-
fore be loaded first. For instance, adding a PCMCIA Ethernet card causes several
calls to /sbin/hotplug; among them:

• One leading to the execution of /sbin/modprobe,* which will take care of loading
the right module device driver. In the case of PCMCIA, the driver is loaded by
the pci.agent agent (using the action ADD).

• One configuring the new device. This is done by the net.agent agent (again using
the action ADD).

Virtual Devices
A virtual device is an abstraction built on top of one or more real devices. The associ-
ation between virtual devices and real devices can be many-to-many, as shown by the
three models in Figure 5-4. It is also possible to build virtual devices on top of other
virtual devices. However, not all combinations are meaningful or are supported by
the kernel.

Examples of Virtual Devices
Linux allows you to define different kinds of virtual devices. Here are a few examples:

* Unlike /sbin/hotplug, which is a shell script, /sbin/modprobe is a binary executable file. If you want to give it
a look, download the source code of the modutil package.

Figure 5-4. Possible relationship between virtual and real devices

(a)

Virtual
device 1

(b)

NIC 2

Virtual
device 2

Virtual
device 3

NIC 3

(c)

NIC 1

Virtual
device 4

NIC 4 NIC 5

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Virtual Devices | 101

Bonding
With this feature, a virtual device bundles a group of physical devices and makes
them behave as one.

802.1Q
This is an IEEE standard that extends the 802.3/Ethernet header with the so-
called VLAN header, allowing for the creation of Virtual LANs.

Bridging
A bridge interface is a virtual representation of a bridge. Details are in Part IV.

Aliasing interfaces
Originally, the main purpose for this feature was to allow a single real Ethernet
interface to span several virtual interfaces (eth0:0, eth0:1, etc.), each with its own
IP configuration. Now, thanks to improvements to the networking code, there is
no need to define a new virtual interface to configure multiple IP addresses on
the same NIC. However, there may be cases (notably routing) where having dif-
ferent virtual NICs on the same NIC would make life easier, perhaps allowing
simpler configuration. Details are in Chapter 30.

True equalizer (TEQL)
This is a queuing discipline that can be used with Traffic Control. Its implemen-
tation requires the creation of a special device. The idea behind TEQL is a bit
similar to Bonding.

Tunnel interfaces
The implementation of IP-over-IP tunneling (IPIP) and the Generalized Routing
Encapsulation (GRE) protocol is based on the creation of a virtual device.

This list is not complete. Also, given the speed with which new features are included
into the Linux kernel, you can expect to see new virtual devices being added to the
kernel.

Bonding, bridging, and 802.1Q devices are examples of the model in Figure 5-4(c).
Aliasing interfaces are examples of the model in Figure 5-4(b). The model in
Figure 5-4(a) can be seen as a special case of the other two.

Interaction with the Kernel Network Stack
Virtual devices and real devices interact with the kernel in slightly different ways. For
example, they differ with regard to the following points:

Initialization
Most virtual devices are assigned a net_device data structure, as real devices are.
Often, most of the virtual device’s net_device’s function pointers are initialized
to routines implemented as wrappers, more or less complex, around the func-
tion pointers used by the associated real devices.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 5: Network Device Initialization

However, not all virtual devices are assigned a net_device instance. Aliasing
devices are an example; they are implemented as simple labels on the associated
real device (see the section “Old-generation configuration: aliasing interfaces” in
Chapter 30).

Configuration
It is common to provide ad hoc user-space tools to configure virtual devices,
especially for the high-level fields that apply only to those devices and which
could not be configured using standard tools such as ifconfig.

External interface
Each virtual device usually exports a file, or a directory with a few files, to the /proc
filesystem. How complex and detailed the information exported with those files
is depends on the kind of virtual device and on the design. You will see the ones
used by each virtual device listed in the section “Virtual Devices” in their associ-
ated chapters (for those devices covered in this book). Files associated with vir-
tual devices are extra files; they do not replace the ones associated with the
physical devices. Aliasing devices, which do not have their own net_device
instances, are again an exception.

Transmission
When the relationship of virtual device to real device is not one-to-one, the rou-
tine used to transmit may need to include, among other tasks, the selection of
the real device to use.* Because QoS is enforced on a per-device basis, the multi-
ple relationships between virtual devices and associated real devices have impli-
cations for the Traffic Control configuration.

Reception
Because virtual devices are software objects, they do not need to engage in inter-
actions with real resources on the system, such as registering an IRQ handler or
allocating I/O ports and I/O memory. Their traffic comes secondhand from the
physical devices that perform those tasks. Packet reception happens differently
for different types of virtual devices. For instance, 802.1Q interfaces register an
Ethertype and are passed only those packets received by the associated real
devices that carry the right protocol ID.† In contrast, bridge interfaces receive
any packet that arrives from the associated devices (see Chapter 16).

External notifications
Notifications from other kernel components about specific events taking place in
the kernel‡ are of interest as much to virtual devices as to real ones. Because vir-
tual devices’ logic is implemented on top of real devices, the latter have no
knowledge about that logic and therefore are not able to pass on those notifica-

* See Chapter 11 for more details on packet transmission in general, and dev_queue_xmit in particular.

† Chapter 13 discusses the demultiplexing of ingress traffic based on the protocol identifier.

‡ Chapter 4 defines notification chains and explains what kind of notifications they can be used for.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 103

tions. For this reason, notifications need to go directly to the virtual devices.
Let’s use Bonding as an example: if one device in the bundle goes down, the
algorithms used to distribute traffic among the bundle’s members have to be
made aware of that so that they do not select the devices that are no longer
available.

Unlike these software-triggered notifications, hardware-triggered notifications (e.g.,
PCI power management) cannot reach virtual devices directly because there is no
hardware associated with virtual devices.

Tuning via /proc Filesystem
Figure 5-5 shows the files that can be used either to tune or to view the status of con-
figuration parameters related to the topics covered in this chapter.

In /proc/sys/kernel are the files modprobe and hotplug that can change the pathnames
of the two programs introduced earlier in the section “User-Space Helpers.”

A few files in /proc export the values within internal data structures and configura-
tion parameters, which are useful to track what resources were allocated by device
drivers, shown earlier in the section “Basic Goals of NIC Initialization.” For some of
these data structures, a user-space command is provided to print their contents in a
more user-friendly format. For example, lsmod lists the modules currently loaded,
using /proc/modules as its source of information.

In /proc/net, you can find the files created by net_dev_init, via dev_proc_init and
dev_mcast_init (see the earlier section “Initializing the Device Handling Layer: net_
dev_init”):

dev
Displays, for each network device registered with the kernel, a few statistics
about reception and transmission, such as bytes received or transmitted, num-
ber of packets, errors, etc.

dev_mcast
Displays, for each network device registered with the kernel, the values of a few
parameters used by IP multicast.

wireless
Similarly to dev, for each wireless device, prints the values of a few parameters
from the wireless block returned by the dev->get_wireless_stats virtual function.
Note that dev->get_wireless_stats returns something only for wireless devices,
because those allocate a data structure to keep those statistics (and so /proc/net/
wireless will include only wireless devices).

softnet_stat
Exports statistics about the software interrupts used by the networking code. See
Chapter 12.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 5: Network Device Initialization

There are other interesting directories, including /proc/drivers, /proc/bus, and /proc/
irq, for which I refer you to Linux Device Drivers. In addition, kernel parameters are
gradually being moved out of /proc and into a directory called /sys, but I won’t
describe the new system for lack of space.

Functions and Variables Featured in This Chapter
Table 5-1 summarizes the functions, macros, variables, and data structures intro-
duced in this chapter.

Figure 5-5. /proc files related to the routing subsystem

Table 5-1. Functions, macros, variables, and data structures related to system initialization

Name Description

Functions and macros

request_irq
free_irq

Registers and releases, respectively, a callback handler for an IRQ line. The regis-
tration can be exclusive or shared.

request_region
release_region

Allocates and releases I/O ports and I/O memory.

call_usermodehelper Invokes a user-space helper application.

module_param Macro used to define configuration parameters for modules.

net_dev_init Initializes a piece of the networking code at boot time.

Global variables

dev_boot_phase Boolean flag used by legacy code to enforce the execution of net_dev_init
before NIC device drivers register themselves.

irq_desc Pointer to the vector of IRQ descriptors.

Data structure

interrupts
iomem
ioports

pci
modules

net

/proc

sys

kernel

modprobe
hotplug

dev
dev_mcast

wireless
softnet_stat

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Files and Directories Featured in This Chapter | 105

Files and Directories Featured in This Chapter
Figure 5-6 lists the files and directories referred to in this chapter.

struct irq_action Each IRQ line is defined by an instance of this structure. Among other fields, it
includes a callback function.

net_device Describes a network device.

Figure 5-6. Files and directories featured in this chapter

Table 5-1. Functions, macros, variables, and data structures related to system initialization

Name Description

net

Root

drivers

block
loop.c dev.c

(usually /usr/src/linux)

core

init
main.c

include

moduleparam.h
linuxnet

3c59x.c
sis900.c

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

106

Chapter 6CHAPTER 6

The PCI Layer and Network
Interface Cards

Given the popularity of the PCI bus, on the x86 as well as other architectures, we
will spend a few pages on it so that you can understand how PCI devices are man-
aged by the kernel, with special emphasis on network devices. This chapter will help
you find a context for the code about device registration we will see in Chapter 8.
You will also learn a bit about how PCI handles some nifty kernel features such as
probing and power management. For an in-depth discussion of PCI, such as device
driver design, PCI bus features, and implementation details, refer to Linux Device
Drivers and Understanding the Linux Kernel, as well as PCI specifications.

The PCI subsystem (also known as the PCI layer) in the kernel provides all the
generic functions that are used in common by various PCI device drivers. This sub-
system takes a lot of work off the shoulders of the programmer for each individual
device, lets drivers be written in a clean manner, and makes it easier for the kernel to
collect and maintain information about the devices, such as accounting information
and statistics.

In this chapter, we will see the meaning of a few key data structures used by the PCI
layer and how these structures are initialized by one common NIC device driver. I’ll
conclude with a few words on the PCI power management and Wake-on-LAN
features.

Data Structures Featured in This Chapter
Here are a few key data structure types used by the PCI layer. There are many oth-
ers, but the following ones are all we need to know for our overview in this book.
The first one is defined in include/linux/mod_devicetable.h, and the other two are
defined in include/linux/pci.h.

pci_device_id
Device identifier. This is not a local ID used by Linux, but an ID defined accord-
ingly to the PCI standard. The later section “Registering a PCI NIC Device
Driver” shows the ID’s definition, and the later section “Example of PCI NIC
Driver Registration” presents an example.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Chapter | 107

pci_dev
Each PCI device is assigned a pci_dev instance, just as network devices are
assigned net_device instances. This is the structure used by the kernel to refer to
a PCI device.

pci_driver
Defines the interface between the PCI layer and the device drivers. This struc-
ture consists mostly of function pointers. All PCI devices use it. See the later sec-
tion “Example of PCI NIC Driver Registration” for its definition and an example
of its initialization.

PCI device drivers are defined by an instance of a pci_driver structure. Here is a
description of its main fields, with special attention paid to the case of NIC devices.
The function pointers are initialized by the device driver to point to appropriate
functions within that driver.

char *name
Name of the driver.

const struct pci_device_id *id_table
Vector of IDs the kernel will use to associate devices to this driver. The section
“Example of PCI NIC Driver Registration” shows an example.

int (*probe)(struct pci_dev *dev, const struct pci_device_id *id)
Function invoked by the PCI layer when it finds a match between a device ID for
which it is seeking a driver and the id_table mentioned previously. This func-
tion should enable the hardware, allocate the net_device structure, and initialize
and register the new device.* In this function, the driver also allocates any addi-
tional data structures (e.g., buffer rings used during transmission or reception)
that it may need to work properly.

void (*remove)(struct pci_dev *dev)
Function invoked by the PCI layer when the driver is unregistered from the ker-
nel or when a hot-pluggable device is removed. It is the counterpart of probe and
is used to clean up any data structure and state.

Network devices use this function to release the allocated I/O ports and I/O
memory, to unregister the device, and to free the net_device data structure and
any other auxiliary data structure that could have been allocated by the device
driver, usually in its probe function.

int (*suspend)(struct pci_dev *dev, pm_message_t state)
int (*resume)(struct pci_dev *dev)

Functions invoked by the PCI layer when the system goes into suspend mode
and when it is resumed, respectively. See the later section “Power Management
and Wake-on-LAN.”

* NIC registration is covered in Chapter 8.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 6: The PCI Layer and Network Interface Cards

int (*enable_wake)(struct pci_dev *dev, u32 state, int enable)
With this function, a driver can enable or disable the capability of the device to
wake the system up by generating specific Power Management Event signals. See
the later section “Power Management and Wake-on-LAN.”

struct pci_dynids dynids
Dynamic IDs. See the following section.

See the later section “Example of PCI NIC Driver Registration” for an example of ini-
tialization of a pci_driver instance.

Registering a PCI NIC Device Driver
PCI devices are uniquely identified by a combination of parameters, including ven-
dor, model, etc. These parameters are stored by the kernel in a data structure of type
pci_device_id, defined as follows:

struct pci_device_id {
 unsigned int vendor, device;
 unsigned int subvendor, subdevice;
 unsigned int class, class_mask;
 unsigned long driver_data;
};

Most of the fields are self-explanatory. vendor and device are usually sufficient to
identify the device. subvendor and subdevice are rarely needed and are usually set to a
wildcard value (PCI_ANY_ID). class and class_mask represent the class the device
belongs to; NETWORK is the class that covers the devices we discuss in this chap-
ter. driver_data is not part of the PCI ID; it is a private parameter used by the driver.

Each device driver registers with the kernel a vector of pci_device_id instances that
lists the IDs of the devices it can handle.

PCI device drivers register and unregister with the kernel with pci_register_driver
and pci_unregister_driver, respectively. These functions are defined in drivers/pci/
pci.c. There is also pci_module_init, an alias for pci_register_driver. A few drivers
still use pci_module_init, which is the name of the routine the kernel provided in
older kernel versions before the introduction of pci_register_driver.

pci_register_driver requires a pci_driver data structure as an argument. Thanks to
the pci_driver’s id_table vector, the kernel knows what devices the driver can han-
dle, and thanks to all the virtual functions that are part of pci_driver, the kernel has
a mechanism to interact with any device that will be associated with the driver.

One of the great advantages of PCI is its elegant support for probing to find the IRQ
and other resources each device needs. A module can be passed input parameters at
load time to tell it how to configure all the devices for which it is responsible, but
sometimes (especially with buses such as PCI) it is easier to let the driver itself check
the devices on the system and configure the ones for which it is responsible. The user
can still fall back on manual configuration if necessary.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Power Management and Wake-on-LAN | 109

The /sys filesystem exports information about system buses (PCI, USB, etc.), includ-
ing the various devices and relationships between them. /sys also allows an adminis-
trator to define new IDs for a given device driver so that besides the static IDs
registered by the drivers with their pci_driver structures’ id_table vector, the kernel
can use the user-configured parameters.

We will not cover the probing mechanism used by the kernel to look up a driver
based on the device IDs. However, it is worth mentioning that there are two types of
probing:

Static
Given a device PCI ID, the kernel can look up the right PCI driver (i.e., the pci_
driver instance) based on the id_table vectors. This is called static probing.

Dynamic
This is a lookup based on IDs the user configures manually, a rare practice but
one that is occasionally useful, as for debugging. Dynamic refers to the system
administrator’s ability to add an ID; it does not mean the ID can change on its
own.

Since dynamic IDs are configured on a running system, they are useful only when the
kernel is compiled with support for Hotplug.

Power Management and Wake-on-LAN
PCI power management events are processed by the suspend and resume functions of
the pci_driver data structure. Besides taking care of the PCI state, by saving and
restoring it, respectively, these functions need to take special steps in the case of
NICs:

• suspend mainly stops the device egress queue so that no transmission will be
allowed on the device.

• resume re-enables the egress queue so that the device is available again for trans-
missions.

Wake-on-LAN (WOL) is a feature that allows an NIC to wake up a system that’s in
standby mode when it receives a specific type of frame. WOL is normally disabled by
default. The feature can be turned on and off with pci_enable_wake.

When the WOL feature was first introduced, only one kind of frame could wake up
a system: “Magic Packets.”* These special frames have two main characteristics:

• The destination MAC address belongs to the receiving NIC (whether the address
is unicast, multicast, or broadcast).

• Somewhere (anywhere) in the frame a sequence of 48 bits is set (i.e., FF:FF:FF:
FF:FF:FF) followed by the NIC MAC address repeated at least 16 times in a row.

* WOL was introduced by AMD with the name “Magic Packet Technology.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 6: The PCI Layer and Network Interface Cards

Now it is possible to allow other frame types to wake up the system, too. A handful
of devices can enable or disable the WOL feature based on a parameter that can be
set at module load time (see drivers/net/3c59x.c for an example).The ethtool tool
allows an administrator to configure what kind of frames can wake up the system.
One choice is ARP packets, as described in the section “Wake-on-LAN Events” in
Chapter 28. The net-utils package includes a command, ether-wake, that can be used
to generate WOL Ethernet frames.

Whenever a WOL-enabled device recognizes a frame whose type is allowed to wake
up the system, it generates a power management notification that does the job.

For more details on power management, refer to the later section “Interactions with
Power Management” in Chapter 8.

Example of PCI NIC Driver Registration
Let’s use the Intel PRO/100 Ethernet driver in drivers/net/e100.c to illustrate a driver
registration:

#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
static struct pci_device_id e100_id_table[] = {
 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 ...
}

We saw in the section “Registering a PCI NIC Device Driver” that a PCI NIC device
driver registers with the kernel a vector of pci_device_id structures that lists the
devices it can handle. e100_id_table is, for instance, the structure used by the e100.c
driver. Note that:

• The first field (which corresponds to vendor in the structure’s definition) has the
fixed value of PCI_VENDOR_ID_INTEL which is initialized to the vendor ID assigned
to Intel.*

• The third and fourth fields (subvendor and subdevice) are often initialized to the
wildcard value PCI_ANY_ID, because the first two fields (vendor and device) are
sufficient to identify the devices.

• Many devices use the macro _ _devinitdata on the table of devices to mark it as
initialization data, although e100_id_table does not. You will see in Chapter 7
exactly what that macro is used for.

* You can find an updated list at http://pciids.sourceforge.net.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Example of PCI NIC Driver Registration | 111

The module is initialized by e100_init_module, as specified by the module_init
macro.* When the function is executed by the kernel at boot time or at module load-
ing time, it calls pci_module_init, the function introduced in the section “Registering
a PCI NIC Device Driver.” This function registers the driver, and, indirectly, all the
associated NICs, as briefly described in the later section “The Big Picture.”

The following snapshot shows the key parts of the e100 driver with regard to the PCI
layer interface:

NAME "e100"

static int _ _devinit e100_probe(struct pci_dev *pdev,
 const struct pci_device_id *ent)
{
 ...
}
static void _ _devexit e100_remove(struct pci_dev *pdev)
{
 ...
}

#ifdef CONFIG_PM
static int e100_suspend(struct pci_dev *pdev, u32 state)
{
 ...
}
static int e100_resume(struct pci_dev *pdev)
{
 ...
}
#endif

static struct pci_driver e100_driver = {
 .name = DRV_NAME,
 .id_table = e100_id_table,
 .probe = e100_probe,
 .remove = _ _devexit_p(e100_remove),
#ifdef CONFIG_PM
 .suspend = e100_suspend,
 .resume = e100_resume,
#endif
};

static int _ _init e100_init_module(void)
{
 ...
 return pci_module_init(&e100_driver);
}

static void _ _exit e100_cleanup_module(void)

* See Chapter 7 for more details on module initialization code.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 6: The PCI Layer and Network Interface Cards

{
 pci_unregister_driver(&e100_driver);
}

module_init(e100_init_module);
module_exit(e100_cleanup_module);

Also note that:

• suspend and resume are initialized only when the kernel has support for power
management, so the two routines e100_suspend and e100_resume are included in
the image only when that condition is true.

• The remove field of pci_driver is tagged with the _ _devexit_p macro, and e100_
remove is tagged with _ _devexit.

• e100_probe is tagged with _ _devinit.

You will see in Chapter 7 what the _ _devXXX macros mentioned in the list are used for.

The Big Picture
Let’s put together what we saw in the previous sections and see what happens at
boot time in a system with a PCI bus and a few PCI devices.*

When the system boots, it creates a sort of database that associates each bus to a list
of detected devices that use the bus. For example, the descriptor for the PCI bus
includes, among other parameters, a list of detected PCI devices. As we saw in the
section “Registering a PCI NIC Device Driver,” each PCI device is uniquely identi-
fied by a large collection of fields in the structure pci_device_id, although only a few
are usually necessary. We also saw how PCI device drivers define an instance of pci_
driver and register with the PCI layer with pci_register_driver (or its alias, pci_
module_init). By the time device drivers are loaded, the kernel has already built its
database:† let’s then take the example of Figure 6-1(a) with three PCI devices and see
what happens when device drivers A and B are loaded.

When device driver A is loaded, it registers with the PCI layer by calling pci_
register_driver and providing its instance of pci_driver. The pci_driver structure
includes a vector with the IDs of those PCI devices it can drive. The PCI layer then
uses that table to see what devices match in its list of detected PCI devices. It thus
creates the driver’s device list shown in Figure 6-1(b). In addition, for each matching
device, the PCI layer invokes the probe function provided by the matching driver in
its pci_driver structure. The probe function creates and registers the associated net-
work device. In this case, device Dev3 needs an additional device driver, called B.
When driver B eventually registers with the kernel, Dev3 will be assigned to it.
Figure 6-1(c) shows the results of loading the driver.

* Other buses behave in a similar way. Please refer to Linux Device Drivers for details.

† This may not be possible for all bus types.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Big Picture | 113

Figure 6-1. Binding between bus and drivers, and between driver and devices

List of devices

List of drivers

BUS descriptor

Dev 1 Dev 2 Dev 3

Device descriptors

List of devices

List of drivers

BUS descriptor

Dev 1 Dev 2 Dev 3

(a)

(b)

Name=driver A
probe

remove
...

TABLE IDs
list of devices

Driver descriptor (i.e., pci_driver)

Dev 1

List of devices

List of drivers

BUS descriptor

Dev 1 Dev 2 Dev 3

(c)

Name=driver A
probe

remove
...

TABLE IDs
list of devices

Driver descriptor (i.e., pci_driver)

Dev 1

Name=driver B
probe

remove
...

TABLE IDs
list of devices

Dev 3

Dev 2

Dev 2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 6: The PCI Layer and Network Interface Cards

When the driver is unloaded later, the module’s module_exit routine invokes pci_
unregister_driver. The PCI layer then, thanks to its database, goes through all the
devices associated with the driver and invokes the driver’s remove function. This
function unregisters the network device.

You can find more details about the internals of the probe and remove functions in
Chapter 8.

Tuning via /proc Filesystem
The /proc/pci file can be used to dump information about registered PCI devices. The
lspci command, part of the pciutils package, can also be used to print useful informa-
tion about the local PCI devices, but it retrieves its information from /sys.

Functions and Variables Featured in This Chapter
Table 6-1 summarizes the functions, macros, and data structures introduced in this
chapter.

Table 6-1. Functions, macros, and data structures related to PCI device handling

Name Description

Functions and macros

pci_register_driver

pci_unregister_driver

pci_module_init

Register, unregister, and initialize a PCI driver.

Data structure

struct pci_driver

struct pci_device_id

struct pci_dev

The first data structure defines a PCI driver (and consists mostly of virtual
function callbacks). The second stores the universal ID associated with a
PCI device. The last one represents a PCI device in kernel space.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Files and Directories Featured in This Chapter | 115

Files and Directories Featured in This Chapter
Figure 6-2 lists the files and directories referred to in the chapter. The figure does not
include all the files used by the topics covered in the chapter. For example, the
drivers/pci/ directory includes several other files.

Figure 6-2. Files and directories featured in this chapter

Root

drivers

pci

pci.c

(usually /usr/src/linux)

include

pci.h
pci-dynids.h

mod_devicetable.h

linuxnet

3c59x.c

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

116

Chapter 7CHAPTER 7

Kernel Infrastructure for
Component Initialization

To fully understand a kernel component, you have to know not only what a given set
of routines does, but also when those routines are invoked and by whom. The initial-
ization of a subsystem is one of the basic tasks handled by the kernel according to its
own model. This infrastructure is worth studying to help you understand how core
components of the networking stack are initialized, including NIC device drivers.

The purpose of this chapter is to show how the kernel handles routines used to ini-
tialize kernel components, both for components statically included into the kernel
and those loaded as kernel modules, with a special emphasis on network devices. We
will therefore see:

• How initialization functions are named and identified by special macros

• How these macros are defined, based on the kernel configuration, to optimize
memory usage and make sure that the various initializations are done in the cor-
rect order

• When and how the functions are executed

We will not cover all details of the initialization infrastructure, but you’ll have a suffi-
cient overview to navigate the source code comfortably.

Boot-Time Kernel Options
Linux allows users to pass kernel configuration options to their boot loaders, which
then pass the options to the kernel; experienced users can use this mechanism to
fine-tune the kernel at boot time.* During the boot phase, as shown in Figure 5-1 in
Chapter 5, the two calls to parse_args take care of the boot-time configuration input.

* You can find some documentation and examples of the use of boot options in the Linux BootPrompt
HOWTO.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Boot-Time Kernel Options | 117

We will see in the next section why parse_args is called twice, with details in the
later section “Two-Pass Parsing.”

parse_args is a routine that parses an input string with parameters in the form name_
variable=value, looking for specific keywords and invoking the right handlers. parse_
args is also used when loading a module, to parse the command-line parameters pro-
vided (if any).

We do not need to know the details of how parse_args implements the parsing, but
it is interesting to see how a kernel component can register a handler for a keyword
and how the handler is invoked. To have a clear picture we need to learn:

• How a kernel component can register a keyword, along with the associated han-
dler that will be executed when that keyword is provided with the boot string.

• How the kernel resolves the association between keywords and handlers. I will
offer a high-level overview of how the kernel parses the input string.

• How the networking device subsystem uses this feature.

All the parsing code is in kernel/params.c. We’ll cover the points in the list one by
one.

Registering a Keyword
Kernel components can register a keyword and the associated handler with the _ _
setup macro, defined in include/linux/init.h. This is its syntax:

_ _setup(string, function_handler)

where string is the keyword and function_handler is the associated handler. The
example just shown instructs the kernel to execute function_handler when the input
boot-time string includes string. string has to end with the = character to make the
parsing easier for parse_args. Any text following the = will be passed as input to
function_handler.

The following is an example from net/core/dev.c, where netdev_boot_setup is regis-
tered as the handler for the netdev= keyword:

_ _setup("netdev=", netdev_boot_setup);

The same handler can be associated with different keywords. For instance net/
ethernet/eth.c registers the same handler, netdev_boot_setup, for the ether= keyword.

When a piece of code is compiled as a module, the _ _setup macro is ignored (i.e.,
defined as a no-op). You can check how the definition of the _ _setup macro changes
in include/linux/init.h depending on whether the code that includes the latter file is a
module.

The reason why start_kernel calls parse_args twice to parse the boot configuration
string is that boot-time options are actually divided into two classes, and each call
takes care of one class:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 7: Kernel Infrastructure for Component Initialization

Default options
Most options fall into this category. These options are defined with the _ _setup
macro and are handled by the second call to parse_args.

Early options
Some options need to be handled earlier than others during the kernel boot. The
kernel provides the early_param macro to declare these options instead of _ _setup.
They are then taken care of by parse_early_params. The only difference between
early_param and _ _setup is that the former sets a special flag so that the kernel
will be able to distinguish between the two cases. The flag is part of the obs_
kernel_param data structure that we will see in the section “.init.setup Memory
Section.”

The handling of boot-time options has changed with the 2.6 kernel, but not all the
kernel code has been updated accordingly. Before the latest changes, there used to be
only the _ _setup macro. Because of this, legacy code that is to be updated now uses
the macro _ _obsolete_setup. When the user passes the kernel an option that is
declared with the _ _obsolete_setup macro, the kernel prints a message warning
about its obsolete status and provides a pointer to the file and source code line where
the latter is declared.

Figure 7-1 summarizes the relationship between the various macros: all of them are
wrappers around the generic routine _ _setup_param.

Note that the input routine passed to _ _setup is placed into the .init.setup mem-
ory section. The effect of this action will become clear in the section “Boot-Time Ini-
tialization Routines.”

Two-Pass Parsing
Because boot-time options used to be handled differently in previous kernel ver-
sions, and not all of them have been converted to the new model, the kernel handles
both models. When the new infrastructure fails to recognize a keyword, it asks the
obsolete infrastructure to handle it. If the obsolete infrastructure also fails, the key-
word and value are passed on to the init process that will be invoked at the end of

Figure 7-1. setup_param macro and its wrappers

early_param __setup __obsolete_setup

__setup_param

Section “.init.setup”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Boot-Time Kernel Options | 119

the init kernel thread via run_init_process (shown in Figure 5-1 in Chapter 5). The
keyword and value are added either to the arg parameter list or to the envp environ-
ment variable list.

The previous section explained that, to allow early options to be handled in the nec-
essary order, boot-string parsing and handler invocation are handled in two passes,
shown in Figure 7-2 (the figure shows a snapshot from start_kernel, introduced in
Chapter 5):

1. The first pass looks only for higher-priority options that must be handled early,
which are identified by a special flag (early).

2. The second pass takes care of all other options. Most of the options fall into this
category. All options following the obsolete model are handled in this pass.

The second pass first checks whether there is a match with the options imple-
mented according to the new infrastructure. These options are stored in kernel_
param data structures, filled in by the module_param macro introduced in the section
“Module Options” in Chapter 5. The same macro makes sure that all of those data
structures are placed into a specific memory section (_ _param), delimited by the
pointers _ _start_ _ _param and _ _stop_ _ _param.

When one of these options is recognized, the associated parameter is initialized to
the value provided with the boot string. When there is no match for an option,
unknown_bootoption tries to see whether the option should be handled by the obso-
lete model handler (Figure 7-2).

Obsolete and new model options are placed into two different memory areas:

_ _setup_start … _ _setup_end
We will see in a later section that this area is freed at the end of the boot phase:
once the kernel has booted, these options are not needed anymore. The user
cannot view or change them at runtime.

Figure 7-2. Two-pass option parsing

<parse_early_param>

. . .

<parse_args>
<do_early_param>

LOOP: _ _setup_start. . ._ _setup_end
run handler if early flag set

. . .

<parse_args>

LOOP: _start_param. . ._stop_param

IF not: <unknown_bootoption>

IF match: Initialize parameter

If NOT obsolete, update argv/envp

<obsolete_checksetup>: LOOP:_ _setup_start. . ._ _setup_end
run handler if early flag NOT set

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 7: Kernel Infrastructure for Component Initialization

__start_ _ _param … __stop_ _ _param
This area is not freed. Its content is exported to /sys, where the options are
exposed to the user.

See Chapter 5 for more details on module parameters.

Also note that all obsolete model options, regardless of whether they have the early
flag set, are placed into the _ _setup_start … _ _setup_end memory area.

.init.setup Memory Section
The two inputs to the _ _setup macro we introduced in the previous section are
placed into a data structure of type obs_kernel_param, defined in include/linux/init.h:

struct obs_kernel_param {
 const char *str;
 int (*setup_func)(char*);
 int early;
};

str is the keyword, setup_func is the handler, and early is the flag we introduced in
the section “Two-Pass Parsing.”

The _ _setup_param macro places all of the obs_kernel_params instances into a dedi-
cated memory area. This is done mainly for two reasons:

• It is easier to walk through all of the instances—for instance, when doing a
lookup based on the str keyword. We will see how the kernel uses the two
pointers _ _setup_start and _ _setup_end, that point respectively to the start and
end of the previously mentioned area (as shown later in Figure 7-3), when doing
a keyword lookup.

• The kernel can quickly free all of the data structures when they are not needed
anymore. We will go back to this point in the section “Memory Optimizations.”

Use of Boot Options to Configure Network Devices
In light of what we saw in the previous sections, let’s see how the networking code
uses boot options.

We already mentioned in the section “Registering a Keyword” that both the ether=
and netdev= keywords are registered to use the same handler, netdev_boot_setup.
When this handler is invoked to process the input parameters (i.e., the string that fol-
lows the matching keyword), it stores the result into data structures of type netdev_
boot_setup, defined in include/linux/netdevice.h. The handler and the data structure
type happen to share the same name, so make sure you do not confuse the two.

struct netdev_boot_setup {
 char name[IFNAMSIZ];
 struct ifmap map;
};

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Boot-Time Kernel Options | 121

name is the device’s name, and ifmap, defined in include/linux/if.h, is the data struc-
ture that stores the input configuration:

struct ifmap
{
 unsigned long mem_start;
 unsigned long mem_end;
 unsigned short base_addr;
 unsigned char irq;
 unsigned char dma;
 unsigned char port;
 /* 3 bytes spare */
};

The same keyword can be provided multiple times (for different devices) in the boot-
time string, as in the following example:

LILO: linux ether=5,0x260,eth0 ether=15,0x300,eth1

However, the maximum number of devices that can be configured at boot time with
this mechanism is NETDEV_BOOT_SETUP_MAX, which is also the size of the static array
dev_boot_setup used to store the configurations:

static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];

netdev_boot_setup is pretty simple: it extracts the input parameters from the string,
fills in an ifmap structure, and adds the latter to the dev_boot_setup array with
netdev_boot_setup_add.

At the end of the booting phase, the networking code can use the netdev_boot_setup_
check function to check whether a given interface is associated with a boot-time con-
figuration. The lookup on the array dev_boot_setup is based on the device name dev-
>name:

int netdev_boot_setup_check(struct net_device *dev)
{
 struct netdev_boot_setup *s = dev_boot_setup;
 int i;

 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
 dev->irq = s[i].map.irq;
 dev->base_addr = s[i].map.base_addr;
 dev->mem_start = s[i].map.mem_start;
 dev->mem_end = s[i].map.mem_end;
 return 1;
 }
 }
 return 0;
}

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 7: Kernel Infrastructure for Component Initialization

Devices with special capabilities, features, or limitations can define their own key-
words and handlers if they need additional parameters on top of the basic ones pro-
vided by ether= and netdev= (one driver that does this is PLIP).

Module Initialization Code
Because the examples in the following sections often refer to modules, a couple of
initial concepts have to be made clear.

Kernel code can be either statically linked to the main image or loaded dynamically
as a module when needed. Not all kernel components are suitable to be compiled as
modules. Device drivers and extensions to basic functionalities are good examples of
kernel components often compiled as modules. You can refer to Linux Device
Drivers for a detailed discussion of the advantages and disadvantages of modules, as
well as the mechanisms that the kernel can use to dynamically load them when they
are needed and unload them when they are no longer needed.

Every module must provide two special functions, called init_module and cleanup_
module. The first one is called at module load time to initialize the module. The sec-
ond one is invoked by the kernel when removing the module, to release any
resources (memory included) that have been allocated for use by the module.

The kernel provides two macros, module_init and module_exit, that allow develop-
ers to use arbitrary names for the two routines. The following snapshot is an exam-
ple from the drivers/net/3c59x.c Ethernet driver:

module_init(vortex_init);
module_exit(vortex_cleanup);

In the section “Memory Optimizations,” we will see how those two macros are
defined and how their definition can change based on the kernel configuration. Most
of the kernel uses these two macros, but a few modules still use the old default
names init_module and cleanup_module. In the rest of this chapter, I will use module_
init and module_exit to refer to the initialization and cleanup functions.

Let’s first see how module initialization code used to be written with older kernels,
and then how the current kernel model, based on a set of new macros, works.

Old Model: Conditional Code
Regardless of whether a kernel component is compiled as a module or is built stati-
cally into the kernel, it needs to be initialized. Because of that, the initialization code
of a kernel component may need to distinguish between the two cases by means of
conditional directives to the compiler. In the old model, this forced developers to use
conditional directives like #ifdef all over the place.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Module Initialization Code | 123

Here is a snapshot from the drivers/net/3c59x.c driver of kernel 2.2.14: note how
many times #ifdef MODULE and #if defined (MODULE) are used.

...
#if defined(MODULE) && LINUX_VERSION_CODE > 0x20115
MODULE_AUTHOR("Donald Becker <becker@cesdis.gsfc.nasa.gov>");
MODULE_DESCRIPTION("3Com 3c590/3c900 series Vortex/Boomerang driver");
MODULE_PARM(debug, "i");
...
#endif
...
#ifdef MODULE
...
int init_module(void)
{
 ...
}
#else
int tc59x_probe(struct device *dev)
{
 ...
}
#endif /* not MODULE */
...
static int vortex_scan(struct device *dev, struct pci_id_info pci_tbl[])
{
 ...
#if defined(CONFIG_PCI) || (defined(MODULE) && !defined(NO_PCI))
 ...
#ifdef MODULE
 if (compaq_ioaddr) {
 vortex_probe1(0, 0, dev, compaq_ioaddr, compaq_irq,
 compaq_device_id, cards_found++);
 dev = 0;
 }
#endif

 return cards_found ? 0 : -ENODEV;
}
...
#ifdef MODULE
void cleanup_module(void)
{

}
#endif

This snapshot shows how the old model let a programmer specify some of the things
done differently, depending on whether the code is compiled as a module or stati-
cally into the kernel image:

The initialization code is executed differently
The snapshot shows that the cleanup_module routine is defined (and therefore
used) only when the driver is compiled as a module.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 7: Kernel Infrastructure for Component Initialization

Pieces of code could be included or excluded from the module
For example, vortex_scan calls vortex_probe1 only when the driver is compiled
as a module.

This model made source code harder to follow, and therefore to debug. Moreover,
the same logic is repeated in every module.

New Model: Macro-Based Tagging
Now let’s compare the snapshot from the previous section to its counterpart from
the same file from a 2.6 kernel:

static char version[] _ _devinitdata = DRV_NAME " ... ";

static struct vortex_chip_info {
 ...
} vortex_info_tbl[] _ _devinitdata = {
 {"3c590 Vortex 10Mbps",

}

static int _ _init vortex_init (void)
{
 ...
}
static void _ _exit vortex_cleanup (void)
{
 ...
}

module_init(vortex_init);
module_exit(vortex_cleanup);

You can see that #ifdef directives are no longer necessary.

To remove the mess introduced by conditional code, and therefore make code more
readable, kernel developers introduced a set of macros that module developers now
can use to write cleaner initialization code (most drivers are good candidates for the
use of those macros). The snapshot just shown uses a few of them: _ _init, _ _exit,
and _ _devinitdata.

Later sections describe how some of the new macros are used and how they work.

These macros allow the kernel to determine behind the scenes, for each module,
what code is to be included in the kernel image, what code is to be excluded because
it is not needed, what code is to be executed only at initialization time, etc. This
removes the burden from each programmer to replicate the same logic in each
module.*

* Note that the use of these macros does not eliminate completely the use of conditional directives. The kernel
still uses conditional directives to set off options that the user can configure when compiling the kernel.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Optimized Macro-Based Tagging | 125

It should be clear that for these macros to allow programmers to replace the old con-
ditional directives, as shown in the example of the previous section, they must be
able to provide at least the following two services:

• Define routines that need to be executed when a new kernel component is
enabled, either because it is statically included in the kernel or because it is
loaded at runtime as a module

• Define some kind of order between initialization functions so that dependencies
between kernel components can be respected and enforced

Optimized Macro-Based Tagging
The Linux kernel uses a variety of different macros to mark functions and data struc-
tures with special properties: for instance, to mark an initialization routine. Most of
those macros are defined in include/linux/init.h. Some of those macros tell the linker
to place code or data structures with common properties into specific, dedicated
memory areas (memory sections) as well. By doing so, it becomes easier for the ker-
nel to take care of an entire class of objects (routines or data structures) with a com-
mon property in a simple manner. We will see an example in the section “Memory
Optimizations.”

Figure 7-3 shows some of the kernel memory sections: on the left side are the names
of the pointers that delimit the beginning and the end of each area section (when
meaningful).

Figure 7-3. Some of the memory sections used by initialization code

.init.text

.init.data

.init.setup

.initcall1.init

.initcall2.init

.initcall3.init

.initcall4.init

.initcall5.init

.initcall6.init

.initcall7.init

.

_ _init

_ _initdata

_ _setup_param

core_initcall

postcore_initcall

arch_initcall

subsys_initcall

fs_initcall

device_initcall

late_initcall

_init_begin

_setup_start

_ _setup_end
_ _initcall_start

_ _initcall_end

_ _init_end

Macros

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 7: Kernel Infrastructure for Component Initialization

On the right side are the names of the macros used to place data and code into the
associated sections. The figure does not include all the memory sections and associ-
ated macros; there are too many to list conveniently.

Tables 7-1 and 7-2 list some of the macros used to tag routines and data structures,
respectively, along with a brief description. We will not look at all of them for lack of
space, but we will spend a few words on the xxx_initcall macros in the section
“xxx_initcall Macros” and on _ _init and _ _exit in the section “_ _init and _ _exit
Macros.”

The purpose of this section is not to describe how the kernel image is built, how
modules are handled, etc., but rather to give you just a few hints about why those
macros exist, and how the ones most commonly used by device drivers work.

Table 7-1. Macros for routines

Macro Kind of routines the macro is used for

_ _init Boot-time initialization routine: for routines that are not needed anymore at the end of the boot
phase.

This information can be used to get rid of the routine under some conditions (see the later section
“Memory Optimizations”).

_ _exit Counterpart to _ _init. Called when the associated kernel component is shut down. Often used
to mark module_exit functions.

This information can be used to get rid of the routine under some conditions (see the later section
“Memory Optimizations”).

core_initcall

postcore_initcall

arch_initcall

subsys_initcall

fs_initcall

device_initcall

late_initcall

Set of macros, listed in decreasing order of priority, used to tag initialization routines that need to
be executed at boot time. See the later section“xxx_initcall Macros.”

_ _initcall Obsolete macro, defined as an alias to device_initcall. See the later section “Legacy code.”

_ _exitcalla

a _ _exitcall and _ _initcall are defined on top of _ _exit_call and _ _init_call.

One-shot exit function, called when the associated kernel component is shut down. So far, it has
been used only to mark module_exit routines. See the later section “Memory Optimizations.”

Table 7-2. Macros for initialized data structures

Macro Kind of data the macro is used for

_ _initdata Initialized data structure used at boot time only.

_ _exitdata Data structure used only by routines tagged with _ _exitcall. It follows that if a routine
tagged with _ _exitcall is not going to be used, the same is true of data tagged with _ _
exitdata. The same kind of optimization can therefore be applied to _ _exitdata and _ _
exitcall.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Optimized Macro-Based Tagging | 127

Before we go into some more detail on a few of the macros listed in Tables 7-1 and
7-2, it is worth stressing the following points:

• Most macros come in couples: one (or a set of them) takes care of initialization,
and a sister macro (or a sister set) takes care of removal. For example, _ _exit is
_ _init’s sister; _ _exitcalls is _ _initcall’s sister, etc.

• Macros take care of two points (one or the other, not both): one is when a rou-
tine is to be executed (i.e., _ _initcall, _ _exitcall); the other is the memory sec-
tion a routine or a data structure is to be placed in (i.e., _ _init, _ _exit).

• The same routine can be tagged with more than one macro. For example, the fol-
lowing snapshot says that pci_proc_init is to be run at boot time (_ _initcall),
and can be freed once it is executed (_ _init):

static int _ _init pci_proc_init(void)
{
...
}

_ _initcall(pci_proc_init)

Initialization Macros for Device Initialization Routines
Table 7-3 lists a set of macros commonly used to tag routines used by device drivers
to initialize their devices, and that can introduce memory optimizations when the
kernel does not have support for Hotplug. In the section “Example of PCI NIC
Driver Registration” in Chapter 6, you can find an example of their use. In the later
section “Other Optimizations,” you can see when the macros in Table 7-3 facilitate
memory optimizations.

Table 7-3. Macros for device initialization routines

Name Description

_ _devinit Used to tag routines that initialize a device.

For instance, for a PCI driver, the routine to which pci_driver->probe is initialized is tagged
with this macro.

Routines that are exclusively invoked by another routine tagged with _ _devinit are com-
monly tagged with _ _devinit as well.

_ _devexit Used to tag routines to be invoked when a device is removed.

_ _devexit_p Used to initialize pointers to routines tagged with _ _devexit.

_ _devexit_p(fn) returns fn if the kernel supports both modules and Hotplug, and returns
NULL otherwise. See the later section “Other Optimizations.”

_ _devinitdata Used to tag initialized data structures that are used by functions that take care of device initializa-
tion (i.e., are tagged with _ _devinit), and that therefore share their properties .

_ _devexitdata Same as _ _devinitdata but associated with _ _devexit.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 7: Kernel Infrastructure for Component Initialization

Boot-Time Initialization Routines
Most initialization routines have two interesting properties:

• They need to be executed at boot time, when all the kernel components get ini-
tialized.

• They are not needed once they are executed.

The next section, “xxx_initcall Macros,” describes the mechanism used to run ini-
tialization routines at boot time, taking into consideration these properties as well as
priorities among modules. The later section “Memory Optimizations” shows how
routines and data structures that are no longer needed can be freed at link time or
runtime by using smart tagging.

xxx_initcall Macros
The early phase of the kernel boot consists of two main blocks of initializations:

• The initialization of various critical and mandatory subsystems that need to be
done in a specific order. For instance, the kernel cannot initialize a PCI device
driver before the PCI layer has been initialized. See the later section “Example of
dependency between initialization routines” for another example.

• The initialization of other kernel components that do not need a strict order:
routines in the same priority level can be run in any order.

The first part is taken care of by the code that comes before do_initcalls in
Figure 5-1 in Chapter 5. The second part is taken care of by the invocation of do_
initcalls shown close to the end of do_basic_setup in the same figure. The initializa-
tion routines of this second part are classified based on their role and priority. The
kernel executes those initialization routines one by one, starting from the ones placed
in the highest-priority class (core_initcall). The addresses of those routines, which
are needed to invoke them, are placed in the .initcallN.init memory sections of
Figure 7-3 by tagging them with one of the xxx_initcall macros in Table 7-1.

The area used to store the addresses of the routines tagged with the xxx_initcall
macros is delimited by a starting address (_ _initcall_start) and an ending address
(_ _initcall_end). In the excerpt of the do_initcalls function that follows, you can
see that it simply takes the function addresses one by one from that area and exe-
cutes the functions they point to:

static void _ _init do_initcalls(void)
{
 initcall_t *call;
 int count = preempt_count();

 for (call = _ _initcall_start; call < _ _initcall_end; call++) {

 (*call)();

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Boot-Time Initialization Routines | 129

 }
 flush_scheduled_work();
}

The routines invoked by do_initcalls are not supposed to change the preemption
status or disable IRQs. Because of that, after each routine execution, do_initcalls
checks whether the routine has made any changes, and adjusts the preemption and
IRQ status if necessary (not shown in the previous snapshot).

It is possible for the xxx_initcall routines to schedule some work that takes place
later. This means that the tasks handled by those routines may terminate asynchro-
nously, at unknown times. The call to flush_scheduled_work is used to make do_
initcalls wait for those asynchronous tasks to complete before returning.

Note that do_initcalls itself is marked with _ _init: because it is used only once
within do_basic_setup during the booting phase, the kernel can discard it once the
latter is done.

_ _exitcall is the counterpart of _ _initcall. It is not used much directly, but rather
via other macros defined as aliases to it, such as module_exit, which we introduced in
the section “Module Initialization Code.”

Example of _ _initcall and _ _exitcall routines: modules

I said in the section “Module Initialization Code” that the module_init and module_
exit macros, respectively, are used to tag routines to be executed when the module is
initialized (either at boot time if built into the kernel or at runtime if loaded sepa-
rately) and unloaded.

This makes a module the perfect candidate for our _ _initcall and _ _exitcall mac-
ros: in light of what I just said, the following definition from include/linux/init.h of
the macros module_init and module_exit should not come as a surprise:

#ifndef MODULE
...
#define module_init(x) _ _initcall(x);
#define module_exit(x) _ _exitcall(x);

#else
...
#endif

module_init is defined as an alias to _ _initcall for code statically linked to the ker-
nel: its input function is classified as a boot-time initialization routine.

module_exit follows the same scheme: when the code is built into the kernel, module_
exit becomes a shutdown routine. At the moment, shutdown routines are not called
when the system goes down, but the code is in place to allow it.*

* User-Mode Linux is the only architecture that actually makes use of shutdown routines. It does not use
_ _exitcall macros, but defines its own macro, _ _uml_exitcall. The home page of the User-Mode Linux
project is http://user-mode-linux.sourceforge.net.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 7: Kernel Infrastructure for Component Initialization

Example of dependency between initialization routines

net_dev_init was introduced in Chapter 5. Device drivers register with the kernel
with their module_init routine, which, as described in the section “The Big Picture”
in Chapter 6, registers its devices with the networking code. Both net_dev_init and
the various module_init functions for built-in drivers are invoked at boot time by do_
initcalls. Because of that, the kernel needs to make sure no device registrations take
place before net_dev_init has been executed. This is enforced transparently thanks
to the marking of device driver initialization routines with the macro device_
initcall (or its alias, _ _initcall), while net_dev_init is marked with subsys_
initcall. In Figure 7-3, you can see that subsys_initcall routines are executed ear-
lier than device_initcall routines (the memory sections are sorted in priority order).

Legacy code

Before the introduction of the set of xxx_initcall macros, there was only one macro
to mark initialization functions: _ _initcall. The use of only a single macro created a
heavy limitation: no execution order could be enforced by simply marking routines
with the macro. In many cases, this limitation is not acceptable due to intermodule
dependencies, and other considerations. Therefore, the use of _ _initcall could not
be extended to all the initialization functions.

_ _initcall used to be employed mostly by device drivers. For backward compatibil-
ity with pieces of code not yet updated to the new model, it still exists and is simply
defined as an alias to device_initcall.

Another limitation, which is still present in the current model, is that no parameters
can be provided to the initialization routines. However, this does not seem to be an
important limitation.

Memory Optimizations
Unlike user-space code and data, kernel code and data reside permanently in main
memory, so it is important to reduce memory waste in every way possible. Initializa-
tion code is a good candidate for memory optimization. Given their nature, most ini-
tialization routines are executed either just once or not at all, depending on the
kernel configuration. For example:

• The module_init routines are executed only once when the associated module is
loaded. When the module is statically included in the kernel, the kernel can free
the module_init routine right at boot time, after it runs.

• The module_exit routines are never executed when the associated modules are
included statically in the kernel. In this case, therefore, there is no need to
include module_exit routines into the kernel image (i.e., the routines can be dis-
carded at link time).

The first case is a runtime optimization, and the second one is a link-time optimization.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Memory Optimizations | 131

Code and data that are used only during the boot and are not needed thereafter are
placed in one of the memory sections shown in Figure 7-3. Once the kernel has com-
pleted the initialization phase, it can discard that entire memory area. This is accom-
plished by the call to free_init_mem,* as shown in Figure 5-1 in Chapter 5. Different
macros are used to place code into the different memory sections of Figure 7-3.

If you look at the example in the earlier section “New Model: Macro-Based Tag-
ging,” you can see that the two input routines to module_init and module_exit are
(usually) tagged with _ _init and _ _exit, respectively: this is done precisely to take
advantage of the two properties mentioned at the start of this section.

_ _init and _ _exit Macros
The initialization routines executed in the early phase of the kernel are tagged with
the macro _ _init.

As mentioned in the previous section, most module_init input routines are tagged
with this macro. For example, most of the functions in Figure 5-1 in Chapter 5
(before the call to free_initmem) are marked with _ _init.

As shown by its definition here, the _ _init macro places the input routine into the
.text.init memory section:

#define __init __attribute__ ((_ _section_ _ (".text.init")))

This section is one of the memory areas freed at runtime by free_initmem.

_ _exit is the counterpart of _ _init. Routines used to shut down a module are placed
into the .text.exit section. This section can be discarded at link time directly for
modules build into the kernel. However, a few architectures discard it at runtime to
deal with cross-references. Note that the same section, for modules loaded sepa-
rately, can be removed at load time when the kernel does not support module
unloading. (There is a kernel option that keeps the user from unloading modules.)

xxx_initcall and _ _exitcall Sections
The memory sections where the kernel places the addresses to the routines tagged
with the xxx_initcall and _ _exitcall macros are also discarded:

• The xxx_initcall sections shown in Figure 7-3 are discarded at runtime by free_
initmem.

• The .text.exit section used for _ _exitcall functions is discarded at link time
because right now the kernel does not call the _ _exitcall routines on system
shutdown (i.e., it does not use a mechanism similar to do_initcalls).

* This is the memory that boot-time messages of the following sort refer to: “Freeing unused kernel memory:
120k freed”.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 7: Kernel Infrastructure for Component Initialization

Other Optimizations
Other examples of optimizations include the macros in Table 7-3:

_ _devinit
When the kernel is not compiled with support for Hotplug, routines tagged with
_ _devinit are not needed anymore at the end of the boot phase (after all the
devices have been initialized). Because of this, when there is no support for Hot-
plug, _ _devinit becomes an alias to _ _init.

_ _devexit
When a PCI driver is built into a kernel without support for Hotplug, the routine
to which pci_driver->remove is initialized, and which is tagged with _ _devexit,
can be discarded because it is not needed. The routine can be discarded also when
the module is loaded separately into a kernel that does not have support for
module unloading.

_ _devinitdata
When there is no support for Hotplug, this data too is needed only at boot time.
Normally, device drivers use this macro to tag the banner strings that the pci_
driver-> probe functions print when initializing a device. PCI drivers, for
instance, tag the pci_device_id tables with _ _devinitdata: once the system has
finished booting and there is no support for Hotplug, the kernel does not need
the tables anymore.

This section has given you only a few examples of removing code. You can learn
more by browsing the source code, starting, for instance, from the architecture-
dependent definitions of the /DISCARD/ section.

Dynamic Macros’ Definition
In the previous sections, I introduced a few macros, such as _ _init and the various
versions of xxx_initcall. We have also seen that the routines passed to the module_
init macro are tagged with macros such as _ _initcall. Because most kernel compo-
nents can be either compiled as modules or statically linked to the kernel, the choice
made changes the definitions of these macros to apply the memory optimizations
introduced in the previous section.

In particular, the definition of the macros in Table 7-1, as you can see in include/
linux/init.h, change depending on whether the following symbols are defined within
the scope of the file that includes include/linux/init.h:

CONFIG_MODULE
Defined when there is support for a loadable module in the kernel (the “Load-
able module support” configuration option)

MODULE
Defined when the kernel component that the file belongs to is compiled as a
module

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Memory Optimizations | 133

CONFIG_HOTPLUG
Defined when the kernel is compiled with “Support for hot-pluggable devices”
(an option in the “General setup” menu)

While MODULE can have different values for different files, the other two symbols are
kernel-wide properties and therefore are either set or not set consistently throughout
a kernel.

Among the macros in Tables 7-1 and 7-2, we are mostly interested in the following
ones from the perspective of NIC driver initialization: _ _init, _ _exit, _ _initcall,
and _ _exitcall. Summarizing what was discussed so far, Figure 7-4 shows the effec-
tiveness of the macros in the previous list in saving memory, based on whether the
symbols MODULE and CONFIG_HOTPLUG are defined (let’s suppose the kernel had sup-
port for loadable modules—i.e., that CONFIG_MODULE is defined). As you can see from
the figure, there is a lot going on when the kernel does not have support for both
loadable modules and Hotplug, compared to when both of those options are sup-
ported: the more restrictions you have, the more optimizations you get.

Let’s see one by one the meaning of the points 1 through 6 in Figure 7-4, keeping in
mind the generic structure of a device driver as shown earlier in the section “New
Model: Macro-Based Tagging” and the definitions of _ _initcall and _ _exitcall
that we saw earlier in the section “Memory Optimizations.”

Here are the optimizations that can be applied when compiling a module as part of
the kernel:

1. module_exit routines will never be used; so by tagging them with _ _exit, the
programmer makes sure they will not be included in the image at link time.

2. module_init routines will be executed only once at boot time, so by tagging them
with _ _init, the programmer lets them be discarded once they are executed.

3. module_init(fn) becomes an alias to _ _initcall(fn), which makes sure fn will
be executed by do_initcalls, as we saw in the section “xxx_initcall Macros.”

Figure 7-4. Effect of macros in Table 7-1, following numbered lists in text

No

MODULE

CONFIG_HOTPLUG
Yes

5

5

Yes

No
CONFIG_HOTPLUG

Yes

2

5

No

6

1 3

54 6

21 3

4

21 3 4

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 7: Kernel Infrastructure for Component Initialization

4. module_exit(fn) becomes an alias to _ _exitcall(fn). This places the address to
the input function in the .exitcall.exit memory section, which makes it easier
for the kernel to run it at shutdown time, but the section is actually discarded at
link time.

Let’s use PCI devices as a reference, and see what other optimizations the lack of
support for Hotplug introduces. These concern the pci_driver->remove function,
which is called when a module is unloaded, once for each device registered by that
module (see the section “The Big Picture” in Chapter 6).

5. Regardless of whether MODULE is defined, when there is no support for Hotplug in
the kernel, devices cannot be removed from a running system. Therefore, the
remove function will never be invoked by the PCI layer and can be initialized to a
NULL pointer. This is indicated by the _ _devexit_p macro.

6. When there is no support for Hotplug or for modules in the kernel, the driver’s
routine that would be used to initialize pci_driver->remove is not needed by the
module. This is indicated by the _ _devexit macro. Note that this is not true
when there is support for modules. Because a user is allowed to load and unload
a module, the kernel needs the remove routine.

Note that point 5 is a consequence of point 6: if you do not include a routine in the
kernel, you cannot refer to it (i.e., you cannot initialize a function pointer to that
routine).*

Tuning via /proc Filesystem
There is no file of interest in /proc as far as this chapter is concerned.

Functions and Variables Featured in This Chapter
Table 7-4 summarizes the functions, macros, structures, and variables introduced in
the chapter.

* See the snapshot in the section “Example of PCI NIC Driver Registration” in Chapter 6.

Table 7-4. Functions, macros, variables, and data structures introduced in this chapter

Name Description

Functions and macros

_ _init,_ _exit,_ _initcall,_ _exitcall,_ _
initdata, _ _exitdata, _ _devinit, _ _devexit,
_ _devexit_p,_ _devinitdata,_ _devexitdata,
xxx_initcall

Macros used to tag pieces of code with special characteristics.
These tags can be used to optimize the kernel image size, leav-
ing out unneeded code, for instance.

do_initcalls Executes at boot time all the functions tagged with the xxx_
initcall macros.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Files and Directories Featured in This Chapter | 135

Files and Directories Featured in This Chapter
Figure 7-5 lists the files and directories referred to in the chapter.

init_module, cleanup_module, module_init,
module_exit

The first two are the names of the functions that each module
should provide to respectively initialize and remove a module.
The other two are macros that allow device driver writers to use
an arbitrary name for the previous two routines.

netdev_boot, setup_check, netdev_boot_
setup_add

Apply the boot-time configuration (if any) to a specific device.

module_param Defines optional module parameters that can be provided
when loading the module.

Data structures

kernel_param Stores the input to the module_param macro.

obs_kernel_param Stores the input to the _ _setup macro.

netdev_boot_setup, ifmap netdev_boot_setup stores boot-time parameters for the
ether= and netdev= options.

ifmap is one of the fields of netdev_boot_setup.

Variables

dev_boot_setup Array of netdev_boot_setup structures.

NETDEV_BOOT_SETUP_MAX Size of dev_boot_setup.

Figure 7-5. Files and directories featured in this chapter

Table 7-4. Functions, macros, variables, and data structures introduced in this chapter (continued)

Name Description

Root

drivers

(usually /usr/src/linux)

include

init.h
if.h

netdevice.h

linuxnet

3c59x.c

net

core

dev.c

ethernet

eth.c

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

136

Chapter 8CHAPTER 8

Device Registration and
Initialization

In Chapters 5 and 6, we saw how NICs are recognized by the kernel, and the initial-
ization that the kernel performs so that the NICs can talk to their device drivers. In
this chapter, we will discuss additional stages of initialization:

• When and how network devices register with the kernel

• How a network device registers with the network device database and gets
assigned an instance of a net_device structure

• How net_device structures are organized into hash tables and lists to allow dif-
ferent kinds of lookups

• How net_device instances are initialized, partly by kernel core routines and
partly by their device drivers

• How virtual devices differ from real ones with regard to registration

This chapter does not strive to be a guide on how to write NIC device drivers. I
sometimes go into detail on an NIC device driver’s code, but I will not cover the
entire design of an NIC device driver. We are interested here only in registration and
in the interface between device drivers and features such as link state change detec-
tion and power management. Refer to Linux Device Drivers (O’Reilly) for a detailed
discussion of device drivers.

Before an NIC can be used, its associated net_device data structure must be initial-
ized, added to the kernel network device database, configured, and enabled. It is
important not to confuse registration and unregistration with enabling and dis-
abling. They are two different concepts:

• Registration and unregistration, if we exclude the act of loading a device driver
module, are user independent; the kernel drives them. A device that has been
only registered is not operative yet. We will see when a device is registered and
unregistered in the sections “When a Device Is Registered” and “When a Device
Is Unregistered.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

When a Device Is Registered | 137

• Enabling and disabling a device require user intervention. Once a device has
been registered by the kernel, the user can see it by means of user commands,
configure it, and enable it. See the later section “Enabling and Disabling a Net-
work Device.”

Let’s start by seeing what events trigger the registration and unregistration of net-
work devices.

When a Device Is Registered
The registration of a network device takes place in the following situations:

Loading an NIC’s device driver
An NIC’s device driver is initialized at boot time if it is built into the kernel, and
at runtime if it is loaded as a module. Whenever initialization occurs, all the
NICs controlled by that driver are registered.

Inserting a hot-pluggable network device
When a user inserts a hot-pluggable NIC, the kernel notifies its driver, which
then registers the device. (For the sake of simplicity, we’ll assume the device
driver is already loaded.)

In the first situation, the registration model that applies is described in the later sec-
tion “Skeleton of NIC Registration and Unregistration.” It applies to all bus types,
and is the same whether the registration routine ends up being called by the bus
infrastructure or by the module initialization code. For example, we saw in
Chapter 6 how loading a PCI device driver leads to the execution of the pci_driver->
probe routine, usually named something like xxx_probe, which is provided by the
driver and which takes care of device registration. In this chapter, we will look at
how those probe routines are implemented.

The registration of devices using other bus types (USB, PCMCIA, etc.) shares the
same skeleton. We will not look at how the infrastructure of those buses ends up
calling their probe counterpart, as we saw for PCI in Chapter 6. Older buses may not
be able to automatically detect the presence of devices and may require the device
drivers to do it by manually probing specific memory addresses, using default param-
eters or boot-time parameters provided by the user.* We will not look at this case
either.

* See, for example, net_olddevs_init in drivers/net/Space.c. This function, which is tagged with the device_
initcall macro introduced in Chapter 7, is executed at boot time. The same function takes care of the reg-
istration of the loopback device.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 8: Device Registration and Initialization

When a Device Is Unregistered
Two main conditions trigger the unregistration of a device:

Unloading an NIC device driver
This can be done only for drivers loaded as modules, of course, not for those
built into the kernel. When the administrator unloads an NIC’s device driver, all
the associated NICs must be unregistered.

For example, we saw in Chapter 6 how unloading a PCI device driver leads to
the execution of the pci_driver->remove routine provided by the driver, often
called something like xxx_remove_one, which will take care of device unregistra-
tion. This routine is invoked by the PCI layer once for each device registered
against the driver being unloaded. In this chapter, we will look at how those rou-
tines are implemented.

Removing a hot-pluggable network device
When a user removes a hot-pluggable NIC from a system whose running kernel
has support for hot-pluggable devices, the network device is unregistered.

Allocating net_device Structures
Network devices are defined with net_device structures. Because they are usually
named dev in the kernel code, I use that name frequently in this chapter for a net_
device. These data structures are allocated with alloc_netdev, defined in net/core/
dev.c, which requires three input parameters:

Size of private data structure
We will see in the section “Organization of net_device Structures” that the net_
device data structure can be extended by device drivers with a private data block
to store the driver’s parameters. This parameter specifies the size of the block.

Device name
This may be a partial name that the kernel will complete through some scheme
that ensures unique device names.

Setup routine
This routine is used to initialize a portion of the net_device’s fields. See the sec-
tions “Device Initialization” and “Device Type Initialization: xxx_setup Func-
tions” for more details.

The return value is a pointer to the net_device structure allocated, or NULL in case
of errors.

Every device is assigned a name that depends on the device type and that, to be
unique, contains a number that is assigned sequentially as devices of the same type
are registered. Ethernet devices, for instance, are called eth0, eth1, and so on. A sin-
gle device may be called with different names depending on the order with which the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Allocating net_device Structures | 139

devices are registered. For instance, if you had two cards handled by two different
modules, the names of the devices would depend on the order in which the two
modules were loaded. Hot-pluggable devices lend themselves particularly to unantic-
ipated name changes.

Because user-space configuration tools refer to the kernel-assigned device name, the
order with which devices register is important. As this is a user-space detail, I will not
bother with it further, except to mention that there are tools, such as nameif from the
net-tools package, that allow you to assign fixed names to interfaces based on the
MAC address.

When the name of the device passed to alloc_netdev is in the form name%d (e.g.,
“eth%d”), the kernel completes the name using the function dev_alloc_name. The lat-
ter changes %d to the first unassigned number for that device type.

The kernel also provides a set of wrappers around alloc_netdev, a few of which are
listed in Table 8-1, which can be used to feed alloc_netdev the correct parameters for
a set of common device types.* For example, alloc_etherdev is used for Ethernet
devices, and therefore creates a device name in the form of the string eth followed by
a unique number. As its second argument, it specifies ether_setup as the setup rou-
tine, which initializes a portion of the net_device structure to values common to all
Ethernet devices.

* There are other, similar wrappers that do not follow the alloc_xxxdev naming convention. Furthermore,
some devices call alloc_netdev directly to register with the kernel instead of using a wrapper.

Table 8-1. Wrappers for the alloc_netdev function

Network device type Wrapper name Wrapper definition

Ethernet alloc_etherdev return alloc_netdev(sizeof_priv, "eth%d",
ether_setup);

Fiber Distributed Data Interface alloc_fddidev return alloc_netdev(sizeof_priv, "fddi%d",
fddi_setup);

High Performace Parallel Interface alloc_hippi_dev return alloc_netdev(sizeof_priv, "hip%d",
hippi_setup);

Token Ring alloc_trdev return alloc_netdev(sizeof_priv, "tr%d",
tr_setup);

Fibre Channel alloc_fcdev return alloc_netdev(sizeof_priv, "fc%d",
fc_setup);

Infrared Data Association alloc_irdadev return alloc_netdev(sizeof_priv, "irda%d",
irda_device_setup);

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 8: Device Registration and Initialization

Skeleton of NIC Registration and Unregistration
Figure 8-1(a) shows the generic scheme for an NIC’s device driver to register with the
networking code. Figure 8-1(b) shows the complementary action that takes place for
unregistration. Although the example shows a PCI Ethernet NIC, the scheme is the
same for other device types; only the name of the routine that takes care of it, or the
way that routine is invoked, may change depending on how the bus code is
implemented.

The function starts by allocating the net_device structure with alloc_etherdev.
alloc_etherdev also initializes all the parameters that are common to all Ethernet
devices. The driver then initializes another portion of the net_device structure, and
concludes the device registration with a call to the register_netdev routine.

Note that:

• The driver calls the appropriate wrapper around alloc_netdev (alloc_etherdev in
the example), and provides only the size of its private data block. A few wrap-
pers are listed in Table 8-1.

• The wrapper calls alloc_netdev using the parameter provided by the driver, and
adds the other two (the device name and the initialization routine).

• The size of the memory block allocated by alloc_netdev includes the net_device
structure, the driver’s private block, and some padding to force an alignment.
See Figure 8-2 later in the chapter.

• Some drivers call netdev_boot_setup_check to check whether the user provided
any boot-time parameter when loading the kernel. See the section “Use of Boot
Options to Configure Network Devices” in Chapter 7.

Figure 8-1. (a) Device registration model; (b) device unregistration model

dev=alloc_etherdev(sizeof(driver_private_structure))

xxx_probe/module_init

alloc_netdev(sizeofpriv, "eth%d", ether_setup)

return(dev)

strcpy(dev->name, "eth%d")

ether_setup(dev)

dev=kmalloc(sizeof(net_device)+sizeofpriv+padding)

netdev_boot_setup_check(dev)
.

.

register_netdev(dev)

register_netdevice(dev)

(a) (b)
xxx_remove_one/module_exit

free_netdev(dev)

.

unregister_netdev(dev)
unregister_netdevice(dev)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Device Initialization | 141

• The new net_device instance is inserted into the device database with register_
netdevice (see the later section “Device Registration”). Incidentally, I use the
term database here, and in other parts of the book, to refer loosely to a combina-
tion of data structures that provides convenient access to information on the
terms the kernel needs.

The unregistration of a device, shown in its simple form in Figure 8-1(b), always
includes a call to unregister_netdevice and free_netdev. The call to free_netdev is
sometimes made explicitly, and sometimes indirectly via the dev->destructor
function,* as shown later in Figure 8-4. The device driver also needs to release any
resources used by the device (IRQ, memory mappings, etc.), but we are not inter-
ested in those details in this chapter.

Device Initialization
In the section “When a Device Is Registered,” we saw what needs to be initialized for
the kernel to communicate to the NIC. In the rest of this chapter we will look at
higher-level initialization tasks.

The net_device structure is pretty big. Its fields are initialized in chunks by different
routines, each one responsible for a different subset of fields.† In particular:

Device drivers
Parameters such as IRQ, I/O memory, and I/O port, whose values depend on the
hardware configuration, are taken care of by the device driver. See Chapter 5.

Device type
The initialization of fields common to all the devices of a device type family is
taken care by the xxx_setup routines. For example, Ethernet devices use ether_
setup. See the section “Device Type Initialization: xxx_setup Functions.”

Features
Mandatory and optional features also need to be initialized. For example, the
queuing discipline (i.e., QoS) is initialized in register_netdevice, as described in
the section “register_netdevice Function.” Other features can be initialized when
the associated modules are notified about the registration of the new device (see
the section “Device Registration Status Notification”).

The device type initialization is done as part of the device driver initialization (that is,
xxx_setup is called by xxx_probe) so that the driver has a chance to overwrite the
default device type’s initializations. See the section “Optional Initializations and Spe-
cial Cases” for an example.

* The device drivers of only a few virtual devices use this approach (see, for example, net/8021q/vlan.c). The
two calls in Figure 8-4 are mutually exclusive.

† An interesting exception is the loopback device, whose initialization is hardcoded in the loopback_dev defi-
nition in drivers/net/loopback.c.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 8: Device Registration and Initialization

Table 8-2 shows the function pointers that are initialized by the xxx_setup routines
and what is left to the device driver* (xxx_probe): what is device-type specific and what
is device-model specific. Note that not all device drivers respect the distinction in
Table 8-2. For instance, there are cases where the xxx_setup function does not initial-
ize any function pointer (an example is irda_device_setup in net/irda/irda_device.c)
and others where it initializes all of them (an example is wifi_setup in drivers/net/
wireless/airo.c).

Table 8-3 is similar to Table 8-2, but instead of function pointers it lists some of the
other net_device fields.

* Chapter 2 contains a detailed description of all the parameters of the net_device data structure.

Table 8-2. net_device function pointers initialized by xxx_setup and xxx_probe

Initializer Function pointer name

xxx_setup change_mtu
set_mac_address
rebuild_header
hard_header
hard_header_cache
header_cache_update
hard_header_parse

Device driver’s probe routine open
stop
hard_start_xmit
tx_timeout
watchdog_timeo
get_stats
get_wireless_stats
set_multicast_list
do_ioctl
init
uninit
poll
ethtool_ops (this is actually an array of routines)

Table 8-3. net_device fields initialized by xxx_setup and xxx_probe

Initializer Variable name

xxx_setup type
hard_header_len
mtu
addr_len
tx_queue_len
broadcast
flags

Device driver’s probe routine base_addr
irq
if_port
priv
features

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Device Initialization | 143

For more details on the meaning of the fields in Tables 8-2 and 8-3, refer to
Chapter 2.

Device Driver Initializations
The net_device fields initialized by the device driver are usually taken care of by the
xxx_probe function introduced in the section “The Big Picture” in Chapter 6, and
depicted in Figure 8-1(a).

Some drivers can handle different device models; so the same parameters can be ini-
tialized differently based on the device model and capabilities. The following snap-
shot, from the drivers/net/3c59x.c driver, shows that the function hard_start_xmit,
which we will introduce in Chapter 11, is initialized differently depending on the
device’s capabilities:*

 if (vp->capabilities & CapBusMaster) {
 vp->full_bus_master_tx = 1;

 }

 if (vp->full_bus_master_tx) {
 dev->hard_start_xmit = boomerang_start_xmit;

 } else {
 dev->hard_start_xmit = vortex_start_xmit;
 }

Device Type Initialization: xxx_setup Functions
For the most common network device types there is an xxx_setup function to initial-
ize the fields of the net_device structure (both parameters and function pointers) that
are common to all the devices of the same type—for instance, all Ethernet cards.

In Table 8-1, you saw how the various alloc_ xxxdev functions pass the right xxx_
setup routine to alloc_netdev (as the third input parameter). Here is the ether_setup
routine, which is the xxx_setup routine used by Ethernet devices:

void ether_setup(struct net_device *dev)
{
 dev->change_mtu = eth_change_mtu;
 dev->hard_header = eth_header;
 dev->rebuild_header = eth_rebuild_header;
 dev->set_mac_address = eth_mac_addr;
 dev->hard_header_cache = eth_header_cache;
 dev->header_cache_update = eth_header_cache_update;
 dev->hard_header_parse = eth_header_parse;

* Capabilities can be hardcoded into the driver or retrieved by reading a register on the NIC.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 8: Device Registration and Initialization

 dev->type = ARPHRD_ETHER;
 dev->hard_header_len = ETH_HLEN;
 dev->mtu = 1500;
 dev->addr_len = ETH_ALEN;
 dev->tx_queue_len = 1000;
 dev->flags = IFF_BROADCAST|IFF_MULTICAST;

 memset(dev->broadcast,0xFF, ETH_ALEN);
}

As you can see, this function initializes only the fields and function pointers that can
be shared by any Ethernet card: an MTU of 1,500, a link-layer broadcast address of
FF:FF:FF:FF:FF:FF, an egress queue length of 1,000 packets,* etc.

The use of a generic allocation wrapper and the xxx_setup routine, as shown in
Table 8-1, is the most common approach. However:

• Some classes of devices define setup functions but do not provide a generic
wrapper similar to the ones in Table 8-1. Among them are ARCNET† devices
(see arcdev_setup in drivers/net/arcnet/arcnet.c) and IrDA‡ devices (see irda_
device_setup in net/irda/irda_device.c).

• A generic xxx_setup may be used by devices that do not belong to the indicated
class. ether_setup is an example: it is used by non-Ethernet devices as well.
When most of the initializations of a particular xxx_setup routine suit the needs
of a device driver, the latter may use that xxx_setup routine and simply override
those initializations that are not correct. But this approach is not common.

• An Ethernet driver can use the default initialization provided by ether_setup
(which is invoked indirectly by alloc_etherdev) but override some of the initial-
izations. For example, the 3c59x.c driver does not use the net_device->mtu value
set by ether_setup, but overrides it with a local variable. This variable is initial-
ized to the same default that would be set by ether_setup, but the driver can set
bigger values for NIC models that can handle them.

Optional Initializations and Special Cases
There are cases when some net_device parameters are not initialized simply because
they are meaningless for that type of device; the associated function pointer or value
is not initialized and therefore is left to NULL.

* This is Linux’s implementation choice; it is not derived from any protocol specification. Depending on the
egress queuing discipline configured, this value may not be used.

† ARCNET (Attached Resource Computer) is a LAN technology based on a token bus design (similar to
802.4) that has found its natural habitat in the industrial automation industry thanks to its deterministic per-
formance. Linux provides a general layer for ARCNET and a few device drivers.

‡ IrDA (Infrared Data Association) is a standard for infrared wireless communication.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Organization of net_device Structures | 145

To avoid NULL pointer references, the kernel always makes sure that optional func-
tion pointers are initialized before invoking them,* as in the following example from
register_netdevice:

if (dev->init && dev->init(dev) != 0) {
 ...
}

It is important to note that external factors could also change how and where the
fields of Tables 8-2 and 8-3 are initialized. One example involves the net_device->mtu
field. Virtual devices usually inherit configuration parameters from the real devices
they are associated with, and then adjust them if needed. For example, virtual tunnel
interfaces created by the IP-over-IP protocol inherit dev->mtu from the real devices
they are associated with. (This is not automatic; the virtual device driver takes care of
it.) However, due to the extra IP header needed by the IP-over-IP protocol, the MTU
needs to be lowered accordingly (see ipip_tunnel_xmit in net/ipv4/ipip.c, which
assumes an underlying Ethernet device).

Organization of net_device Structures
Some of the subtler aspects of the net_device structure include the following:

• We saw in the section “Allocating net_device Structures” that when alloc_
netdev is called to allocate a net_device structure, it is passed the size of the
driver’s private data block (whose size depends on the driver—some do not even
use private data at all). alloc_netdev appends the private data to the net_device
structure. Figure 8-1 showed how that parameter is passed and Figure 8-2 shows
the effect on the memory allocation.

• Figure 8-2 also shows the relationship between the net_device data structure and
the optional driver’s private data structure. Normally, the second part is allo-
cated together with the first one so that a single kmalloc is sufficient, but there
are also cases where the driver prefers to allocate its private block by itself (see
driver C in Figure 8-2).

• As shown in the example in Figure 8-2, the size of the driver’s private block and
its content change not only from one device type to another (e.g., Token Ring
versus Ethernet) but also among devices of the same type (e.g., two different
Ethernet cards).

• dev_base (introduced later in this section) and the next pointer in net_device
point to the beginning of the net_device structure, not to the beginning of the
allocated block. However, the size of the initial padding is saved in dev->padded,
which allows the kernel to release the whole memory block when it is time to do
so.

* In Chapter 1, you can find some more details on the use of VFTs.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 8: Device Registration and Initialization

net_device data structures are inserted both in a global list, as shown in Figure 8-2,
and in two hash tables, as shown in Figure 8-3. These different structures allow the
kernel to easily browse or look up the net_device database as required. Here are the
details:

dev_base
This global list of all net_device instances allows the kernel to easily browse
devices in case, for instance, it has to get some statistics, change a configuration
across all devices as a consequence of a user command, or find devices matching
given search criteria.

Because each driver has its own definition for the private data structure, the glo-
bal list of net_device structures may link together elements of different sizes (see
Figure 8-2).

dev_name_head
This is a hash table indexed on the device name. It is useful, for instance, when
applying a configuration change via the ioctl interface. The old-generation con-
figuration tools that talk to the kernel via the ioctl interface usually refer to
devices by their names.

dev_index_head
This is a hash table indexed on the device ID dev->ifindex. Cross-references to
net_device structures usually store either device IDs or pointers to net_device
structures; dev_index_head is useful for the former. Also, the new-generation
configuration tool ip (from the IPROUTE2 package), which talks to the kernel
via the Netlink socket, usually refers to devices by their ID.

Figure 8-2. Global list of registered devices

driver’s private block

struct net_device

(alignment padding) P

*next

padded=P

*priv

dev_base

*next

padded=P

*priv

*next

padded=P

*priv

*next

padded=P

*priv

driver A driver Cdriver B

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Device State | 147

Lookups
The most common lookups are based either on the device name or on the device ID.
These two lookup types are implemented by dev_get_by_name and dev_get_by_index,
which use the two hash tables discussed in the previous section. It is also possible to
search net_device instances based on their device type, MAC address, etc. These
kinds of lookups use the dev_base list.

All lookups, both on the dev_base list and on the two hash tables, are protected by
the dev_base_lock lock.

All lookup routines are defined in net/core/dev.c.

Device State
The net_device structure includes different fields that define the current state of the
device. These include:

flags
Bitmap used to store different flags. Most of them represent a device’s capabili-
ties. However, one of them, IFF_UP, is used to say whether the device is enabled
(up) or disabled (down). You can find the list of IFF_XXX flags in include/linux/if.
h. See also the section “Enabling and Disabling a Network Device.”

reg_state
Device registration state. The section “Registration State” lists the values this
field can be assigned and when its value changes.

Figure 8-3. Hash tables used to search net_device instances based on device name and device index

index_hlist

struct net_device struct net_device2NE
TD

EV
_H

AS
HB

IT
S(

8)
=

25
6

name_hlist

index_hlist

name_hlist

struct net_device

index_hlist

name_hlist
dev_index_head

2NETDEV_HASHBITS(8)=256

dev_name_head

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 8: Device Registration and Initialization

state
Device state with regard to its queuing discipline. See the section “Queuing Dis-
cipline State.”

You may find a little bit of overlap sometimes between these variables. For example,
every time IFF_UP is set in flags, _ _LINK_STATE_START is set in state, and vice versa.
Both of them are set and cleared, respectively, by dev_open and dev_close. However,
their domains are different, and a little bit of overlap may sometimes be introduced
when writing modular code.

Queuing Discipline State
Each network device is assigned a queuing discipline, which is used by Traffic Con-
trol to implement its QoS mechanisms. The state field of net_device is one of the
structure’s fields used by Traffic Control. state is a bitmap, and the following list
shows the flags that can be set. They are defined in include/linux/netdevice.h.

_ _LINK_STATE_START
The device is up. This flag can be checked with netif_running. See the section
“Enabling and Disabling a Network Device.”

_ _LINK_STATE_PRESENT
The device is present. This flag may look superfluous; but take into account that
hot-pluggable devices can be temporally removed. The flag is also cleared and
restored, respectively, when the system goes into suspend mode and then
resumes. The flag can be checked with netif_device_present. See the section
“register_netdevice Function.”

_ _LINK_STATE_NOCARRIER
There is no carrier. The flag can be checked with netif_carrier_ok. See the sec-
tion “Link State Change Detection.”

_ _LINK_STATE_LINKWATCH_EVENT
The device’s link state has changed. See the section “Scheduling and processing
link state change events.”

_ _LINK_STATE_XOFF
_ _LINK_STATE_SHED
_ _LINK_STATE_RX_SCHED

These three flags are used by the code that manages ingress and egress traffic on
the device. We will see how they are used in Part III.

Registration State
The state of a device with regard to its registration with the network stack is saved in
the reg_state field of the net_device structure. The NETREG_XXX values it can take are

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Registering and Unregistering Devices | 149

defined in include/linux/netdevice.h, within the net_device structure definition. In the
next section, we will see how they relate to each other. Here is a brief description:

NETREG_UNINITIALIZED
Defined as 0. When the net_device data structure is allocated and its contents
zeroed, this value represents the 0 in dev->reg_state.

NETREG_REGISTERING
The net_device structure has been added to the structures listed in the later sec-
tion “Organization of net_device Structures,” but the kernel still needs to add an
entry to the /sys filesystem.

NETREG_REGISTERED
The device has been fully registered.

NETREG_UNREGISTERING
The net_device structure has been removed from the structures listed in the later
section “Organization of net_device Structures.”

NETREG_UNREGISTERED
The device has been fully unregistered (which includes removing the entry from
/sys), but the net_device structure has not been freed yet.

NETREG_RELEASED
All the references to the net_device structure have been released. The data struc-
ture can be freed, from the networking code’s perspective. However, it will be up
to sysfs to take care of it. See the section “Reference Counts.”

Registering and Unregistering Devices
Network devices are registered and unregistered with the kernel with register_
netdev and unregister_netdev, respectively. These are simple wrappers that take care
of locking and then invoke the routines register_netdevice and unregister_
netdevice, respectively. We already briefly introduced these functions in Figure 8-1.
All of them are defined in net/core/dev.c.

Figure 8-4 shows the registration states a net_device can be set to, and shows where
the aforementioned routines come into the picture. It also shows where other key
routines are called. All of them will be described in later sections. In particular, note
that:

• Changes of state may use intermediate states between NETREG_UNINITIALIZED and
NETREG_REGISTERED. These progressions are handled by netdev_run_todo,
described in the section “Split Operations: netdev_run_todo.”

• The two net_device virtual functions init and uninit can be used by device driv-
ers to initialize and clean up private data, respectively, when registering and
unregistering a device. They are mainly used by virtual devices. See the section
“Virtual Devices.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 8: Device Registration and Initialization

• The unregistration of a device cannot be completed until all references to the
associated net_device data structure have been released: netdev_wait_allrefs
does not return until that condition is met. See the section “Reference Counts.”

• Both the registration and unregistration of a device are completed by netdev_
run_todo. We will see in the section “Split Operations: netdev_run_todo” how
register_netdevice and unregister_netdevice interact with netdev_run_todo.

Split Operations: netdev_run_todo
register_netdevice takes care of a portion of the registration, and then lets netdev_
run_todo complete it. At first, it may not be clear how this happens by looking at the
code. Let’s see how it works with the help of Figure 8-5(a).

Changes to net_device structures are protected with the Routing Netlink sema-
phore via rtnl_lock and rtnl_unlock, which is why register_netdev acquires the
lock (semaphore) at the beginning and releases it before returning (more details in
the section “Locking”). Once register_netdevice is done with its job, it adds the
new net_device structure to net_todo_list with net_set_todo. That list contains the
devices whose registration (or unregistration, as we will see in a moment) has to be
completed. The list is not processed by a separate kernel thread or by means of a
periodic timer; it will be up to register_netdev to indirectly process it when releas-
ing the lock.

Figure 8-4. net_device’s registration state machine

UNINITIALIZED REGISTERING

REGISTERED

UNREGISTERING

RELEASED UNREGISTERED
free_netdev

netdev_run_todo

netdev_run_todo

dev -> init

unregister_netdevice

dev_close

dev -> stop
dev ->uninit

dev -> destructor

net dev _wait_allrefs

free_net dev

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Registering and Unregistering Devices | 151

Thus, rtnl_unlock not only releases the lock, but also calls netdev_run_todo.* The lat-
ter function browses the net_todo_list array and completes the registration of all its
net_device instances.

Only one CPU can be running net_run_todo at any one time. Serialization is enforced
with the net_todo_run_mutex mutex.

The unregistration of a device is handled exactly the same way (as shown in
Figure 8-5(b)).

What netdev_run_todo does, exactly, to complete the registration or unregistration of
a device is described at the end of the sections “register_netdevice Function” and
“unregister_netdevice Function,” respectively.

Note that since the registration and unregistration tasks handled by netdev_run_todo
do not hold the lock, this function can safely sleep and leave the semaphore avail-
able. You will see one example why this is a good thing in the section “Reference
Counts.”

Given the model of Figure 8-5, it may seem that the kernel cannot have more than
one net_device instance in net_todo_list by the time netdev_run_todo is called. How
can there be more than one element if register_netdev and unregister_netdev add
only one net_device instance to the list and then process the latter right away when
releasing the lock? Well, for example, it is possible for a device driver to use a loop
like the following to unregister all of its devices in one shot (see, for instance, tun_
cleanup in drivers/net/tun.c):

rtnl_lock();
loop for each device driven by this driver {

 unregister_netdevice(dev);

* rtnl_unlock is a wrapper around the semaphore primitive up. When up is called directly, as in rtnetlink_rcv,
netdev_run_todo is called explicitly. See also the section “Locking.”

Figure 8-5. Structure of register_netdev and unregister_netdev

LOCK

register_netdev

UNLOCK

.

register_netdevice

add net_device structure to TODO list

start registration

process TODO list
(i.e., complete registration)

LOCK

unregister_netdev

UNLOCK

unregister_netdevice

add net_device structure to TODO list

start unregistration

process TODO list
(i.e., complete unregistration)

(a) (b)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 8: Device Registration and Initialization

}
rtnl_unlock();

This is better than the following approach, which gets and releases the lock and pro-
cesses net_todo_list at each iteration of the loop:

loop for each device driven by this driver {

 unregister_netdev(dev);

}

Device Registration Status Notification
Both kernel components and user-space applications may be interested in knowing
when a network device is registered, unregistered, goes down, or comes up. Notifica-
tions about these events are sent via two channels:

netdev_chain
Kernel components can register with this notification chain. See the following
section, “netdev_chain notification chain.”

Netlink’s RTMGRP_LINK multicast group
User-space applications, such as monitoring tools or routing protocols, can reg-
ister with RTnetlink’s RTMGRP_LINK multicast group. See the section “RTnetlink
link notifications.”

netdev_chain notification chain

We saw what notification chains are and how they are used in Chapter 4. The
progress through the various stages of registering and unregistering a device is
reported with the netdev_chain notification chain. This chain is defined in net/core/
dev.c, and kernel components interested in these kinds of events register and unregis-
ter with the chain with register_netdevice_notifier and unregister_netdevice_
notifier, respectively.

All the NETDEV_XXX events that are reported via netdev_chain are listed in include/
linux/notifier.h. Here are the ones we have seen in this chapter, together with the
conditions that trigger them:

NETDEV_UP
NETDEV_GOING_DOWN
NETDEV_DOWN

NETDEV_UP is sent to report about a device that has been enabled, and is gener-
ated by dev_open.

NETDEV_GOING_DOWN is sent when the device is about to be disabled. NETDEV_DOWN is
sent when the device has been disabled. They are both generated by dev_close.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Registering and Unregistering Devices | 153

For more details on these three events, see the section “Enabling and Disabling a
Network Device.”

NETDEV_REGISTER
The device has been registered. This event is generated by register_netdevice.
See the section “register_netdevice Function.”

NETDEV_UNREGISTER
The device has been unregistered. This event is generated by unregister_
netdevice. See the section “unregister_netdevice Function.”

And here are the other ones:

NETDEV_REBOOT
The device has restarted due to a hardware failure. Currently not used.

NETDEV_CHANGEADDR
The hardware address (or the associated broadcast address) of the device has
changed.

NETDEV_CHANGENAME
The device has changed its name.

NETDEV_CHANGE
The device status or configuration of the device has changed. This is used in all
the cases not covered by NETDEV_CHANGEADDR and NETDEV_CHANGENAME. It is cur-
rently used when something changes in dev->flags.

The NETDEV_CHANGEXXX notifications are usually generated in response to a user con-
figuration change.

Note that register_netdevice_notifier, when registering with the chain, also replays
(to the new registrant only) all the past NETDEV_REGISTER and NETDEV_UP notifications
for the devices currently registered in the system. This gives the new registrant a clear
picture of the current status of the registered devices.

Quite a few kernel components register to netdev_chain. Among them are:

Routing
For instance, the routing subsystem uses this notification to add or remove all
the routing entries associated with the device. See Chapter 32.

Firewall
For example, if the firewall had buffered any packet from a device that now is
down, it has to either drop the packet or take another action according to its pol-
icies.

Protocol code (i.e., ARP, IP, etc.)
For example, when you change the MAC address of a local device, the ARP table
must be updated accordingly. See the associated protocol chapters for more
details.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 8: Device Registration and Initialization

Virtual devices
See the section “Virtual Devices.”

RTnetlink
See the following section, “RTnetlink link notifications.”

RTnetlink link notifications

Notifications are sent to the Link multicast group RTMGRP_LINK with rtmsg_ifinfo
when something changed in the device’s state or configuration. Among these notifi-
cations are:

• When a notification is received on the netdev_chain notification chain.
RTnetlink registers to the netdev_chain chain introduced in the previous section
and replays the notifications it receives.

• When a disabled device is enabled or vice versa (see netdev_state_change).

• When a flag in net_device->flags is changed, for example, via a user configura-
tion command (see dev_change_flags).

netplugd is a daemon, part of the net-utils package, that listens to these notifications
and reacts according to a user configuration file. See the netplugs manpage for
details.

Device Registration
Device registration, whose basic model is shown in Figure 8-1(a), does not consist
simply of inserting the net_device structure into the global list and hash tables intro-
duced in the section “Organization of net_device Structures.” It also involves the ini-
tialization of some parameters in the net_device structure, the generation of a
broadcast notification that will inform other kernel components about the registra-
tion, and other tasks. Devices are registered with register_netdev, which is a simple
wrapper around register_netdevice. The wrapper mainly takes care of locking and
name completion as described earlier in the section “Allocating net_device Struc-
tures.” The lock protects the dev_base list of registered devices.

register_netdevice Function
As described in Figure 8-5(a), register_netdevice starts device registration and calls
net_set_todo, which ultimately asks netdev_run_todo to complete the registration.

Here are the main tasks carried out by register_netdevice:

• Initialize some of the net_device’s fields, including the ones used for locking,
listed in the section “Locking.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Device Registration | 155

• When the kernel has support for the Divert feature, allocate a configuration
block needed by the feature and link it to dev->divert. This is taken care of by
alloc_divert_blk.

• If the device driver had initialized dev->init, execute that function. See the sec-
tion “Virtual Devices.”

• Assign the device a unique identifier with dev_new_index. The identifier is gener-
ated using a counter that is incremented every time a new device is added to the
system. This counter is a 32-bit variable, so dev_new_index includes an if clause
to handle wraparound as well as another if clause to handle the possibility that
the variable hits a value that was already assigned.

• Append net_device to the global list dev_base and insert it into the two hash
tables described in the section “Organization of net_device Structures.” Even
though adding the structure at the head of dev_base would be faster, the kernel
has a chance to check for duplicate device names by browsing the entire list. The
device name is checked against invalid names with dev_valid_name.

• Check the feature flags for invalid combinations. For example:

• Scather/Gather-DMA is useless without L4 hardware checksumming sup-
port and is therefore disabled in that situation.

• TCP Segmentation Offload (TSO) requires Scather/Gather-DMA, and is
therefore disabled when the latter is not supported.

See Chapter 19 for more details on L4 checksums.

• Set the _ _LINK_STATE_PRESENT flag in dev->state to make the device available
(visible and usable) to the system. The flag is cleared, for example, when a hot-
pluggable device is unplugged, or when a system with support for power man-
agement goes into suspend mode. See the section “Queuing Discipline State.”

The initialization of this flag does not trigger any action; instead, its value is
checked in well-defined cases to filter out illegal requests or to get the device
state.

• Initialize the device’s queuing discipline, used by Traffic Control to implement
QoS, with dev_init_scheduler. The queuing discipline defines how egress pack-
ets are queued to and dequeued from the egress queue, defines how many pack-
ets can be queued before starting to drop them, etc. See the section “Queuing
Discipline Interface” in Chapter 11.

• Notify all the subsystems interested in device registration via the netdev_chain
notification chain. Notification chains are described in Chapter 4.

When netdev_run_todo is called to complete the registration, it just updates dev->
reg_state and registers the device in the sysfs filesystem.

Aside from memory allocation problems, device registration can fail only if the
device name is invalid or is a duplicate, or when dev->init fails for some reason.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 8: Device Registration and Initialization

Device Unregistration
To unregister a device, the kernel and the associated device driver need to undo all
the operations that were executed during its registration, and more:

• Disable the device with dev_close, described in the section “Enabling and Dis-
abling a Network Device.”

• Release all the allocated resources (IRQ, I/O memory, I/O port, etc.)

• Remove the net_device structure from the global list dev_base and the two hash
tables introduced in the section “Organization of net_device Structures.”

• Once all the references to the structure have been released, free the net_device
data structure, the driver’s private data structure, and any other memory block
linked to it (see Figure 8-2). The net_device structure is freed with free_netdev.
When the kernel is compiled with support for sysfs, free_netdev lets it take care
of freeing the structure.

• Remove any file that may have been added to the /proc and /sys filesystems.

Note that whenever there is a dependency between devices, unregistering one of
them may force the unregistration of all (or part) of the others. See the section “Vir-
tual Devices” for an example.

Three function pointers in net_device (represented by a variable named dev) come
into the picture when unregistering a device:

dev->stop
This function pointer is initialized by the device driver to one of its local rou-
tines. It is invoked by dev_stop when disabling a device (see the section
“Enabling and Disabling a Network Device”). Common tasks handled here
include stopping the egress queue with netif_stop_queue,* releasing hardware
resources, stopping any timers used by the device driver, etc.

Virtual devices do not need to release any hardware resources, but they may
need to take care of other, high-level issues. See the section “Virtual Devices.”

dev->uninit
This function pointer is also initialized by the device driver to one of its local
routines. Only a few, tunneling virtual devices currently initialize it; they point it
to a routine that mainly takes care of reference counts.

dev->destructor
When used, this is normally initialized to free_netdev or to a wrapper around it.
However, destructor is not commonly initialized; only a few virtual devices use
it. Most device drivers call free_netdev directly after unregister_netdevice.

* netif_xxx_queue routines are described in Chapter 11.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Device Unregistration | 157

Figure 8-4 shows when and in what order these three routines are invoked.

unregister_netdevice Function
unregister_netdevice accepts one parameter, the pointer to the net_device structure
it is to remove:

int unregister_netdevice(struct net_device *dev)

In Chapter 9, we will see in detail how the networking code uses software interrupts
(softirqs) to handle packet transmission (net_tx_action) and reception (net_rx_
action). You can look at those functions, for now, as the interface between device
drivers and upper-layer protocols. Two calls to synchronize_net are used to synchro-
nize unregister_netdevice with the receive engine (net_rx_action) so that it will not
access old data after it has been updated by unregister_netdevice.

Other tasks taken care of by unregister_netdevice include:

• If the device was not disabled, it has to be disabled first with dev_close (see the
section “Enabling and Disabling a Network Device”).

• The net_device instance is then removed from the global list dev_base and the
two hash tables introduced in the section “Organization of net_device Struc-
tures.” Note that this is not sufficient to forbid kernel subsystems from using the
device: they may still hold a pointer to the net_device data structure. This is why
net_device uses a reference count to keep track of how many references are left
to the structure (see the section “Reference Counts”).

• All the instances of queuing discipline associated with the device are destroyed
with dev_shutdown.

• A NETDEV_UNREGISTER notification is sent on the netdev_chain notification chain
to let other kernel components know about it. See the section “Device Registra-
tion Status Notification.”

• User space has to be notified about the unregistration. For instance, in a system
with two NICs that could be used to access the Internet, this notification could
be used to start the secondary device. See the section “Device Registration Sta-
tus Notification.”

• Any data block linked to the net_device structure is freed. For example, the mul-
ticast data dev->mc_list is removed with dev_mc_discard, the Divert block is
removed with free_divert_blk, etc. The ones that are not explicitly removed in
unregister_netdevice are supposed to be removed by the function handlers that
process the notifications mentioned in the previous bullet.

• Whatever was done by dev->init in register_netdevice is undone here with
dev->uninit.

• Features such as bonding allow you to group a set of devices together and treat
them as a single virtual device with special characteristics. Among those devices,

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 8: Device Registration and Initialization

one is often elected master because it plays a special role within the group. For
obvious reasons, the device being removed should release any reference to the
master device: having dev->master non-NULL at this point would be a bug. If we
stick to the bonding example, the dev->master reference is cleared thanks to the
NETDEV_UNREGISTER notifications sent just a few lines of code earlier.

Finally, net_set_todo is called to let net_run_todo complete the unregistration, as
described in the section “Split Operations: netdev_run_todo,” and the reference
count is decreased with dev_put. net_run_todo unregisters the device from sysfs,
changes dev->reg_state to NETREG_UNREGISTERED, waits until all the references are
gone, and completes the unregistration with a call to dev->destructor.

Reference Counts
net_device structures cannot be freed until all the references to it are released. The
reference count for the structure is kept in dev->refcnt, which is updated every time
a reference is added or removed, respectively, with dev_hold and dev_put.

When a device is registered with register_netdevice, dev->refcnt is initialized to 1.
This first reference is therefore kept by the kernel code that is responsible for the net-
work devices database. This reference will be released only with a call to unregister_
netdevice. This means that dev->refcnt will never drop to zero until the device is to
be unregistered. Therefore, unlike other kernel objects that are freed by the xxx_put
routine when the reference count drops to zero, net_device data structures are not
freed until you unregister the device from the kernel. We saw already the conditions
that lead to the unregistration of a device in the section ““When a Device Is Unregis-
tered.”

In summary, the call to dev_put at the end of unregister_netdevice is not sufficient
to make a net_device instance eligible for deletion: the kernel still needs to wait until
all the references are released. But because the device is no longer usable after it is
unregistered, the kernel needs to notify all the reference holders so that they can
release their references. This is done by sending a NETDEV_UNREGISTER notification to
the netdev_chain notification chain. This also means that reference holders should
register to the notification chain; otherwise, they will not be able to receive such noti-
fications and take action accordingly.

As we mentioned in the section “Split Operations: netdev_run_todo,” unregister_
netdevice starts the unregistration process and lets netdev_run_todo complete it.
netdev_run_todo calls netdev_wait_allrefs to indefinitely wait until all references to
the net_device structure have been released. The next section goes into detail on the
internals of netdev_wait_allrefs.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling a Network Device | 159

Function netdev_wait_allrefs

netdev_wait_allrefs, depicted in Figure 8-6, consists of a loop that ends only when
the value of dev->refcnt drops to zero. Every second it sends out a NETDEV_
UNREGISTER notification, and every 10 seconds it prints a warning on the console. The
rest of the time it sleeps. The function does not give up until all the references to the
input net_device structure have been released.

Two common cases that would require more than one notification to be sent are:

A bug
For example, a piece of code could hold references to net_device structures, but
it may not release them because it has not registered to the netdev_chain notifi-
cation chain, or because it does not process notifications correctly.

A pending timer
For example, suppose the routine that is executed when some timer expires
needs to access data that includes references to net_device structures. In this
case, you would need to wait until the timer expires and its handler hopefully
releases its references.

Note that since netdev_run_todo is started by unregister_netdevice when it releases
the lock, as described in the section “Split Operations: netdev_run_todo,” it means
that whoever started the unregistration, most probably the driver, is going to sleep
waiting for netdev_run_todo to complete its job.

When the function sends the notification, it also processes the pending link state
change events. Link state change events are covered in the section “Link State
Change Detection.” Here, suffice it to say that when a device is being unregistered,
the kernel does not need to do anything when informed about a link state change
event on the device. When the current device state is that the device is about to be
removed, events associated with devices being removed are associated with no-ops
when the link state change event list is processed, so the result is that the event list is
cleared and only events for other devices are actually processed. This is just an easy
way to clean up the link state change queue from events associated with a device
about to disappear.

Enabling and Disabling a Network Device
Once a device has been registered it is available for use, but it will not transmit and
receive traffic until it is explicitly enabled by the user (or a user-space application).
Requests to enable a device are taken care of by dev_open, defined in net/core/dev.c.
Enabling a device consists of the following tasks:

• Call dev->open if it is defined. Not all device drivers initialize this function.

• Set the _ _LINK_STATE_START flag in dev->state to mark the device as up and
running.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 8: Device Registration and Initialization

• Set the IFF_UP flag in dev->flags to mark the device as up.

• Call dev_activate to initialize the egress queuing discipline used by Traffic Con-
trol, and start the watchdog timer.* If there is no user configuration for Traffic
Control, assign a default First In, First Out (FIFO) queue.

• Send a NETDEV_UP notification to the netdev_chain notification chain to notify
interested kernel components that the device is now enabled.

While a device needs to be explicitly enabled, it can be disabled either explicitly by a
user command or implicitly by other events. For example, before a device is unregis-
tered, it is first disabled (see the section “Device Unregistration”). Network devices
are disabled with dev_close. Disabling a device consists of the following tasks:

• Send a NETDEV_GOING_DOWN notification to the netdev_chain notification chain to
notify interested kernel components that the device is about to be disabled.

Figure 8-6. Function netdev_wait_allrefs

* See Chapter 11 for more details on the watchdog timer.

Print warning

Yes

Any reference left?End
No

Is it time for a
new notification?

Begin

Take a little nap

Is it time for a
new warning?

No

No

Yes

Send notification
(NET_DEV_UNREGISTER)

Any linkwatch
event pending on the

device?

LOCK
(rtnl_lock)

Process linkwatch event
event list

Yes

UNLOCK
(rtnl_unlock)

No

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Updating the Device Queuing Discipline State | 161

• Call dev_deactivate to disable the egress queuing discipline, thus making sure
the device cannot be used for transmission anymore, and stop the watchdog
timer because it is not needed anymore.

• Clear the _ _LINK_STATE_START flag in dev->state to mark the device as down.

• If a polling action was scheduled to read ingress packets on the device, wait for
that action to complete. Because the _ _LINK_STATE_START flag has been cleared,
no more receive polling will be scheduled on the device, but one could have been
pending before the flag was cleared. See Chapter 10 for more detail on receive
polling.

• Call dev->stop if it is defined. Not all device drivers initialize this function.

• Clear the IFF_UP flag in dev->flags to mark the device as down.

• Send a NETDEV_DOWN notification to the netdev_chain notification chain to notify
interested kernel components that the device is now disabled.

Updating the Device Queuing Discipline State
We saw in the section “Queuing Discipline State” which flags can be set in dev->
state to define the device queuing discipline state. In this section, we will see how
two of those flags are used to handle power management and link state changes.

Interactions with Power Management
When the kernel has support for power management, NIC device drivers can be
notified when the system goes into suspend mode, when it is resumed, etc. We saw
in the section “Example of PCI NIC Driver Registration” in Chapter 6 how the
suspend and resume function pointers of the pci_driver structures are initialized
depending on whether the kernel has support for power management. This is, for
example, how the drivers/net/3c59x.c device driver initializes its pci_driver instance:

static struct pci_driver vortex_driver = {
 .name "3c59x",
 .probe vortex_init_one,
 .remove _ _devexit_p(vortex_remove_one),
 .id_table vortex_pci_tbl,
#ifdef CONFIG_PM
 .suspend vortex_suspend,
 .resume vortex_resume,
#endif
};

When the system goes into suspend mode, the suspend routines provided by device
drivers are executed to let drivers take action accordingly. Power management state
changes do not affect the registration status dev->reg_state, but the device state dev-
>state needs to be changed.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 8: Device Registration and Initialization

Suspending a device

When a device is suspended, its device driver handles the event, by calling, for exam-
ple, the pci_driver’s suspend routine for PCI devices. Besides the driver-specific
actions, a few additional actions must be performed by every device driver:

• Clear the _ _LINK_STATE_PRESENT flag from dev->state because the device is tem-
porarily not going to be operational.

• If the device was enabled, disable its egress queue with netif_stop_queue* to pre-
vent the device from being used to transmit any other packet. Note that a device
that is registered is not necessarily enabled: when a device is recognized, it gets
assigned to its device driver by the kernel and is registered; however, the device
will not be enabled (and therefore usable) until an explicit user configuration
requests it.

These tasks are succinctly implemented by netif_device_detach:

static inline void netif_device_detach(struct net_device *dev)
{
 if (test_and_clear_bit(_ _LINK_STATE_PRESENT, &dev->state) &&
 netif_running(dev)) {
 netif_stop_queue(dev);
 }
}

Resuming a device

When a device is resumed, its device driver handles the event, by calling, for exam-
ple, the pci_driver’s resume routine for PCI devices. Again, a few tasks are shared by
all device drivers:

• Set the _ _LINK_STATE_PRESENT flag in dev->state because the device is now avail-
able again.

• If the device was enabled before being suspended, re-enable its egress queue with
netif_wake_queue, and restart a watchdog timer used by Traffic Control (see the
section “Watchdog timer” in Chapter 11).

These tasks are implemented by netif_device_attach:

static inline void netif_device_attach(struct net_device *dev)
{
 if (!test_and_set_bit(_ _LINK_STATE_PRESENT, &dev->state) &&
 netif_running(dev)) {
 netif_wake_queue(dev);
 _ _netdev_watchdog_up(dev);
 }
}

* See Chapter 11 for more detail on the routines used to start, stop, and restart the egress queue.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Updating the Device Queuing Discipline State | 163

Link State Change Detection
When an NIC device driver detects the presence or absence of a carrier or signal,
either because it was notified by the NIC or via an explicit check by reading a config-
uration register on the NIC, it can notify the kernel with netif_carrier_on and
netif_carrier_off, respectively. These routines are to be called when there is a
change in the carrier status; therefore, they do nothing when they are invoked
inappropriately.

Here are a few common cases that may lead to a link state change:

• A cable is plugged into or unplugged from an NIC.

• The device at the other end of the cable is powered down or disabled. Examples
of devices include hubs, bridges, routers, and PC NICs.

When netif_carrier_on is called by a device driver that has detected the carrier on
one of its devices, the function:

• Clears the _ _LINK_STATE_NOCARRIER flag from dev->state.

• Generates a link state change event and submits it for processing with
linkwatch_fire_event. See the section “Scheduling and processing link state
change events.”

• If the device was enabled, starts a watchdog timer. The timer is used by Traffic
Control to detect whether a transmission fails and gets stuck (in which case the
timer times out). See the section “Watchdog timer” in Chapter 11.

static inline netif_carrier_on(struct net_device *dev)
{
 if (test_and_clear_bit(_ _LINK_STATE_NOCARRIER, &dev->state))
 linkwatch_fire_event(dev);
 if (netif_running(dev)
 _ _netdev_watchdog_up(dev);
}

When netif_carrier_off is called by a device driver that has detected the loss of a
carrier from one of its devices, the function:

• Sets the _ _LINK_STATE_NOCARRIER flag in dev->state.

• Generates a link state change event and submits it for processing with
linkwatch_fire_event. See the section “Scheduling and processing link state
change events.”

Note that both routines generate a link state change event and submit it for process-
ing with linkwatch_fire_event, described in the next section.

static inline netif_carrier_off(struct net_device *dev)
{
 if (!test_and_set_bit(_ _LINK_STATE_NOCARRIER, &dev->state))
 linkwatch_fire_event(dev);
}

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 8: Device Registration and Initialization

Scheduling and processing link state change events

Link state change events are defined with lw_event structures. It’s a pretty simple
structure: it includes just a pointer to the associated net_device structure and
another field used to link the structure to the global list of pending link state change
events, lweventlist. The list is protected by the lweventlist_lock lock.

Note that the lw_event structure does not include any parameter to distinguish
between detection and loss of carrier. This is because no differentiation is needed. All
the kernel needs to know is that there was a change in the link status, so a reference
to the device is sufficient. There will never be more than one lw_event instance in
lweventlist for any device, because there’s no reason to record a history or track
changes: either the link is operational or it isn’t, so the link state is either on or off.
Two state changes equal no change, three changes equal one, etc., so new events are
not queued when the device already has a pending link state change event. The con-
dition can be detected by checking the _ _LINK_STATE_LINKWATCH_PENDING flag in dev->
state, as shown in the flowchart in Figure 8-7.

Figure 8-7. linkwatch_fire_event function

Any linkwatch
event pending for

this device?

LOCK
(lweventlist_lock)

No

Add new event to global
event list

UNLOCK
(lweventlist_lock)

Is processing
routine already scheduled

for execution?

Schedule it

No

End

struct lw_event

struct lw_event

lweventlist

linkwatch_event

work_struct

keventd_wq

Yes

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Updating the Device Queuing Discipline State | 165

Once the lw_event data structure has been initialized with a reference to the right
net_device instance and it has been added to the lweventlist list, and the _ _LINK_
STATE_LINKWATCH_PENDING flag has been set in dev->state, linkwatch_fire_event needs
to launch the routine that will actually process the elements on the lweventlist list.
This routine, linkwatch_event, is not called directly. It is scheduled for execution by
submitting a request to the keventd_wq kernel thread: a work_struct data structure is
initialized with a reference to the linkwatch_event routine and is submitted to
keventd_wq.

To avoid having the processing routine linkwatch_event run too often, its execution
is rate limited to once per second.

linkwatch_event processes the elements of the lweventlist list with linkwatch_run_
queue, under the protection of the rtnl lock described in the section “Locking.” Pro-
cessing lw_event instances consists simply of:

• Clearing the _ _LINK_STATE_LINKWATCH_PENDING flag on dev->state.

• Sending a NETDEV_CHANGE notification on the netdev_chain notification chain

• Sending an RTM_NEWLINK notification to the RTMGRP_LINK RTnetlink group. See the
section “RTnetlink link notifications.”

The two notifications are sent with netdev_state_change, but only when the device is
enabled (dev->flags & IFF_UP): no one cares about link state changes on disabled
devices.

Linkwatch flags

The code in net/core/linkwatch.c defines two flags that can be set in the global vari-
able linkwatch_flags:

LW_RUNNING
When this flag is set, linkwatch_event has been scheduled for execution. The flag
is cleared by linkwatch_event itself.

LW_SE_USED
Because lweventlist usually has at most one element, the code optimizes lw_
event data structure allocations by statically allocating one and always using it as
the first element of the list. Only when the kernel needs to keep track of more
than one pending event (events on more than one device) does it allocate addi-
tional lw_event structures; otherwise, it simply recycles the same one.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 8: Device Registration and Initialization

Configuring Device-Related Information
from User Space
Different tools can be used to configure or dump the current status of media and
hardware parameters for network devices. Among them are:

• ifconfig and mii-tool, from the net-tools package

• ethtool, from the ethtool package

• ip link, from the IPROUTE2 package

You can refer to the associated manpages for details on the syntax of those com-
mands. The section “Ethtool” describes the interface between ethtool and the kernel,
and the section “Media Independent Interface (MII)” describes the interface between
mii-tool and the kernel. Later chapters return to the ifconfig and ip commands for the
L3 configuration.

Figure 8-8 is a high-level overview of what we will cover in these sections. The fig-
ure does not show the locking details. Suffice it to say that both dev_ethtool and the
call to dev->do_ioctl are protected with the routing Netlink lock (see the section
“Locking”).

Ethtool
This section gives an overview of ethtool along with its relationship to mii-tool and
the do_ioctl function pointer in net_device.

The net_device data structure includes a pointer to a VFT of type ethtool_ops. The
latter structure is a collection of function pointers that can be used to both read and
initialize a bunch of parameters on the net_device structure, or to trigger an action
(i.e., restart auto-negotiation).

Not all device drivers currently support this feature; and those that do support it
don’t always support all of its functions. The initialization of dev->ethtool_ops is
normally done in the probe routine introduced at the beginning of the chapter.

The interface between user space and the functions is the old ioctl system call.
Figure 8-8 shows how the user-space command ethtool ends up invoking dev_ethtool
on the kernel side. The figure also shows the skeleton of dev_ethtool, and how this
function interfaces to the generic Media Independent Interface Kernel library. We
will address the last point in the section “Media Independent Interface (MII).”

Without going into too much detail on how the kernel dispatches ioctl commands
to the right handlers, I’ll just say that the request first arrives to inet_ioctl, which
invokes dev_ioctl, which ends up calling dev_ethtool. (You can browse the code and
see how it works step by step; the code is pretty clear.)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Configuring Device-Related Information from User Space | 167

Figure 8-8. ioctl interface for device configuration

Superuser?

Is device present?

Yes

Does the driver
support ethtool?

Does the driver
provide a begin

function?

Yes

Execute it

Execute the ethtool XXX
helper routine (*)

Does the driver
provide a complete

function?

Execute it

Return return-code
from (*)

Yes

Yes

Yes

No

No

Does the device
support do_ioctl?

Return -EOPNOTSUPP

No

No

Return - ENODEV

Return - ENOPERM No

No

dev_ethtool

dev_ioctl

inet_ioctl

IOCTL

ethtool mii-tools
SIOCGMIIPHY
SIOCGMIIREG
SIOCSGMIIREG

SIOCETHTOOL

User space

Kernel

.

.

SIOCETHTOOL

SIOCGMIIPHY
SIOCGMIIREG
SIOCGMIIREG

dev -> do_iocti

generic_mii_ioctl

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 8: Device Registration and Initialization

dev_ethtool runs with the routing Netlink lock held (see the section “Locking”). The
function starts with a few sanity checks. Then, based on the command type received
from user space via an ifreq data structure, it invokes the right helper routine
ethtool_xxx, which consists of a simple wrapper around a dev->ethtool_ops->xxx vir-
tual function. Because a driver that supports Ethtool does not necessarily support all
the ethtool_ops functions, the helper routine can return –EOPNOTSUPP (operation not
supported). This is not shown in Figure 8-8.

Note also that dev_ethtool calls the ethtool_ops functions begin and complete,
respectively, before and after the execution of the ethtool_xxx support routine.
Those functions, however, are optional, and therefore are invoked only if provided
by the device driver. Not many drivers use them, and it is also possible for a driver to
use only one. Some PCI NIC device drivers use them to power up the NIC before
sending it the command (if the NIC is powered down) and then to power it down
again.

The skeleton of an ethtool_xxx helper routine is pretty simple: move data from user
space to kernel space (or vice versa, if it is a “get” command), and call one of the
ethtool_ops functions.

Drivers that do not support ethtool

When dev_ethtool is called to process a command for a device whose driver does not
support Ethtool, it tries to let the driver process the command via the dev->do_ioctl
function. It is possible that the driver does not support the latter either. In such a
case, dev_ethtool returns -EOPNOTSUPP.

It is also possible for do_ioctl to issue a call back to dev_ethtool (as shown with a
dotted line in Figure 8-8): this is done, for instance, by virtual devices that simply
want to let the device driver of the associated real device take care of the command
(see vlan_dev_ioctl in net/8021q/vlan_dev.c for an example).

Media Independent Interface (MII)
MII is an IEEE standard specification that describes the interface between network
controller chips and physical media chips. With this interface, the user can, for
instance, enable, disable, and configure auto-negotiation. Not all NICs have it.

The most common tool used to interact with MII on Linux is mii-tools. Like ethtool,
this interacts with the kernel via ioctl, as shown in Figure 8-8. The kernel provides a
set of ioctl commands to handle MII. These commands consist mainly of read and
write operations on specific NIC registers.

As shown in Figure 8-8, the ioctl commands are passed to the dev->do_ioctl func-
tion provided by the device driver. The function can handle them in one of two ways:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Virtual Devices | 169

• Recognize only the three MII ioctl commands and process them with device
driver code. This is the most common case.

• Rely on the kernel MII library drivers/net/mii.c by processing the input com-
mand with generic_mii_ioctl.

It is also possible, especially for virtual devices, to have dev->do_ioctl functions that
recognize and process other commands besides the MII ones.

The following is a common model for the dev->do_ioclt function for those drivers
that rely on the kernel MII library and do not implement special commands:

if (!netif_running(dev)) {
 return -EINVAL;
}
<lock private data structure>
err = generic_mii_ioctl(...);
<unlock private data structure>
return err;

Note in Figure 8-8 that an ethtool command may end up invoking a routine from the
MII kernel library (for example, to restart auto-negotiation).

Virtual Devices
In the section “Virtual Devices” in Chapter 5, we saw how virtual devices differ from
real ones with regard to initialization. As far as registration is concerned, virtual
devices need to be registered and enabled just like real ones, to be used. However,
there are differences:

• Virtual devices sometimes call register_netdevice and unregister_netdevice
rather than their wrappers, and take care of locking by themselves. They may
need to handle locking to keep the lock for a little longer than a real device does.
With this approach, the lock could also be misused and hold longer than
needed, by making it protect additional pieces of code (besides register_netdev)
that could be protected in other ways.

• Real devices cannot be unregistered (i.e., destroyed) with user commands; they
can only be disabled. Real devices are unregistered at the time their drivers are
unloaded (when loaded as modules, of course). Virtual devices, in contrast, may
be created and unregistered with user commands, too. Whether this is possible
depends on the virtual device driver’s design.

We also saw in the sections “register_netdevice Function” and “Device Unregistra-
tion” that virtual devices, unlike most real ones, use dev->init, dev->uninit, and
dev->destructor. Because most virtual devices implement some kind of more or less
complex logic on top of real devices, they use dev->init and dev->uninit to take care
of extra initialization and cleanup. dev->destructor is often initialized to free_netdev

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 8: Device Registration and Initialization

(as shown in Figure 8-4) so that the driver does not need to explicitly call the latter
function after unregistration.

We saw in the section “Device Initialization” how the initialization of net_device
structures is split between the device driver’s probe routine and generic setup rou-
tines. Because virtual devices do not have a probe routine, the classification in Tables
8-2 and 8-3 does not apply to them.

Virtual device drivers register to the netdev_chain notification chain described in the
section “Device Registration Status Notification” because most virtual devices are
defined on top of real devices, so changes to real devices affect virtual ones, too. Let’s
see two examples:

Bonding
Bonding is a virtual device that allows you to bundle a set of interfaces and make
them look like a single one. Traffic can be distributed between the set of inter-
faces using different algorithms, one of which is a simple round robin. Let’s take
the example in Figure 8-9(a). When eth0 goes down, the bonding interface
bond0 needs to know about it to take it into account when distributing traffic
between the real devices. In case eth1 went down too, bond0 would have to be
disabled because there would not be any working real device left.

VLAN interfaces
Linux supports the 802.1Q protocol and allows you to define Virtual LAN
(VLAN) interfaces. Consider the example in Figure 8-9(b), where the user has
defined two VLAN interfaces on eth0. When eth0 goes down, all virtual (VLAN)
interfaces must go down, too.

Figure 8-9. a) Bonding interface b) VLAN interfaces

(a)

bond0

eth0 eth1

(b)

eth0

eth0.1 eth0.2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 171

Locking
We saw in the section “Organization of net_device Structures” that the dev_base list
and the two hash tables dev_name_head and dev_name_index are protected by the dev_
base_list lock. That lock, however, is used only to serialize accesses to the list and
tables, not to serialize changes to the contents of net_device data structures. net_
device content changes are taken care of by the Routing Netlink semaphore (rtnl_
sem), which is acquired and released with rtnl_lock and rtnl_unlock, respectively.*

This semaphore is used to serialize changes to net_device instances from:

Runtime events
For example, when the link state changes (e.g., a network cable is plugged or
unplugged), the kernel needs to change the device state by modifying dev->
flags.

Configuration changes
When the user applies a configuration change with commands such as ifconfig
and route from the net-tools package, or ip from the IPROUTE2 package, the
kernel is notified via ioctl commands and the Netlink socket, respectively. The
routines invoked via these interfaces must use locks.

The net_device data structure includes a few fields used for locking, among them:

ingress_lock
queue_lock

Used by Traffic Control when dealing with ingress and egress traffic scheduling,
respectively.

xmit_lock
xmit_lock_owner

Used to synchronize accesses to the device driver hard_start_xmit function.

For more details on these locks, please refer to Chapter 11.

Tuning via /proc Filesystem
There are no files in /proc that can be used to tune the device registration and unreg-
istration tasks.

* Other routines can also be used to acquire and release the semaphore. See include/linux/rtnetlink.h for more
details.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 8: Device Registration and Initialization

Functions and Variables Featured in This Chapter
Table 8-4 summarizes the functions, data structures, and variables introduced in this
chapter.

Table 8-4. Functions, data structures, and variables introduced in this chapter

Name Description

Functions

alloc_netdev
alloc_xxxdev wrappers

Allocate and partially initialize a net_device structure.

free_netdev Frees a net_device structure.

dev_alloc_name Completes a device name.

register_netdevice,
register_netdev
unregister_netdevice,
unregister_netdev

Register and unregister a network device. The xxx_netdev APIs are wrappers for
the xxx_netdevice APIs.

xxx_setup Helper routines used to initialize part of thenet_device structure. There is one for
each of the most common interface types.

dev_hold
dev_put

Increment and decrement the reference count on a net_device structure.

netif_carrier_on
netif_carrier_off
netif_carrier_ok

Called when the carrier on a device is detected, lost, or to be read, respectively.

netif_device_attach
netif_device_detach

Called when a device is plugged into and unplugged from the system, respectively.
Called also when the system goes into suspend mode and then resumes.

netif_start_queue
netif_stop_queue
netif_queue_stopped

Called to start, stop, and check the status of the device egress queue, respectively.

dev_ethtool Processes ioctl commands from the ethtool user-space command.

Variables

dev_base
dev_name_head
dev_index_head
dev_base_lock

dev_base is a flat list of registered network devices. dev_xxx_head are two
hash tables for net_device structures, indexed on the device’s name and ID. The
previous three structures are protected by the dev_base_lock lock.

lweventlist
lweventlist_lock

lweventlist is a list of pending lw_event events. The list is protected by
lweventlist_lock.

Data structure

lw_event Link state change event.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Files and Directories Featured in This Chapter | 173

Files and Directories Featured in This Chapter
Figure 8-10 shows where the files and directories mentioned in this chapter are
located in the kernel source tree.

Figure 8-10. Files and directories featured in this chapter

Root

drivers

(usually /usr/src/linux)

include

netdevice.h
if.h

ethtool.h
mii.h

linuxblock
genhd.c

net

irda
irda_device.c

core
dev.c

linkwatch.c
ethtool.c

net

3c59x.c
mii.c airo.c

airo_cs.c

wireless
arcnet.c
arcnet

www.ebooksworld.in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART III

III.Transmission and Reception

The aim of these five chapters is to put into context all the features that can influ-
ence the path of a packet inside the kernel, and to give you an idea of the big pic-
ture. You will see what each subsystem is supposed to do and when it comes into the
picture. This chapter will not touch upon routing, which has a large chapter of its
own, or firewalling, which is beyond the scope of this book.

In general usage, the term transmission is often used to refer to communications in
any direction. But in kernel discussions, transmission refers only to sending frames
outward, whereas reception refers to frames coming in. In some places, I use the
terms ingress for reception and egress for transmission.

Forwarded packets—which both originate and terminate in remote systems but use
the local system for routing—constitute yet another category that combines ele-
ments of reception and transmission. Some aspects of forwarding are presented in
Chapter 10; a more thorough discussion appears in Parts V and VII.

We saw in Chapter 1 the difference between the terms frame, datagram, and packet.
Because the chapters in Part III discuss the interface between L2 and L3, both the
terms frame and packet would be correct in most cases. Even though I’ll mostly use
the term frame, I may sometimes use packet when referring to a data unit with no ref-
erence to any particular layer. The word packet is the one most commonly seen in
the code we are discussing.

Here is what we will see in each chapter of Part III:

Chapter 9, Interrupts and Network Drivers
In this chapter, you will be given an overview on both bottom half handlers and
kernel synchronization mechanisms.

Chapter 10, Frame Reception
This chapter goes on to describe the path through the L2 layer of a received
frame.

www.ebooksworld.in

Chapter 11, Frame Transmission
Chapter 11 does the same as Chapter 10, but for a transmitted (outgoing) frame.

Chapter 12, General and Reference Material About Interrupts
This is a repository of reference material for the previous chapters.

Chapter 13, Protocol Handlers
This chapter will conclude this part of the book with a discussion of how ingress
frames are handed to the right L3 protocol receive routines.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

177

Chapter 9 CHAPTER 9

Interrupts and Network
Drivers

The previous chapters gave an overview of how the initialization of core components
in the networking code is taken care of. The remainder of the book offers a feature-
by-feature or subsystem-by-subsystem analysis of how networking is implemented,
why features were introduced, and, when meaningful, how they interact with each
other.

This chapter begins an explanation of how packets travel between the L2 or driver
layer and the IP or network layer described in detail in Part V. I’ll be referring a lot to
the data structures introduced in Chapters 2 and 8, so you should be ready to turn
back to those chapters as needed.

Even before the kernel is ready to handle the frame that is coming from or going to
the L2 layer, it must deal with the subtle and complex system of interrupts set up to
make the handling of thousands of frames per second possible. That is the subject of
this chapter.

A couple of other general issues affect the discussion in this chapter:

• When the Linux kernel is compiled with support for symmetric multiprocessing
(SMP) and runs on a multiprocessor system, the code for receiving and transmit-
ting packets takes full advantage of that power. The data structures involved are
designed with that goal in mind. In this chapter, we will look at one aspect of
SMP support in particular: the differences between the new softirq queues and
the old backlog queue.

• When talking about the ingress path, I will cover both the old interface, which is
still used by most network drivers, and the new interface, called NAPI, which
can significantly increase performance under medium to high loads.

In this chapter, you will be given an overview on both bottom half handlers and ker-
nel synchronization mechanisms. However, for a more detailed discussion, you can
refer to the other two O’Reilly books, Understanding the Linux Kernel and Linux
Device Drivers.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 9: Interrupts and Network Drivers

Decisions and Traffic Direction
The paths taken by packets through the network stack differ for received, transmit-
ted, and forwarded packets (see Figure 9-1). Differences in processing also depend
on the features compiled into the kernel and how they are configured. Finally, the
devices involved can make a difference because different devices support different
features.

Virtual devices, such as the familiar loopback interface (lo), tend to use shortcuts
inside the network stack. These devices are software only. For instance, the loop-
back interface is not associated with any piece of hardware, but bonding interfaces
are associated indirectly with one or more network cards. Some virtual interfaces can
therefore dispense with some of the limitations found with hardware (such as the
Maximum Transmission Unit, or MTU) and thus speed up performance.

Figure 9-2 gives an idea of the big picture. It is certainly very sketchy; for instance, it
does not show all of the conditions that can lead to dropping a frame.* The figure
includes extra details about the ingress path; you can find more detailed graphs
about the egress path in Parts V, VI, and VII. We will go through all the links that
should be part of the graph in the rest of this chapter.

Notifying Drivers When Frames Are Received
In Chapter 5, I mentioned that devices and the kernel can use two main techniques
for exchanging data: polling and interrupts. I also said that a combination of the two
is also a valid option. This section offers a brief overview of the most common ways
for a driver to notify the kernel about the reception of a frame, along with the main

Figure 9-1. Traffic directions

* Frames can be dropped for a variety of reasons: no memory in the input queue, no memory in the output
queue (only for forwarded or transmitted frames), no route to destination, firewall policy, a failed sanity
check, etc.

Application layer L5+

L4

L3

L2 (MAC)

L1

INPUT FORWARD OUTPUT

Bridging

Routing

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Notifying Drivers When Frames Are Received | 179

pros and cons for each one. Some approaches depend on the availability of specific
features on the devices (such as ad hoc timers), and some need changes to the driver,
the operating system, or both.

This discussion could theoretically apply to any device type, but it best describes
those devices like network cards that can generate a high number of interactions
(that is, the reception of frames).

Polling
With this technique, the kernel constantly keeps checking whether the device has
anything to say. It can do that by continually reading a memory register on the
device, for instance, or returning to check it when a timer expires. As you can imag-
ine, this approach can easily waste quite a lot of system resources, and is rarely
employed if the operating system and device can use other techniques such as inter-
rupts. Still, there are cases where polling is the best approach. We will come back to
this point later.

Figure 9-2. Ingress path (frame reception)

Bridge
port?

Deliver a copy to any
interested tap

Deliver a copy to any
registered protocol handler

(i.e., ip _ rcv)

Bridging
(handle_bridge) dev_queue_xmit

. . .

Initialize skb -> protocol
netif_rx/netif_wake_queue

do_softirq/NET_RX_ACTION

netif_receive_skb

device driver
hard_start_xmit

Traffic Control

TXRX

eth 0 eth i eth n.

IRQ
(i.e., RxComplete)

No

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 9: Interrupts and Network Drivers

Interrupts
Here the device driver, on behalf of the kernel, instructs the device to generate a
hardware interrupt when specific events occur. The kernel, interrupted from its other
activities, will then invoke a handler registered by the driver to take care of the
device’s needs. When the event is the reception of a frame, the handler queues the
frame somewhere and notifies the kernel about it. This technique, which is quite
common, still represents the best option under low traffic loads. Unfortunately, it
does not perform well under high traffic loads: forcing an interrupt for each frame
received can easily make the CPU waste all of its time handling interrupts.

The code that takes care of an input frame is split into two parts: first the driver cop-
ies the frame into an input queue accessible by the kernel, and then the kernel pro-
cesses it (usually passing it to a handler dedicated to the associated protocol such as
IP). The first part is executed in interrupt context and can preempt the execution of
the second part. This means that the code that accepts input frames and copies them
into the queue has higher priority than the code that actually processes the frames.

Under a high traffic load, the interrupt code would keep preempting the processing
code. The consequence is obvious: at some point the input queue will be full, but
since the code that is supposed to dequeue and process those frames does not have a
chance to run due to its lower priority, the system collapses. New frames cannot be
queued since there is no space, and old frames cannot be processed because there is
no CPU available for them. This condition is called receive-livelock in the literature.

In summary, this technique has the advantage of very low latency between the recep-
tion of the frame and its processing, but does not work well under high loads. Most
network drivers use interrupts, and a large section later in this chapter will discuss
how they work.

Processing Multiple Frames During an Interrupt
This approach is used by quite a few Linux device drivers. When an interrupt is noti-
fied and the driver handler is executed, the latter keeps downloading frames and
queuing them to the kernel input queue, up to a maximum number of frames (or a
window of time). Of course, it would be possible to keep doing that until the queue
gets empty, but let’s remember that device drivers should behave as good citizens.
They have to share the CPU with other subsystems and IRQ lines with other devices.
Polite behavior is especially important because interrupts are disabled while the
driver handler is running.

Storage limitations also apply, as they did in the previous section. Each device has a
limited amount of memory, and therefore the number of frames it can store is lim-
ited. If the driver does not process them in a timely manner, the buffers can get full
and new frames (or old ones, depending on the driver policies) could be dropped. If

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Notifying Drivers When Frames Are Received | 181

a loaded device kept processing incoming frames until its queue emptied out, this
form of starvation could happen to other devices.

This technique does not require any change to the operating system; it is imple-
mented entirely within the device driver.

There could be other variations to this approach. Instead of keeping all interrupts
disabled and having the driver queue frames for the kernel to handle, a driver could
disable interrupts only for a device that has frames in its ingress queue and delegate
the task of polling the driver’s queue to a kernel handler. This is exactly what Linux
does with its new interface, NAPI. However, unlike the approach described in this
section, NAPI requires changes to the kernel.

Timer-Driven Interrupts
This technique is an enhancement to the previous ones. Instead of having the device
asynchronously notify the driver about frame receptions, the driver instructs the
device to generate an interrupt at regular intervals. The handler will then check if any
frames have arrived since the previous interrupt, and handles all of them in one shot.
Even better would be to have the driver generate interrupts at intervals, but only if it
has something to say.

Based on the granularity of the timer (which is implemented in hardware by the
device itself; it is not a kernel timer), the frames that are received by the device will
experience different levels of latency. For instance, if the device generated an inter-
rupt every 100 ms, the notification of the reception of a frame would have an aver-
age delay of 50 ms and a maximum one of 100 ms. This delay may or may not be
acceptable depending on the applications running on top of the network connec-
tions using the device.*

The granularity available to a driver depends on what the device has to offer, since
the timer is implemented in hardware. Only a few devices provide this capability cur-
rently, so this solution is not available for all the drivers in the Linux kernel. One
could simulate that capability by disabling interrupts for the device and using a ker-
nel timer instead. However, one would not have the support of the hardware, and
the CPU cannot spend as much of its resources as the device can on handling timers,
so one would not be able to schedule the timers nearly as often. This workaround
would, in the end, become a polling approach.

* This discussion applies mainly to Ethernet devices, which already do not guarantee an upper bound on the
transmission time (and therefore on the reception) because of the congestion algorithm they use.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 9: Interrupts and Network Drivers

Combinations
Each approach described in the previous sections has some advantages and disad-
vantages. Sometimes, it is possible to combine them and obtain something even bet-
ter. We said that under low load, the pure interrupt model guarantees a low latency,
but that under high load it performs terribly. On the other hand, the timer-driven
interrupt may introduce too much latency and waste too much CPU time under low
load, but it helps a lot in reducing the CPU usage and solving the receive-livelock
problem under high load. A good combination would use the interrupt technique
under low load and switch to the timer-driven interrupt under high load. The tulip
driver included in the Linux kernel, for instance, can do this (see drivers/net/tulip/
interrupt.c*).

Example
A balanced approach to processing multiple frames is shown in the following piece
of code, taken from the drivers/net/3c59x.c Ethernet driver. It is a selection of key
lines from vortex_interrupt, the function registered by the driver as the handler of
interrupts from devices in 3Com’s Vortex family:

static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
 int work_done = max_interrupt_work;
 ioaddr = dev->base_addr;

 status = inw(ioaddr + EL3_STATUS);
 do {

 if (status & RxComplete)
 vortex_rx(dev);
 if (--work_done < 0) {
 /* Disable all pending interrupts. */

 /* The timer will re-enable interrupts. */
 mod_timer(&vp->timer, jiffies + 1*HZ);
 break;
 }

 } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));

}

Other drivers that follow the same model will have something very similar. They
probably will call the EL3_STATUS and RxComplete symbols something different, and
their implementation of an xxx_rx function may be different, but the skeleton will be
very close to the one shown here.

* This is not a trivial driver. Going through the other three chapters of this part of the book first is advisable.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 183

In vortex_interrupt, the driver reads from the device the reasons for the interrupt
and stores it into status. Network devices can generate an interrupt for different rea-
sons, and several reasons can be grouped together in a single interrupt. If RxComplete
(a symbol specially defined by this driver to mean a new frame has been received) is
among those reasons, the code invokes vortex_rx.* During its execution, interrupts
are disabled for the device. However, the driver can read a hardware register on the
card and find out if in the meantime, a new interrupt was posted. The IntLatch flag
is true when a new interrupt has been posted (and it is cleared by the driver when it
is done processing it).

vortex_interrupt keeps processing incoming frames as long as the register says there
is an interrupt pending (IntLatch) and that it is due to the reception of a frame
(RxComplete). This also means that only multiple occurrences of RxComplete inter-
rupts can be handled in one shot. Other types of interrupts, which are much less fre-
quent, can wait.

Finally—here is where good citizenship enters—the loop terminates if it reaches the
maximum number of input frames that can be processed, stored in work_done. This
driver uses a default value of 32 and allows that value to be tuned at module load
time.

Interrupt Handlers
A good deal of the frame handling we discuss in this chapter takes place in response
to interrupts from network hardware. The scheduling of functions triggered by inter-
rupts is a complicated topic and deserves some study, even though it doesn’t con-
cern networking in particular. Therefore, in this section, we discuss the various ways
that interrupts are handled by different network drivers and introduce the concepts
of bottom halves and softirqs.

In Chapter 5, we saw how device drivers register their handlers with an IRQ num-
ber, but we did not see how hardware interrupts delegate frame processing to soft-
ware interrupt handlers. This section will describe how an interrupt request
associated with the reception of a frame is handled all the way to the point where
protocol handlers discussed in Chapter 13 receive their packets. We will see the rela-
tionship between hardware IRQs and software IRQs and why the latter category is
needed. We will briefly see how interrupts were handled with the old kernels and
then compare the old approach to the new one introduced with kernel version 2.4.
This discussion will show the advantages of the new model over the old one, espe-
cially in the area of performance.

* vortex_rx is passed the device as an input parameter because a device driver can handle more instances of
the same device type or family. Therefore, when it is invoked it needs to know which device it is dealing with.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 9: Interrupts and Network Drivers

Before launching into softirqs, we need a small introduction to the concept of bot-
tom half handlers. However, I will not go into much detail about them because they
are documented in other resources, notably Understanding the Linux Kernel and
Linux Device Drivers.

Reasons for Bottom Half Handlers
Whenever a CPU receives an interrupt notification, it invokes the handler associated
with that interrupt, which is identified by a number. During the handler’s execu-
tion—in which the kernel code is said to be in interrupt context—interrupts are dis-
abled for the CPU serving the interrupt. This means that if a CPU is busy serving one
interrupt, it cannot receive other interrupts, whether of the same type or of different
types.* Nor can the CPU execute any other process: it belongs totally to the interrupt
handler and cannot be preempted.

In the simplest situation, these are the main events touched off by an interrupt:

1. The device generates an interrupt and the hardware notifies the kernel.

2. If the kernel is not serving another interrupt (and if interrupts are not disabled
for other reasons) it will see the notification.

3. The kernel disables interrupts for the local CPU and executes the handler associ-
ated with the interrupt type received.

4. The kernel exits the interrupt handler and re-enables interrupts for the local
CPU.

In short, interrupt handlers are nonpreemptible and non-reentrant. (A function is
defined as non-reentrant when it cannot be interrupted by another invocation of
itself. In the case of interrupt handlers, it simply means that they are executed with
interrupts disabled.) This design choice helps reduce the likelihood of race condi-
tions. However, because the CPU is so limited in what it can do, the nonpreemptible
design has potentially serious effects on performance by the kernel as well as the pro-
cesses waiting to be served by the CPU.

Therefore, the work done by interrupt handlers should be as quick as possible. The
amount of processing needed by the interrupt handlers during interrupt context
depends on the type of event. A keyboard, for instance, may simply send an inter-
rupt every time a key is pressed, which requires very little effort to be handled: the
handler simply needs to store the code of the key somewhere, and run a few times
per second at most. At other times, the actions required to handle an interrupt are
not trivial and their executions could require much CPU time. Network devices, for
instance, have a relatively complex job: they need to allocate a buffer (sk_buff), copy

* We saw in Chapter 5 that an interrupt handler that is declared as a slow handler is executed with the inter-
rupts enabled on the local CPU.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 185

the received data into it, initialize a few parameters within the buffer structure
(protocol) to tell the higher-layer protocol handlers what kind of data is coming from
the driver, and so on.

Here is where the concept of a bottom half handler comes into play. Even if the
action triggered by an interrupt needs a lot of CPU time, most of this action can usu-
ally wait. Interrupts are allowed to preempt the CPU in the first place because if the
operating system makes the hardware wait too long, it may lose data. This is obvi-
ously true of real-time streaming data, but also is true of any hardware that has to
store incoming data in fixed-size buffers. And if the hardware loses data, there is usu-
ally no way to get it back.

On the other hand, if the kernel or a user-space process has to be delayed or pre-
empted, no data will be lost (with the exception of real-time systems, which entail a
completely different way of handling processes as well as interrupts). In light of these
considerations, modern interrupt handlers are divided into a top half and a bottom
half. The top half consists of everything that has to be executed before releasing the
CPU, to preserve data. The bottom half contains everything that can be done at rela-
tive leisure.

One can define a bottom half as an asynchronous request to execute a particular
function. Normally, when you want to execute a function, you do not have to
request anything—you simply invoke it. When an interrupt arrives, you have a lot to
do and don’t want to do it right away. Thus, you package most of the work into a
function that you submit as a bottom half.

The following model allows the kernel to keep interrupts disabled for much less time
than the simple model shown previously:

1. The device signals the CPU to notify it of the interrupt.

2. The CPU executes the associated top half, disabling further interrupt notifica-
tions until this handler has finished its job.

3. Typically, a top half performs the following:

a. It saves somewhere in RAM all the information that the kernel will need
later to process the interrupt event.

b. It marks a flag somewhere (or triggers something using another kernel
mechanism) to make sure the kernel will know about the interrupt and will
use the data saved by the handler to complete the event processing.

c. Before terminating, it re-enables the interrupt notifications for the local
CPU.

4. At some later point, when the kernel is free of more pressing matters, it checks
the flag set by the interrupt handler (signaling the presence of data to be pro-
cessed) and calls the associated bottom half handler. It also clears the flag so that
it can later recognize when the interrupt handler sets the flag again.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 9: Interrupts and Network Drivers

Over time, Linux developers have tried different types of bottom halves, which obey
different rules. Networking has played a large role in the development of new imple-
mentations, because of networking’s need for low latency—that is, a minimal
amount of time between the reception of a frame and its delivery. Low latency is
more important for network device drivers than for other types of devices because of
the high number of tasks involved in reception and transmission. As described ear-
lier in the section “Interrupts,” it can be disastrous to let a large number of frames
build up while waiting to be handled. Sound cards are another example of devices
requiring fast response.

Bottom Halves Solutions
The kernel provides different mechanism for implementing bottom halves and for
deferring work in general. These mechanisms differ mainly with regard to the follow-
ing points:

Running context
Interrupts are seen by the kernel as having a different running context from user-
space processes or other kernel code. When the function executed by a bottom
half is capable of going to sleep, it is restricted to mechanisms allowed in pro-
cess context, as opposed to interrupt context.

Concurrency and locking
When a mechanism can take advantage of SMP, this has implications for how
serialization is enforced (if necessary) and how locking influences scalability.

In this chapter, we will look only at those mechanisms that do not need a process
context—namely, softirqs and tasklets. In the next section, we will briefly see their
implications for concurrency and locking.

When you need to defer the execution of a function that may sleep, you need to use
a dedicated kernel thread or work queues. A work queue is simply a queue where
you can queue a request to execute a function, and a kernel thread will take care of
it. In this case, the function would be executed in the context of a kernel thread, and
therefore sleeping is allowed. Since the networking code mainly uses softirq and
tasklets, we will not look at work queues.

Concurrency and Locking
Before launching into the code that network drivers use to handle bottom halves, we
need some background on concurrency, which refers to functions that can interfere
with each other either because they are scheduled on different CPUs or because one
is suspended by the kernel to run another. Related topics are locks and the disabling
of interrupts. (Concurrency is discussed in detail in both Understanding the Linux
Kernel and Linux Device Drivers.)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 187

Three different types of functions will be introduced in this chapter to handle inter-
rupts, old-style bottom halves, softirqs, and tasklets. All of them can be used to
schedule the execution of a function, but they come with some big differences. As far
as concurrency is concerned, we can summarize the differences as follows:

• Only one old-style bottom half can run at any time, regardless of the number of
CPUs (kernel 2.2).

• Only one instance of each tasklet can run at any time. Different tasklets can run
concurrently on different CPUs. This means that given any tasklet, there is no
need to enforce any serialization because already it is enforced by the kernel: you
cannot have multiple instances of the same tasklet running concurrently.

• Only one instance of each softirq can run at the same time on a CPU. However,
the same softirq can run on different CPUs concurrently. This means that given
any softirq you need to make sure that accesses to shared data by different CPUs
use proper locking. To increase parallelization, the softirqs should be designed
to access only per-CPU data as much as possible, reducing the need for locking
considerably.

Therefore, these three features require different kinds of locking mechanisms. The
higher the concurrency allowed, the more carefully the programmer has to design the
code executed, for the sake of both accuracy and performance. Whether a softirq or
a tasklet represents the best choice for any given context depends on both locking
and concurrency requirements. In most cases, tasklets are the way to go. But given
the tight response requirements of the receive and transmit networking tasks, soft-
irqs are preferred in those two specific cases. We will see later in this chapter how the
networking code uses softirqs.

In some cases, the programmer has to disable hardware interrupts, software inter-
rupts, or both. A detailed discussion of the contexts requires a background in SMP,
preemption in the Linux kernel, and other matters outside the scope of this book.
However, to understand the networking code you need to know the meaning of the
main functions used to enable and disable interrupts. Table 9-1 summarizes the ones
we need in this chapter (you can find many more in kernel/softirq.c, include/asm-XXX/
hardirq.h, include/asm-XXX/spinlock.h, and include/linux/spinlock.h). Some of them
may be defined globally and others per architecture.

Table 9-1. A few APIs related to software and hardware interrupts

Function/macro Description

in_interrupt in_interrupt returns TRUE if the CPU is currently serving a hardware or software
interrupt, or preemption is disabled.

in_softirq in_softirq returns TRUE if the CPU is currently serving a software interrupt.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 9: Interrupts and Network Drivers

Preemption
In time-sharing systems, the kernel has always been able to preempt user processes at
will, but the kernel itself is often nonpreemptive, which means that once it starts run-
ning it will not be interrupted until it is ready to give up control. A nonpreemptive
kernel sometimes holds up high-priority processes when they are ready to run
because the kernel is executing a system call for a lower-priority process. To support
real-time extensions and for other reasons, the Linux kernel was made fully

in_irq in_irq returns TRUE if the CPU is currently serving a hardware interrupt.

In the section “Preemption,” and with the help of Figure 9-3, you can see how these
three routines are implemented.

softirq_pending Returns TRUE if there is at least one softirq pending (i.e., scheduled for execution) for
the CPU whose ID was passed as the input argument.

local_softirq_pending Returns TRUE if there is at least one softirq pending for the local CPU.

_ _raise_softirq_irqoff Sets the flag associated with the input softirq type to mark it pending.

raise_softirq_irqoff This is a wrapper around _ _raise_softirq_irqoff that also wakes up
ksoftirqd when in_interrupt() returns FALSE.

raise_softirq This is a wrapper around raise_softirq_irqoff that disables hardware inter-
rupts before calling it and restores them to their original status.

_ _local_bh_enable

local_bh_enable

local_bh_disable

_ _local_bh_enable enables bottom halves (and thus softirqs/tasklets) on the
local CPU, and local_bh_enable also invokes invoke_softirq if any softirq
is pending and in_interrupt() returns FALSE.

local_bh_disable disables bottom halves on the local CPU.

local_irq_disable

local_irq_enable

Disable and enable interrupts on the local CPU.

local_irq_save

local_irq_restore

local_irq_save first saves the current state of interrupts on the local CPU and
then disables them.

local_irq_restore restores the state of interrupts on the local CPU thanks to
the information previously saved with local_irq_save.

spin_lock_bh

spin_unlock_bh

Acquire and release a spinlock, respectively. Both functions disable and then re-
enable bottom halves and preemption during the operation.

Table 9-1. A few APIs related to software and hardware interrupts (continued)

Function/macro Description

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 189

preemptible during the 2.5 kernel development cycle. With this new kernel feature,
system calls and other kernel tasks can be preempted by other kernel tasks with
higher priorities.

Because much work had already been done to eliminate critical sections (nonpre-
emptible code) from the kernel to support SMP locking mechanisms, adding full pre-
emption was not a major change to the kernel. Once preemption was added,
developers just had to define explicitly where to disable it (in hardware and software
interrupt code, in the scheduler itself, in the code protected by spin locks and read/
write locks, etc.).

However, there are times when preemption, just like interrupts, must be disabled. In
this section, I’ll cover just a few functions related to preemption that you may bump
into while browsing the code, and then briefly show how some of the locking mac-
ros have been updated to deal with preemption.

The following functions control preemption:

preempt_disable
Disables preemption for the current task. Can be called repeatedly, increment-
ing a reference counter.

preempt_enable
preempt_enable_no_resched

The reverse of preempt_disable, allowing preemption to be enabled again.
preempt_enable_no_resched simply decrements a reference counter, which allows
preemption to be re-enabled when it reaches zero. preempt_enable, in addition,
checks whether the counter is zero and forces a call to schedule() to allow any
higher-priority task to run.

preempt_check_resched
This function is called by preempt_enable and differentiates it from preempt_
enable_no_resched.

The networking code does not deal with these routines directly. However, preempt_
enable and preempt_disable are indirectly called, for instance, by locking primitives,
like rcu_read_lock and rcu_read_unlock, spin_lock and spin_unlock, etc. Routines
used to access per-CPU data structures, like get_cpu and get_cpu_var, also disable
preemption before reading the data.

A counter for each process, named preempt_count and embedded in the thread_info
structure, indicates whether a given process allows preemption. The field can be read
with preempt_count() and is manipulated indirectly through the inc_preempt_count
and dec_preempt_count functions defined in include/linux/preempt.h. There are situa-
tions in which the kernel should not be preempted. These include when it is servic-
ing hardware, as well as when it uses one of the calls just shown to disable
preemption. Therefore, preempt_count is split into three components. Each byte is a
counter for a different condition that requires nonpreemption: hardware interrupts,

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 9: Interrupts and Network Drivers

software interrupts, and general nonpreemption. The layout of preempt_count is
shown in Figure 9-3.

The figure shows, in addition to the purpose of each byte, the main functions that
manipulate it. The high-order byte is not fully used at the moment, but its second
least significant bit is set before calling the schedule function and tells that function
that it has been called to preempt the current task.* In include/asm-xxx/hardirq.h you
can find several macros that make it easier to read and write preempt_counter; some
of these include the XXX_OFFSET variables shown in Figure 9-3 and used by the func-
tions listed in the figure to increment or decrement the right byte.

Despite all this complexity, whenever a check has to be done on the current process
to see if it can be preempted, all the kernel needs to know is whether preempt_count
is NULL (it does not really matter why preemption is disabled).

Bottom-Half Handlers
The infrastructure for bottom halves must address the following needs:

• Classifying the bottom half as the proper type

• Registering the association between a bottom half type and its handler

• Scheduling a bottom half for execution

• Notifying the kernel about the presence of scheduled BHs

Let’s first see how kernels up to version 2.2 handled bottom half handlers, and then
how they are handled with the softirqs used by kernels 2.4 and 2.6.

Bottom-half handlers in kernel 2.2

The 2.2 model for bottom-half handlers divides them into a large number of types,
which are differentiated by when and how often the kernel checks for them and runs

Figure 9-3. Structure of preempt_count

* The PREEMPT_ACTIVE flag is defined on a per-architecture basis. The figure shows the most common defini-
tion.

Preemption
Software
interrupts

Hardware
interrupts

irq_enter
irq_exit

local_bh_disable
local_bh_enable

preempt_disable
preempt_enable

PREEMPT_ACTIVE

HARDIRQ_OFFSET
SOFTIRQ_OFFSET
PREEMPT_OFFSET

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
1
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
1

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 191

them. The 2.2 list is as follows, taken from include/linux/interrupt.h. In this book, we
are most interested in NET_BH.

enum {
 TIMER_BH = 0,
 CONSOLE_BH,
 TQUEUE_BH,
 DIGI_BH,
 SERIAL_BH,
 RISCOM8_BH,
 SPECIALIX_BH,
 AURORA_BH,
 ESP_BH,
 NET_BH,
 SCSI_BH,
 IMMEDIATE_BH,
 KEYBOARD_BH,
 CYCLADES_BH,
 CM206_BH,
 JS_BH,
 MACSERIAL_BH,
 ISICOM_BH
};

Each bottom-half type is associated with a function handler by means of init_bh.
The networking code, for instance, initializes the NET_BH bottom-half type to the net_
bh handler in net_dev_init, which is covered in Chapter 5.

_ _initfunc(int net_dev_init(void))
{

 init_bh(NET_BH, net_bh);

}

The main function used to unregister a BH handler is remove_bh. (There are other
related functions too, such as enable_bh/disable_bh, but we do not need to see all of
them.)

Whenever an interrupt handler wants to trigger the execution of a bottom half han-
dler, it has to set the corresponding flag with mark_bh. This function is very simple: it
sets a bit into a global bitmap bh_active, which, as we will see in a moment, is tested
in several places.

extern inline void mark_bh(int nr)
 {
 set_bit(nr, &bh_active);
};

For instance, you will see later in the chapter that every time a network device driver
has successfully received a frame, it signals the kernel about it with a call to netif_rx.
The latter queues the newly received frame into the ingress queue backlog (shared by
all the CPUs) and marks the NET_BH bottom-half handler flag.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 9: Interrupts and Network Drivers

skb_queue_tail(&backlog, skb);
mark_bh(NET_BH);
return

During several routine operations, the kernel checks whether any bottom halves are
scheduled for execution. If any are waiting, the kernel runs the function do_bottom_
half (currently in kernel/softirq.c), to execute them. The checks are performed
during:

do_IRQ
Whenever the kernel is notified by an IRQ about a hardware interrupt, it calls
do_IRQ to execute the associated handler. Since a good number of bottom halves
are scheduled for execution by interrupt handlers, what could give them less
latency than an invocation right at the end of do_IRQ? For this reason, the regu-
lar timer interrupt that expires with frequency HZ represents an upper bound
between two consecutive executions of do_bottom_half.

Returns from interrupts and exceptions (which includes system calls)
See arch/XXX/kernel/entry.S for the assembly language code that takes care of this
case.

schedule
This function, which decides what to execute next on the CPU, checks if any
bottom-half handlers are pending and gives them higher priority over other
tasks.

asmlinkage void schedule(void)
{

 /* Do "administrative" work here while we don't hold any locks */
 if (bh_mask & bh_active)
 goto handle_bh;
handle_bh_back:

handle_bh:
 do_bottom_half();
 goto handle_bh_back;

}

run_bottom_half, the function used by do_bottom_half to execute the pending inter-
rupt handlers, looks like this:

 active = get_active_bhs();
 clear_active_bhs(active);
 bh = bh_base;
 do {
 if (active & 1)
 (*bh)();
 bh++;
 active >>= 1;
 } while (active);

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 193

The order in which the pending handlers are invoked depends on the positions of the
associated flags inside the bitmap and the direction used to scan those flags (returned
by get_active_bhs). In other words, bottom halves are not run on a first-come-first-
served basis. And since networking bottom halves can take a long time, those that
have the misfortune to be dequeued last can experience high latency.

Bottom halves in 2.2 and earlier kernels suffer from a ban on concurrency. Only one
bottom half can run at any time, regardless of the number of CPUs.

Bottom-half handlers in kernel 2.4 and above: the introduction of the softirq

The biggest improvement between kernels 2.2 and 2.4, as far as interrupt handling is
concerned, was the introduction of software interrupts (softirqs), which can be seen
as the multithreaded version of bottom half handlers. Not only can many softirqs run
concurrently, but also the same softirq can run on different CPUs concurrently. The
only restriction on concurrency is that only one instance of each softirq can run at
the same time on a CPU.

The new softirq model has only six types (from include/linux/interrupt.h):

enum
{
 HI_SOFTIRQ=0,
 TIMER_SOFTIRQ,
 NET_TX_SOFTIRQ,
 NET_RX_SOFTIRQ,
 SCSI_SOFTIRQ,
 TASKLET_SOFTIRQ
};

All the XXX_BH bottom-half types in the old model are still available to old drivers, but
have been reimplemented to run as softirqs of the HI_SOFTIRQ type (which means
they take priority over the other softirq types). The two types used by networking
code, NET_TX_SOFTIRQ and NET_RX_SOFTIRQ, are introduced in the later section “How
the Networking Code Uses softirqs.” The next section will introduce tasklets.

Softirqs, like the old bottom halves, run with interrupts enabled and therefore can be
suspended at any time to handle a new, incoming interrupt. However, the kernel
does not allow a new request for a softirq to run on a CPU if another instance of that
softirq has been suspended on that CPU; this drastically reduces the amount of lock-
ing needed. Each softirq type can maintain an array of data structures of type
softnet_data, one per CPU, to hold state information about the current softirq; we’ll
see the contents of this structure in the section “softnet_data Structure.” Since differ-
ent instances of the same type of softirq can run simultaneously on different CPUs,
the functions run by softirqs still need to lock other data structures that are shared,
to avoid race conditions.

The functions used to register and schedule a softirq handler, and the logic behind
them, are very similar to the ones used with 2.2 bottom halves.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 9: Interrupts and Network Drivers

softirq handlers are registered with the open_softirq function, which, unlike init_bh,
accepts an extra parameter so that the function handler can be passed some input
data if needed. None of the softirqs, however, currently uses that extra parameter,
and a proposal has been floated to remove it. open_softirq simply copies the input
parameters into the global array softirq_vec, declared in kernel/softirq.c, which
holds the associations between types and handlers.

static struct softirq_action softirq_vec[32] _ _cacheline_aligned_in_smp;

void open_softirq(int nr, void (*action)(struct softirq_action*), void *data)
{
 softirq_vec[nr].data = data;
 softirq_vec[nr].action = action;
}

A softirq can be scheduled for execution on the local CPU by the following func-
tions:

_ _raise_softirq_irqoff
This function, the counterpart of mark_bh in 2.2, simply sets the bit flag associ-
ated to the softirq to run. Later on, when the flag is checked, the associated han-
dler will be invoked.

raise_softirq_irqoff
This is a wrapper around _ _raise_softirq_irqoff that additionally schedules the
ksoftirqd thread (discussed later in this chapter) if the function is not called
from a hardware or software interrupt context and preemption has not been dis-
abled. If the function is called from interrupt context, invoking the thread is not
necessary because, as we will see, do_softirq will be called anyway.

raise_softirq
This is a wrapper around raise_softirq_irqoff that executes the latter with
hardware interrupts disabled.

The following code, taken from kernel 2.4.5,* shows the model used at an early stage
of softirq development. It is very similar to the 2.2 model, and invokes the function
do_softirq, which is a counterpart to the 2.2 function do_bottom_half discussed in
the previous section. do_softirq is called if at least one softirq has been scheduled for
execution:

asmlinkage void schedule(void)
{

 /* Do "administrative" work here while we don't hold any locks */
 if (softirq_active(this_cpu) & softirq_mask(this_cpu))
 goto handle_softirq;
handle_softirq_back:

* It has been removed in 2.4.6.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 195

handle_softirq:
 do_softirq();
 goto handle_softirq_back;

}

The only difference between this early stage of softirqs and the 2.2 bottom-half
model is that the softirq version has to check the flags on a per-CPU basis, since each
CPU has its own bitmap of pending softirqs.

The implementation of do_softirq is also very similar to its counterpart do_bottom_
half in 2.2. The kernel also calls the function at some of the same points, but not
entirely the same. The main change is the introduction of a new per-CPU kernel
thread, ksoftirqd.

Here are the main points where do_softirq may be invoked:*

do_IRQ
The skeleton for do_IRQ, which is defined in the per-architecture files arch/arch-
name/kernel/irq.c, is:

fastcall unsigned int do_IRQ(struct pt_regs * regs)
{
 irq_enter();

 /* handle the IRQ number "irq" with the registered handler */

 irq_exit();
 return 1;
}

In kernel 2.4, the function also called do_softirq. For most architectures in 2.6,
a call to do_softirq is made inside irq_exit instead. A minority still have it
inside do_IRQ.

Since nested calls to irq_enter are allowed, irq_exit calls invoke_softirq only
when all the usual conditions are met (there are softirqs pending, etc.) and the
reference count associated with the interrupt context has reached zero, indicat-
ing that the kernel is leaving the interrupt context.

Here is the generic definition of irq_exit from kernel/softirq.c, but there are
architectures that define their own versions:

void irq_exit(void)
{
 ...
 sub_preempt_count(IRQ_EXIT_OFFSET);
 if (!in_interrupt() && local_softirq_pending())
 invoke_softirq();
 preempt_enable_no_resched();
}

* It is also possible to call invoke_softirq instead of do_softirq directly. The former could be an alias to do_
softirq or to its helper routine, _ _do_softirq, depending on whether the _ _ARCHIRQ_EXIT_IRQS_DISABLED
symbol is defined.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 9: Interrupts and Network Drivers

smp_apic_timer_interrupt, which handles SMP timers in arch/XXX/kernel/apic.c,
also uses irq_enter/irq_exit.

Returns from interrupts and exceptions (which include system calls)
This is the same as kernel 2.2.

local_bh_enable
When softirqs are re-enabled on a CPU, pending requests are processed (if any)
with a call to do_softirq.

The kernel threads, ksoftirqd_CPUn
To keep softirqs from monopolizing all the CPUs (which could happen easily on
a heavily loaded network because the NET_TX_SOFTIRQ and NET_RX_SOFTIRQ inter-
rupts have a higher priority than user processes), developers introduced a new
set of per-CPU threads. These have the names ksoftirqd_CPU0, ksoftirqd_CPU1,
and so on, and can be seen by a ps command. More details on these threads
appear in the section “ksoftirqd Kernel Threads.”

I have described i386 behavior in general; other architectures may use different nam-
ing conventions or have additional timers that also invoke do_softirq.

Another interesting place where do_softirq is called is from within netif_rx_ni,
which is briefly described in the section “Old Interface Between Device Drivers and
Kernel: First Part of netif_rx” in Chapter 10. The traffic generator built into the ker-
nel (net/core/pktgen.c) also calls do_softirq.

Tasklets
Most of the bottom halves of the 2.2 kernel variety have been converted to either
softirqs or tasklets. A tasklet is a function that some interrupt or other task has
deferred to execute later. Tasklets are built on top of softirqs and are usually kicked
off by interrupt handlers. (But other parts of the kernel, such as the neighboring sub-
system discussed in Part VI, also use tasklets).*

In the section “Bottom-half handlers in kernel 2.4 and above: the introduction of the
softirq,” we saw the list of softirqs. HI_SOFTIRQ is used to implement high-priority
tasklets, and TASKLET_SOFTIRQ is used for lower-priority ones. Each time a request for
a deferred execution is issued, an instance of a tasklet_struct structure is queued
onto either a list processed by HI_SOFTIRQ or another one that is instead processed by
TASKLET_SOFTIRQ.

Since softirqs are handled independently by each CPU, it should not be a surprise
that there are two lists of pending tasklet_structs for each CPU, one associated

* The kernel provides work queues as well. We will not cover them because they are not used much by the
networking code. Refer to Understanding the Linux Kernel for a discussion of work queues.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 197

with HI_SOFTIRQ and one with TASKLET_SOFTIRQ. These are their definitions from
kernel/softirq.c:

static DEFINE_PER_CPU(struct tasklet_head tasklet_vec) = { NULL };
static DEFINE_PER_CPU(struct tasklet_head tasklet_hi_vec) = { NULL };

At first sight, tasklets may seem to be just like the old bottom halves, but there actu-
ally are substantial differences:

• There is no limit on the number of different tasklets, whereas the old bottom
halves were limited to one type for each bit flag of bh_base.

• Tasklets provide two levels of priority.

• Different tasklets can run concurrently on different CPUs.

• Tasklets, unlike old bottom halves and softirqs, are dynamic and do not need to
be statically declared in an XXX_BH or XXX_SOFTIRQ enumeration list.

The tasklet_struct data structure is defined in include/linux/interrupt.h as follows:

struct tasklet_struct
{
 struct tasklet_struct *next;
 unsigned long state;
 atomic_t count;
 void (*func)(unsigned long);
 unsigned long data;
};

The following is the field-by-field description:

struct tasklet_struct *next
A pointer used to link together the pending structures associated with the same
CPU. New elements are added at the head by the functions tasklet_hi_schedule
and tasklet_schedule.

unsigned long state
A bitmap flag whose possible values are represented by the TASKLET_STATE_XXX
enums listed in include/linux/interrupt.h:

TASKLET_STATE_SCHED
The tasklet has been scheduled for execution, and the data structure is
already in the list associated with HI_SOFTIRQ or TASKLET_SOFTIRQ, based on
the priority assigned. The same tasklet cannot be scheduled concurrently on
different CPUs. If other requests to execute the tasklet arrive when the first
one has not started its execution yet, they will be dropped. Since for any
given tasklet, there can be only one instance in execution, there is no reason
to schedule it for execution more than once.

TASKLET_STATE_RUN
The tasklet is being executed. This flag is used to prevent multiple instances
of the same tasklet from being executed concurrently. It is meaningful only
for SMP systems. The flag is manipulated with the three locking functions
tasklet_trylock, tasklet_unlock, and tasklet_unlock_wait.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 9: Interrupts and Network Drivers

atomic_t count
There are cases where you may need to temporarily disable and later re-enable a
tasklet. This is accomplished by this counter: a value of zero means that the
tasklet is disabled (and thus not executable) and nonzero means the tasklet is
enabled. Its value is incremented and decremented by the tasklet[_hi]_enable
and tasklet[_hi]_disable functions described later in this section.

void (*func)(unsigned long)
unsigned long data

func is the function to execute and data is an optional input that can be passed
to func.

The following are some important kernel functions that handle tasklets, from kernel/
softirq.c and include/linux/interrupt.h:

tasklet_init
Fills in the fields of a tasklet_struct structure with the func and data values pro-
vided as arguments.

tasklet_action, tasklet_hi_action
Execute low-priority and high-priority tasklets, respectively.

tasklet_schedule, tasklet_hi_schedule
Schedule a low-priority and a high-priority tasklet, respectively, for execution.
They add the tasklet_struct structure to the list of pending tasklets associated
with the local CPU and then schedule the associated softirq (TASKLET_SOFTIRQ or
HI_SOFTIRQ). If the tasklet is already scheduled (but not running), these APIs do
nothing (see the TASKLET_STATE_SCHED flag).

tasklet_enable, tasklet_hi_enable
These two functions are identical and are used to enable a tasklet.

tasklet_disable, tasklet_disable_nosync
Both of these functions disable a tasklet and can be used with low- and high-
priority tasklets. Tasklet_disable is a wrapper to tasklet_disable_nosync.
While the latter returns right away (it is asynchronous), the former returns only
when the tasklet has terminated its execution in case it was running (it is syn-
chronous).

tasklet_enable, tasklet_hi_enable, and tasklet_disable_nosync manipulate the
value of the count field to declare the tasklet enabled or disabled. Nested calls are
allowed.

Softirq Initialization
During kernel initialization, softirq_init initializes the software IRQ layer with the
two general-purpose softirqs: tasklet_action and tasklet_hi_action, which are asso-
ciated with TASKLET_SOFTIRQ and HI_SOFTIRQ, respectively.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 199

void _ _init softirq_init()
{
 open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);
 open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);
}

The two softirqs used by the networking code NET_RX_SOFTIRQ and NET_TX_SOFTIRQ
are initialized in net_dev_init, one of the networking initialization functions (see the
section “How the Networking Code Uses softirqs”).

The other softirqs listed in the section “Bottom-half handlers in kernel 2.4 and
above: the introduction of the softirq” are registered in the associated subsystems
(SCSI_SOFTIRQ in drivers/scsi/scsi.c, TIMER_SOFTIRQ in kernel/timer.c, etc.).

HI_SOFTIRQ is mainly used by sound card device drivers.*

Users of TASKLET_SOFTIRQ include:

• Drivers for network interface cards (not only Ethernets)

• Numerous other device drivers

• Media layers (USB, IEEE 1394, etc.)

• Networking subsystems (Neighboring, ATM qdisc, etc.)

Pending softirq Handling
We explained in the section “Bottom-half handlers in kernel 2.4 and above: the
introduction of the softirq” when do_softirq is invoked to take care of the pending
softirqs. Here we will see the internals of the function. You will notice how much it
resembles the one used by kernel 2.2 described in the section “Bottom-half handlers
in kernel 2.2.”

do_softirq stops and does nothing if the CPU is currently serving a hardware or soft-
ware interrupt. The function checks for this by calling in_interrupt, which is equiva-
lent to if (in_irq() || in_softirq()).

If do_softirq decides to proceed, it saves pending softirqs in pending with local_
softirq_pending.

#ifndef _ _ARCH_HAS_DO_SOFTIRQ

asmlinkage void do_softirq(void)
{
 if (in_interrupt())
 return;

 local_irq_save(flags);

* In 2.4 kernels, all the bottom-half handlers of kernel version 2.2 were converted to high-priority tasklets by
defining the mark_bh function as a wrapper around tasklet_hi_schedule.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 9: Interrupts and Network Drivers

 pending = local_softirq_pending();
 if (pending)
 _ _do_softirq();
 local_irq_restore;
}

EXPORT_SYMBOL(do_softirq);
#endif

From the preceding snapshot, it could seem that do_softirq runs with IRQs dis-
abled, but that’s not true. IRQs are kept disabled only when manipulating the bit-
map of pending softirqs (i.e., accessing the softnet_data structure). You will see in a
moment that _ _do_softirq internally re-enables IRQs when running the softirq
handlers.

_ _do_softirq function

It is possible for the same softirq type to be scheduled multiple times while do_
softirq is running. Since IRQs are enabled when running the softirq handlers, the
bitmap of pending softirq can be manipulated while serving an interrupt, and
therefore any of the softirq handlers that has been executed by _ _do_softirq could
be re-scheduled during the execution of _ _do_softirq itself.

For this reason, before _ _do_softirq re-enables IRQs, it saves the current bitmap of
the pending softirq on the local variable pending and clears it from the softnet_data
instance associated with the local CPU using local_softirq_pending()=0. Then
based on pending, it calls all the necessary handlers.

Once all the handlers have been called, _ _do_softirq checks whether in the mean-
time any softirqs were scheduled again (this request disables IRQs). If there was at
least one pending softirq, it will repeat the whole process. However, _ _do_softirq
repeats it only up to MAX_SOFTIRQ_RESTART times (experimentation has found that 10
times works well).

The use of MAX_SOFTIRQ_RESTART is a design decision made to keep a single type of
interrupt—particularly a stream of networking interrupts—from starving other inter-
rupts out of one of the CPUs. Without the limit in _ _do_softirq, starvation could
easily happen when a server is highly loaded by network traffic and the number of
NET_RX_SOFTIRQ interrupts goes through the roof.

Let’s see how starvation could take place. do_IRQ would raise a NET_RX_SOFTIRQ inter-
rupt that would cause do_softirq to be executed. _ _do_softirq would clear the NET_
RX_SOFTIRQ flag, but before it ended it would be interrupted by an interrupt that
would set NET_RX_SOFTIRQ again, and so on, indefinitely.

Let’s see now how the central part of _ _do_softirq manages to invoke the softirq
handler. Every time one softirq type is served, its bit is cleared from the local copy of
the active softirqs, pending. h is initialized to point to the global data structure
softirq_vec that holds the associations between softirq types and their function

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 201

handlers (for instance, NET_RX_SOFTIRQ is handled by net_rx_action). The loop ends
when the bitmap is cleared.

Finally, if there are pending softirqs that cannot be handled because do_softirq must
return, having repeated its job MAX_SOFTIRQ_RESTART times already, the ksoftirqd
thread is awakened and given the responsibility of handling them later. Because do_
softirq is invoked at so many points within the kernel, it is actually likely that a later
invocation of do_softirq will handle these interrupts before the ksoftirqd thread is
scheduled.

#define MAX_SOFTIRQ_RESTART 10

asmlinkage void _ _do_softirq(void)
{
 struct softirq_action *h;
 _ _u32 pending;
 int max_restart = MAX_SOFTIRQ_RESTART;
 int cpu;

 pending = local_softirq_pending();

 local_bh_disable();
 cpu = smp_processor_id();
restart:
 /* Reset the pending bitmask before enabling irqs */
 local_softirq_pending() = 0;

 local_irq_enable();

 h = softirq_vec;

 do {
 if (pending & 1) {
 h->action(h);
 rcu_bh_qsctr_inc(cpu);
 }
 h++;
 pending >>= 1;
 } while (pending);

 local_irq_disable();

 pending = local_softirq_pending();
 if (pending && --max_restart)
 goto restart;

 if (pending)
 wakeup_softirqd();

 _ _local_bh_enable();
}

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 9: Interrupts and Network Drivers

Per-Architecture Processing of softirq
The do_softirq function provided in kernel/softirq.c can be overridden by another
function provided by the architecture code (which ends up calling _ _do_softirq any-
way). This explains why the definition of do_softirq in kernel/softirq.c is wrapped
with the check on _ _ARCH_HAS_DO_SOFTIRQ (see the previous section).

A few architectures, including i386 (see arch/i386/kernel/irq.c), define their own ver-
sion of do_softirq. Such architecture versions are used when the architectures use 4
KB stacks (instead of 8 KB) and use the remaining 4 K to implement stacked han-
dling of both hard IRQs and softirqs. Please refer to Understanding the Linux Kernel
for more detail.

ksoftirqd Kernel Threads
Background kernel threads are assigned the job of checking for softirqs that have
been left unexecuted by the functions previously described, and executing as many of
those softirqs as they can before needing to give that CPU back to other activities.
There is one kernel thread for each CPU, named ksoftirqd_CPU0, ksoftirqd_CPU1,
and so on. The section “Starting the threads” describes how these threads are started
at CPU boot time.

The function ksoftirqd associated to these threads is pretty simple and is defined in
the same file softirq.c:

static int ksoftirqd(void * _ _bind_cpu)
{
 set_user_nice(current, 19);
 ...
 while (!kthread_should_stop()) {
 if (!local_softirq_pending())
 schedule();

 _ _set_current_state(TASK_RUNNING);

 while (local_softirq_pending()) {
 /* Preempt disable stops cpu going offline.
 If already offline, we'll be on wrong CPU:
 don't process */
 preempt_disable();
 if (cpu_is_offline((long)_ _bind_cpu))
 goto wait_to_die;
 do_softirq();
 preempt_enable();
 cond_resched();
 }
 set_current_state(TASK_INTERRUPTIBLE);
 }
 _ _set_current_state(TASK_RUNNING);
 return 0;
 ...
}

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 203

There are a couple of small details I want to emphasize. The priority of a process,
also called the nice priority, is a number ranging from –20 (maximum) to +19 (mini-
mum). The ksoftirqd threads are given a low priority of 19. This is done so that fre-
quently running softirqs such as NET_RX_SOFTIRQ cannot completely kidnap the CPU,
which would leave almost no resources to other processes. We already saw that do_
softirq can be invoked from different places in the code, so this low priority doesn’t
represent a handicap. Once started, the loop simply keeps calling do_softirq (always
with preemption disabled) until one of the following conditions becomes true:

• There are no more pending softirqs to handle (local_softirq_pending() returns
FALSE).

In this case, the function sets the thread’s state to TASK_INTERRUPTIBLE and calls
schedule() to release the CPU. The thread can be awakened by means of
wakeup_softirqd, which can be called from both _ _do_softirq itself and raise_
softirq_irqoff.

• The thread has run for too long and is asked to release the CPU.

The handler associated with the timer interrupt, among other things, sets the
need_resched flag to signal that the current process/thread has used its time slot.
In this case, ksoftirqd releases the CPU, keeping its state as TASK_RUNNING, and
will soon be resumed.

Starting the threads

There is one ksoftirqd thread for each CPU. When the system’s first CPU comes
online, the first thread is started at kernel boot time inside do_pre_smp_initcalls.*

The ksoftirqd threads for the other CPUs that come up at boot time, and for any
other CPU that may be enabled later on a system that can handle hot-pluggable
CPUs, are taken care of through the cpu_chain notification chain.

Notification chains were introduced in Chapter 4. The cpu_chain chain lets various
subsystems know when a CPU is up and running or when one dies. The softirq sub-
system registers to the cpu_chain with spawn_ksoftirqd, called from the function do_
pre_smp_initcalls mentioned previously. The callback routine cpu_callback that
processes notifications from cpu_chain is used to initialize the necessary per-CPU
data structures and start the ksoftirqd thread on the CPU.

The complete list of CPU_XXX notifications is in include/linux/notifier.h, but we need
only four of them in the context of this chapter:

CPU_UP_PREPARE
Generated when the CPU starts coming up, but is not ready yet.

CPU_ONLINE
Generated when the CPU is ready.

* See Chapter 7 for details about how the kernel takes care of basic initializations at boot time.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 9: Interrupts and Network Drivers

CPU_UP_CANCELLED
CPU_DEAD

These two messages are generated only when the kernel is compiled with sup-
port for hot-pluggable CPUs. The first is used when one of the tasks triggered by
a previous CPU_UP_PREPARE notification failed and therefore does not allow the
CPU to go online. The second one is used when a CPU dies.

CPU_PREPARE_UP creates the thread and binds it to the associated CPU, but does not
wake up the thread. CPU_ONLINE wakes up the thread. When a CPU dies, its associ-
ated ksoftirqd instance is killed:

static int _ _devinit cpu_callback(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
 ...
 switch(action) {
 ...
 }
 return NOTIFY_OK;
}

static struct notifier_block _ _devinitdata cpu_nfb = {
 .notifier_call = cpu_callback
};

_ _init int spawn_ksoftirqd(void)
{
 void *cpu = (void *)(long)smp_processor_id();
 cpu_callback(&cpu_nfb, CPU_UP_PREPARE, cpu);
 cpu_callback(&cpu_nfb, CPU_ONLINE, cpu);
 register_cpu_notifier(&cpu_nfb);
 return 0;
}

Note that spawn_ksoftirqd places two direct calls to cpu_callback before registering
with cpu_chain via register_cpu_notifier. This is necessary because CPU notifica-
tions are not generated for the first CPU that comes online.

Tasklet Processing
The two handlers for low-priority tasklets (TASKLET_SOFTIRQ) and high-priority
tasklets (HI_SOFTIRQ) are identical; they simply work on two different lists. For this
reason, we will describe only one of them: tasklet_action, the one associated with
TASKLET_SOFTIRQ.

Only one instance of each tasklet can be waiting for execution at any time. When
tasklet_schedule or tasklet_hi_schedule schedules a tasklet, the function sets the
TASKLET_STATE_SCHED bit described earlier in the section “Tasklets.” Attempts to
reschedule the same tasklet will be ignored because TASKLET_STATE_SCHED is already

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handlers | 205

set. The bit is cleared only when the tasklet starts its execution; thus, during or after
its execution another instance can be scheduled.

The tasklet_action function starts by copying the list of tasklets waiting to be pro-
cessed into a local variable first; it then clears the global list.* This is the only part of
the function that is executed with interrupts disabled. Disabling them is necessary to
avoid race conditions with interrupt handlers that could add new elements to the list
while tasklet_action accesses it.

At this point, the function goes through the list tasklet by tasklet. For each element it
invokes the handler if both of the following are true:

• The tasklet is not already running—in other words, TASKLET_STATE_RUN is clear.
(The function runs tasklet_trylock to see whether TASKLET_STATE_RUN is already
set; if not; tasklet_trylock sets the bit.)

• The tasklet is enabled (count is zero).

The part of the function implementing these activities follows:

 struct tasklet_struct *list;

 local_irq_disable();
 list = _ _get_cpu_var(tasklet_vec).list;
 _ _get_cpu_var(tasklet_vec).list = NULL;
 local_irq_enable();

 while (list) {
 struct tasklet_struct *t = list;

 list = list->next;

 if (tasklet_trylock(t)) {
 if (!atomic_read(&t->count)) {

At this stage, since the tasklet was not already being executed and it was extracted
from the list of pending tasklets, it must have the TASKLET_STATE_SCHED flag set:

 if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state))
 BUG();
 t->func(t->data);
 tasklet_unlock(t);
 continue;
 }
 tasklet_unlock(t);
 }

If the handler cannot be executed, the tasklet is put back into the list and TASKLET_
SOFTIRQ is rescheduled to take care of all of those tasklets that for one of the two rea-
sons listed earlier cannot be handled now:

 local_irq_disable();
 t->next = _ _get_cpu_var(tasklet_vec).list;

* We will see that one of the networking softirq handlers (net_tx_action) does something similar.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 9: Interrupts and Network Drivers

 _ _get_cpu_var(tasklet_vec).list = t;
 _ _raise_softirq_irqoff(TASKLET_SOFTIRQ);
 local_irq_enable();
 }
}

How the Networking Code Uses softirqs
The networking subsystem has been assigned two different softirqs. NET_RX_SOFTIRQ
handles incoming traffic and NET_TX_SOFTIRQ handles outgoing traffic. Both are regis-
tered in net_dev_init (described in Chapter 5) through the following lines:

open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);

Because different instances of the same softirq handler can run concurrently on dif-
ferent CPUs (unlike tasklets), networking code is both low latency and scalable.

Both networking softirqs are higher in priority than normal tasklets (TASKLET_
SOFTIRQ) but are lower in priority than high-priority tasklets (HI_SOFTIRQ). This priori-
tization guarantees that other high-priority tasks can proceed in a responsive and
timely manner even when a system is under a high network load.

The internals of the two handlers are covered in the sections “Processing the NET_
RX_SOFTIRQ: net_rx_action” in Chapter 10 and “Processing the NET_TX_SOFT-
IRQ: net_tx_action” in Chapter 11.

softnet_data Structure
We will see in Chapter 10 that each CPU has its own queue for incoming frames.
Because each CPU has its own data structure to manage ingress and egress traffic,
there is no need for any locking among different CPUs. The data structure for this
queue, softnet_data, is defined in include/linux/netdevice.h as follows:

struct softnet_data
{
 int throttle;
 int cng_level;
 int avg_blog;
 struct sk_buff_head input_pkt_queue;
 struct list_head poll_list;
 struct net_device *output_queue;
 struct sk_buff *completion_queue;
 struct net_device backlog_dev;
}

The structure includes both fields used for reception and fields used for transmission.
In other words, both the NET_RX_SOFTIRQ and NET_TX_SOFTIRQ softirqs refer to the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

softnet_data Structure | 207

structure. Ingress frames are queued to input_pkt_queue,* and egress frames are placed
into the specialized queues handled by Traffic Control (the QoS layer) instead of being
handled by softirqs and the softnet_data structure, but softirqs are still used to clean
up transmitted buffers afterward, to keep that task from slowing transmission.

Fields of softnet_data
The following is a brief field-by-field description of this data structure; details will be
given in later chapters. Some drivers use the NAPI interface, whereas others have not
yet been updated to NAPI; both types of driver use this structure, but some fields are
reserved for the non-NAPI drivers.

throttle
avg_blog
cng_level

These three parameters are used by the congestion management algorithm and
are further described following this list, as well as in the “Congestion Manage-
ment” section in Chapter 10. All three, by default, are updated with the recep-
tion of every frame.

input_pkt_queue
This queue, initialized in net_dev_init, is where incoming frames are stored
before being processed by the driver. It is used by non-NAPI drivers; those that
have been upgraded to NAPI use their own private queues.

backlog_dev
This is an entire embedded data structure (not just a pointer to one) of type net_
device, which represents a device that has scheduled net_rx_action for execu-
tion on the associated CPU. This field is used by non-NAPI drivers. The name
stands for “backlog device.” You will see how it is used in the section “Old Inter-
face Between Device Drivers and Kernel: First Part of netif_rx” in Chapter 10.

poll_list
This is a bidirectional list of devices with input frames waiting to be processed.
More details can be found in the section “Processing the NET_RX_SOFTIRQ:
net_rx_action” in Chapter 10.

output_queue
completion_queue

output_queue is the list of devices that have something to transmit, and
completion_queue is the list of buffers that have been successfully transmitted
and therefore can be released. More details are given in the section “Processing
the NET_TX_SOFTIRQ: net_tx_action” in Chapter 11.

* You will see in Chapter 10 that this is no longer true for drivers using NAPI.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 9: Interrupts and Network Drivers

throttle is treated as a Boolean variable whose value is true when the CPU is over-
loaded and false otherwise. Its value depends on the number of frames in input_pkt_
queue. When the throttle flag is set, all input frames received by this CPU are
dropped, regardless of the number of frames in the queue.*

avg_blog represents the weighted average value of the input_pkt_queue queue length;
it can range from 0 to the maximum length represented by netdev_max_backlog. avg_
blog is used to compute cng_level.

cng_level, which represents the congestion level, can take any of the values shown in
Figure 9-4. As avg_blog hits one of the thresholds shown in the figure, cng_level
changes value. The definitions of the NET_RX_XXX enum values are in include/linux/
netdevice.h, and the definitions of the congestion levels mod_cong, lo_cong, and no_
cong are in net/core/dev.c.† The strings within brackets (/DROP and /HIGH) are
explained in the section “Congestion Management” in Chapter 10. avg_blog and
cng_level are recalculated with each frame, by default, but recalculation can be post-
poned and tied to a timer to avoid adding too much overhead.

avg_blog and cng_level are associated with the CPU and therefore apply to non-
NAPI devices, which share the queue input_pkt_queue that is used by each CPU.

* Drivers using NAPI might not drop incoming traffic under these conditions.

† The NET_RX_XXX values are also used outside this context, and there are other NET_RX_XXX values not used here.
The value no_cong_thresh is not used; it used to be used by process_backlog (described in Chapter 10) to
remove a queue from the throttle state under some conditions when the kernel still had support for the fea-
ture (which has been dropped).

Figure 9-4. Congestion level (NET_RX_XXX) based on the average backlog avg_blog

NET_RX_CN_HIGH [/DROP]
netdev_max_backlog (300)

NET_RX_CN_MOD [/HIGH]

NET_RX_CN_LOW

NET_RX_SUCCESS

mod_cong (290)

lo_cong (100)

no_cong (20)
no_cong_thresh (10)

0

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

softnet_data Structure | 209

Initialization of softnet_data
Each CPU’s softnet_data structure is initialized by net_dev_init, which runs at boot
time and is described in Chapter 5. The initialization code is:

 for (i = 0; i < NR_CPUS; i++) {
 struct softnet_data *queue;

 queue = &per_cpu(softnet_data,i);
 skb_queue_head_init(&queue->input_pkt_queue);
 queue->throttle = 0;
 queue->cng_level = 0;
 queue->avg_blog = 10; /* arbitrary non-zero */
 queue->completion_queue = NULL;
 INIT_LIST_HEAD(&queue->poll_list);
 set_bit(_ _LINK_STATE_START, &queue->backlog_dev.state);
 queue->backlog_dev.weight = weight_p;
 queue->backlog_dev.poll = process_backlog;
 atomic_set(&queue->backlog_dev.refcnt, 1);
 }

NR_CPUS is the maximum number of CPUs the Linux kernel can handle and softnet_
data is a vector of struct softnet_data structures.

The code also initializes the fields of softnet_data.backlog_dev, a structure of type
net_device, a special device representing non-NAPI devices. The section “Backlog
Processing: The process_backlog Poll Virtual Function” in Chapter 10 describes how
non-NAPI device drivers are handled transparently with the old netif_rx interface.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

210

Chapter 10CHAPTER 10

Frame Reception

In the previous chapter, we saw that the functions that deal with frames at the L2
layer are driven by interrupts. In this chapter, we start our discussion about frame
reception, where the hardware uses an interrupt to signal the CPU about the avail-
ability of the frame.

As shown in Figure 9-2 in Chapter 9, the CPU that receives an interrupt executes the
do_IRQ function. The IRQ number causes the right handler to be invoked. The han-
dler is typically a function within the device driver registered at device driver initial-
ization time. IRQ function handlers are executed in interrupt mode, with further
interrupts temporarily disabled.

As discussed in the section “Interrupt Handlers” in Chapter 9, the interrupt handler
performs a few immediate tasks and schedules others in a bottom half to be exe-
cuted later. Specifically, the interrupt handler:

1. Copies the frame into an sk_buff data structure.*

2. Initializes some of the sk_buff parameters for use later by upper network layers
(notably skb->protocol, which identifies the higher-layer protocol handler and
will play a major role in Chapter 13).

3. Updates some other parameters private to the device, which we do not consider
in this chapter because they do not influence the frame’s path inside the net-
work stack.

4. Signals the kernel about the new frame by scheduling the NET_RX_SOFTIRQ softirq
for execution.

Since a device can issue an interrupt for different reasons (new frame received, frame
transmission successfully completed, etc.), the kernel is given a code along with the

* If DMA is used by the device, as is pretty common nowadays, the driver needs only to initialize a pointer (no
copying is involved).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling a Device | 211

interrupt notification so that the device driver handler can process the interrupt
based on the type.

Interactions with Other Features
While perusing the routines introduced in this chapter, you will often see pieces of
code for interacting with optional kernel features. For features covered in this book, I
will refer you to the chapter on that feature; for other features, I will not spend much
time on the code. Most of the flowcharts in the chapter also show where those
optional features are handled in the routines.

Here are the optional features we’ll see, with the associated kernel symbols:

802.1d Ethernet Bridging (CONFIG_BRIDGE/CONFIG_BRIDGE_MODULE)
Bridging is described in Part IV.

Netpoll (CONFIG_NETPOLL)
Netpoll is a generic framework for sending and receiving frames by polling the
network interface cards (NICs), eliminating the need for interrupts. Netpoll can
be used by any kernel feature that benefits from its functionality; one prominent
example is Netconsole, which logs kernel messages (i.e., strings printed with
printk) to a remote host via UDP. Netconsole and its suboptions can be turned
on from the make xconfig menu with the “Networking support ➝ Network con-
sole logging support” option. To use Netpoll, devices must include support for it
(which quite a few already do).

Packet Action (CONFIG_NET_CLS_ACT)
With this feature, Traffic Control can classify and apply actions to ingress traf-
fic. Possible actions include dropping the packet and consuming the packet. To
see this option and all its suboptions from the make xconfig menu, you need first
to select the “Networking support ➝ Networking options ➝ QoS and/or fair
queueing ➝ Packet classifier API” option.

Enabling and Disabling a Device
A device can be considered enabled when the _ _LINK_STATE_START flag is set in net_
device->state. The section “Enabling and Disabling a Device” in Chapter 8 covers
the details of this flag. The flag is normally set when the device is opened (dev_open)
and cleared when the device is closed (dev_close). While there is a flag that is used to
explicitly enable and disable transmission for a device (_ _LINK_STATE_XOFF), there is
none to enable and disable reception. That capability is achieved by other means—i.e.,
by disabling the device, as described in Chapter 8. The status of the _ _LINK_STATE_
START flag can be checked with the netif_running function.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 10: Frame Reception

Several functions shown later in this chapter provide simple wrappers that check the
correct status of flags such as _ _LINK_STATE_START to make sure the device is ready to
do what is about to be asked of it.

Queues
When discussing L2 behavior, I often talk about queues for frames being received
(ingress queues) and transmitted (egress queues). Each queue has a pointer to the
devices associated with it, and to the skb_buff data structures that store the ingress/
egress buffers. Only a few specialized devices work without queues; an example is
the loopback device. The loopback device can dispense with queues because when
you transmit a packet out of the loopback device, the packet is immediately deliv-
ered (to the local system) with no need for intermediate queuing. Moreover, since
transmissions on the loopback device cannot fail, there is no need to requeue the
packet for another transmission attempt.

Egress queues are associated directly to devices; Traffic Control (the Quality of Ser-
vice, or QoS, layer) defines one queue for each device. As we will see in Chapter 11,
the kernel keeps track of devices waiting to transmit frames, not the frames them-
selves. We will also see that not all devices actually use Traffic Control. The situa-
tion with ingress queues is a bit more complicated, as we’ll see later.

Notifying the Kernel of Frame Reception: NAPI and netif_rx
In version 2.5 (then backported to a late revision of 2.4 as well), a new API for han-
dling ingress frames was introduced into the Linux kernel, known (for lack of a bet-
ter name) as NAPI. Since few devices have been upgraded to NAPI, there are two
ways a Linux driver can notify the kernel about a new frame:

By means of the old function netif_rx
This is the approach used by those devices that follow the technique described in
the section “Processing Multiple Frames During an Interrupt” in Chapter 9.
Most Linux device drivers still use this approach.

By means of the NAPI mechanism
This is the approach used by those devices that follow the technique described in
the variation introduced at the end of the section “Processing Multiple Frames
During an Interrupt” in Chapter 9. This is new in the Linux kernel, and only a
few drivers use it. drivers/net/tg3.c was the first one to be converted to NAPI.

A few device drivers allow you to choose between the two types of interfaces when
you configure the kernel options with tools such as make xconfig.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Notifying the Kernel of Frame Reception: NAPI and netif_rx | 213

The following piece of code comes from vortex_rx, which still uses the old function
netif_rx, and you can expect most of the network device drivers not yet using NAPI
to do something similar:

 skb = dev_alloc_skb(pkt_len + 5);

 if (skb != NULL) {
 skb->dev = dev;
 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */

 /* copy the DATA into the sk_buff structure */

 skb->protocol = eth_type_trans(skb, dev);
 netif_rx(skb);
 dev->last_rx = jiffies;

 }

First, the sk_buff data structure is allocated with dev_alloc_skb (see Chapter 2), and
the frame is copied into it. Note that before copying, the code reserves two bytes to
align the IP header to a 16-byte boundary. Each network device driver is associated
with a given interface type; for instance, the Vortex device driver driver/net/3c59x.c is
associated with a specific family of Ethernet cards. Therefore, the driver knows the
length of the link layer’s header and how to interpret it. Given a header length of
16*k+n, the driver can force an alignment to a 16-byte boundary by simply calling
skb_reserve with an offset of 16−n. An Ethernet header is 14 bytes, so k=0, n=14,
and the offset requested by the code is 2 (see the definition of NET_IP_ALIGN and the
associated comment in include/linux/sk_buff.h).

Note also that at this stage, the driver does not make any distinction between differ-
ent L3 protocols. It aligns the L3 header to a 16-byte boundary regardless of the type.
The L3 protocol is probably IP because of IP’s widespread usage, but that is not
guaranteed at this point; it could be Netware’s IPX or something else. The alignment
is useful regardless of the L3 protocol to be used.

eth_type_trans, which is used to extract the protocol identifier skb->protocol, is
described in Chapter 13.*

Depending on the complexity of the driver’s design, the block shown may be fol-
lowed by other housekeeping tasks, but we are not interested in those details in this
book. The most important part of the function is the notification to the kernel about
the frame’s reception.

* Different device types use different functions; for instance, eth_type_trans is used by Ethernet devices and
tr_type_trans by Token Ring interfaces.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 10: Frame Reception

Introduction to the New API (NAPI)
Even though some of the NIC device drivers have not been converted to NAPI yet,
the new infrastructure has been integrated into the kernel, and even the interface
between netif_rx and the rest of the kernel has to take NAPI into account. Instead of
introducing the old approach (pure netif_rx) first and then talking about NAPI, we
will first see NAPI and then show how the old drivers keep their old interface (netif_
rx) while sharing some of the new infrastructure mechanisms.

NAPI mixes interrupts with polling and gives higher performance under high traffic
load than the old approach, by reducing significantly the load on the CPU. The ker-
nel developers backported that infrastructure to the 2.4 kernels.

In the old model, a device driver generates an interrupt for each frame it receives.
Under a high traffic load, the time spent handling interrupts can lead to a consider-
able waste of resources.

The main idea behind NAPI is simple: instead of using a pure interrupt-driven
model, it uses a mix of interrupts and polling. If new frames are received when the
kernel has not finished handling the previous ones yet, there is no need for the driver
to generate other interrupts: it is just easier to have the kernel keep processing what-
ever is in the device input queue (with interrupts disabled for the device), and re-
enable interrupts once the queue is empty. This way, the driver reaps the advantages
of both interrupts and polling:

• Asynchronous events, such as the reception of one or more frames, are indi-
cated by interrupts so that the kernel does not have to check continuously if the
device’s ingress queue is empty.

• If the kernel knows there is something left in the device’s ingress queue, there is
no need to waste time handling interrupt notifications. A simple polling is
enough.

From the kernel processing point of view, here are some of the advantages of the
NAPI approach:

Reduced load on the CPU (because there are fewer interrupts)
Given the same workload (i.e., number of frames per second), the load on the
CPU is lower with NAPI. This is especially true at high workloads. At low work-
loads, you may actually have slightly higher CPU usage with NAPI, according to
tests posted by the kernel developers on the kernel mailing list.

More fairness in the handling of devices
We will see later how devices that have something in their ingress queues are
accessed fairly in a round-robin fashion. This ensures that devices with low traf-
fic can experience acceptable latencies even when other devices are much more
loaded.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Notifying the Kernel of Frame Reception: NAPI and netif_rx | 215

net_device Fields Used by NAPI
Before looking at NAPI’s implementation and use, I need to describe a few fields of
the net_device data structure, mentioned in the section “softnet_data Structure” in
Chapter 9.

Four new fields have been added to this structure for use by the NET_RX_SOFTIRQ soft-
irq when dealing with devices whose drivers use the NAPI interface. The other
devices will not use them, but they will share the fields of the net_device structure
embedded in the softnet_data structure as its backlog_dev field.

poll
A virtual function used to dequeue buffers from the device’s ingress queue. The
queue is a private one for devices using NAPI, and softnet_data->input_pkt_
queue for others. See the section “Backlog Processing: The process_backlog Poll
Virtual Function.”

poll_list
List of devices that have new frames in the ingress queue waiting to be pro-
cessed. These devices are known as being in polling state. The head of the list is
softnet_data->poll_list. Devices in this list have interrupts disabled and the
kernel is currently polling them.

quota
weight

quota is an integer that represents the maximum number of buffers that can be
dequeued by the poll virtual function in one shot. Its value is incremented in
units of weight and it is used to enforce some sort of fairness among different
devices. Lower quotas mean lower potential latencies and therefore a lower risk
of starving other devices. On the other hand, a low quota increases the amount
of switching among devices, and therefore overall overhead.

For devices associated with non-NAPI drivers, the default value of weight is 64,
stored in weight_p at the top of net/core/dev.c. The value of weight_p can be
changed via /proc.

For devices associated with NAPI drivers, the default value is chosen by the driv-
ers. The most common value is 64, but 16 and 32 are used, too. Its value can be
tuned via sysfs.

For both the /proc and sysfs interfaces, see the section “Tuning via /proc and
sysfs Filesystems” in Chapter 12.

The section “Old Versus New Driver Interfaces” describes how and when elements
are added to poll_list, and the section “Backlog Processing: The process_backlog
Poll Virtual Function” describes when the poll method extracts elements from the
list and how quota is updated based on the value of weight.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 10: Frame Reception

Devices using NAPI initialize these four fields and other net_device fields according
to the initialization model described in Chapter 8. For the fake backlog_dev devices,
introduced in the section “Initialization of softnet_data” in Chapter 9 and described
later in this chapter, the initialization is taken care of by net_dev_init (described in
Chapter 5).

net_rx_action and NAPI
Figure 10-1 shows what happens each time the kernel polls for incoming network
traffic. In the figure, you can see the relationships among the poll_list list of devices
in polling state, the poll virtual function, and the software interrupt handler net_rx_
action. The following sections will go into detail on each aspect of that diagram, but
it is important to understand how the parts interact before moving to the source
code.

Figure 10-1. net_rx_action function and NAPI overview

dev -> poll

Get the first device (dev)
in poll_list

Is it time to
release the CPU?

Any device left
in polling state

(poll_list)?

Schedule
NET_RX_SOFTIRQ

Remove device dev
from poll_list

Move device dev at the
end of poll_list

Clear flag
_LINK_STATE_RX_SCHED

Begin

End

No

No Yes

Yes

Device’s quota was sufficient to
empty the RX queue

Device’s quota was not sufficient
to empty the RX queue

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Notifying the Kernel of Frame Reception: NAPI and netif_rx | 217

We already know that net_rx_action is the function associated with the NET_RX_
SOFTIRQ flag. For the sake of simplicity, let’s suppose that after a period of very low
activity, a few devices start receiving frames and that these somehow trigger the exe-
cution of net_rx_action—how they do so is not important for now.

net_rx_action browses the list of devices in polling state and calls the associated poll
virtual function for each device to process the frames in the ingress queue. I
explained earlier that devices in that list are consulted in a round-robin fashion, and
that there is a maximum number of frames they can process each time their poll
method is invoked. If they cannot clear the queue during their slot, they have to wait
for their next slot to continue. This means that net_rx_action keeps calling the poll
method provided by the device driver for a device with something in its ingress
queue until the latter empties out. At that point, there is no need anymore for poll-
ing, and the device driver can re-enable interrupt notifications for the device. It is
important to underline that interrupts are disabled only for those devices in poll_
list, which applies only to devices that use NAPI and do not share backlog_dev.

net_rx_action limits its execution time and reschedules itself for execution when it
passes a given limit of execution time or processed frames; this is enforced to make
net_rx_action behave fairly in relation to other kernel tasks. At the same time, each
device limits the number of frames processed by each invocation of its poll method
to be fair in relation to other devices. When a device cannot clear out its ingress
queue, it has to wait until the next call of its poll method.

Old Versus New Driver Interfaces
Now that the meaning of the NAPI-related fields of the net_device structure, and the
high-level idea behind NAPI, should be clear, we can get closer to the source code.

Figure 10-2 shows the difference between a NAPI-aware driver and the others with
regard to how the driver tells the kernel about the reception of new frames.

From the device driver perspective, there are only two differences between NAPI
and non-NAPI. The first is that NAPI drivers must provide a poll method,
described in the section “net_device fields used by NAPI.” The second difference is
the function called to schedule a frame: non-NAPI drivers call netif_rx, whereas
NAPI drivers call _ _netif_rx_schedule, defined in include/linux/netdevice.h. (The
kernel provides a wrapper function named netif_rx_schedule, which checks to make
sure that the device is running and that the softirq is not already scheduled, and then it
calls _ _netif_rx_schedule. These checks are done with netif_rx_schedule_prep. Some
drivers call netif_rx_schedule, and others call netif_rx_schedule_prep explicitly and
then _ _netif_rx_schedule if needed).

As shown in Figure 10-2, both types of drivers queue the input device to a polling list
(poll_list), schedule the NET_RX_SOFTIRQ software interrupt for execution, and there-
fore end up being handled by net_rx_action. Even though both types of drivers

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 10: Frame Reception

ultimately call _ _netif_rx_schedule (non-NAPI drivers do so within netif_rx), the
NAPI devices offer potentially much better performance for the reasons we saw in
the section “Notifying Drivers When Frames Are Received” in Chapter 9.

An important detail in Figure 10-2 is the net_device structure that is passed to _ _netif_
rx_schedule in the two cases. Non-NAPI devices use the one that is built into the CPU’s
softnet_data structure, and NAPI devices use net_device structures that refer to
themselves.

Manipulating poll_list
We saw in the previous section that any device (including the fake one, backlog_dev)
is added to the poll_list list with a call to netif_rx_schedule or _ _netif_rx_
schedule.

The reverse operation, removing a device from the list, is done with netif_rx_
complete or _ _netif_rx_complete (the second one assumes interrupts are already dis-
abled on the local CPU). We will see when these two routines are called in the sec-
tion “Processing the NET_RX_SOFTIRQ: net_rx_action.”

A device can also temporarily disable and re-enable polling with netif_poll_disable
and netif_poll_enable, respectively. This does not mean that the device driver has
decided to revert to an interrupt-based model. Polling might be disabled on a device,

Figure 10-2. NAPI-aware drivers versus non-NAPI-aware devices

Device driver NOT NAPI-aware

interrupt handler

Device driver NAPI-aware

interrupt handler

netif_rx

netif_rx_schedule netif_rx_schedule
(dev replaced with

backlog_dev)

Only if blackog_dev is
not already scheduled

Only if dev is
not already scheduled

Only if dev is not
already scheduled

(dev is the real device)

net_rx_action

dev_i . . . dev_j . . . dev_k

poll

_netif_rx_schedule

Add dev to CPU's poll_list
_raise_softirq_irqoff(NET_RX_SOFTIRQ)

(dev is the real device)(dev is the real device)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Old Interface Between Device Drivers and Kernel: First Part of netif_rx | 219

for instance, when the device needs to be reset by the device driver to apply some
kind of hardware configuration changes.

I already said that netif_rx_schedule filters requests for devices that are already in
the poll_list (i.e., that have the _ _LINK_STATE_RX_SCHED flag set). For this reason, if a
driver sets that flag but does not add the device to poll_list, it basically disables
polling for the device: the device will never be added to poll_list. This is how
netif_poll_disable works: if _ _LINK_STATE_RX_SCHED was not set, it simply sets it and
returns. Otherwise, it waits for it to be cleared and then sets it.

static inline void netif_poll_disable(struct net_device *dev)
{
 while (test_and_set_bit(_ _LINK_STATE_RX_SCHED, &dev->state)) {
 /* No hurry. */
 current->state = TASK_INTERRUPTIBLE:
 schedule_timeout(1);
 }
}

Old Interface Between Device Drivers and Kernel:
First Part of netif_rx
The netif_rx function, defined in net/core/dev.c, is normally called by device drivers
when new input frames are waiting to be processed;* its job is to schedule the softirq
that runs shortly to dequeue and handle the frames. Figure 10-3 shows what it
checks for and the flow of its events. The figure is practically longer than the code,
but it is useful to help understand how netif_rx reacts to its context.

netif_rx is usually called by a driver while in interrupt context, but there are excep-
tions, notably when the function is called by the loopback device. For this reason,
netif_rx disables interrupts on the local CPU when it starts, and re-enables them
when it finishes.†

When looking at the code, one should keep in mind that different CPUs can run
netif_rx concurrently. This is not a problem, since each CPU is associated with a
private softnet_data structure that maintains state information. Among other things,
the CPU’s softnet_data structure includes a private input queue (see the section
“softnet_data Structure” in Chapter 9).

* There is an interesting exception: when a CPU of an SMP system dies, the dev_cpu_callback routine drains
the input_pkt_queue queue of the associated softnet_data instance. dev_cpu_callback is the callback routine
registered by net_dev_init in the cpu_chain introduced in Chapter 9.

† netif_rx_ni is a sister to netif_rx and is used in noninterrupt contexts. Among the systems using it is the
TUN (Universal TUN/TAP) device driver in drivers/net/tun.c.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 10: Frame Reception

Figure 10-3. netif_rx function

Begin

Does NETPOLL
need to consume

the frame?

Free the buffer
(kfree_skb)

Return
NET_RX_DROP

Get local CPU ID cpu and
the associated softnet_data

Update statistics
(total ++)

Disable IRQs on local
CPU (local_irq_save)

No

Yes

Is the
input queue full?

Is the
input queue empty?

Is cpu
throttling?

Is cpu
throttling?

Is cpu
throttling?

netif_rx_schedule

Move cpu out of the
throttling state

Increase the reference
count for the device

Enqueue the frame into
cpu’s input queue

Update congestion level
(get_sample_stats)

Enable IRQs on local
CPU (local_irq_restore)

Return
congestion level

OFFLINE_SAMPLE

Update statistics
(dropped ++)

Enable IRQs on local
CPU (local_irq_restore)

Free the buffer
(kfree_skb)

Return
NET_RX_DROP

CONFIG_NETPOLL

Update statistics
(throttlled ++)

Move cpu into the
throttling state

NoYes

Yes

Yes

Yes

Yes

No No

No

No

Is skb -> stamp
set?

Initialize it
(net_timestamp)

Yes

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Old Interface Between Device Drivers and Kernel: First Part of netif_rx | 221

This is the function’s prototype:

int netif_rx(struct sk_buff *skb)

Its only input parameter is the buffer received by the device, and the output value is
an indication of the congestion level (you can find details in the section “Congestion
Management”).

The main tasks of netif_rx, whose detailed flowchart is depicted in Figure 10-3,
include:

• Initializing some of the sk_buff data structure fields (such as the time the frame
was received).

• Storing the received frame onto the CPU’s private input queue and notifying the
kernel about the frame by triggering the associated softirq NET_RX_SOFTIRQ. This
step takes place only if certain conditions are met, the most important of which
is whether there is space in the queue.

• Updating the statistics about the congestion level.

Figure 10-4 shows an example of a system with a bunch of CPUs and devices. Each
CPU has its own instance of softnet_data, which includes the private input queue
where netif_rx will store ingress frames, and the completion_queue where buffers are
sent when they are not needed anymore (see the section “Processing the NET_TX_
SOFTIRQ: net_tx_action” in Chapter 11). The figure shows an example where CPU
1 receives an RxComplete interrupt from eth0. The associated driver stores the ingress
frame into CPU 1’s queue. CPU m receives a DMADone interrupt from ethn saying that
the transmitted buffer is not needed anymore and can therefore be moved to the
completion_queue queue.*

Initial Tasks of netif_rx
netif_rx starts by saving the time the function was invoked (which also represents
the time the frame was received) into the stamp field of the buffer structure:

 if (skb->stamp.tv_sec == 0)
 net_timestamp(&skb->stamp);

Saving the timestamp has a CPU cost—therefore, net_timestamp initializes skb->
stamp only if there is at least one interested user for that field. Interest in the field can
be advertised by calling net_enable_timestamp.

Do not confuse this assignment with the one done by the device driver right before
or after it calls netif_rx:

 netif_rx(skb);
 dev->last_rx = jiffies;

* Both input_pkt_queue and completion_queue keep only the pointers to the buffers, even if the figure makes it
look as if they actually store the complete buffers.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 10: Frame Reception

The device driver stores in the net_device structure the time its most recent frame
was received, and netif_rx stores the time the frame was received in the buffer itself.
Thus, one timestamp is associated with a device and the other one is associated with
a frame. Note, moreover, that the two timestamps use two different precisions. The
device driver stores the timestamp of the most recent frame in jiffies, which in ker-
nel 2.6 comes with a precision of 10 or 1 ms, depending on the architecture (for
instance, before 2.6, the i386 used the value 10, but starting with 2.6 the value is 1).
netif_rx, however, gets its timestamp by calling get_fast_time, which returns a far
more precise value.

The ID of the local CPU is retrieved with smp_processor_id() and is stored in the
local variable this_cpu:

 this_cpu = smp_processor_id();

The local CPU ID is needed to retrieve the data structure associated with that CPU in
a per-CPU vector, such as the following code in netif_rx:

 queue = &_ _get_cpu_var(softnet_data);

The preceding line stores in queue a pointer to the softnet_data structure associated
with the local CPU that is serving the interrupt triggered by the device driver that
called netif_rx.

Now netif_rx updates the total number of frames received by the CPU, including
both the ones accepted and the ones discarded (because there was no space in the
queue, for instance):

 netdev_rx_stat[this_cpu].total++

Each device driver also keeps statistics, storing them in the private data structure that
dev->priv points to. These statistics, which include the number of received frames,

Figure 10-4. CPU’s ingress queues

eth 0 eth i eth n.

CPU 1

.

softnet_data

in
pu

t_
pk

t_
qu

eu
e

co
m

pl
et

io
n_

qu
eu

e

ne
t_

de
v_

m
ax

_b
ac

kl
og

(3
00

)

RxComplete DMADone

CPU m

.

softnet_data

in
pu

t_
pk

t_
qu

eu
e

co
m

pl
et

io
n_

qu
eu

e

. . .

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Old Interface Between Device Drivers and Kernel: First Part of netif_rx | 223

the number of dropped frames, etc., are kept on a per-device basis (see Chapter 2),
and the ones updated by netif_rx are on a per-CPU basis.

Managing Queues and Scheduling the Bottom Half
The input queue is managed by softnet_data->input_pkt_queue. Each input queue
has a maximum length given by the global variable netdev_max_backlog, whose value
is 300. This means that each CPU can have up to 300 frames in its input queue wait-
ing to be processed, regardless of the number of devices in the system.*

Common sense would say that the value of netdev_max_backlog should depend on
the number of devices and their speeds. However, this is hard to keep track of in an
SMP system where the interrupts are distributed dynamically among the CPUs. It is
not obvious which device will talk to which CPU. Thus, the value of netdev_max_
backlog is chosen through trial and error. In the future, we could imagine it being set
dynamically in a manner reflecting the types and number of interfaces. Its value is
already configurable by the system administrator, as described in the section “Tun-
ing via /proc and sysfs Filesystems” in Chapter 12. The performance issues are as fol-
lows: an unnecessarily large value is a waste of memory, and a slow system may
simply never be able to catch up. A value that is too small, on the other hand, could
reduce the performance of the device because a burst of traffic could lead to many
dropped frames. The optimal value depends a lot on the system’s role (host, server,
router, etc.).

In the previous kernels, when the softnet_data per-CPU data structure was not
present, a single input queue, called backlog, was shared by all devices with the same
size of 300 frames. The main gain with softnet_data is not that n CPUs leave room
on the queues for n*300 frames, but rather, that there is no need for locking among
CPUs because each has its own queue.

The following code controls the conditions under which netif_rx inserts its new
frame on a queue, and the conditions under which it schedules the queue to be run:

 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
 if (queue->input_pkt_queue.qlen) {
 if (queue->throttle)
 goto drop;

enqueue:
 dev_hold(skb->dev);
 _ _skb_queue_tail(&queue->input_pkt_queue,skb);
#ifndef OFFLINE_SAMPLE
 get_sample_stats(this_cpu);
#endif

* This applies to non-NAPI devices. Because NAPI devices use private queues, the devices can select the max-
imum length they prefer. Common values are 16, 32, and 64.The 10-Gigabit Ethernet driver drivers/net/s2io.
c uses a larger value (90).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 10: Frame Reception

 local_irq_restore(flags);
 return queue->cng_level;
 }

 if (queue->throttle)
 queue->throttle = 0;

 netif_rx_schedule(&queue->backlog_dev);
 goto enqueue;
 }

drop:
 _ _get_cpu_var(netdev_rx_stat).dropped++;
 local_irq_restore(flags);

 kfree_skb(skb);
 return NET_RX_DROP;
}

The first if statement determines whether there is space. If the queue is full and the
statement returns a false result, the CPU is put into a throttle state, which means that
it is overloaded by input traffic and therefore is dropping all further frames. The code
instituting the throttle is not shown here, but appears in the following section on
congestion management.

If there is space on the queue, however, that is not sufficient to ensure that the frame
is accepted. The CPU could already be in the “throttle” state (as determined by the
third if statement), in which case, the frame is dropped.

The throttle state can be lifted when the queue is empty. This is what the second if
statement tests for. When there is data on the queue and the CPU is in the throttle
state, the frame is dropped. But when the queue is empty and the CPU is in the
throttle state (which an if statement tests for in the second half of the code shown
here), the throttle state is lifted.*

The dev_hold(skb->dev) call increases the reference count for the device so that the
device cannot be removed until this buffer has been completely processed. The corre-
sponding decrement, done by dev_put, takes place inside net_rx_action, which we
will analyze later in this chapter.

If all tests are satisfactory, the buffer is queued into the input queue with _ _skb_
queue_tail(&queue->input_pkt_queue,skb), the IRQ’s status is restored for the CPU,
and the function returns.

* This case is actually rare because net_rx_action probably lifts the throttle state (indirectly via process_
backlog) earlier. We will see this later in this chapter.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Congestion Management | 225

Queuing the frame is extremely fast because it does not involve any memory copy-
ing, just pointer manipulation. input_pkt_queue is a list of pointers. _ _skb_queue_
tail adds the pointer to the new buffer to the list, without copying the buffer.

The NET_RX_SOFTIRQ software interrupt is scheduled for execution with netif_rx_
schedule. Note that netif_rx_schedule is called only when the new buffer is added to
an empty queue. The reason is that if the queue is not empty, NET_RX_SOFTIRQ has
already been scheduled and there is no need to do it again.

In the section “Pending softirq Handling” in Chapter 9, we saw how the kernel takes
care of scheduled software interrupts. In the upcoming section “Processing the NET_
RX_SOFTIRQ: net_rx_action,” we will see the internals of the NET_RX_SOFTIRQ soft-
irq’s handler.

Congestion Management
Congestion management is an important component of the input frame-processing
task. An overloaded CPU can become unstable and introduce a big latency into the
system. The section “Interrupts” in Chapter 9 explained why the interrupts gener-
ated by a high load can cripple the system. For this reason, congestion management
mechanisms are needed to make sure the system’s stability is not compromised
under high network load. Common ways to reduce the CPU load under high traffic
loads include:

Reducing the number of interrupts if possible
This is accomplished by coding drivers either to process several frames with a
single interrupt (see the section “Processing Multiple Frames During an Inter-
rupt” in Chapter 9), or to use NAPI.

Discarding frames as early as possible in the ingress path
If code knows that a frame is going to be dropped by higher layers, it can save
CPU time by dropping the frame quickly. For instance, if a device driver knew
that the ingress queue was full, it could drop a frame right away instead of relay-
ing it to the kernel and having the latter drop it.

The second point is what we cover in this section.

A similar optimization applies to the egress path: if a device driver does not have
resources to accept new frames for transmission (that is, if the device is out of mem-
ory), it would be a waste of CPU time to have the kernel pushing new frames down
to the driver for transmission. This point is discussed in Chapter 11 in the section
“Enabling and Disabling Transmissions.”

In both cases, reception and transmission, the kernel provides a set of functions to
set, clear, and retrieve the status of the receive and transmit queues, which allows
device drivers (on reception) and the core kernel (on transmission) to perform the
optimizations just mentioned.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 10: Frame Reception

A good indication of the congestion level is the number of frames that have been
received and are waiting to be processed. When a device driver uses NAPI, it is up to
the driver to implement any congestion control mechanism. This is because ingress
frames are kept in the NIC’s memory or in the receive ring managed by the driver,
and the kernel cannot keep track of traffic congestion. In contrast, when a device
driver does not use NAPI, frames are added to per-CPU queues (softnet_data->
input_pkt_queue) and the kernel keeps track of the congestion level of the queues. In
this section, we cover this latter case.

Queue theory is a complex topic, and this book is not the place for the mathematical
details. I will content myself with one simple point: the current number of frames in
the queue does not necessarily represent the real congestion level. An average queue
length is a better guide to the queue’s status. Keeping track of the average keeps the
system from wrongly classifying a burst of traffic as congestion. In the Linux net-
work stack, average queue length is reported by two fields of the softnet_data struc-
ture, cng_level and avg_blog, that were introduced in “softnet_data Structure” in
Chapter 9.

Being an average, avg_blog could be both bigger and smaller than the length of
input_pkt_queue at any time. The former represents recent history and the latter rep-
resents the present situation. Because of that, they are used for two different pur-
poses:

• By default, every time a frame is queued into input_pkt_queue, avg_blog is
updated and an associated congestion level is computed and saved into cng_
level. The latter is used as the return value by netif_rx so that the device driver
that called this function is given a feedback about the queue status and can
change its behavior accordingly.

• The number of frames in input_pkt_queue cannot exceed a maximum size. When
that size is reached, following frames are dropped because the CPU is clearly
overwhelmed.

Let’s go back to the computation and use of the congestion level. avg_blog and cng_
level are updated inside get_sample_stats, which is called by netif_rx.

At the moment, few device drivers use the feedback from netif_rx. The most com-
mon use of this feedback is to update statistics local to the device drivers. For a more
interesting use of the feedback, see drivers/net/tulip/de2104x.c: when netif_rx
returns NET_RX_DROP, a local variable drop is set to 1, which causes the main loop to
start dropping the frames in the receive ring instead of processing them.

So long as the ingress queue input_pkt_queue is not full, it is the job of the device
driver to use the feedback from netif_rx to handle congestion. When the situation
gets worse and the input queue fills in, the kernel comes into play and uses the
softnet_data->throttle flag to disable frame reception for the CPU. (Remember that
there is a softnet_data structure for each CPU.)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Congestion Management | 227

Congestion Management in netif_rx
Let’s go back to netif_rx and look at some of the code that was omitted from the
previous section of this chapter. The following two excerpts include some of the
code shown previously, along with new code that shows when a CPU is placed in the
throttle state.

 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
 if (queue->input_pkt_queue.qlen) {
 if (queue->throttle)
 goto drop;

 return queue->cng_level;
 }

 }

 if (!queue->throttle) {
 queue->throttle = 1;
 _ _get_cpu_var(netdev_rx_stat).throttled++;
 }

softnet_data->throttle is cleared when the queue gets empty. To be exact, it is
cleared by netif_rx when the first frame is queued into an empty queue. It could also
happen in process_backlog, as we will see in the section “Backlog Processing: The
process_backlog Poll Virtual Function.”

Average Queue Length and Congestion-Level Computation
The value of avg_blog and cng_level is always updated within get_sample_stats. The
latter can be invoked in two different ways:

• Every time a new frame is received (netif_rx). This is the default.

• With a periodic timer. To use this technique, one has to define the OFFLINE_
SAMPLE symbol. That’s the reason why in netif_rx, the execution of get_sample_
stats depends on the definition of the OFFLINE_SAMPLE symbol. It is disabled by
default.

The first approach ends up running get_sample_stats more often than the second
approach under medium and high traffic load.

In both cases, the formula used to compute avg_blog should be simple and quick,
because it could be invoked frequently. The formula used takes into account the
recent history and the present:

new_value_for_avg_blog = (old_value_of_avg_blog + current_value_of_queue_len) / 2

How much to weight the present and the past is not a simple problem. The preced-
ing formula can adapt quickly to changes in the congestion level, since the past (the
old value) is given only 50% of the weight and the present the other 50%.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 10: Frame Reception

get_sample_stats also updates cng_level, basing it on avg_blog through the map-
ping shown earlier in Figure 9-4 in Chapter 9. If the RAND_LIE symbol is defined, the
function performs an extra operation in which it can randomly decide to set cng_
level one level higher. This random adjustment requires more time to calculate but,
oddly enough, can cause the kernel to perform better under one specific scenario.

Let’s spend a few more words on the benefits of random lies. Do not confuse this
behavior with Random Early Detection (RED).

In a system with only one interface, it does not really make sense to drop random
frames here and there if there is no congestion; it would simply lower the through-
put. But let’s suppose we have multiple interfaces sharing an input queue and one
device with a traffic load much higher than the others. Since the greedy device fills
the shared ingress queue faster than the other devices, the latter will often find no
space in the ingress queue and therefore their frames will be dropped.* The greedy
device will also see some of its frames dropped, but not proportionally to its load.
When a system with multiple interfaces experiences congestion, it should drop
ingress frames across all the devices proportionally to their loads. The RAND_LIE code
adds some fairness when used in this context: dropping extra frames randomly
should end up dropping them proportionally to the load.

Processing the NET_RX_SOFTIRQ: net_rx_action
net_rx_action is the bottom-half function used to process incoming frames. Its exe-
cution is triggered whenever a driver notifies the kernel about the presence of input
frames. Figure 10-5 shows the flow of control through the function.

Frames can wait in two places for net_rx_action to process them:

A shared CPU-specific queue
Non-NAPI devices’ interrupt handlers, which call netif_rx, place frames into the
softnet_data->input_pkt_queue of the CPU on which the interrupt handlers run.

Device memory
The poll method used by NAPI drivers extracts frames directly from the device
(or the device driver receive rings).

The section “Old Versus New Driver Interfaces” showed how the kernel is notified
about the need to run net_rx_action in both cases.

* When sharing a queue, it is up to the users to behave fairly with others, but that’s not always possible. NAPI
does not encounter this problem because each device using NAPI has its own queue. However, non-NAPI
drivers still using the shared input queue input_pkt_queue have to live with the possibility of overloading by
other devices.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing the NET_RX_SOFTIRQ: net_rx_action | 229

Figure 10-5. net_rx_action function

Is any budget
left?

Yes

Yes

Is it time to
release the CPU?

No

Enable IRQs on local
CPU (local_irq_enable)

No

Enable IRQs on local
CPU (local_irq_enable)

Is poll_list
empty?

Get device dev from
poll_list

Does dev
have some quota

left?

Update statistics
(time_squeeze ++)

Schedule
NET_RX_ACTION

Disable IRQs on local
CPU (local_irq_disable)

Decrement reference
count on the dev

Disable IRQs on local
CPU (local_irq_disable)

Process backlog queue
(poll virtual function)

Has the
backlog queue
been emptied?

No

Disable IRQs on local
CPU (local_irq_disable)

Move dev to the end
of poll_list

Update dev's quota

No

Yes

No Yes

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 10: Frame Reception

The job of net_rx_action is pretty simple: to browse the poll_list list of devices that
have something in their ingress queue and invoke for each one the associated poll
virtual function until one of the following conditions is met:

• There are no more devices in the list.

• net_rx_action has run for too long and therefore it is supposed to release the
CPU so that it does not become a CPU hog.

• The number of frames already dequeued and processed has reached a given
upper bound limit (budget). budget is initialized at the beginning of the function
to netdev_max_backlog, which is defined in net/core/dev.c as 300.

As we will see in the next section, net_rx_action calls the driver’s poll virtual func-
tion and depends partly on this function to obey these constraints.

The size of the queue, as we saw in the section “Managing Queues and Scheduling
the Bottom Half,” is restricted to the value of netdev_max_backlog. This value is con-
sidered the budget for net_rx_action. However, because net_rx_action runs with
interrupts enabled, new frames could be added to a device’s input queue while net_
rx_action is running. Thus, the number of available frames could become greater
than budget, and net_rx_action has to take action to make sure it does not run too
long in such cases.

Now we will see in detail what net_rx_action does inside:

static void net_rx_action(struct softirq_action *h)
{
 struct softnet_data *queue = &_ _get_cpu_var(softnet_data);
 unsigned long start_time = jiffies;
 int budget = netdev_max_backlog;

 local_irq_disable();

If the current device has not yet used its entire quota, it is given a chance to dequeue
buffers from its queue with the poll virtual function:

 while (!list_empty(&queue->poll_list)) {
 struct net_device *dev;

 if (budget <= 0 || jiffies - start_time > 1)
 goto softnet_break;

 local_irq_enable();

 dev = list_entry(queue->poll_list.next, struct net_device, poll_list);

If dev->poll returns because the device quota was not large enough to dequeue all
the buffers in the ingress queue (in which case, the return value is nonzero), the
device is moved to the end of poll_list:

 if (dev->quota <= 0 || dev->poll(dev, &budget)) {
 local_irq_disable();

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing the NET_RX_SOFTIRQ: net_rx_action | 231

 list_del(&dev->poll_list);
 list_add_tail(&dev->poll_list, &queue->poll_list);
 if (dev->quota < 0)
 dev->quota += dev->weight;
 else
 dev->quota = dev->weight;
 } else {

When instead poll manages to empty the device ingress queue, net_rx_action does
not remove the device from poll_list: poll is supposed to take care of it with a call
to netif_rx_complete (_ _netif_rx_complete can also be called if IRQs are disabled on
the local CPU). This will be illustrated in the process_backlog function in the next
section.

Furthermore, note that budget was passed by reference to the poll virtual function;
this is because that function will return a new budget that reflects the frames it pro-
cessed. The main loop in net_rx_action checks budget at each pass so that the over-
all limit is not exceeded. In other words, budget allows net_rx_action and the poll
function to cooperate to stay within their limit.

 dev_put(dev);
 local_irq_disable();
 }
 }
out:
 local_irq_enable();
 return;

This last piece of code is executed when net_rx_action is forced to return while buff-
ers are still left in the ingress queue. In this case, the NET_RX_SOFTIRQ softirq is sched-
uled again for execution so that net_rx_action will be invoked later and will take
care of the remaining buffers:

softnet_break:
 _ _get_cpu_var(netdev_rx_stat).time_squeeze++;
 _ _raise_softirq_irqoff(NET_RX_SOFTIRQ);
 goto out;
}

Note that net_rx_action disables interrupts with local_irq_disable only while
manipulating the poll_list list of devices to poll (i.e., when accessing its softnet_
data structure instance). The netpoll_poll_lock and netpoll_poll_unlock calls, used
by the NETPOLL feature, have been omitted. If you can access the kernel source
code, see net_rx_action in net/core/dev.c for details.

Backlog Processing: The process_backlog Poll Virtual Function
The poll virtual function of the net_device data structure, which is executed by net_
rx_action to process the backlog queue of a device, is initialized by default to
process_backlog in net_dev_init for those devices not using NAPI.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 10: Frame Reception

As of kernel 2.6.12, only a few device drivers use NAPI, and initialize dev->poll with
a pointer to a function of its own: the Broadcom Tigon3 Ethernet driver in drivers/
net/tg3.c was the first one to adopt NAPI and is a good example to look at. In this
section, we will analyze the default handler process_backlog defined in net/core/dev.c.
Its implementation is very similar to that of a poll method of a device driver using
NAPI (you can, for instance, compare process_backlog to tg3_poll).

However, since process_backlog can take care of a bunch of devices sharing the
same ingress queue, there is one important difference to take into account. When
process_backlog runs, hardware interrupts are enabled, so the function could be
preempted. For this reason, accesses to the softnet_data structure are always pro-
tected by disabling interrupts on the local CPU with local_irq_disable, especially
the calls to _ _skb_dequeue. This lock is not needed by a device driver using NAPI:*

when its poll method is invoked, hardware interrupts are disabled for the device.
Moreover, each device has its own queue.

Let’s see the main parts of process_backlog. Figure 10-6 shows its flowchart.

The function starts with a few initializations:

static int process_backlog(struct net_device *backlog_dev, int *budget)
{
 int work = 0;
 int quota = min(backlog_dev->quota, *budget);
 struct softnet_data *queue = &_ _get_cpu_var(softnet_data);
 unsigned long start_time = jiffies;

Then begins the main loop, which tries to dequeue all the buffers in the input queue
and is interrupted only if one of the following conditions is met:

• The queue becomes empty.

• The device’s quota has been used up.

• The function has been running for too long.

The last two conditions are similar to the ones that constrain net_rx_action. Because
process_backlog is called within a loop in net_rx_action, the latter can respect its
constraints only if process_backlog cooperates. For this reason, net_rx_action passes
its leftover budget to process_backlog, and the latter sets its quota to the minimum
of that input parameter (budget) and its own quota.

budget is initialized by net_rx_action to 300 when it starts. The default value for backlog_
dev->quota is 64 (and most devices stick with the default). Let’s examine a case where
several devices have full queues. The first four devices to run within this function receive
a value of budget greater than their internal quota of 64, and can empty their queues.

* Because each CPU has its own instance of softnet_data, there is no need for extra locking to take care of
SMP.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing the NET_RX_SOFTIRQ: net_rx_action | 233

The next device may have to stop after sending a part of its queue. That is, the
number of buffers dequeued by process_backlog depends both on the device

Figure 10-6. process_backlog function

Clear flag
_LINK_STATE_RX_SCHED

Is cpu
throttling?

Yes

Move the CPU out of
the throttle state

Enable IRQs on local
CPU (local_irq_enable)

Return 0

Remove device from
poll_list

Update device's quota

Decrement reference
count on device

Has the
device's quota
been reached?

Yes

Update device's quota

Update input budget

Return -1

Process packet
(netif_receive_skb)

Enable IRQs on local
CPU (local_irq_enable)

Dequeue one frame

Disable IRQs on local
CPU (local_irq_disable)

Is input queue
(input_pkt_queue)

empty?

Get CPU ID cpu and the
associated softnet_data

Compute the
device's quota

CPU hog?

No

Yes

No No

Yes

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 10: Frame Reception

configuration (dev->quota), and on the traffic load on the other devices (budget).
This ensures some more fairness among the devices.

 for (;;) {
 struct sk_buff *skb;
 struct net_device *dev;

 local_irq_disable();
 skb = _ _skb_dequeue(&queue->input_pkt_queue);
 if (!skb)
 goto job_done;
 local_irq_enable();

 dev = skb->dev;

 netif_receive_skb(skb);

 dev_put(dev);

 work++;
 if (work >= quota || jiffies - start_time > 1)
 break;

netif_receive_skb is the function that processes the frame; it is described in the next
section. It is used by all poll virtual functions, both NAPI and non-NAPI.

The device’s quota is updated based on the number of buffers successfully dequeued.
As explained earlier, the input parameter budget is also updated because it is needed
by net_rx_action to keep track of how much work it can continue to do:

 backlog_dev->quota -= work;
 *budget -= work;
 return -1;

The main loop shown earlier jumps to the label job_done if the input queue is emp-
tied. If the function reaches this point, the throttle state can be cleared (if it was set)
and the device can be removed from poll_list. The _ _LINK_STATE_RX_SCHED flag is
also cleared since the device does not have anything in the input queue and there-
fore it does not need to be scheduled for backlog processing.

job_done:
 backlog_dev->quota -= work;
 *budget -= work;

 list_del(&backlog_dev->poll_list);
 smp_mb_ _before_clear_bit();
 netif_poll_enable(backlog_dev);

 if (queue->throttle)
 queue->throttle = 0;
 local_irq_enable();
 return 0;
}

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing the NET_RX_SOFTIRQ: net_rx_action | 235

Actually, there is another difference between process_backlog and a NAPI driver’s
poll method. Let’s return to drivers/net/tg3.c as an example:

 if (done) {
 spin_lock_irqsave(&tp->lock, flags);
 _ _netif_rx_complete(netdev);
 tg3_restart_ints(tp);
 spin_unlock_irqrestore(&tp->lock, flags);
 }

done here is the counterpart of job_done in process_backlog, with the same meaning
that the queue is empty. At this point, in the NAPI driver, the _ _netif_rx_complete
function (defined in the same file) removes the device from the poll_list list, a task
that process_backlog does directly. Finally, the NAPI driver re-enables interrupts for
the device. As we anticipated at the beginning of the section, process_backlog runs
with interrupts enabled.

Ingress Frame Processing
As mentioned in the previous section, netif_receive_skb is the helper function used
by the poll virtual function to process ingress frames. It is illustrated in Figure 10-7.

Multiple protocols are allowed by both L2 and L3. Each device driver is associated
with a specific hardware type (e.g., Ethernet), so it is easy for it to interpret the L2
header and extract the information that tells it which L3 protocol is being used, if
any (see Chapter 13). When net_rx_action is invoked, the L3 protocol identifier has
already been extracted from the L2 header and stored into skb->protocol by the
device driver.

The three main tasks of netif_receive_skb are:

• Passing a copy of the frame to each protocol tap, if any are running

• Passing a copy of the frame to the L3 protocol handler associated with skb->
protocol*

• Taking care of those features that need to be handled at this layer, notably bridg-
ing (which is described in Part IV)

If no protocol handler is associated with skb->protocol and none of the features han-
dled in netif_receive_skb (such as bridging) consumes the frame, it is dropped
because the kernel doesn’t know how to process it.

Before delivering an input frame to these protocol handlers, netif_receive_skb must
handle a few features that can change the destiny of the frame.

* See Chapter 13 for more details on protocol handlers.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 10: Frame Reception

Figure 10-7. The netif_receive_skb function

Begin

Does NETPOLL
need to consume

the frame?

Free the buffer
(Kfree_skb)

Return
NET_RX_DROP

Update statistics:
(total++)

Initialize
skb -> {h, nh, mac_len}

Handle the bonding
feature (skb_bond)

Initialize skb -> stamp if
not set (net_timestamp)

No

Yes

CONFIG_NETPOLL

Lock
(rcu_read_lock)

Give a copy of the frame to
each registered protocol sniffer

Verdict of the
ingress traffic

control classifier

Handle the diverter
feature (handle_diverter)

Should the
frame be bridged?

Give a copy of the frame to
each L3 registered protocol

handler (for skb -> protocol)

Use return code from last
protocol handler executed

Unlock
(rcu_read_unlock)

Handle bridging

Give a copy of the frame to
each registered protocol sniffer

CONFIG_BRIDGE or
CONFIG_BRIDGE_MODULE

CONFIG_NET_DIVERT

CONFIG_NET_CLS_ACT

Yes

No

Frame has been consumed or
must be dropped

Frame can
proceed

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing the NET_RX_SOFTIRQ: net_rx_action | 237

Bonding allows a group of interfaces to be grouped together and be treated as a sin-
gle interface. If the interface from which the frame was received belonged to one such
group, the reference to the receiving interface in the sk_buff data structure must be
changed to the device in the group with the role of master before netif_receive_skb
delivers the packet to the L3 handler. This is the purpose of skb_bond.

 skb_bond(skb);

The delivery of the frame to the sniffers and protocol handlers is covered in detail in
Chapter 13.

Once all of the protocol sniffers have received their copy of the packet, and before
the real protocol handler is given its copy, Diverter, ingress Traffic Control, and
bridging features must be handled (see the next section).

When neither the bridging code nor the ingress Traffic Control code consumes the
frame, the latter is passed to the L3 protocol handlers (usually there is only one han-
dler per protocol, but multiple ones can be registered). In older kernel versions, this
was the only processing needed. The more the kernel network stack was enhanced
and the more features that were added (in this layer and in others), the more com-
plex the path of a packet through the network stack became.

At this point, the reception part is complete and it will be up to the L3 protocol han-
dlers to decide what to do with the packets:

• Deliver them to a recipient (application) running in the receiving workstation.

• Drop them (for instance, during a failed sanity check).

• Forward them.

The last choice is common for routers, but not for single-interface workstations.
Parts V and VI cover L3 behavior in detail.

The kernel determines from the destination L3 address whether the packet is
addressed to its local system. I will postpone a discussion of this process until Part
VII; let’s take it for granted for the moment that somehow the packet will be deliv-
ered to the upper layers (i.e., TCP, UDP, ICMP, etc.) if it is addressed to the local
system, and to ip_forward otherwise (see Figure 9-2 in Chapter 9).

This finishes our long discussion of how frame reception works. The next chapter
describes how frames are transmitted. This second path includes both frames gener-
ated locally and received frames that need to be forwarded.

Handling special features

netif_receive_skb checks whether any Netpoll client would like to consume the
frame.

Traffic Control has always been used to implement QoS on the egress path. How-
ever, with recent releases of the kernel, you can configure filters and actions on

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 10: Frame Reception

ingress traffic, too. Based on such a configuration, ing_filter may decide that the
input buffer is to be dropped or that it will be processed further somewhere else (i.e.,
the frame is consumed).

Diverter allows the kernel to change the L2 destination address of frames originally
addressed to other hosts so that the frames can be diverted to the local host. There
are many possible uses for this feature, as discussed at http://diverter.sourceforge.net.
The kernel can be configured to determine the criteria used by Diverter to decide
whether to divert a frame. Common criteria used for Diverter include:

• All IP packets (regardless of L3 protocol)

• All TCP packets

• TCP packets with specific port numbers

• All UDP packets

• UDP packets with specific port numbers

The call to handle_diverter decides whether to change the destination MAC address.
In addition to the change to the destination MAC address, skb->pkt_type must be
changed to PACKET_HOST.

Yet another L2 feature could influence the destiny of the frame: Bridging. Bridging,
the L2 counterpart of L3 routing, is addressed in Part IV. Each net_device data struc-
ture has a pointer to a data structure of type net_bridge_port that is used to store the
extra information needed to represent a bridge port. Its value is NULL when the
interface has not enabled bridging. When a port is configured as a bridge port, the
kernel looks only at L2 headers. The only L3 information the kernel uses in this situ-
ation is information pertaining to firewalling.

Since net_rx_action represents the boundary between device drivers and the L3 pro-
tocol handlers, it is right in this function that the Bridging feature must be handled.
When the kernel has support for bridging, handle_bridge is initialized to a function
that checks whether the frame is to be handed to the bridging code. When the frame
is handed to the bridging code and the latter consumes it, handle_bridge returns 1. In
all other cases, handle_bridge returns 0 and netif_receive_skb will continue process-
ing the frame skb.

if (handle_bridge(skb, &pt_prev, &ret));
 goto out;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

239

Chapter 11 CHAPTER 11

Frame Transmission

Transmission is the term used for frames that leave the system, either because they
were sent by the system or because they are being forwarded. In this chapter, we will
cover the main tasks involved during the frame transmission data path:

• Enabling and disabling frame transmission for a device

• Scheduling a device for transmission

• Selecting the next frame to transmit among the ones waiting in the device’s
egress queue

• The transmission itself (we will examine the main function)

Much about transmission is symmetric to the reception process we discussed in
Chapter 10: NET_TX_SOFTIRQ is the transmission counterpart of the NET_RX_SOFTIRQ
softirq, net_tx_action is the counterpart of net_rx_action, and so on. Thus, if you
have studied the earlier chapter, you should find it easy to follow this one.
Figure 11-1 compares the logic behind scheduling a device for reception and schedul-
ing a device for transmission. Here are some more similarities:

• poll_list is the list of devices that are polled because they have a nonempty
receive queue. output_queue is the list of devices that have something to trans-
mit. poll_list and output_queue are two fields of the softnet_data structure
introduced in Chapter 9.

• Only open devices (ones with the _ _LINK_STATE_START flag set) can be scheduled
for reception. Only devices with transmission enabled (ones with the _ _LINK_
STATE_XOFF flag cleared) can be scheduled for transmission.

• When a device is scheduled for reception, its _ _LINK_STATE_RX_SCHED flag is set.
When a device is scheduled for transmission, its _ _LINK_STATE_SCHED flag is set.

dev_queue_xmit plays the same role for the egress path that netif_rx plays for the
ingress path: each transfers one frame between the driver’s buffer and the kernel’s
queue. The net_tx_action function is called both when there are devices waiting to
transmit something and to do housekeeping with the buffers that are not needed

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 11: Frame Transmission

Figure 11-1. Scheduling a device: (a) for reception (RX); (b) for transmission (TX)

Schedule the
NET_RX_SOFTIRQ softirq

Add device to
poll_list

Set the flag
__LINK_STATE_RX_SCHED

Return

Is the device
already scheduled

for RX?
(__LINK_STATE_RX_SCHED)

No

Yes

Is the device
open (i.e., UP?)

(__LINK_STATE_START)

Yes

No

(a)

Schedule the
NET_TX_SOFTIRQ softirq

Add device to
output_queue

Set the flag
__LINK_STATE_SCHED

Return

Is the device
already scheduled

for TX?
(__LINK_STATE_SCHED)

No

Yes

Is the egress queue
disabled?

(__LINK_STATE_XOFF)

No

Yes

(b)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 241

anymore. Just as there are queues for ingress traffic, there are queues for egress traf-
fic. The egress queues, handled by Traffic Control (the QoS layer), are actually much
more complex than the ingress ones: while the latter are just ordinary First In, First
Outs (FIFOs), the former can be hierarchical, represented by trees of queues. Even
though Traffic Control has support for ingress queueing too, it’s used more for polic-
ing and management reasons rather than real queuing: Traffic Control does not use
real queues for ingress traffic, but only classifies and applies actions.

Enabling and Disabling Transmissions
In the section “Congestion Management” in Chapter 10, we learned about some
conditions under which frame reception must be disabled, either on a single device
or globally. Something similar applies to frame transmission as well.

The status of the egress queue is represented by the flag _ _LINK_STATE_XOFF in net_
device->state. Its value can be manipulated and checked with the following func-
tions, defined in include/linux/netdevice.h:*

netif_start_queue
Enables transmission for the device. It is usually called when the device is acti-
vated and can be called again later if needed to restart a stopped device.

netif_stop_queue
Disables transmission for the device. Any attempt to transmit something on the
device will be denied. Later in this section is an example of a common case
where this function is used.

netif_queue_stopped
Returns the status of the egress queue: enabled or disabled. This function is sim-
ply:

static inline int netif_queue_stopped(const struct net_device *dev)
{
 return test_bit(_ _LINK_STATE_XOFF, &dev->state);
}

Only device drivers enable and disable transmission of devices.

Why stop and start a queue once the device is running? One reason is that a device
can temporarily use up its memory, thus causing a transmission attempt to fail. In
the past, the transmitting function (which I introduce later in the section “dev_
queue_xmit Function”) would have to deal with this problem by putting the frame
back into the queue (requeuing it). Now, thanks to the _ _LINK_STATE_XOFF flag, this
extra processing can be avoided. When the device driver realizes that it does not have
enough space to store a frame of maximum size (MTU), it stops the egress queue

* The other flags in the list are described in Chapters 8 and 10.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 11: Frame Transmission

with netif_stop_queue. In this way, it is possible to avoid wasting resources with
future transmissions that the kernel already knows will fail. The following example
of this throttling at work is taken from vortex_start_xmit (the hard_start_xmit
method used by the drivers/net/3c59x.c driver):

 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
 dev_kfree_skb (skb);
 if (inw(ioaddr + TxFree) > 1536) {
 netif_start_queue (dev); /* AKPM: redundant? */
 } else {
 /* Interrupt us when the FIFO has room for max-sized packet. */
 netif_stop_queue(dev);
 outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
 }

Shortly after the transmission by outsl, the code checks whether there is space for a
frame of maximum size (1536), and uses netif_stop_queue to stop the device’s egress
queue if there is not. This is a relatively crude technique used to avoid transmission
failures due to a shortage of memory. Of course, the transmission of a frame of 300
bytes would succeed when just a little more than 300 bytes are left; therefore, check-
ing for 1,536 bytes could disable transmission unnecessarily. The code could com-
promise by using a lower value, such as 500, but in the end, the gain would not be
that big and there could be failures when bigger frames arrive while transmission is
enabled.

To cover all eventualities, the code calls netif_start_queue when there is enough
memory on the device. The redundant? comment in the code refers to the practice of
restarting the queue on two types of interrupts. The driver requests a restart to the
queue when the device indicates that it has finished transmitting, and when it indi-
cates that there is enough space in its memory for another frame. Probably, the
queue would be restarted promptly if the driver did so on only one of these inter-
rupts, but that’s not guaranteed. So the request to restart the queue is issued under
both circumstances.

The code also sends a SetTxThreshold command to the device, which instructs the
device to generate an interrupt when a given amount of memory (the size of the
MTU, in this case) becomes available.

You may wonder when and how the queue will be re-enabled in the previous sce-
nario. In the case of the Vortex driver, it asks the device to generate an interrupt
when a given amount of memory (the size of the MTU, in this case) becomes avail-
able. This is the piece of code that handles such an interrupt:

static void vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

 if (status & TxAvailable) {
 if (vortex_debug > 5)
 printk(KERN_DEBUG " TX room bit was handled.\n");
 /* There's room in the FIFO for a full-sized packet. */

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 243

 outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
 netif_wake_queue (dev);
 }

}

The bits of the status variable represent the reasons why the interrupt was gener-
ated by the card. The TxAvailable bit indicates that space is available and that it’s
therefore safe to wake up the device (this is called waking the queue, and is carried
out by netif_wake_queue). Values such as EL3_CMD are simply offsets from ioaddr used
by the driver to read or write the network card registers at the right positions.

Note that the egress queue is re-enabled with netif_wake_queue instead of netif_
start_queue. That new function, which we will see later in more detail, not only
enables the egress queue but also asks the kernel to check whether anything in that
queue is waiting to be transmitted. The reason is that during the time the queue was
disabled, there could have been transmission attempts. In this case, they would have
failed, and those frames that could not be sent would have been put back into the
egress queue.

Scheduling a Device for Transmission
When describing the ingress path, we saw that when a device receives a frame, its
driver invokes a kernel function (the one invoked depends on whether the driver uses
NAPI) that adds the device to a polling list and schedules the NET_RX_SOFTIRQ for
execution.

Something very similar happens on the egress path. To transmit frames, the kernel
provides the dev_queue_xmit function, described later in its own section. This func-
tion dequeues a frame from the device’s egress queue and feeds it to the device’s
hard_start_xmit method. However, dev_queue_xmit might not be able to transmit for
various reasons—for instance, because the device’s egress queue is disabled, as we
saw in the previous section, or because the lock on the device queue is already taken.
To handle the latter case, the kernel provides a function called _ _netif_schedule that
schedules a device for transmission (somewhat similar to what netif_rx_schedule
does on the reception path). This function is never called directly, but through two
wrappers shown later in this section.

Here is the function’s definition from include/linux/netdevice.h:

static inline void _ _netif_schedule(struct net_device *dev)
{
 if (!test_and_set_bit(_ _LINK_STATE_SCHED, &dev->state)) {
 unsigned long flags;
 struct softnet_data *sd;

 local_irq_save(flags);
 sd = &_ _get_cpu_var(softnet_data);
 dev->next_sched = sd->output_queue;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 11: Frame Transmission

 sd->output_queue = dev;
 raise_softirq_irqoff(cpu, NET_TX_SOFTIRQ);
 local_irq_restore(flags);
 }
}

_ _netif_schedule accomplishes two main tasks:

• It adds the device to the head of the output_queue list. This list is the counter-
part to the poll_list list used by reception. There is one output_queue for each
CPU, just as there is one poll_list for each CPU. However, output_queue is used
by both NAPI and non-NAPI devices, and poll_list is used only to handle NAPI
devices. The devices in the output_queue list are linked together with the net_
device->next_sched pointer. You will see in the section “Processing the NET_
TX_SOFTIRQ: net_tx_action” how that list is used.

We already saw in the section “softnet_data Structure” in Chapter 9 that output_
queue represents a list of devices that have something to send (because they failed
on previous attempts, as described in the section “Queuing Discipline Inter-
face”) or whose egress queues have been re-enabled after having been disabled
for a while. Because _ _netif_schedule may be called both inside and outside
interrupt context, it disables interrupts while adding the input device to the
output_queue list.

• It schedules the NET_TX_SOFTIRQ softirq for execution. _ _LINK_STATE_SCHED is used
to mark devices that are in the output_queue list because they have something to
send. (_ _LINK_STATE_SCHED is the counterpart of the reception path’s _ _LINK_
STATE_RX_SCHED.) Note that if the device was already scheduled for transmission,
_ _netif_schedule would not do anything.

Since it does not make sense to schedule a device for transmission if transmission is
disabled on the device, the kernel provides two functions to be used instead, both
wrappers around _ _netif_schedule:

netif_schedule*

Simply makes sure transmission is enabled on the device before scheduling it for
transmission:

static inline void netif_schedule(struct net_device *dev)
{
 if (!test_bit(_ _LINK_STATE_XOFF, &dev->state))
 _ _netif_schedule(dev);
}

netif_wake_queue
Enables transmission for the device and, if transmission was previously dis-
abled, schedules the device for transmission. This scheduling is needed because

* For consistency, netif_tx_schedule would probably have been a better name.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 245

there could have been transmission attempts while the device queue was dis-
abled. We saw an example of its use in the previous section.

static inline void netif_wake_queue(struct net_device *dev)
{
 ...
 if (test_and_clear_bit(_ _LINK_STATE_XOFF, &dev->state))
 _ _netif_schedule(dev);
}

test_and_clear_bit clears the _ _LINK_STATE_XOFF flag if it is set, and returns the
old value.

Note that a call to netif_wake_queue is equivalent to a call to both netif_start_queue
and netif_schedule. I said in the section “Enabling and Disabling Transmissions”
that it is the responsibility of the driver, not higher-layer functions, to disable and
enable transmission on devices. Usually, high-level functions schedule transmissions
on devices, and device drivers disable and re-enable the queue when required, such
as to handle a shortage of memory. Therefore, it should not come as a surprise that
netif_wake_queue is the one used by device drivers, and netif_schedule is the one
used elsewhere (for example, by net_tx_action* and Traffic Control).

A device driver uses netif_wake_queue in the following cases:

• We will see in the section “Watchdog timer” that device drivers use a watchdog
timer to recover from a transmission that hangs. In such a situation, the virtual
function net_device->tx_timeout usually resets the card. During that black hole
in which the device is not usable, there could be other transmission attempts, so
the driver needs to first enable the device’s queue and then schedule the device
for transmission. The same applies to interrupts that signal error conditions
(look at drivers/net/3c59x.c for some examples).

• When (as previously requested by the driver itself) the device signals to the
driver that it has enough memory to handle the transmission of a frame of a
given size, the device can be awakened. We already saw an example of this prac-
tice in the previous section in relation to the TxAvailable interrupt. The reason
for using this function, again, is that during the time the driver has disabled the
queue, there could have been transmission attempts. A similar consideration
applies to the interrupt type that tells the driver when a driver-to-card DMA
transfer has completed.

Queuing Discipline Interface
Almost all devices use a queue to schedule egress traffic, and the kernel can use algo-
rithms known as queuing disciplines to arrange the frames in the most efficient order

* net_tx_action schedules a device for transmission when it cannot grab the dev->queue_lock lock on the
device’s egress queue and therefore cannot transmit.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 11: Frame Transmission

for transmission. Although a detailed discussion of Traffic Control and its queuing
disciplines is outside the scope of this book, in this section I’ll provide a brief over-
view of the interface between device drivers and the transmission layer discussed in
this chapter.

Each Traffic Control queuing discipline can provide different function pointers to be
called by higher layers to accomplish different tasks. Among the most important
functions are:

enqueue
Adds an element to the queue

dequeue
Extracts an element from the queue

requeue
Puts back on the queue an element that was previously extracted (e.g., because
of a transmission failure)

Whenever a device is scheduled for transmission, the next frame to transmit is
selected by the qdisc_run function, which indirectly calls the dequeue virtual func-
tion of the associated queuing discipline.

Once again, the real job is actually done by another function, qdisc_restart. The
qdisc_run function, defined in include/linux/pkt_sched.h, is simply a wrapper that fil-
ters out requests for devices whose egress queues are disabled:

static inline void qdisc_run(struct net_device *dev)
{
 while (!netif_queue_stopped(dev) && qdisc_restart(dev) < 0)
 /* NOTHING */;
}

qdisc_restart function

We saw earlier the common cases where a device is scheduled for transmission.
Sometimes it is because something in the egress queue is waiting to be transmitted.
But at other times, the device is scheduled because the queue has been disabled for a
while and therefore there could be something waiting in the queue from previous
failed transmission attempts. The driver does not know whether anything has actu-
ally arrived; it must schedule the device in case data is waiting. If in fact no data is
waiting, the subsequent call to the dequeue method fails. Even if data is waiting, the
call can fail because complex queuing disciplines may decide not to transmit any of
the data. Therefore, qdisc_restart, defined in net/sched/sch_generic.c, takes various
actions based on the return value of the dequeue method.

int qdisc_restart(struct net_device *dev)
{
 struct Qdisc *q = dev->qdisc;
 struct sk_buff *skb;

 if ((skb = q->dequeue(q)) != NULL) {

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 247

The dequeue function is called at the very start. Let’s suppose it succeeded. Transmit-
ting a frame requires the acquisition of two locks:

• The lock that protects the queue (dev->queue_lock). This is acquired by the
caller of qdisc_restart (dev_queue_xmit).

• The lock on the driver’s transmit routine hard_start_xmit (dev->xmit_lock). The
lock is managed by this function. When the device driver already implements its
own locking, it indicates this by setting the NETIF_F_LLTX flag (lockless transmis-
sion feature) in dev->features to tell the upper layers that there is no need to
acquire the dev->xmit_lock lock as well. The use of NETIF_F_LLTX allows the ker-
nel to optimize the transmit data path by not acquiring dev->xmit_lock when it is
not needed. Of course, there is no need to acquire the lock if the queue is empty.

Note that qdisc_restart does not release the queue_lock immediately after dequeu-
ing a buffer, because the function might have to requeue the buffer right away if it
fails to acquire the lock on the driver. The function releases queue_lock when it has
the driver lock in hand, and reacquires queue_lock before returning. Ultimately, dev_
queue_xmit will take care of releasing it.

When the driver does not support NETIF_F_LLTX and the driver lock is already taken
(i.e., spin_trylock returns 0), transmission fails. If qdisc_restart fails to grab the
lock on the driver, it means that another CPU is transmitting through the same
device. All that qdisc_restart can do in this case is put the frame back into the
queue and reschedule the device for transmission, since it does not want to wait. If
the function is running on the same CPU that is holding the lock, a loop (i.e., a bug
in the code) has been detected and the frame is dropped; otherwise, it is just a
collision.

 if (!spin_trylock(&dev->xmit_lock)) {
 collision:
 ...
 goto requeue;
 }
 ...
requeue:
 q->ops->requeue(skb, q);
 netif_schedule(dev);

Once the driver lock is successfully acquired, the lock on the queue is released so
that other CPUs can access the queue. Sometimes, there is no need to acquire the
driver lock because NETIF_F_LLTX is set. In either case, qdisc_restart is ready to start
its real job.

 if (!netif_queue_stopped(dev)) {
 int ret;
 if (netdev_nit)
 dev_queue_xmit_nit(skb, dev);

 ret = dev->hard_start_xmit(skb, dev);
 if (ret == NETDEV_TX_OK) {
 if (!nolock) {

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 11: Frame Transmission

 dev->xmit_lock_owner = -1;
 spin_unlock(&dev->xmit_lock);
 }
 spin_lock(&dev->queue_lock);
 return -1;
 }
 if (ret == NETDEV_TX_LOCKED && nolock) {
 spin_lock(&dev->queue_lock);
 goto collision;
 }
 }

We saw in the previous section that qdisc_run has already checked the status of the
egress queue with netif_queue_stopped, but here qdisc_restart checks it again. The
second check is not superfluous. Consider this scenario: when qdisc_run called
netif_queue_stopped, the lock on the driver was not taken yet. By the time the lock is
taken, another CPU could have sent something and the card could have run out of
buffer space. Therefore, netif_queue_stopped may have returned FALSE before but
would now return TRUE.

netdev_nit represents the number of protocol sniffers registered. If any are regis-
tered, dev_queue_xmit_nit is used to deliver a copy of the frame to each. (We saw
something similar for reception in netif_receive_skb in Chapter 10.)

Finally we get to the invocation of the device driver’s virtual function for frame trans-
mission. The function provided by the device driver is dev->hard_start_xmit, which
is defined for each device at initialization time (see Chapter 8). The NETDEV_TX_XXX
values returned by hard_start_xmit routines are listed in include/linux/netdevice.h.
Here is how qdisc_restart handles them:

NETDEV_TX_OK*

The transmission succeeded. The buffer is not released yet (kfree_skb is not
issued). We will see in the section “Processing the NET_TX_SOFTIRQ: net_tx_
action” that the driver does not release the buffer itself but asks the kernel to do
so by means of the NET_TX_SOFTIRQ softirq. This provides more efficient memory
handling than if each driver did its own freeing.

NETDEV_TX_BUSY
The driver has discovered that the NIC lacks sufficient room in its transmit
buffer pool. When this condition is detected, the driver often calls netif_stop_
queue too (see the section “Enabling and Disabling Transmissions”).

NETDEV_TX_LOCKED
The driver is locked. This return value is used only by drivers that support
NETIF_F_LLTX.

* The NETDEV_TX_XXX values were introduced relatively recently in kernel version 2.6.9. Before their introduc-
tion, hard_start_xmit functions used to just return 0 in case of success and 1 in case of error (e.g., if there
was no room in the NIC’s memory). So far, only a few drivers have been updated to use the NETDEV_TX_XXX
values (mainly those that support NETIF_F_LLTX); all the others still use the values 0 and 1 directly.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 249

In summary, transmission fails and a frame must be put back onto the queue when
one of the following conditions is true:

• The queue is disabled (netif_queue_stopped(dev) is true).

• Another CPU is holding the lock on the driver.

• The driver failed (hard_start_xmit did not return NETDEV_TX_OK).

See Figure 11-2 for details of the disc_restart function.

dev_queue_xmit Function
This function is the interface to the device driver that performs a transmission. As
shown in Figure 9-2 in Chapter 9, dev_queue_xmit can lead to the execution of the
driver transmit function hard_start_xmit through two alternate paths:

Interfacing to Traffic Control (the QoS layer)
This is done through the qdisc_run function that we already described in the pre-
vious section.

Invoking hard_start_xmit directly
This is done only for devices that do not use the Traffic Control infrastructures
(i.e., virtual devices).

We will look at these cases soon, but let’s start with the checks and tasks common to
both.

When dev_queue_xmit is called, all the information required to transmit the frame,
such as the outgoing device, the next hop, and its link layer address, is ready. Parts
VI and VII describe how those parameters are initialized.

Figures 11-3(a) and 11-3(b) describe dev_queue_xmit.

dev_queue_xmit receives only an sk_buff structure as input. This contains all the
information the function needs. skb->dev, for instance, is the outgoing device, and
skb->data points to the beginning of the payload, whose length is skb->len.

int dev_queue_xmit(struct sk_buff *skb)

The main tasks of dev_queue_xmit are:

• Checking whether the frame is composed of fragments and whether the device
can handle them through scatter/gather DMA; combining the fragments if the
device is incapable of doing so. See Chapter 21 for a discussion of fragmented
buffers.

• Making sure the L4 checksum (that is, TCP/UDP) is computed, unless the
device computes the checksum in hardware. See Chapter 18 for more details on
checksumming.

• Selecting which frame to transmit (the one pointed to by the input sk_buff may
not be the one to transmit because there is a queue to honor).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 11: Frame Transmission

In the following code, the data payload is a list of fragments when skb_shinfo(skb)->
frag_list is non-NULL; otherwise, the payload is a single block. If there are frag-
ments, the code checks whether scatter/gather DMA is a feature supported by the
device, and if not, combines the fragments into a single buffer itself. The function
must also combine the fragments if any of them are stored in a memory area whose
address is too big to be addressed by the device (that is, if illegal_highdma(dev, skb)
is true).*

 if (skb_shinfo(skb)->frag_list &&
 !(dev->features&NETIF_F_FRAGLIST) &&
 _ _skb_linearize(skb, GFP_ATOMIC)) {
 goto out_kfree_skb;
 }

 if (skb_shinfo(skb)->nr_frags &&
 (!(dev->features&NETIF_F_SG) || illegal_highdma(dev, skb)) &&
 _ _skb_linearize(skb, GFP_ATOMIC)) {
 goto out_kfree_skb;
 }

The defragmentation of fragments is done by _ _skb_linearize, which can fail for one
of the following reasons:

• The new buffer required to store the joined fragments failed to be allocated.

• The sk_buff buffer is shared with some other subsystems (that is, the reference
count is bigger than one). In this case, the BUG() macro is invoked, leading to a
kernel panic.

The L4 checksum can be calculated both in software and in hardware.† Not all net-
work cards can compute the checksum in hardware; the ones that can will set the
associated bit flag in net_device->features during device initialization. This tells
higher network layers that they do not need to worry about checksumming. The
checksum must instead be calculated in software if:

• There is no support for hardware checksumming.

• The interface can use hardware checksumming only for TCP/UDP packets over
IP, but the packet being transmitted does not use IP or uses another L4 protocol
over IP.

The software checksum is calculated with skb_checksum_help:

 if (skb->ip_summed == CHECKSUM_HW &&
 (!(dev->features & (NETIF_F_HW_CSUM | NETIF_F_NO_CSUM)) &&
 (!(dev->features & NETIF_F_IP_CSUM) ||
 skb->protocol != htons(ETH_P_IP))))
 if (skb_checksum_help(skb, 0))
 goto out_kfree_skb;

* Some devices can use only 16-bit addresses, which constrains the portion of addressable memory.

† The algorithm used by each protocol to compute the checksum is analyzed in the associated chapters.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 251

Figure 11-2. qdisc_restart function

Dequeue one
buffer

(frame)

Failure

Return queue length

Success

Does the
driver support

lockl ess TX?

Yes

Release lock on queue
(dev ->queue_lock)

Try getting the
lock on the driver

(dev ->xmit_lock)

Success

Save lock owner info
(dev ->xmit_lock_owner)

Is the lock held by
the current CPU?

Update statistics
(cpu_collision++)Free buffer

Return -1 Requeue frame

netif_schedule

Return -1

Is TX queue
stopped?

Is any sniffer
registered?

Yes

Give a copy of the frame
to each one

Does the
driver support

lockless TX?

Clear lock owner info
(dev ->xmit_lock_owner)

Release lock on driver
(dev ->xmit_lock)

1

2

1

2

Lock queue
(dev- >queue_lock)

Return -1

No

Yes

No

NETDEV_TX_OK
hard_start_x mit

NETDEV_TX_BUSY

Yes

No Does the
driver support

lockless TX?

Does the
driver support

lockless TX?

Yes

Yes

No

Clear lock owner info
(dev ->xmit_lock_owner)

Release lock on driver
(dev ->xmit_lock)

Lock queue
(dev ->queue_lock)

Lock queue
(dev ->queue_lock)

Failure

No

Yes No

No

NETDEV_TX_LOCKED

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 11: Frame Transmission

Once the checksum has been handled, all the headers are ready; the next step is to
decide which frame to transmit.

At this point, the behavior depends on whether the device uses the Traffic Control
infrastructure and therefore has a queuing discipline assigned. Yes, this may come as
a surprise. The function has just processed one buffer (defragmenting and checksum-
ming it if needed) but depending on whether a queuing discipline is used and which
one is used, and on the status of the outgoing queue, this buffer may not be the one
that will actually be sent next.

Queueful devices

When it exists, the queuing discipline of the device is accessible through dev->qdisc.
The input frame is queued with the enqueue virtual function, and one frame is then
dequeued and transmitted via qdisc_run, described in detail in the section “Queuing
Discipline Interface.”

 local_bh_disable();

Figure 11-3(a). dev_queue_xmit function

Defragment the buffer if
needed (_skb_linearize)

Compute the L4 checksum if
needed (skb_checksum_help)

Disable softirq
(local_bh_disable)

Does dev have
a queue?

Lock queue
(dev -> queue_lock)

Yes No

Enqueue frame
(dev -> qdisc -> enqueue)

Try sending something from
device’s queue (qdisc_run)

Release lock on queue
(dev -> queue_lock)

Return the result of the
enqueue operation

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 253

TFigure 11-3(b). dev_queue_xmit function

Is dev UP?

Is the driver
locked by the local

CPU?

ERROR:
Locking loop detected

Re-enable softirq

Free the buffer
(kfree_skb)

Return -ENETDOWN

1

LOCK DRIVER
(HARD_TX_LOCK)

Is TX queue
stopped?

Give a copy of the frame
to each registered sniffer

hard_start_xmit

UNLOCK_DRIVER
(HARD_TX_UNLOCK)

UNLOCK_DRIVER
(HARD_TX_UNLOCK)

Re-enable sofirq

Return 0

1

NETDEV_TX_OK
NETDEV_TX_LOCKED
NETDEV_TX_BUSY

Yes

No

No
Yes

YesNo

Does the
driver support

lockless TX?

Lock driver
(dev -> xmit_lock)

Save lock owner info
(dev -> xmit_lock_owner)

No Does the
driver support

lockless TX?

Clear lock owner info
(dev -> xmit_lock_owner)

No

Yes

HARD_TX_LOCK HARD_TX_UNLOCK

Yes

Unlock driver
(dev -> xmit_lock)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 11: Frame Transmission

 q = rcu_dereference(dev->qdisc);
 ...
 if (q->enqueue) {
 spin_lock(&dev->queue_lock);

 rc = q->enqueue(skb, q);

 qdisc_run(dev);

 spin_unlock_bh(&dev->queue_lock);
 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
 goto out;
 }

Note that both enqueuing and dequeuing are protected by the queue_lock lock on
the queue. Softirqs are also disabled with local_bh_disable, which also takes care of
disabling preemption as required by read-copy-update (RCU).

Queueless devices

Some devices, such as the loopback device, do not have a queue: whenever a frame is
transmitted, it is immediately delivered. (But because there is no place to requeue
them, frames are dropped if something goes wrong; they are not given a second
chance.) If you look at loopback_xmit in drivers/net/loopback.c, you will see at the end
a direct call to netif_rx, bypassing all the queuing business. We saw in Chapter 10
that netif_rx is the API called by non-NAPI device drivers to put an incoming frame
into the input queue and signal higher layers about the event. Since there is no input
queue for the loopback device, the transmission function accomplishes two tasks:
transmit on one side and receive on the other, as shown in Figure 11-4.

The last part of dev_queue_xmit is used to handle devices without a queuing disci-
pline and therefore without an egress queue. It closely resembles the behavior of

Figure 11-4. (a) Queueful device transmission; (b) loopback transmission

dev_queue_xmit
(a)

hard_start_xmit

TC

dev_queue_xmit
(b)

hard_start_xmit
(loopback_xmit)

netif_rx

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 255

qdisc_run covered in the section “Queuing Discipline Interface.” There are, how-
ever, two differences in the case where no queue is used:

• When a transmission fails, the driver cannot put the buffer back into any queue
because there is no queue, so the buffer is dropped by dev_queue_xmit. If the
higher layers are using a reliable protocol such as TCP, the data will eventually
be retransmitted; otherwise, it will be lost.

• The NETIF_F_LLTX feature introduced in the section “qdisc_restart function” is
taken care of by the two macros HARD_TX_LOCK and HARD_TX_UNLOCK. HARD_TX_LOCK
uses spin_lock rather than spin_trylock: when the driver lock is already taken,
dev_queue_xmit spins, waiting for it to be released.

Processing the NET_TX_SOFTIRQ: net_tx_action
We saw in Chapter 10 that the net_rx_action function is the handler associated with
NET_RX_SOFTIRQ software interrupts. It is triggered by device drivers (and by itself
under some specific conditions) and handles the part of the input frame processing
that is postponed by device drivers to the “after interrupt handling phase.” In this
way, the code executed in interrupt context by the driver does only what is strictly
necessary (copy the data in memory and signal the kernel about its existence by gen-
erating a software interrupt) and does not force the rest of the system to wait long;
later on, the software interrupt takes care of that part of the frame processing that
can wait.

net_tx_action works in a similar way. It can be triggered with raise_softirq_
irqoff(NET_TX_SOFTIRQ) by devices in two different contexts, to accomplish two main
tasks:

• By netif_wake_queue when transmission is enabled on a device. In this case, it
makes sure that frames waiting to be sent are actually sent when all the needed
conditions are met (for instance, when the device has enough memory).

• By dev_kfree_skb_irq when a transmission has completed and the device driver
signals with the former routine that the associated buffer can be released. In this
case, it deallocates the sk_buff structures associated with successfully transmit-
ted buffers.

The reason for the second task is as follows. We know that when code from the
device driver runs in interrupt context, it needs to be as quick as possible. Releasing a
buffer can take time, so it is deferred by asking the net_tx_action softirq to take care
of it. Instead of using dev_kfree_skb, device drivers use dev_kfree_skb_irq. While the
former deallocates the sk_buff (which actually consists of the buffer going back into
a per-CPU cache), the latter simply adds the pointer to the buffer being released to
the completion_queue list of the softnet_data structure associated with the CPU and
lets net_tx_action do the real job later.

Let’s see how net_tx_action accomplishes its two tasks.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 11: Frame Transmission

It starts by deallocating all the buffers that have been added to the completion_queue
list by the device drivers’ calls to dev_kfree_skb_irq. Because net_tx_action is run-
ning outside interrupt context, a device driver could add elements to the list at any
time, so net_tx_action must disable interrupts while accessing the softnet_data
structure. To keep interrupts disabled as little as possible, it clears the list by setting
completion_queue to NULL and saves the pointer to the list in a local variable clist,
which no one else can access (note also that each CPU has its own list). This way, it
can walk through the list and free each element with _ _kfree_skb, while drivers can
continue adding new elements to completion_queue.

 if (sd->completion_queue) {
 struct sk_buff *clist;

 local_irq_disable();
 clist = sd->completion_queue;
 sd->completion_queue = NULL;
 local_irq_enable();

 while (clist != NULL) {
 struct sk_buff *skb = clist;
 clist = clist->next;

 BUG_TRAP(!atomic_read(&skb->users));
 _ _kfree_skb(skb);
 }
 }

The second half of the function, which transmits frames, works similarly: it uses a
local variable to remain safe from hardware interrupts. Note that for each device,
before transmitting anything, the function needs to grab the lock on the output
device’s queue (dev->queue_lock). If the function fails to grab the lock (because
another CPU holds it), it simply reschedules the device for transmission with netif_
schedule.

 if (sd->output_queue) {
 struct net_device *head;

 local_irq_disable();
 head = sd->output_queue;
 sd->output_queue = NULL;
 local_irq_enable();

 while (head) {
 struct net_device *dev = head;
 head = head->next_sched;

 smp_mb_ _before_clear_bit();
 clear_bit(_ _LINK_STATE_SCHED, &dev->state);

 if (spin_trylock(&dev->queue_lock)) {
 qdisc_run(dev);

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 257

 spin_unlock(&dev->queue_lock);
 } else {
 netif_schedule(dev);
 }
 }
 }

We already saw in the section “Queuing Discipline Interface” how qdisc_run works.
Devices are handled in a sequential order starting from the head of the list. Because
the netif_schedule function (calling _ _netif_schedule internally) adds elements at
the head of the list, devices are served in Last In, First Out (LIFO) order, which in
some conditions may be unfair.

That completes the net_tx_action function; let’s look at some contexts where it can
be invoked to free buffers. Some functions that desire to release a buffer can be
invoked in different contexts, inside or outside interrupt context. A wrapper is avail-
able to handle these cases elegantly:

static inline void dev_kfree_skb_any(struct sk_buff *skb)
{
 if (in_irq() || irqs_disabled())
 dev_kfree_skb_irq(skb);
 else
 dev_kfree_skb(skb);
}

The dev_kfree_skb_irq function runs when the calling function is in interrupt con-
text, and looks like this:

static inline void dev_kfree_skb_irq(struct sk_buff *skb)
{
 if (atomic_dec_and_test(&skb->users)) {
 struct softnet_data *sd;
 unsigned long flags;

 local_irq_save(flags);
 sd = &_ _get_cpu_var(softnet_data);
 skb->next = sd->completion_queue;
 sd->completion_queue = skb;
 raise_softirq_irqoff(NET_TX_SOFTIRQ);
 local_irq_restore(flags);
 }
}

A buffer can be freed only if there are no other references to it (that is, if skb->users
is 0).

Let’s see an example of how the execution of net_tx_action is triggered by an indi-
rect call to cpu_raise_softirq(cpu, NET_TX_SOFTIRQ) by a device driver. (Another
example can be found in the section “Enabling and Disabling Transmissions.”)

Among the interrupt types handled by the vortex_interrupt function in drivers/net/
3c59x.c we introduced earlier is an interrupt invoked by the device to tell the driver

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 11: Frame Transmission

that a DMA transfer from the CPU to the device is completed (DMADone). Since the
buffer has been transferred to the device, the sk_buff structure can now be freed.
Because the interrupt handler is running in interrupt context, the driver calls dev_
kfree_skb_irq.

if (status & DMADone) {
 if (inw(ioaddr + Wn7_MasterStatus) & 0x1000) {
 outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma,
 (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
 if (inw(ioaddr + TxFree) > 1536) {
 netif_wake_queue(dev);
 } else { /* Interrupt when FIFO has room for max-sized packet. */
 outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
 netif_stop_queue(dev);
 }
 }
}

Watchdog timer

We saw in the section “Enabling and Disabling Transmissions” that transmission
can be disabled by a device driver when certain conditions are met. The disabling of
transmission is supposed to be temporary, so when transmission is not re-enabled
within a reasonable amount of time, the kernel assumes the device is experiencing
some problems and should be restarted.

This is achieved by a per-device timer that is started with dev_watchdog_up when the
device is activated with dev_activate. The timer regularly expires, makes sure every-
thing is OK with the device, and restarts itself. When it detects a problem—because
the device’s egress queue is disabled (netif_queue_stopped returns TRUE) and too
much time has passed since the last frame transmission took place—the timer’s han-
dler invokes a routine registered by the device driver, which resets the NIC.

Here are the net_device fields used to implement this mechanism:

trans_start
This is the timestamp initialized by the device driver when the last frame trans-
mission started.

watchdog_timer
This is the timer started by Traffic Control. The handler executed when the
timer expires is dev_watchdog, defined in net/sched/sch_generic.c.

watchdog_timeo
This is the amount of time to wait. This is initialized by the device driver. When
it is set to 0, watchdog_timer is not started.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Transmissions | 259

tx_timeout
This is the routine provided by the device driver that will be invoked by dev_
watchdog to reset the device.

When the timer expires, the kernel handler dev_watchdog takes action by calling the
function to which tx_timeout points. The latter normally resets the card and restarts
the interface scheduler with netif_wake_queue.

The proper value for watchdog_timeo depends on the interface. If the driver does not
set it, it defaults to 5 seconds. The parameters to take into account when defining the
value are:

The likelihood of transmission collisions
This is zero for point-to-point links, but can be high on shared and overloaded
Ethernet links plugged into hubs.

The interface speed
The slower the interface, the bigger the timeout should be.

The value of watchdog_timeo is usually defined as a multiple of the variable HZ, which
represents 1 second. HZ is a global variable whose value depends on the platform (it is
defined in the architecture-dependent file include/asm-XXX/param.h). As you can see
in Table 11-1, even devices of the same type may take different values for the time-
out. The table lists only a few examples; it is not a complete list.

Table 11-1. Transmission timeout used by the most common network cards

Device driver watchdog_timeo (timeout used)

3c501 HZ

3c505 10*HZ

3c509 (400*HZ)/1000

3c515 (400*HZ)/1000

3c523 HZ

3c527 5*HZ

3c59x 5*HZ

dl2k 4*HZ

Natsemi 2*HZ

Aironet 4500 8*HZ

s2io (10Gbit) 5*HZ

8390 (20*HZ)/100

8139too 6*HZ

b44 5*HZ

tg3 5*HZ

e100 2*HZ

e1000 5*HZ

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 11: Frame Transmission

The watchdog timer mechanism is provided by the Traffic Control code. However,
advanced device drivers may implement their own watchdog timers, too. See drivers/
net/e1000_main.c for an example.

SIS 900 4*HZ

Tulip family 4*HZ

Intel EtherExpress 16 2*HZ

SLIP 20*HZ

Table 11-1. Transmission timeout used by the most common network cards (continued)

Device driver watchdog_timeo (timeout used)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

261

Chapter 12 CHAPTER 12

General and Reference
Material About Interrupts

This chapter contains several general types of information that apply to the material
presented in the previous three chapters on interrupts and frame handling.

Statistics
Statistics about frame reception are kept in the per-CPU array netdev_rx_stat, whose
elements are of type netif_rx_stats (see include/linux/netdevice.h):

struct netif_rx_stats netdev_rx_stat[NR_CPUS];

struct netif_rx_stats
{
 unsigned total;
 unsigned dropped;
 unsigned time_squeeze;
 unsigned throttled;
 unsigned fastroute_hit;
 unsigned fastroute_success;
 unsigned fastroute_defer;
 unsigned fastroute_deferred_out;
 unsigned fastroute_latency_reduction;
 unsigned cpu_collision;
} __ _ _cacheline_aligned;

The elements of netif_rx_stats are:

total
Total number of ingress frames processed, including any that might be dis-
carded. This value is updated both in netif_rx and in netif_receive_skb, which
means that (by mistake) the same frame is accounted for twice when the driver
does not use NAPI (i.e., it uses the netif_rx interface; see Figure 10-2 in
Chapter 10).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 12: General and Reference Material About Interrupts

dropped
Number of frames that were dropped because they were received when the CPU
was in the throttle state.

time_squeeze
Number of times net_rx_action had to return while frames were still in the CPU
ingress queue, so as not to become a CPU hog. See the section “Processing the
NET_RX_SOFTIRQ: net_rx_action” in Chapter 10.

throttled
Number of times the CPU went into the throttle state. This value is incremented
by netif_rx.

fastroute_hit
fastroute_success
fastroute_defer
fastroute_latency_reduction
fastroute_deferred_out

Fields that used to be used by the Fastroute feature. This feature has been
dropped in kernel 2.6.8.

cpu_collision
Number of times the CPU failed to grab the lock on a device driver (more pre-
cisely, on dev->xmit_lock) because the lock was already taken by another CPU.
This counter is updated in qdisc_restart, which handles only frame transmis-
sion, not reception. cpu_collision is the only statistic about transmission that
has been included in this structure.

The fact that some of the preceding counters are currently updated only by netif_rx
(which is used only by non-NAPI drivers), means that their values are not correct
when using NAPI drivers.

The contents of the netdev_rx_stat vector can be viewed via the /proc interface. See
the next section.

Other statistics are kept by the driver in private data structures (see Chapter 2), by
higher-layer protocols, and by the Traffic Control queuing disciplines. Some of those
values can be read with user-space applications such as ifconfig, tc, ip, or netstat, and
others are also exported via /proc.

Tuning via /proc and sysfs Filesystems
All of the files in /proc/sys/net/core listed in Table 12-1 are defined in net/core/sysctl_
net_core.c, where you can find the association between files and kernel variables.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Functions and Variables Featured in This Part of the Book | 263

I would like to stress that NAPI drivers do not need any of the fields in Table 12-1.
NAPI drivers are expected to initialize net_device->weight using local (to the driver)
values rather than weight_p. But they could use weight_p if they wanted, particularly
because they usually use the same default value of 64. Starting with kernel 2.6.12,
the value of net_device’s weight field can be tuned at runtime with sysfs via the per-
device files /sys/class/net/device_name/weight. The weight file is created in net/core/
net-sysfs.c.

The statistics collected with the netdev_rx_stats structures described in the section
“Statistics” can be read via the file /proc/net/softnet_stat (the output is in
hexadecimal).

Functions and Variables Featured in This Part of the Book
Table 12-2 summarizes the main functions, variables, and data structures intro-
duced or referenced in the previous three chapters. Additional ones can be found in
Table 9-1 in Chapter 9.

Table 12-1. /proc/sys/net/core/ files usable for tuning frame reception

Filename Kernel variablea

a All of these variables are defined in net/core/dev.c.

Default value

netdev_max_backlog netdev_max_backlog 300

mod_cong

lo_cong

no_cong

no_cong_thresh

mod_cong

lo_cong

no_cong

no_cong_thresh

290

100

20

10

dev_weight weight_p 64

Table 12-2. Functions, variables, and data structures related to interrupts and
frame handling

Name Description

Functions

netif_rx Queues an input frame into a CPU’s queue. See the section
“Old Versus New Driver Interfaces” in Chapter 10.

netif_rx_schedule
_ _netif_rx_schedule

Schedules the NET_RX_SOFTIRQ software interrupt for execution. See the section
 “Old Versus New Driver Interfaces” in Chapter 10.

netif_rx_complete Called by the net_device->poll virtual function when the latter has cleared the
queue.

netif_start_queue
netif_stop_queue

Enables and disables transmission on a device, respectively. See the section “Enabling
and Disabling Transmissions” in Chapter 11.

netif_queue_stopped Checks whether a device is enabled for transmission.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 12: General and Reference Material About Interrupts

netif_schedulea

netif_wake_queue
netif_schedule schedules a device for transmission. netif_wake_queue
enables transmission on a device and schedules the device for transmission. See the
section “Scheduling a Device for Transmission” in Chapter 11.

qdisc_run Dequeues a frame from the egress queue of a device and pushes it down to the device
driver for transmission. See the section “Queuing Discipline Interface” in Chapter 11.

process_backlog poll virtual function used by non-NAPI device drivers. See the section
 “Backlog Processing: The process_backlog Poll Virtual Function” in Chapter 10.

netif_receive_skb Processes input frames by passing them to higher-layer protocol handlers. See the
section “Ingress Frame Processing” in Chapter 10.

dev_queue_xmit Main function for frame transmission. See the section “dev_queue_xmit Function” in
Chapter 11.

dev_kfree_skb
dev_kfree_skb_irq
dev_kfree_skb_any

Releases an sk_buff structure. See the section
“Processing the NET_TX_SOFTIRQ: net_tx_action” in Chapter 11.

do_IRQ Takes care of a hardware interrupt notification by invoking the associated handler.

open_softirq
raise_softirq, raise_
softirq_irqoff

Registers and schedules for execution a software interrupt, respectively. See the section
“Bottom-half handlers in kernel 2.4 and above: the introduction of the softirq” in
Chapter 9.

do_softirq
invoke_softirq

Takes care of the pending software interrupts by invoking the associated handlers. See
the section “Pending softirq Handling” in Chapter 9.

net_rx_action
net_tx_action

The handlers for the NET_RX_SOFTIRQ and NET_TX_SOFTIRQ software interrupts,
respectively. See the section “How the Networking Code Uses softirqs” in Chapter 9.

tasklet_init Initializes a tasklet_struct structure.

tasklet_action
tasklet_hi_action

Handlers for the TASKLET_SOFTIRQ and HI_SOFTIRQ software interrupts,
respectively. See the section “Tasklets” in Chapter 9.

tasklet_enable,
tasklet_hi_enable
tasklet_disable,
tasklet_disable_nosync

Enables and disables a tasklet, respectively. See the section “Tasklets” in Chapter 9.

tasklet_schedule
tasklet_hi_schedule

Schedules a tasklet for execution. See the section “Tasklets” in Chapter 9.

Variables

mod_cong
lo_cong
no_cong
no_cong_thresh

Congestion levels for the input queue (used with non-NAPI devices). See the section
“Fields of softnet_data” in Chapter 9.

netdev_max_backlog Maximum size for the CPU’s input queues. See Figure 9-4 in Chapter 9.

Data structures

softnet_data The two NET_XXX_SOFTIRQ software interrupts use one such structure for each CPU.
See the section “softnet_data Structure” in Chapter 9.

tasklet_struct Represents a tasklet. See the section “Tasklets” in Chapter 9.

a For consistency with the reception function names, it should probably have been called netif_tx_schedule.

Table 12-2. Functions, variables, and data structures related to interrupts and
frame handling (continued)

Name Description

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Files and Directories Featured in This Part of the Book | 265

Files and Directories Featured in This Part of the Book
Figure 12-1 shows the files and directories we have referenced in the first four chap-
ters of Part III. The xxx keyword in the figure represents an architecture (e.g., i386).*

Some architectures do not require particular architecture specific files, because a
general-purpose file can sometimes be used by multiple architectures.

* The irq.c file may not always be inside a directory called kernel.

Figure 12-1. Files and directories featured in this part of the book

Root
(usually /usr/src/linux)

include

asm

softrirq.h
hardirq.h
system.h

linux

netdevice.h
interrupt.h
irq_cpustat.h
preempt.h

net

pkt_sched.h

arch

xxx

apic.c
entry.S
irq.c

kernel

net

sched

dev.c
net-sysfs.c

core

sch_generic.c

kernel

softirq.c

drivers

net

tulip

interrupt.c

3c59x.c
tg3.c
loopback.c

-xxx

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

266

Chapter 13CHAPTER 13

Protocol Handlers

Protocols are the framework for all communication: they indicate to each correspon-
dent how to understand the other side of a conversation. In Linux, communication is
understood through a protocol handler at each networking layer. This chapter
explains how these handlers are installed, chosen at runtime, and invoked.

To understand the relationship among communication layers and protocols, imag-
ine a possible situation in real life where I have to talk to a stranger. What language
should I use? If I’m in Italy I’ll begin with Italian, and if I’m in the United States I’ll
try English. If these don’t work, there may be ways to negotiate the use of a different
language.

On top of that basic protocol, there are others. When writing a letter, for instance,
my relationship with the correspondent determines whether I begin “Dear Madam”
or “Hi, gal!” These sorts of choices take place at many layers of real-life communica-
tion. Networks have layers too, and the choice of protocols becomes formalized in
network code.

Overview of Network Stack
Readers of this book are expected to be familiar with the basic TCP/IP protocols, but
there are some other protocols in common use—such as Logical Link Control (LLC)
and Subnetwork Access Protocol (SNAP)—that you may not know. This section
introduces key protocols and shows their relationships.

The two best-known models for network protocols are the seven-layer OSI model
and the five-layer TCP/IP model, shown in Figure 13-1. The OSI model remains an
important reference point for networking discussions even though it never took off
for a variety of reasons. The TCP/IP model covers most of the protocols used by
computers today.*

* For more information on these two models, I suggest Computer Networks, Second Edition (Prentice Hall).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Overview of Network Stack | 267

At each layer, numerous protocols are available. At the lowest level, where interfaces
exchange data, the protocol in use is predetermined. A driver for that protocol is
associated with the interface, and all data that comes in on the interface is assumed
to follow the protocol (i.e., Ethernet); if it doesn’t, errors are reported and no com-
munication takes place.

But once the driver has to hand over data to a higher layer, a choice of protocols
ensues. Should data at L3 be handled by IPv4, IPv6, IPX (the Novell NetWare proto-
col), DECnet, or some other network-layer protocol? And a similar choice must be
made going from L3 to L4, where TCP, UDP, ICMP, and other protocols reside.

This chapter deals with the lower three layers and briefly touches on the fourth one.

An individual package of transmitted data is commonly called a frame on the link
layer, L2; a packet on the network layer; a segment on the transport layer; and a
message on the application layer.

The layers are often called the network stack, because communication travels down
the layers until it is physically transmitted across the wire (or wireless bands) and
then travels back up. Headers are also added and removed in a LIFO manner.

The Big Picture
Figure 13-2 builds on the TCP/IP model in Figure 13-1. Figure 13-2 shows which
chapter covers each interface between adjacent layers. Some of these interfaces involve
communication down the stack, whereas others involve communication upward:

Going up in the stack (for receiving a message)
This chapter describes how ingress traffic is handed to the right protocol han-
dler. (The meaning of ptype_base and ptype_all will become clear in the section
“Protocol Handler Organization.”)

Figure 13-1. OSI and TCP/IP models

Application7

Presentation6

Session5

Transport4

Network3

Data link2

Physical1

OSI

Application

Transport (TCP/UDP/...)

Internet (IPv4, IPv6)

Link layer or
Host-to-network
(Ethernet, . . .)

TCP/IP

5

4

3

1/2

Message

Segment

Datagram/packet

Frame

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 13: Protocol Handlers

Chapter 10 describes how device drivers notify the kernel about the reception of
ingress frames.

Chapter 24 describes how the IPv4 protocol delivers ingress IPv4 packets to the
right L4 protocol (IPv4 is the only network layer protocol we cover in the book).
The IPv4 receive routine is described in Chapter 19.

Going down in the stack (for sending a message)
Chapter 21 describes the functions provided by the IPv4 layer for transmission.

Part VI describes how the neighboring layer interfaces the L3 protocols to the
transmitting routine dev_queue_xmit. The latter is described in Chapter 11.

As shown in Figure 13-2, the socket interface is not covered in this book. However,
there is one point worth mentioning about the AF_PACKET socket type. It’s the Linux
way to capture frames at the link layer and inject frames into the link layer, directly
bypassing all the intermediate protocol layers. Network sniffers such as tcpdump and
Ethereal are common users of AF_PACKET sockets. You can see from the figure that AF_
PACKET sockets hand frames directly to dev_queue_xmit, and receive ingress frames
directly from the network protocol dispatcher routine (this latter point is addressed
in Chapter 10).

Figure 13-2 shows only two protocol families (PF_INET, PF_PACKET), but several oth-
ers are implemented in the Linux kernel. Among them are:

PF_NETLINK
Used as the preferred interface for network configuration. See Chapter 3.

PF_KEY
Used as a key management interface for network security services. IPsec is one of
these services.

PF_LLC
See the section “Logical Link Control (LLC).”

Link Layer Choices for Ethernet (LLC and SNAP)
Although the link layer protocol is fairly fixed by the hardware in use, the Ethernet
standard allows some choice between protocols. The first attempt at standardizing
this choice was called Logical Link Control (LLC). Since it offered very limited
options, it never saw much use. The IEEE 802 committee then standardized the Sub-
network Access Protocol (SNAP), which is found in use fairly often. The implemen-
tation of both of these subprotocols is described later in this chapter.

In LLC, the header contains a field specifying the protocol for the Source Service
Access Point (SSAP) and the protocol for the Destination Service Access Point
(DSAP). Each field, however, contains only 8 bits, one of which is dedicated to a flag
that indicates whether multicast is in use and another dedicated to a flag that
indicates whether the address is local to one network or is recognized worldwide.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Overview of Network Stack | 269

Therefore, with 6 bits left to specify a protocol, LLC supports a maximum of 64 pro-
tocols, which is too few to make the technology popular.

Therefore, the IEEE 802 committee extended LLC by providing a special value in the
SSAP and DSAP fields that indicates that the protocol in use by that source or desti-
nation is identified by another 5 bytes in the header. With this extension, called
SNAP, there are 40 bits that can be assigned to various protocols.

How the Network Stack Operates
Let’s briefly examine a sample communication to see how choices are made at com-
munication points.

Figure 13-2. The big picture

BSD socket interface

PF_INETPF_PACKET

User space
Kernel

UDP TCP . . .

L4
Chapter 24

IPv4 (part V)

L3 (ptype_base)

Chapter 21

ARP . . .

THIS chapter

Neighboring

dev_queue_xmit

Device drivers (L2)

tcpdump tftp telnet ping

SOCK_RAW
SOCK_DGRAM

SOCK_DGRAM SOCK_STREAM SOCK_RAW

Chapter 21

Not in the book

In the book

Chapter 21
Chapter
19

(ptype_all)

Part VI

Part VI

Chapter 11Chapter 10

Transport

Network

Application

Link

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 13: Protocol Handlers

In Figure 13-3, assume that a user at Host X wants to download an HTML page
using a web browser from the web server running on Server Y. Some of the ques-
tions to answer include the following:

• Because Host X and Server Y are on different local area networks, how will they
be able to talk to each other?

• Because Host X does not know where Server Y is physically located, how will it
find out where to send its request?

• If Server Y is running more than one application (not just the web server), how
can its operating system determine which application should handle the request
from Host X?

• If Host X is running more than one application (not just the browser), how can
its operating system determine which application receives the data that returns?

Let’s follow the request for a web page through the network stack to see how these
questions are answered. We’ll use Figures 13-3* and 13-4 as references.

Figure 13-3. Example of communication between two remote stations (Host X and Server Y)

* The figure shows only the details needed for our discussion.

Token Ring

Router RT1

MAC: 00:20:ed:76:00:02
IP:100.100.100.1

Host X
MAC: 00:20:ed:76:00:01

IP:100.100.100.100

Router RT2

Router
RT3

. . .

Ethernet

Server Y

MAC: 00:20:ed:76:00:03
IP:150.150.150.2

MAC: 00:20:ed:76:00:04
IP:150.150.150.1

Internet

MAC: 00:20:ed:76:00:05
IP:208.201.237.1

MAC: 00:20:ed:76:00:06
 IP:208.201.237.37

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Overview of Network Stack | 271

Application layer, Host X
The browser reads the URL requested by the user; suppose it is http://www.
oreilly.com. The browser uses the Domain Name System (a topic beyond the
scope of this book) to resolve the domain www.oreilly.com to an IP address,
which we’ll suppose is 208.201.239.37. It is up to the IP protocol (L3, the net-
work layer) to find a path between Host X and Server Y using this address.

The browser now initiates an HTTP session on the application layer to 208.201.
239.37. It then invokes TCP to carry the traffic to the remote web server. (TCP is
used instead of UDP because HTTP requires a reliable channel that can deliver
large amounts of data without corrupting it.) The request is now traveling down
the network stack.

Transport layer, Host X
The TCP layer breaks the HTTP message request into segments, if needed, and
adds a TCP header to each. Among other things, TCP adds the source and desti-
nation port. The port number lets the operating system direct the request to the
proper application. The web server on Server Y listens on the default HTTP port
80 unless it is explicitly configured to use a different port number, and picks up
all traffic there. Server Y directs responses back to Host X’s port 5000, which is
the source port number the server got from the request received from the host.

Port numbers are an L4 concept, so a separate set of ports exist for TCP and
UDP.

The TCP layer on Host X knows the destination port is 80 because the browser
uses the default port assigned to the HTTP protocol unless a different one is pro-
vided in the URL. The source port assigned to the browser (which will be used
to identify the target application when processing ingress traffic) is assigned by
the OS (unless a specific one is asked by the application). Let’s assume that port
was 5000. Different ports can be used for the two sides of the conversation. Net-
work Address Translation (NAT) and proxying firewalls complicate the issue
even further, but the outlines of how applications reach each other should be
clear from this discussion.

The TCP layer does not know how to get the segments to the destination sys-
tem. To accomplish that, the TCP layer invokes the IP layer, passing the destina-
tion IP address in each transmission request.

Network layer, Host X
The IP layer does not care about applications or ports. All it does is examine the
IP addresses on the packets and the network options related to IP. Its big task is
to consult routing tables (a complex process discussed in detail in Part VII) to
discover that the packet should go through Router RT1. The IPv4 protocol is
described in detail in Part V.

The packet is going to drop down another layer to be sent to the router, but the
IP layer has to find the right address on this layer for the router. Since L2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 13: Protocol Handlers

involves communication between neighboring hosts (such as hosts sharing a
LAN or a point-to-point link), the process used by the IP layer to find the L2
address associated with a given IP address is called a neighbor protocol. It is dis-
cussed in Part VI.

Link layer, Host X and Router RT1
This layer is implemented partly by a device driver. On LANs, Ethernet is the
most common protocol, but ATM, Token Ring, FDDI, and others exist. Long-
distance links use dedicated copper or fiber lines; the simplest of these is the
dial-up connection that millions of home and small-office users still establish
with their ISPs. LANs use their own (L2) addressing schemes that have nothing
to do with TCP/IP; on Ethernet (and in IEEE 802 networks in general),
addresses are 6 octets long and are commonly called MAC addresses. On a dedi-
cated line (e.g., dial-up), no L2 addressing is needed at all because each side sim-
ply sends to the other side.

Different types of headers might be used on different links, because each is hard-
ware-specific. These headers do not carry any information that is meaningful for
the browser and server at the application layer.

Routers RT1, RT2, etc.
Each router in the path, except for the last, goes through the following process
to forward the packet to its final destination:

• It removes the link layer header.

• It can see that the L3 protocol is IP thanks to a specific field in the link layer
header, discussed later in this chapter.

• It determines that the local system is not the destination of the packet
because the destination IP address included in the IP header is not one of its
own IP addresses.

• It forwards the IP packet to the next router on the path toward Server Y. To
do this, it consults its routing tables to select the next hop router and cre-
ates a new link layer header (i.e., Figure 13-4(E)). The last step is described
in detail in Chapter 35.

Normally, the information on L3 (the IP header) does not change as the packet
goes from system to system.* Different L2 headers are used on each link.

When the packet finally arrives at Router RT3, the latter realizes that Server Y is
directly connected and that there is no need to route the packet another hop.

Once the message reaches the destination server, it traverses the network stack again
from the bottom upward:

* We will see in Part V that only changing fields, such as Time To Live (TTL) and checksum, need to be
updated.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Overview of Network Stack | 273

Link layer, Server Y
Stripping off the L2 header, this layer checks a field to see which protocol han-
dles the L3 layer. Finding that L3 is handled by IP, the link layer invokes the
appropriate function to continue handling the L3 packet (i.e., L2 payload). Most
of this chapter discusses the manner in which protocols register themselves and
handle the key field indicating which protocol to use.

Network layer, Server Y
This layer recognizes that its own system’s IP address, 208.201.239.37, is the
destination address in the packet and therefore that the packet should be han-
dled locally. The network layer strips off the L3 header and once again checks a
field to see what protocol handles L4. Chapter 24 offers an in-depth description
of the interface between L3 and L4 for ingress traffic.

Figure 13-4 shows how a header is added by each network layer as each one takes
the data from a higher layer. The last step, from Figure 13-4(d) to Figure 13-4(e),
shows the difference between the original frame transmitted to Router RT1 by Host
X and the one between Router RT1 and Router RT2.

Figure 13-4. Headers compiled by layers: (a…d) on Host X as we travel down the stack; (e) on
Router RT1

(a)

Message

/examples/example1.html

(b)

Transport header

/examples/example1.html

(c)

Network header

/examples/example1.html

(d)

Link layer header

/examples/example1.html

(e)/examples/example1.html

Src port=5000
Dst port=80

Src port=5000
Dst port=80

Src IP=100.100.100.100
Dst IP=208.201.239.37
Transport protocol=TCP

Src port=5000
Dst port=80

Src IP=100.100.100.100
Dst IP=208.201.239.37
Transport protocol=TCP

Src MAC=00:20:ed:76:00:01
Dst MAC=00:20:ed:76:00:02
Internet protocol=IPv4

Src port=5000
Dst port=80

Src IP=100.100.100.100
Dst IP=208.201.239.37
Transport protocol=TCP

Src MAC=00:20:ed:76:00:03
Dst MAC=00:20:ed:76:00:04
Internet protocol=IPv4

Transport layer payload

Network layer payload

Link layer payload

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 13: Protocol Handlers

As we have seen, each layer provides a variety of protocols. Each protocol is handled
by a different set of kernel functions. Thus, as the packet travels back up the stack,
each protocol must figure out which protocol is being used by the next-higher layer,
and invoke the proper kernel function to handle the packet.

On the lowest software layer, L2, the hardware in use defines the protocol. If the
frame is received on an Ethernet interface, the receiver knows it contains an Ethernet
header, and a Token Ring interface knows it contains a Token Ring header, and so
on. There is no ambiguity unless LCC or SNAP is specified. LLC and SNAP are dis-
cussed later in this chapter.

But as the packet travels up the network stack, each protocol needs a field in its
header to tell it which protocol should handle the next stage of processing. The
progress is shown in Figure 13-5. Thus, the transition from L2 in Figure 13-5(a) to
L3 in Figure 13-5(b) depends on L2 checking an “Above protocol” field in the L2
header. Similarly, the L3 layer checks a field in its header to facilitate the transition to
L4, shown in Figure 13-5(b) and Figure 13-5(c). Finally, L4 uses the Destination Port
field of the packet to take the packet out of the kernel and find the process, such as a
web server, that handles the packet on the local host.

Executing the Right Protocol Handler
For each network protocol, regardless of its layer, there is one initialization function.
This includes L3 protocols such as IPv4 and IPv6, link layer protocols like ARP, and
so on. For a protocol included statically in the kernel, the initialization function exe-
cutes at boot time; for a protocol compiled as a module, the initialization function
executes when the module is loaded. The function allocates internal data structures,
notifies other subsystems about the protocol’s existence, registers files in /proc, and
so on. A key task is to register a handler in the kernel that handles the traffic for a
protocol.

In this section, for the sake of simplicity, I’ll show how a device driver (which oper-
ates on L2) invokes an L3 protocol, but the same principle applies to any protocol on
any layer.

When the device driver receives a frame, it stores it into an sk_buff buffer data struc-
ture and it initializes the protocol field shown here:

struct sk_buff
{

 unsigned short protocol;

};

The value in this field can be an arbitrary value used by the kernel to identify a given
protocol, or a field of a MAC header in the incoming frame. The field is consulted by

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing the Right Protocol Handler | 275

Figure 13-5. Frame decapsulation, layer by layer, at Server Y

Src MAC= 00:20:ed:76:00:05
Dst MAC= 00:20:ed:76:00:06
Internet protocol= IPv4

Ethernet driver Token ring driver

Interface type
Ethernet

Token ring

. . .

(a)

Src IP= 100.100.100.100
Dst IP= 208.201.239.37
Transport protocol= TCP

IPv4 RX routine IPv6 RX routine

Network
protocol

IPv4

IPv6

. . .

(b)

Src port= 5000
Dst port= 80

TCP RX routine UDP RX routine

Transport
protocol

TCP

UDP

. . .

(c)

Web server xterm

DST port
number

80

2578

. . .

(d)

/examples/example1.html
. . .

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 13: Protocol Handlers

the kernel function netif_receive_skb (described in Chapter 10) to determine which
function handler to execute to process the packet at L3. See Figure 13-6.

Most of the values used by the kernel to refer to the protocols in the protocol field
are listed in include/linux/if_ether.h with the name ETH_P_XXX. Despite the ETH prefix,
not all names refer to Ethernet hardware. As Table 13-1 shows, they can cover a wide
range of activities. Table 13-1 lists the values used internally by the kernel, which are
assigned directly to skb->protocol by device drivers instead of being extracted from a
frame header. (The ones omitted from the table are not assigned a function handler.)
The first row of the table, for instance, indicates that the kernel handler ipx_rcv is
used to process an incoming packet whose skb->protocol field is ETH_P_802_3.

Not all the ETH_P_XXX values are assigned a handler. They can be left unassigned in
two circumstances:

Figure 13-6. netif_receive_skb processes according to the protocol field of the sk_buff buffer

Table 13-1. Internal protocols

Symbol Value Function handler

ETH_P_802_3 0x0001 ipx_rcv

ETH_P_AX25 0x0002 ax25_kiss_rcv

ETH_P_ALL 0x0003 This is not a real protocol. It is used as a wildcard for a handler such as a packet sniffer
that listens to all the protocols.

ETH_P_802_2

ETH_P_TR_802_2

0x0004

0x0011

llc_rcv

ETH_P_WAN_PPP 0x0007 sppp_rcv

ETH_P_LOCALTALK 0x0009 ltalk_rcv

ETH_P_PPPTALK 0x0010 atalk_rcv

ETH_P_IRDA 0x0017 irlap_driver_rcv

ETH_P_ECONET 0x0018 econet_rcv

ETH_P_HDLC 0x0019 hdlc_rcv

ETH_P_IPV6

CALL ipv6_rcv

ETH_P_IP

CALL ip_rcv

ETH_P_ARP

CALL arp_rcv

skb -> protocol

...

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing the Right Protocol Handler | 277

• There is no handler for the protocol (i.e., the kernel does not support it).

• Another protocol handler handles the protocol indirectly, as happens in the case
of SNAP. This case is discussed in the sections “Logical Link Control (LLC)”
and “Subnetwork Access Protocol (SNAP).”

Unfortunately, it is not always sufficient to extract a field from the L2 header to fig-
ure out which handler to invoke; the association between skb->protocol and the pro-
tocol handler that will process the frame is not always one-to-one. There are cases
where the protocol handler for a given ETH_P_XXX will actually just read other param-
eters from the frame header (without processing the frame) and hand the frame to
another protocol handler that will process it. An example is the ETH_P_802_2 handler.

As described in Chapter 10, netif_receive_skb is the function that dispatches ingress
frames to the right protocol handlers. When there is no handler for a specific proto-
col, the frame is dropped.

In special cases, a single packet can be delivered to multiple handlers. This is the
case, for instance, when packet sniffers are running. This mode of operation, some-
times referred to as promiscuous mode, is listed as ETH_P_ALL in Table 13-1. This type
of handler is generally not used to process packets for recipients, but just to snoop
on a given device or set of devices for the purposes of debugging or collecting
statistics.

Special Media Encapsulation
Ethernet is by far the most common mechanism used for implementing both shared
and point-to-point network connections. In this book, we always refer to Ethernet
device drivers when talking about L2. However, Linux allows you to use any of the
most common media available on modern PCs to carry IP traffic (and sometimes any
network protocol traffic). Examples of media that can be used to transport IP include
the serial and parallel ports (SLIP/PLIP/PPP), FireWire (eth1394), USB, Bluetooth,
Infrared Data Association (IrDA), etc.

Such media define network devices as abstractions on top of the generic ports, usu-
ally by means of extensions to the generic media device driver. Such virtual devices
look like real NICs to the upper layers.

Here is how reception and transmission are implemented on these virtual network
devices:

Transmission
The net_device’s hard_start_xmit function pointer of the virtual device is initial-
ized by the device driver to a routine that will encapsulate the IP packet (let’s
assume it was an IP packet) according to the protocol used by the media.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 13: Protocol Handlers

Reception
When the generic driver receives data from one of its ports, it strips the media
headers (as an Ethernet device driver would strip the Ethernet header), initial-
izes skb->protocol, and notifies the upper layer with a call to netif_rx. When
these media are used for point-to-point connections only, there is no need for a
link layer header, so skb->protocol is statically initialized to ETH_P_IP; in the
other cases, the media encapsulation may include a fake Ethernet header too, so
skb->protocol is initialized with eth_type_trans routines (as real Ethernet driv-
ers are).

How exactly the generic device driver of a given media type interfaces to the virtual
network device is an implementation detail. Depending on the medium, it may offer
a synchronous or asynchronous interface, use of buffering both on receive and trans-
mit paths, etc.

Protocol Handler Organization
Figure 13-7 shows how the different protocol handlers are organized in the kernel.
Each protocol is described by a packet_type data structure.

To make access faster, a very simple hash function is used for most of the protocols.
Sixteen lists are organized into an array to which the global variable ptype_base

Figure 13-7. Data structure used to store the registered protocol handlers

struct list_head

ptype_base

16

. . .

. . .

list

type= ETH_P_802_2
dev= NULL
func= llc_rcv

struct packet_type

struct list_head

struct list_head
list

type= ETH_P_IP
dev= NULL
func=ip_rcv

struct packet_type

list

type= ETH_P_ALL
dev= NULL
func=packet_rcv

struct packet_type

list

type= ETH_P_ALL
dev= eth1
func=packet_rcv

struct packet_type

struct list_head

ptype_all
(netdev_nit=2)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Protocol Handler Registration | 279

points. When a protocol is registered, using the dev_add_pack function, described in
the next section, this function runs a hash function over the protocol type and
assigns the packet_type structure to one of the 16 lists. Later on, to find a packet_
type structure, the kernel can simply rerun the hash and go through the matching
list.

The ETH_P_ALL protocols (see Table 13-1) are organized in their own list to which the
global variable ptype_all points.* The number of protocols in this list is stored in
netdev_nit. The latter is used by dev_queue_xmit and qdisc_restart to check whether
a PF_PACKET socket is open (i.e., a listening sniffer) to which it can deliver a copy of
ingress frames (see Chapter 10).

Protocol Handler Registration
At system startup and other times when a protocol is registered, the kernel calls dev_
add_pack, passing it a data structure of type packet_type, which is defined in include/
linux/netdevice.h as follows:

struct packet_type
{
 unsigned short type;
 struct net_device *dev;
 int (*func) (struct sk_buff *, struct net_device *,
 struct packet_type *);
 void *af_packet_priv;
 struct list_head *list;
};

The fields have the following meanings:

type
The protocol code. It can take any of the values listed in the first column of
Table 13-1 through 13-4 (i.e., ETH_P_IP). The difference between the protocols
belonging to different tables will become clear in the following sections.

dev
Pointer to the device (i.e., eth0) for which the protocol is to be enabled. A set-
ting of NULL means “all devices.” Thanks to this parameter, it would be possi-
ble to have different handlers for different devices, or associate a handler with
one specific device. This is not normally done, but could be useful for testing.
PF_PACKET sockets commonly use it to listen only on a specific device. For
instance, a command such as tcpdump –i eth0 creates a packet_type instance via
a PF_PACKET socket and initializes dev to the net_device instance associated with
eth0.

* The figure shows that the ETH_P_ALL protocol types use the packet_rcv routine. func is initialized by packet_
create in net/packet/af_packet.c based on the kernel configuration.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 13: Protocol Handlers

func
The function handler called by netif_receive_skb (see Chapter 10) when it
needs to process one frame with skb->protocol=type (an example is ip_rcv).
Note that one of func’s input parameters is a pointer to a packet_type structure:
it is used by PF_PACKET sockets to access the af_packet_priv field.

af_packet_priv
Used by PF_PACKET sockets. It is a pointer to the sock data structure associated
with the creator of the packet_type structure. It is used to allow the dev_queue_
xmit_nit routine (seen in Chapter 10) not to deliver a buffer to the sender as
well, and by the PF_PACKET receive routine to deliver ingress data to the right
socket.

list
Used to link the data structure to the other instances that collide on the same
bucket’s list. See Figure 13-7.

When you have multiple instances of packet_type associated with the same type pro-
tocol, ingress frames that match type are handed to all protocol handler instances by
invoking func for all of them. See Chapter 10 for more details.

To register each protocol, the kernel initializes the packet_type structure and then
calls dev_add_pack. Here is an example from net/ipv4/ip_output.c that shows how the
IPv4 protocol handler is registered by the IPv4 core code.

When the IPv4 protocol is initialized at boot time, the ip_init function is executed.
As one result, the function ip_rcv in the IPv4 packet_type structure is registered as
the protocol’s function handler. All the Ethernet frames received with a “Protocol
Above” value of ETH_P_IP will then be processed by the function ip_rcv.

static struct packet_type ip_packet_type =
{
 .type = _ _constant_htons(ETH_P_IP),
 .func = ip_rcv,
}
...
void _ _init ip_init(void)
{
 dev_add_pack(&ip_packet_type);
 ...
}

dev_add_pack is quite simple: it checks whether the handler to add is a protocol
sniffer (pt->type==htons(ETH_P_ALL)). If so, the function adds it to the list pointed to
by ptype_all and increments the number of protocol sniffers registered (netdev_
nit++). If the handler is not a sniffer, it is inserted into one of the 16 lists pointed to
by ptype_base depending on the value of the hash code. The data structures pointed
to by ptype_base and ptype_all are protected by the ptype_lock spin lock.

void dev_add_pack(struct packet_type *pt)
{
 int hash;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Ethernet Versus IEEE 802.3 Frames | 281

 spin_lock_bh(&ptype_lock);
 if (pt->type == htons(ETH_P_ALL)) {
 netdev_nit++;
 list_add_rcu(&pt->list, &ptype_all);
 } else {
 hash = ntohs(pt->type) & 15;
 list_add_rcu(&pt->list, &ptype_base[hash]);
 }
 spin_unlock(&ptype_lock);
}

The function dev_remove_pack, as the name suggests, is complementary to dev_add_
pack.

void dev_remove_pack(struct packet_type *pt)
{
 _ _dev_remove_pack(pt);

 synchronize_net();
}

_ _dev_remove_pack removes the packet_type structure from ptype_all or ptype_base,
and synchronize_net is used to make sure that by the time dev_remove_pack returns,
no one is holding a reference to the removed packet_type instance (see, for example,
the use of RCU locking in netif_receive_skb in Chapter 10).

If dev_add_pack was called within the function init_module, which is in charge of
module initialization, dev_remove_pack is most likely within cleanup_module, which is
called by the kernel when the module is to be removed. (You can find an example in
net/ax25/af_ax25.c.) On the other hand, if the protocol was statically included in the
kernel, it would be registered automatically at boot time and removed only when the
system shuts down. The IPv4 protocol is an example of a protocol that is never
removed at runtime.

Ethernet Versus IEEE 802.3 Frames
A number of protocols go under the loose term Ethernet. The 802.2 and 802.3 stan-
dards are represented by the protocols ETH_P_802_2 and ETH_P_802_3, respectively,
but there are many other Ethernet protocols, listed in Table 13-2, as well as the LLC
and SNAP extensions. The standards institute a couple of hacks to support all of
these variations (h_proto is discussed in the following section).

Table 13-2. Valid Ethernet types (when h_proto > 1536)

Protocol Ethernet type Function handler

ETH_P_IP 0x0800 ip_rcv

ic_bootp_recva

ETH_P_X25 0x0805 X25_lap_receive_frame

ETH_P_ARP 0x0806 arp_rcv

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 13: Protocol Handlers

Ethernet was designed before the IEEE created its 802.2 and 802.3 standards. The
latter are not pure Ethernet, even though they are commonly called Ethernet stan-
dards. Fortunately, the IEEE 802 committee decided to make the protocols compati-
ble. Every Ethernet card is able to receive both the 802 standard frame types and the
old Ethernet frames, and the kernel provides a routine (discussed later in this sec-
tion) that allows device drivers to recognize them thanks to the solution described in
this section.

This is the definition of an Ethernet header:

struct ethhdr
{
 unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
 unsigned char h_source[ETH_ALEN]; /* source ether addr */
 unsigned short h_proto; /* packet type ID field */
} _ _ATTRIBUTE_ _ ((packed));

As you will see in the next two sections on LLC and SNAP, other fields can follow
the ethhdr structure. Here we are focusing on the protocol field, h_proto. Despite its
name, it actually can store either the protocol in use or the length of the frame. This
is because it is 2 octets (bytes) in size, but the maximum size of an Ethernet frame is
1,500 bytes. (Actually, the size can reach 1,518 if SA, DA, Checksum, and Preamble
are included. Frames using 802.1q have four extra bytes of encapsulation and can
therefore reach a size of 1,522 bytes.)

To save space, the IEEE decided to use values greater than 1,536 to represent the
Ethernet protocol. Some preexisting protocols with identifiers lower than 1,536
(0x600 hexadecimal) were updated to meet the criteria. The 802.2 and 802.3 proto-

ETH_P_BPQ 0x08FF bpq_rcv

ETH_P_DNA_RT 0x6003 dn_route_rcv

ETH_P_RARP 0x8035 ic_rarp_recv

ETH_P_8021Q 0x8100 vlan_skb_rcv

ETH_P_IPX 0x8137 ipx_rcv

ETH_P_IPV6 0x86DD ipv6_rcv

ETH_P_PPP_DISC

ETH_P_PPP_SES

0x8863

0x8864

pppoe_disc_rcv

pppoe_rcv

a The reason why IP has two handlers has to do with the possibility for the kernel to retrieve the IP configura-
tion by means of protocols like RARP/BOOTP. The ic_bootp_recv handler is used only at boot time to take
care of the dynamic IP configuration, and it is uninstalled once the configuration has been retrieved. See net/
ipv4/ipconfig.c.

Table 13-2. Valid Ethernet types (when h_proto > 1536) (continued)

Protocol Ethernet type Function handler

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Ethernet Versus IEEE 802.3 Frames | 283

cols, however, use the field to store the length of the frame.* Values ranging from
1,501 to 1,535 are not legal in this field.

Figure 13-8 shows the variations possible on an Ethernet header. Simple Ethernet is
shown in (a). The 802.2 and 802.3 variant is shown in (b). As you can see, a single
field serves as the protocol field in the former and the length field in the latter. In addi-
tion, the 802 variant can support LLC, as shown in (c) and SNAP, as shown in (d).

Linux deals with the odd distinction between protocol and length in the eth_type_
trans function. A typical context is represented by the following code fragment,
issued by the drivers/net/3c509.c Ethernet driver when it receives a frame. netif_rx is
the function that copies the frame into the input queue and sets the NET_RX_SOFTIRQ
flag to let the kernel know about the new frame in the queue (this is described in
Chapter 10†). Just before invoking netif_rx, the caller performs some important ini-
tializations with a call to eth_type_trans.

* The reason for this arrangement is a long story. For the curious, I suggest reading Interconnections, Second
Edition: Bridges, Routers, Switches, and Internetworking Protocols (Addison Wesley), where the author
explains it with considerable irony.

Figure 13-8. Differences between Ethernet and 802.3 frames

(d)

Length
(<=1500)

Source
address

Destination
address

DSAP
0xAA

SSAP
0xAA

CTL
0x03

Protocol ID Data Padding Checksum

6 6 2 1 1 1 5 0...1492 0...38 4

802.3 frame format
with 802.2 SNAP

LLC SNAP

(c)

Length
(<=1500)

Source
address

Destination
address

DSAP SSAP CTL Data Padding Checksum

6 6 2 1 1 1 0...1497 0...43 4

802.3 frame format
with 802.2 protocol

LLC

(b)

Length
(<=1500)

Source
address

Destination
address Data Padding Checksum

6 6 2 0...1500 0...46 4

802.3 frame format

(a)

Protocol
(>1536)

Source
address

Destination
address Data Padding Checksum

6 6 2 0...1500 0...46 4

Ethernet frame format

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 13: Protocol Handlers

el3_rx(struct device *dev)
{

 skb->protocol = eth_type_trans(skb,dev);
 netif_rx(skb);

}

eth_type_trans performs two main tasks: setting the packet type* and setting the pro-
tocol. It does the latter in its return value. Let’s dispose of the former task before
concentrating on the main issue in this section, the protocol.

Setting the Packet Type
The eth_type_trans function sets skb->pkt_type to one of the PACKET_XXX values
listed in include/linux/if_packet.h:

PACKET_BROADCAST
The frame was sent to the link layer broadcast address (i.e., FF:FF:FF:FF:FF:FF
for Ethernet)

PACKET_MULTICAST
The frame was sent to a link layer multicast address. Details appear later in this
section.

PACKET_OTHERHOST
The frame was not addressed to the receiving interface. However, the frame is
not dropped right away but is passed to the next-highest layer. As described ear-
lier, there could be protocol sniffers or other meddlesome protocols that would
like to give the frame a look.

When eth_type_trans does not set skb->pkt_type explicitly, its value ends up being
0, which is PACKET_HOST. This means the receiving interface is the recipient of the
frame (from a link layer point of view, that is to say, the MAC address matched).

Most of the information needed to set the correct packet type is specified explicitly in
the header. An Ethernet address is 48 bits or 6 bytes long. The two least significant
bits of the first byte (in network byte order) have a special meaning (see Figure 13-9):

• Bit 0 distinguishes multicast addresses from unicast addresses. Broadcast
addresses are a special case of multicast. When set to 1, this bit denotes multi-
cast; when 0, it denotes unicast. After checking the bit through if(*eth->h_
dest&1), the function goes on to see whether the frame is a broadcast frame by
comparing the address to the device’s broadcast address through memcmp(eth->h_
dest,dev->broadcast, ETH_ALEN).

† netif_rx is only one of the two interfaces available to device drivers to notify upper layers about the reception
of frames. Both of them are described in Chapter 10.

* Even though the code calls it the packet type, it actually is the frame type because it is derived from the link
layer address.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Ethernet Versus IEEE 802.3 Frames | 285

• Bit 1 distinguishes local addresses from global addresses. Global addresses are
worldwide unique, local addresses are not: it is up to the system administrator to
assign local addresses properly.* When set to 1, this bit denotes a global address;
when 0, it denotes a local address.

Thus, the first part of eth_type_trans is:

unsigned short eth_type_trans(struct sk_buff *skb, struct net_device *dev)
{
 struct ethhdr *eth;
 unsigned char *rawp;

 skb->mac.raw=skb->data;
 skb_pull(skb,ETH_HLEN);
 eth= eth_hdr(skb);
 skb->input_dev = dev;

 if(*eth->h_dest&1)
 {
 if(memcmp(eth->h_dest,dev->broadcast, ETH_ALEN)==0)
 skb->pkt_type=PACKET_BROADCAST;
 else
 skb->pkt_type=PACKET_MULTICAST;
 }

 else if(1 /*dev->flags&IFF_PROMISC*/)
 {
 if(memcmp(eth->h_dest,dev->dev_addr, ETH_ALEN))
 skb->pkt_type=PACKET_OTHERHOST;
 }

The IFF_PROMISC flag is set in dev->flags when the interface is put into promiscuous
mode. As shown in the previous snapshot, eth_type_trans initializes skb->pkt_type
to PACKET_OTHERHOST when the destination MAC address does not match the receiv-
ing interface’s address, regardless of the IFF_PROMISC flag. This will allow PF_SOCKETS
handlers to receive a copy of the frame (see netif_receive_skb in Chapter 10), but
the upper-layer protocol handlers must discard buffers of PACKET_OTHERHOST type (see,
for example, arp_rcv and ip_rcv).

* There is no relationship between local MAC addresses and nonroutable IP addresses (192.168.x.x, etc.): they
are similar in concept, but applied to two different layers in the stack.

Figure 13-9. Unicast/multicast and local/global bits in the MAC address

h_dest h_dest[1] h_dest[2] h_dest[3] h_dest[4] h_dest[5]

Unicast/multicast bit

Local/global bit

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 13: Protocol Handlers

Setting the Ethernet Protocol and Length
The second part of eth_type_trans retrieves the identifier of the protocol used at the
higher layer. Protocol values are also called Ethertypes, and the list of valid types is
kept up-to-date at http://standards.ieee.org/regauth/ethertype. The distinction
between old Ethernet protocols above the value of 1,536 and 802 protocols is made
in the following code fragment:

 if (ntohs(eth->h_proto) >= 1536)
 return eth->h_proto;

 rawp = skb->data;

 if (*(unsigned short *)rawp == 0xFFFF)
 return htons(ETH_P_802_3);

 /*
 * Real 802.2 LLC
 */
 return htons(ETH_P_802_2);
}

If values bigger than 1,536 are interpreted as protocol IDs, how does a device driver
find the size of the frames it receives? In both cases, whether protocol/length values
are less than 1,500 or greater than 1,536, it is the device itself that stores the size of
the frame into one if its registers, where the device driver can read it. Devices can fig-
ure out the size of each frame thanks to well-known bit patterns used for that pur-
pose. The following piece of code from vortex_rx in drivers/net/3c59x.c shows how
the driver first reads the size from the device and then allocates a buffer accordingly:

 /* The packet length: up to 4.5K!. */
 int pkt_len = rx_status & 0x1fff;
 struct sk_buff *skb;

 skb = dev_alloc_skb(pkt_len + 5);

Do not get confused by the comment in the previous code. This particular device can
receive frames up to 4.5 K in size because it handles FDDI NICs, too.

We saw in Chapter 1 what host and network byte order are. The value returned by
eth_type_trans, and therefore the value assigned to skb->protocol, is in network byte
order: when it is extracted from the Ethernet header it is already in network byte
order, and when eth_type_trans uses a local symbol ETH_P_XXX it needs to explicitly
convert it from host byte order to network byte order with the htons macro. This also
means that when the kernel accesses skb->protocol later and compares it against an
ETH_P_XXX value, it has to convert either ETH_P_XXX to network byte order or skb->
protocol to host byte order: it does not matter what order is used, it just matters that
both sides of the comparison are expressed in the same order. In other words, these
two lines are equivalent:

ntohs(skb->protocol) == ETH_P_802_2
skb->protocol == htons(ETH_P_802_2)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Ethernet Versus IEEE 802.3 Frames | 287

Since eth_type_trans is called only for Ethernet frames, there are similar functions
for other media types, some with names ending in _type_trans and some with other
names. The following example, for instance, shows a bit of code taken from the IBM
Token Ring driver (drivers/net/tokenring/ibmtr.c), before the familiar invocation of
netif_rx, skb->protocol is set by tr_type_trans, just as eth_type_trans did for Ether-
net devices:

static void tr_rx(struct device *dev)
{
 ...
 skb->protocol=tr_type_trans(skb, dev);
 ...
 netif_rx(skb);
 ...
}

If you look at tr_type_trans in net/802/tr.c, you will see logic similar to that of eth_
type_trans, but applied to Token Ring devices.

There are also media types that set skb->protocol directly without any helper func-
tion of the _type_trans variety, since they can carry only one protocol (i.e., IrDA,
AX25, etc.).

Logical Link Control (LLC)
The LLC layer was designed by the IEEE 802 committee when they standardized
LANs. The idea was that instead of having a single higher-layer protocol identifier, it
would be more flexible to specify one protocol identifier for the source (SSAP) and
another for the destination (DSAP). In most cases, SSAP and DSAP would be the
same for any given connection—in fact, SSAP and DSAP are always the same when
the global flag is set—but having two separate values gives systems the flexibility to
use different protocols.

LLC can provide its upper layer different service types:

Type I
Connectionless (i.e., datagram protocol), with no support for acknowledg-
ments, flow control, and error recovery

Type II
Connection oriented, with support for acknowledgments, flow control, and
error recovery

Type III
Connectionless, but with some of the benefits of type II

Figure 13-8(c) shows the header format of a frame using LLC. As you can see, there
are three new fields:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 13: Protocol Handlers

SSAP
DSAP

These are 8-bit fields for specifying the protocols used.

Control (CTL)
The size of this field depends on the type of LLC used (type I or type II). I will
not go into details on the LLC layer, but will assume this field to be 1 byte long
and have the value 0x03 (type I, CTL=UI). This is sufficient for understanding
the rest of the chapter.

The LLC header did not prove popular for several reasons. Perhaps the main reason
is the 8-bit limit on the SSAP and DSAP identifiers, compounded by reserving two of
these bits for the unicast/multicast and local/global flags.* Only 64 protocols could
be specified in the remaining 6 bits, which was too limiting.

When using local SAPs (indicated by the local/global flag in the protocol field), the
network administrator must make sure all the systems agree on the local SAPs they
use, which makes things complicated and less usable. Ambiguity is not possible for
global SAP, but global SAP is not being used for new protocols. In the next section,
you will see how this limitation was solved by extending the header with the con-
cept of SNAP.

Table 13-3 shows the SAPs registered with the Linux kernel. LLC causes the kernel
to use an extra level of indirection when retrieving the handler, compared to the pro-
tocols listed in Table 13-2 and registered with dev_add_pack.

The IPX case

You may wonder whether a pure 802.3 frame format can be used, given that there is
no indication of a protocol ID in Figure 13-8(b). In fact, pure 802.3 frames are not
normally used. The one well-known exception involves IPX. IPX packets can be sent
using raw 802.3 frames (that is, frames without an LLC header). The receiver recog-
nizes them by means of a hack. The first field of an IPX header is a 16-bit checksum,
which normally is turned off by simply setting it to 0xFFFF. Since 0xFF/0xFF† is an
invalid SSAP/DSAP combination and there is no Ethertype with that value, IPX

* The meaning of those two flags is the same as discussed earlier for MAC addresses, but here it applies to pro-
tocols rather than addresses.

Table 13-3. The kernel’s 802.2 SAP clients

Protocol SAP Function handler

SNAP 0xAA snap_rcv

IPX 0xE0 ipx_rcv

† The check against 0xFF/0xFF to recognize IPX packets is used all over the place in the Linux kernel. eth_
type_trans is one example.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Ethernet Versus IEEE 802.3 Frames | 289

packets using raw 802.3 can be easily recognized. When they are detected, skb->
protocol is set to ETH_P_802_3, whose handler is the IPX handler (see Table 13-1).

Linux’s LLC implementation

The 802.2 LLC layer was expanded and rewritten during the 2.5 development cycle.
The kernel’s LLC implementation, which supports types I and II, consists of the fol-
lowing main components:

• Two state machines. These are used to keep track of the states of the local SAPs
and the connections created on top of them.

• An LLC receive routine that feeds the right input to the two state machines
based on the input frames it receives.

• The AF_LLC socket interface. This can be used to build protocols or services in
user space on top of the LLC layer.

Because none of the protocols described in this book uses the LLC layer, I will not go
into detail on the definitions of the LLC services (you can refer to the IEEE 802.2
Logical Link Control specification for this*), nor will I look at the details of the Linux
kernel’s LLC implementation. Here we will only see what data structure is used to
define a local SAP and briefly how ingress frames are handled.

The data structure used to define a local SAP is llc_sap, which is defined in include/
net/llc.h. Among its fields are:

struct llc_addr laddr
SAP identifier.

int (*rcv_func)(struct sk_buff *, struct net_device *, struct packet_type *)
Function handler. When an SAP is opened via PF_LLC socket, this field is NULL.
When the SAP is opened by the kernel, this field points to the routine provided
by the kernel (see Table 13-3).

Local SAPs are created with llc_sap_open, and are inserted into the llc_sap_list list.
llc_sap_open is called to create two types of SAP:

• Those installed by the kernel itself to install kernel-level handlers† (see
Table 13-3).

• Those managed with PF_LLC sockets (for example, when a server uses the bind
system call on a PF_LLC socket to bind it to a given SAP).

* Like most IEEE documents, the one about the LLC design is pretty big and not fun to read. However, with
this document in your hands, it will be much easier to go through the LLC code, especially through the bor-
ing details of the state machines.

† This can be accomplished indirectly via the register_8022_client routine, too.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 13: Protocol Handlers

Processing ingress LLC frames

Whenever an incoming frame is classified by eth_type_trans as using the LLC header
(because it has a type/length field that is less than 1,536 and no special IPX case is
detected), the initialization of skb->protocol to ETH_P_802_2 leads to the selection of
the llc_rcv handler (see Table 13-1). This handler will select the right protocol han-
dler based on the DSAP field in the LLC header: to do so, it calls the rcv_func han-
dler registered with llc_sap_open for those SAPs opened by the kernel, and feeds the
right input to the right state machine when the SAPs were opened with a PF_LLC
socket (see Figure 13-10).

Frames are sent out a given SAP when one of the two state machines requires it (for
example, to acknowledge the reception of a frame). PF_LLC sockets can use the stan-
dard interface (i.e., sendmsg, etc.) to transmit. In both cases, frames are fed directly to
dev_queue_xmit once the appropriate link layer headers have been initialized
properly.

Subnetwork Access Protocol (SNAP)
Given the limitations of the LLC header, the 802 committee generalized the data link
header further. To make the protocol domain bigger, they introduced the concept of
SNAP. Basically, when the SSAP/DSAP couple is assigned the value 0xAA/0xAA, it
has a special meaning: the five bytes following the CTL field of the LLC header rep-
resent a protocol identifier. The unicast/multicast and local/global bits are also not
used anymore. Thus, the size of the protocol identifier has jumped from 8 bits to 40.

Figure 13-10. The llc_rcv function

Feed right input to the
CONN state machine

CONN

Who opened
the DSAP?

PDU type

PF_LLC

SAP

Kernel

Feed right input to the
SAP state machine

PF_LLC

Call kernel handler
IIc_sap -> rcv_func

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Ethernet Versus IEEE 802.3 Frames | 291

The reason the committee decided to use five bytes has to do with how protocol
numbers are derived from MAC addresses.* Unlike SSAP/DSAP, the use of SNAP
codes is pretty common.

Since the SNAP identifier 0xAA/0xAA is a special case of SSAP/DSAP, as shown in
Table 13-3, it is one of the clients that use llc_sap_open (see snap_init in net/802/
psnap.c). This means that a protocol using a SNAP code will have another level of
indirection, which means three of them!

Before looking at how SNAP clients register with the kernel, let’s briefly see how a
SNAP protocol ID is defined. As you probably know, MAC addresses are managed
by the IEEE, which sells them in chunks of 224. Since a MAC address is 48 bits long
(6 bytes), the IEEE simply has to give each client a 24-bit number (the first three
bytes of a MAC address) and let the client use any value for the remaining 24 bits.
Suppose I want to buy a chunk of MAC addresses because I want to start selling net-
work cards. We’ll call the number assigned to me XX:YY:ZZ. At that point, I would
become the owner of all the addresses between XX:YY:ZZ:00:00:00 and XX:YY:ZZ:
FF:FF:FF. Together with those 224 MAC addresses, I would be assigned all the 216

SNAP codes between XX:YY:ZZ:00:00 and XX:YY:ZZ:FF:FF.

Effectively, when you get a 24-bit number from the IEEE, it offers you four 24-bit
numbers thanks to the four possible combinations of the global/local and unicast/
multicast bits (see Figure 13-9).

Similar to the way SAP protocols are registered and unregistered, the SNAP layer
provides the register_snap_client and unregister_snap_client functions, which
also use a global list (snap_list) to link together all the SNAP protocols registered
with the kernel. Table 13-4 shows the clients registered with the Linux kernel.

The data structure used to define a SNAP protocol is datalink_proto, defined in
include/net/datalink.h. Among its fields, you have:

unsigned short header_length
This is the length of the data link header. It is initialized to 8 in register_snap_
client (see Figure 13-8(d)).

* SNAP codes are defined as a subset of MAC addresses, which are sold by IEEE in chunks. This way, each
MAC address owner has a number of SNAP codes assigned to her together with the MAC addresses. For
details, I recommend reading Interconnections, Second Edition (Addison Wesley).

Table 13-4. SNAP client

Protocol Snap ID Function handler

AppleTalk Address Resolution Protocol 00:00:00:80:F3 aarp_rcv

AppleTalk Datagram Delivery Protocol 08:00:07:80:9B atalk_rcv

IPX 00:00:00:81:37 ipx_rcv

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 13: Protocol Handlers

unsigned_char type[8]
Protocol identifier. Only five bytes are used (the SNAP protocol ID; see
Table 13-4).

void (*request)(struct datalink_proto *, struct sk_buff *, unsigned char *)
Initialized to snap_request in register_snap_client. It initializes the SNAP
header (protocol ID only) and passes the frame to the 802.2 code. It is invoked
before a transmission to fill in the data link header.

void (*rcvfunc)(struct sk_buff *, struct net_device *, struct packet_type *)
Function handler for ingress traffic. See Table 13-4.

I’ll focus for just a moment on IPX. It’s worth pointing out that this protocol regis-
ters the same handler with the kernel at three different points:

• One with an Ethertype (Table 13-2)

• One as an 802.3 SSAP/DSAP protocol (Table 13-3)

• One as a SNAP protocol (Table 13-4)

Figure 13-11 summarizes how the kernel recognizes and handles Ethernet, 802.3,
802.2, and SNAP frames.

Figure 13-11. Protocol detection for Ethernet/802.3/802.2/SNAP frames

Type/length is
the proto ID

Type/length
>=1536

Yes (Ethernet)

SSAP:DSAP=
0xFFFF

802.2 client SSAP

SNAP client

No

No

Feed the right
state machine

Any other

ATALK

0x08:00:07:80:9B

IPX

0x00:00:00:81:37

AARP

0x00:00:00:80:F3

DROP frame

Any other (not supported)

0xE0(kernel handler)

0xAA (kernel handler)

Yes (802.3) Direct call to handler
LOOKUP (ptype_base)

One level of indirection
LOOKUP (ptype_base) llc_rcv
LOOKUP(llc_sap_list)

Two levels of indirection
LOOKUP (ptype_base) llc_rcv
LOOKUP(llc_sap_list) snap_rcv
LOOKUP(snap_list)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Functions and Variables Featured in This Chapter | 293

Tuning via /proc Filesystem
For both Ethernet and 802 there is a directory in /proc/sys/net, /proc/sys/net/ethernet/
(which is empty) and /proc/sys/net/token-ring/ (which includes a single file), regis-
tered respectively in the files net/core/sysctl_net_ethernet.c and net/802/sysclt_net_
802.c. These two directories are included only when the kernel is compiled with sup-
port for Ethernet and Token Ring, respectively.

Functions and Variables Featured in This Chapter
Table 13-5 lists the main functions introduced in this chapter, together with the most
important global variables and data structures.

Table 13-5. Functions and data involved in protocol handler management

Name Description

Function

dev_add_pack
dev_remove_pack

Add/remove a protocol handler.

register_8022_client
unregister_8022_client

Register/unregister an 802.2 protocol. They are defined as wrappers around llc_
sap_open and llc_sap_close.

register_snap_client
unregister_snap_client

Register/unregister a SNAP client.

llc_sap_open
llc_sap_close

Create/remove an SAP.

eth_type_trans Used by Ethernet devices to extract the higher-layer protocol identifier and classify
the frame as unicast/multicast/broadcast.

Variables

netdev_nit Number of protocol sniffers registered.

ptype_base Pointer to the data structure containing the registered protocol handler.

ptype_all Same as ptype_base but applied to protocol sniffers.

snap_list List of SNAP clients.

Data structure type

struct packet_type Used to store information about an ETH_P_XXX protocol handler.

struct datalink_proto Used to represent a SNAP protocol.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 13: Protocol Handlers

Files and Directories Featured in This Chapter
Figure 13-12 shows the location of the files mentioned in this chapter. In include/
linux you can find if_xxx.h header files for other media types. The net/llc directory
includes several more files.

Figure 13-12. Files and directories featured in this chapter

Root
(usually /usr/src/linux)

include

linux

if_ether.h
if_packet.h

net

datalink.h
p8022.h
psnap.h
llc.h

net

core.c

dev

eth.c
syscti_net_ether.c

ethernet

p8022.c
p8023.c
psnap.c
syscti_net_802.c
tr.c

802

ip output.c

ipv4

af_IIc.c
IIc_sap.c
IIc_conn.c
IIc_input.c
IIc_core.c

IIC

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART IV

IV.Bridging

At the L3 layer, protocols such as IPv4 connect different networks through the
routing subsystem laid out in Part VII. In this part of the book, we will look at the
link layer or L2 counterpart of routing: bridging. In particular:

Chapter 14, Bridging: Concepts
Introduces the concepts of transparent learning and selective forwarding.

Chapter 15, Bridging: The Spanning Tree Protocol
Shows how the Spanning Tree Protocol (STP) solves most of bridging’s limita-
tions, and concludes with an overview of the latest STP enhancements (not yet
available for Linux).

Chapter 16, Bridging: Linux Implementation
Show how Linux implements bridging and STP.

Chapter 17, Bridging: Miscellaneous Topics
Concludes with an overview of how the bridging code interacts with other net-
working subsystems and a detailed description of the data structures used by the
bridging code.

www.ebooksworld.in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

297

Chapter 14 CHAPTER 14

Bridging: Concepts

In this first chapter on bridging, we will see what a bridge device is, how it is used,
and what limitations it comes with. In particular, I’ll describe transparent bridging,
address learning, and the use of the so-called forwarding database. I’ll conclude the
chapter with an explanation of why bridges cannot be used on loop topologies and I
will introduce the next chapter, where we will see how the Spanning Tree Protocol
(STP) can address this limitation. Other forms of bridging are available, but they are
rarely used and not implemented in the Linux kernel.

The network topologies used in this chapter do not necessarily represent real case
scenarios; they are selected based only on didactic principles.

Repeaters, Bridges, and Routers
Before introducing bridging, I will clarify the distinction between different network
devices that forward packets: repeaters, bridges, and routers. The differences are
illustrated in Figure 14-1:

• A repeater is a device, typically equipped with two ports, that simply copies what
it receives on one port to the other, and vice versa. It copies data bit by bit; it
does not have any knowledge of protocols, and therefore cannot distinguish
among different frames or packets. Repeaters are rarely used nowadays, because
bridges have become pretty affordable and provide better capabilities that justify
the cost difference. Multiport repeaters are called hubs.

• Unlike a repeater, a bridge understands link layer protocols and therefore copies
data frame by frame, instead of bit by bit. This means that a bridge must be able
to buffer at least one frame per port. Most LANs are implemented with bridges
(that more commonly are called switches; see the section “Bridges Versus
Switches”). This device is the main protagonist of this chapter.

• A router is a device that understands L3 network protocols such as IP, and for-
wards ingress packets based on a routing table. The term gateway, which was

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 14: Bridging: Concepts

introduced before router, is also commonly used to refer to the same kind of
device. Part VII of this book goes into detail on how Linux implements routing.

Figure 14-1(b) shows what is called a store-and-forward bridge, which is the scheme
used by Linux: Ethernet frames are copied out of the right ports only after they have
been received in their entirety.

Other schemes are possible. For example, a pretty common one called cut-through
starts copying frames to the right ports as soon as it has received enough of the
ingress frame to identify the destination ports. The meaning of right ports will
become clearer at the end of this chapter, when we will have seen what address
learning is. This scheme is faster because it starts copying earlier, but it cannot

Figure 14-1. (a) Repeater; (b) bridge; (c) router

Physical layer

(a)

0 1 1. . .

1

1 1 0 1 . . .

Physical layer

(b)

0 1 0. . .

0

1 1 0 1 . . .

1

Link layer
0 1 0 0 . . . 1 1 1 0 0 . . . 1

Eth
header

Eth
payload

Physical layer

(c)

0 1 0. . .

0

1 1 0 1 . . .

1

Link layer
0 1 0 0 . . . 1 1 1 0 0 . . . 1

Eth
header

Eth
payload

New Eth
header

Eth
payload

IP
payload

IP
header

IP
payload

IP
header

Network layer

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Bridges Versus Switches | 299

discard corrupted ingress frames.* The scheme also requires some cooperation from
the network interface card (NIC) hardware. In the current model, NICs pass whole
frames to the device drivers.

A bridge assigns a link layer address to each of its interfaces, and forwards anything
that passes through it but is not addressed to it. (Routers act similarly at the L3 level,
as we’ll will see in Part VII.) But would any frame be addressed to the bridge’s inter-
face? After all, the whole point of a bridge is to help frames get to other destinations.
However, a bridge does consume some ingress frames, under two conditions:

To pass it to the upper (i.e., L3) layer
This is possible only when the bridge implements L3 functionalities, too (i.e., it
is a router or host in addition to a bridge) and the ingress frame is addressed to
the L2 address configured on the receiving interface.

To pass it to a protocol handler
We will see this case in Chapter 15 when I will introduce the Spanning Tree
Protocol.

Bridges Versus Switches
The terms bridge and switch can be used to refer to the same device. However, nowa-
days the term bridge is mainly used in the documentation (such as the IEEE specifica-
tions referenced at the end of this chapter) that discusses how a bridge behaves and
how the STP (which we will see in the next chapter) works. In contrast, references to
the actual devices are usually made with the term switch.

The only cases where I have seen people referring to a bridge device using the term
bridge is when the device is equipped with only two ports (and bridges with two
ports are not that common nowadays). This is why I often define a switch informally
as a multiport bridge. Unless you are familiar with the official IEEE documentation,
you will probably use the term switch. I personally worked on bridging software for
years, and as far as I can remember, I used the term bridge only when working on the
documentation, never to refer to a device on any network setup.

Generally speaking, I can say that there is really no difference between a bridge and a
switch.

Bridges are pretty common nowadays. You can find bridges with a variable number
of ports (and matching prices). An Ethernet bridge, nowadays, represents the most
common way to implement a LAN.

* Well, there are variants of cut-through that can handle corrupted frames, too. We do not need to go into that
much detail on this point for our generic discussion on bridging.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 14: Bridging: Concepts

With a PC running Linux, you can implement a bridge by installing more than one
NIC. You can also find multiport Peripheral Component Interconnect (PCI) NICs on
the market that allow you to have more network interfaces than PCI slots. You can,
for example, have four Ethernet ports in a single PCI NIC.

In the rest of this chapter and in the next ones, I will stick to the term bridge, but
now you know that the switch that you are using in your office to connect the PCs
and the network printer is nothing but a multiport bridge, which probably runs more
software than a pure bridge would run—for example, to provide additional features.

Hosts
Any device that operates at a network layer higher than the one used by bridges (i.e.,
the link layer or L2) is considered a host in the context of this and the following
bridging chapters (routers included). A host (i.e., a Linux system) can, if configured
appropriately, be both a bridge and a host that a user can use as a standard worksta-
tion. But in this chapter and the following ones, we will not consider this case; we’ll
assume a host does not run any bridging code. Therefore, the PCs in all the figures
do not run any bridging code unless stated otherwise in the text.

Merging LANs with Bridges
Let’s take the scenario in Figure 14-2 as an example and see how a bridge can be
used to merge two LANs and make them look like one. Let’s assume the hosts in the
two LANs were configured to be part of the same IP subnet. We do not need to
include the IP addresses in the figure because we will focus on what happens at the
link layer.

You should note that a LAN is nothing but a multiport bridge.

Any frame transmitted on a LAN by any host is received by all other hosts. So when
Host A sends out a frame, both the other hosts of LAN1 and the bridge receive it. A
bridge copies its ingress frame out on all the other ports (there is just one other port,
in this case). At the end, therefore, all hosts of both LAN1 and LAN2 receive a copy
of the frame generated by Host A. This means that thanks to the bridge, there is only
one big LAN from the perspective of the hosts of LAN1 and LAN2. Bridges are com-
monly employed to merge physical LANs whose hosts are configured on the same IP
subnet, because they give the hosts the illusion of a single LAN.

Note that the bridge forwards the ingress frames as they are received. It does not
add, remove, or change anything on them: the hosts in LAN2 receive an exact copy
of the original frame generated by Host A.

You may argue that a packet from Host A addressed to Host B is needlessly for-
warded to LAN2, which is a waste of bandwidth on LAN2 and a waste of CPU

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Merging LANs with Bridges | 301

power for the hosts of LAN2 (since all of them will end up dropping any frame that
is not addressed to any of them). By assigning the hosts of the two LANs to two dif-
ferent IP subnets and replacing the bridge with a router, as in Figure 14-3, the waste
is eliminated, because the router does not forward to LAN2 those packets that are
addressed to a host configured on LAN1.

The topologies of Figures 14-2 and 14-3 are used in different contexts. The first one
prefers to have hosts that are located in different LANs share the same L2 and there-
fore the same IP (L3) subnet. The second one prefers to segregate hosts on different
subnets, perhaps for administrative reasons.

Note that the hosts in Figure 14-2 still need a router to reach IP addresses outside
their subnet.

Figure 14-2. Two LANs merged with a bridge

Figure 14-3. Two LANs connected with a router

LAN1

LAN2

Host A
eth0: 00:20:EO:76:IE, one instead of eye:11

Host B
eth0: 00:20:EO:76:IE, one instead of eye:22

00:20:EO:76:IE, one instead of eye:55
00:20:EO:76:IE, one instead of eye:66

Bridge

eth0: 00:20:EO:76:IE, one instead of eye:44eth0: 00:20:EO:76:IE, one instead of eye:33

From: 00:20:EO:76:IE, one instead of eye:11
To: 00:20:EO:76:IE, one instead of eye:22

LAN1

LAN2

Host A Host B

Router eth1

eth0

Subnet 10.0.1.0/24

Subnet 10.0.2.0/24

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 14: Bridging: Concepts

Bridging Different LAN Technologies
In the previous examples, we always saw a bridge with both ports connected to
Ethernet LANs. This bridge type is the most commonly used, mainly because the de
facto standard for LANs nowadays is Ethernet. However, especially in the past, there
used to be bridges with different LAN ports; for example, an Ethernet port and a
Token Ring port. Such bridges have one more issue to take into consideration: the
differences between the bridged LAN technologies. For example, Ethernet and
Token Ring LANs operate at different speeds, and use different L2 protocols and
headers. The different speeds require some kind of buffering to be implemented, and
the different protocols require the bridge to convert headers from one format to the
other, including taking care of those L2 options that are provided by one protocol
but not by the other. Linux bridges only between Ethernet ports, so we will not con-
sider the more complex case any further.

Address Learning
We saw in the previous section that a bridge that blindly copies ingress frames to all
the ports except the one that received the frame may lead to a waste of resources.
Fortunately, bridges are not as blind as that. They actually are able to learn the loca-
tion of hosts (their L2 addresses, to be more exact) and use that knowledge to selec-
tively copy ingress frames only to the right port. This process is called passive
learning, because it is handled by the bridge alone, without any need for user config-
uration or help from a protocol. Let’s see how it works with the help of Figure 14-4.
To make the figure more readable, the figure uses the “Host N” notation to refer to
L2 addresses (i.e., it does not show real L2 addresses, as Figure 14-2 does).

Let’s see what happens when the hosts of Figure 14-4 exchange a few frames. Keep
in mind that the addresses discussed here are link layer addresses (i.e., Ethernet
MAC addresses):

Figure 14-4(a)
Host A transmits a frame addressed to Host B. Host B receives it, because it sits
on the same LAN, and the bridge receives a copy as well. Because the bridge
does not know where Host B is located, it copies the frame on LAN2. But
because the bridge has received a frame from Host A on the bridge’s LAN1 port,
it now knows that Host A is located in LAN1. Note that this is possible because
Ethernet headers include both the source and destination addresses.

Figure 14-4(b)
Host B transmits a frame addressed to Host A. Both Host A and the bridge
receive the frame. Because the bridge knows that Host A is on LAN1, the same
LAN it received the frame from, it will not copy the frame on LAN2.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Address Learning | 303

Figure 14-4(c)
Host A transmits a frame addressed to Host C. Both Host B and the bridge
receive the frame. Host B discards it because it is not the recipient, and the
bridge copies the frame to LAN2 because it does not know where Host C is
located. The bridge already knows that Host A is in LAN1. Therefore, it does
not need to add any entry to the list of addresses reachable through its port on
LAN1.

Figure 14-4. Examples of address learning

LAN1

LAN2

Host A Host B

Host A

1

Bridge

2

(b)

Host B

Host C Host D

LAN1

LAN2

Host A Host B

Host A

1

Bridge

2

3

(a)

Host C Host D

LAN1

LAN2

Host A Host B

Host A

1

Bridge

2

(d)

Host B

Host C Host D

LAN1

LAN2

Host A Host B

Host A

1

Bridge

2

(c)

Host C Host D

From: Host A
To: Host B

From: Host B
To: Host A

From: Host A
To: Host C

Host B

From: Host C
To: Host A

3

Host C

1

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 14: Bridging: Concepts

Figure 14-4(d)
Host C transmits a frame addressed to Host A. Both Host D and the bridge
receive a copy. Host D discards the frame because it is not the recipient, and the
bridge copies it to LAN1 because it knows that Host A is located on LAN1.

The act of copying a frame out to all interfaces except the one the frame is received
from, which is used by bridges when they do not know which interface to use to
reach a given L2 address, is called flooding.

Broadcast and Multicast Addresses
When a bridge receives a frame addressed to the link layer broadcast address (FF:FF:
FF:FF:FF:FF) or to an L2 multicast address, it copies it to every port except the one it
received it from. Multicast addresses and the broadcast address cannot be used as
source addresses in a frame, so they will not be learned and associated to any spe-
cific port (which would be a mistake) by bridges.

Aging
A bridge needs to dynamically update the list of addresses reachable through its
interfaces; otherwise, it may end up not delivering frames to their recipients or need-
lessly copying frames to the wrong ports. Let’s look at a couple of examples with the
help of Figure 14-4:

• Once Hosts A and B have exchanged some data, the bridge knows that it does
not need to copy onto LAN2 any frame exchanged between those two hosts (see
Figures 14-4(a) and (b)). If you move Host B to LAN2 for some reason, the
bridge’s knowledge would be outdated: the bridge will not forward to LAN2 the
frames generated by Host A and addressed to Host B. However, as soon as Host
B starts talking again, the bridge can learn its new location and update its knowl-
edge.

• Once Hosts A and C have exchanged some data, the bridge knows that the two
hosts are on different LANs. Therefore, it knows the frames generated from Host
A and addressed to Host C need to be copied from the generating LAN to the
other one, and vice versa (see Figures 14-4(c) and (d)). Supposing that Host C is
moved to LAN1, the bridge would keep copying frames from Host A to LAN2
even if they are not needed. As soon as Host C starts talking again, the bridge
can update its lists of addresses and move Host C’s address from LAN2’s list to
LAN1’s list.

In both cases, if a host does not generate any frames after it has been moved, the
bridge does not have any way of learning its new location.

Therefore, to adapt the bridge’s knowledge to topology changes, the addresses
learned by the bridge are timed out after a configurable amount of time. This aging

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Multiple Bridges | 305

mechanism is usually implemented by a simple timer that is started when the address
is first learned, and restarted (reset) anytime the host is heard again, confirming or
updating its address. The process is shown in Figure 14-5. The lower the timer is, the
faster a bridge can learn about changes, but also the more frequently the bridge finds
itself not knowing where a given host is located and having to use flooding. The
default aging time is 5 minutes. We will see in Chapter 15 how the aging time can be
lowered by the STP under specific conditions, and in Chapter 17 how the system
administrator can change the default aging time.

Multiple Bridges
So far, we have seen only simple scenarios with just one bridge. However, because
transparent bridges are transparent to each other, as well as to the hosts and the
routers, you can create a larger L2 domain (i.e., a bigger LAN) by employing multi-
ple bridges, as shown in Figure 14-6.

The figure also shows the list of addresses that is learned by each interface of the two
bridges, assuming each host has spoken at least once and thus given the bridges a
chance to learn their locations. Note, for example, that from Bridge 2’s perspective,
Hosts A, B, C, and D are all located in LAN2, or in other words, are reachable via
Bridge 1’s interface on LAN2. After all, a bridge does not really care exactly where a
host is located; all it needs to know is what port to use to reach it.

The use of multiple bridges, however, requires care to be taken when designing the
topology. Let’s see why with the example in Figure 14-7.

Figure 14-5. Address learning and aging

Is the destination address
already in the port’s
learned address list?

Copy frame on
the right port

Copy frame to all ports except
the one it was received from

Restart aging timer

Is the source address
already in the port’s
learned address list?

Start aging timer

Add it

No

No Yes

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 14: Bridging: Concepts

Multiple bridges on the same LAN can be useful, for instance, to increase the avail-
ability of the connectivity between the LANs on which the bridges have interfaces. If
one bridge becomes unusable for some reason, the other ones will be able to keep up
connectivity. The figure shows a topology with only two bridges, but nothing would
forbid you from having more.

Nothing comes for free, though, so as you can imagine, there is a problem with the
topology of Figure 14-7. The problem comes from the “transparency” property of
bridges that we described earlier as a positive aspect. So next we’ll see where our
configuration gets us in trouble.

Figure 14-6. Topology with two bridges

Figure 14-7. Redundant bridges

LAN1

LAN2

Host A Host B

Host C Host D

Bridge 1

A, B

C, D, E, F

LAN3

Host E Host F

Bridge 2

A, B, C, D

E, F

LAN1

LAN2

Host A Host B

Host C Host D

Bridge 1 Bridge 2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Multiple Bridges | 307

Bridging Loops
Overall, transparency is good because hosts located in different LANs can be trans-
parently merged as if there were only one common LAN. However, transparency is
also dangerous because a bridge does not know the origin of an ingress frame. The
bridge’s job is to learn the location of hosts from ingress packets, build a sort of data-
base of addresses, and copy ingress frames to the right ports based on such a data-
base. When you have more than one bridge sitting on the same LAN, you cannot
assume anymore that an ingress frame originated in the same LAN to which the port
that received the frame is connected: the frame could have been copied there by
another bridge. This lack of information is so dangerous that bridges cannot be used
as shown in Figure 14-7 due to the catastrophic consequences of such a setup.

Let’s see, for example, what happens in the scenario in Figure 14-8, when Host A
transmits a packet and both Bridge 1 and Bridge 2 have empty databases (i.e., no
address has been learned yet).

Both bridges will receive the frame, realize that Host A is located in LAN1, and copy
the frame on LAN2. Which bridge will do it first is not deterministic; it depends, for
instance, on how loaded the two bridges are. Let’s suppose they do the copy at
almost the same time. The two bridges will therefore receive a copy of the frame on
their interfaces on LAN2 and think that Host A has moved to LAN2 (remember that
the frame they receive on LAN2 is an exact copy of the original one transmitted by
Host A on LAN1). At this point, both bridges will copy the frame to LAN1 (we sup-
pose the destination host has not replied yet and that therefore the bridges do not
know where it is located). They will again receive each other’s copy, change their
minds about the location of Host A, and copy the frames to LAN2.

This is a loop that will flood the two LANs with the same frame circulating end-
lessly, and making any other transmission on the two LANs impossible. The CPUs of
the other hosts in the LANs will also be busy receiving and dropping the huge

Figure 14-8. Bridging loop

LAN 1

LAN 2

Host A Host B

Host C Host D

Bridge 1 Bridge 2

1

2
3

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 14: Bridging: Concepts

number of copies of the same frame and, if not protected at the interface layer by
some rate limiting means, will collapse.

This simple scenario tells us an important rule: transparent bridges cannot be used
on loop topologies.

Loop-Free Topologies
A simple solution to make the topology of Figure 14-8 work would be to disable
Bridge 2 and enable it only when Bridge 1 fails. However, this solution would not
give us any real redundancy because it would require some kind of manual interven-
tion. Another solution, which is the one commonly used, is to make bridges visible
to each other, while still keeping the learning and copying tasks transparent, as
described earlier.

Figure 14-9 shows a more complex scenario.* Note that Bridge 5 has an interface on
three LANs. It should be clear that all the bridges must cooperate, and you cannot
simply turn bridges on or off;† you need to be able to define a loop-free topology
with a finer granularity. So instead of disabling bridges, you disable bridges’ ports.
The topology of Figure 14-9 does not represent a common or suggested scenario;
however, bridges must be able to work and provide loop-free connectivity even in
such a mess.

Figure 14-9. Topology with multiple loops

* The figure lacks hosts in LAN2 and LAN3 because I want you to focus on the network topology. Any hosts
in any LANs in Figure 14-9 would be affected by the consequences of a loop topology.

† Well, you can turn bridges off if you like, but you would reduce the degree of redundancy that you can
achieve.

LAN1

LAN2

Host A Host B

Bridge 1

LAN3

Bridge 4

Bridge 2

Bridge 5

Bridge 3

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Multiple Bridges | 309

Let’s return to the simple example in Figure 14-8, and find out the feature of the
bridging protocol that makes it safe. If you draw a graph where bridges and LANs
are states, and bridge connections to LANs (i.e., bridge ports) are (bidirectional)
links, you get Figure 14-10.

All you need to make the graph of Figure 14-10 loop free is to remove a link by dis-
abling a bridge port. The graph for the topology of Figure 14-9 would be more com-
plicated and would include several loops (I can count at least five of them).

Note that there is always more than one way to make any loop topology loop free.
For example, to break the loop in Figure 14-10, there are four different choices.

Defining a Loop-Free Topology
If you are familiar with graph theory, you know that given a graph (with costs in the
links), finding the best loop-free topology is a classic problem, elegantly solved by a
series of different algorithms. However, all those algorithms are centralized: the algo-
rithm runs once with all the necessary information. In our case, the bridges need a
distributed algorithm. The bridges must be able to converge to a loop-free topology,
disabling the right ports, by exchanging some kind of information.

The algorithm used by bridges to find the best loop-free topology is the Spanning
Tree Protocol defined by the 802.1D-1998 IEEE standard, which was extended with
the new Rapid Spanning Tree Protocol (RSTP) and became 802.1D-2004. RSTP is
sometimes also referred to as 802.1w.

Another interesting extension is the Multiple Spanning Tree Protocol (MSTP),
known also as 802.1s. It was integrated into 802.1Q-1998, which then become 802.
1Q-2002 (and should become 802.1Q-2005 sometime this year to reflect the latest
changes).

For simplicity, we will refer to those protocols as STP (the original Spanning Tree
Protocol), RSTP, and MSTP. Chapter 15 describes STP and gives an overview of the
improvements introduced with RSTP and MSTP. Chapter 16 goes into detail on the
implementation of STP.

Figure 14-10. Graph associated with the topology of Figure 14-8

LAN1

LAN2

Bridge 2Bridge 1

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

310

Chapter 15CHAPTER 15

Bridging: The Spanning
Tree Protocol

We saw in Chapter 14 that transparent bridging represents an easy way to merge
LANs, but it can be used only on loop-free topologies. This limitation eliminates the
use of transparent bridges on networks where redundant links are used to increase
overall availability.

In this chapter, we will see how the Spanning Tree Protocol (STP) manages to make
any topology loop free, and therefore allows the network administrator to use topol-
ogies with redundant links. In particular, we will see:

• How the distributed algorithm used by STP leads to a loop-free topology by dis-
abling the right redundant links. The loop-free topology selected by STP is a tree
(which by definition is loop free). All the traffic between the hosts of the LANs
connected by the bridges travels along the links of this tree.

• How STP dynamically updates the topology to cope with configuration changes
and bridge or link failures.

• How STP dynamically updates the forwarding database (i.e., addresses learned
on the bridge ports) when changes in the topology are detected.

We cannot go into detail on the STP for lack of space. The goal of this chapter is to
give you an overview detailed enough to make you comfortable with the description
of the kernel implementation of STP discussed in Chapter 16. For a complete discus-
sion of the 802.1D STP and its enhancements, please refer to the IEEE specifications.

The examples provided in this chapter do not function as a guide on how to config-
ure STP: most of them are used only to show how specific conditions can be met and
how STP handles them.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Example of Hierarchical Switched L2 Topology | 311

Basic Terminology
Let’s define a few key terms that will be used in this and the following chapter:

LAN
This term should not need any introduction. We will use the term LAN to refer
not only to Ethernet-like networks but also to point-to-point connections.

L2 network
A LAN or a set of LANs merged by bridges. As we saw in Chapter 14, the use of
bridges allows multiple LANs to be merged and look like a single bigger LAN (to
the eyes of routers and hosts—i.e., to the eyes of devices operating at higher net-
work layers).

Bridged (or switched) network
An L2 network implemented with bridges.

Bridge port
Interface

On a bridge device, each network interface is a bridge port. On a more general-
purpose system, such as a PC running Linux, a network interface is not necessar-
ily used as a bridge port. In the context of this chapter, the terms bridge port and
interface could be used interchangeably, but in Chapter 16, where we will need
to distinguish between bridging and nonbridging interfaces, I will use the term
interface to refer to nonbridging NICs only. Each port of a bridge can be used to
link both hosts and other bridges. We will see several examples in this and the
following chapters.

Link
A connection between two devices. In this chapter, I will use the term to refer to
the connection between two bridges.

Stable network
An L2 network where the STP has converged to the final loop-free topology.

Figure 15-1 shows the terms as they are used in this chapter and their relationship to
other everyday networking terms.

Example of Hierarchical Switched L2 Topology
We know that two hosts can be connected to each other with a cross cable; you do
not necessarily have to use a device such as a hub or a bridge. You can do the same
between bridges and routers. In the examples in this chapter, you will often see such
cross-cable links between bridges.

Unlike the scenarios in Chapter 14, where simple two-port bridges link directly to
hosts located in the connected LANs, a real bridged network normally has a topology
that resembles a tree, where hosts are located only (or mainly) at the leaves’ node.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 15: Bridging: The Spanning Tree Protocol

When you have simple scenarios like the ones seen in Chapter 14, you do not usu-
ally enable the STP; in fact, most sites could simply use a single flat LAN instead of
employing bridges at all. To better understand STP, we need to see what a real-life
scenario looks like. Let’s take the classic hierarchical bridged and redundant topol-
ogy in Figure 15-2(a), which is advertised and evangelized by most of the commer-
cial bridge vendors.

The figure leaves out details described later in this chapter, such as the bridge ID and
priority, port cost, and priority values, to let you focus on the topology and active
links selection. In the subsequent figures in this chapter, we will reuse the symbol
definitions in the legend at the bottom of the figure.

At the leaves of the tree (the bottom of the figure) are the hosts. The hosts are linked
to so-called access bridges (commonly called access switches): the bridges that give
network connectivity to the hosts. Access bridges are mainly used to forward traffic
between the hosts linked to the same bridge, but they also have one or more links to
the upper-layer bridges. The access bridges in Figure 15-2 are labeled A1, A2, A3,
and A4.

Because hosts are always located at the leaves of the topology, you can have as many
links to hosts as you like. They will not cause any loops (of course, we assume there
are no links between leaves). Because of that, the links to the host are not affected by
the STP: none of them needs to be disabled to define a loop-free topology. After all,
the ultimate goal of STP it to make the network look like a big single LAN and pro-
vide connectivity to all hosts, so why would you disconnect any of the hosts?

Figure 15-1. Basic terminology

Bridge

Router
Host A

L2 network

Interface

Bridge port

LAN/Segment

Internet

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Example of Hierarchical Switched L2 Topology | 313

A bridge at the distribution layer (D1 and D2 in the figure) is mainly used to bridge
traffic between hosts located in some of the access bridges it is directly connected to.
For example, D1 will take care of A1 and A2.

Note that D1 is also linked to A3 and A4, although currently D1’s links are inactive
(dotted lines in the figure). In case the link between D2 and A3 fails, the STP will
make sure that the topology is updated so that A3 is again part of the tree. For exam-
ple, the network could enable the link between D1 and A3; we will see how later in
this chapter.

The two distribution bridges D1 and D2 are also linked to the two core bridges C1
and C2. It should be clear what C1 and C2’s job is: to connect D1’s subtree to D2’s
subtree. (An alternative solution would be one with a single, and maybe more power-
ful, core bridge.) Between the distribution and core layers there are also redundant
links so that if, for example, the link C1–D1 failed, C2–D1 would take over. The
higher the layer where a bridge is located, the bigger the volume of traffic that is pro-
cessed (because the subtree is bigger).

Figure 15-2. Hierarchical bridged L2 topology

Bridge A1 Bridge A2 Bridge A3 Bridge A4

Bridge D1 Bridge D2

Bridge C1 Bridge C2

ROOT
D

D
D

D D
D

D D

D DD

R

RR

R R R R

D
D

Core

Distribution

Access

Router

.

(a)

(b)

LAN

Active link

Non-active link

Blocking port
R Root port

D Designated port

.

1 10 11 20 21 30 31 40

Router

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 15: Bridging: The Spanning Tree Protocol

The figure shows the links of the topology that the STP has selected to define the
loop-free topology, and what ports have been assigned the designated and root roles.
In this chapter, we will see what the designated and root roles are used for, how they
are assigned, and why.

Note that the traffic exchanged between any pair of hosts within the L2 network of
Figure 15-2(a) uses L2 protocols to travel (i.e., Ethernet). Routing can be imple-
mented at the core or through the core. From the host’s perspective, there is no hier-
archy at the link layer, only a flat LAN; the overall topology appears to it like
Figure 15-2(b).*

The use of multiple bridges has a few advantages:

• It helps segregate traffic. For example, while Host 1 talks to Host 10, Host 11
can talk to Host 20, and Host 21 can talk to Host 40, all without having to
receive and discard each other’s frames. So the overall bandwidth of the L2 net-
work is increased. But in the worst case, a frame may need to cross the entire
tree to get to its destination. For example, Figure 15-3 shows the path of a frame
that needs to go from Host 40 to Host 1. Note that the figure also shows the
address learned by each bridge port: for example, the notation 1–10 close to a
bridge’s interface means that the latter has learned the MAC addresses of Hosts
1 through 10. (We saw in Chapter 14 how address learning works.)

• Large numbers of hosts become easier to manage. You do not need to connect
all the hosts to a single giant bridge, which means the hosts can be located in dif-
ferent areas. Cabling is also simpler to take care of.

I’ll end my overview of L2 bridged topologies here. You would need a whole book to
cover bridging protocols and STP in detail, so I’ll move ahead with an overview of
the algorithm implemented by the STP.

In the rest of this chapter, we will use simpler topologies to describe the protocol.
However, what we will see works just the same way in bigger and more complex net-
works like the one in Figure 15-2.

Basic Elements of the Spanning Tree Protocol
The search for the best nonrooted spanning tree or the best rooted spanning tree is a
classic problem in operational research. The literature provides different algorithms
that differ in computational complexity. There are a huge number of applications in
real life where those algorithms are commonly used.

* 12-digit MAC addresses (such as 11:22:33:44:55:66) are replaced with simple 2-digit values to make the fig-
ure more readable.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Basic Elements of the Spanning Tree Protocol | 315

The STP we describe in this chapter has a somewhat similar goal: given a graph and a
root node R, define the best spanning tree rooted in R. However, there is one impor-
tant difference: the algorithm is not executed on a single host that later distributes
the result to all the others; instead, this is a distributed protocol. All bridges in the
network must run it. By running this protocol, they enable some of their ports and
disable others, and the overall topology that follows is the best rooted spanning tree.
The selection of the root node is also part of the protocol: the hosts agree on who is
the root node and then decide what links to enable and disable.

Let’s try to understand what “best spanning tree” means exactly. Given a graph and
a node you want to be the root, the best spanning tree is the loop-free topology (tree)
that minimizes the distance of each node from the root node. Depending on the
graph, there could be more than one tree with the same goodness score* (Figure 15-4
shows an example with two equally good solutions).

When the links are not assigned a cost, or are all assigned the same cost (which
would be equivalent), the distance from a node to the root is measured as the num-
ber of links (that is, network hops). However, when you associate a cost with the
links, the number of hops is not necessarily an indication of the goodness of the
path.

Figure 15-3. Example of bridged network

* We will see that the STP defines a mechanism to deterministically choose the same tree every time, if more
than one optimal instance is available.

Bridge A1 Bridge A2 Bridge A3 Bridge A4

1 10 11 20 21 30 31 40

Bridge D1 Bridge D2

Bridge C1 Bridge C2

ROOT

.

1 10 11 20 21 30 31 40

1—20

21—40

1—10

11—40 21—40
31—40

1—20 1— 30

21—30
31—40

11—20

1— 20

21—40
Addresses
learned on
the port

From 40 to 1

1—10

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 15: Bridging: The Spanning Tree Protocol

For example, if we add costs to the topology in Figure 15-4, the associated best
rooted spanning tree differs from both of the solutions in Figure 15-4, as shown in
Figure 15-5.

We will see in the section “Bridge and Port IDs” how the network administrator can
override default costs with other values, basing the choice, for instance, on adminis-
trative parameters such as monetary cost and reliability of the connections.

The STP achieves its goal by having each bridge exchange specialized frames called
bridge protocol data units (BPDUs) with its neighbors. The information exchanged
with BPDUs allows bridges to:

• Assign each bridge port a defined state, such as forwarding or blocking, that
defines whether data traffic can be accepted on the port

Figure 15-4. Graph with no costs assigned to the links

root

Problem

root

Solution 1

root

Solution 2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Basic Elements of the Spanning Tree Protocol | 317

• Select and discard the right links from the loop topology by means of this port
state assignment, leading this way to a loop-free topology

Some of the bridge ports are assigned special roles, depending, for example, on
whether they lead toward the root of the tree (the so-called root bridge) or the leaf
nodes of the tree.

Given the precise terminology used in graph theory, it should not be a surprise that
the STP also uses a well-defined terminology to refer to nodes (bridges) and links
(bridge ports). Before looking at the algorithm, I need to explain:

• What a root bridge and designated bridge are

• What states and roles can be assigned to a bridge’s port

• The job of root and designated ports

Root Bridge
The root bridge is not just a placeholder in the topology; it plays a central role in the
algorithm. For example, in the next sections, you will see that:

• The root bridge is the only bridge that generates BPDUs. The other bridges
transmit BPDUs only when they receive one (i.e., they revise the information
they receive by simply updating a couple of fields).

• The root bridge makes sure each bridge in the network comes to know about a
topology change when one occurs (see the section “Topology Changes”).

Note that the selection of the port states and roles (and therefore of the links that
should be enabled or disabled) depends on the location of the root bridge in the
topology: this is because first you select the root bridge, and then you build the best
tree based on that.

Figure 15-5. Graph with costs assigned to the links

root

1 10

2 2

Problem

root

1

2 2

Solution

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 15: Bridging: The Spanning Tree Protocol

Designated Bridges
While each tree has only one root bridge, there is one designated bridge for each
LAN, which becomes the bridge all hosts and bridges on the LAN use to reach the
root. The designated bridge is chosen by determining which bridge on the LAN has
the lowest path cost to the root bridge.

Thus, using Figure 15-2 as an example:*

• In the A3–D2 LAN, D2 is the designated bridge.

• In the D2–C2 LAN, C2 is the designated bridge.

Spanning Tree Ports
We introduced the root and designated bridge’s roles in the previous sections. Let’s
see here what states and roles can be assigned to a bridge port.

Port states

An STP port is a port in a bridge that runs the STP. This port will process ingress
BPDUs and transmit BPDUs according to the rules in the section “When to Trans-
mit Configuration BPDUs.”

An STP port can be in any of the following states:

Disabled
The port is shut down (through administrative action); it does not receive or
transmit any traffic.

Blocking
The port is up, but the STP has blocked it. It cannot be used to forward any data
traffic.

Listening
The port is enabled, but it cannot be used to forward any data traffic.

Learning
The port is enabled, but it cannot be used to forward any data traffic; however,
the bridge’s address learning process is active.

Forwarding
The port is enabled, learning is active, and data traffic can be forwarded.

The use of the intermediate learning state allows a bridge to reduce the amount of
flooding that would otherwise be required with an empty forwarding database.

* The links in the figure are not assigned costs. You can assume their costs to be 1, and therefore the path cost
to be the hop count. This is just an example; 1 is not the default cost assigned to links.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Basic Elements of the Spanning Tree Protocol | 319

With the exception of ports in the disabled state, ingress BPDUs are processed
regardless of the port state. Whether a port in a given state receives ingress BPDUs or
transmits BPDUs depends on the port’s role, which is introduced in the section “Port
roles.”

Figure 15-6 shows how the state of a port can change. There is a clear progression
from blocking through listening and learning to the most active state, forwarding.
The transitions between blocking and forwarding are decided by the protocol based
on various factors (see the later section “Defining the Active Topology”). Note that:

• A port on its way to the forwarding state can be moved back to blocking before
the forwarding state is entered. This is possible, for instance, when a topology is
not stable yet and therefore its state may change repeatedly in a short amount of
time.

• The transitions between the intermediate states from blocking to forwarding are
driven by a timer (see the section “Timers”) and are needed to avoid the risk of
temporary loops (see the section “Avoiding Temporary Loops”).

In addition, an administrator can manually remove a port from any of these states
and disable it. When a port is administratively disabled, it can be re-enabled only by
another administrative intervention; the STP does not have this capability. However,
bridges can implement optional features on top of the basic ones defined by the pro-
tocol, to enable and disable ports without administrative intervention.

Port roles

STP ports can be assigned one of the following two roles:

Root
For each bridge, with the exception of the root bridge, the port with the lowest
path cost to the root bridge is selected as the root port.

Figure 15-6. Port state transitions

Disabled

Blocking Listening Learning Forwarding

Protocol decision
Admin decision

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 15: Bridging: The Spanning Tree Protocol

Designated
On each LAN, the port with the smallest path cost to the root bridge is selected
as the designated port. The bridge to which the designated port belongs is called
the designated bridge for the LAN. Note that a bridge with ports on different
LANs can have more than one designated port, as shown in Figure 15-2. The cri-
teria used to select designated ports are described later in the section “Desig-
nated Port Selection.”

While root ports lead toward the root of the tree (i.e., the root bridge), designated
ports lead toward the leaves. In Figure 15-2, you can see the relationship between
root and designated ports.

From a tree’s perspective, the two roles can be seen in this way:

• The tree’s root has links that go only toward the leaves (i.e., only designated
ports*).

• The leaf nodes have links that go only toward the tree’s root (i.e., no designated
ports and one root port). As a protection against misconfigurations and wrong
cabling (such as connecting a bridge to a port where you are supposed to con-
nect a host), a leaf node can run the STP on the ports that connect the hosts, too.
In this case, the assumption that a leaf node does not have designated ports
would no longer be valid. In other words, if you enable the STP on the ports of
the access bridges in Figure 15-2 that connect the hosts, those ports would end
up being assigned the designated role.

• Any node between root and leaves has at least one link toward the root (one of
which will be selected as the root port), and at least one toward the leaves (a des-
ignated port).

There are STP ports that are neither root nor designated ports; this is possible when
you have redundant links between bridges. In Figure 15-2, the A1 port that goes to
D2 is an example. The newer STP protocols, which I will briefly introduce in the sec-
tion “Overview of Newer Spanning Tree Protocols,” define new roles so that each
STP port is assigned one.

We will see how the root and designated port roles are assigned in the sections “Root
Port Selection” and “Designated Port Selection,” respectively.

* If you use shared media such as hubs to connect bridges, as in Figure 15-11(c), the root bridge can have non-
designated ports as well. The newer RSTP protocol would call that port a backup port (see the section “Rapid
Spanning Tree Protocol (RSTP).”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Bridge and Port IDs | 321

Bridge and Port IDs
The selection of the root bridge and the port state and roles depends on a set of
parameters. Each parameter is assigned a default value that can be changed by user
configuration. Here are the main parameters:

Bridge ID
Each bridge is assigned an ID, called the bridge ID, that is defined as an 8-byte
value split into two components. The lowest six bytes are assigned the Ethernet
MAC address of one of the bridge ports (see Chapter 16), and the highest two
bytes are a configurable priority, called the bridge priority. The bridge ID is the
field used by the root bridge selection algorithm (see the section “Root Bridge
Selection”).

Port ID
Each port is assigned an ID. A portion of the ID represents a unique identifier
called the port number. The way the port number is assigned is implementation
dependent, and its value is meaningful only locally on the bridge. For example,
the number can reflect the sequence in which ports were created: the first port is
assigned 1, the second port 2, etc. Another approach could use the physical loca-
tion of the port: for example, the first port on the bus is assigned 1, etc. It is
desirable to have the port number assignments be deterministic and consistent
across reboots so that the system administrator does not need to change the
bridge configuration to reflect the changes after a reboot.

Another portion of the ID, called the port priority, is used to assign a priority to
the port (where a lower value means a higher priority). See Figure 15-7(b).

See the section “Root Port Selection” for an example of when this parameter is
used.

Besides the bridge and port priority, the user can configure the following parameters:

Port cost
Each port is assigned a cost. The lower the value, the more preferred the port is.
When not explicitly configured, the port is assigned a default cost based on the
port’s speed. For example, a Fast Ethernet port that runs at 100 Mbits/s is
assigned a lower cost than an Ethernet port that runs at 10 Mbits/s. The default
cost assignment makes sense in most cases, when the overall cost of going from
one point of the tree to another is measured in terms of latency. However, it is
possible that in specific contexts, the administrator prefers to explicitly assign
costs based on external factors.

Timers
The STP uses a set of per-port and per-bridge timers. All of them have a default
configuration that can be customized by the user. See the section “Timers.” The
timer configuration does not affect the selection of the root bridge and the port
state and roles.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 15: Bridging: The Spanning Tree Protocol

We will see later in this chapter how the configuration of these parameters (with the
exception of the timers) can be used to influence the selection of the topology.

In 2001, the IEEE released the 802.1t, 802.1D’s maintenance document, which
changed how bridge and port IDs are defined. The changes in format are shown in
Figure 15-7.

Note that:

• The bridge priority is now only 4 bits in size. For backward compatibility, the
bridge priority range is still 0–64 K, but since you have only four bits to play
with, you now have priorities in increments of 4,096 (212).

• There is a new component in the bridge ID, called the system ID extension. This
component, which can assume 4,096 different values, allows a network device,
for example, to have up to 4,096 different bridge IDs sharing a single MAC
address. Before, this would have required 4,096 different MAC addresses. Note
that MAC addresses are not random numbers chosen by the administrator; they
are worldwide unique numbers (and therefore are a limited resource) that are
managed by the IEEE.

• The port number is now a 12-bit value, which allows a bridge to have up to
4,096 ports. Before you could have had only 256 (which was originally consid-
ered quite luxurious). The port priority is now a 4-bit value. The priority range is
still 1–256 for backward compatibility, so priorities are now assigned in incre-
ments of 16.

Figure 15-7. Bridge ID and port ID changes introduced by 802.1t

Bridge priority
(16 bits)

Bridge address
(48 - bit MAC address)

Before 802.1t

(a)

Bridge priority
(4 bits) Bridge address

(48 - bit MAC address)

After 802.1t

System ID extension
(12 bits)

Port priority
(8 bits)

Before 802.1t

(b)

After 802.1t

Port ID
(8 bits)

Port priority
(4 bits)

Port ID
(12 bits)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Bridge Protocol Data Units (BPDUs) | 323

To understand the reasons for the 802.1t changes, you need to think in terms of
high-end commercial devices, not common PCs equipped with just a few NICs. The
latter can survive with a limit of 256 bridge ports, or a single bridge ID per MAC
address. However, it is not uncommon for big bridges to be equipped with hundreds
of ports and to run hundreds of instances of bridges.

Note also that 4,096 is not a random value: it represents the maximum number of
Virtual LANs (VLANs) allowed in the 802.1Q protocol.

The 802.1t changes do not have any impact on the STP. From the STP’s perspective,
a bridge ID is an 8-byte value and a port ID is a 2-byte value. The size or purpose of
the user-configuration component does not matter. This means that the 802.1t
changes affect only configuration tools, not the protocol’s behavior. Tables 15-1 and
15-2 summarize the possible values of the different parameters.

Bridge Protocol Data Units (BPDUs)
Bridges exchange protocol frames, called BPDUs, that include enough information
for them to agree on who is the root bridge, and to decide on the roles and states for
their local ports. There are two kinds of BPDUs:

Configuration BPDU
Used to define the loop-free topology. You will see in the section “When to
Transmit Configuration BPDUs” what conditions trigger the transmission of
these BPDUs.

Topology Change Notification (TCN) BPDU
Used by a bridge to notify the root bridge about a detected topology change. See
the section “Topology Changes.”

Figure 15-8 shows the format of both BPDUs. Note that the two types share the
same first three fields and can be distinguished by the BPDU type parameter.

Table 15-1. Bridge IDs and port IDs before 802.1t

Default value Min. value Max. value Min. increment

Bridge priority 32,768 0 65,535 1

Port cost Depends on port speed 1 65,535 1

Port priority 128 0 255 1

Table 15-2. Bridge IDs and port IDs after 802.1t

Default value Min. value Max. value Min. increment

Bridge priority 32,768 0 61,440 4,096

Port cost Depends on port speed 1 200,000,000 1

Port priority 128 0 240 16

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 15: Bridging: The Spanning Tree Protocol

Table 15-3 shows the combinations of protocol ID and protocol version used by the
three IEEE STPs. In this chapter, we will look only at the basic 802.1D protocol and
briefly introduce the other two in the section “Overview of Newer Spanning Tree
Protocols.”

Configuration BPDU
Here is the meaning of the fields in the configuration BPDU:

Flags
Only two flags are used: TC (Topology Change) and TCA (Topology Change
Acknowledgment). The use of both is described in the section “Topology
Changes.”

Root Bridge ID
ID of the root bridge. This is what the transmitting bridge thinks the current
root bridge is.

Root Path Cost
Cost of the shortest path from the transmitting bridge to the root bridge. The
cost is 0 when the transmitting bridge is (or thinks it is to become) the root
bridge.

Figure 15-8. a) Configuration BPDU; b) BPDU

Table 15-3. BPDU versions

Protocol name Protocol ID Protocol version

STP (802.1D-1998) 0 0

RSTP (802.1D-2002 or 802.1w) 0 2

MSTP (802.1Q-2002 or 802.1s) 0 3

Protocol ID

(a)

2 (0)

Protocol version

BPDU type = CONFIG

Root Bridge ID

Root Path cost

Bridge ID

Port ID

Message Age

Max age

Hello Time

Forward Delay

1(2)

1 (3)

8 (5)

4 (13)

8 (17)

2 (25)

2 (27)

2 (29)

2 (31)

2 (33)

1 (4)

Priority
vector

TC TCA

Size (offset)

Protocol ID

(b)

Protocol version

BPDU type = TCN

TC= Topology change
TCA= Topology change acknowledgment

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Bridge Protocol Data Units (BPDUs) | 325

Bridge ID
ID of the transmitting bridge.

Port ID
Port identifier. See the section “Bridge and Port IDs” for its syntax.

Message Age
How much time has passed since the root bridge generated the information in
this BPDU. See the section“BPDU Aging.”

Max Age
Maximum lifetime for configuration BPDUs.

Hello Time
Timeout used by the Hello timer.

Forward Delay
Timeout used by the Forward Delay timer. See Figure 15-6.

The values of the three timers Max Age, Hello Time, and Forward Delay are not the
ones configured locally on the bridge: they are the ones advertised by the root bridge
(see the section “Transmitting Configuration BPDUs”). All of them are expressed in
ticks (1/256th of second). See the section “Timers.”

Priority Vector
Four components of the configuration BPDU—Root Bridge ID, Root Path Cost,
Bridge ID, and Port ID—make up the priority vector (see Figure 15-8). Because these
four components are in sequence, this vector can be seen as a single 22-byte num-
ber. The lower the number is, the more important the bridge is in the topology; in
other words, the priority vector determines who wins the bidding for contested roles
such as root bridge and designated bridge. In the rest of this chapter, I will refer to
priority vectors using a [BR-Root, Cost, BR-ID, Port-ID] notation.

In the examples later in this chapter, the figures show only the priority component of
the configuration BPDUs transmitted, because that is the portion of the configura-
tion BPDU used by the bridges to select their port’s roles and states.

Given two priority vectors PV1=[BR-Root1, Cost1, BR-ID-1, Port-ID1] and
PV2=[BR-Root2, Cost2, BR-ID-2, Port-ID2], PV1 is said to be superior when it is a
lower numeric value than PV2, and inferior when PV1 is a higher numeric value than
PV2. In other words, PV1 is superior to PV2 if BR-Root1 < BR-Root2, or, in case they
are the same, if Cost1 < Cost2, or, if they are the same too, if BR-ID1 < BR-ID2, or,
when the two bridge IDs match too, when Port-ID1<Port-ID2.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 15: Bridging: The Spanning Tree Protocol

When to Transmit Configuration BPDUs
A bridge transmits configuration BPDUs out of its designated ports. It does so in the
following cases:

• The root bridge runs a timer (the Hello timer) that expires regularly and triggers
the transmission of configuration BPDUs. One BPDU is transmitted on each one
of its designated ports. Only the root bridge generates new BPDUs, but when a
bridge is first enabled, it thinks it is the root bridge (because it has no other pri-
ority vector to compare its own to). So it places all of its ports into the desig-
nated role, starts its Hello timer, and begins to generate BPDUs (see the section
“Root Bridge Selection”).

• Nonroot bridges generate BPDUs only in response to ones they receive on their
root ports; in other words, they relay BPDUs. BPDUs transmitted by nonroot
bridges carry the same information as the BPDUs they received, with the excep-
tion of the following fields that they update (see Figure 15-9):

• The transmitter’s bridge ID and port ID are replaced by the bridge with its
own information.

• The bridge updates the cost to be the sum of the cost it received and the cost
of the port on the local bridge (its root port) that it received the BPDU on.

• The message age is updated according to the logic described in the section
“BPDU Aging.” The latter section explains how the DT quantity is defined.

Regardless of whether a bridge is the root bridge, it transmits a configuration BPDU
in the following cases as well:

• When a bridge receives a BPDU with a priority vector that’s inferior to the one it
would use on the same port, it replies with its own (superior) information. See
the section “Examples of STP in Action.”

• When a bridge receives a TCN BPDU, it acknowledges its reception right away
with the transmission of a configuration BPDU that has a special flag set. This
helps propagate changes in topology quickly (see the section “Letting All Bridges
Know About a Topology Change”).

Regardless of why a configuration BPDU is transmitted out of a given port, the STP
enforces rate limiting: a bridge cannot transmit more than one Configuration BPDU
per second out of any of its ports (see the section “Transmitting Configuration
BPDUs”).

BPDU Aging
Because BPDUs are generated only by the root bridge, and are regenerated by the
other bridges only upon the reception of a BPDU on their root port, it should be
clear that the time taken by the information generated by the root bridge with its

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Bridge Protocol Data Units (BPDUs) | 327

BPDUs to reach the leaf bridges is variable. On a stable network, the time depends
mainly on how loaded the bridges are and how fast they can process BPDUs.

BPDUs carrying stale information should not be used to build the loop-free topol-
ogy. For that reason, configuration BPDUs have a field called Message Age that is
compared by the receiving bridge against the other field, Max Age, to discard those
BPDUs that have been around for too long and whose priority vector cannot be
trusted.

The Message Age field is first initialized to 0 by the root bridge, and is updated by
each nonroot bridge prior to forwarding it (see DT in Figure 15-9). The Message Age
is supposed to represent the time that has passed since the original root bridge’s
BPDU was generated. However, to calculate this time is not easy. It should, for
example, account for both the transmission delays and the processing time: in other
words, the time spent by the frame in the media going from one bridge’s port to the
next one, and the time spent in the bridge’s memory while each bridge processes and
regenerates it. But a common approach in commercial bridges is to simply treat the
Message Age field as a hop count, just like the Time To Live (TTL) field of the IP
header: the Message Age field of the ingress BPDU is incremented by 256 ticks (i.e., 1
second) and copied into the outgoing BPDUs. This means that a BPDU would be
dropped after a maximum of 20 hops (20 seconds is the default value for Max Age).

Figure 15-9. BPDU relaying via nonroot bridges

Bridge BR3
1

2 3

Root ID
Cost
Bridge ID
Port ID

:BR1
:10
:BR2
:5

D

R

Msg Age
Max Age
Hello
Fwd Delay

2
20
2
15

D

Root ID
Cost
Bridge ID
Port ID

:BR1
:10+C
:BR3
:2

Msg Age
Max Age
Hello
Fwd Delay

2+DT
20
2
15

Root ID
Cost
Bridge ID
Port ID

:BR1
:10 +C
:BR3
:3

Msg Age
Max Age
Hello
Fwd Delay

2+DT
20
2
15

Priority
vector

Link cost=c

The BPDU information is
kept valid on port 1 for

18 seconds (20-2), that is,
Max Age-Msg Age

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 15: Bridging: The Spanning Tree Protocol

Linux does not use the message age as a hop count, but tries to respect the original
rule described in the section “Transmitting Configuration BPDUs.”

When the BPDU received by a bridge on one of its port has not expired (i.e., the
Message Age is less than the Max Age), the bridge starts a Message Age timer that
will expire after an amount of time given by the difference between the Max Age and
the Message Age. Refer to the section “Timers” for the actions triggered by the expi-
ration of the Message Age timer. This ensures that the information carried by the
BPDU is discarded Max Age seconds after its generation, unless it is confirmed by
then.

Defining the Active Topology
Each bridge, with the help of the local configuration and the information received
with the ingress configuration BPDUs, is able to accomplish the following:

• Elect the root bridge

• Select one of its ports as the root port

• For each port, identify the designated bridge and designated port for the LAN to
which the port belongs

Those tasks, which I will refer to as a configuration update, are needed every time
something changes in the network that may require a change in the topology. For
instance:

• A port is either enabled or disabled.

• A port’s Message Age timer expires. In this case, the port is restarted (i.e.,
assigned the designated role).

• The local configuration of a bridge changes.

• A bridge port receives a configuration BPDU with a superior priority vector com-
pared to the one previously received on the same port.

Note that a configuration update is triggered on the bridge where the configuration is
changed or where a port changes administrative state. The other bridges will follow
(if necessary) upon seeing these changes reflected in the information carried by the
BPDUs they receive.

Let’s see how the configuration update’s tasks are taken care of, one by one.

Root Bridge Selection
We saw in the section “Bridge and Port IDs” how a bridge ID is defined. An algo-
rithm based only on the use of the MAC address for the selection of the root bridge
would be sufficient to ensure a deterministic selection, given that MAC addresses are
unique worldwide. However, the addition of the priority component allows

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Defining the Active Topology | 329

administrators to force the topology they like by assigning higher priorities to those
bridges they would like to be selected as root. They can even assign strategic priori-
ties to different bridges so that they can also force a given bridge to take over in case
the current root bridge fails.

When a bridge is first enabled, it does not know anything about the topology and
therefore thinks it’s the root bridge. It will therefore assign the designated role to all
its ports, start the Forward Delay timer on the ports so that they eventually will be
assigned the forwarding state (see Figure 15-6), and start transmitting BPDUs using
the bridge’s ID as the root Bridge ID field, and a root path cost of 0. This is a conve-
nient way to make it broadcast data about itself and get that data spread around as
quickly as possible so that both it and other bridges can discover the truly best root
bridge and rebalance the tree.

When the bridge is the one with the best bridge ID, it will keep sending out BPDUs
on its designated ports because no other bridge can claim a better priority vector (to
be more exact, a better bridge ID) and therefore take over the root role.

If the bridge did not have the best bridge ID, it will eventually receive a configura-
tion BPDU with a better root bridge ID (i.e., a superior BPDU) and:

• Accept and record the better information (including the root bridge ID and tim-
ers).

• Update the state and role of its ports accordingly. This is what is called a config-
uration update.

Root Port Selection
Each bridge must select its own root port, which, as we anticipated in the section
“Port roles,” is the port with the shortest path (or lowest cost) to the root bridge. The
root bridge is the only one that does not have a root port; nonroot bridges have one
and only one root port.

For each of its ports, with the exception of the ones that are administratively dis-
abled, a bridge keeps a copy of the best priority vector received with ingress BPDUs.
This way, the bridge knows, for each port, what is the best (lowest cost) path to
reach the root bridge.

The selection of the root port consists simply of going through all the ports and
selecting the one with the best priority vector. If more than one port happens to
share the same best priority vector, the local port with the lowest assigned port ID is
selected, as shown in Figure 15-10 (note that the receiver port ID is not part of the
BPDU).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 15: Bridging: The Spanning Tree Protocol

Designated Port Selection
While there can be one root port per bridge, there is only one designated port per
LAN. The STP ensures that each bridge chooses the same port. The designated port
should be the one that has the lowest path cost to the root bridge. Thus, it’s the port
with the best priority vector.

Each bridge is usually on more than one LAN, so it must learn the designated port
for each LAN.

On a point-to-point connection between two bridges, there are just two ports. The
one that transmits BPDUs with the best priority vector is selected. By contrast, a
shared medium such as an Ethernet hub may have more than two bridges. In that
case, each bridge will receive each other’s BPDUs and, by checking the priority vec-
tor, elect the right designated port.

Figure 15-11 shows what would happen when you use a shared medium to connect
bridges. Initially only BR2 is connected to the hub and therefore it elects itself as the
root bridge. When an administrator later adds BR1, it also thinks it is the root
bridge, as you can see from the BPDUs it transmits in Figure 15-11(b). Let’s assume
that BR2’s ID is higher than (i.e., inferior to) BR1’s ID, and therefore that the two
bridges end up agreeing on BR1 as the root bridge.

Because all of these bridge ports connect to the same hub, when BR1’s port 1 trans-
mits a BPDU, BR1 receives its own BPDU on port 2, and vice versa. However, the
selection of the designated port based on the best priority vector works in this sce-
nario, too: the fourth field of the priority vector, which is the port ID, makes port 1’s
BPDU priority vector the best.

However, the shared-medium setup is unpopular for several reasons, so in the rest of
this chapter, I will refer only to the point-to-point case.

Figure 15-10. Multiple candidates for the root port selection

Bridge BR1

Root

Bridge BR2

Hub

1

1 2

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:1

D

R

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Defining the Active Topology | 331

Examples of STP in Action
Let’s suppose we had the topology in Figure 15-12. Note that since there are no
redundant links, there would be no need for the STP. Let’s assume:

• Bridge ID BR1 < Bridge ID BR2 < Bridge ID BR4 (so BR1 is the root bridge).

• Each bridge can configure the cost of its local interfaces independently from the
other bridges. For simplicity and to make the figure easier to read, let’s just assume
that all the path costs are symmetric (the same on both sides of each link).*

Figure 15-11. Designated port selection

* Remember that the path cost of any link is a locally configured parameter and it is not carried in the config-
uration BPDUs.

Bridge BR1

Root

Bridge BR2

Hub

1

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:1

D

D

Bridge BR2

Hub

1

Root ID
Cost
Bridge ID
Port ID

:BR2
:0
:BR2
:1 D

(a)

(b)

1 2
D

Root ID
Cost
Bridge ID
Port ID

:BR2
:0
:BR2
:1

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:2

Bridge BR1

Root

Bridge BR2

Hub

1

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:1

D

R (was D)

(c)

1 2

Root

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 15: Bridging: The Spanning Tree Protocol

Note that:

• The designated port of BR1 regularly transmits a configuration BPDU every time
the Hello timer expires. Because BR2 receives configuration BPDUs regularly at
every Hello time on its port 1, it regenerates (forwards) a configuration BPDU on
its port 2 more or less regularly at every Hello time as well.

• Bridge 1’s configuration BPDU advertises:

• BR1 as the root bridge

• A root path cost of 0

• Its own bridge ID BR1

• A port ID of 1

• Bridge 2’s configuration BPDU advertises:

• BR1 as the root bridge

• A root path cost of 10 (it adds its own cost to the one sent out by BR1)

• Its own bridge ID BR2

• A port ID of 2

Now let’s add a new bridge named BR3, and assume that Bridge ID BR3 < Bridge ID
BR4, as in Figure 15-13.

As we explained in the section “Root Bridge Selection,” when BR4 is first enabled it
thinks it is the root bridge, and therefore it assigns the designated role to its two
ports. It sends out a configuration BPDU on each port, advertising itself as the root
bridge, and therefore using a root path cost of 0 in the BPDUs.

Figure 15-12. Updating the root path cost

Bridge BR1

Root

Bridge BR4

1

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:1

D

R

1

Root ID
Cost
Bridge ID
Port ID

:BR1
:10
:BR2
:2

Bridge BR2
1

2
D

R
10

100

root path cost=0

root path cost=110
root path cost=10

root path cost=10

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Defining the Active Topology | 333

If we assume BR3 to be connected to BR1 and BR4 with a point-to-point link, as in
Figure 15-13, when BR3 is powered up, BR1 and BR4 will enable their ports con-
nected to BR3, assign these ports the designated role, and start transmitting configu-
ration BPDUs.

Let’s see how BR1, BR3, and BR4 react upon receiving each other’s configuration
BPDUs:

• The configuration BPDUs from BR1 and BR4 will have the following priority
vectors, respectively: [BR1, 0, BR1, 2] and [BR1, 110, BR4, 2].

Figure 15-13. Adding a bridge to a stable topology

Bridge BR1

Root

Bridge BR4

1

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:2

D

R

1 Root ID
Cost
Bridge ID
Port ID

:BR3
:0
:BR3
:1

Bridge BR2
1

2
D

R

10

100

(a)

Bridge BR4
1

2D

D

D2

2

D

10

100
Root ID
Cost
Bridge ID
Port ID

:BR3
:0
:BR3
:2

Root ID
Cost
Bridge ID
Port ID

:BR1
:101
:BR4
:2

Bridge BR1

Root

Bridge BR4

1

D

R

1

Bridge BR2
1

2
D

R

10

100

(b)

Bridge BR3
1

2D

R

D2

2

10

100
Root ID
Cost
Bridge ID
Port ID

:BR1
:10
:BR3
:2

Root ID
Cost
Bridge ID
Port ID

:BR1
:10
:BR2
:2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 15: Bridging: The Spanning Tree Protocol

• Because the BPDU that BR1 receives from BR3 has an inferior priority vector,
BR1 keeps its port 2 in the DESIGNATED role and maintains its root bridge
role. On the other hand, when BR3 receives the BPDU from BR1, it realizes that
BR1 has a better bridge ID (and thus a better priority vector) and therefore
updates its port 1’s priority vector, selects port 1 as its root port, and selects BR1
as the root bridge.

• The BPDU that BR3 receives from BR4 has a better priority vector than the one
BR3 sent to BR4, but not as good as the one BR3 received from BR1. Because of
that, BR4 does not change its current root port and root bridge information: port
1 is still the root port and BR1 is still the root bridge.

• When BR3 transmits a new BPDU to BR4, as in Figure 15-13(b), it uses a new
priority vector that reflects the new information acquired from BR1. Upon
receiving that BPDU, BR4 recognizes the superior priority vector and it blocks its
port 2. Note that BR3’s priority vector wins over BR4’s priority vector because of
its lower path cost (i.e., BR3’s port 2 is selected as the LAN-designated port
because it is closer to the root bridge than BR4’s port 2).

• BR4 selects port 1 as its root port because it is the one that receives the better
priority vector (remember that we assumed that BR2’s bridge ID is lower than
BR3’s bridge ID).

If you compare the configuration BPDU that BR4 receives from BR2 to the one it
receives from BR3, you can see that they share the same root bridge ID (BR1) and the
same root path cost (10), but that the third component of the priority vector is bet-
ter than BR2’s, because BR2’s bridge ID is less than BR3’s. BR4 therefore selects port
1 as its root port. An administrator who had a preference for BR4’s link to BR3 over
the one to BR2 would simply have to configure a lower cost on that port (see the sec-
tion “Bridge and Port IDs”).

In this example, the first three components of the priority vector were sufficient for
the selection of the root and designated ports. Let’s see now, with the example in
Figure 15-14, when the fourth one, the port ID, is needed as a tiebreaker.

Now BR4 receives two BPDUs from BR2 with the same values in the first three fields
of the priority vector. However, the fourth parameter (the port ID) allows BR4 to
select its port 1 as its root port. In the section “Root Port Selection,” we also saw
how a bridge uses the local port ID (as opposed to the remote port ID that is part of
the priority vector) as the tiebreaker when all four components of the priority vec-
tors of ingress BPDUs are not sufficient to identify a winning BPDU.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Timers | 335

Timers
The STP uses both per-bridge and per-port timers. In Tables 15-4 and 15-5, you can
see the default timeouts, and what the allowed values are, for per-bridge and per-port
timers, respectively.*

Figure 15-14. Port ID as the tiebreaker

* If you are interested in how the default timers have been defined, read either the IEEE 802.1d specification
or http://www.cisco.com/warp/public/473/122.html.

Table 15-4. Bridge timers

Timer Default value (in seconds) Allowed range

Hello 2 1–10

Topology Change Forward Delay + Max Age Not configurable

TCN Hello time Not configurable

Addresses Aging 300 or Forward Delaya

a See the section “Topology Changes.”

Not configurable

Table 15-5. Port timers

Timer Default value (in seconds) Allowed range

Message Age 20 6–40

Forward Delay 15 4–30

Hold 1 Not configurable

Bridge BR1

Root

Bridge BR4

1

D

R

1

Bridge BR2
1

2D

R

10

100

Bridge BR3
1

2D

R

D2

3

10

100

Root ID
Cost
Bridge ID
Port ID

:BR1
:10
:BR2
:3

Root ID
Cost
Bridge ID
Port ID

:BR1
:10
:BR2
:2

2

3

100

D

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 15: Bridging: The Spanning Tree Protocol

Note that not all timers are user configurable. Also note that some timers share the
same configuration (the TCN and Hello timers, for example) so that a configuration
change for a timer may affect others as well.

These are the bridge timers:

Hello
Used to regularly generate configuration BPDUs. Only the root bridge uses it.

TCN
Used by a bridge that has detected a topology change and must notify the root
bridge about it. See the section “Topology Changes.”

Topology change
Used by the root bridge to remember to set a specific flag in its configuration
BPDUs. This flag is used to notify the other bridges about a topology change. See
the section “Topology Changes.”

Aging timer
Used to clean up stale addresses from the forwarding database. This timer is
used by the bridge regardless of whether the STP is used. See the section “Short
Aging Timer.”

Each bridge keeps two copies of its timer configuration: the one configured locally by
the administrator, and the one received from the root bridge.

The root bridge is the only one that uses its own configured timers; it makes all the
other bridges adopt its configuration. Nonroot bridges use the timer configurations
carried by the BPDUs they receive on their root ports. You can see where timer con-
figuration is located in Figure 15-8.

These are the port timers:

Message Age
We saw in the section “BPDU Aging” that the information carried by a BPDU
has a limited lifetime. The Message Age timer is used to enforce that lifetime.
The timer is restarted each time a BPDU is received on the port. Whenever a
BPDU is received, its message age is compared to the network’s max age and the
frame is dropped if it is too old. The Message Age timer runs on nondesignated
ports (i.e., the ones that receive superior BPDUs).

In a stable network without problems, this timer will never expire. However,
when the root bridge fails to generate BPDUs, or the latter are received expired
or get dropped for some reason, the timer will expire. When the timer expires,
the port is restarted, and therefore assigned the designated role.

Forward Delay
Takes care of the state transitions from listening to learning, and from learning
to forwarding. Figure 15-15 shows how expiration of the Forward Delay timer is
typically handled and how it follows the model of Figure 15-6.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Timers | 337

Figure 15-15. Handling the Forward Delay timer

Is the port state
LEARNING?

Is the port
state LISTENING?

Set port state to
FORWARDING

Begin

End

Set port state to
LEARNING

Restart forward_delay
timer

Is there at least one
designed port on the

local bridge?

Are we
the Root Bridge?

Start the topology
change timer

Has a topology
change already
been detected?

End

Start TCN timer

Transmit TCN BPDU

No

No

Yes

Yes

Yes

YesNo

No

Yes

No

Topology change detection

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 15: Bridging: The Spanning Tree Protocol

Hold
The transmission of configuration BPDUs is rate limited on each port to one per
second. On a stable network—that is, one where STP has converged—each des-
ignated port transmits a BPDU at every Hello time. However, when a change in
the topology occurs, the convergence to the newer topology can take minutes in
complex scenarios due to the distributed nature of the STP algorithm. Because of
that, the number of BPDUs sent according to the rules of the section “When to
Transmit Configuration BPDUs” can easily get large, and it is here that rate lim-
iting is more likely to kick in.

The Hold timer, when needed, runs on designated ports (the ones transmitting
configuration BPDUs).

Per-port timers share configurations. For instance, you cannot have two different
Max Age configurations on two different ports.

Avoiding Temporary Loops
The root and designated ports are the only ones that are assigned the forwarding
state. When a port is assigned the root or designated role, however, it is not assigned
the forwarding state right away: it first has to go through two intermediate states, as
shown in Figure 15-6. These intermediate states suppress the risk of temporary loops
while the network converges toward a stable loop-free topology. Let’s use the simple
scenario of Figure 15-16(a) as an example.

The topology consists of two bridges connected by two links. One of the two links
must be disabled; otherwise, there would be a loop.

We saw earlier that when a bridge’s ports are first enabled, they are assigned the des-
ignated role and blocking state. We also saw in the section “Root Bridge Selection”
that when a bridge is first enabled, it does not have any knowledge about its neigh-
bor bridges and therefore it thinks it is the root bridge. Figure 15-16(a) shows two
bridges that have just been enabled, and therefore:

• They both think they are the root bridge.

• Both ports of both bridges are assigned the designated role and the blocking
state.

• For each port, they change the state to listening, start the Forward Delay timer,
and transmit a configuration BPDU. The priority vectors of those BPDUs reflect
their assumption that their bridges are the root bridge.

Note that none of the ports is forwarding yet. Data traffic can be neither received nor
transmitted on those ports. Only BPDUs can be transmitted and received.

When BR2 receives BR1’s BPDUs on its ports, it realizes that BR1 has a superior pri-
ority vector (a better bridge ID, to be exact). At that point, BR2 starts a configura-
tion update: it selects the root bridge, the root port, and the designated ports, and

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Timers | 339

Figure 15-16. Transition to forwarding state

(a)
Bridge BR1

Root

Bridge BR2

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:1

D/LST
1 2

1 2

D/LST

D/LST D/LST

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:2

Root ID
Cost
Bridge ID
Port ID

:BR2
:0
:BR2
:1

Root ID
Cost
Bridge ID
Port ID

:BR2
:0
:BR2
:2

Root

(b)
Bridge BR1

Root

Bridge BR2

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:1

D/LRN
1 2

1 2

D/LRN

R/LRN BLK

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:2

(c)
Bridge BR1

Root

Bridge BR2

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:1

D/FWD
1 2

1 2

D/FWD

R/FWD BLK

Root ID
Cost
Bridge ID
Port ID

:BR1
:0
:BR1
:2

BLK= Blocking
LST= Listening
LRN= Learning
FWD= Forwarding

R= Root port
D= Designated port

Forward Delay timer

(d)
Bridge BR1

Bridge BR2

D/FWD
1 2

1 2

R/FWD BLK

D/FWD

Root

hub

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 15: Bridging: The Spanning Tree Protocol

updates the state of all its ports. In particular, it selects BR1 as the root bridge and
port 1 as the root port (because it is the port where it has received the BPDU with the
best priority vector). Port 2 is neither a root port nor a designated port and is there-
fore blocked (i.e., it is left out of the tree). When port 1 is assigned the new role, its
Forward Delay timer is restarted. When port 2 is blocked, its Forward Delay timer
stops.

Supposing these actions took place pretty quickly, you can assume the Forward
Delay timer will expire more or less at the same time on all ports, leading to the new
configuration in Figure 15-16(b). Note that now:

• The three ports whose Forward Delay timers expired are moved to the learning
state (they are not forwarding data traffic yet).

• The Forward Delay timers are restarted on those three ports.

• BR2 does not transmit configuration BPDUs anymore (because it does not have
a designated port).

When the Forward Delay timer expires again after 15 seconds, BR1’s ports 1 and 2
and BR2’s port 1 are assigned the forwarding state. At this point, the topology is sta-
ble. In this simple scenario, the topology converged pretty quickly, but since it may
take significantly longer on more complex setups, the intermediate states between
blocking and forwarding ensure that temporary loops are avoided.

Note that BR1’s port 2 is forwarding in Figure 15-16(c). There is no danger of caus-
ing a loop as long as one side of the link is blocked (BR2’s port 2 in Figure 15-16(c)).
BR1’s port 2 is still forwarding traffic, even though BR2’s port 2 is disabled: BR1’s
port 2 and BR2’s port 2 might be connected to a hub along with other hosts, and
BR2’s port 2 is needed to provide connectivity to those other hosts.

Topology Changes
A topology change is an event that changes which systems are on an L2 network, or
how their ports are connected. When the topology changes, an address that used to be
reachable through a given path may now be reachable through a different one. So a
change in the topology must be handled properly to keep the network loop free and
update the forwarding databases. In terms of graphs and trees, the topology changes
when you add or remove a link, or select a different node as the tree’s root (remember
that the spanning tree is calculated based on the selection of the tree’s root).

Let’s first see the events that trigger a topology change, and then how they are
handled:

A nonforwarding bridge port changes state to forwarding, or vice versa
This case includes a disabled port that is enabled and a port that simply changes
state due to a protocol decision. From a tree’s perspective, this is equivalent to
adding a link to the tree or removing one.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Topology Changes | 341

The root bridge ID changes
This can happen, for example, because the current root bridge has been shut
down (and therefore another one has taken over the root role), or because a bet-
ter one has been enabled, or because either the current root bridge or another
bridge has changed its priority. A change of the root bridge can, depending on
where the new root bridge is located with respect to the old one, trigger quite a
few changes of port state and roles all over the network. In theory, a change of
root node can produce a very different tree, but in practice, bridges are config-
ured using the parameters we saw in the section “Bridge and Port IDs” so that
topology changes do not involve major changes in the tree.

A TCN topology change is received on a bridge port
In this case, the topology change has been detected by another bridge. See the
section “Letting All Bridges Know About a Topology Change.”

Note that given a loop-free topology, you can create a loop only by adding a link (i.e.,
a new port enters the forwarding state), not by removing a link (i.e., a forwarding
port changes its state to blocking). Removing a link can only partition the tree,
whereas adding a link to a tree always creates a loop unless another port has been
simultaneously disabled or blocked.

Short Aging Timer
I said earlier that when a topology change is detected, the forwarding database needs
to be changed, too. Let’s see why with an example. Let’s suppose that the link
between A2 and D1 in Figure 15-2(a) failed for some reason. All the hosts connected
to the access bridge A2 would not be reachable anymore from D1, and D2 should be
used instead. The STP will take care of updating the topology by making the bridges
go through a configuration update (see the section “Defining the Active Topology”).
The new topology could, for instance, look like Figure 15-17. The figure also shows,
as an example, the new path between host 40 and host 11.

STP also will make sure to update the stale information in D2 that says that Hosts
11–20 are reachable via its port connected to C1. Stale information is actually not
only in that bridge; the forwarding database of other bridges also needs to be cleaned
up. Moreover, when there is a change in the topology, the STP needs to converge to a
new loop-free topology. During that time, bridge ports may change role and state
several times, and thus so will the contents of the forwarding databases.

Stale information in the forwarding database is cleaned up by reducing the time after
which an address in the database is removed if it is not used. This is carried out by
reducing the Aging timer, which is 5 minutes by default, to the Forward Delay (i.e.,
15 seconds by default) when a bridge is notified about a topology change. Topology
changes are notified by setting a special flag in the configuration BPDUs (see the next
section).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 15: Bridging: The Spanning Tree Protocol

Letting All Bridges Know About a Topology Change
When a topology change is detected by a bridge, all bridges must be notified so that
they can start using short aging to clean up stale entries in their forwarding data-
bases. Let’s see how this is accomplished:

1. The bridge notifies the root bridge about the topology change.

2. The root bridge notifies all the bridges about the topology change.

The first step is done with TCN BPDUs. The bridge that detects the topology change
sends a TCN BPDU to its designated bridge through the root port. The bridge sends a
TCN BPDU at every Hello time until the designated bridge acknowledges its recep-
tion. The designated bridge acknowledges the reception of the TCN BPDU by setting
the TCA flag in its next configuration BPDU. At this point, the designated bridge
repeats the same process by sending a TCN BPDU to its designated bridge through the
root port, etc. This process ends when the TCN finally makes it to the root bridge.
The use of the TCN BPDUs is not needed when the topology change is detected by the
root bridge itself (because the root bridge does not need to notify itself).

The second step is done by the root bridge by setting a special flag (TC) in its trans-
mitted configuration BPDUs. This flag will be kept toggled on in the BPDUs regener-
ated by the nonroot bridges so that all bridges in the network will eventually receive
the topology change notification. When a bridge sees this flag set, it starts the Short
Aging timer.

Figure 15-17. Handling a root port failure on A2

Bridge A1 Bridge A2 Bridge A3 Bridge A4

1 10 11 20 21 30 31 40

Bridge D1 Bridge D2

Bridge C1 Bridge C2

ROOT

.

1 10 11 20 21 30 31 40

1—10
(was 1-20)

11—40
(was 21-40)

Failure

11— 40
21— 40 31—40

1—20
1—30

21—30
31— 4011 —20

1—10

11— 40 (was 21-40)

From 40 to 11

1—10

11 —20

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Topology Changes | 343

Example of a Topology Change
If we take the scenario of Figure 15-2(a) and imagine shutting down the link between
A2 and D1 (i.e., the root port), A2 would elect the other port as the root port, which
would change the state from blocking to forwarding. This would lead to the new sce-
nario in Figure 15-18(a).

Figure 15-18. Use of the TCN BPDU

Bridge A1 Bridge A2 Bridge A3 Bridge A4

Bridge D1 Bridge D2

Bridge C1 Bridge C2ROOT
D

D
D

D D
D D

D D

D DD

R

RR

R R R R

2

(b)

Bridge A1 Bridge A2 Bridge A3 Bridge A4

Bridge D1 Bridge D2

Bridge C1 Bridge C2ROOT
D

D
D

D D
D D

D D

D DD

R

RR

R R R R
1

(a)

3

4

1

2

3

4

TCN BPDU

Configuration BPDU with TCA flag set

Configuration BPDU with TCA flag set

TCN BPDU

D D D D D D D D

Shut down

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 15: Bridging: The Spanning Tree Protocol

A2 starts the TCN timer and transmits a TCN BPDU out of its (new) root port. When
D2 receives the TCN BPDU, it acknowledges the reception by sending back a config-
uration BPDU with the TCA flag set, starts the TCN timer, and transmits a TCN
BPDU out of its root port. When A2 receives the acknowledgment from D2, it stops
its TCN timer. D2 will do the same when it receives the acknowledgment from C1.

When C1 receives the TCN BPDU, it starts the Topology Change timer, which will
remain active for 35 seconds, and sets the TC flag on all BPDUs transmitted out
while the timer is pending (see Figure 15-19). The 35 seconds used by the Topology
Change timer is not a random value: it is the Forward Delay plus the Max Age (see
Table 15-4).

The TC flag will be propagated down the entire tree because all bridges relay the
flags received from the root bridge. When a bridge sees this flag set on an ingress
BPDU, it starts using the Short Aging timer (if it has not done so already). Once the
Topology Change timer expires on the root bridge, the latter stops setting the TC
flags in its BPDUs. Upon receiving a BPDU with the TC flag cleared, a bridge stops
using the Short Aging timer and starts using default aging.

Note that a bridge can receive configuration BPDUs with the TC flags set on differ-
ent ports. For example, D2 in Figure 15-19 receives one from C1 and one from C2.
This is not a problem: at any moment, the bridge is using either the default Aging
timer or the Short Aging timer, so when a bridge already using the Short Aging timer
receives a configuration BPDU with the TC flag, it does not need to do anything.

BPDU Encapsulation
The L2 multicast addresses in the range 01:80:C2:00:00:00 to 01:80:C2:00:00:FF are
reserved by IEEE for standard protocols. In particular, the first address of the range,
01:80:C2:00:00:00, is used by the 802.1D STP: both configuration and TCN BPDUs
are sent to this address. This address is what allows bridges to recognize BPDUs.

Figure 15-20 shows what the encapsulation of a BPDU inside an Ethernet frame
looks like.

For more details on the LLC header, you can refer to Chapter 13.

Note that the same IEEE spec states that the addresses in the range 01:80:C2:00:00:
00 to 01:80:C2:00:00:0F should not be relayed by a bridge running the 802.1D pro-
tocol: they are either processed locally by the destination protocol (if implemented
and enabled) or dropped.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

BPDU Encapsulation | 345

Figure 15-19. Notifying all bridges about the topology change

Figure 15-20. BPDU encapsulation

Bridge C1

Bridge A1 Bridge A2 Bridge A3 Bridge A4

Bridge D1 Bridge D2

Bridge C2

ROOT
D

D
D

D D
D

D D

D DD

R

RR

R R R R

1

Configuration BPDU with TC flag set

Short Age timer

Topology Change timer

D D D D D D D D

1

1

Bridge A1 Bridge A2 Bridge A3 Bridge A4

Bridge D1 Bridge D2

Bridge C1 Bridge C2
D

D
D

D D
D

D D

D DD

R

RR

R R R R

33

2

22 4 4
4

4

D

Source address Destination address

01:80:C2:00:00:00

Len 0x
42

0x
42

0x
03 B P D U

Padding

CRC

6 6 2 3 (LLC) 4
Config BPDU: 38
TCN BPDU: 7

Minimum Ethernet frame length (64)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 15: Bridging: The Spanning Tree Protocol

Transmitting Configuration BPDUs
We saw what conditions trigger the transmission of configuration BPDUs in the sec-
tion “When to Transmit Configuration BPDUs.” Regardless of why a configuration
BPDU is transmitted, the logic of Figure 15-21 applies.

Figure 15-21. Configuration BPDU transmission logic

Is HOLD
timer pending?

Begin

Tag BPDU-pending
flag on the port

Return

No

Yes

Initialize BPDU

Transmit BPDU

Start HOLD timer
on the port

Is the BPDU-pending
flag set on the
bridge port?

Use root bridge’s timers
for BPDU timers

Was the TC
flag set on the
ingress BPDU?

. . .

Am I the
root bridge?

Use local config
for BPDU timers

Is there a TCN
to acknowledge?

Message age= 0

Root path cost=0

Is the topology
change timer

pending?

Set TC flag

Set TCA flag

Return

HOLD timer handler

Set TC flag

Yes

No

No

No

Yes

YesNo

Yes

Yes

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing Ingress Frames | 347

The per-port Hold timer enforces a rate limit of one BPDU per second. When a
BPDU is transmitted, the timer is started. If another transmission is attempted and
the timer is already pending, the BPDU is not transmitted and a flag is set in the
bridge port configuration block. When the timer expires, it checks the flag and trans-
mits a configuration BPDU if it finds the flag set.

When the root bridge transmits a BPDU, the timers are initialized to the values con-
figured locally; otherwise, the ones received from the root bridge are used instead.
Message age and root path cost are both 0 for the root bridge.

Also, the following is not shown in the figure:

• When the bridge needs to acknowledge the reception of a TCN BPDU, it sets the
TCA flag.

• The root bridge sets the TC flag if the Topology Change timer is running.

• Nonroot bridges set the TC flag if the last BPDU received on the root port had
the TC flag set.

Processing Ingress Frames
We saw in Chapter 14 how a simple bridge handles ingress traffic. Let’s now see how
a bridge running the STP handles ingress traffic.

Ingress traffic now includes not only data traffic, but BPDUs as well. Bridges handle
data traffic the same way, regardless of whether STP is enabled. The only difference
is that ports blocked by STP cannot forward any data traffic because they are not
considered part of the tree.

Ingress BPDUs
Unlike data traffic, ingress BPDUs are accepted on any port that has not been admin-
istratively disabled, including those in the blocking state.

Configuration BPDUs and TCN BPDUs can be distinguished thanks to the BPDU
type field, as shown in Figure 15-8. In the section “Letting All Bridges Know About a
Topology Change,” we already saw how ingress TCN BPDUs are handled. In the
next section, we will see how configuration BPDUs are processed.

Ingress Configuration BPDUs
Figure 15-22 shows how ingress configuration BPDUs are processed.

The handling of an ingress BPDU depends on whether its priority vector is:

Better than the one currently known to the receiving bridge’s port
In this case, the BPDU triggers a configuration update that includes the new root
port, the designated ports, and the new state for all ports.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 15: Bridging: The Spanning Tree Protocol

Figure 15-22. Processing ingress configuration BPDUs

Better priority
vector

(superior BPDU)?

Save better information
(on the STP instance block)

Adjust
Message age timer

Select root port and
designated ports

Update port states

YesNo

Begin

Is RX port
designated?

Reply with a
Config BPDU

End

No

Yes

Root bridge
to non-root

bridge transition?

Yes No

Stop hello timer

Is the RX
port the root

port?
Topology

change detected?

Stop topology change timer

Transmit TCN BPDU

Start TCN timer

Save timers from BPDU
to bridge instance block

Transmit a Config BPDU
on all designated ports

Stop TCN timer

End

Yes
Yes

No
No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Convergence Time | 349

The same as the one already known to the receiving bridge’s port
This is what would be received on the root port when the topology has already
converged.

Worse than the one known to the receiving bridge’s port
In this case, the bridge replies by sending a configuration BPDU with its own
(better) information. This is a common case that happens when a new bridge is
added to the topology: initially the bridge does not know anything about the
other bridges and therefore advertises its information. It can also happen in
numerous other cases, such as when a bridge configuration is changed.

When an ingress BPDU claims a better priority vector than the one known to the
receiver port, there is one special case to handle: when the receiving bridge was the
root bridge it must lay down its crown. As we mentioned in the section “Topology
Changes,” this is one of the events that is considered a topology change. In such a
case, the bridge that lost the root role must stop the Hello timer (because it is to be
run only on the root bridge), send a TCN BPDU out its root port toward the new
root bridge, and start the TCN timer to notify the root bridge about the topology
change (which will take care of notifying all other bridges).

When the BPDU is received on the root port, the bridge saves the timers from the
BPDU (which it will use in its egress BPDUs) and transmits a configuration BPDU
out all of its designated ports. When the TCA flag is set, the TCN timer can be
stopped.

Convergence Time
We have seen how the STP dynamically updates the topology of the tree based on
configuration changes and link or bridge failures. Let’s see now how much time STP
needs to detect common failures and react accordingly.

When a configuration update takes place on a complex scenario, the network may
require minutes before it converges and stabilizes.* During that time the topology is
still loop free, but it may not be able to carry traffic properly (because the topology is
still changing while the traffic is in transit). In those setups, it is not possible to pre-
dict exactly how the topology evolves toward a new stable tree, because the timing of
BPDU receptions and transmissions depends on several factors, such as how loaded
the bridges are at that moment.

* It is possible to configure the bridges to reduce the impact of a failure or configuration change and thus con-
tribute to faster convergence.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 15: Bridging: The Spanning Tree Protocol

However, no matter how well you configure the bridges, there are minimum laten-
cies that cannot be eliminated or reduced. For example:

• When a port changes state, moving, for example, from blocking to forwarding to
replace a failing bridge port, the transition to forwarding is not immediate, but
takes twice the time of the Forward Delay timer (i.e., 30 seconds by default), as
shown in Figure 15-6. The port cannot forward any data traffic during this time.

• Root and nondesignated ports (i.e., the ones that receive BPDUs) realize that
they have lost connection to their designated bridge (and therefore to the entire
tree except for the portions below the bridge’s designated ports*) only when their
Message Age timer expires. For example, if the C1 port that goes to D1 in
Figure 15-2(a) failed for some reason, D1 may come to know it only after 20 sec-
onds when the Max Age timer expires.

Note that both of these cases are driven by timers. Of course, you can configure both
the Forward Delay and Max Age timers to expire faster and therefore reduce the con-
vergence time. However, depending on how complex the network is, you may not
always be able to use timers that are too aggressive.

Let’s see an example based on Figure 15-2 and see what happens when the D1 bridge
fails for some reason. Because both A1 and A2 use D1 to access the rest of the net-
work, all the hosts connected to A1 and A2 are isolated from the rest of the network
until STP manages to select a new root port for both A1 and A2. So, how long would
it take for STP to make such changes? In the worst-case scenario, this is what would
happen:

• D1 stops working properly.

• After 20 seconds, the Message Age timer expires in both A1 and A2 root ports.

• A1 and A2 select the port that goes to D2 as the new root port.

• After another 30 seconds, those new root ports enter the forwarding state.

This means a potential black hole of 50 seconds for the hosts connected to A1 and
A2. In a complex network, the topology may require more time than this to con-
verge, even a few minutes.

Overview of Newer Spanning Tree Protocols
The convergence time of the 802.1D-1998 STP was acceptable when it was first
defined several years ago by the IEEE committee. However, it has proven too slow
over the years, given the higher availability requirements of newer network applica-
tions, such as interactive multimedia (IP telephony, video conferencing, etc.), not to
mention the user expectations that continuously grow.

* Thus, if the bridge is a leaf in the tree (i.e., an access bridge), it is completely isolated.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Overview of Newer Spanning Tree Protocols | 351

To address this issue, various commercial bridge producers came out with propri-
etary enhancements to the STP. Unfortunately, proprietary enhancements often can-
not be used in heterogeneous networks that employ devices from different vendors.

Recently the IEEE came out with two newer protocols, Rapid Spanning Tree (RSTP)
and Multiple Spanning Tree (MSTP), that address all the significant shortcomings
currently known in their older brother, 802.1D. We cannot describe the two proto-
cols here because they would require quite some space (especially MSTP), and any-
way, none of them is implemented in Linux (yet). In the following two subsections,
we will just explore some of the main improvements offered by the new protocols.
For more detail, I suggest the following documents:

• Understanding Rapid Spanning Tree Protocol (802.1w) at http://www.cisco.com/
warp/public/473/146.html

• Understanding Multiple Spanning Tree Protocol (802.1s) at http://www.cisco.
com/warp/public/473/147.html

Rapid Spanning Tree Protocol (RSTP)
The RSTP is backward compatible with 802.1D, so bridges running older and newer
protocols can interoperate without problems. However, not all the enhancements
introduced by the RSTP would be enabled in such heterogeneous environments.
Here are some of the enhancements:

• Each bridge port is now assigned a role. Ports that are neither designated nor
root are assigned either the alternate or the backup role. Alternate is used for
ports that represent alternate paths toward the root bridge (potential replace-
ments for the current root path), and backup is used for ports that represent
alternate paths to the subtree (potential replacements for the designated port).
For example:

• In Figure 15-10, BR2’s port 2 would be an alternate port because it provides
an alternate path to the root bridge.

• In Figure 15-11(c), BR1’s port 2 would be a backup port because it repre-
sents a candidate designated port, but another port on the same bridge has a
better priority vector.

• The possible states a port can be assigned have been simplified: the new discard-
ing state includes the old disabled, blocking and listening states.

• RSTP is able to transition a port to the forwarding state much faster, by means of
handshakes between ports and a mechanism called sync that makes sure loops
are avoided. This new and interesting improvement in RSTP is effective only on
point-to-point links.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 15: Bridging: The Spanning Tree Protocol

• When the root port is replaced, it can go to the forwarding state immediately (i.e.,
no need to wait two times for the Forward Delay timer to expire, as shown in
Figure 15-6). This is possible because the protocol has a mechanism to ensure
that this immediate transition to forwarding will not cause any loop.

• The previous two enhancements alone imply a significantly faster convergence
time, perhaps even a subsecond (depending on the complexity of the topology).

• All bridges now run the Hello timer, and generate configuration BPDUs inde-
pendently. This allows faster detection of connectivity problems.

• The detection of connectivity problems is no longer dependent on the Max Age
timer. Now, when a port that is supposed to receive BPDUs does not receive
them for three Hello time periods in a row, it starts the recovery mechanism. The
old Max Age timer is still there, but is used only when the new RSTP procedure,
previously mentioned, is not applicable.

• Topology changes are handled differently, too. There is no need for TCN BPDUs
anymore. Now the bridge that detects a topology change simply transmits a
BPDU with the TC flag set from its root and designated ports. Every other bridge
that receives such a BPDU simply repeats the process: it transmits a BPDU with
the TC flag set out of each of its forwarding ports, except the one from which it
received the original. This is a simple mechanism for spreading the topology
change notification in all directions. When a bridge receives a BPDU with the
TC flag set, it does not start the Short Aging timer, but instead flushes the
addresses learned on all its ports, except the one from which the BPDU was
received.

• The structure of the BPDUs used by RSTP has changed very little compared to
STP. The flags field now uses all 8 bits to accommodate the needs of the newer
enhancements.

At the time this chapter was written, there was no open source implementation of
RSTP available for Linux. However, you can find a user-space simulator on Source-
Forge (http://rstplib.sourceforge.net).

Multiple Spanning Tree Protocol (MSTP)
MSTP was designed more or less at the same time RSTP was defined. The main
enhancement it introduces is the possibility of defining multiple independent span-
ning trees. Each spanning tree carries its own subset of data traffic.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Overview of Newer Spanning Tree Protocols | 353

The selection of the spanning tree to use for each data packet is based on the VLAN
where the packet originated. Figure 15-23 shows hosts configured on two different
groups of VLANs, and for each group of VLANs the MSTP builds a separate span-
ning tree.

From the hosts’ perspective, the result is Figure 15-24.

Nowadays it is pretty common to use VLANs on bridged networks. It’s a convenient
way to create different L2 broadcast domains on bridged networks. The possibility of
defining multiple spanning tree topologies on the same network has several advan-
tages. Among them is better use of the network bandwidth (i.e., better use of redun-
dant links—that is, load balancing). This translates to a lower load on each link.

The MSTP uses the RSTP for each of its spanning tree instances. The protocol is
actually more complex than it may seem: the different STP instances are indepen-
dent, but there is one special instance that plays a central role in the protocol, espe-
cially with regard to how BPDUs are exchanged and how backward compatibility
with previous protocols is maintained.

Figure 15-23. Example of bridged network that defines two spanning tree instances

Bridge A1 Bridge A2 Bridge A3 Bridge A4

1 10 11 20 21 30 31 40

Bridge D1 Bridge D2

Bridge C1 Bridge C2

ROOT ROOT

.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 15: Bridging: The Spanning Tree Protocol

At the time this book was written, there was no open source implementation of the
MSTP.

Figure 15-24. The two spanning trees in Figure 15-23

Bridge A1 Bridge A2 Bridge A3 Bridge A4

1 11 21 31

Bridge D1 Bridge D2

Bridge C1 Bridge C2

ROOT

Bridge A1 Bridge A2 Bridge A3 Bridge A4

10 20 30 40

Bridge D1 Bridge D2

Bridge C1 Bridge C2

ROOT

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

355

Chapter 16 CHAPTER 16

Bridging: Linux
Implementation

This chapter moves on from the general discussion of the bridging specifications and
protocols to show how Linux does the job.

We saw in Chapter 10 how the bridging code can capture ingress packets in netif_
receive_skb. In this chapter, we will see exactly how those ingress packets are pro-
cessed. We will see how the bridging code manipulates device states and processes
ingress traffic, both when the STP is enabled and when it is not.

For a performance evaluation of the bridging code, please refer to the paper “Perfor-
mance Evaluation of Linux Bridge” by James T. Yu, which you can find with a web
search.

Bridge Device Abstraction
In Linux, a bridge is a virtual device. As such, it cannot receive or transmit anything
unless you bind one or more real devices to it. We will use the term enslave to refer
to the process of binding a real device to a (virtual) bridge device.

Let’s suppose we want to implement the topology of Figure 16-1. A few points in the
figure deserve emphasis:

• The bridge merges two LANs. The hosts of LAN1 and LAN2 are configured on
the same subnet, 10.0.1.0/24.

• The bridge is connected to a router so that the hosts of LAN1 and LAN2 can
communicate with the hosts of LAN3.

• From the router’s perspective, there is a single LAN on eth0.

Because Linux implements both routing and bridging, we can merge the two devices
into a single Linux system and obtain something like the topology in Figure 16-2(a).
The network connection between the bridge and the router is internal to the kernel
there.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 16: Bridging: Linux Implementation

Now the kernel must be able to handle the following two issues:

• At the router level, it sees only two subnets (10.0.1.0/24, 10.0.2.0/24), even
though there are three interfaces (eth0, eth1, eth2).

• It should bridge only between eth0 and eth1, and consider the two interfaces as
configured on the same IP subnet.

Figure 16-1. Example of use of a bridge

Figure 16-2. Bridge device abstraction

. . .

. . .

eth1: 10.0.2.1/24

LAN3

LAN1

Subnet 10.0.2.0/24

. . .

LAN2

Bridge

eth0: 10.0.1.1/24

Subnet 10.0.1.0/24

Router

. . .

. . .

eth2

LAN3

LAN1 eth1eth0

. . .

. . .

eth2: 10.0.2.1

Subnet 10.0.2.0/24

Subnet 10.0.1.0/24
br0: 10.0.1.1

. . .

LAN2

(a) (b)

Router Router & Bridge

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Bridge Device Abstraction | 357

These two issues are handled independently and elegantly, thanks to the way the
bridge device is abstracted.

When you create a bridge device, you must tell the kernel which interface to enslave
to it. In other words, you must tell the kernel which interfaces to bridge. Sticking to
our example, we would create a bridge device, let’s call it br0, and assign eth0 and
eth1 to it. Because eth0 and eth1 are the bridge interfaces, they do not need any IP
configuration—they don’t need to be seen at the L3 layer at all, just as none of the
bridge interfaces in Figure 16-1 had any IP configuration. Instead, you assign to the
bridge device the IP configuration that the router’s link to the bridge had in
Figure 16-1. The result is the configuration in Figure 16-2(b).

At this point, the routing subsystem can route based on the subnets configured on
eth2 and br0. When a transmission on br0 is attempted, the bridge device driver
manages the enslaved devices, applying the logic we saw in Chapter 14: if the for-
warding database knows where the destination MAC address is located, the frame is
transmitted only on the right bridge port; otherwise, it is flooded to all bridge ports
of the bridge device.

We saw in Chapter 11 that transmissions on a device are done with dev_queue_xmit.
Figure 16-3(a) shows the devices in our example on which dev_queue_xmit can be
asked to transmit frames. dev_queue_xmit invokes the hard_start_xmit routine pro-
vided by the device’s driver. The function used by the bridging device driver con-
sults the forwarding database and selects the right egress device, or uses flooding if
necessary. Details will be provided later in the section “The Big Picture.”

We saw in Chapter 10 how a device driver that processes an ingress frame first ini-
tializes a few fields of the sk_buff structure and then passes it to the upper layer. One
of those fields represents the device on which the frame is received. However, the
NIC device driver does not know anything about bridging, so it can’t assign an
ingress frame to the net_device instance associated with a bridge. In the section
“Processing Data Frames,” you will see how this issue is taken care of.

The devices enslaved to a bridge device can have their own IP configuration, too. For
example, given the topology in Figure 16-2, if we added one more subnet (10.0.3.0/
24) and configured eth0 with an address on it, the topology would appear to the
Linux kernel routing layer like the one in Figure 16-4.

eth0 can therefore receive traffic addressed to either the br0 bridge device or itself.
This means that the model in Figure 16-3 changes to that in Figure 16-5.

While the transmitting part does not require any tweaking in the code, the receiving
part does. By default, traffic received on an enslaved device is assigned to its assigned
bridge device. For example, in Figure 16-5, a frame received on eth1 would be
assigned to br0. The decision whether to bridge or route an ingress frame (i.e., the
decision whether to hand ingress frames to eth0 or br0 in the previous example) can
be configured with ebtables (see the section “Data Frames Versus BPDUs”).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 16: Bridging: Linux Implementation

Figure 16-3. (a) Transmitting on a bridge device; (b) receiving on a bridge device

Figure 16-4. Assigning an L3 configuration to an enslaved NIC

dev_queue_xmit

br0 eth2

eth0 eth1

NIC device drivers
(hard_start_xmit)

(a)

netif_receive_skb

br0 eth2

eth0 eth1

NIC device drivers

(b)

. . .

. . .

eth1: 10.0.1.1
Subnet 10.0.1.0/24

Subnet 10.0.2.0/24
br0: 10.0.2.1

. . .

Subnet 10.0.3.0/24

eth2: 10.0.3.1

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Important Data Structures | 359

Important Data Structures
The following list explains the main data structures defined and used by the bridg-
ing code. All of them have dedicated sections with field-by-field descriptions in
Chapter 17.

mac_addr
MAC address.

bridge_id
Bridge ID (defined in Chapter 15).

Figure 16-5. Using an NIC both as a standalone interface and as a bridge port

dev_queue_xmit

br0 eth2

eth0 eth1

NIC device drivers
(hard_start_xmit)

(a)

(b)

eth0

netif_receive_skb

br0 eth2

eth0 eth1

NIC device drivers

eth0

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 16: Bridging: Linux Implementation

net_bridge_fdb_entry
Entry of the forwarding database. There is one for each MAC address learned by
the bridge.

net_bridge_port
Bridge port.

net_bridge
Information applying to a single bridge. As shown in Figure 16-6, this structure
is appended to a net_device data structure. As with most virtual devices, it
includes private information understood only by the virtual device code—bridg-
ing, in this case.

br_config_bpdu
The key fields of an ingress configuration BPDU are copied into this data struc-
ture, and it is passed instead of the original BPDU to the routine that processes
configuration BPDUs.

All data structures are defined in net/bridge/br_private.h, with the exception of br_
config_bpdu, which is defined in net/bridge/br_private_stp.h. Figure 16-6 shows the
relationships between some of these data structures. The figure does not reflect any
of the examples of configurations seen in the previous section.

The age_list list is not used anymore; I included it in the figure only for reference.
See the section “net_bridge Structure” in Chapter 17.

Initialization of Bridging Code
The bridging code can be either built into the kernel or compiled as a module. The
initialization and cleanup routines, br_init and br_uninit, respectively, are defined
in /net/bridge/br.c.

Initialization consists of:

• Initializing the forwarding database by creating a slab cache (a memory area) to
use for allocating net_bridge_fdb_entry structures (br_fdb_init).

• Initializing the function pointer br_ioctl_hook to the routine that will take care
of ioctl commands. ioctl commands are described in Chapter 17.

• Initializing the function pointer br_handle_frame_hook to the routine that will
process ingress BPDUs. See the section “Handling Ingress Traffic.”

• Registering a callback with the netdev_chain notification chain. See the section
“netdevice Notification Chain.”

When the kernel is compiled with support for Bridging-Firewalling, the option is ini-
tialized here with br_netfilter_init. Later, in Figure 16-11 in the section “The Big
Picture,” you can see where all the Netfilter hooks are located in the core routines
used by the bridging code to process ingress and egress traffic.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating Bridge Devices and Bridge Ports | 361

Bridging-Firewalling is added to the kernel with the option “Networking support
➝ Networking options ➝ Network packet filtering (replaces ipchains) ➝ Bridged IP/
ARP packet filtering”. The Ethernet-Bridging-Tables option (i.e., ebtables) is initial-
ized elsewhere (see the section “Data Frames Versus BPDUs”).

The cleanup routine br_deinit simply undoes what was done by br_init.

Creating Bridge Devices and Bridge Ports
There is no hard limit to the number of bridge devices an administrator can create.
Each bridge device can have up to BR_MAX_PORTS (1,024) ports.

Bridge devices are created and removed, respectively, with br_add_bridge and br_
del_bridge.

Ports are added to a bridge device with br_add_if and are removed with br_del_if.

All four routines run with the Netlink routing lock held. The lock is acquired with
rtnl_lock and is released with rtnl_unlock. br_add_bridge and br_del_bridge take

Figure 16-6. Relationships between the main data structure types

struct net_bridge

BR
_H

AS
H_

SI
ZE

(2
56

)
dev

dst
age_list
hlist
addr

struct net_bridge_fdb_entry

struct
net_device

port_list

lock
hash_lock

. . .

. . .

hash

age_list

. . .

netdev_priv(dev)

dst
age_list
hlist
addr

struct net_bridge_fdb_entry

dst
age_list
hlist
addr

struct net_bridge_fdb_entry

*dev
*br

list

*dev
*br

list

*dev
*br

list

struct net_bridge_port struct net_bridge_portstruct net_bridge_port

*br_port*br_port*br_port

struct net_device struct net_device struct net_device

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 16: Bridging: Linux Implementation

care of locking on their own. For br_add_if and br_del_if, the dev_ioctl function
takes care of it (see in Chapter 17).

All four br_ routines are defined in net/bridge/br_if.c. In Chapter 17, you can learn
how they are invoked in response to configuration commands in user space.

Creating a New Bridge Device
Even though bridge devices are virtual, the discussion about how a device is enabled,
disabled, registered, and unregistered in Chapter 8 still applies. You are encouraged
to use that chapter as a reference when reading this section.

The creation and registration of a bridge device follows the model described in
Chapter 8. The only difference is that because it is a virtual device, a bridge needs
extra initializations in its private area (i.e., the net_bridge data structure at the bot-
tom of Figure 16-6). This last task is taken care of by new_bridge_dev, which:

• Allocates and initializes a net_device data structure using br_dev_setup as the
setup routine. See the section “Bridge Device Setup Routine.”

• Initializes the private structure, as shown in Figure 16-6.

• Initializes the bridge priority to the default value, 32,768 (0x8000).

• Initializes the designated bridge ID with its identifier, the root path cost to 0, and
the root port to 0 (i.e., no root port). This is because when a bridge is first
enabled, it believes itself to be the root bridge. See the section “Root Bridge
Selection” in Chapter 15.

• Initializes the aging time to the default of 5 minutes.

• Initializes the per-bridge timers with br_stp_timer_init.

Note that the initialization of spanning tree parameters is done regardless of whether
the STP is enabled for the bridge.

Bridge devices can be assigned any name. Common ones are brN and stpN, when the
Spanning Tree Protocol is disabled and enabled, respectively. For example, if you
define two bridges that don’t use STP, you would conventionally call them br1 and
br2. However, your dog’s name would be accepted, too.

As with any other network device, bridges are assigned a directory in /sys/class/net/.
See the section “Tuning via /sys Filesystem” in Chapter 17.

Bridge Device Setup Routine
Details about how device drivers use the setup routines when initializing their devices
can be found in the section “Device Type Initialization: xxx_setup Functions” in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Bridge Device Setup Routine | 363

Chapter 8. Bridge devices use the br_dev_setup setup routine. The following snapshot
shows the interesting part:

void br_dev_setup(struct net_device *dev)
{
 memset(dev->dev_addr, 0 , ETH_ALEN);
 ether_setup(dev);
 ...
 dev->do_ioctl = br_dev_ioctl;
 dev->hard_start_xmit = br_dev_xmit;
 dev->open = br_dev_open;
 dev->change_mtu = br_change_mtu;
 dev->stop = br_dev_stop;
 dev->tx_queue_len = 0 ;
 dev->set_mac_addr = NULL ;
 dev->priv_flags = IFF_EBRIDGE;
}

Bridge devices do not implement queuing by default. They let their enslaved devices
take care of it, which explains why tx_queue_len is initialized to 0. However, the
administrator can configure tx_queue_len with ifconfig or ip link.

When the Maximum Transmission Unit (MTU) on a bridge device is changed, the
kernel must ensure that the new value is no bigger than the smallest MTU value
among the enslaved devices. This is ensured by br_change_mtu.

The bridge MAC address dev_addr is cleared because it will be derived by the MAC
addresses configured on its enslaved devices with br_stp_recalculate_bridge_id (see
the section “Bridge IDs and Port IDs”). For the same reason, the driver does not pro-
vide a set_mac_addr function.

The IFF_EBRIDGE flag is set so that kernel code can distinguish bridge devices from
other types of devices when needed.

The br_dev_ioctl routine processes some of the ioctl commands you can issue on
bridge devices. See Chapter 17.

We saw in Chapter 11 that drivers initialize the hard_start_xmit function pointer to
the routine they use for transmission. The bridging driver initializes it to br_dev_xmit.
This function is responsible for implementing the bridge device abstraction we saw
in the section “Bridge Device Abstraction.” Figure 16-11 later in this chapter shows
how that abstraction is implemented.

When a bridge device is administratively enabled or disabled, the kernel calls dev_
open and dev_close, respectively, which invokes br_dev_open and br_dev_close for
bridge devices. See the section “Enabling and Disabling a Bridge Device.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 16: Bridging: Linux Implementation

Deleting a Bridge
Before a bridge device can be removed, it must be shut down. If it hasn’t been shut
down, br_del_bridge returns –EBUSY and refuses to remove the device. To remove it,
br_del_bridge invokes del_br, which does most of the work, as follows:

• Removes all its bridge ports. For each bridge port, it also removes the associated
links (which appear as directories) in /sys. See the section “Deleting a Bridge
Port.”

• For each port, removes all the associated entries in the forwarding database with
br_fdb_delete_by_port, stops all the port’s timers, and decrements the promiscu-
ity counter. (The promiscuity counter is described in the upcoming section,
“Adding Ports to a Bridge.”)

• Stops the garbage collection timer br->gc_timer.

• Removes the bridge device directory in the /sys/class/net directory with br_sysfs_
delbr.

• Unregisters the device with unregister_netdevice. This function is described in
Chapter 8.

Adding Ports to a Bridge
In the current implementation of bridging, there is a one-to-one relationship between
NICs and bridge ports, as shown in Figure 16-6. Some commercial bridges allow an
administrator to add an NIC to multiple bridge devices and assign traffic to a partic-
ular bridge based on user-chosen criteria, but Linux does not.

Bridge ports are added to a bridge device with br_add_if. The routine internals are
shown in Figure 16-7. The routine does not care whether the STP is enabled on the
bridge device.

The routine starts with a set of sanity checks. The operation is aborted if any of the
following conditions is met:

• The device to be associated with the port is not an Ethernet device (or the loop-
back device).

• The device to be associated with the port is a bridge. As you can see in
Figure 16-6, bridge ports must be assigned to real devices (or to virtual devices
that are not bridge devices).

• The bridge port is already assigned to a device (i.e., dev->br_port is not NULL).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Adding Ports to a Bridge | 365

Figure 16-7. br_add_if function

Loopback
device?

Return -EINVAL

Ethernet
device?

Bridge
(virtual) device?

Is the port
already part of a bridge

port’s list?

Begin

Return -ELOOP Return -EBUSY

Allocate and
initialize a new bridge

port (new_nbp)

Return -ENOMEM

Add dev’s MAC
address to forwarding

database
Add links to sysfs

Destroy new bridge
port (del_nbp)

Destroy new bridge
port (destroy_nbp)

Return -ENOMEM or
-ENOENT or EFAULT

Return -EINVAL
or -ENOMEM

Set promiscuous mode
(dev_set_promiscuity)

Add port to bridge
port’s list

Lock bridge

Update bridge ID
(br_stp_recalculate_bridge_id)

Is bridge UP?

Unlock bridge

Update bridge MTU

Is device UP? Is carrier present
on the device?

Enable bridge port
No No No

YesYesYes

Failed Failed Failed

OK OK OK

Yes Yes YesNo

No Yes No No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 16: Bridging: Linux Implementation

When these checks are passed, the new bridge port is allocated and partially initial-
ized with new_nbp. In particular, that function:

• Assigns a port number to the bridge port. See the section “Bridge IDs and Port
IDs.”

• Assigns a default priority to the port.

• Computes the port ID by combining the port number and priority using br_
make_port_id. Out of the 16 bits in the port ID, 10 (BR_PORT_BITS) are used by the
port number and 6 by the port priority. Note that this does not conform to the
standard specifications described in the section “Bridge and Port IDs” in
Chapter 15.

• Assigns a default cost to the port based on the enslaved device’s speed. The cost
is selected with br_initial_port_cost (see how new_npb is called), which reads
the device speed via the ethtool interface introduced in Chapter 8, and converts
it into a cost. When the device driver of the enslaved device does not support the
ethtool interface, a default cost cannot be derived from the interface, so the cost
is selected based on the assumption that the enslaved device is an Ethernet 10
Mbit/s device. The association between port speed and default port cost is
defined in the IEEE 802.1D protocol specification.

• Assigns the initial BR_STATE_DISABLED state.

• Links the bridge port to the enslaved device and to the bridge device, as shown
in Figure 16-6.

The MAC address of the device associated with the new bridge port is added to the
forwarding database with br_fdb_insert.

br_sysfs_addif adds the necessary links to /sys, as described in the section “Tuning
via /sys Filesystem” in Chapter 17.

The NIC associated with the bridge port is put into promiscuous mode with dev_
set_promiscuity. Promiscuous mode is used for capturing all LAN traffic, and is
needed so that the bridge can do its job of forwarding frames. The mode is stored as
a counter rather than a Boolean flag for each port because the kernel wants to be able
to handle nested requests to enter promiscuous mode. When promiscuous mode is
enabled on a bridge port (as dev_set_promiscuity does), the counter is incremented
on the associated enslaved device; when promiscuous mode is disabled, the counter
is decremented.

Finally, the new bridge port is added to the bridge’s port list shown in Figure 16-6,
and the bridge ID and MTU are updated according to the rules we saw in the sec-
tions “Bridge IDs and Port IDs” in Chapter 15 and “Bridge Device Setup Routine,”
with br_stp_recalculate_bridge_id and dev_set_mtu, respectively.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling a Bridge Device | 367

Deleting a Bridge Port
Deleting a bridge mainly requires undoing what was done at port creation time.
Figure 16-8 shows the internals of br_del_if.

Enabling and Disabling a Bridge Device
We saw in the section “Bridge Device Setup Routine” how dev->open and dev->stop
are initialized for bridge devices, and we saw in the section “Enabling and Disabling
a Network Device” in Chapter 8 how administrative commands to enable and dis-
able a network device are processed by dev_open and dev_close.

br_dev_open enables a bridge by:

1. Initializing the bridge device features to the minimal, common subset of the fea-
tures supported by its enslaved devices with br_features_recompute

2. Enabling the device for transmission with netif_start_queue (see the section
“Enabling and Disabling Transmissions” in Chapter 11)

3. Enabling the bridge device with br_stp_enable_bridge

Figure 16-8. br_del_if function

Update /sys
(br_sysfs_removeif)

Delete bridge port
(del_nbp)

Lock bridge

Update bridge ID
(br_stp_recalculate_bridge_id)

Update bridge features
(br_features_recompute)

Unlock bridge

Return 0

Update dev promiscuity
(dev_set_promiscuity)

Disable bridge port
(stp_disable_port)

Update forwarding database
(br_fdb_delete_by_port)

Take bridge port out of
bridge's port list

Stop port timers

Destroy bridge port

Lock bridge

Unlock bridge

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 16: Bridging: Linux Implementation

When you enable a bridge device, any port that had previously been enslaved to it
would also be enabled.

br_dev_stop is just the mirror image of br_dev_open, as shown in Figure 16-9.

Enabling and Disabling a Bridge Port
A bridge port is enabled and disabled with br_stp_enable_port and br_stp_disable_
port, respectively.

For a bridge port to be enabled, all of the following conditions must be met:

• The associated enslaved device is administratively UP.

• The associated enslaved device has the carrier status. See the section “Link State
Change Detection” in Chapter 8 for how Linux detects changes in the carrier sig-
nal status.

• The associated bridge device is administratively UP.

Note that there is no carrier status on the bridge device, because bridges are virtual
devices and therefore have no carrier status.

When a bridge port is created with a user-space command and the preceding three
conditions are met, the bridge port is enabled right away. See the section “Adding
Ports to a Bridge.”

Let’s suppose that when the port was created, it could not be enabled because at
least one of the three required conditions was not met. Here is where the port is
enabled when each condition eventually is met:

Figure 16-9. (a) Enabling a bridge; (b) disabling a bridge

dev_open

(a) (b)

br_dev_open

netif_start_queue

br_features_update

(dev -> open)

br_stp_enable_bridge

TX config BPDU...

Lock bridge

For each port
 br_stp_enable_port

Unlock bridge

dev_close

br_dev_stop

br_stp_disable_bridge

(dev ->stop)

netif_stop_queue

Lock bridge

For each port
 br_stp_disable_port

Unlock bridge
Stop all timers

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling a Bridge Port | 369

• When a bridge device that was shut down is activated, all of its disabled ports
are enabled.

• When an enslaved device detects the carrier status, the bridging code is notified
with a NETDEV_CHANGE notification. See the section “netdevice Notification Chain.”

• When an enslaved device that was shut down is activated, the bridging code is
notified with a NETDEV_UP notification. See the section “netdevice Notification
Chain.”

A bridge port is disabled when any of the three conditions listed at the beginning of
this section is no longer met.

Figure 16-10 summarizes the steps and associated functions for enabling and dis-
abling a bridge port. Note that when a bridge port is disabled, a nonroot bridge can
become the root bridge. That transition is described in the section “Becoming the
root bridge.”

Note that when a port is enabled, it is first initialized and then assigned the right
state with br_port_state_selection. This function loops over all bridge ports to
apply the right state to each one. But on a bridge that does not run STP, the function
actually ends up just putting the new port into the BR_STATE_FORWARDING state. This is
because the port is assigned the designated role (although a bridge that does not run
the STP should not care about port roles). We need to keep in mind that most rou-
tines do not distinguish whether the STP is enabled or disabled. For example, br_
state_port_selection loops over all ports because, when the STP is enabled and
undergoes a configuration update, it may change the role and therefore the state of
many ports (see the section “Configuration Updates”).

Figure 16-10. (a) Enabling a port; (b) disabling a port

br_stp_enable_port

(a) (b)

Initialize port
(br_init_port)

Update state for all ports
(br_port_state_selection)

Initialize port timers
(br_stp_port_timer_init)

Assign the designated role
(br_become_designated_port)

Compute port ID

br_stp_disable_port

Set state to disabled

Stop all timers

Update configuration
(br_configuration_update)

Handle nonroot to root bridge transition
(br_become_root_bridge)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 16: Bridging: Linux Implementation

Changing State on a Bridge Port
A bridge port is either active or inactive: the associated states are BR_STATE_
FORWARDING or BR_STATE_BLOCKING. However, while the BR_STATE_BLOCKING state can be
assigned right away to a port, the BR_STATE_FORWARDING state is reached only after first
going through the intermediate states introduced in the section “Port states” in
Chapter 15.

The BR_STATE_FORWARDING and BR_STATE_BLOCKING states are assigned with the br_
make_forwarding and br_make_blocking routines, respectively. The same two routines
are used regardless of whether the bridge device hosting the port is running the STP.

static void br_make_blocking(struct net_bridge_port *p)
{
 if (p->state != BR_STATE_DISABLED &&
 p->state != BR_STATE_BLOCKING) {
 if (p->state == BR_STATE_FORWARDING ||
 p->state == BR_STATE_LEARNING)
 br_topology_change_detection(p->br);

 p->state = BR_STATE_BLOCKING;
 br_log_state(p);
 del_timer(&p->forward_delay_timer);
 }
}

static void br_make_forwarding(struct net_bridge_port *p)
{
 if (p->state == BR_STATE_BLOCKING) {
 if (p->br->stp_enabled) {
 p->state = BR_STATE_LISTENING;
 } else {
 p->state = BR_STATE_LEARNING;
 }
 br_log_state(p);
 mod_timer(&p->forward_delay_timer, jiffies + p->br->forward_delay);
 }
}

Note that you cannot assign a port any of the intermediate states between BR_STATE_
BLOCKING and BR_STATE_FORWARDING, which is why br_make_forwarding returns if asked
to change a port that is not in the BR_STATE_BLOCKING state to BR_STATE_FORWARDING.
However, an intermediate state indicates that the port is already on its way to the BR_
STATE_FORWARDING state and will get there when the proper timer expires.

In br_make_forwarding, a bridge port skips the BR_STATE_LISTENING state when the
STP is not in use. When the STP is not in use, all bridge ports are going to be
assigned the forwarding state; therefore, you can skip BR_STATE_LEARNING, too. How-
ever, the use of the intermediate state BR_STATE_LEARNING can allow the bridge to
learn some MAC addresses and reduce the amount of flooding that would otherwise
be needed with an empty forwarding database.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Big Picture | 371

The Big Picture
Figure 16-11 shows the key routines that the bridging code uses to process ingress
and egress frames (both data frames and BPDUs).

In particular, note that:

• There are as many hooks as there are at the IP layer (see Figure 18-1 in
Chapter 18). One more hook in br_handle_frame (NF_BR_BROUTING), not shown in
the figure, is used by ebtables and is described in the section “Data Frames Ver-
sus BPDUs.”

• Ingress data frames may go through netif_receive_skb twice. netif_receive_skb
is described in Chapter 10. See also the section “Processing Data Frames,” later
in this chapter.

Figure 16-11. The big picture

NETFILTER5

1 NF_BR_PRE_ROUTING

2 NF_BR_LOCAL_IN

3 NF_BR_POST_ROUTING

4 NF_BR_FORWARD

5 NF_BR_LOCAL_OUT

a Data vs BPDU

b Unicast vs Multicast/broadcast

br_dev_xmit

br_deliver br_flood_deliver

br_flood
. . .

__br_deliver

br_forward_finish

NETFILTER3

br_dev_queue_xmit_finish

dev_queue_xmit

NIC
device driver

hard_start_xmit

Bridge
device driver

hard_start_xmit

EGRESS
TRAFFIC

NETFILTER4

__br_forw
ard. . .

br_flood

br_flood_forwardbr_forward

NETFILTER2

br_recieved tcn_bpdu

br_recieved config_bpdu

br_stp_handle_bpdu

NETFILTER1

br_handle_frame_finish

NETFILTER

br_pass_frame_up

2

br_pass_frame_up_finish

b

a

br_handle_frame
(br_handle_frame_hook)

handle_bridge

protocol_dispatching
(Chapter 13)

netif_receive_skb

Bridge device Real device
(Chapter 10)

INGRESS
TRAFFIC

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 16: Bridging: Linux Implementation

• Ingress frames are passed by netif_receive_skb to the bridging subsystem when
a call to handle_bridge indicates it is necessary, or to the upper-layer protocol
handlers otherwise (as described in Chapter 13).

• Ingress frames may be dropped by the bridging code, for example, because the
port is disabled.

• Ingress data frames are dropped by br_forward when the receiving port has been
blocked by the STP. Egress frames do not need to be transmitted out of any port
by br_deliver when the destination address is local to the host. In both cases,
unneeded transmissions are filtered by should_deliver.

• Egress data frames go through dev_queue_xmit twice. dev_queue_xmit is described
in Chapter 11. See also the section “Transmitting on a Bridge Device” later in
this chapter.

• The br_flood function floods a frame on the ports of a bridge. Flooding may be
necessary for both ingress and egress frames. Regardless of where a frame is gen-
erated, when it is addressed to a multicast or broadcast address, or to an address
not in the forwarding database, it must be flooded. br_flood knows whether it is
handling an ingress or egress frame from its final input parameter, which is the
function it calls multiple times to transmit the frame on each bridge port (_ _br_
forward for ingress and _ _br_deliver for egress).

While looking at the code in the next sections, you need to keep in mind that the
bridging code uses the same set of core routines regardless of whether the STP is
enabled. Some key differences lie in the subtasks executed.

When the STP is enabled:

• Ingress BPDUs are processed.

• BPDUs may be generated locally too, depending on the roles of the local bridge
ports.

• Ingress data traffic is either forwarded to the right port or flooded to all bridge
ports, according to the rules in Chapter 14.

• The ports that STP blocks cannot be used to receive and transmit data traffic.

When the STP is disabled:

• Ingress BPDUs are treated as data traffic.

• No BPDUs are generated locally.

• Ingress data traffic is still forwarded to the right port or flooded to all bridge
ports, according to the rules in Chapter 14.

• All the bridge ports (unless they’re administratively disabled) can be used to
receive and transmit data traffic.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Forwarding Database | 373

Forwarding Database
Each bridge instance has it own forwarding database, which is used regardless of
whether STP is enabled or disabled. We will see later in this chapter exactly when the
database is consulted and updated. Let’s first see its implementation and the core
functions for manipulating it. All of the routines used to manage forwarding data-
bases are located in net/bridge/br_fdb.c.

The database is embedded in the net_bridge data structure and is defined as a hash
table (see Figure 16-6). An instance of a net_bridge_fdb_entry data structure is
added to the database for each MAC address that is learned on any of the bridge’s
ports.

The bridge forwarding database subsystem is initialized with br_fdb_init, which
simply creates the br_fdb_cache cache that will be used for the allocation of net_
bridge_fdb_entry instances.

Allocations are done with fdb_create, which also initializes a few fields of net_
bridge_fdb_entry according to its input parameters.

Lookups
Elements of the forwarding database are identified by their MAC addresses. A
lookup in the table consists of selecting the right hash table bucket with br_mac_hash
and browsing the bucket’s list of net_bridge_fdb_entry instances to find one that
matches a given MAC address.

There are two main lookup routines:

fdb_find
This simply searches net_bridge_fdb_entry for a given MAC address. It is not
used to forward data traffic. It is mainly used by bridging management func-
tions.

_ _br_fdb_get
Similar to fdb_find, this is called by the bridging code to forward traffic. It does
not consider expired entries (see the section “Aging”).

For both routines, proper locking is ensured by the caller.

An external subsystem that wishes to make a lookup on the forwarding database can
use the br_fdb_get routine, a wrapper that takes care of locking and reference counts
and calls _ _br_fdb_get. br_fdb_get is not called directly, but via br_fdb_get_hook,
which is initialized in br_init to be a pointer to br_fdb_get.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 16: Bridging: Linux Implementation

Reference Counts
Because external subsystems that query the forwarding database with br_fdb_get are
likely to cache the result, a reference count is used to keep track of when entries in
the forwarding database are still needed and when they can be freed. Each entry is
assigned a reference count. br_fdb_get always increments the reference count when
the lookup succeeds. The caller is supposed to decrement it with br_fdb_put when it
no longer needs the reference to the lookup result. When the reference count drops
to 0, br_fdb_put frees net_bridge_fdb_entry.

Adding, Updating, and Removing Entries
The forwarding database is populated and updated by a different set of routines,
depending on whether the MAC addresses are associated with local interfaces or
ingress frames.

When you create a bridge port, br_add_if adds the enslaved device’s MAC address to
the forwarding database with br_fdb_insert. The latter function ignores MAC
addresses that are not supposed to be added to the database, such as multicast and
broadcast addresses. When the new address happens to be in the database already, it
is replaced unless it is associated with another local interface, in which case there is
no need for any update. Note that local MAC addresses in the forwarding database
allow the bridging code to deliver ingress frames addressed to a local interface
locally. So it does not matter what interface the local MAC address is associated
with. All that matters is that at least one entry in the database tells the bridging code
what traffic to deliver locally.

There is no hard limit on the number of entries that can be added to the forwarding
database. This can expose the system to a DOS attack, so we can expect developers
to add a hard limit in the near future.

When a local device that is associated with a bridge port—and that therefore has its
MAC address in the forwarding database—changes its MAC address,* its entry in the
database is updated with br_fdb_change_addr (see the section “netdevice Notifica-
tion Chain”). Because it is possible for multiple local interfaces to be configured with
the same MAC address (even though it is not common), bf_fdb_change_addr checks
whether another bridge port for the same bridge has the same MAC address before
removing the net_bridge_fdb_entry instance: if it finds another bridge port with the
same MAC address, it binds the database entry to the interface for the remaining
port.

* Only the system administrator can change the MAC address of an interface, which requires an explicit com-
mand like ip link set eth0 address 00:20:ED:76:1E:12 or ifconfig eth0 hw ether 00:20:ED:76:1E:12. Changing
the MAC address of an interface is rarely done.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Handling Ingress Traffic | 375

The MAC addresses learned with ingress frames (as described in Chapter 14) are
added to the database with br_fdb_update. When the address is already in the data-
base, the reference to the ingress port (dst) is updated if needed and the timestamp
of the last update (ageing_timer) is updated.

net_bridge_fdb_entry instances are removed with fdb_delete. That function is never
called directly, but always through wrappers like br_fdb_cleanup (described in the
next section) and br_fdb_delete_by_port.

Aging
For each bridge instance there is a garbage collection timer (gc_timer) that periodi-
cally scans the forwarding database and deletes expired entries. The timer is initial-
ized in br_stp_timer_init when the bridge instance is initialized, and is started when
the bridge is enabled with br_stp_enable_bridge.

The timer expires every one-tenth of second and calls br_fdb_cleanup to do the
cleanup. That function scans the database and deletes expired entries with fdb_
delete.

An entry normally expires if it has not been used for at least 5 minutes. However,
when a bridge runs the STP, a shorter aging time of forward_delay seconds is used
when a topology change has been detected (see the section “Short Aging Timer” in
Chapter 15). The right aging time is used transparently by calling the hold_time rou-
tine, which returns the right one to use based on the logic described here.

Handling Ingress Traffic
We saw in Chapter 10 how ingress traffic is processed by netif_receive_skb. In par-
ticular, we saw how the function calls handle_bridge (defined in net/core/dev.c)
before passing each ingress frame to the upper-layer protocol handler.

When the kernel does not have support for bridging, handle_bridge is defined as a
NULL pointer and netif_receive_skb hands ingress frames to other protocol han-
dlers. When the kernel does support bridging, and a frame is received on a bridge
port, handle_bridge processes the frame with br_handle_frame_hook. The latter
pointer is initialized to br_handle_bridge when the bridging module is initialized.

#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
...
static _ _inline_ _ int handle_bridge(struct sk_buff **pskb,
 struct packet_type **pt_prev, int *ret)
{
 struct net_bridge_port *port;

 if ((*pskb)->pkt_type == PACKET_LOOPBACK ||
 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL)
 return 0;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 16: Bridging: Linux Implementation

 if (*pt_prev) {
 *ret = deliver_skb(*pskb, *pt_prev);
 *pt_prev = NULL;
 }

 return br_handle_frame_hook(port, pskb);
}
#else
#define handle_bridge(skb, pt_prev, ret) (0)
#endif

In the following subsections, we will see how handle_bridge processes ingress
frames, distinguishing between data frames and STP BPDUs (Figure 16-11, circle a).
For data frames, the function also distinguishes between unicast frames and multi-
cast or broadcast frames (Figure 16-11, circle b).

Data Frames Versus BPDUs
On a Linux system with support for bridging, not all NICs need to be configured as
bridge ports. When one is configured as a bridge port, the br_port pointer of its net_
device points to the associated bridge port. Because each bridge port includes a
pointer to the bridge instance it is part of, you can easily get from any real device to
the bridge instance it belongs to (if any) and check whether STP is enabled for the
device by reading a flag in the net_bridge data structure. See Figure 16-6.

BPDUs generated by the STP are distinguished from all other ingress frames and are
processed by the STP receiving routine—but only when the STP is enabled on the
bridge containing the ingress port.

Figure 16-12 shows how br_handle_frame hands an ingress frame to the right rou-
tine, br_handle_frame_finish or br_stp_handle_bpdu, depending on whether STP is
enabled.

Any frame received on a disabled port is dropped.

Data frames are accepted on ports in the BR_STATE_FORWARDING state only, and BPDUs
are accepted on any enabled port as long as the STP is enabled (otherwise, they are
treated just as common data frames).

The logic followed on the left side of Figure 16-12 to recognize BPDUs follows the
rules introduced in the section “BPDU Encapsulation” in Chapter 15.

Note that both routines at the bottom of Figure 16-12 are called only if Netfilter does
not drop or consume the frame for other reasons.

ebtables is also given a chance to look at frames. ebtables is a framework that pro-
vides extra capabilities that Netfilter does not provide.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Handling Ingress Traffic | 377

Figure 16-12. br_handle_frame function

Port state

Drop frame

Begin

Is STP enabled?

Return 1

Is port state
FORWARDING ?

ebtables:
Bridging or routing?

Update pointer to buffer and
destination Ethernet header

Is dest addr the
RX dev addr?

Netfiler
(NF_BR_PRE_ROUTING)

Set pkt type to
PACKET_HOST

Process BPDU
(br_stp_handle_bpdu)

Is dest addr the STP
multicast address?

Can frame be
relayed?

Standard protocol?

Update forwarding database
(br_fdb_insert)

Return 0

Netfiler
(NF_BR_LOCAL_IN)

Process frame
(br_handle_frame_finish)

Return 1

Dropped
or queued

Dropped
or queued

Accepted Accepted

No

Yes

Yes

No

No

Yes No

Routing

Yes

No

BLOCKING
LISTENING

DISABLED
LEARNING
FORWARDING

Yes

Bridging

Yes

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 16: Bridging: Linux Implementation

In particular, ebtables allows filtering and mangling of any frame type, not just those
that carry IP packets. For the purposes of our discussion, I need to mention two of
ebtables’s capabilities:

• It allows you to define rules to tell the kernel what traffic to bridge and what
traffic to route, based on such factors as network protocol (i.e., IPv4) or destina-
tion IP address. This means that an NIC that is enslaved to a bridge port doesn’t
just act as a bridge port, but exists as an independent L3 interface and can be
assigned its own L3 configuration. We saw an example in the section “Bridge
Device Abstraction.”

• The destination MAC address can be mangled, for example, to redirect the
frame to another host or to implement some sort of network address transla-
tion. This is why br_handle_frame checks the destination MAC address after
ebtables is done.

Support for ebtables can be added to the kernel with the option “Networking sup-
port ➝ Networking options ➝ Network packet filtering (replaces ipchains) ➝ Bridge:
Netfilter Configuration ➝ Ethernet Bridge tables (ebtables) support”. At the ebtables
home page, you can find pretty good documentation for this feature, on both the
user-space side and the kernel-space side. You can also find clear examples on how
to use each feature provided by ebtables. The project’s home page is http://ebtables.
sourceforge.net.

Processing Data Frames
Ingress data frames are handled by br_handle_frame_finish, shown in Figure 16-13.

First, the source MAC address of the frame is added to the forwarding database with
br_fdb_update. Then the destination MAC address is searched for in the forwarding
database. If the address is found, the frame is forwarded to the right bridge port with
br_forward; otherwise, it is flooded to all forwarding bridge ports with br_flood_
frame. Frames addressed to the broadcast or multicast link layer addresses are always
flooded.

A copy of the frame is also delivered locally with br_pass_frame_up (i.e., passed to the
upper layer) if any of the following conditions are met:

• The bridge interface is in promiscuous mode. Note that all devices enslaved to a
bridge port are in promiscuous mode because this mode is necessary for the
bridge to work. However, the bridge itself is not in promiscuous mode unless
you explicitly configure it to be.

• The frame is flooded for one of the reasons mentioned earlier.

• According to the forwarding database, the destination MAC address belongs to a
local interface.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Handling Ingress Traffic | 379

It is interesting to see how the local delivery is handled. Figure 16-14, which is a
subset of Figure 16-11, shows the exact path of an ingress frame that ends up passed
to the upper-layer protocol handler.

When the frame is received by the NIC’s device driver, skb->dev is initialized to the
real device. The frame is then pushed up the network stack and eventually passed to
br_pass_frame_up. That function crosses through another Netfilter hook and then
calls br_pass_frame_up_finish. Here skb->dev is replaced with the bridge device the

Figure 16-13. br_handle_frame_finish function

Has the
frame already
been delivered

locally?

Free bufferDeliver a copy locally
(br_pass_frame_up)

YesNo

Is the
destination L2
address local?

Forwarding
DB lookup

Is the
destination L2

address multicast
or broadcast?

Is bridge
device in promiscuous

mode?

Update forwarding DB
(br_fdb_update)

Deliver a copy locally
(br_pass_frame_up)

Yes

Flood frame
(br_flood_frame)

Yes

Has the
frame already
been delivered

locally?

Deliver a copy locally
(br_pass_frame_up)

Yes

No

No

No

Hit

Yes

Return 0

Flood frame
(br_flood_frame)

Forward frame
(br_forward)

No

Miss

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 16: Bridging: Linux Implementation

ingress port is part of and netif_receive_skb is invoked again. This time, handle_
bridge sees that the device is not an enslaved device (i.e., br_port is NULL) and
hands the frame to the right protocol handler, as described in Chapter 13.

Transmitting on a Bridge Device
We saw in the section “Bridge Device Abstraction” that the bridge device abstrac-
tion requires transmissions on a bridge device to be converted into transmissions on
one or all bridge ports. Figure 16-11 shows the key routines that make this happen.

The bridge driver’s implementation of hard_start_xmit is br_dev_xmit. The latter
function simply implements the basic logic used by a bridge to transmit. It copies the
frame out of the right bridge port when a lookup in the bridge forwarding database
returns success. On the other hand, it floods the frame on all eligible bridge ports
when the lookup fails, or when the destination MAC address is either an L2 multi-
cast or L2 broadcast address.

Spanning Tree Protocol (STP)
We saw in Chapter 15 how the STP works. In this chapter, we will mainly see how:

• Ingress BPDUs are processed

• Egress BPDUs are transmitted

• Timers are handled

Figure 16-14. Local delivery of ingress data frames

NETFILTER2 NETFILTER1

br_pass_frame_up

br_pass_frame_up_finish
(set dev=bridge)

br_handle_frame_finish

br_handle_frame

handle_bridge

netif_receive_skb

Protocol dispatching
(Chapter 13)

real device

INGRESS
TRAFFIC

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Spanning Tree Protocol (STP) | 381

Key Spanning Tree Routines
Here is a list of the key routines used by the spanning tree code to implement the
logic described in Chapter 15:

br_become_root_bridge
br_is_root_bridge

br_become_root_bridge makes a nonroot bridge the root bridge. This task con-
sists of stopping the TCN timer, because it should not run on the root bridge,
and starting the Hello timer, which runs only on the root bridge. The function
also updates other timers to locally configured values, and starts a topology
change. br_is_root_bridge returns 1 when the input bridge is the root bridge,
and 0 otherwise.

br_should_become_designated_port
br_designated_port_selection
br_become_designated_port
br_is_designated_port
br_is_designated_for_some_port

br_should_become_designated_port returns 1 if the input port should be assigned
the designated role, and 0 otherwise. br_designated_port_selection loops over
all the bridge ports and it assigns the designated role to those that deserve it (see
the section “Designated Port Selection” in Chapter 15).

br_become_designated_port assigns the designated role to a bridge port. br_is_
designated_port returns 1 when the input port is a designated port, and 0 other-
wise. Given a bridge, br_is_designated_for_some_port returns 1 if the bridge has
at least one port with the designated role, and 0 otherwise.

br_supersedes_port_info
Given a bridge port and an input configuration BPDU received on the port, this
function returns 1 if the BPDU is superior (i.e., has a better priority vector) than
the one known to the bridge port, and 0 otherwise.

br_should_become_root_port
br_root_selection

Given a bridge port and the current root port, br_should_become_root_port com-
pares the priority vector of the first port against the priority vector of the current
root port and returns 1 if the first port has a better priority vector (and therefore
should be preferred over the current root port). It returns 0 otherwise. Given a
bridge, br_root_selection selects the root port as described in the section “Root
Port Selection” in Chapter 15.

br_configuration_update
Given a bridge, determines the root port and designated ports and returns that
information.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 16: Bridging: Linux Implementation

br_port_state_selection
Given a bridge, selects the right port state for each bridge port.

br_topology_change_detection
br_topology_change_acknowledge
br_topology_change_acknowledged

br_topology_change_detection handles the detection of a topology change, dis-
tinguishing between a topology change that is detected by a root bridge and a
nonroot bridge. br_topology_change_acknowledge acknowledges the reception of
a TCN by transmitting a configuration BPDU with the TCA flag set. br_
topology_change_acknowledged stops the TCN timer.

br_record_config_information
br_record_config_timeout_values

Given a bridge port and an ingress configuration BPDU, br_record_config_
information records the priority vector of the BPDU on the port’s net_bridge_
port data structure and restarts the message age timer, and br_record_config_
timeout_values records the timer configuration that is in the BPDU (see
Figure 15-8 in Chapter 15).

br_get_port
Given a bridge device and a port number, returns the associated net_bridge_port
structure.

Bridge IDs and Port IDs
We saw in the section “Bridge and Port IDs” in Chapter 15 how bridge IDs and port
IDs are defined. While the priority component of both IDs is assigned a default value
that can be overridden by the system administrator, the MAC address component of
the bridge ID and the port number component of the port ID are initialized by the
kernel as follows:

Bridge MAC address
The lowest MAC address among the ones configured on the enslaved devices is
selected. The selection is done with br_stp_recalculate_bridge_id anytime a
new bridge port is created or deleted, and when an enslaved device changes its
MAC address (see the section “netdevice Notification Chain”).

Port number
The first number in the range 1−BR_MAX_PORTS that is not already in use is
selected. The selection is done with find_portno when the bridge port is created
(see the section “Adding Ports to a Bridge”).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Spanning Tree Protocol (STP) | 383

Enabling the Spanning Tree Protocol on a Bridge Device
You will see in Chapter 17 how the STP can be turned on and off for each bridge
device. The stp_enabled field of the port’s net_bridge structure indicates whether the
bridge device is enabled.

When the STP is not in use, most of the data structures listed in the section “Impor-
tant Data Structures” include fields that are not needed, including timers. In addi-
tion, no BPDUs are transmitted and no ingress BPDUs are processed.

You would probably expect that when a bridge is created with STP disabled, only the
right fields and timers would be initialized, and that when stp_enabled is set to
enable STP later, the necessary additional fields and timers would be initialized and
started. However, Linux behaves differently.

When a bridge device or port is initialized, all its fields (including those used by STP)
are initialized, regardless of whether STP is enabled. The Hello timer, which is used
by STP on root bridges to transmit BPDUs, is also started. This way, if STP is
enabled later, all data structures will be ready to go.

Every time the Hello timer expires, according to STP, a bridge is supposed to trans-
mit BPDUs out of its designated ports. Because a bridge’s timer runs regardless of
whether STP is enabled, the transmit routine always checks the value of stp_enabled
and returns immediately when the field says STP is disabled. As soon as STP is
enabled, by setting stp_enabled, BPDU transmissions start right away. On a system
with few bridge devices, to have a timer that expires regularly to do nothing is not a
big waste of resources, but should be avoided anyway. On a system with quite a few
bridge instances, having the Hello timer run when it is not needed can be a signifi-
cant waste of CPU time.

Processing Ingress BPDUs
Ingress BPDUs are passed to br_stp_handle_bpdu (Figure 16-15), which updates the
forwarding database and hands them to the right routine based on its type, or dis-
cards them when any of the following conditions is met:

• The frame is truncated.

• Either the bridge device or the bridge port that received the frame is disabled.

• The STP is disabled on the bridge device. This case is uncommon because br_
handle_frame does not hand BPDUs to br_stp_handle_bpdu when STP is disabled
on the bridge device (see the section “Data Frames Versus BPDUs”).

• The bridge does not know how to interpret the BPDU message. Because the
Linux kernel implements only the IEEE 802.1D STP, it accepts only configura-
tion and TCN BPDUs. Any other BPDU type is discarded.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 16: Bridging: Linux Implementation

Figure 16-15. br_stp_handle_bpdu function

Is frame
truncated?

Lock bridge

Update forwarding DB
(br_fdb_update)

Is bridge port
enabled?

BPDU type

Initialize a br_config_bpdu
data structure

br_received_config_bdpu
Drop frame

Return 0

Unlock bridge

Is bridge
enabled?

Is bridge
running STP?

Is BPDU truncated?

br_received_tcn_bdpu

Yes

No

No

Yes

Yes

Yes No

TCN Anything else

Config

Yes

No

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Spanning Tree Protocol (STP) | 385

br_received_config_bpdu processes configuration BPDUs according to the logic
described in the section “Transmitting Configuration BPDUs” in Chapter 15.

br_received_tcn_bpdu processes TCN BPDUs according to the logic described in the
section “Letting All Bridges Know About a Topology Change” in Chapter 15.

Note that BPDU processing for any bridge is serialized with the bridge lock: differ-
ent CPUs cannot process BPDUs concurrently for the same bridge.

Transmitting BPDUs
We saw when configuration and TCN BPDUs are transmitted in the sections “Trans-
mitting Configuration BPDUs” and “Letting All Bridges Know About a Topology
Change” in Chapter 15. Here are the transmitting routines:

br_transmit_config
Transmits a configuration BPDU according to the logic in the section “Transmit-
ting Configuration BPDUs” in Chapter 15.

br_transmit_tcn
Transmits a TCN BPDU.

br_reply
Replies to an ingress configuration BPDU with another configuration BPDU. It

is a simple wrapper around br_transmit_config.

All BPDU transmissions go through the NF_BR_LOCAL_OUT Netfilter hook, as shown in
Figure 16-16.

We saw in the section “BPDU Aging” in Chapter 15 that Configuration BPDUs have
a limited lifetime enforced through the embedded Message Age field. Here is how
nonroot bridges update that field before relaying the BPDU.

Figure 16-16. Transmit routines

br_transmit_config br_reply br_transmit_tcn

br_send_config_bpdu br_send_tcn_bpdu

br_send_bpdu

Netfilter
(NF_BR_LOCAL_OUT)

dev_queue_xmit

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 16: Bridging: Linux Implementation

When a configuration BPDU is received, br_stp_handle_bpdu saves the Message Age
field of the BPDU in a local variable. When br_transmit_config is called to transmit a
BPDU out, it updates the Message Age field, adding the amount of time that passed
since br_stp_handle_bpdu received the original frame. Because the Message Age timer
is expressed in multiples of 1/256th of a second, but the unit of time the kernel man-
ages better is ticks, br_stp_handle_bpdu converts the message age to ticks when sav-
ing it. br_transmit_config later computes the elapsed time in ticks, but converts the
result back into units of 1/256th of a second so that it can write it to the BPDU. The
conversions are made with br_get_tick and br_set_tick.

Configuration Updates
We saw in Chapter 15 how the system administrator can use configuration parame-
ters to affect the topology to which the STP will converge. We also saw how the
selection of role and state for a bridge port depends on the current knowledge of the
bridge and the information received with ingress configuration BPDUs, in particular
the priority vector component (see Figure 15-8 in Chapter 15). Finally, we saw in the
section “Defining the Active Topology” in Chapter 15 the events that may trigger a
configuration update on a bridge, and what a configuration update consists of.

The routine that takes care of configuration updates is br_configuration_update.
Table 16-1 shows where and when that routine is invoked.

Each call to br_configuration_update is always followed by a call to br_port_state_
selection, which takes care of updating the state for each bridge port based on its
assigned role. State changes are applied using the routines introduced in the section
“Changing State on a Bridge Port.”

In the section “Handling Configuration Changes” in Chapter 17, you can find the
user commands that lead to the execution of some of the routines in Table 16-1.

Table 16-1. Routines that trigger a configuration update

Where When

br_received_config_bpdu A BPDU with a better priority vector is received on a bridge port.

br_message_age_timer_expired The information known to a bridge port has expired. See the section “BPDU
Aging” in Chapter 15.

br_stp_disable_port A bridge port has been disabled.

br_stp_change_bridge_id The MAC address component of the bridge ID has been changed. See the sec-
tion “Bridge IDs and Port IDs.”

br_stp_set_bridge_priority The priority component of the bridge ID has been changed.

br_stp_set_path_cost The port path cost has been changed.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Spanning Tree Protocol (STP) | 387

Root Bridge Selection
We saw in the section “Root Bridge Selection” in Chapter 15 how the root bridge is
selected. When a bridge is first enabled, it believes it is the root bridge. Thereafter,
based on the information received with ingress configuration BPDUs and the config-
uration applied by the system administrator, the root bridge status can change.

Figure 16-17 shows how events that can change the root status of a bridge do the job.

Becoming the root bridge

The routines that process events that can make a nonroot bridge become the root
bridge follow the scheme in Figure 16-17(a): first the root status is saved, and then
port roles and states are updated. If this update makes the bridge become the root
bridge, the required actions are applied, such as starting and stopping the right
timers.

Here are the routines that trigger a configuration update and that may elect a non-
root bridge as the new root bridge:

br_stp_change_bridge_id
br_stp_set_bridge_priority

These are called when the bridge’s MAC address and the bridge’s priority are
changed, respectively. Because these are the two fields of which bridge IDs are
composed, and because the election of the root bridge is based on the bridge ID,
any change in them may change the root bridge.

br_stp_disable_port
When you disable the only port that a bridge can use to reach the current root
bridge, the spanning tree is partitioned and a new root bridge has to be selected
on the partition the current bridge is part of. This is why most of the bridges in
the examples in Chapter 15 have redundant links.

Figure 16-17. (a) Becoming the root bridge; (b)giving up the root bridge role

wasroot= br_is_root_bridge(br);
. . .
br_configuration_update(br);
br_port_state_selection(br);
if (br_is_root_bridge(br) && !wasroot)
 br_become_root_bridge(br);

Update timers (use local configuration)
Detect topology change
Stop TCN timer
Start Hello timer and BPDU generation

(a)
wasroot= br_is_root_bridge(br);
. . .
br_configuration_update(br);
br_port_state_selection(br);
if (!br_is_root_bridge(br) && wasroot) {

Stop Hello timer
If topology change is deleted {
 transmit TCN BPDU to designated bridge
 start TCN timer
}

(b)

}

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 16: Bridging: Linux Implementation

br_message_age_timer_expired
When the information a port received by the designated bridge expires (most
likely because the designated bridge is not the designated bridge anymore, or
because it simply failed), the port is assigned the designated role. Since this is a
change in the topology, it is possible that the root bridge changes, too.

Giving up the root bridge role

A root bridge relinquishes its role when it receives a BPDU with a superior priority
vector. That condition is detected in br_received_config_bpdu and is handled as
described in Figure 16-17(b).

Timers
We saw the per-port and per-bridge timers used by the STP code in the section
“Timers” in Chapter 15.

Port and bridge timers are initialized with br_stp_port_timer_init and br_stp_timer_
init, respectively.

Tables 16-2 and 16-3 list the routines that are executed when the timers expire. All of
these routines, plus the two initialization routines, are defined in net/bridge/br_stp_
timer.c. All timer handlers run with the bridge lock held.

Handling Topology Changes
We saw in the section “Topology Changes” in Chapter 15 the events that are consid-
ered topology changes. These events are detected by the following routines:

br_make_blocking
Called when the STP has decided to block a forwarding port.

Table 16-2. Handlers for the STP bridge’s timers

Timer Handler

Hello br_hello_timer_expired

Topology Change Notification br_tcn_timer_expired

Topology Change br_topology_change_timer_expired

Table 16-3. Handlers for the STP port’s timers

Timer Handler

Max Age br_message_age_timer_expired

Forward Delay br_forward_delay_timer_expired

Hold br_hold_timer_expired

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

netdevice Notification Chain | 389

br_forward_delay_timer_expired
Called when a port in the BR_STATE_LEARNING state (i.e., not yet forwarding) is
moved to the BR_STATE_FORWARDING state.

br_become_root_bridge
Called when a nonroot bridge becomes the root bridge. See the section “Becom-
ing the root bridge” for when this routine is invoked.

br_received_tcn
Called when a TCN BPDU is received on a bridge port. See the section “Process-
ing Ingress BPDUs” for when this routine is invoked.

netdevice Notification Chain
Because the virtual bridge device is defined as an abstraction on top of real (enslaved)
devices, the bridge device is likely to be affected when any of its enslaved devices
change status. For this reason, the bridging subsystem’s initialization routine, briefly
described in the section “Initialization of Bridging Code,” registers the br_device_
event callback with the netdevice notification chain. The bridging code is interested
only in enslaved devices, so any notification regarding a nonenslaved device is of no
interest and does not need attention.

Here is how each received event notification is processed:

NETDEV_CHANGEMTU
The MTU for the bridge device is updated to reflect the minimum MTU among
the ones configured on the enslaved devices.

NETDEV_CHANGEADDR
When an enslaved device changes its MAC address, its entry in the forwarding
database is updated with br_fdb_changeaddr and the bridge ID is updated with
br_stp_recalculate_bridge_id to reflect the rule we saw in the section “Bridge
IDs and Port IDs.”

NETDEV_CHANGE
This notification can be used for various purposes. The bridging subsystem is
interested only in changes to the carrier status.

When an enslaved device loses or detects its carrier status, the associated bridge
port is enabled and disabled with br_stp_enable_port and br_stp_disable_port,
respectively. When the bridge device this device is associated with is left down
by the administrator (i.e., IFF_UP is not set), the notification is ignored.

NETDEV_FEATCHANGE
When features of an enslaved device change, the feature set of the bridge device
is updated with br_features_recompute to reflect the set of features common to
all of its real devices.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 16: Bridging: Linux Implementation

NETDEV_DOWN
When an enslaved device is disabled by the administrator, the associated bridge
port must be disabled, too; this is handled by br_stp_disable_port. This is not
necessary when the bridge the port is associated with is already down, because
that would imply that the bridge port is already down, too.

NETDEV_UP
When an enslaved device is enabled by the administrator (i.e., IFF_UP is set), the
associated bridge port is enabled with br_stp_enable_port if it has the carrier sta-
tus and the associated bridge device is up, too.

NETDEV_UNREGISTER
When an enslaved device is unregistered, the associated bridge port is removed
with br_del_if.

With the exception of NETDEV_UNREGISTER, all events are processed with the bridge
lock held.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

391

Chapter 17 CHAPTER 17

Bridging: Miscellaneous
Topics

In the previous chapters, we saw how bridging and the STP are implemented, and
how they fit into the network stack. In this chapter, we conclude the bridging part of
the book with a description of how the subsystem interacts with the user-space com-
mands that configure bridging. I will not describe the commands themselves,
because administration is outside the scope of this book.

We will also look at the various files exported in the /sys directory that can be used to
tune bridging. The chapter concludes with a detailed description of the data struc-
tures introduced in Chapter 16.

User-Space Configuration Tools
Bridging can be configured with brctl, a utility you can download at http://bridge.
sourceforge.net/. With brctl, you can create bridge devices, enslave NICs to bridge
devices, and configure bridge parameters and bridge port parameters for the STP.

brctl uses the ioctl interface to talk to the kernel unless the libsysfs library is
installed, in which case the sysfs interface becomes the preferred choice. The libsysfs
library, which can be downloaded at http://linux-diag.sourceforge.net/Sysfsutils.html,
provides all the necessary primitives to access and modify the content of the vari-
ables exported in /sys. See the section “Tuning via /sys Filesystem.”

In the section “Data Frames Versus BPDUs” in Chapter 16, we introduced ebtables.
The user-space configuration tool can be downloaded at http://ebtables.sourceforge.
net. We will not look at it in this chapter; you can find pretty good documentation
on its home page.

Handling Configuration Changes
Table 17-1 lists the brctl commands and the callback routines of the kernel bridging
code that the configuration layer calls to notify bridging about the changes. For exam-
ple, when you create the bridge device br0 with a command like brctl addbr br0, the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 17: Bridging: Miscellaneous Topics

kernel ends up calling br_add_bridge, the routine we described in the section “Creat-
ing Bridge Devices and Bridge Ports” in Chapter 16.

Note that some commands do not need to invoke any callback routine. For exam-
ple, if you change the Hello time with a command such as brctl sethello br0 3, the
new value will be visible immediately to the bridging code: there is no need for any
action to be taken by the STP.

The routines in Table 17-1 are used regardless of whether brctl talks to the kernel
with ioctl commands or via sysfs. Regardless of whether a given command requires
the invocation of a bridging callback routine, a kernel routine is always called to take
care of the brctl command.

Old Interface Versus New Interface
Because the kernel code supports both the old and new interfaces, it must be able to
handle both versions correctly. Unfortunately, this makes the ioctl code that takes
care of bridging configuration commands a little messy. The old interface is com-
pletely based on ioctl commands, whereas the new one uses ioctl only for a subset
of commands and sysfs for the others.

Table 17-1. brctl commands and associated kernel handlers

brctl command Description Bridging callback routine

addbr Create a bridge device. br_add_bridge

delbr Delete a bridge device. br_del_bridge

addif Create a bridge port. br_add_if

delif Delete a bridge port. br_del_if

setageing Set the aging time for the addresses in the forwarding
database.

N/A

setbridgeprio Set the bridge priority. br_stp_set_bridge_priority

setfd Set the Forward Delay timer. N/A

sethello Set the Hello timer. N/A

setmaxage Set the Max Age timer. N/A

setpathcost Set the port path cost. br_stp_set_path_cost

setportprio Set the port priority. br_stp_set_port_priority

show Show the bridge device. N/A

showmacs Show the forwarding database for a bridge. N/A

showstp Show the spanning tree information for a bridge. N/A

stp Enable or disable the STP on a bridge. N/A

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

User-Space Configuration Tools | 393

Figures 17(a) and 17(b) show how ioctl commands for both interfaces are routed to
the right routines for processing (I know, it’s not really what you call clear and clean
code).

The top diamond is the initial dispatching done in sock_ioctl in net/socket.c. Note
that the figure shows only the details needed to route bridging commands, even
though some of the routines are shared by other features’ commands, too. The com-
mands with a lighter color are the ones used by the new interface.

One detail worth mentioning is that br_ioctl_deviceless_stub tries to load the
bridge kernel module if it is not already in memory.

The next two sections offer some more details on the two interfaces.

FIgure 17-1(a). Dispatching ioctl commands

brctl

cmd

User space

Kernel

sock_ioctl
(net/socket.c)

br_socket_fd= socket (AF_INET, SOCK_STREAM, 0);
. . .
err= ioctl(br_socket_fd, cmd, . . .);

SIOCDEVPRIVATE
SIOCGIFBR
SIOCSIFBR
SIOCBRADDBR
SIOCBRDELBR

br_ioctl_hook (br_ioctl_deviceless_stub)
(net/bridge/br_ioctl.c)

cmd
SIOCGIFBR
SIOCSIFBR

SIOCBRDELBR

SIOCBRADDBRold_deviceless
(net/bridge/br_ioctl.c)

argument
BRCTL_DEL_BRIDGE

BRCTL_ADD_BRIDGE

br_add_bridge
(net/bridge/br_if.c)

br_del_bridge
(net/bridge/br_if.c)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 17: Bridging: Miscellaneous Topics

Figure 17-1(b). Dispatching ioctl commands

cmd
SIOCBRDELIF

br_add_if
(net/bridge/br_if.c)

cmd

SIOCBRADDIF

br_del_if
(net/bridge/br_if.c)

add_del_if
(net/bridge/br_ioctl.c)

argument

BRCTL_ADD_IF
BRCTL_DEL_IF

BRCTL_GET_BRIDGE_INFO
BRCTL_GET_PORT_LIST
BRCTL_SET_BRIDGE_FORWARD_DELAY
BRCTL_SET_BRIDGE_HELLO_TIME
BRCTL_SET_BRIDGE_MAX_AGE
BRCTL_SET_AGEING_TIME
BRCTL_GET_PORT_INFO
BRCTL_SET_BRIDGE_STP_STATE
BRCTL_SET_BRIDGE_PRIORITY
BRCTL_SET_PORT_PRIORITY
BRCTL_SET_PATH_COST

old_dev_ioctl
(net/bridge/br_ioctl.c)

SIOCDEVPRIVATE

SIOCBRADDIF
SIOCBRDELIF

cmd

br_dev_ioctl (i.e., dev do_ioctl)
(net/bridge/br_ioctl.c)

SIOCBRADDIF
SIOCBRDELIF
SIOCDEVPRIVATE

cmd

dev_ifsioc
(net/core/dev.c)

SIOCBRADDIF
SIOCBRDELIF
SIOCDEVPRIVATE

dev_ioctl
(net/core/dev.c)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

User-Space Configuration Tools | 395

Creating Bridge Devices and Bridge Ports
I would divide brctl commands into two classes: those used to create and delete
bridge devices and bridge ports, and those used to configure or dump the configura-
tion of bridge devices and bridge ports (including details on the STP).

Both the old and the new interfaces use ioctl commands to implement the first class
of commands. The exact ioctl command codes used by the old and new interfaces
are listed in Table 17-2.

Note that the old interface needs to pass an argument with the ioctl command to
identify the precise brctl command, whereas for the new interface the ioctl com-
mand is sufficient.

Configuring Bridge Devices and Ports
The second class of commands is implemented differently in the old and new inter-
faces: the old interface uses ioctl commands, and the new interface uses sysfs.

The exact ioctl command codes used by the old interface are listed in Table 17-3.

Table 17-2. ioctl commands used for creating bridge devices and ports

brctl command Old interface (ioctl command, argument) New interface (ioctl command)

addbr SIOCSIFBR, BRCTL_ADD_BRIDGE SIOCBRADDBR

delbr SIOCSIFBR, BRCTL_DEL_BRIDGE SIOCBRDELBR

addif SIOCDEVPRIVATE, BRCTL_ADD_IF SIOCBRADDIF

delif SIOCDEVPRIVATE, BRCTL_DEL_IF SIOCBRDELIF

Table 17-3. ioctl commands used by the old interface for configuring bridge devices and ports

brctl command ioctl command, argument

setageing SIOCDEVPRIVATE, BRCTL_SET_AGEING_TIME

setbridgeprio SIOCDEVPRIVATE, BRCTL_SET_BRIDGE_PRIORITY

setfd SIOCDEVPRIVATE, BRCTL_SET_FORWARD_DELAY

sethello SIOCDEVPRIVATE, BRCTL_SET_HELLO_TIME

setmaxage SIOCDEVPRIVATE, BRCTL_SET_MAX_AGE

setpathcost SIOCDEVPRIVATE, BRCTL_SET_PATH_COST

setportprio SIOCDEVPRIVATE, BRCTL_SET_PORT_PRIORITYa

a Version 1.0.6 of brctl uses BRCTL_SET_PATH_COST rather than BRCTL_SET_PORT_PRIORITY. This is likely to be a
cut-and-paste error.

show SIOCDEVPRIVATE, BRCTL_GET_BRIDGE_INFO

showmacs SIOCDEVPRIVATE, BRCTL_GET_FDB_ENTRIES

showstp SIOCDEVPRIVATE, BRCTL_GET_BRIDGE_INFO

stp SIOCDEVPRIVATE, BRCTL_SET_BRIDGE_STP_STATE

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 17: Bridging: Miscellaneous Topics

Note that all brctl commands use the SIOCDEVPRIVATE command (even though its use
is pretty much deprecated in Linux) and an argument that identifies the exact
operation.

The sysfs-based configuration simply identifies the right file in /sys and writes to it
using the libsysfs library. The operations in Table 17-2 cannot be implemented via
sysfs because there is no file in its hierarchy for them.

Tuning via /proc Filesystem
The generic bridging code does not create any file in the /proc filesystem. The fire-
wall bridging extension, however, creates a few files in /proc/sys/net/bridge/ that can
be used to make core routines in net/bridge/br_netfilter.c return without processing
the buffer they receive as input. These files are created by br_netfilter_init, which
is called by br_init when the bridging code gets initialized (see net/bridge/br_
netfilter.c).

Tuning via /sys Filesystem
As I said in the section “User-Space Configuration Tools,” brctl can configure bridge
and STP parameters via the sysfs interface. Before seeing how the kernel processes
commands from brctl, let’s see how the information in /sys is organized.

The kernel creates a directory in /sys/class/net for each registered network device.
This directory is used to export both read-only and read-write parameters that apply
to network devices in general. Bridge devices, which are assigned a directory as any
other network device, include two special subdirectories in their directory: bridge
and brif. The first exports bridge parameters, and the second includes a soft (sym-
bolic) link to the directory of each enslaved device—that is, each bridge port.
Figure 17-2 shows an example of a system with two Ethernet devices, eth0 and eth1,
where the admin has created one bridge device, br0, and enslaved both eth0 and eth1
to br0.

The br0 directory includes another bridge-specific file: brforward. This is used to
export the bridge forwarding database (in binary format). You can dump it with the
brctl showmacs command.

The files in the bridge directories are fields of the net_bridge data structure, and the
files in the brport directories are fields of the net_bridge_port data structure.*

The bridge device directory (br0 in the previous example) is populated with bridge
parameters and directories by br_sysfs_addbr when the bridge device is created (see

* change_ack is a shortcut for topology_change_ack.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /sys Filesystem | 397

the section “Creating a New Bridge Device” in Chapter 16). When a device is
enslaved, its directory (eth0 and eth1 in the previous example) is populated with br_
sys_addif. The latter also populates the bridge’s brif directory.

All files in Figure 17-2 are read-only, with the exceptions of those with a lighter
color, which are writable, too. The writable ones are, for example, those used by
brctl to configure bridge and bridge port parameters via libsysfs.

The kernel code that interacts with the files in the bridge device directories is in net/
bridge/br_sysfs_br.c, and the code that interact with the files in the bridge port
devices (i.e., the enslaved devices) is in net/bridge/br_sysfs_if.c.

The code may look complex at first glance, but it is actually pretty simple and well
organized. For each file in the bridge and brport directories (each bridge or port
attribute) that is created, the code defines what routines to invoke when a read or
write request is issued on the file with an instance of a special macro. Let’s skip the
details on how those macros are put into a table and used by the br_sysfs_addxxx
routines introduced earlier, and see a couple of examples of their use.

static CLASS_DEV_ATTR(max_age, S_IRUGO | S_IWUSR, show_max_age, store_max_age)

This declaration in net/bridge/br_sysfs_br.c uses the CLASS_DEV_ATTR macro to define
the max_age file with read-write permissions (write permissions for the superuser
only). When you read the file, the kernel uses show_max_age to return its contents,
and when you write to the file, the kernel carries out the change with store_max_age.

Figure 17-2. Example of bridge information exported with sysfs

/

eth0

sys

class

net

br0

bridge
ageing_time
bridge_id
forward_delay
gc_timer
hello_time
hello_timer
max_age
priority
root_id
root_path_cost
root_port
stp_state
tcn_timer
topology_change
topology_change_detected
topology_change_timer

brif

eth0
eth1

brforward
brport

change_ack
config_pending
designated_bridge
designated_cost
designated_port
designated_root
forward_delay_timer
hold_timer
message_age_timer
path_cost
port_id
port_no
priority
state

bridge

eth1

brport

change_ack
config_pending
designated_bridge
designated_cost
designated_port
designated_root
forward_delay_timer
hold_timer
message_age_timer
path_cost
port_id
port_no
priority
state

bridge

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 17: Bridging: Miscellaneous Topics

static BRPORT_ATTR(port_no, S_IRUGO, show_port_no, NULL)

This declaration in net/bridge/br_sysfs_if.c defines the port_no file, with read-only
permission. When you read the file, the kernel uses show_port_no to return its
contents. Since the port_no file is read-only, NULL is specified in place of a write
routine.

Statistics
The net_bridge data structure includes an instance of a net_device_stats data struc-
ture. Each network device employs one net_device_stats structure, as described in
the section “Statistics” in Chapter 12. The bridging code uses only a few fields:

tx_packets
tx_bytes

tx_packets is the number of frames generated locally and transmitted over the
bridge device. It is updated by br_dev_xmit. Note that flooded frames are
counted only once, even though they exit all enabled ports. tx_bytes, the sum of
the sizes of the tx_packets frames sent, is also updated by br_dev_xmit.

tx_dropped
Number of frames that could not be transmitted because the flood routine br_
flood failed to allocate a buffer.

rx_packets
rx_bytes

rx_packets is incremented by br_pass_frame_up each time an ingress frame
received on the bridge device is delivered locally. rx_bytes is the counterpart of
tx_bytes.

All of the routines referenced here are described in Chapter 16.

No statistics are kept by the STP.

Data Structures Featured in This Part of the Book
The section “Important Data Structures” in Chapter 16 provided a brief overview of
the data structures used by the bridging code. This section provides a field-by-field
description of them. The trivial ones, such as mac_addr and br_config_bpdu, do not
need dedicated sections.

bridge_id Structure
We saw in the section “Bridge and Port IDs” in Chapter 15 that bridge IDs have two
components, the priority and the address:

unsigned char prio[2]
Bridge priority

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 399

unsigned char addr[6]
Bridge MAC address

Note that the data structure definition does not reflect the changes introduced by
802.1t.

net_bridge_fdb_entry Structure
These are the fields that are used to define each entry in the forwarding database:

struct hlist_node list
Pointer used to link the data structure into the bucket’s list of colliding elements.

struct net_bridge_port *dst
Bridge port.

struct rcu_head rcu
Used when removing the data structure using the read-copy-update (RCU)
scheme (see br_fdb_put in net/bridge/br_fdb.c).

atomic_t use_count
Reference count. See the section “Lookups” in Chapter 30.

unsigned long ageing_timer
Aging timer. Different parts of the kernel spell this as aging or ageing. See the
section “Aging” in Chapter 16.

mac_addr addr
MAC address. This is the key field used by the lookup routines.

unsigned char is_local
When this flag is 1, the MAC address addr is configured on a local device.

unsigned char is_static
When this flag is 1, the MAC address addr is static and it does not expire. All
local addresses (i.e., those where is_local is 1) are static, too.

net_bridge_port Structure
This first block of fields is used regardless of whether the STP is used:

struct net_bridge *br
struct net_device *dev

br is the bridge device, and dev is the enslaved device. See Figure 16-6 in
Chapter 16.

struct list_head list
Pointer used to link the data structure into the bucket’s list of colliding elements.

u8 state
Port state. Valid values are listed in include/linux/if_bridge.h with the BR_STATE_
XXX enumeration list.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 17: Bridging: Miscellaneous Topics

struct kobject kobj
Used by the generic device infrastructure. This field plays a central role in mak-
ing all that we saw in the section “Tuning via /sys Filesystem” possible.

struct rcu_head rcu
Used to safely destroy the structure using the RCU scheme (see del_nbp in net/
bridge/br_if.c).

This second block is used only when the STP is enabled:

u8 priority
Port priority.

u16 port_no
Port number.

port_id port_id
Port ID. This is computed with br_make_port_id as a combination of priority
and port_no.

unsigned char topology_change_ack
When this flag is set, the TCA flag must be set on configuration BPDUs trans-
mitted on the port.

unsigned char config_pending
This flag is 1 when a configuration BPDU is waiting to be transmitted because it
was previously held back by the Hold timer.

port_id designated_port
bridge_id designated_root
bridge_id designated_bridge
u32 designated_cost

The four components of the priority vector from the most recent configuration
BPDU received on the port (see Figure 16-8 in Chapter 16). They are updated
upon reception of each configuration BPDU with br_record_config_
configuration.

u32 path_cost
Port path cost.

struct timer_list forward_delay_timer
struct timer_list hold_timer
struct timer_list message_age_timer

Port timers. See the section “Timers” in Chapter 15.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 401

net_bridge Structure
This first block of fields is used regardless of whether the STP is in use:

spinlock_t lock
Lock used to serialize changes to the net_bridge structure or to one of its ports in
port_list. Read-only accesses use the rcu_read_lock and rcu_read_unlock
primitives.

struct list_head port_list
List of bridge ports.

struct net_device *dev
Bridge device (see Figure 16-6 in Chapter 16).

struct net_device_stats statistics
Statistics. See the section “Statistics.”

spinlock_t hash_lock
struct hlist_head hash[BR_HASH_SIZE]

hash is the forwarding database. hash_lock is the lock used to serialize read-write
accesses to its entries. Read-only accesses use the rcu_read_lock and rcu_read_
unlock primitives.

struct list_head age_list
Not used. This list used to be employed to link together all the entries of the for-
warding database in ascending order of most recent use (see Figure 16-6 in
Chapter 16). This list was used by the aging algorithm to scan the database for
expired entries.

unsigned long ageing_time
Maximum time an entry can stay in the forwarding database without being used.
See the section “Aging” in Chapter 16.

struct kobject ifobj
Used by the generic device infrastructure. This field plays a central role in mak-

ing all that we saw in the section “Tuning via /sys Filesystem” possible.

unsigned char stp_enabled
When this flag is set, the STP is enabled for the bridge.

The next block of fields is used only when the STP is in use. The only exception is
forward_delay, which is used regardless. Bridge ports are not assigned the forward-
ing state as soon as STP is enabled; they use the forward_delay timer to go through
the intermediate states.

bridge_id designated_root
Root bridge’s ID.

bridge_id bridge_id
Bridge ID.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 17: Bridging: Miscellaneous Topics

u32 root_path_cost
Cost of the best path to the root bridge.

unsigned long max_age
unsigned long hello_time
unsigned long forward_delay

Bridge timers. These values are configured on the root bridge and are saved
locally by br_record_config_timeout_values with the reception of configuration
BPDUs on the root port.

unsigned long bridge_max_age
unsigned long bridge_hello_time
unsigned long bridge_forward_delay

Bridge timers configured locally. These are used only by the root bridge.

u16 root_port
Port number of the root port.

unsigned char topology_change
This flag is set when the latest configuration BPDU received on the root port had
the TC flag set. When topology_change is set, the TC flag must be set on any
configuration BPDU transmitted by the bridge. See the section “Example of a
Topology Change” in Chapter 15.

unsigned char topology_change_detected
This flag is set when a topology change has been detected. See the section
“Topology Changes” in Chapter 15 for the conditions that are considered possi-
ble topology changes.

struct timer_list hello_timer
struct timer_list tcn_timer
struct timer_list topology_change_timer

Bridge timers. See the section “Timers” in Chapter 15.

struct timer_list gc_timer
Garbage collection timer for the forwarding database. See the section “Aging” in
Chapter 16.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Functions and Variables Featured in This Part of the Book | 403

Functions and Variables Featured in This Part of the
Book
Table 17-4 summarizes the main functions, variables, and data structures intro-
duced in Part IV. In the sections “Key Spanning Tree Routines” and “Timers” in
Chapter 16, you can find some more.

Table 17-4. Functions, variables, and data structures introduced in Part IV

Name Description

Functions

br_init
br_deinit

Initialize and clean up the kernel bridging module. See the section “Initialization of
Bridging Code” in Chapter 16.

br_fdb_init Initialize the forwarding database.

br_netfilter_init Initialize the Netfilter hooks used by the bridging code.

br_stp_timer_init
br_stp_port_timer_init

Initialize the bridge and bridge port timers.

br_sysfs_addbr
br_sysfs_delbr

Handle the extra files in sysfs for bridge devices. See the section “Tuning via /sys
Filesystem.”

br_sysfs_addif
br_sysfs_removeif

Handle the extra files in sysfs for bridge ports. See the section “Tuning via /sys
Filesystem.”

br_add_bridge
br_del_bridge

Create and delete a bridge device. See the section “Creating Bridge Devices and
Bridge Ports” in Chapter 16.

br_add_if
br_del_if

Create and delete a bridge port. See the section “Creating Bridge Devices and
Bridge Ports” in Chapter 16.

br_stp_recalculate_bridge Given a bridge, select the numerically lowest MAC address among the ones
configured on the bridge ports (i.e., enslaved devices) and use it to compute the
bridge ID.

br_min_mtu Given a bridge, find the lowest MTU among the ones configured on the bridge
ports.

br_stp_enable_bridge
br_stp_disable_bridge

Enable and disable a bridge device. See the section “Enabling and disabling a
bridge instance” in Chapter 16.

br_stp_enable_port
br_stp_disable_port

Enable and disable a bridge port. See the section “Enabling and Disabling a Bridge
Port” in Chapter 16.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 17: Bridging: Miscellaneous Topics

_ _br_fdb_get
br_fdb_get

Look up an entry in the forwarding database. See the section “Lookups” in
Chapter 30.

fdb_create
br_fdb_insert
bf_fdb_change_addr
br_fdb_update
br_fdb_cleanup

Various routines to manipulate the forwarding database. See the section
 “Forwarding database” in Chapter 16 and its subsections.

handle_bridge
br_handle_frame
br_handle_frame_finish
br_stp_handle_bpdu
br_forward
br_flood
br_pass_frame_up
br_pass_frame_up_finish

Various routines used to handle ingress frames. See the section “Handling Ingress
Traffic” in Chapter 16.

br_received_config_bpdu
br_received_tcn_bpdu

Process an ingress configuration and TCN BPDU, respectively. See the section
 “Processing Ingress BPDUs” in Chapter 16.

br_transmit_config
br_transmit_tcn
br_reply
br_send_bpdu

Various transmission routines. See the section “Transmitting BPDUs” in Chapter 16.

br_make_blocking
br_make_forwarding

br_make_blocking blocks a port, and br_make_forwarding assigns the
forwarding state to a port, allowing it to receive and transmit data traffic.

br_get_tick
br_set_tick

Read and write a time interval, taking care of the conversion between 1/256th of a
second (used in the configuration BPDUs) and ticks (used by Linux).

Variables

BR_MAX_PORTS Maximum number of bridge ports that can be added to a bridge device.

br_handle_frame_hook Function pointer initialized to the routine used in the bridging subsystem to
process ingress frames. See Figure 16-11 in Chapter 16.

br_fdb_cache Cache used for the allocation of elements of the forwarding databases.

Data structures

struct mac_addr
struct bridge_id
struct bridge_fdb_entry
struct net_bridge_port
struct net_bridge
struct br_config_bpdu

Main data structures used by the bridging code. See the section “Important data
structures” in Chapter 16.

Table 17-4. Functions, variables, and data structures introduced in Part IV (continued)

Name Description

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Files and Directories Featured in This Part of the Book | 405

Files and Directories Featured in This Part of the Book
Figure 17-3 lists the files and directories referred to in the chapters in Part IV.

Figure 17-3. Files and directories featured in this part of the book

Root
(usually /usr/src/linux)

include

netfilter_bridge
ebtables.h
. . .

net

br.c
br_device.c
br_fdb.c
br_forward.c
br_if.c
br_input.c
br_ioctl.c
br_netfilter.c
br_notify.c
br_stp_bpdu.c
br_stp.c
br_stp_if.c
br_stp_timer.c
br_sysfs_br.c
br_sysfs_if.c
br_private.h
br_private_stp.h

bridge

if_bridge.h
netfilter_bridge.h

dev.c
core

ebtables.c
ebtable_broute.c
ebtable_filter.c
ebtable_nat.c
. . .

netfilter

linux

www.ebooksworld.in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART V

V.Internet Protocol Version 4 (IPv4)

The Linux kernel supports many Layer three (L3) protocols, such as AppleTalk,
DECnet, and IPX, but this book talks just about the one that dominates modern net-
working: IP. While IPv4 will be described in detail, IPv6 will be only briefly men-
tioned as needed. I will not spend much time on the theory behind these protocols,
with which you should be somewhat familiar, but I will describe the implementation
in Linux. I will focus on aspects of the design that are not obvious or that differ sub-
stantially from other operating systems. I will also explain the main drawbacks of
version 4 of the IP protocol and show how IPv6 tries to address them. Therefore,
while there is both some background theory and some code, I expect the reader to be
familiar with the basic IP protocol behavior. Here is what is covered in each chapter:

Chapter 18, Internet Protocol Version 4 (IPv4): Concepts
Introduces the major tasks of the IP layer, and the strategies used.

Chapter 19, Internet Protocol Version 4 (IPv4): Linux Foundations and Features
Shows how the IP-layer reception routine processes ingress packets, and how IP
options are taken care of.

Chapter 20, Internet Protocol Version 4 (IPv4): Forwarding and Local Delivery
Shows how ingress IP packets are delivered locally to the L4 protocol handler, or
are forwarded when the destination IP address does not belong to the local host
but the host has enabled forwarding.

Chapter 21, Internet Protocol Version 4 (IPv4): Transmission
Shows how L4 protocols interface to the IP layer to request transmission.

Chapter 22, Internet Protocol Version 4 (IPv4): Handling Fragmentation
Shows how fragmentation and defragmentation are handled.

Chapter 23, Internet Protocol Version 4 (IPv4): Miscellaneous Topics
Shows how configuration tools such as those in the IPROUTE2 package inter-
face to the kernel, shows how the IP header’s ID field is initialized on egress
packets, and provides a detailed description of the data structures used at the IP
layer.

Chapter 24, Layer Four Protocol and Raw IP Handling
Shows how L4 protocols register a handler for ingress traffic.

Chapter 25, Internet Control Message Protocol (ICMPv4)
Describes the implementation of the ICMP protocol.

www.ebooksworld.in

sagar
Highlight

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

409

Chapter 18 CHAPTER 18

Internet Protocol Version 4
(IPv4): Concepts

This chapter explains what the IP protocol is responsible for, and provides a discus-
sion of the IP header fields that support these activities and the impact of these
responsibilities on possible implementations. While the chapter discusses some of
the choices made in Linux, implementation details are covered in subsequent
chapters.

It would be interesting to show how the protocols of the IPsec security suite have
been integrated with the IP protocol, but I could not include this topic for lack of
space. However, we will sometimes see how the presence of IPsec transformations
influences the implementation of core routines.

IP Protocol: The Big Picture
Figure 18-1 shows the important relationships among the components of Linux that
handle IPv4. The flow of traffic between major functions is represented by arrows.
We will analyze all of these functions in the next few chapters. The figure shows the
placement of two subsystems described elsewhere—the Neighboring subsystem and
the Traffic Control subsystem—as well as the many hooks where the Netfilter fire-
walling system can be invoked.*

Figure 18-1 is a useful reference when you’re examining networking code and won-
dering whether a particular function is used for input or output, whether it is called
during forwarding, and who calls it.

Since the IP layer does not interact directly with the Traffic Control subsystem, that
subsystem is left to Part VI. However, in the section “Interface to the Neighboring
Subsystem” in Chapter 21, we will see how IP and the Neighboring subsystem
interact.

* The functions used to handle multicast traffic are not included in Figure 18-1 (apart from ip_mc_output). The
figure includes the main APIs; however, there are others that are used in specific cases. See Chapter 21.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

Among the tasks of the IP protocol are:

Sanity checks
IP datagrams could be discarded immediately upon entering the system, because
of an incorrect checksum (that is, transmission has corrupted it), a header field
out of range, or other reasons.

Figure 18-1. Core functions of the IP kernel stack

NETFILTER1 NETFILTER 1 NETFILTER 1

NETFILTER3

L4 protocols

ip_push_pending_frames ip_queue_xmit raw_send_hdrine

ip_rev

dst_output

ip_rcv_finish

dst_input

skb -> dst -> input

ip_forward ip_local_deliver

NETFILTER4 NETFILTER2

ip_forward_finish

ip_call_ra_chain

ip_local_deliver_finish
dst_discard_out

ip_rt_bug

raw_rev

ip_defrag

raw_v4_input

Receive routine

ip_mc_output ip_outputip_fragment

. . .

ip_finish_output

NETFILTER5

ip_finish_output2

1 NF_IP_LOCAL_OUT

2 NF_IP_LOCAL_IN

3 NF_IP_PRE_ROUTING

4 NF_IP_FORWARDING

5 NF_IP_POST_ROUTING

dev_queue_xmit

Neighboring
subsystem

Traffic Control
subsystem

ip_error

dst_discard_in

skb -> dst -> output

Transport/L4 protocols (TCP/UDP/RAWIP/...)

(hard_start_xmit)

Device driver

ip_defrag

www.ebooksworld.in

sagar
Sticky Note
Handling RA option. If the Router Alert option was found in the IPheader, it is handled now.* The function handler for this option is ip_call_ra_chain, which relies on a global list (ip_ra_chain) that contains the list of local sockets that set the IP_ROUTER_ALERT optionbecause they are interested in IPpackets that carry the Router Alert IPoption. Whenan ingress IPpacket is fragmented, ip_call_ra_chain first defragments the entire IP packet and only then delivers it to the Raw sockets of the ip_ra_chain list.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Header | 411

Firewalling
As shown in Figure 18-1, the Netfilter firewall subsystem (controlled on the user
side by the iptables command) can be invoked at many points in the packet’s his-
tory and can change its destiny. As we will see in Part V, Netfilter can be used at
L2 as well.

Handling options
The IP protocol includes a few options that applications can use. Even though
the original IP RFC (791) says the implementation of options is mandatory for
both hosts and routers, not all of them are actually implemented. Some are uni-
versally recognized as obsolete, and others are used only in special cases.

Fragmentation/defragmentation
The len field of the IP header is long enough to allow datagrams up to 64 KB in
size, but they almost never reach that limit. In fact, MTU values vary from one
part of the network to another depending on the media used for transmission,*

so it is quite possible that a packet will be too big for one of the hops along the
way. In such cases, the packet has to be split into smaller pieces to be success-
fully transmitted. Each fragment can be further fragmented before arriving at the
destination, which must reassemble the fragments. The use of fragmentation is
discouraged nowadays because it introduces problems. We will see them in the
section “Packet Fragmentation/Defragmentation.”

Receive, transmit, and forward operations
Input packets are handled by reception functions, and output packets by trans-
mission functions. Forwarding is related to transmission, but deals with packets
received from other hosts instead of packets generated by higher network layers
on the local system.

I briefly introduce the Raw IP protocol in Chapter 24 and IP-over-IP (also called IP
tunneling) in Chapter 23.

IP Header
Readers might be familiar with the basic fields of the IP header, but there are a few
parameters that are not well known and some others that have changed in meaning
over time. Figure 18-2 shows the header, and the text that follows summarizes their
purposes:

Version
Version of the protocol. Currently only versions 4 and 6 are implemented. Ver-
sion 4 is described in this chapter. Version 6 is not covered in this book,
although we will sometimes mention how IPv6 differs from IPv4 when this is
useful in context.

* In Chapter 2, you can find a table with the MTU used by the most common interfaces.

www.ebooksworld.in

sagar
Highlight

sagar
Sticky Note
O reeally ???

sagar
Highlight

sagar
Sticky Note
Means, the locally generated packet do not go through routing sybsystem of the kernel.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

Header Length (IHL)
Length of the header, expressed in units of 32 bits.

Type of Service (TOS)
This 8-bit field is composed of three subfields. I will not go into detail about
them because their use is very limited, for many reasons. Originally this field was
meant to facilitate Quality of Service (QoS) features by telling routers which cri-
teria were considered most important by the packet’s sender: minimum delay,
maximum throughput, and so on. The TOS field can still be used in this way,
but Internet researchers found it too vague and have decided to implement QoS
differently. Therefore, they introduced the Differentiated Services* (diffserv)
model, changing the structure and meaning of the field. The new meaning asso-
ciated with the diffserv model is shown in Figure 18-3(b). DSCP stands for Diff-
Serv Code Point. Each possible value has a unique and specific meaning for how
the packet should be treated. The two formerly unused bits of the TOS field are
now used by the Explicit Congestion Notification (ECN) feature, as shown in
Figure 18-3(c). Most of the code used to read and manipulate the ECN flags in
the IP and TCP headers is located in include/net/inet_ecn.h and include/net/tcp_
ecn.h. Refer to the RFCs in Figure 18-3 for more detail.

Total Length
Length of the packet, including the header, expressed in bytes.

Identification
Identifier of the packet. As we will see later in this chapter, this field plays a cen-
tral role in the handling of fragments.

Figure 18-2. IP header

* You can find more information about diffserv on the IETF web site, http://www.ietf.org/html.charters/OLD/
diffserv-charter.html. (For some reasons, the URL with the OLD keyword is more up-to-date than the one
without it.)

Options (0 or more)

Version Type of
Service

Total length

8 16

Destination address

Source address

Time To Live Protocol Header checksum

Identification Fragment offsetD
F

M
F

Header
Length

4

32 bits

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Header | 413

DF (Don’t Fragment)
MF (More Fragments)
Fragment Offset

These three fields, together with Identification, are used by the fragmentation/
defragmentation feature of the IP protocol. See the section “Packet Fragmenta-
tion/Defragmentation.”

Time To Live (TTL)
This field is supposed to represent the number of seconds since the IP packet was
transmitted, after which it is to be discarded if it has not reached the final destina-
tion. However, because routers decrement it by one, regardless of the time they
take to forward it, it actually represents a simple hop count. Each router is sup-
posed to decrement this field when it forwards a packet, and the packet is sup-
posed to be dropped when the TTL reaches zero. Its initial value (set by the
sender) in theory depends on the type of payload carried. The more sensitive the
payload is to end-to-end delay, the smaller the TTL value should be. Most of the
time, however, a default value of 64 is used (see include/linux/ip.h).* Packets are
not dropped silently: the source is warned through an Internet Control Message
Protocol (ICMP) message.

Protocol
This field represents the protocol identifier of the higher layer (L4). The file /etc/
protocols† contains a partial list. You can find more details at http://www.iana.org/

Figure 18-3. Old and new meanings of the TOS field of the IP header

* The default value actually depends on whether the packet is multicast. Multicast IP packets have a default
TTL of 1 (which can be changed with the setsockopt system call).

† Note that this file is not part of the kernel, but is included in all Linux distributions.

precedence TOS 0

76543210

Original version
(RFC 791/1349)

DSCP diffserv
(RFC 2474)

DSCP ECN Explicit Congestion Notification
(RFC 3168)

(a)

(b)

(c)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

numbers.html. In Chapter 24, we will see how the IP layer uses it to hand the
ingress packets to the right protocol handler.

Header Checksum
Ensures that the IP header is accurate after transit. Does not cover the packet’s
payload; it is up to the L4 protocol to take care of checking the content, if neces-
sary.

Source Address
Destination Address

Source (sender) and destination (receiver) IP addresses.

Options
Contains the optional information discussed in the following section. This field
could be empty or up to 40 bytes long. Its size is the header length minus 20 (20
being the size of an IP header without options). The maximum value is 40
because the header length is a 4-bit value and represents the header size in units
of 32 bits (4 bytes). The highest value that can be represented in 4 bits is 15, and
15 times 4 bytes is 60 bytes. Since 20 bytes are taken up by the basic IP header,
only 40 are left for the options.

IP Options
As described earlier in this chapter, network stacks are required to implement a num-
ber of IP options that applications can use if they choose to. To accommodate infor-
mation related to options, the basic 20-byte IP header is extended up to another 40
bytes.

Most IP options are used very rarely, and in particular contexts. Different options
can be combined into the same IP packet. However, with the exception of the “End
of Option List” and “No Operation” options, there can be at most one instance of
each option in a header. The presence of options also influences the fragmentation/
defragmentation process, as we will see in the section “Packet Fragmentation/
Defragmentation.”

Some options are very simple and can be specified by a single byte; more complex
options require a more flexible format and are called multibyte options.

Figure 18-4 shows the format of both kinds of options. Note that the option data in a
multibyte option does not start at a 32-bit boundary.

Figure 18-4. (a) Single IP option format; (b) multibyte IP option format

Type Length Pointer

8 bits 8 bits8 bits

Option
data

(b)
Type

8 bits

(a)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 415

Each option has an 8-bit field named type that can be further decomposed into three
subfields, shown in Figure 18-5. The most common values for type are listed in
Table 18-1.* It shows the symbols used for options by the Linux kernel and how the
value of the symbol breaks down into the three fields in Figure 18-5.

When copied is set, the IP layer must copy the option into each fragment when the
packet needs fragmentation. class classifies the option according to four criteria;
these can be used to filter packets based on IP options, or to apply different QoS
parameters to these packets.

In include/linux/ip.h, you can find the definitions of the option types, plus some mac-
ros that can be used to access their subfields. For instance, the following three mac-
ros can be used to extract the number, copied, and class portions, respectively: IPOPT_
NUMBER, IPOTP_COPIED,† and IPOPT_CLASS.

The additional fields shown in Figure 18-4(b), used by multibyte options, are:

Length
Length of the option in octects, including type and length.

* For a more detailed list, you can refer to http://www.iana.org/assignments/ip-parameters.

Figure 18-5. Format of the type field of the IP options

Table 18-1. Values of the subcodes of the IP option type field

Option
Symbol used in
kernel source code Number Copied

Class Control(00) / Reserved(01) /
Measurement(10) / Reserved(11)

End of Options List IPOPT_END 0 0 Control

No Operation IPOPT_NOOP 1 0 Control

Security IPOPT_SEC 2 1 Control

Loose Source and Record Route IPOPT_LSRR 3 1 Control

Timestamp IPOPT_TIMESTAMP 4 0 Measurement

Record Route IPOPT_RR 7 0 Control

Stream ID IPOPT_SID 8 1 Control

Strict Source and Record Route IPOPT_SSRR 9 1 Control

Router Alert IPOPT_RA 20 1 Control

† In the section “IP Options” in Chapter 19, we will see how ip_forward_options uses IPOPT_COPIED.

copied class

1 bit

number

2 bits 5 bits

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

Pointer
An offset measured from the beginning of the option and used in various ways as
hosts process the option along the way. You will see some examples in upcom-
ing sections. The numbering starts from 1, not 0 (i.e., 1 identifies the location of
the type field).

Option data
Space for any data that must be stored by intermediate hosts that process the
option. You will see some examples later.

In the next subsections, we will see how the options in Table 18-1 that are handled
by Linux work.

 “End of Option List” and “No Operation” Options
The size of the IP header without options is 20 bytes. When the size of the IP options
is not a multiple of 4 bytes, the sender pads the IP header with the IPOPT_END option
to align it to a 4-byte boundary. This is necessary because the Header Length field of
the IP header is expressed in multiples of 4 bytes.

The IPOPT_NOOP option can be used for padding between options, for example, to
align the subsequent IP option to a given boundary. In Chapter 19, we will see that
Linux uses it also as a convenient way to delete options from an IP header.

Source Route Option
Source routing allows a sender to specify the path that a packet takes to its recipient.
A type of source routing is available at both L2 and L3; I’ll discuss the L3 implemen-
tation here.

Source Routing is a multibyte option in which the source node lists IP addresses to
be used on subsequent hops. Of course, if one of the routers in the list goes down,
the source-routed packet will not be able to benefit from any dynamic rerouting done
on routing protocols. Usually, when a router goes down, the higher-level protocols
compute a new source route and resend the packet. Occasionally, they are not
allowed to specify a new route, perhaps for security reasons.

Source routing can be of two types: strict and loose. In strict source routing, the
sender has to list the IP addresses of every router along the path, and no changes can
be made along the way. In loose source routing, one of the intermediate routers can
use another router, not specified in the list, as a way to get to the next router in the
list. However, all of the routers specified by the sender must still be used in the order
specified.

For instance, consider the networks and routers in Figure 18-6. Suppose Host X
wants to send a packet to Host Y using the Strict Source Routing option. In this case,
Host X must specify all the intermediate router addresses. An example of a strict

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 417

source route would be R_1 R_2 R_3 Host Y. With loose source routing, something
such as R_1 R_3 would be sufficient. The use of nonadjacent routers (i.e., R_1 and
R_3 in this example) is allowed and comes with advantages: if R_2 fails, R_2b can be
used instead, and vice versa.

Record Route Option
The purpose of this option is to ask the routers along the way between source and
destination to store the IP addresses of the outgoing interfaces they use to forward
the packet. Because of limited space in the header, only nine addresses at most can
be stored (and even fewer, if the header contains other options). Therefore, the
packet arrives with the first nine* addresses stored in the option; the receiver has no
way of knowing what routers were used after that. Since this option makes the
header (and therefore the IP packet) grow along the way, and since other options
may be present in the header, the sender is supposed to reserve the space that will be
used to store the addresses. If the reserved space becomes full before the packet gets
to its destination, the additional addresses are not added to the list even if the maxi-
mum size of an IP header would permit it. No errors (ICMP messages) are generated
when there is no room to store a new address. For obvious reasons, the sender is

Figure 18-6. Example of IP source routing

* (40–3)/4=9, where 40 is the maximum size of the IP options, 3 is the size of the options header, and 4 is the
size of an IPv4 address.

.

R_1

Host X

Network
A

.

R_2

Network
B

.

R_3

Network
C

.
Host Y

Network
D

R_2b

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

supposed to reserve an amount of space that is a multiple of 4 bytes (the size of an IP
address).*

Figure 18-7 shows how the IP header portion dedicated to the option changes hop by
hop. As each router fills its address, it also updates the pointer field to indicate the
end of the data in the option. The offsets at the bottom of the figure start from 1 so
that you can compare them to the value of the pointer field.

Timestamp Option
This option is the most complicated one because it contains suboptions and, unlike
the Record Route option, it handles overflows. To manage those two additional con-
cepts, it needs an additional byte in its header, as shown in Figure 18-8.

The first three bytes have the same meaning as in the other options: type, length,
and pointer. The fourth byte is actually split into two fields of four bits each. The

* The value of length is not an exact multiple of 4 because the option header (type, length, and pointer) is 3
bytes long. This means that the 32-bit IP addresses are inconveniently split across 32-bit word boundaries.

Figure 18-7. Example of Record Route option

Figure 18-8. IP Timestamp option header

IP1b

IP_A IP1a—IP1b IP2a—IP2b IP3a—IP3b IP4a—IP4b IP5a—IP5b IP_B

RRA PC1 19 8 IP_A

RRPC1 PC2 19 12 IP_A

RRPC2 PC3 19 16 IP_A

RRPC3 PC4 19 20 IP_A

RRPC4 PC5 19 20 IP_A

RRPC5 B 19 20 IP_A

IP1b

IP1b

IP1b

IP1b

IP2b

IP2b

IP2b

IP2b

IP3b

IP3b

IP3b

1 2 3 4 8 12 16 20

PC4 and PC5 cannot add their
IP addresses because there is
no more room in the reserved
space of the header

Type Length Pointer IP_Addr IP_Addr IP_Addr IP_Addr

PC1 PC2 PC3 PC4 PC5 BA

Type Length Pointer

Ov
er

flo
w

8 bits

Su
bt

yp
e

8 bits8 bits 4 bits 4 bits

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 419

rightmost four bits (the least significant ones) represent a subcommand code that can
change the effect of the option. Its possible values are:

RECORD TIMESTAMPS
Each router records the time at which it received the packet.

RECORD ADDRESSES AND TIMESTAMPS
Similar to the previous subcommand, but the IP address of the receiving inter-
face is saved, too.

RECORD TIMESTAMPS ONLY AT THE PRESPECIFIED SYSTEMS
Each router records the time at which it received the packet (as with RECORD
TIMESTAMPS), but only at specific IP addresses selected by the sender.

In all three cases, the time is expressed in milliseconds (in a 32-bit variable) since
midnight UTC of the current day.*

The other four bits represent what is called the overflow field. Because the
TIMESTAMP option is used to record information along the route, and because
the space available in the IP header for that purpose is limited to 40 bytes, there can
be cases where a router is unable to record information for lack of space. While the
Record Route option processing simply ignores that case, leaving the receiver ignorant
of how many times it happened, the TIMESTAMP option increments the overflow
field every time it happens. Unfortunately, overflow is a 4-bit field and therefore can
have a maximum value of 15: in modern networks, it itself may easily overflow. When
that happens, the router that experiences the overflow has to return an ICMP parame-
ter error message back to the original sender.

While the first two suboptions are similar (they differ only in what to save on each
hop), the third suboption is slightly different and deserves a few more words. The
packet’s original sender lists the IP addresses in which it is interested, following each
with four bytes of space. At each hop, the option’s pointer field indicates the offset
of the next 4-byte space. Each router that appears in the address list fills in the
appropriate space with a timestamp and updates the pointer field. See Figure 18-9.
The underlined hosts in the sequence at the top of the figure are the hosts that add
the timestamps. The offsets at the bottom of the figure start from 1 so that you can
compare them to the value of the pointer field.

Router Alert Option
This option was added to the IP protocol definition in 1995 and is described in RFC
2113. It marks packets that require special handling beyond simply looking at the
destination address and forwarding the packet. For instance, the Resource Reserva-
tion Protocol (RSVP), which attempts to create better QoS for a stream of packets,

* UTC stands for Universal Time Clock, also called GMT (Greenwich Mean Time).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

uses this option to tell routers that it must treat the packets in that stream in a spe-
cial way. Right now, the last two bytes have only one assigned value, zero. This sim-
ply means that the router should examine the packet. Packets carrying other values
are illegal and should be discarded, generating an ICMP error message to the source
that generated them.

Packet Fragmentation/Defragmentation
Packet fragmentation and defragmentation is one of the main jobs of the IP proto-
col. The IP protocol defines the maximum size of a packet as 64 KB, which comes
from the fact that the len field of the header, which represents the size of the packet
in bytes, is a 16-bit value. However, not many interface types can send packets of a
size up to 64 KB. This means that when the IP layer needs to transmit a packet
whose size is bigger than the MTU of the egress interface, it needs to split the packet
into smaller pieces. We will see later in this chapter that the MTU used is not neces-
sarily the one associated to the egress’s device; it could be, for instance, the one asso-
ciated with the routing table entry used to route the packet. The latter would depend
on several factors, one of which is the egress device’s MTU.

Regardless of how the MTU is computed, the fragmentation process creates a series
of equal-size fragments, as shown in Figure 18-10. The MF and OFFSET fields
shown in the picture are described later in this section. If the MTU does not divide
the original size of the packet exactly, the final fragment is smaller than the others.

Figure 18-9. Example of storing the Timestamp option for pre-specified systems

IP3b

IP_A IP1a—IP1b IP2a —IP2b IP3a—IP3b IP4a—IP4b IP5a—IP5b IP_B

68A PC1 28 5 IPa

68PC1 PC2 28 13 IPa

68PC2 PC3 28 13 IPa

68PC3 PC4 28 21 IPa

68PC4 PC5 28 21 IPa

68PC5 B 28 29 IPa

IP3b

IP3b

IP3b

IP3b

IP5a

IP5a

IP5a

IP5a t3

1 2 3 9 17 25 29

Type Length Pointer IP_Addr IP_Addr IP_Addr Timestamp

PC1 PC2 PC3 PC4 PC5

3

3

3

3

3

3

5

Subcode

t1

t1

t1

t1

t1

Timestamp

IP3b

13

t2

t2

t2

Timestamp

IP5a

IP5a

21

t1 t2 t3

A B

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Packet Fragmentation/Defragmentation | 421

A fragmented IP packet is normally defragmented by the destination host, but inter-
mediate devices that need to look at the entire IP packet may have to defragment it,
too. Two examples of such devices are firewalls and Network Address Translation
(NAT) routers.

Some time ago, it was an acceptable solution for the receiver to allocate a buffer the
size of the original IP packet and put fragments there as they arrived. In fact, the
receiver might just allocate a buffer of the maximum possible size, because the size of
the original IP packet was known only after receiving the last fragment. That simple
approach is now avoided because it wastes memory, and a malicious attack could
bring a router to its knees just by sending a burst of very small fragments that lie
about their original size.

Figure 18-10. IP packet fragmentation

IP
header IP payload

MTU

IP
header

L2
header

MF= 1
OFFSET= 0

IP
header

L2
header

MF= 1
OFFSET=

IP
header

L2
header

IP
header

L2
header

IP
header

L2
header

IP
header

L2
header

MTU
4

MF= 1
OFFSET= 2*MTU

4

MF= 1
OFFSET= 3*MTU

4

MF= 1
OFFSET= 4*MTU

4

MF= 0
OFFSET= 5*MTU

4

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

Because every IP packet can be fragmented, and because each fragment can be fur-
ther fragmented along the path for the same reason, there must be a way for the
receiver to understand which IP packet each fragment belongs to, and at what posi-
tion inside the original IP packet each fragment should be placed. The receiver must
also be told the original size of the IP packet to know when it has received all of the
fragments.

Several other aspects have to be considered to accomplish fragmentation. When
copying the IP header of the original packet into its fragments, the kernel does not
copy all of the options, but only those with the copied field set, as described earlier in
the section “IP Options.” However, when the IP fragments are merged, the resulting
IP packet will look like the original one and therefore include all the options again.

Moreover, the IP checksum covers only the IP header (the payload is usually covered
by the higher-layer protocols). When fragments are created, the headers are all differ-
ent, so a checksum has to be computed for each one of them, and checked on the
receiving side.

Effect of Fragmentation on Higher Layers
Fragmenting and defragmenting a packet takes both CPU time and memory. For a
heavily loaded server, the extra resources involved may be quite significant. Frag-
mentation also introduces overhead in the bandwidth used for transmission, because
each fragment has to contain both the L2 and L3 headers. If the size of the fragments
is small, that overhead can be significant.

Higher layers are theoretically unaware of when the L3 layer chooses to fragment a
packet.*

However even if TCP and UDP are unaware of the fragmentation/defragmentation
processes,† the applications built on top of those two protocols are not. Some have
to worry about fragmentation for performance reasons. Fragmentation/defragmenta-
tion is theoretically a transparent process, but it can have negative effects on perfor-
mance because it always adds extra delay. A typical application that is very sensitive
to delays, and that therefore tries to avoid fragmentation as much as possible, is a
videoconferencing system. If you have ever tried one, or even if you have ever had an
international phone call, you know what it means to have too big of a delay: convers-
ing becomes very difficult. Some sources of delay cannot be avoided (such as net-
work congestion, in the absence of robust QoS), but if something can be done to
reduce that delay, the applications will take extraordinary steps to do it. Many

* The section “The ip_append_data Function” in Chapter 21 shows how the interface between L3 and L4 has
evolved to optimize the fragmentation task for locally generated packets.

† As we will see in the section “Putting Together the Transmission Functions” in Chapter 21, L4 protocols
actually provide some options that can influence fragmentation.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Packet Fragmentation/Defragmentation | 423

applications are smart enough to try to avoid fragmentation by taking a few factors
into consideration:

• The kernel, first of all, does not have to simply use the MTU of the egress inter-
face, but can also use a feature called path MTU discovery to discover the largest
packet size it can use while avoiding fragmentation along a particular path (see
the section “Path MTU Discovery”).

• The MTU can be set to a fairly safe, small value of 576. This reflects the specifi-
cation in RFC 791 that each host must be prepared to accept packets of up to
576 octets. This restriction on packet size thus drastically reduces the likelihood
of fragmentation. Many applications end up using that MTU by default, if not
explicitly configured to use a different value.

When a sender decides to use a packet size smaller than its available MTU just to
avoid fragmentation, it must also entail the same overhead of including extra head-
ers that fragmentation requires. However, avoiding fragmentation by routers along
the way reduces processing considerably along the route and therefore can be critical
for improving response time.

IP Header Fields Used by Fragmentation/Defragmentation
Here are the fields of the IP header that are used to handle the fragmentation/defrag-
mentation process. We will see how they are used in Chapter 22.

DF (Don’t Fragment)
There are cases where fragmentation may be bad for the upper layers. For
instance, interactive, streaming multimedia can produce terrible performance if
it is fragmented. And sometimes, the transmitter knows that the receiver has a
simple, lightweight IP protocol implementation and therefore cannot handle
defragmentation. For such purposes, a field is provided in the IP packet header
to say whether fragmentation is allowed. If the packet exceeds the MTU of some
link along the path, it is dropped. The section “Path MTU Discovery” shows a
use for this flag associated with path MTU discovery.

MF (More Fragments)
When a node fragments a packet, it sets this flag to TRUE in each fragment
except the last. The recipient knows the size of the original, unfragmented
packet when it receives the last fragment created from this packet, even if some
fragments have not been received yet.

Fragment Offset
This represents the offset within the original IP packet to place the fragment. It is
a 13-bit field. Since len is a 16-bit field, fragments always have to be created on
8-byte boundaries and the value of this field is read as a multiple of 8 bytes (that
is, shifted left 3 bits). An offset of 0 indicates that this fragment is the first within
the packet; that information is important because the first fragment contains
header information related to the entire original packet.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

ID
IP packet ID, which is the same for all fragments of an IP packet. It is thanks to
this parameter that the receiver knows what fragments should be rejoined. We
will see how the value of this field is chosen in the section “Long-Living IP Peer
Information” in Chapter 23. Linux stores the last ID used in a structure named
inet_peer where it stores information about the remote hosts with whom it is
communicating.

Examples of Problems with Fragmentation/Defragmentation
Fragmentation is a pretty simple process: the node simply has to choose the right
value to fit the MTU. It should not come as a surprise that most of the issues have to
do with defragmentation. In the next two sections, we cover two of the most com-
mon issues: handling retransmissions and reassembling packets properly, along with
the special problem of Network Address Translation (NAT).

Another reason not to use fragmentation is that it is incompatible with congestion
control algorithms.

Retransmissions

I said earlier that an IP packet cannot be delivered to the next-higher layer until it has
been completely defragmented. However, this does not mean that fragments are kept
in the host’s memory indefinitely. Otherwise, it would be very easy to render a host
unusable through a simple Denial of Service (DoS) attack. A fragment might not be
received for several reasons: for instance, it might be dropped along the way by a
router that has run out of memory to store it due to congestion, it might become cor-
rupted and be discarded due to the CRC (error check), or it could be held up by a
firewall because the firewall wants to view the header in the first fragment before for-
warding any fragments. Therefore, each router and host has a timer that cleans up
the resources used by the fragments of an IP packet if some fragments are not
received within a given amount of time.

If a sender could tell that a fragment was lost or dropped along the path, it would be
nice if the sender could retransmit just the missing fragment. This is completely
unfeasible to implement, though. A sender cannot know even whether its packet was
fragmented by a router later on in the path, much less what the fragments are. So
each sender must simply wait for a higher layer to tell it to resend an entire packet.

A retransmitted packet does not reuse the same ID as the original. However, it is still
possible for a host to receive copies of the same IP fragment with the same packet ID,
so a host must be able to handle this situation. Note that the same fragment may be
received multiple times even without retransmissions: a common example is when
there’s a loop at the L2 layer. We saw this case in Part IV. This waste provides
another good reason to avoid fragmentation at the source and to try to use packet

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Packet Fragmentation/Defragmentation | 425

sizes that minimize the likelihood of fragmentation along the way if delays are bad
for the application (e.g., in videoconferencing software).

Since the kernel cannot swap its data out to disk (it swaps only user-space data), the
memory waste due to handling fragments has a heavy impact on router perfor-
mance. Linux puts a limit on the amount of memory usable by fragments, as
described in the section “Tuning via /proc Filesystem” in Chapter 23.

Since IP is a connectionless protocol, there is no flow control and it is up to the
upper-layer protocols (or the applications) to take care of losses. Some applications,
of course, do not care much about the loss of data, and others do.

Let’s suppose the upper layer detects the loss of some data by some means (for
instance, with a timer that expires due to the lack of acknowledgment) and tries a
retransmission. Since it is not possible to selectively resend only the missing frag-
ments, the L4 protocol has to retransmit the entire IP packet. Each retransmission
can lead to some special conditions that have to be handled by the receiver side (and
sometimes by intermediate routers as well when the latter implement some form of
firewalling that requires packets to be defragmented). Here are some of them:

Overlapping
A fragment could contain some of the data that already arrived in a previous
packet. Retransmitted packets have a different ID and therefore their fragments
are not supposed to be mixed with the fragments of a previous transmission.
However, a buggy operating system that does not use a different ID for retrans-
mitted packets, or the wraparound problem I’ll introduce in the next section,
can make overlapping possible.

Duplicates
This can be considered a special case of overlapping, where the two fragments
are identical. A fragment is considered a duplicate if it starts at the same offset
and it has the same length. There is no check on the actual payload content.
Unless you are in the middle of a security attack, there is no reason why payload
content should change between retransmissions of the same packet. The L2 loop
mentioned previously can also be a source of duplicates.

Reception once reassembly is already complete
In this case, the IP layer considers the fragment the first of a new IP packet. If all
of the new fragments are not received, the IP layer will simply clean up the dupli-
cates during its garbage collection process; otherwise, it re-creates the whole
packet and it is the job of the upper-layer protocol to recognize the packet as a
duplicate.

Things can get more complicated if you consider that fragments can get fragmented,
too.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

Associating fragments with their IP packets

Because fragments could arrive out of order, defragmentation is a complex process
that requires each packet to be recognized and put in its proper place as it arrives.
The insert, delete, and merge operations must be easy and quick.

To identify the IP packet a fragment belongs to, the kernel takes the following
parameters into consideration:

• Source and destination IP addresses

• IP packet ID

• L4 protocol

Unfortunately, it is possible for different packets to share all of these parameters. For
instance, two different senders could happen to choose the same packet ID for pack-
ets that happen to arrive at the same time. One might suppose that the source IP
addresses would distinguish the packets, but what if both hosts sat behind a NAT
router that put its own IP address on the packets? There is no way the recipient IP
layer can distinguish fragments under these conditions. You cannot count on the IP
ID field either, because it is a 16-bit field and can therefore wrap around pretty
quickly on a fast network.

Since the IP ID field plays a central role in the defragmentation process, let’s see how
IP fragments are organized in memory and how the IP IDs are generated. The most
obvious implementation of an IP ID generator would be one that increments a glo-
bal counter and uses it as the ID each time the IP layer is asked to send a packet. This
would assure sequential IDs and easy implementation. This simple model, however,
has some problems:

• For all possible higher-layer protocols to share a global ID, some sort of locking
mechanism would be required (especially in multiprocessor machines) to pre-
vent race conditions. However, the use of such a lock would limit symmetric
multiprocessing (SMP) scalability.

• IDs would be predictable, which would lead to some well-known methods of
attacking a machine.

• The ID value could wrap around quickly and lead to duplicate IDs. Because the
ID field is a 16-bit value, allowing a total of 65,535 unique numbers, nodes with
high traffic and fast connections might find themselves reusing the same ID for a
new packet before the old one has reached its destination. For instance, with an
average packet size of 512 bytes, a gigabit interface would send 65,535 packets
in half a second.A highly loaded server could easily wrap around a global IP ID
counter in less than 1 second!

Thus, we have to accept the likelihood that the IP layer occasionally mixes together
data from completely different packets. There is something wrong. Only the higher
layers can fix the problem—usually with error checking.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Packet Fragmentation/Defragmentation | 427

The following section shows one way in which Linux reduces the likelihood of (but
does not solve) the wraparound problem and ID prediction. The section “Selecting
the IP Header’s ID Field” in Chapter 23 shows the precise algorithm and code.

Example of IP ID generation

The wraparound problem is partially addressed by means of multiple, concurrent,
global counters. Instead of a global IP ID, the Linux kernel keeps a different one for
each destination IP address (up to the maximum number of possible IP destina-
tions). Note that by using multiple IP IDs, you make the IDs take a little longer to
wrap around, but eventually they will do so anyway.

Figure 18-11 shows an example. Let’s suppose we have traffic addressed to two serv-
ers with addresses IP1 and IP2. Let’s suppose also that for each IP address we have
different independent streams of traffic, such as HTTP, Telnet, and FTP. Because the
IP IDs are shared by all the streams of traffic going to the same destination, the pack-
ets will have sequential IDs if you look at traffic to the destination as a whole, but the
traffic of each application will not have sequential IDs. For instance, the IP packets
to destination IP1 that are generated by a Telnet session are not sequential. Note that
this is merely the solution chosen by Linux, and is not a standard. Other alternatives
are available.

Example of unsolvable defragmentation problem: NAT

Despite all manner of cleverness at the IP layer, the rules of fragmentation lead to
potential situations that the IP layer cannot solve. Figure 18-12 shows one of them.
Let’s suppose that R is a router doing NAT for all the hosts on its network. To be
more precise, let’s suppose R did masquerading:* the source IP addresses in the head-
ers of the IP packets generated by the hosts in the internal network and addressed to
the Internet are replaced with router R’s IP address, 140.105.1.1.†

Let’s also suppose that both PC1 and PC2 need to send some traffic to the same des-
tination server S. What would happen if, by chance, two packets transmitted at more
or less the same time had the same IP ID (in this example, 1,000)? Since the router R
rewrites the source IP address changing 10.0.0.2 and 10.0.0.3 into 140.105.1.1,
server S will think that the two IP packets it received both came from router R. In the
absence of fragmentation, this is not a problem because the L4 information (for
instance, the port number) distinguishes the two sources. In fact, that is what makes
NAT usable in the first place. The problem arises when the two IP packets

* What Linux calls masquerading is also commonly called Port Address Translation (PAT).

† Note that since the return traffic from the Internet and addressed to the hosts in the internal network will all
have a destination IP address of 140.105.1.1, R uses the destination UDP/TCP port number to find the right
internal host to route the ingress traffic to. We do not need to look at how this port business is handled for
our example.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

transmitted by R get fragmented before arriving at server S. In this case, server S
receives fragments with the same source and destination IP address (140.105.1.1,
151.41.21.194) and the same IP ID (1,000), and therefore tries to put them together
and potentially mixes the fragments of two different IP packets. As a consequence of
this, both of the packets will be discarded because they are considered corrupted. In
the very worst case, the two packets could have the same length and the overlapping
could corrupt the payload without corrupting the L4 headers. The IP checksum cov-
ers only the IP header and therefore cannot detect this condition. Depending on the
application, the consequences could be serious.

After an enumeration of all the problems with fragmentation, we can understand
better why the designers of the IPv6 protocol decided to allow IP fragmentation only
at the originating hosts, and not at intermediate hosts such as routers.

Figure 18-11. Concurrent applications receiving non consecutive IP header IDs

N2

N1

Browser

T2

T1

Telnet

F1

FTP

Traffic with destination IP = IP1

S1

SSH

N1

Browser

Traffic with destination IP = IP2

IP1

T2
ID=K+4

N2
ID=K+3

F1
ID=K+2

T1
ID=K+1

N1
ID=K

IP2

N1
ID=Z+1

S1
ID=Z

F1
ID=K+2

N1
ID=Z+1

T1
ID=K+1

N1
ID=K

S1
ID=Z

N2
ID=K+3

T2
ID=K+4

Time

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Packet Fragmentation/Defragmentation | 429

Path MTU Discovery
After the long discussion of the pitfalls of packet fragmentation, readers can well
appreciate the next IP layer feature I’ll discuss, path MTU discovery.

When I described the net_device data structure in Chapter 2, I listed the MTUs of
the most common interface types. The scope of the MTU is the LAN that the net-
work interface is connected to. If you transmit an IP packet to another host on the
same LAN as the interface you use to transmit, and the size of the packet is bigger
than the LAN’s MTU, the IP packet will have to be fragmented. However, if you
chose a size that fits the MTU, you can ensure that no fragmentation will be
required. When the destination host is not on a directly attached LAN, you cannot
count on the LAN’s MTU to derive whether fragmentation will take place. Here is
where path MTU discovery comes in.

Path MTU discovery is used to discover the biggest size a packet transmitted to a
given destination address can have without being fragmented. That parameter is
called the Path MTU (PMTU). Basically, the PMTU is the smallest MTU encoun-
tered along all the connections along the route from one host to the other.

Since the path between two endpoints can be asymmetric, it follows that there can be
two different PMTUs for any given pair of hosts. Each host computes and uses the
one appropriate for sending packets to the other. Furthermore, a change of route can
lead to a change of PMTU.

Since each destination IP address can use a different PMTU, it is cached in the asso-
ciated routing table cache entry. We will see in Part VII that the routes in the routing
table can aggregate several IP addresses; for instance, you can have a route that says
that network 10.0.1.0/24 is reachable via gateway 10.0.2.1. The routing table cache,

Figure 18-12. Example where NAT and IP fragmentation could give trouble

R

10.0.0.2

10.0.0.1 Internet10.0.0.3

Server

151.41.221.194

saddr: 140.105.1.1
dadr: 151.41.221.194
ID = 1000

saddr: 140.105.1.1
dadr: 151.41.221.194
ID = 1000

saddr: 10.0.0.2
dadr: 151.41.221.194
ID = 1000

saddr: 1.0.0.0.3
dadr: 151.41.221.194
ID = 1000

Router doing NAT

S

140.105.1.1

PC1

PC2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

on the other hand, has one single entry for each destination IP address the host has
been talking to in the recent past.* You may therefore have an entry for host 10.0.1.2
and another one for 10.0.1.3, even though they are reached through the same gate-
way. Each of those entries includes a unique PMTU. You may object that, if those
two addresses belong to two hosts within the same LAN, a third host would proba-
bly use the same route to reach both hosts and therefore share the same PMTU. It
would make sense to keep just one PMTU in the routing table. This is unfortunately
not possible. Just because one route is used to reach a bunch of addresses does not
necessarily mean that they belong to the same LAN. Routing is a complex subject,
and we will cover several aspects of it in Part VII.

Each routing table entry is associated with an egress device:† the device to use to
transmit traffic to the next hop along the route. If the device is directly connected to
its correspondent and PMTU discovery is enabled, the PMTU is set by default to the
MTU of the egress device.

Directly connected devices include the two endpoints of a telecom cable or devices
on an Ethernet LAN. It’s particularly important for all devices on the LAN (with no
router between them) to share the same MTU for proper operation.

If devices are not directly connected—that is, if at least one router lies between
them—or if PMTU discovery is disabled, the PMTU by default is set to 576. This is
not a random value, but is defined in the original IP RFC 791.‡ Regardless of the
default, an administrator can set the initial PMTU through a user-space configura-
tion program such as ifconfig.

Let’s see how PMTU discovery works. The algorithm simply takes advantage of the
IP header’s fields used to handle fragmentation/defragmentation and the associated
ICMP messages.

If you transmit an IP packet with the DF flag set in the header and no one com-
plains, it means that no fragmentation has taken place along the path to the destina-
tion, and that the PMTU you used is fine. This does not mean you are using the
optimal size. You might well be able to increase the PMTU and still not have frag-
mentation. A simple example is where two Ethernet LANs are connected by a router.
On both sides of the network, the MTU is 1,500, but hosts of each LAN use the
MTU of 576 to talk to the hosts of the other LAN because they are not directly con-
nected. This is not optimal.

* To be more exact, a routing cache entry is associated with a combination of several parameters, including
the source IP address, the destination IP address, and the IP TOS.

† We will see in Chapter 31 that if you add support for multipath routing to the kernel, you can define routes
with multiple next hops, each one of which can potentially be reachable with a different interface.

‡ If you are interested in more details, I suggest you read RFCs 791, 1191, and 2923.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Packet Fragmentation/Defragmentation | 431

If you increase the size of the packets in a probe to their optimal size, you will be
notified with an ICMP message when you cross the real PMTU. The ICMP message
will include the MTU of the device that complained so that the kernel can update the
local PMTU accordingly.

Linux can be configured to handle path MTU discovery in one of the following ways:

IP_PMTUDISC_DONT
Never send IP packets with the DF flag set in the header; therefore, do not use
path MTU discovery.

IP_PMTUDISC_DO
Always set the DF flag in the header of packets generated on the local node (not
forwarded ones), in an attempt to find the best PMTU for every transmission.

IP_PMTUDISC_WANT
Decide whether to use path MTU discovery on a per-route basis. This is the
default.

When path MTU discovery is enabled, the PMTU associated with a route can change
at any time to include routers with a smaller maximum size, resulting in the source
receiving an ICMP FRAGMENTATION NEEDED message (see the discussion of
icmp_unreach in Chapter 25). In this case, the PMTU is updated for all the entries in
the routing cache with the same destination.* Refer to the section “Expiration Crite-
ria” in Chapter 33 for details on how the reception of the ICMP FRAGMENTA-
TION NEEDED message is handled by the routing table. It should be noted that the
algorithm always shrinks the PMTU, it never increases it. However, the entries of the
routing cache whose PMTU is derived from an ingress ICMP FRAGMENTATION
NEEDED message expire after some time, which is equivalent to going back to the
(bigger) default PMTU. See the same section just referenced for more details.

The PMTU of a route can also be set manually when adding the route through the ip
route command.

Even if path MTU discovery was enabled, it is still possible to lock the current
PMTU so that it will not be changed. This happens in two main cases:

• When using ip route to set the PMTU, it is possible to lock it with the lock key-
word. The following example adds a route to the 10.10.1.0/24 network via the
next hop gateway 100.100.100.1 and locks the PMTU to 750 bytes:

ip route add 10.10.1.0/24 via 100.100.100.1 mtu lock 750

• If the PMTU you are supposed to use as a consequence of a received ICMP
FRAGMENTATION NEEDED message is smaller than the minimum allowed
value, the PMTU is set to that minimum value, and locked. The minimum value
can be configured with the /proc/sys/net/ipv4/route/min_pmtu file (see the section

* There can be more than one route to the same destination, for redundancy or load balancing.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

“The /proc/sys/net/ipv4/route Directory” in Chapter 36). In any case, the PMTU
cannot be set to a value lower than 68, as requested by RFC 1191, section 3.0
(and indirectly by RFC 791, section “Fragmentation and reassembly”). See also
the section “Expiration Criteria” in Chapter 33.

In Linux, the ip_dont_fragment function (shown in Chapter 22) uses the consider-
ations described here to decide whether a packet should be fragmented when it
exceeds the PMTU.

The value of the PMTU on a given transmission can also be influenced by the follow-
ing factors:

• Whether the device’s MTU is explicitly configured from user space

• Whether the application has changed the maximum segment size (mss) to use
on a given TCP socket

Checksums
A checksum is a redundant field used by network protocols to recognize transmis-
sion errors. Some checksums can not only detect errors, but also automatically fix
errors of certain types.

The idea behind a checksum is simple. Before transmitting a packet, the sender com-
putes a small, fixed-length field (the checksum) containing a sort of hash of the data.
If a few bits of the data were to change during transit, it is likely that the corrupted
data would produce a different checksum. Depending on what function you used to
produce the checksum, it provides different levels of reliability. The checksum used
by the IP protocol is a simple one involving sums and one’s complements, which is
too weak to be considered reliable. For a more reliable sanity check, you must rely
on L2 CRCs or SSL/IPSec Message Authentication Codes (MACs).

Different protocols can use different checksum algorithms. The IP protocol check-
sum covers only the IP header. Most L4 protocols’ checksums cover both their
header and the data.

It may seem redundant to have a checksum at L2 (e.g., Ethernet), another one at L3
(e.g., IP), and another one at L4 (e.g., TCP), because they often all apply to overlap-
ping portions of data, but the checks are valuable. Errors can occur not only during
transmission, but also while moving data between layers. Moreover, each protocol is
responsible for ensuring its own correct transmission, and cannot assume that layers
above or below it take on that task.

As an example of the complex scenarios that can arise, imagine that PC A in LAN1
sends data over the Internet to PC B in LAN2. Let’s also suppose that the L2 proto-
col used in LAN1 uses a checksum but that the one on LAN2 doesn’t. It’s important
for at least one higher layer to provide some form of checksum to reduce the likeli-
hood of accepting corrupted data.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Checksums | 433

The use of a checksum is recommended in every protocol definition, although it is
not required. Nevertheless, one has to admit that a better design of related protocols
could remove some of the overhead imposed by features that overlap in the proto-
cols at different layers. Because most L2 and L4 protocols provide checksums, hav-
ing it at L3 as well is not strictly necessary. For exactly this reason, the checksum has
been removed from IPv6.

In IPv4, the IP checksum is a 16-bit field that covers the entire IP header, options
included. The checksum is first computed by the source of the packet, and is updated
hop by hop all the way to its destination to reflect changes to the header applied by
each router. Before updating the checksum, each hop first has to check the sanity of
the packet by comparing the checksum included in the packet with the one computed
locally. A packet is discarded if the sanity check fails, but no ICMP is generated: the
L4 protocol will take care of it (for example, with a timer that will force a retransmis-
sion if no acknowledgment is received within a given amount of time).

Here are some cases that trigger the need to update the checksum:

Decrementing the TTL
A router has to decrement a packet’s TTL in its IP header before forwarding it.
Since the IP checksum also covers that field, the original checksum is no longer
valid. You will see in the section “ip_forward Function” in Chapter 20 that the
TTL is decreased with ip_decrease_ttl, which takes care of the checksum, too.

Packet mangling (including NAT)
All of those features that involve the change of one or more of the IP header
fields force the checksum to be recomputed. NAT is probably the best-known
example.

IP options handling
Since the options are part of the header, they are covered by the checksum.
Therefore, every time they are processed in a way that requires adding or modi-
fying the IP header (i.e., the addition of a timestamp) forces the recomputation
of the checksum.

Fragmentation
When a packet is fragmented, each fragment has a different header. Most of the
fields remain unchanged, but the ones that have to do with fragmentation, such
as offset, are different. Therefore, the checksum has to be recomputed.

Since the checksum used by the IP protocol is computed using the same simple algo-
rithm that is used by TCP, UDP, and ICMP, a general set of functions has been writ-
ten to be used by all of them. There is also a specialized function optimized for the IP
checksum. According to the definition of the IP checksum algorithm, the header is
split into 16-bit words that are summed and ones-complemented. Figure 18-13
shows an example of checksum computation on only two 16-bit words for simplic-
ity. Linux does not sum 16-bit words, but it does sum 32-bit words and even 64-bit
longs, which results in faster computation (this requires an extra step between the

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

computation of the sum and its one’s complement; see the description of csum_fold
in the next section). The function that implements the algorithm, called ip_fast_
csum, is written directly in Assembly language on most architectures.

APIs for Checksum Computation
The L3 (IP) checksum is much faster to compute than the L4 checksum, because it
covers only the IP header. Because it’s a cheap operation, it is often computed in
software.

The set of general functions used to compute checksums are placed in the per-archi-
tecture files include/asm-xxx/checksum.h. (The one for the i386 platform, for instance,
is include/asm-i386/checksum.h.) Each protocol calls the general function directly
using the right input parameters, or defines a wrapper that calls the general func-
tions. The checksumming algorithm allows a protocol to simply update a checksum,
instead of recomputing it from scratch, when changing a previously checksummed
piece of data such as the IP header.

The prototype for one IP-specific function in checksum.h, ip_fast_csum, is shown
here. The function takes as parameters the pointer to the IP header (iph), and its
length (ihl). The latter can change due to IP options. The return value is the check-
sum. This function takes advantage of the fact that the IP header is always a multiple
of 4 bytes in length to streamline some of the processing.

static inline
unsigned short ip_fast_csum(unsigned char * iph, unsigned int ihl)

When computing the checksum of an IP header on a packet to be transmitted, the
value of iphdr->check should first be zeroed out because the checksum should not
reflect the checksum itself. In this algorithm, because it uses simple summing, a zero-
value field is effectively excluded from the resulting checksum. This is why in

Figure 18-13. IP checksum computation

16-bit words
to checksum

1011000001011111

1110110001011100

11001110010111011

1001110010111011

0000000000000001

1001110010111100

0110001101000011

+

=

+

=

The carry is added

One’s complement sum
of the two 16-bit words

16-bit one’s complement of
the one’s complement sum of
the two 16-bit words

16-bit

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Checksums | 435

different places in the code you can see that this field is zeroed right before the call to
ip_fast_csum.

The checksum algorithm has an interesting property that may initially confuse peo-
ple who read the source code for packet forwarding and reception. If the checksum is
correct, and the forwarding or receiving node runs the algorithm over the entire
header (leaving the original iphdr->check field in place), a result of zero is obtained.
If you look at the function ip_rcv, you can see that this is exactly how input packets
are validated against the checksum. This way of checking for corruption is faster
than the more intuitive way of zeroing out the iphdr->check field and recomputing.

 Here are the main functions used to compute or update an IP checksum:

ip_compute_csum
A general-purpose function that computes a checksum. It simply receives as
input a buffer of an arbitrary size.

ip_fast_csum
Given an IP header and length, computes and returns the IP checksum. It can be
used both to validate an input packet and to compute the checksum of an outgo-
ing packet.

You can consider ip_fast_csum a variation of ip_compute_csum optimized for IP
headers.

ip_send_check
Computes the IP checksum of an outgoing packet. It is a simple wrapper to ip_
fast_csum that zeros iphdr->check beforehand.

ip_decrease_ttl
When changing a single field of an IP header, it is faster to apply an incremental
update to the IP checksum than to compute it from scratch. This is possible
thanks to the simple algorithm used to compute the checksum. A common
example is a packet that is forwarded and therefore gets its iphdr->ttl field dec-
remented. ip_decrease_ttl is called within ip_forward.

There are several other general support routines in the previously mentioned
checksum.h file, but they are mostly used by L4 protocols. For instance:

skb_checkum
Defined in net/core/skbuff.c, it is a general-purpose checksumming function used
by several wrappers (including some of the functions listed earlier), and used
mostly by L4 protocols for specific situations.

csum_fold
Folds the 16 most-significant bits of a 32-bit value into the 16 least-significant
bits and then complements the output value. This operation is normally the last
stage of a checksum computation.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

csum_partial[_xxx]
This family of functions computes a checksum that lacks the final folding done
by csum_fold. L4 protocols can call one of the csum_partial functions to com-
pute the checksum on the L4 data, then invoke a function such as csum_tcpudp_
magic that computes the checksum on a pseudoheader (described in the follow-
ing section), and finally sums the two partial checksums and folds the result.

csum_partial and some of its variations are written in assembly language on
most architectures.

csum_block_add
csum_block_sub

Sum and subtract two checksums, respectively. The first one is useful when the
checksum over a block of data is computed incrementally. The second one might
be needed when a piece of data is removed from one whose checksum had
already been computed. Many of the other functions use these two internally.

skb_checksum_help
This function has two different behaviors, depending on whether it is passed an
ingress IP packet or an egress IP packet.

On ingress packets, it invalidates the L4 hardware checksum.

On egress packets, it computes the L4 checksum. It is used, for example, when
the hardware checksumming capabilities of the egress device cannot be used (see
dev_queue_xmit in Chapter 11), or when the L4 hardware checksum has been
invalidated and therefore needs to be recomputed. A checksum can be invali-
dated, for example, by a NAT operation from Netfilter, or when the transforma-
tion protocols of the IPsec suite mangle the L4 payload by inserting additional
headers between the original IP header and the L4 header. Note also that if a
device could compute the L4 checksum in hardware and store it in the L4
header, it would end up modifying the L3 payload, which is not possible when
the latter has been digested or encrypted by the IPsec suite, because it would
invalidate the data.

csum_tcpudp_magic
Compute the checksum on the TCP and UDP pseudoheader (see Figure 18-14).

Newer NICs can provide both the IP and L4 checksum computations in hardware.
While Linux takes advantage of the L4 hardware checksumming capabilities of most
modern NICs, it does not take advantage of the IP hardware checksumming capabili-
ties because it’s not worth the extra complexity (i.e., the software computation is
already fast enough given the limited size of the IP header). Hardware checksum-
ming is only one example of CPU offloading that allows the kernel to process pack-
ets faster; most modern NICs provide some L4 (mainly TCP) offloading, too.
Hardware checksumming is briefly described in Chapter 19.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Checksums | 437

Changes to the L4 Checksum
The TCP and UDP protocols compute a checksum that covers their header, their
payloads, and what is known as the pseudoheader, which is basically a block whose
fields are taken from the IP header for convenience (see Figure 18-14). In other
words, some information that appears in the IP header ends up being incorporated in
the L4 checksum. Note that the pseudoheader is defined only for computing the
checksum; it does not exist in the packet on the wire.

Unfortunately, the IP layer sometimes needs to change some of the IP header fields,
for NAT or other activities, that were used by TCP and UDP in their pseudoheaders.
The change at the IP level invalidates the L4 checksums. If the checksum is left in
place, none of the nodes at the IP layer will detect any error because they validate
only the IP checksum. However, the TCP layer of the destination host will believe
the packet is corrupted. This case therefore has to be handled by the kernel.

Furthermore, there are routine cases where L4 checksums computed in hardware on
received frames are invalidated. Here are the most common ones:

Figure 18-14. Pseudoheader used by TCP and UDP while computing the checksum

Options (0 or more)

Version Type of
Service

Total length

8 16

Destination address

Source address

Time to live Protocol Header checksum

Identification Fragment offsetD
F

M
F

Header
Length

4

32 bits

Destination address

Source address

0 Protocol Layer four header "length" field

Pseudo header used
by the L4 protocol

Original IP header
(as guessed by the
L4 protocol)

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 18: Internet Protocol Version 4 (IPv4): Concepts

• When an input L2 frame includes some padding to reach the minimum frame
size, but the NIC was not smart enough to leave the padding out when comput-
ing the checksum. In this case, the hardware checksum won’t match the one
computed by the receiving L4 layer. You will see in the section “Processing Input
IP Packets” in Chapter 19 that to be on the safe side, the ip_rcv function always
invalidates the checksum in this case. In Part IV, you will see that the bridging
code can do something similar.

• When an input IP fragment overlaps with a previously received fragment. See
Chapter 22.

• When an input IP packet uses any of the IPsec suite’s protocols. In such cases,
the L4 checksum cannot have been computed correctly by the NIC because the
L4 header and payload are either compressed, digested, or encrypted. For an
example, see esp_input in net/ipv4/esp4.c.

• The checksum needs to be recomputed because of NAT or some similar inter-
vention at the IP layer. See, for instance, ip_nat_fn in net/ipv4/netfilter/ip_nat_
standalone.c.

Although the name might prove confusing, the field skb->ip_summed has to do with
the L4 checksum (more details in Chapter 19). Its value is manipulated by the IP
layer when it knows that something has invalidated the L4 checksum, such as a
change in a field that is part of the pseudoheader.

I will not cover the details of how the checksum is computed for locally generated
packets. But we will briefly see in the section “Copying data into the fragments: get-
frag” in Chapter 21 how it can be computed incrementally while creating fragments.

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

439

Chapter 19 CHAPTER 19

Internet Protocol Version 4
(IPv4): Linux Foundations

and Features

The previous chapter laid out what an operating system needs to do to support the
IP protocol; this chapter introduces the data structures and basic activities through
which Linux supports IP, such as how ingress IP packets are delivered to the IP
reception routine, how the checksum is verified, and how IP options are processed.

Main IPv4 Data Structures
This section introduces the major data structures used by the IPv4 protocol. You can
refer to Chapter 23 for a detailed description of their fields.

I have not included a picture to show the relationships among the data structures
because most of them are independent and do not keep cross-references.

iphdr structure
IP header. The meaning of its fields has already been covered in the section “IP
Header” in Chapter 18.

ip_options structure
This structure, defined in include/linux/ip.h, represents the options for a packet
that needs to be transmitted or forwarded. The options are stored in this struc-
ture because it is easier to read than the corresponding portion of the IP header
itself.

ipcm_cookie structure
This structure combines various pieces of information needed to transmit a
packet.

ipq structure
Collection of fragments of an IP packet. See the section “Organization of the IP
Fragments Hash Table” in Chapter 22.

inet_peer structure
The kernel keeps an instance of this structure for each remote host it has been
talking to in the recent past. In the section “Long-Living IP Peer Information” in

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

Chapter 23 you will see how it is used. All instances of inet_peer structures are
kept in an AVL tree, a structure optimized for frequent lookups.

ipstats_mib structure
The Simple Network Management Protocol (SNMP) employs a type of object
called a Management Information Base (MIB) to collect statistics about systems.
A data structure called ipstats_mib keeps statistics about the IP layer. The sec-
tion “IP Statistics” in Chapter 23 covers this structure in more detail.

in_device structure
The in_device structure stores all the IPv4-related configuration for a network
device, such as changes made by a user with the ifconfig or ip command. This
structure is linked to the net_device structure via net_device->ip_ptr and can be
retrieved with in_dev_get and _ _in_dev_get. The difference between those two
functions is that the first one takes care of all the necessary locking, and the sec-
ond one assumes the caller has taken care of it already.

Since in_dev_get internally increases a reference count on the in_dev structure
when it succeeds (i.e., when a device is configured to support IPv4), its caller is
supposed to decrement the reference count with in_dev_put when it is done with
the structure.

The structure is allocated and linked to the device with inetdev_init, which is
called when the first IPv4 address is configured on the device.

in_ifaddr structure
When configuring an IPv4 address on an interface, the kernel creates an in_
ifaddr structure that includes the 4-byte address along with several other fields.

ipv4_devconf structure
The ipv4_devconf data structure, whose fields are exported via /proc in /proc/sys/
net/ipv4/conf/, is used to tune the behavior of a network device. There is an
instance for each device, plus one that stores the default values (ipv4_devconf_
dflt). The meanings of its fields are covered in Chapters 28 and 36.

ipv4_config structure
While ipv4_devconf structures are used to store per-device configuration, ipv4_
config stores configuration that applies to the host.

cork
The cork structure is used to handle the socket CORK option. We will see in
Chapter 21 how its fields are used to maintain some context information across
consecutive invocations of ip_append_data and ip_append_page to handle data
fragmentation.

Checksum-Related Fields from sk_buff and net_device Structures
We saw the routines used to compute the IP and L4 checksums in the section
“Checksums” in Chapter 18. In this section, we will see what fields of the sk_buff

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Main IPv4 Data Structures | 441

buffer structure are used to store information about checksums, how devices tell the
kernel about their hardware checksumming capabilities, and how the L4 protocols
use such information to decide whether to compute the checksum for ingress and
egress packets or to let the network interface cards (NICs) do it.

Because the IP checksum is always computed and verified in software by the kernel,
the next subsections concentrate on L4 checksum handling and issues.

net_device structure

The net_device->features field specifies the capabilities of the device. Among the
various flags that can be set, a few are used to define the device’s hardware check-
summing capabilities. The list of possible features is in include/linux/netdevice.h
inside the definition of net_device itself. Here are the flags used to control
checksumming:

NETIF_F_NO_CSUM
The device is so reliable that there is no need to use any L4 checksum. This fea-
ture is enabled, for instance, on the loopback device.

NETIF_F_IP_CSUM
The device can compute the L4 checksum in hardware, but only for TCP and
UDP over IPv4.

NETIF_F_HW_CSUM
The device can compute the L4 checksum in hardware for any protocol. This
feature is less common than NETIF_F_IP_CSUM.

sk_buff structure

The two fields skb->csum and skb->ip_summed have different meanings depending on
whether skb points to a received packet or to a packet to be transmitted out.

When a packet is received, skb->csum may hold its L4 checksum. The oddly named
skb->ip_summed field keeps track of the status of the L4 checksum. The status is indi-
cated by the following values, defined in include/linux/skbuff.h. The following defini-
tions represent what the device driver tells the L4 layer. Once the L4 receive routine
receives the buffers, it may change the initialization of skb->ip_summed.

CHECKSUM_NONE
The checksum in csum is not valid. This can be due to various reasons:

• The device does not provide hardware checksumming.

• The device computed the hardware checksums and found the frame to be
corrupted. At this point, the device driver could discard the frame directly.
But some device drivers prefer to set ip_summed to CHECKSUM_NONE and let the
software compute and verify the checksum again. This is unfortunate,
because after all of the overhead of receiving the packet, all that the kernel
does is recheck the checksum and discard the packet (see e1000_rx_checksum

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Sticky Note
So here, we are configuring the netdevice to perform L4 checksum or not for ingress out egress pkts.

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

in drivers/net/e1000/e1000_main.c). Note that if the input frame is to be for-
warded, the router should not discard it due to a wrong L4 checksum (a
router is not supposed to look at the L4 checksum). It will be up to the des-
tination host to do it. This is another reason why device drivers do not dis-
card frames that fail the L4 checksum, but let the L4 receive routine verify
them.

• The checksum needs to be recomputed and reverified. See the section
“Changes to the L4 Checksum” in Chapter 18 for the most common
reasons.

CHECKSUM_HW
The NIC has computed the checksum on the L4 header and payload and has
copied it into the skb->csum field. The software (i.e., the L4 receive routine)
needs only to add the checksum on the pseudoheader to skb->csum and to verify
the resulting checksum. This flag can be considered a special case of the follow-
ing flag.

CHECKSUM_UNNECESSARY
The NIC has computed and verified the checksum on the L4 header and check-
sum, as well as on the pseudoheader (the checksum on the pseudoheader may
optionally be computed by the device driver in software), so the software is
relieved from having to do any L4 checksum verification.

CHECKSUM_UNNECESSARY can also be set, for example, when the probability of an error
is very low and it would be a waste of time and CPU power to compute and verify
the L4 checksum. One example is the loopback device: since the packets sent
through this virtual device never leave the local host, the only possible errors would
be due to faulty RAM or bugs in the operating system. This option can therefore be
used with such special devices, but the standard behavior is to compute the check-
sum of each received packet and discard corrupted packets at the receiving end.

When a packet is transmitted, csum represents a pointer (or more accurately, an off-
set) to the place inside the buffer where the hardware card has to put the checksum it
will compute, not the checksum itself. This field is therefore used during packet
transmission only if the checksum is calculated in hardware. This interaction
between L4 and L2, bypassing L3, introduces a couple of additional problems to deal
with. For example, a feature such as Network Address Translation (NAT) that
manipulates the fields of the IP header used by the L4 layer to compute the so-called
checksum on the pseudoheader would invalidate that data structure (see the section
“Changes to the L4 Checksum” in Chapter 18).

As in the case of reception, ip_summed represents the status of the L4 checksum. The
field is used by the L4 protocols to tell the device whether it needs to take care of
checksumming. In particular, this is the meaning of ip_summed during transmissions:

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Packet Handling | 443

CHECKSUM_NONE
The protocol has already taken care of the checksum; the device does not need
to do anything. When you forward an ingress frame, the L4 checksum is already
ready because it has been computed by the sender host; therefore, there is no
need to compute it. See ip_forward in Chapter 20. When ip_summed is set to
CHECKSUM_NONE, csum is meaningless.

CHECKSUM_HW
The protocol has stored into its header the checksum on the pseudoheader only;
the device is supposed to complete it by adding the checksum on the L4 header
and payload.

ip_summed does not use the CHECKSUM_UNNECESSARY value when transmitting packets (it
would be equivalent to CHECKSUM_NONE).

While the feature flags NETIF_F_XXX_CSUM are initialized by the device driver when the
NIC is enabled, the CHECKSUM_XXX flags have to be set for every sk_buff buffer that is
received or transmitted. At reception time, it is the device driver that initializes ip_
summed correctly based on the NETIF_F_XXX_CSUM device capabilities.

At transmission time, the L3 transmission APIs initialize ip_summed based on the
checksumming capabilities of the egress device, which can be derived from the rout-
ing table: the routing table cache entry that matches the destination includes infor-
mation about the egress device, and therefore its checksumming capabilities (see ip_
append_data for an example).

Given the meaning of the skb->csum and skb->ip_summed fields and the CHECKSUM_HW
flag previously described, you can study, for example, how TCPv4 takes care of the
checksum on ingress segments in tcp_v4_checksum_init, and the checksum of egress
segments in tcp_v4_send_check.

General Packet Handling
The rest of this chapter covers some general considerations that the kernel has to
take into account when handling ingress IP packets, such as checksumming and
options. Subsequent chapters go into detail about how they are forwarded, transmit-
ted, and fragmented/defragmented.

Protocol Initialization
The IPv4 protocol is initialized by ip_init, defined in net/ipv4/ip_output.c. Because
IPv4 support cannot be removed from the kernel (i.e., it cannot be compiled as a
module), there is no ip_uninit function.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

Here are the main tasks accomplished by ip_init:

• Register the handler for IP packets with the dev_add_pack function (see
Chapter 13). This handler is a function named ip_rcv.

• Initialize the routing subsystem, including the protocol-independent cache (see
Chapter 32).

• Initialize the infrastructure used to manage IP peers (see the section “Long-Living
IP Peer Information” in Chapter 23).

ip_init is invoked at boot time by inet_init, which takes care of the initialization of
all the subsystems related to IPv4, including the L4 protocols.

Interaction with Netfilter
We will not examine the Netfilter firewalling subsystem in this book, but we can
examine its main working principles now, particularly its relationship to the aspects
of the IPv4 implementation we discuss in this part of the book.

Firewalling, essentially, hooks into certain places in the network stack code that
packets always pass through when the packets or the kernel meet certain conditions;
at those points, the firewall allows network administrators to manipulate the con-
tents or disposition of the traffic. Those points in the kernel, as shown in Figure 18-1
in Chapter 18, include:

• Packet reception

• Packet forwarding (before routing decision)

• Packet forwarding (after routing decision)

• Packet transmission

The reason why it is useful to distinguish between pre-routing and post-routing will
become clearer in Part VII.

In each case just listed, the function in charge of the operation is split into two parts,
usually called do_something and do_something_finish. (In a few cases, the names are
do_something and do_something2.) do_something contains only some sanity checks
and maybe some housekeeping. The code that does the real job is in do_something_
finish or do_something2. do_something ends by calling the Netfilter function NF_HOOK,
passing in the point where the call comes from (for instance, packet reception) and
the function to execute if the filtering rules configured by the user with the iptables
command do not decide to drop or reject the packet. If there are no rules to apply or
they simply indicate “go ahead,” the function do_something_finish is executed.
Given the following general call:

NF_HOOK(PROTOCOL, HOOK_POSITION_IN_THE_STACK, SKB_BUFFER, IN_DEVICE, OUT_DEVICE, do_
something_finish)

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Packet Handling | 445

the output value of NF_HOOK can be one of the following:

• The output value of do_something_finish when the latter is executed

• -EPERM if SKB_BUFFER is dropped because of a filter

• -ENOMEM if there was insufficient memory to perform the filtering operation

In this chapter, we do not need to worry about those details. We will assume that no
filters are configured and therefore that, at the end of do_something, the call to the
Netfilter function will simply execute do_something_finish. We will see the first
example at the end of the ip_rcv function.

Interaction with the Routing Subsystem
The IP layer needs to interact with the routing table in several places, such as when
receiving and when transmitting a packet. I will cover the details about routing in
Part VII when I will describe the routing subsystem; for now I’ll just briefly describe
three of the functions used by the IP layer to consult the routing table:

ip_route_input
Determines the destiny of an input packet. As you can see in Figure 18-1 in
Chapter 18, the packet could be delivered locally, forwarded, or dropped.

ip_route_output_flow
Used before transmitting a packet. This function returns both the next hop gate-
way and the egress device to use.

dst_pmtu
Given a routing table cache entry, returns the associated Path Maximum Trans-
mission Unit (PMTU).

The ip_route_xxx functions, described in detail in Chapters 33 and 35, consult the
routing table and base their decisions on a set of fields:

• Destination IP address.

• Source IP address.

• Type of Service (ToS).

• Receiving device in the case of reception.

• List of allowed transmitting devices.

Among the more complex factors that could influence the decision returned by these
functions are the presence of policy routing and the presence of a firewall.

The functions store the result of the routing table lookup in skb->dst. This structure
includes several fields, including the input and output function pointers that will be
called to complete the reception or the transmission of the packet (see Figure 18-1 in
Chapter 18 for where those two function pointers are used). The ip_route_xxx func-
tions return a negative value if the lookup fails.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

Both functions also use a cache to get a stream of packets to the same destination
quickly. The destination IP address is the most important criterion for making the
decision, and is used as the search key into the cache. But each cache entry also
includes several other parameters that distinguish which route is used. For instance,
the cache keeps track of each route’s PMTU, which was described in the section
“Path MTU Discovery” in Chapter 18.

Processing Input IP Packets
Chapter 13 showed that the kernel routes traffic at every level to the proper protocol
by invoking the handler function registered by that protocol. In the section “Proto-
col Handler Registration” in that chapter, we saw how the IP protocol registers its
protocol handler ip_rcv, defined in net/ipv4/ip_input.c, with the kernel. We can now
start to analyze the path of IP packets inside the kernel network stack, starting with
the ip_rcv function.

ip_rcv is a classic case of the two-stage process described in the section “Interaction
with Netfilter.” Its work consists just of applying sanity checks to the packet and
then invoking the Netfilter hook. Most processing will take place in ip_rcv_finish,
called from the Netfilter hook.

Here is the prototype of ip_rcv. The third input parameter is not used.

int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt)

The netif_receive_skb function (described in Chapter 10) sets the pointer to the L3
protocol (skb->nh) at the end of the L2 header. IP layer functions can therefore safely
cast it to an iphdr structure.

Most of the fields of sk_buff are set before the call to ip_rcv, as explained in previ-
ous chapters, during the sequence of events that take place from the interrupt notifi-
cation by an NIC to the invocation of the L3 protocol handler. Figure 19-1 shows the
values of some of the sk_buff fields when ip_rcv starts. Note that skb->data, which is
usually used to point to the payload, here points to the L3 header.

Figure 19-1. Part of sk_buff data structure at the beginning of ip_rcv

skb ->len

Layer 2 header
(i.e. , Ethernet)

Layer 3 header
(i.e., IP)

Layer 3 payload
(i.e., TCP/UDP/ICMP)

skb ->tail

skb ->end

skb ->data

skb -> head
skb ->mac

skb ->nh
skb ->h

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Packet Handling | 447

In Chapter 10 and Chapter 13 we saw how the NIC’s device driver sets the L3 proto-
col identifier skb->protocol and the packet type skb->pkt_type. Ethernet drivers, for
instance, do that by means of the eth_type_trans function.

skb->pkt_type is set to PACKET_OTHERHOST when the L2 destination address of the
frame is different from the address of the receiving interface. Normally those packets
are discarded by the NIC itself. However, if the interface has been put into promiscu-
ous mode, it receives all packets regardless of the destination L2 address and passes
them up to higher layers. The kernel invokes sniffers that have requested access to all
packets, as described in Chapter 10. But ip_rcv is not concerned with packets for
other addresses and simply drops them:

 if (skb->pkt_type == PACKET_OTHERHOST)
 goto drop;

Note that receiving a packet for a different L2 address is not the same as receiving a
packet that should be routed to another system. In the latter case, the packet has the
interface’s L2 address but an L3 layer address that is different from that of the cur-
rent recipient. A router is configured to accept such packets and route them, as
described in Part VII.

skb_share_check checks whether the reference count of the packet is bigger than 1,
which means that other parts of the kernel have references to the buffer. As dis-
cussed in earlier chapters, sniffers and other users might be interested in packets, so
each packet contains a reference count. The netif_receive_skb function, which is the
one that calls ip_rcv, increments the reference count before it calls a protocol han-
dler. If the handler sees a reference count bigger than 1, it creates its own copy of the
buffer so that it can modify the packet. Any following handlers will receive the origi-
nal, unchanged buffer. If a copy is needed but memory allocation fails, the packet is
dropped.

 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
 IP_INC_STATS_BH(IPSTATS_MIB_INDISCARDS);
 goto out;
 }

The job of pskb_may_pull is to make sure that the area pointed to by skb->data con-
tains a block of data at least as big as the IP header, since each IP packet (fragments
included) must include a complete IP header. If the condition is met, there is noth-
ing to do. Otherwise, the missing part is copied from the data fragments (if any)
stored in skb_shinfo(skb)->frags[].* If this fails, the function terminates with an
error. If it succeeds, the function must initialize iph again because pskb_may_pull
could change the buffer structure.

 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
 goto inhdr_error;
 iph = skb->nh.iph;

* Do not confuse data fragments with IP fragments. See Chapter 2 for the use of the skb_shinfo macro.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

Next come some sanity checks on the IP header. The size of a basic IP header is 20
bytes, and since the size stored in the header is expressed in multiples of 32 bits (4
bytes), if its value is smaller than 5 it means there is an error. The second check in
the if statement is rather fussy. Currently there are two versions of the IP protocol:
IPv4 and IPv6. The if statement makes sure the packet is an IPv4 packet. But
because the two protocols are handled by two different functions, the ip_rcv func-
tion should never have been called for IPv6 in the first place.

 if (iph->ihl < 5 || iph->version != 4)
 goto inhdr_error;

Now we repeat the same check as before, but this time we use the full IP header size
(including the options). If the IP header claims a size of iph->ihl, the packet should
be at least as long as iph->ihl. This check was left until now because the function
needs first to make sure the basic header (i.e., the header without options) has not
been truncated and that it passes a basic sanity check before reading something from
it (ihl in this case).

 if (!pskb_may_pull(skb, iph->ihl*4))
 goto inhdr_error;
 iph = skb->nh.iph;

After these two protocol consistency checks have been performed, the function needs
to compute the checksum and see whether it matches the one carried in the header.
If it doesn’t, the packet is dropped. The ip_fast_csum routine was introduced in the
section “APIs for Checksum Computation” in Chapter 18.

 if (ip_fast_csum((u8 *)iph, iph->ihl) != 0)
 goto inhdr_error;

After the checksum, there are two other sanity checks:

• Make sure the length of the buffer (i.e., the received packet) is greater than or
equal to the length reported in the IP header.

• Make sure the size of the packet is at least as large as the IP header size.
 {
 _ _u32 len = ntohs(iph->tot_len);
 if (skb->len < len || len < (iph->ihl<<2))
 goto inhdr_error;

Here we need to explain why those two checks are needed. The first one arises from
the fact that the L2 protocols (e.g., Ethernet) can pad out the payload,* so there may
be extra bytes after the IP payload. (This happens, for instance, when the L2 size of
the frame is smaller than the minimum required by the protocol. Ethernet frames
have a minimum frame length of 64 bytes.) In such a case, the packet would look
bigger than the length reported in the IP header. The different sizes and padding are
shown in Figure 19-2.

* From the L2 perspective, the payload is the IP header and everything that follows it.

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Packet Handling | 449

The second check derives from the fact that an IP header cannot be fragmented, and
that each IP fragment must therefore contain at least an IP header.* The reason for
the <<2 in the condition is that the size of the header (iph->ihl) is measured in units
of 32 bits. This check should fail only in an extremely rare situation. It would mean
that the checksum had been computed on a corrupted packet but happened by
chance to produce the same checksum as the original packet (i.e., the checksum did
not detect the error).

The minimum MTU associated with a route is in fact 68, which comes from RFC
791. Since the IP header can be up to 60 bytes long (20+40) and the minimum frag-
ment length (with the exception of the last one) is 8 bytes, it follows that every IP
router must be able to forward an IP packet of 68 bytes without any further
fragmentation.

As you can imagine, all of the sanity checks that we have seen so far and that we will
see later are very important for the stability of the system. If, by chance, the sk_buff
structure was incorrectly initialized, or if the IP header itself was corrupted, the ker-
nel could process packets in a wrong way or could access invalid memory locations,
which could indirectly cause a crash.

We said that the L2 protocols could have padded out the packet to reach a specific
minimum length. The function pskb_trim_rcsum checks whether that happened and,
if it did, trims the packet to the right size with _ _pskb_trim and invalidates the L4
checksum in case it had been computed by the receiving NIC. _ _pskb_trim is slightly
complex because it may need to deal with fragmented buffers, too.†

When the L4 checksum is computed in hardware by the network card, it could
include the L2 padding if the card is not smart enough to leave it out. Since here
there is no way to know whether that was the case, to be on the safe side, pskb_trim_

Figure 19-2. L2 padding needed to reach the minimum payload size

* The IP protocol specification (RFC 791) says that an Internet host must be able to forward a datagram of 68
bytes without having to fragment it: in other words, the L2 protocol must be able to transmit a frame with a
payload of at least 68 bytes.

† See Chapter 21 for examples of what a fragmented buffer looks like.

L2
Header

L3
Header

L3
Payload

L2
Padding

L2 minimum payload size

Original (prepadding)
L2 payload

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

rcsum simply invalidates the checksum and forces the L4 protocol to recompute it.
See the section “Checksums” in Chapter 18 for more details.

 if (pskb_trim_rcsum(skb, len)) {
 IP_INC_STATS_BH(IPSTATS_MIB_INDISCARDS);
 goto drop;
 }
 }

Finally we get to the end of the function. Note that no routing decision or option
handling has been done so far; that’s the job of ip_rcv_finish. As we anticipated ear-
lier in the chapter, the function ends with a call to the Netfilter subsystem, which
more or less can be read in this way:

“skb is the packet that was received from device dev; please check whether the packet
is allowed to proceed with its travel, or if it needs changes. Take into consideration
that we are asking you this from the NF_IP_PRE_ROUTING point within the network
stack (which means the packet was received but no routing decision was taken yet).
If you decide not to drop the packet, execute ip_rcv_finish.”

 return NF_HOOK(PF_INET, NF_IP_PRE_ROUTING, skb, dev, NULL,
 ip_rcv_finish);

See the earlier section “Interaction with Netfilter” for background information.

The ip_rcv_finish Function
ip_rcv did not do much more than a basic sanity check of the packet. So when ip_
rcv_finish is called, it will take care of the main processing, such as:

• Deciding whether the packet has to be locally delivered or forwarded. In the sec-
ond case, it needs to find both the egress device and the next hop.

• Parsing and processing some of the IP options. Not all of the options are pro-
cessed here, however, as we will see when analyzing the forwarding case.

This is the prototype of the ip_rcv_finish function, defined in the same net/ipv4/ip_
input.c file as ip_rcv.

static inline int ip_rcv_finish(struct sk_buff *skb)

The skb->nh field was initialized in netif_receive_skb, which came earlier in the
receiving path. At that time, the L3 protocol was not yet known, so it was initialized
using nh.raw. Now the function can get a pointer to the IP header.

struct net_device *dev = skb->dev;
 struct iphdr *iph = skb->nh.iph;

skb->dst may contain information about the route to be taken by the packet to get to
its destination. If that information is not known yet, the function asks the routing
subsystem where to send the packet, and if the latter says the destination is

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Packet Handling | 451

unreachable, the packet is dropped. See the section “Local Delivery” in Chapter 35
for an example of when skb->dst is not NULL here.

 if (skb->dst == NULL) {
 if (ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))
 goto drop;
 }

Then the function updates some statistics that are used by Traffic Control (the Qual-
ity of Service, or QoS, layer).

#ifdef CONFIG_NET_CLS_ROUTE
 if (skb->dst->tclassid) {
 struct ip_rt_acct *st = ip_rt_acct + 256*smp_processor_id();
 u32 idx = skb->dst->tclassid;
 st[idx&0xFF].o_packets++;
 st[idx&0xFF].o_bytes+=skb->len;
 st[(idx>>16)&0xFF].i_packets++;
 st[(idx>>16)&0xFF].i_bytes+=skb->len;
 }
#endif

When the length of the IP header is bigger than 20 bytes* (5 × 32 bits) it means there
are options to process. skb_cow, whose name comes from the well-known phrase
“Copy on Write,” is called here to make a copy of the buffer if the latter is shared
with someone else. Exclusive ownership of the buffer is needed because we are about
to process the options and will probably need to change the IP header.

 if (iph->ihl > 5) {
 struct ip_options *opt;
 if (skb_cow(skb, skb_headroom(skb))) {
 IP_INC_STATS_BH(IPSTATS_MIB_INDISCARDS);
 goto drop;
 }
 iph = skb->nh.iph;

ip_option_compile is used to interpret the IP options carried in the header. The next
section describes its implementation in detail. Right now we are interested in the
output of that function. We saw in Chapter 2 that skb contains a field called cb that
can be used to store private data by whomever manages an sk_buff buffer. In this
case, the IP layer uses it to store the result of the IP header option parsing plus some
other stuff such as fragmentation-related information. The result is stored in a data
structure of type struct inet_skb_parm, defined in include/net/ip.h and accessed with
the macro IPCB (see the section “ipq Structure” in Chapter 23).

If there are any wrong options, the packet is discarded and a special Internet Control
Message Protocol (ICMP) message is sent back to the sender to notify the latter
about the problem. As we will see in Chapter 25, ICMP messages contain informa-
tion about where the error was found in the header, something that could help the
sender to understand what happened.

* 20 bytes is the length of an IP header without options.

www.ebooksworld.in

sagar
Highlight

sagar
Sticky Note
i.e. if ip header length exceeds 5*4 = 20 bytes

sagar
Highlight

sagar
Sticky Note
But we already had a made a copy of the skb in netif_receive_skb() in l2 driver ?

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

You will see in the next section that when the first input parameter to ip_options_
compile is NULL, the output of the parsing process is stored in IPCB(skb)->opt; this
explains why the parsed options are retrieved with IPCB.

 if (ip_options_compile(NULL, skb))
 goto inhdr_error;

Note that ip_options_compile simply checks whether the options are correct and
stores them in an ip_options structure inside the private data field pointed to by skb-
>cb. The function does not handle any of them. Instead, the upcoming piece of code
partially takes care of that.

In case the packet was source routed, the kernel needs to check whether the configu-
ration of the device allows that option to be used. (If you are not familiar with IP
source routing, check the section “Option: Strict and Loose Source Routing.”)

I briefly describe the in_device structure and the associated APIs in the section “in_
device Structure” in Chapter 23. If there was no explicit configuration for IP source
routing, the option would be allowed by default. If, on the other hand, that option
was disabled, the packet is dropped (but no ICMP message is generated). NIPQUAD is a
simple macro defined in include/linux/kernel.h that splits a 32-bit variable into four 8-
bit components.

 if (opt->srr) {
 struct in_device *in_dev = in_dev_get(dev);
 if (in_dev) {
 if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
 printk(KERN_INFO "source route option %u.%u.%u.%u -> %u.
%u.%u.%u\n",
 NIPQUAD(iph->saddr), NIPQUAD(iph->daddr));
 in_dev_put(in_dev);
 goto drop;
 }
 in_dev_put(in_dev);
 }
 if (ip_options_rcv_srr(skb))
 goto drop;
 }
 }

When IP source routing is allowed on the device, the code calls ip_options_rcv_srr
to set skb->dst and decide how to handle the packet, which means deciding which
device to use to forward the packet toward the next hop in the source route list. Nor-
mally, the requested next hop refers to another host, and the function simply sets
opt->srr_is_hit to indicate the address has been found. The ip_options_rcv_srr
function has to take into account, however, the possibility that the “next hop” may
be an interface on the local host. If that happens, the function writes the IP address
into the destination IP address of the IP header and goes on to check the next address

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 453

in the source routing list, if there is one (in the code, this is called a superfast loop-
back forward). ip_options_rcv_srr keeps browsing the list of next hops in the IP
header source routing option block until it finds an IP address that is not local to the
host. Normally, there will be no more than one local IP address in that list. How-
ever, it is legal to have more than one. In the latter case, going from one next hop to
the following one is a no-op—i.e., one more loop inside ip_options_rcv_srr. The
srr_is_hit flag is set when the last next-hop found by ip_options_rcv_srr is not a
local IP address, which means the packet has not reached its final destination and
needs to be forwarded.

If the packet is to be forwarded, as we will see in the section “ip_forward_finish
Function” in Chapter 20, the initialization of srr_is_hit tells ip_forward_options to
take care of the source routing option by adding the necessary data to the IP header.
If the packet is being transmitted (that is, if it originated on this host), opt->faddr
will be used instead and the opt->srr_is_hit flag will not be used.

The term MARTIANS is used in the previous code to decide whether a parameter value
is wrong. The term is not a fanciful choice by the Linux developers but comes from
the RFCs themselves.

ip_rcv_finish ends with a call to dst_input, which actually invokes the function
stored in the dst field of the skb buffer. skb->dst was initialized either near the begin-
ning of ip_rcv_finish, or near the end within ip_options_rcv_srr (which is called if
the IP source routing option is present in the header). skb->dst->input is set to ip_
local_deliver or ip_forward, depending on the destination address of the packet.
The call to dst_input therefore completes the processing of the packet (see
Figure 18-1 in Chapter 18 and the earlier section “Interaction with the Routing Sub-
system”).

See also the section “Source Routing” in Chapter 35 for the relationship between the
call to ip_route_input in ip_rcv_finish and the one in ip_options_rcv_srr.

IP Options
Because of the overhead associated with the time needed to process IP options, they
have never been used much. In the next sections, we will see one by one the IP
options handled by the Linux kernel and how they are processed.

Here are the main APIs involved with IP option management, all of them defined in
net/ipv4/ip_options.c. To understand some of them, remember that not all of the IP
options of a packet need to be replicated in all of its fragments.

ip_options_compile
Parses a block of options from an IP header and initializes an instance of an ip_
options structure accordingly. This structure will be used later to process the
options; it includes flags and pointers that tell the part of the routing subsystem

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

that handles forwarding what has to be written into the IP header options
space, and where. ip_options_compile is described in detail in the section
“Option Parsing.”

ip_options_build
Initializes the portion of an IP header dedicated to the options, based on an
input ip_options structure. This function is used when transmitting locally gen-
erated packets. Thanks to an input parameter, it can distinguish fragments and
treat them accordingly: it omits from the header of each fragment those options
that do not have to be copied into that fragment (see the section “IP options” in
Chapter 18), and overwrites them with null options instead. It also clears the
flags of the ip_options structure (such as opt->rr_needaddr) that are used to sig-
nal the need to add a timestamp or an address to the options.

ip_options_fragment
Because the first fragment is the only one that inherits all the options of the origi-
nal packet, the size of its header is supposed to be greater than or equal to the
size of the following ones. Linux simplified this rule, however. By keeping the
same header size for all fragments, Linux makes the fragmentation process sim-
pler and more efficient. This is achieved by copying the original header with all
its options and overwriting the options that do not need to be replicated (those
where IPOPT_COPY is not set) with null options (IPOPT_NOOP) and clearing all the
flags of the ip_options structure associated with them (e.g., ts_needaddr), on all
fragments but the first one. Null options are described later in the section
“Option Parsing.”

This last operation is exactly the purpose of ip_options_fragment. When we talk
about ip_fragment in Chapter 22, we will see that after the first IP fragment has
been sent, the kernel calls ip_options_fragment to change the IP header, and
recycles the new adapted header thereafter for all of the following fragments.

ip_forward_options
When forwarding a packet, some options may need to be processed. ip_options_
compile parses the options and initializes a set of flags in the ip_options struc-
ture used to store the result of the parsing. Later, ip_forward will handle them.

ip_options_get
This function receives a block of options, parses them with ip_options_compile,
and stores the result in an ip_options structure it allocates. It can receive the
input options from either kernel space or user space; there is an input parameter
to specify the source. An example of usage is via the ip_setsockopt function that
is used by L4 protocols such as TCP and UDP to set the IP options on a given
socket (see the system call setsockopt). ip_options_get takes care of the pad-
ding described in the section “‘End of option list’ and ‘No operation’ options” in
Chapter 18.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 455

ip_options_echo
Given an ingress IP packet and its IP options, this function builds the IP options
to use to reply back to the sender. For example, the source route options must
be reversed on the reply packet. Refer to RFC 1122 (Requirements for Internet
Hosts), sections 3.2.1.8, 4.1.3.2, and 4.2.3.8, and to RFC 1812 (Requirements
for IP Version 4 Routers).

Some of the places where this routine is invoked include:

• icmp_reply to reply to an ingress ICMP request

• icmp_send when an ingress IP packet meets conditions that require the gen-
eration of an ICMP message

• ip_send_reply, which is the generic routine provided by IP to reply to an
ingress IP packet

• TCP to save the options of an ingress SYN segment

Now let’s see how the functions are used in practice. Because you have not yet seen
the internals of all the functions in Figure 18-1 in Chapter 18, you may not under-
stand everything at this stage. You can come back to this second part of the section
once you are familiar with the other functions.

As you saw in Figure 18-1 in Chapter 18, different paths can lead to the transmis-
sion of a packet, and they handle the IP options in slightly different ways. I will cover
two cases and leave you the others as an exercise.

Option Processing
The options of an ingress IP packet are first parsed with the ip_options_compile
function, described in the next section. As mentioned in the previous section, the
options are then processed by different routines at different times, depending on
whether a packet is to be forwarded, fragmented, etc. Figure 19-3 summarizes where
the key routines introduced in the previous section (with a lighter color) are called
for ingress packets and for locally generated packets.

When an ingress packet is to be forwarded, ip_rcv_finish calls ip_forward (via dst_
input) to take care of the forwarding process. ip_forward handles the Router Alert
option, if present, and makes sure that there are no problems with the strict source
route option. Then it asks ip_forward_finish to complete the job of forwarding. The
latter can behave differently depending on whether the header contains options.

Let’s suppose the packet had options. In this case, ip_forward_finish calls ip_
forward_options to handle those options that should be processed when forwarding
a packet, and then calls dst_output to carry out the actual transmission. As shown in
Figure 18-1 in Chapter 18, dst_output ends up calling ip_output when the ingress IP
packet needs to be forwarded.

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

At this stage, the IP header is ready to be used, because all of the options have been
processed. If there was no fragmentation, options processing is finished. However, if
the packet needs to be fragmented, ip_output needs to make sure that only the first
fragment includes all of the options; the others should have only a subset, according
to Table 18-1 in Chapter 18. In this case, ip_output calls ip_fragment. Once the first
fragment is done, ip_fragment uses ip_options_fragment to clear the options that are
not needed for the subsequent fragments. This way, ip_fragment can keep copying
the IP header from the original packet and have all the options correct.

In a locally generated packet, options are handled with ip_options_build. We will
see in Chapter 21 how that function is used by ip_queue_xmit and ip_push_pending_
frames.

Figure 19-3. (a) Ingress packets; (b) locally generated packets

ip_rcv_finish

ip_rcv

ip_options_compile (parse IP options of ingress packets)

dst_input

ip_options_rcv_srr (handle Loose Source Routing option)

ip_forward

Handle Router Alert option

ip_forward_finish

Enforce Strict Source Routing option

dst_output

ip_forward_options (handle Loose Source Routing and Timestamp options)

ip_output

ip_fragment

ip_options_fragment

Common to case (b) too

(a)

ip_options_build

ip_queue_xmit/ip_push_pending_frames
(b)

dst_output

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 457

Option Parsing
Parsing, here, means extracting the IP options from the format in which they are
stored in an IP packet’s header and storing them in a structure called ip_options that
is more convenient for program code to handle. Storing them in a dedicated data
structure is useful because different options are handled in different parts of the IP
code. ip_options_compile only parses the options, it does not process them. We saw
in the previous section where options are processed.

The function ip_options_compile is called in two different cases:

• By ip_rcv_finish to parse and validate the IP options of the input packets. As
shown in Figure 18-1 in Chapter 18, ip_rcv_finish is called for all ingress pack-
ets, regardless of whether they will be delivered locally or forwarded. When I
refer to ingress packets in this section, I am including the case of ingress packets
that need to be forwarded because they are not addressed to the local system.

• By ip_options_get, for example, to parse the input to the setsockopt system call
for AF_INET sockets.

Let’s now analyze how ip_options_compile parses the options of an IP packet’s
header. This is the function’s prototype:

int ip_options_compile(struct ip_options * opt, struct sk_buff * skb)

The values of the two input parameters let the function know the context in which it
is being called:

• Ingress packet: skb not NULL (in this case, opt is NULL)

• Packet being transmitted: skb equal to NULL (in this case, opt is non-NULL)

This means that depending on the function’s context, the IP header is stored in differ-
ent places. When transmitting a locally generated packet, opt is not NULL and opt->
data contains a pointer to an IP header that was previously partially generated by the
caller. If instead the function is processing an ingress packet, the header is contained
in the skb input buffer and opt is NULL. In this second case, the ip_options structure
is stored in skb->cb. ip_options_compile initializes local variables such as optptr
according to where the IP header is located (i.e., skb->nh or opt->_ _data). The value of
skb is also often used by ip_options_compile to distinguish between the two previous
cases.

In both cases (transmit and forward), you need to fill in opt. The only choices to
make are where to get the input IP header to parse and where to store the result.

 if (!opt) {
 opt = &(IPCB(skb)->opt);
 memset(opt, 0, sizeof(struct ip_options));
 iph = skb->nh.raw;
 opt->optlen = ((struct iphdr *)iph)->ihl*4 - sizeof(struct iphdr);
 optptr = iph + sizeof(struct iphdr);
 opt->is_data = 0;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

 } else {
 optptr = opt->is_data ? opt->_ _data : (unsigned char*)&(skb->nh.iph[1]);
 iph = optptr - sizeof(struct iphdr);
 }

If parsing fails, ip_options_compile returns immediately. The caller will handle the
event in one of the following ways, depending on whether the options were used by a
received or transmitted packet:

Bad option in a received packet
An ICMP message is sent back to the source.

Bad option in a transmitted packet
The application is notified through an error value returned by the function used
to transmit the packet.

Among the possible reasons for a parsing failure are:

• A single option cannot be present more than once in the header. The only excep-
tion is the dummy or null option IPOPT_NOOP. The latter can be present any num-
ber of times and is usually used to enforce some kind of alignment, either on an
individual option or on the payload that follows the options (the null option
needs no handling).

• The value of a header field has been assigned an invalid value, or a value that the
current user is not allowed to use. This case applies to locally generated traffic.
Only the superuser is allowed to generate IP packets with option or suboption
codes not understood by the kernel. The check for the superuser privilege is
done by the capable function.

The original IP RFC says that when receiving an option that is not understood, a
router should just ignore it. Linux behaves differently only with locally gener-
ated packets (see the earlier reference to capable).

Currently, there are only two single-byte options:

• End of options (IPOPT_END)

• Null option (IPOPT_NOOP)

The main for loop simply goes option by option and stores the result of parsing in
the output ip_options structure opt. The code inside the loop may look complex, but
actually it is very easy to read if you take into consideration the following points:

• l represents the size of the block of options that has not been parsed yet.*

• optptr points to the current position on the block of options being analyzed.
optptr[1] is the option’s length, and optptr[2] is the option pointer (where the

* While reading the code, make sure you do not confuse the variable l, used as the index of the for loop, with
the integer 1. They look quite the same and it is easy to lose an hour trying to understand the code if you
confuse them. It has already happened to one person.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 459

option starts). Figure 19-4 shows where the array’s elements point.The code that
handles each option always starts with two sanity checks based on these
parameters.

• optlen gets initialized to the length of the current option. Do not confuse optlen
with opt->optlen. Note that when opt is not NULL, optlen is not initialized
because that has already been done in ip_options_get.

• The flag is_changed is used to keep track of when the header has been changed
(which requires the checksum to be recomputed).

There cannot be other options after the IPOPT_END option. Therefore, as soon as one
is found, whatever follows it is overwritten with more IPOPT_END options.

The basic sanity checks for multibyte options include:

• The option must be at least four bytes long. Since the header of the option is
three bytes long, the field pointer cannot be smaller than 4. The timestamp
option, for instance, requires at least a length of five octets, where four are used
just by the header (See Figure 18-8 in Chapter 18).

• Options that reserve space in the header, because they are supposed to be filled
in by the next hops or by the destination host, must respect the size required by
the option. For instance, the timestamp option is supposed to reserve a space
that is a multiple of four bytes (the size of an IPv4 address).

Since the length of each option includes the first two bytes (type and length) and
since it starts counting from 1 (not 0), if length is less than 2 or bigger than the block
of options left to analyze, there is an error:

 if (optlen<2 || optlen>l) {
 pp_ptr = optptr;
 goto error;
 }

Note that some options (such as TIMESTAMP) have a minimum length bigger than
2, and thus the general check just shown is necessary but not always sufficient. The
more specific checks are inside the per-option handlers. When an error is found in
the options, a special ICMP message has to be sent back to the sender. This ICMP

Figure 19-4. ip_options_compile’s local variables’ values in the middle of an execution

type

I

length pointer

options
already parsed

optptr[0]
optptr[1]

optptr[2]

1 2 3 4 5

options still
 to be parsed

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

packet includes the original IP header, eight bytes of the IP payload, and an offset
that points to where the error was found. The eight bytes of the IP payload consist of
the start of the L4 header and usually include the L4 port numbers; this allows the
receiver of the ICMP error message to find the socket associated with the faulty IP
packet (more details in Chapter 25). Before returning the error message, the code ini-
tializes pp_ptr to point to the place where the problem was found.

The switch statement uses, as its discriminator, the option type field. Therefore, each
option in handled by a different statement, exactly as was done before for the single-
byte options:

 switch (*optptr)

The next sections analyze the multibyte options one by one, and Figures 19-5(a) and
19-5(b) show the big picture. The two obsolete options SEC and SIC are recognized
but not processed* (see RFC 1812).

Option: strict and loose Source Routing

Only one Source Routing option can appear in a header. The flag opt->srr is used to
detect that condition: if the following code does not find any error in the option, it
sets that flag. If another option of the same type appears later in the header, the error
will be detected.

opt->is_strictroute is used to tell the caller whether the Source Routing option was
loose or strict.

The section “ip_forward Function” in Chapter 20 shows how packets are dropped if
they cannot reach their destinations while respecting the Source Routing rules.

The option is considered faulty if the length of the option (including type and length)
is less than 3. This is because the value has to contain the type, length, and pointer
fields. At the same time, pointer cannot have a value smaller than 4 because the first
three bytes of the option are already used by the type, length, and pointer fields.

When the input skb parameter is NULL, it means that ip_options_compile has been
called to parse the options of an outgoing packet (generated locally, not forwarded).
In that case, the first IP address in the array of addresses provided by user space is
saved in opt->faddr and then removed from the array by shifting the other elements
of the array back one position with a memmove operation. This address will be
retrieved later by the functions described in Chapter 21, ip_queue_xmit, and the ip_
append_data’s users, so they know the destination IP address. An easy-to-follow
example of the use of opt->faddr can be found in the function udp_sendmsg.

* There are some other IP options, such as the IP MTU Discovery Option (RFC 1063), that were defined but
never really used or found useful in past years, and that were therefore made obsolete. IP MTU Discovery in
particular has been replaced by path MTU discovery (RFC 1191, covered in the section “Path MTU discov-
ery” in Chapter 18).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 461

 if (!skb) {
 if (optptr[2] != 4 || optlen < 7 || ((optlen-3) & 3)) {
 pp_ptr = optptr + 1;
 goto error;
 }
 memcpy(&opt->faddr, &optptr[3], 4);
 if (optlen > 7)
 memmove(&optptr[3], &optptr[7], optlen-7);
 }
 opt->is_strictroute = (optptr[0] == IPOPT_SSRR);
 opt->srr = optptr - iph;
 break;

Figure 19-5(a). ip_options_compile overview

Single or
multi byte?

Is parsing
completed?

End

Single byte

No

Begin

Same
option present

more than once in
the header

Option length>=
minimum option

length

Sanity check for
the parameters

type-length-pointer

Type

Overwrite the following
options with NOOP options

Multibyte

NOOP

END

Ingress packet or
transmitted packet?

Return -EINVAL

Send an ICMP error
to the source

Transmitted

Ingress

Passed Failed

No

Yes

Yes

No

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

Option: Record Route

For the Record Route option, as for Timestamp, the sender reserves the part of the
header it will use in advance. Because of this, when processing the option, new ele-
ments are added to the header only if there is some room left. If there is space, the
ip_options_compile function sets the flag rr_needaddr to tell the routing subsystem to
write the IP address of the outgoing interface into the IP header once the routing
decision is taken.* Note that the list of IP addresses includes the transmitting inter-
face’s address if the options belong to a locally generated packet.

 if (optptr[2] <= optlen) {
 if (optptr[2]+3 > optlen) {
 pp_ptr = optptr + 2;
 goto error;
 }

 if (skb) {

Figure 19-5(b). ip_options_compile overview

* This is done by calling ip_options_build. See Chapter 21.

Sub-type

Does the user
have the right to use

this option?

Ingress packet
or transmitteted

packet?

Process the option and fill in the
ip_options structure accordingly

Type

Transmitted

No

Yes

Ingress

Unknown

Unknown

IPOPT_SEC
IPOPT_SID

IPOPT_TS_TSONLY
IPOPT_TS_TSANDADDR
IPOPT_TS_PRESPEC

IPOPT_SSRR
IPOPT_LSRR
IPOPT_RR
IPOPT_RA

IPOPT_TIMESTAMP

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 463

 memcpy(&optptr[optptr[2]-1], &rt->rt_spec_dst, 4);
 opt->is_changed = 1;
 }
 optptr[2] += 4;
 opt->rr_needaddr = 1;
 }
 opt->rr = optptr - iph;
 break;

Since skb is non-null only when you are processing the options of an ingress packet,
this piece of code simply copies the preferred source IP address into the list of
addresses being recorded in the header, and updates the flag is_changed, which will
force the IP checksum to be updated. See the section “Preferred Source Address
Selection” in Chapter 35 for the reason why the rt_spec_dst IP address is used.

Whether the address is written in the block of code shown here, because the packet
is being forwarded, or will be written later thanks to the flag rr_needaddr that is set
later, the pointer field of the option is moved ahead four bytes (the size of the IP
address). This explains why ip_forward_options (which will be executed if the packet
we are processing is being forwarded) will have to go back four bytes to write the IP
into the right position.

Option: Timestamp

Because optlen represents the length of the option being analyzed, the if statement
simply checks whether any space is left to store the new information. In this case, the
length of the option represents the space reserved by the transmitter (not the space
used so far).

 if (optptr[2] <= optlen) {
 _ _u32 * timeptr = NULL;

The handling of the option depends on the suboption specified by the sub-type field
in Figure 18-8 in Chapter 18, but the three suboptions are handled in the same gen-
eral way. Regardless of the subtype, whoever is going to handle the option needs two
pieces of information (which will be stored in the ip_option structure):

• Whether it must record an address, a timestamp, or both

• Where in the IP header the information has to be written (the offset)

If a timestamp needs to be recorded (this would be true for the TS_ONLY and TS_
TSANDADDR cases), timeptr would be initialized to point to the right place where it
should be written inside the IP header. Note also that timeptr is initialized only when
skb is not NULL, which is the case when the option belongs to an ingress packet (as
opposed to one that is locally generated).

We already saw in the section “Option Parsing” that ip_options_compile can also be
called when handling locally generated packets. In that case, skb would be NULL, so
timeptr would not be initialized (i.e., it would be left NULL) and no timestamp

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 19: Internet Protocol Version 4 (IPv4): Linux Foundations and Features

would be recorded in the header. There is nothing wrong here, because the timestamp
will be put there by ip_options_build. That function will store the timestamp because
opt->ts_needtime equals 1.

The only difference between processing an ingress packet to be forwarded and a
locally generated packet is that in the former case, a timestamp is added to the IP
header and the checksum has to be recomputed (so opt->is_changed needs to be set
as well).

When the subcode is IPOPT_TS_PRESPEC, the timestamp has to be added only when
the next IP address to match is local to the system. The function used to make that
check is inet_addr_type; here are the main return values:

RTN_LOCAL
The IP address belongs to a local interface.

RTN_UNICAST
The IP address is reachable according to the routing table and is unicast.

RTN_MULTICAST
The address is multicast.

RTN_BROADCAST
The address is broadcast.

Since local broadcasts and registered multicast addresses could be considered local
(i.e., addresses the system listens to), the following piece of code that checks RTN_
UNICAST does exactly what we want—it determines whether the address is local:

 {
 u32 addr;
 memcpy(&addr, &optptr[optptr[2]-1], 4);
 if (inet_addr_type(addr) == RTN_UNICAST)
 break;
 if (skb)
 timeptr = (_ _u32*)&optptr[optptr[2]+3];
 }
 opt->ts_needtime = 1;

Depending on the suboption being processed, the timestamp has to be written at a
different offset within the IP header. The first part initializes timeptr accordingly,
and the second part copies the timestamp to the right position. Depending on the
suboption, the ts_needtime and tr_needaddr flags are also initialized.

 if (timeptr) {
 struct timeval tv;
 _ _u32 midtime;
 do_gettimeofday(&tv);
 midtime = htonl((tv.tv_sec % 86400) * 1000 + tv.tv_usec / 1000);
 memcpy(timeptr, &midtime, sizeof(_ _u32));
 opt->is_changed = 1;
 }

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Options | 465

This last part takes care of the counter overflow we described in the section
“Timestamp Option” in Chapter 18.

 unsigned overflow = optptr[3]>>4;
 if (overflow == 15) {
 pp_ptr = optptr + 3;
 goto error;
 }
 opt->ts = optptr - iph;
 if (skb) {
 optptr[3] = (optptr[3]&0xF)|((overflow+1)<<4);
 opt->is_changed = 1;
 }

Option: Router Alert

As we explained in the section “Router Alert Option” in Chapter 18, the last two
bytes of this option must be zero. If this option passes the sanity check, ip_options_
compile initializes the router_alert flag so that later ip_forward will handle it accord-
ingly. (opt->router_alert is simply treated as Boolean, zero, or nonzero.)

 if (optptr[2] == 0 && optptr[3] == 0)
 opt->router_alert = optptr - iph;

Handling parsing errors

If the error was found in a locally generated packet (skb==NULL), the function simply
returns an error that will have to be handled by the caller. If instead it was found on
a received IP packet, an ICMP error message has to be sent back to the source:

error:
 if (skb) {
 icmp_send(skb, ICMP_PARAMETERPROB, 0, htonl((pp_ptr-iph)<<24));
 }
 return -EINVAL;
}

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

466

Chapter 20CHAPTER 20

Internet Protocol Version 4
(IPv4): Forwarding and
Local Delivery

At the end of the ip_rcv_finish function, if the destination address is different from
the local interface, the kernel has to forward packets to the appropriate host. On the
other hand, if the destination address is local, the kernel has to prepare the packet for
use by higher layers. As discussed in the section “The ip_rcv_finish Function” in
Chapter 19, the correct choice is taken from the skb buffer through a call to dst_input.
Let’s see now how the two tasks (forwarding and local delivery) are accomplished.

Forwarding
As with many networking activities described in the previous chapter, forwarding is
split into two functions: ip_forward and ip_forward_finish. The second is called at
the end of the first, if Netfilter allows it. Both functions are defined in net/ipv4/ip_
forward.c.

By this time, thanks to the call to ip_route_input in ip_rcv_finish described in
Chapter 19, the sk_buff buffer contains all the information needed to forward the
packet. Forwarding consists of the following steps:

1. Process the IP options. This may involve recording the local IP address and a
timestamp if options in the IP header require them.

2. Make sure that the packet can be forwarded, based on the IP header fields.

3. Decrement the Time To Live (TTL) field of the IP header and discard the packet
if the TTL becomes 0.

4. Handle fragmentation if needed, based on the MTU associated with the route.

5. Send the packet out to the outgoing device.

If the packet cannot be forwarded for some reason, the source host has to be noti-
fied with an ICMP message that describes the problem encountered. An ICMP mes-
sage could also be sent as a warning even if the packet will be forwarded, as when a
packet is routed with a suboptimal route and triggers a redirect. In the following sec-
tions, we’ll examine these and other activities in the ip_forward function.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Forwarding | 467

Interaction with IPsec is a major part of forwarding, and is implemented by xfrm4_
xxx routines in ip_forward, which are hooks into the IPsec infrastructure. They are
not covered in this book for lack of space. The behavior documented here is how for-
warding works when IPsec is not configured, in which case those calls simply
becomes no-ops.

ICMP Redirect
An ICMP redirect message is sent by a host system (usually a router) when it has
been asked to do something that another router is better suited to do (see Chapters
25 and 31 for more details).

When a packet has been source routed, the router assumes the sender had a good
reason for requesting the route and does not second-guess it. It honors the requested
route and does not send an ICMP redirect message. This special case is covered in
the section “ip_forward Function.”

ip_forward Function
As we have seen, ip_forward is invoked by ip_rcv_finish (see Figure 18-1 in
Chapter 18) to handle all input packets that are not addressed to the local system.
The function receives as an input parameter the buffer skb associated with the
packet; all the necessary information is inside that structure. skb->dst, the routing
information, was initialized by the call to ip_route_input in ip_rcv_finish earlier in
the code path (see Chapter 33 for more details).

Figure 20-1 summarizes the internals of the function:

int ip_forward(struct sk_buff *skb)

The function revolves around manipulations of skb and of a local variable iph, which
represents the packet’s IP header and is initialized repeatedly from the iph field of
skb. (It has to be reinitialized because the header can be changed by some of the
functions called from ip_forward.)

If the Router Alert option was found in the IP header, it is handled now.* The func-
tion handler for this option is ip_call_ra_chain, which relies on a global list (ip_ra_
chain) that contains the list of local sockets that set the IP_ROUTER_ALERT option
because they are interested in IP packets that carry the Router Alert IP option. When
an ingress IP packet is fragmented, ip_call_ra_chain first defragments the entire IP
packet and only then delivers it to the Raw sockets of the ip_ra_chain list, as shown
in Figure 18-1 in Chapter 18.

* See the section “Router Alert Option” in Chapter 18.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 20: Internet Protocol Version 4 (IPv4): Forwarding and Local Delivery

Figure 20-1. ip_forward function

Router alert
Option?

IPsec policy check
(xfrm4_policy_check)

Decrement TTL and
update the IP checksum

TTL<=1

IPsec policy check
(xfrm4_route_forward)

Strict source
route option?

Output device =
Input device

NET_FILTER
HOOK

Deliver packet to handlers
(ip_call_ra_chain)

Is any handler
registered?

Return
NET_RX_SUCCESS

ICMP_TIME_EXCEEDED
(ICMP_EXC_TTL)

ICMP_DEST_UNREACH
(ICMP_SR_FAILED)

Next hop router=
next hop SSR option?

Drop the packet

DROP

Return
NET_RX_DROP

Complete forwarding
(ip_forward_finish)

Return the return value of
ip_forward_finish

OK

Yes

Yes

Failed

Yes

ICMP_REDIRECT
(ICMP_REDIR_HOST)

Is the packet being
source routed?

Yes

Yes

No

No

Passed

No

No

No
No

Yes

Yes

Passed

Failed

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Forwarding | 469

The functions that manage the alert can be found in net/ipv4/ip_sockglue.c (see, for
example, ip_ra_control and how it is called by ip_setsockopt to apply an option to a
socket as requested by the user with a call to the setsockopt system call). ip_forward
has no further work to do, and returns success.

If there is no Router_Alert option in the header, or if it is present but no interested
processes are running (in which case ip_call_ra_chain returns FALSE), ip_forward
continues:

 if (IPCB(skb)->opt.router_alert && ip_call_ra_chain(skb))
 return NET_RX_SUCCESS;

The following check is used just to make sure that the packet we’re handling was
actually addressed to our host at L2. skb->pkt_type is initialized at the L2 layer (see
Chapter 13), and defines the type of frame. It is assigned the value PACKET_HOST when
the frame is addressed to the L2 address of the receiving interface. If the lower-level
functions do their jobs correctly, there should be no need for this check, but we do it
just in case an error left us with a packet we should not have received in the first place.

 if (skb->pkt_type != PACKET_HOST)
 goto drop;

Since we are forwarding the packet, we are operating entirely at the L3 layer and it is
not our business to worry about the L4 checksum; we use CHECKSUM_NONE to indicate
that the current checksum is OK. If some handling changes the IP header or the TCP
header or payload later, before transmission, the kernel will recalculate the check-
sum there.

 skb->ip_summed = CHECKSUM_NONE;

The real forwarding process starts by decrementing the TTL field. The IP protocol
definition says that when TTL reaches the value of 0 (which means you received it
with value 1 and it became 0 after you decremented it), the packet has to be dropped
and a special ICMP message has to be sent to the source to let it know you dropped
the packet.

 if (iph->ttl <= 1)
 goto too_many_hops;

Note that the TTL field has not been decremented yet; it will be done a few lines of
code later. The reason for waiting is that the packet may still be shared at this point
with other subsystems such as sniffers; the header must be unchanged in that case .

rt points to a data structure of type rtable, which contains all the information
needed by the forwarding engine, including the next hop (rt_gateway). If the IP
header contains a Strict Source Route option and the next hop (extracted from that
option) does not match the one found by the routing subsystem, the Source Routing
option fails and the packet is dropped.

 rt = (struct rtable*)skb->dst;
 if (opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
 goto sr_failed;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 20: Internet Protocol Version 4 (IPv4): Forwarding and Local Delivery

In this case, another ICMP message is transmitted to the sender.

After most of the sanity checks have been fulfilled, the function updates the packet
header a bit and then gives it to ip_forward_finish. Since we are about to modify the
content of the buffer, we need to make a local copy for ourselves. The copy is actu-
ally done by skb_cow only if the packet is shared (if the packet is not shared it can be
safely modified) or if the space available at the head of the packet is not sufficient to
store the L2 header.

 if (skb_cow(skb, LL_RESERVED_SPACE(rt->u.dst.dev)+rt->u.dst.header_len))
 goto drop;

Now the TTL is decremented by ip_decrease_ttl, which also updates the IP check-
sum.

 ip_decrease_ttl(iph);

If a better next hop is available than the requested one, the originating host is now
notified with an ICMP REDIRECT message—but only if the originating host did not
request source routing. The opt->srr field indicates that source routing was
requested, in which case the originating host doesn’t care whether a supposedly bet-
ter route is found. In Chapter 35 you will see when exactly the RTCF_DOREDIRECT flag
is set on a cached route to indicate that the source of the packet should be sent an
ICMP REDIRECT message.

 if (rt->rt_flags&RTCF_DOREDIRECT && !opt->srr)
 ip_rt_send_redirect(skb);

The priority field is set here using the Type of Service field of the IP header. The pri-
ority will be used later by Traffic Control (the QoS layer).

 skb->priority = rt_tos2priority(iph->tos);

The function terminates by asking Netfilter to execute ip_forward_finish, if there are
no filtering rules that forbid forwarding.

 return NF_HOOK(PF_INET, NF_IP_FORWARD, skb, skb->dev, rt->u.dst.dev,
 ip_forward_finish);

ip_forward_finish Function
If this function is reached, it means the packet has passed all the checks that could
stop it and is truly ready to be sent out to another system.

Two possible options from the IP header have been handled so far, as we saw in the
section “ip_forward Function”: Router Alert and Strict Source Routing. Now we
pass the packet to the function ip_forward_options to handle any final work
required by the options. It can find out what needs to be done by checking flags
(such as opt->rr_needaddr) and offsets (such as opt->rr) initialized earlier by ip_
options_compile, which was invoked from ip_rcv_finish. ip_forward_options also
recomputes the IP checksum in case it had to update any of the IP header fields. See
the section “Option Processing” in Chapter 19.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Forwarding | 471

The packet is finally transmitted with dst_output, described in the next section:

static inline int ip_forward_finish(struct sk_buff *skb)
{
 struct ip_options * opt = &(IPCB(skb)->opt);

 IP_INC_STATS_BH(IPSTATS_MIB_OUTFORWDDATAGRAMS);

 if (unlikely(opt->optlen))
 ip_forward_options(skb);

 return dst_output(skb);
}

It may seem we are close to the wire, but there are still a couple of tasks to do before
having the device driver do the transmission.

dst_output Function
All transmissions, whether generated locally or forwarded from other hosts, pass
through dst_output on their way to a destination host, as shown in Figure 18-1 in
Chapter 18. The IP header at this point is finished: it embodies the information
needed to transmit as well as any other information the local system was responsible
for adding.

static inline int dst_output(struct sk_buff *skb)
{
 int err;

 for (;;) {
 err = skb->dst->output(&skb);
 if (likely(err = 0))
 return err;
 if (unlikely(err != NET_XMIT_BYPASS))
 return err;
 }
}

dst_output invokes the virtual function output, which has been initialized to ip_
output if the destination address is unicast and ip_mc_output if it is multicast. Frag-
mentation is handled in that function. At the end, ip_finish_output is called to inter-
face with the neighboring subsystem (see Figure 18-1 in Chapter 18). ip_finish_
output, described in the section “Interface to the Neighboring Subsystem” in
Chapter 21, is invoked only if Netfilter gives the green light (otherwise, the packet is
dropped).

Note that the output function can potentially be invoked multiple times if it returns
the NET_XMIT_BYPASS value. This is, for instance, a simple mechanism to call a
sequence of output routines. The IPsec protocol suite uses it to apply transforma-
tions before the real transmission.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 20: Internet Protocol Version 4 (IPv4): Forwarding and Local Delivery

Local Delivery
Chapter 35 explains how the forwarding (routing) engine knows that the local host is
the packet’s destination. We saw at the end of the section “The ip_rcv_finish Func-
tion” in Chapter 19 that the call to ip_route_input, at the top of ip_rcv_finish, ini-
tializes skb->dst->input to ip_local_deliver when the packet has reached its
destination host (as opposed to ip_forward, when it needs to be forwarded). Further-
more, Netfilter is given the final right to decide whether the generic do_something
function (such as ip_local_deliver) is allowed to call the corresponding do_
something_finish function (in this case, ip_local_deliver_finish) to complete the
job.

int ip_local_deliver(struct sk_buff *skb)
{
 if (skb->nh.iph->frag_off & htons(IP_MF|IP_OFFSET)) {
 skb = ip_defrag(skb, IP_DEFRAG_LOCAL_DELIVER);
 if (!skb)
 return 0;
 }

 return NF_HOOK(PF_INET, NF_IP_LOCAL_IN, skb, skb->dev, NULL,
 ip_local_deliver_finish);
}

In contrast to forwarding, where defragmentation can mostly be ignored, local deliv-
ery has to do a lot of work to handle defragmentation. Except for special cases (such
as when Netfilter must defragment a packet to examine its contents), forwarding can
be performed on each fragment without trying to recombine them. In contrast, the
original IP packet must always be defragmented and passed as a whole for local
delivery, because that higher L4 layer is supposed to be blissfully ignorant of the
need for fragmentation at the IP layer.

Defragmentation is performed within the ip_defrag function, which returns a pointer
to the original packet when it has been completely defragmented, and NULL if it is
still incomplete. The code shown from ip_local_deliver calls ip_defrag, checks the
return value in the local skb variable, and returns if the packet is incomplete. The sec-
ond input parameter to ip_defrag is described in the section “ipq Structure” in
Chapter 23.

Only when the packet is defragmented can the function deliver it. Netfilter is asked
to consult its configuration and execute ip_local_deliver_finish if the packet is
accepted. We will cover the details of ip_local_deliver_finish in Chapter 24.
Defragmentation was introduced in the section “Packet Fragmentation/Defragmen-
tation” in Chapter 18 and will be shown in detail in Chapter 22.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

473

Chapter 21 CHAPTER 21

Internet Protocol Version 4
(IPv4): Transmission

In this chapter, we discuss packet transmission at the L3 layer, which fits into the
top-left corner of Figure 18-1 in Chapter 18. Transmission refers to packets leaving
the local host for another; it can be initiated by the L4 layer or be invoked as the final
stage of forwarding. As shown in Figure 18-1 in Chapter 18, the central function that
delivers a packet is dst_output; the functions described in this chapter precede it and
prepare packets for it. The tasks of the kernel at this stage include:

Looking up the next hop
The IP layer needs to know the outgoing device and the next router to use for
the next hop. The route is found through the function ip_route_output_flow,
called at the L3 or L4 layer. This chapter does not discuss routing, because that
subject is big enough for its own discussion and is therefore covered in Part VII.

Initializing the IP header
Several fields, such as the packet ID, are filled in at this stage. If the packet is a
forwarded one, a little work was done on the header earlier (such as updating
the TTL, checksum, and options fields). But much more must be done at this
point to enable transmission.

Processing options
The software has to honor options that require the addition of an address or
timestamp to the header.

Fragmentation
If the IP packet is too big to be transmitted on the outgoing device, it must be
fragmented (unless fragmentation is explicitly forbidden).

Checksum
The IP checksum has to be computed after all other work on the header is done.
We will see that the IP layer may take care of the L4 checksum as well as the L3
checksum. In both cases, the checksum can be computed either in one shot or
incrementally. While the checksum is required, the L3 layer doesn’t always have
to calculate it, because some devices’ hardware does it (as denoted by the
CHECKSUM_HW flag).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

Checking with Netfilter
As shown in Figure 18-1 in Chapter 18, the Linux firewall system is given a
chance to drop or mangle each packet at various stages of processing, including
transmission.

Updating statistics
Depending on the result of the transmission (success or failure) and on actions
such as fragmentation, the associated SNMP counters have to be updated.

Option processing and fragmentation are by far the most expensive tasks; fragmenta-
tion is addressed in Chapter 22, and options were addressed in Chapter 19. In the
past there used to be two different functions for transmission, one for packets that
could be transmitted quickly because they didn’t need fragmentation or IP option
processing, and another that provided all the services. The kernel does not explicitly
distinguish the two cases anymore.

Key Functions That Perform Transmission
The two functions listed at the top left of Figure 18-1 in Chapter 18 appear in
Figure 21-1, classified by the L4 protocols that invoke them. The reason for two sets
of functions is that the right-side L4 protocols (TCP and the Stream Control Trans-
mission Protocol, or SCTP) do a lot of work to prepare for fragmentation; that leaves
less work for the IP layer. In contrast, raw IP and the other protocols listed on the left
side leave all of the work of fragmentation up to the IP layer.

Figure 21-1 shows the main functions that lie between transmission at L4 and the
last step of L3, which is invoking the neighbor function discussed in Chapter 27. At
the top of the figure, the most common L4 protocols are shown. UDP and ICMP call
one set of L3 functions to carry out transmission, whereas TCP and SCTP call
another. When the L3 functions described in this chapter finish their work, they pass
packets to dst_output. As for raw IP, when it uses the IP_HDRINCL option it is com-
pletely responsible for preparing the IP header, so it bypasses the functions described
in this chapter and calls dst_output directly. See the section “Raw Sockets” for more
details. The Internet Group Management Protocol (IGMP) also makes a direct call to
dst_output (after initializing the IP header on its own).

Thus, fragmentation is handled by the two sets of functions as follows:

ip_queue_xmit
The L4 protocol has already divided the data into chunks that are sized properly
for fragmentation (if it is needed), taking into account the PMTU as discussed in
Chapter 18. The work at the IP layer consists simply of adding IP headers to the
data fragments already created.

ip_push_pending_frames and related functions
The L4 protocols invoking this function do not consider fragmentation or help
perform it. Furthermore, for the sake of efficiency, they introduce complexity by

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 475

their way of passing the data in the packet down to the IP layer. Depending on
several factors covered later in this chapter, an L4 protocol can store several
transmission requests through multiple calls to ip_append_data without actually
transmitting anything.

ip_append_data does not simply buffer transmission requests, but transparently
generates data fragments of optimal sizes to make it easier for the IP layer to han-
dle fragmentation later. This saves the IP layer from having to copy data from
one buffer to another while making fragments, and leads to a significant perfor-
mance gain.

When the L4 protocol needs to flush the output queue created with ip_append_
data, the protocol invokes ip_push_pending_frames, which in turn does any nec-
essary fragmentation and pushes the resulting packets down to dst_output.

A variant of ip_append_data named ip_append_page is currently used by UDP.
We will briefly describe this function later.

Other functions are also used during transmission in specific contexts:

ip_build_and_send_pkt
Used by TCP to send SYN ACKs.

ip_send_reply
Used by TCP to send ACKs and Resets. The classification of Figure 21-1 only
covers the most common cases: since ip_send_reply uses ip_append_data and ip_
push_pending_frame, it follows that TCP does not use only ip_queue_xmit.

Figure 21-1. Different protocols invoking dst_output differently

Data is
buffered

Case 1a
(UDP, ICMP, Raw IP)

ip_append_data

ip_append_data

ip_push_pending_frames

Data is
handed to the
Neighboring

layer

dst_output

Data is
buffered

Case 1b
(UDP)

ip_append_page

ip_append_page

Case 2
(TCP, SCTP)

ip_queue_xmit

Case 3
(Raw IP, IGMP)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

These will be pretty easy to understand after you understand how the functions in
Figure 21-1 work. It is also possible for an L4 protocol to call dst_output directly;
IGMP and RawIP are two protocols that do it (see the section “Raw Sockets”).

In this chapter, I briefly cover ip_queue_xmit, but spend more time on ip_append_
data/ip_push_pending_frames because they are key parts of the complex task of
fragmentation.

Multicast Traffic
As shown in Figure 18-1 in Chapter 18, the egress paths followed by transmitted
multicast and unicast traffic are similar—more similar than for the ingress path. I do
not go into detail about multicast in this book, but in this chapter I will point out
some differences between unicast and multicast during transmission. For instance, in
the section“Building the IP header” we will see that the TTL is initialized differently
for multicast traffic. The same is true when forwarding packets.

Relevant Socket Data Structures for Local Traffic
A BSD socket is represented in Linux with an instance of a socket structure. This
structure includes a pointer to a sock data structure, which is where the network
layer information is stored. The sock data structure is pretty big but is well docu-
mented in include/net/sock.h. The sock data structure is actually allocated as part of a
bigger structure that is specific to the protocol family; for PF_INET sockets the struc-
ture is inet_sock, defined in include/linux/ip.h. The first field of inet_sock is a sock
instance, and the rest stores PF_INET private information, such as the source and des-
tination IP addresses, the IP options, the packet ID, the TTL, and cork (discussed
next).

struct inet_sock {
 struct sock sk;

 struct {

 } cork;
}

Given a pointer to a sock data structure, the IP layer uses the inet_sk macro to cast
the pointer to the outer inet_sock data structure. In other words, the base address of
the inet_sock and sock structures is the same, a feature commonly exploited in C
programs that deal with complex, nested structures.

The inet_sock’s cork field plays an important role in ip_append_data and ip_append_
page: it stores the context information needed by those two functions to do data frag-
mentation correctly. Among the various information it contains are the options in
the IP header (if any) and the fragment length.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 477

Whenever a transmission is generated locally (with only a few exceptions), each sk_
buff buffer is associated with its sock instance and is linked to it with skb->sk.

Different functions are used to set and read the value of the fields of the sock and
inet_sock structures. Some of them are called by the functions in Figure 21-1. As far
as this chapter is concerned, we need to understand the meaning of only a few of
them:

sk_dst_set and_ _sk_dst_set
Once the socket is connected, these functions save the route used to reach the
destination in the sock structure. sk_dst_set is a simple wrapper to _ _sk_dst_set
that takes care of locking. If locking is not needed (because it was already taken
care of), _ _sk_dst_set can be called directly.

sk_dst_check and _ _sk_dst_check
As the names suggest, the validity of the route can be tested with these two APIs.
However, if the route is valid, they return it as their return value. This means
that these functions can be used to retrieve the route, not just to test the valid-
ity. (An invalid route causes them to return NULL.) The two functions are very
similar; they differ slightly in terms of how they clear the cached route if they
find out that it is not valid anymore.

skb_set_owner_w
Assigns an sk_buff buffer to a given sock structure. This is useful for accounting.

sock_alloc_send_skb and sock_wmalloc
These functions allocate sk_buff buffers. sock_alloc_send_skb is called to allo-
cate a single buffer or the first fragment of a series (see the discussion of ip_
append_data); sock_wmalloc takes care of subsequent fragments. Both end up
calling alloc_skb, but the first function is more complex and can fail for more
reasons than the second. This is because if allocation of the first buffer succeeds,
the following allocations have few reasons to fail.

Another data structure that appears in many of the functions in this chapter is the
routing table cache entry associated with the packet, rtable. Many functions refer to
it through a variable named rt. It contains information such as the outgoing device,
the MTU of the outgoing device, and the next hop gateway. This structure is initial-
ized by ip_route_output_flow and is described in Chapter 36.

The ip_queue_xmit Function
ip_queue_xmit is the function currently used by TCP and SCTP. It receives only two
input parameters, and all the information needed to process the packet is accessible
(directly or indirectly) through skb.

int ip_queue_xmit(struct sk_buff *skb, int ipfragok)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

Here is what the parameters mean:

skb
Buffer descriptors for the packet to transmit. This data structure has all the
parameters needed to fill in the IP header and to transmit the packet (e.g., the
next hop gateway). Remember that ip_queue_xmit is used to handle locally gen-
erated packets; forwarded packets do not have an associated socket.

ipfragok
A flag used mainly by SCTP to say whether fragmentation is allowed.

The socket associated with skb includes a pointer named opt that refers to a struc-
ture we saw in the section “Option Parsing” in Chapter 19. The latter structure con-
tains the options in the IP header in a format that makes them easier for functions at
the IP layer to access. This structure is kept in the socket structure because it is the
same for every packet sent through that socket; it would be wasteful to rebuild the
information for every packet.

 struct sock *sk = skb->sk;
 struct inet_sock *inet = inet_sk(sk);
 struct ip_options *opt = inet->opt;

Among the fields of the opt structure are offsets to the locations in the header where
functions can store timestamps and IP addresses requested by IP options. Note that
the structure does not cache the IP header itself, but only data that tells us what to
write into the header, and where.

Setting the route

If the buffer is already assigned the proper routing information (skb->dst), there is no
need to consult the routing table. This is possible under some conditions when the
buffer is handled by the SCTP protocol:

 rt = (struct rtable *) skb->dst;
 if (rt != NULL)
 goto packet_routed;

In other cases, ip_queue_xmit checks whether a route is already cached in the socket
structure and, if one is available, makes sure it is still valid (this is done by _ _sk_dst_
check):

 rt = (struct rtable *)_ _sk_dst_check(sk, 0);

If the socket does not already have a route for the packet cached, or if the one the IP
layer has been using so far has been invalidated in the meantime, such as by an
update from a routing protocol, ip_queue_xmit needs to look for a new route with
ip_route_output_flow and store the result in the sk data structure. The destination is
represented by the daddr variable. First, this variable is set to the final destination of
the packet (inet->daddr), which is the proper value if the IP header includes no
Source Route option. However, ip_queue_xmit then checks for a Source Route option

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 479

and, if one exists, sets the daddr variable to the next hop in the source route (inet->
faddr). In case of a Strict Source Route option, the next hop found by ip_route_
output_flow has to match exactly the next hop in the source route list.

 if (rt == NULL) {
 u32 daddr;

 daddr = inet->daddr;
 if(opt && opt->srr)
 daddr = opt->faddr;

 {
 struct flowi fl = { .oif = sk->sk_bound_dev_if,
 .nl_u = { .ip4_u =
 { .daddr = daddr,
 .saddr = inet->saddr,
 .tos = RT_CONN_FLAGS(sk) } },
 .proto = sk->sk_protocol,
 .uli_u = { .ports =
 { .sport = inet->sport,
 .dport = inet->dport } } };

 if (ip_route_output_flow(&rt, &fl, sk, 0))
 goto no_route;
 }
 _ _sk_dst_set(sk, &rt->u.dst);
 tcp_v4_setup_caps(sk, &rt->u.dst);
 }

Refer to Chapter 36 for details on the flowi data structure, and to Chapter 33 for
details on the ip_route_output_flow routine.

The call to tcp_v4_setup_caps saves the features provided by the egress device in the
socket sk; we can ignore this call during our discussion.

The packet is dropped if ip_route_output_flow fails. If the route is found, it is stored
with _ _sk_dst_set in the sk data structure so that it can be used directly next time,
and the routing table does not have to be consulted again. If for some reason the
route is invalidated again, a future call to ip_queue_xmit will use ip_route_output_
flow once more to find a new one.

As the following code shows, the packet is dropped if the IP header carries the Strict
Source Routing option, and the next hop provided by that option does not match the
next hop returned by the routing table:*

 skb->dst = dst_clone(&rt->u.dst);

packet_routed:
 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
 goto no_route;

* We saw something similar in the section “ip_forward Function” in Chapter 20.

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

dst_clone is called to increment the reference count on the data structure assigned to
skb->dst.

When a packet is dropped, an error code is returned to the upper layer and the asso-
ciated SNMP statistics are updated. Note that in this case the function does not need
to send any ICMP to the source (we are the source).

Instead, if everything is OK, we have all the information needed to transmit the
packet and it is time to build the IP header.

Building the IP header

So far, skb contains only the IP payload—generally the header and payload from the
L4 layer, either TCP or SCTP. These protocols always allocate buffers whose size will
be able to handle worst case scenarios with regards to the addition of the lower layer
headers. In this way they reduce the chances that IP or any other lower layer will
have to do memory copies or buffer reallocation to handle the addition of headers
that do not fit the free space.

When ip_queue_xmit receives skb, skb->data points to the beginning of the L3 pay-
load, which is where the L4 protocol writes its own data. The L3 header lies before
this pointer. So skb_push is used here to move skb->data back so that it points to the
beginning of the L3 or IP header; the result is illustrated in Figure 19-2 in
Chapter 19. iph is also initialized to the pointer at that location.

 iph = (struct iphdr *) skb_push(skb, sizeof(struct iphdr) +
 (opt ? opt->optlen : 0));

The next block initializes a bunch of fields in the IP header. The first assignment sets
the value of three fields (version, ihl and tos) in one shot, because they share a com-
mon 16 bits. Thus, the statement sets the Version in the header to 4, the Header
Length to 5, and the TOS to inet->tos.

Some of the values used to initialize the IP header are taken from sk and some others
from rt, both of which were described earlier in the section “Relevant Socket Data
Structures for Local Traffic.”

 *((_ _u16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
 iph->tot_len = htons(skb->len);
 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
 iph->frag_off = htons(IP_DF);
 else
 iph->frag_off = 0;
 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
 iph->protocol = sk->sk_protocol;
 iph->saddr = rt->rt_src;
 iph->daddr = rt->rt_dst;
 skb->nh.iph = iph;

If the IP header contains options, the function needs to update the Header Length
field iph->length, which was previously initialized to its default value, and then call

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 481

ip_options_build to take care of the options. ip_options_build uses the opt variable,
previously initialized to inet->opt, to add the required option fields (such as time-
stamps) to the IP header. Note that the last parameter to ip_options_build is set to
zero, to specify that the header does not belong to a fragment (see the section “IP
Options” in Chapter 19).

 if(opt && opt->optlen) {
 iph->ihl += opt->optlen >> 2;
 ip_options_build(skb, opt, inet->daddr, rt, 0);
 }

 mtu = dst_pmtu(&rt->u.dst);

Then ip_select_ident_more sets the IP ID in the header based on whether the packet
is likely to be fragmented (see the section “Selecting the IP Header’s ID Field” in
Chapter 23), and ip_send_check computes the checksum on the IP header.

skb->priority is used by Traffic Control to decide which one of the outgoing queues
to enqueue the packet in; this in turn helps determine how soon it will be transmit-
ted. The value in this function is taken from the sock structure, whereas in ip_
forward (which manages nonlocal traffic and therefore does not have a local socket)
its value is derived from a conversion table based on the IP TOS value (see the sec-
tion “ip_forward Function” in Chapter 20).

 ip_select_ident_more(iph, &rt->u.dst, sk, skb_shinfo(skb)->tso_segs);
 ip_send_check(iph);
 skb->priority = sk->sk_priority;

Finally, Netfilter is called to see whether the packet has the right to jump to the fol-
lowing step (dst_output) and continue transmission:

 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
 dst_output);

The ip_append_data Function
This is the function used by those L4 protocols that want to buffer data for transmis-
sion. As stated earlier in this chapter, this function does not transmit data, but places
it in conveniently sized buffers for later functions to form into fragments (if neces-
sary) and transmit. Thus, it does not create or manipulate any IP header. To flush
and transmit the data buffered by ip_append_data, the L4 layer has to explicitly call
ip_push_pending_frames, which also takes care of the IP header.

If the L4 layer wants fast response time, it might call ip_push_pending_frames after
each call to ip_append_data. But the two functions are provided so that the L4 layer
can buffer as much data as possible (up to the size of the PMTU) and then send it at
once to be efficient.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

As one consequence of its role in preparing packets, ip_append_data buffers data only
up to the maximum size of an IP packet. As explained in the section “Packet Frag-
mentation/Defragmentation” in Chapter 18, this is 64 KB.

The main tasks of ip_append_data are:

• Organize the input data from the L4 layer into buffers whose size will make it
easier to handle IP fragmentation if needed. This includes placing those data
fragments into buffers in such a way that the L3 and L2 layers will find it easy to
add the lower-layer headers later.

• Optimize memory allocation, taking into account information from upper layers
and the capabilities of the egress device. In particular:

• If upper layers signal that more transmission requests will follow shortly
(through the MSG_MORE flag), it could make sense to allocate a bigger buffer.

• If the egress device supports Scatter/Gather I/O (NETIF_F_SG), fragments can
be arranged in memory pages to optimize memory handling.

• Take care of the L4 checksum. We saw in the section “net_device structure” in
Chapter 19 how skb->ip_summed is initialized based on the egress device capabili-
ties and other factors.

Given the more complex job of ip_append_data, compared to ip_queue_xmit, its more
complex prototype should not come as a surprise:

int ip_append_data(struct sock *sk,
 int getfrag(void *from, char *to, int offset, int len,
 int odd, struct sk_buff *skb),
 void *from, int length, int transhdrlen,
 struct ipcm_cookie *ipc, struct rtable *rt,
 unsigned int flags)

Here is the meaning of the input parameters:

sk
Socket behind this packet’s transmission. This data structure contains some of
the parameters (such as the IP options) that will be needed later to fill in the IP
header (by the ip_push_pending_frames function).

from
Pointer to the data (payload) the L4 layer is trying to transmit. This can be either
a kernel or a user-space pointer, and it’s the getfrag function’s job (described
next) to handle it correctly.

getfrag
Function used to copy the payload received from the L4 layer into the data frag-
ments that will be created. More details can be found in the section “Copying
data into the fragments: getfrag.”

length
Amount of data to transmit (including both the L4 header and the L4 payload).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 483

transhdrlen
Size of the transport (L4) header.

ipc
Information needed to forward the packet correctly. See the section “ipcm_
cookie Structure” in Chapter 23.

rt
Routing table cache entry associated with the packet (described in Chapter 36).
While ip_queue_xmit retrieves this information itself, ip_append_data relies on
the caller to collect that information by means of ip_route_output_flow.

flags
This variable can contain any of the MSG_XXX flags defined in include/linux/socket.
h. Three of them are used by this function:

MSG_MORE
This flag is used by applications to tell the L4 layer that there will be more
transmissions shortly. As we see here, this flag is propagated to the L3 layer.
Later we will see how this information can be useful when allocating buffers.

MSG_DONTWAIT
When this flag is set, the call to ip_append_data must not block. ip_append_
data may need to allocate a buffer (with sock_alloc_send_skb) for the socket
sk. When the latter has already exhausted its budget, it can either block
(with a timer) in the hope that some space will be made available before the
timer expires, or fail. This flag can be used to choose between the two previ-
ous options.

MSG_PROBE
When this flag is set, the user does not really want to transmit anything; he
is only probing the path. The flag can be used, for instance, to test a PMTU
on a path toward a given IP address.* ip_append_data simply returns immedi-
ately with a successful return code if this flag is set.

ip_append_data is a long and complex function. The presence of numerous local vari-
ables defined, often with similar names, make it hard to follow. We will therefore
break it down into the main steps. Given that there are many different combinations
of possible outputs, based on the considerations listed near the beginning of this sec-
tion, we will focus on a few common cases. By the end, you should be able to derive
the other cases by yourself.

The next few sections describe what the outcome of ip_append_data should be. After
that come several sections describing the initial tasks of the function, finishing with a
description of its main loop.

The labels hh_len, exthdrlen, fraghdrlen, trailer_len, copy, and length in Figures
21-2 through 21-7 are either input parameters to ip_append_data or local variables

* It may not be clear, by looking at ip_append_data, how MSG_PROBE can be used to test the PMTU. See raw_
send_hdrinc in net/ipv4/raw.c for an example.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

used by ip_append_data (in particular, the value of copy shown in the figures is the
one passed to getfrag). All of them are expressed in bytes. The labels X, Y, S, S1, and
S2 represent the size of a data block expressed in bytes.

Basic memory allocation and buffer organization for ip_append_data

It is important to understand how the output from ip_append_data—the fragments to
be turned into IP packets—is organized in memory. This section and the following
two sections cover the data structures that organize the output data and how they are
used. The same explanation applies to data formatted by the L4 layer and passed to
ip_queue_xmit: this is done, for instance, by TCP instead of using ip_append_data. In
every case, the buffers are eventually handed to dst_output, which appears near the
center of Figure 18-1 in Chapter 18. Let’s see a few examples.

ip_append_data can create one or more sk_buff instances, each representing a dis-
tinct IP packet (or IP fragment). This is true regardless of how the data is stored in
sk_buff (i.e., regardless of whether it is fragmented).

Suppose we want to transmit an amount of data that lies within the PMTU (that is, it
does not need to be fragmented). Let’s also assume that because of the configuration
of our host, we need to apply at least one of the protocols of the IPsec suite. Finally,
let’s suppose for the sake of simplicity that we are not trying to achieve memory opti-
mizations in the way we allocate buffers. The results of ip_append_data (shown in
Figure 21-2) in this case are as follows:

• Because no fragmentation is needed, we allocate just one buffer.

• The protocols of the IPsec suite may require both a header and a trailer, which
wrap around the traditional buffer (including its traditional IP header). We need
to take that into account both when allocating the buffer and when copying the
data from the L4 layer into the buffer.

• We also preallocate space for the header on the L2 layer. *

By reserving the space needed for all the protocols and layers that will come after the
L4 layer, we eliminate the need for time-consuming memory manipulation later.
Note also that the pointers to some of the headers (such as h.raw and nh.raw) are ini-
tialized; later the associated protocols can fill in their part. The only portion of the
packet that is filled in by ip_append_data is the L4 payload. Other parts will be filled
in as follows:

• The L4 header will be filled in by the function that calls ip_push_pending_frames.
That function can be invoked directly or via a wrapper (for example, UDP uses
udp_push_pending_frames).

• The L3 header (including the IP options) will be filled in by ip_push_pending_
frames.

* The pointers on the left side of the buffer are sk_buff’s fields, and the ones on the right side are ip_append_
data’s local variables.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 485

Part VI covers the L2 part of the header.

Now let’s take a slightly more complex example that requires fragmentation. From
the previous example, let’s remove IPsec and increase the payload size so that it
exceeds the PMTU. Figure 21-3 shows the output.*

The object on the bottom left is the buffer that ip_append_data receives in input, and
length is another of ip_append_data’s input parameters. Two buffers created by the
function lie to the right. Note that the first contains a fragment that has the

Figure 21-2. IP packet that does not need fragmentation, with IPsec

Figure 21-3. Fragmentation without Scatter/Gather I/O, no MSG_MORE

* We will see in the section “Buffer allocation” that if the PMTU is not a multiple of eight bytes, the size of all
fragments (with the exception of the last one) is shortened to the closest 8-byte boundary.

IPsec header

IP header

L4 payload

h.raw

tail

data

sk_write_queue

struct sk

head
end

struct sk_buff

L2 header

L4 header

IPsec trailer

nh.raw

hh_len

exthdrlen

fraghdrlen

copy

trailer_len

PMTU

IP header

L4 payload

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

L2 header

L4 header

next

len=x
data_len=0

head
data
tail
end

struct sk_buff

next

len=y
data_len=0

L4 payload

L4 header

length

hh_len

fraghdrlen

copy
(x)

PMTU

IP header

L4 payload

L2 header hh_len

fraghdrlen

copy
(y)

PMTU

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

maximum size (PMTU), and the second contains leftover data. ip_append_data cre-
ates as many buffers as necessary based on the PMTU; it happens here that a second
one holds all the remaining payload, and that it is smaller than the PMTU.

We said previously that ip_append_data will not transmit anything; it just creates buff-
ers to be used later for packet fragments. This means that the L4 layer can potentially
invoke ip_append_data again for either of the previous examples and add more data.

Let’s take the second example and show what happens. Since the second buffer is
full, we are forced to allocate a new buffer. This might end up with suboptimal frag-
mentation; it would be better to have every fragment except the last one fill up to the
size of the PMTU.

One simple solution to achieve optimal fragmentation, at this point, is to allocate
another buffer of maximum size, copy the data there from the second buffer, delete the
second buffer, and merge the new data into the new buffer. If there is not enough
space, we can allocate a third buffer. But this approach does not offer good perfor-
mance. It vitiates the essential reason for doing data fragmentation before calling ip_
fragment (shown in Figure 18-1 in Chapter 18), which is to avoid extra memory copies.

Now it should be clear why the MSG_MORE flag introduced in the section “The ip_
append_data Function” can be useful. For example, if in the second example, we
knew a second call would be coming, we would have allocated the second buffer
with the maximum size directly, producing the output in Figure 21-4 (note that the
size of the L2 header hh_len is not included in the PMTU).

If ip_append_data is called again before ip_push_pending_frames, it will first try to fill
in the empty space in the second buffer in Figure 21-4 before allocating a third.

Figure 21-4. Fragmentation without Scatter/Gather I/O, MSG_MORE

IP header

L4 payload

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

L2 header

L4 header

next

len=x
data_len=0

head
data
tail
end

struct sk_buff

next

len=y
data_len=0

L4 payload

L4 header

length

hh_len

fraghdrlen

copy
(x)

PMTU

IP header

L4 payload

L2 header hh_len

fraghdrlen

copy
(y)

PMTU

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 487

Memory allocation and buffer organization for ip_append_data
with Scatter Gather I/O

Sometimes it is actually possible to add data to a fragment even if it has not been
allocated with the maximum size. That is possible when the device supports Scatter/
Gather I/O. This simply means that the L3 layer leaves data in the buffers where the
L4 layer placed it, and lets the device combine those buffers to do the transmission.
The advantage of Scatter/Gather I/O is that it reduces the overhead of allocating
memory and copying data.

Consider this: an upper layer may generate many small items of data in successive
operations and the L4 layer may store them in different buffers of kernel memory.
The L3 layer is then asked to transmit all of these items in one IP packet. Without
Scatter/Gather I/O, the L3 layer has to copy the data into new buffers to make a uni-
fied packet. If the device supports Scatter/Gather I/O, the data can stay right where it
is until it leaves the host.

When Scatter/Gather I/O is in use, the memory area to which skb->data points is
used only the first time. The following chunks of data are copied into pages of mem-
ory allocated specifically for this purpose. Figures 21-5 and 21-6 compare how the
data received by ip_append_data in its second invocation is saved when Scatter/
Gather I/O is enabled, versus when it is disabled:

• Figure 21-5(a) shows memory use after the first call and Figure 21-5(b) shows it
after the second call, when Scatter/Gather I/O is enabled. A buffer that uses
frags is called a paged buffer. Note that the data fragment in Figure 21-5(b) does
not need any header: remember that all data fragments of one sk_buff instance
are associated with the same IP packet. This also implies that X+S1 is still
smaller than the PMTU.

• Figure 21-6(a) shows memory use after the first call and Figure 21-6(b) shows it
after the second call, when Scatter/Gather I/O is disabled.

Some ancillary data structures support Scatter/Gather I/O. Each buffer except the
first (which is allocated in the same way as when there is no support for Scatter/
Gather I/O) is stored in skb_shinfo(skb)->frags. These can be found through point-
ers in the familiar sk_buff structure. As we saw in Chapter 2, each sk_buff structure
includes a field of type skb_shared_info, which can be accessed with the macro skb_
shinfo. This structure can be used to increase the size of the buffer by adding mem-
ory areas that can be located anywhere, not necessarily adjacent to one other. The
nr_frags field helps the IP layer remember how many Scatter/Gather I/O buffers
hang off of this packet. Note that this field counts Scatter/Gather I/O buffers—not IP
fragments, as the name might suggest.

Now we can look at why the kernel needs special support on the device side to use
this kind of buffer representation: to be able to refer to memory areas that are not
contiguous but whose content is supposed to represent a contiguous data fragment,
the device must be able to handle that kind of buffer representation. Note that

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

Figure 21-7 shows the simple example where there is one page that contains two
adjacent memory areas. But the fragments could easily be nonadjacent, either within
a single page or on different pages.

Each element of the frags array is represented by an skb_frag_t structure, which
includes a pointer to a memory page, an offset relative to the beginning of the page,
and the size of the fragment. Note that since the two fragments in Figure 21-7 are
located within the same memory page, their page pointer points to the same memory

Figure 21-5. ip_append_data with Scatter/Gather I/O

IP header

L4 payload

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

L2 header

L4 header

next

len=x
data_len=0

hh_len

fraghdrlen

copy
(x) PMTU

nr_frags=0

. . .

struct skb_frag_t

MAX_SKB_FRAGS

skb_shinfo(skb)

nh.raw

h.raw

(a)

IP header

L4 payload

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

L2 header

L4 header

next

len=x+S1
data_len=S1

hh_len

fraghdrlen

(x)

nr_frags=1

. . .

skb_shinfo(skb)

(b)

page
page_offset=0
size=S1

L4 payload copy
(S1)

PAGE_SIZE

frags

nh.raw

h.raw

frags

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 489

page. The maximum number of fragments is MAX_SKB_FRAGS, which is defined based
on the maximum size of an IP packet (64 KB) and the size of a memory page (which
is defined on a per-architecture basis and whose default value on an i386 is 4 KB).

You can find the definitions of all the previously mentioned structures in include/
linux/sk_buff.h.

Figure 21-7 shows the case where there is only one page, but since there could be
several pages, the elements of the frags array include the page pointer to the proper
page. A fragment cannot span two pages. When the size of a new fragment is bigger

Figure 21-6. ip_append_data without scatter/gather I/O

IP header

L4 payload

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

L2 header

L4 header

next

len=x
data_len=0

hh_len

fraghdrlen

copy
(x) PMTU

nr_frags=0

. . .

Not used

nh.raw

h.raw

(a)

IP header

L4 payload

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

L2 header

L4 header

next

len=x+y
data_len=0

hh_len

fraghdrlen

copy
(y)

PMTU

nr_frags=0

. . .

Not used

(b)

L4 payload

frags

nh.raw

h.raw

frags

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

than the amount of free space in the current page, the fragment is split into two
parts: one goes to the already existent page and fills it, and the second part goes into
a new page.

One important detail to keep in mind is that Scatter/Gather I/O is independent from
IP data fragmentation. Scatter/Gather I/O simply allows the code and hardware to
work on nonadjacent memory areas as if they were adjacent. Nevertheless, each frag-
ment must still respect the limit on its maximum size (the PMTU). This means that
even if PAGE_SIZE is bigger than the PMTU, a new sk_buff will be created when the
data in sk_buff (pointed to by skb->data) plus the ones referenced with frags reaches
the PMTU.

Note also that the same page can hold fragments of data for different IP fragments, as
shown in Figure 21-8. Each fragment of data added to the memory page increments
the page’s reference count. When the IP fragments are finally sent out and the data
fragments in the page are released, the reference count is decreased accordingly and
the memory page is released (see skb_release_data, which is called indirectly by
kfree_skb).

The sock structure on the top left of Figure 21-8 includes both a pointer to the last
page (sk_sndmsg_page) and an offset (sk_sndmsg_off) inside that page where the next
data fragment should be placed.

Figure 21-7. Multiple fragments with Scatter/Gather I/O

IP header

L4 payload

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

L2 header

L4 header

next

len=x+S1+S2
data_len=S1+S2

hh_len

fraghdrien

copy
(x)

nr_frags=2

. . .

skb_shinfo(skb)

page
page_offset=0
size=S1

L4 payload S1

PAGE_SIZE
page
page_offset=S1
size=S2

L4 payload S2
MAX_SKB_FRAGS

struct
skb_frag_t

frags

X+S1+S2 <= PMTU

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 491

Key routines for handling fragmented buffers

To understand the functions described in this chapter and the ones in Chapter 22,
you need to be familiar with the key buffer manipulation routines introduced in
Chapter 2, and the following ones:

skb_is_nonlinear
Returns true when the buffer is fragmented (i.e., skb->data_len is non-null).

skb_headlen
Given a fragmented buffer, returns the amount of data in the main buffer (i.e., it
does not account for the frags fragments nor does it take the frag_list list into
account). Do not mistake skb_headlen for skb_headroom: the latter returns the
free space between skb->head and skb->data.

skb_pagelen
Size of a fragmented buffer; it accounts for the data in the main buffer (skb_
headlen) and the data in the frags fragments, but it does not consider any buffer
linked to the frag_list list.

Figure 21-8. Memory page shared between IP fragments

IP header

L4 payload
(1 of 4)

sk_write_queue

struct sock

head
data
tail
end
len = X+S1
data_len = S1

struct sk_buff

L2 header

L4 header

next

nr_frags=1

. . .

page
page_offset=0
size=S1 L4 payload

(2 of 4)
S1

PAGE_SIZE

L4 payload
(4 of 4)

S2

sk_sndmsg_page
sk_sndmsg_off=S1+S2

IP header

L4 payload
(3 of 4)

head
data
tail
end
len = Y+S2
data_len = S2

struct sk_buff

L2 header

next

nr_frags=1

. . .

skb_shinfo(skb)

page
page_offset=S1
size=S2

skb_shinfo(skb)

Y

x

frags

frags

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

Figure 21-9 shows a couple of examples. Note that skb->len includes the data frag-
ments in frags (updated in ip_append_data) and in frag_list (updated in ip_push_
pending_frames). I have omitted the details about the protocol headers because they
are not necessary for our discussion.

Figure 21-9. Key functions for fragmented buffers: (a) Scatter/Gather; (b) no Scatter/Gather

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

next

len=S+S1+S2+S3
data_len=S1+S2+S3

skb_headroom(skb)

S

frag_list
nr_frags=2

. . .

(a)

skb_shinfo(skb)

S1

S2

page
page_offset=0
size=S1
page
page_offset=S1
size=S2

struct sk_buff

len=S3
skb_headlen(skb)=S
skb_pagelen(skb)= S+S1+S2
skb_tailroom(skb)=0

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

next

len=S+S1
data_len=S1

skb_headroom(skb)

S

frag_list
nr_frags=0

. . .

(b)

struct sk_buff

len=S1

skb_headlen(skb)=S
skb_pagelen(skb)= S

frags

skb_tailroom(skb)

frags

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 493

I also would like to stress this point once more: the data in the frags vector is an
extension to the data in the main buffer, and the data in frags_list represents inde-
pendent buffers (i.e., each one will be transmitted independently as a separate IP
fragment).

Further handling of the buffers

Whenever ip_append_data allocates a new sk_buff structure to handle a new data
fragment (which will become a new IP fragment), it queues the fragment onto a
queue called sk_write_queue that is associated with ip_append_data’s input socket sk.
This queue is the output of the function. Later functions need only add the IP head-
ers to the data fragments and push them down to the L2 layer (to the dst_output rou-
tine, to be exact).

The sk_write_queue list is managed as a First In, First Out (FIFO) queue, as follows:

• New elements (fragments) are added at the tail. It follows that the first element is
the one that includes external headers such as IPsec (if any) and the L4 header
(or part of it, if the PMTU is relatively small).

• A new element is created and added to the list only when the size of the last frag-
ment in sk_write_queue has reached the maximum size (maxfraglen). (The “size”
here refers to the data being transmitted as part of that packet, which is the gray
portions of Figure 21-5. It is not the size of the buffer, which might have been
allocated to be larger than the available data to accommodate later data.) This is
because ip_append_data never creates a fragment bigger than the PMTU associ-
ated with the route. When Scatter/Gather I/O is used, new chunks of data are
stored in memory pages instead of the area pointed to by skb->data.

Now that we know what kind of output ip_append_data produces, we can look at the
code. Once again, keep in mind that the L4 layer can call ip_append_data several
times before flushing the buffers with ip_push_pending_frames.

Let’s suppose that UDP issued three calls to ip_append_data with the following pay-
load sizes: 300, 250, and 200 bytes. Let’s also assume the PMTU is 500 bytes. It
should be clear that if UDP had sent a single payload of 750 bytes, the IP layer would
have created a first fragment of 500 bytes and a second one of 250 bytes.* However,
the application using that UDP socket might actually want to send three distinct IP
packets of sizes 300, 250, and 200 bytes. ip_append_data can be told which way to
behave. If the application behind the UDP socket prefers to obtain higher through-
put, it uses the MSG_MORE flag to tell ip_append_data to create maximum-size frag-
ments (500 bytes) and the result would be a first fragment of 500 bytes and a second
one of 250 bytes. If it does not signal the preference for such buffering, UDP trans-
mits each payload individually (see the section “Putting Together the Transmission
Functions”).

* I’m ignoring the header overhead for the sake of simplicity.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

Setting the context

The first block of the ip_append_data function initializes some local variables and
possibly changes some of the input parameters. The exact work done depends on
whether the function is creating the first IP fragment (in which case the sk_write_
queue queue would be empty) or a later one within a packet. With the first element,
ip_append_data initializes inet->cork and inet with fields that will be used by the fol-
lowing invocation of ip_append_data (and by ip_push_pending_frames).

Among the information saved is the IP options and the routing table cache entry.
Caching them saves time during subsequent calls to ip_append_data for the same
packet, but is not strictly necessary because ip_append_data’s caller will pass the data
again in all of the following calls.

 if (skb_queue_empty(&sk->sk_write_queue)) {
 opt = ipc->opt;
 if (opt) {
 if (inet->cork.opt == NULL) {
 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40,
 sk->sk_allocation);
 if (unlikely(inet->cork.opt == NULL))
 return –ENOBUFF;
 }
 memcpy(inet->cork.opt, opt,
 sizeof(struct ip_options)+opt->optlen);
 inet->cork.flags |= IPCORK_OPT;
 inet->cork.addr = ipc->addr;
 }
 dst_hold(&rt->u.dst);
 inet->cork.fragsize = mtu = dst_pmtu(&rt->u.dst);
 inet->cork.rt = rt;
 inet->cork.length = 0;
 sk->sk_sndmsg_page = NULL;
 sk->sk_sndmsg_off = 0;
 if ((exthdrlen = rt->u.dst.header_len) != 0) {
 length += exthdrlen;
 transhdrlen += exthdrlen;
 }
 } else {
 rt = inet->cork.rt;
 if (inet->cork.flags & IPCORK_OPT)
 opt = inet->cork.opt;
 transhdrlen = 0;
 exthdrlen = 0;
 mtu = inet->cork.fragsize;
 }

To understand the rest of the function, you need to understand the meaning of the
following key variables. Some of them are received in input by ip_append_data; refer
to the section “The ip_append_data Function” for their descriptions. It can also be
useful to refer back to Figures 21-2 through 21-8.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 495

rt
Routing table cache entry used to transmit the IP datagram. This structure
includes several fields, such as the next hop gateway, the egress device, and the
PMTU.

mtu
The PMTU associated with rt.

opt
IP options to add to the IP header. When this variable is NULL, there are no
options.

exthdrlen (external header len)
transhdrlen (transport header len)

When the L4 layer invokes ip_append_data it passes these two parameters
because they need to be taken into account when allocating buffers. transhdrlen
is passed directly; exthdrlen is retrieved indirectly via rt. Examples of external
headers are the ones used by the protocols in the IPsec suite, such as the Authen-
tication Header (AH) and the Encapsulation Security Payload (ESP). Examples
of transport headers are those of the common TCP, UDP, and ICMP protocols.

The way length, exthdrlen, and transhdrlen are initialized may be confusing. I’ll
explain why their values are changed under some conditions.

As we have already seen, only the first fragment needs to include the transport
header and the optional external headers. Because of this, transhdrlen and exthdrlen
are zeroed after creating the first fragment. As we will see, this can be done right at
the beginning of the function if sk_write_queue is not empty, or inside the big while
loop before starting a second iteration.

Because of this initialization, the value of transhdrlen is used by the function to dis-
tinguish between the first fragment and the following ones:

• transhdrlen ! = 0 means ip_append_data is working on the first fragment.

• transdhrlen = 0 means ip_append_data is not working on the first fragment.

The same logic cannot be applied to exthdrlen, because the L4 header is needed for
every IP packet, but many have no external headers because they don’t use special
features such as IPsec.

The variables initialized here have several important uses later:

• When deciding how much data to copy into each data fragment, the function
needs to take into account that the first fragment includes the L4 header and
optional external headers, and therefore that less space is available for the pay-
load (see Figure 21-2).

• When deciding how big to allocate the buffers, the function needs to take into
account the extra space needed by the external headers (if any).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

• When initializing the nh.raw and h.raw pointers, the function needs to know
whether there are external headers and where they are located to correctly com-
pute the offsets within the packet.

Getting ready for fragment generation

As we will see later, the amount of data copied into each generated fragment may
change from fragment to fragment. However, each fragment always includes a fixed
portion for the L2 and L3 headers. Figures 21-2 through 21-8 all show this reserved
portion.

Before proceeding, the function defines the following three local variables:

 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;

hh_len is the length of the L2 header. When reserving space for all the headers that
precede IP in the buffer, ip_append_data needs to know how much space is needed
by the L2 header. This way, when the device driver initializes its header, it will not
need to reallocate space or move data inside the buffer to make space for the L2
header.

fraghdrlen is the size of the IP header, including the IP options, and maxfraglen is the
maximum size of an IP fragment based on the route PMTU.

As explained in the section “Packet Fragmentation/Defragmentation” in Chapter 18,
the maximum size of an IP packet (header plus payload) is 64 KB. This applies not
just to individual fragments, but also to the complete packet into which those frag-
ments will be reassembled at the end. Thus, ip_append_data keeps track of all the
data received for a particular packet and refuses to go over the 64 KB (0xFFFF) limit.

 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
 return -EMSGSIZE;
 }
 inet->cork.length += length;

The last initialization is the checksum mode, the value of which is saved in skb->ip_
summed. See the section “L4 checksum.”

Copying data into the fragments: getfrag

ip_append_data can potentially be used by any L4 protocol. One of its tasks is to
copy the input data into the fragments it creates. Different protocols may need to
apply different operations to the data copied. One example of such a specialized
operation is the computation of the L4 checksum, which is not compulsory for some
L4 protocols. Another distinguishing factor could be the origin of the data. This is
user space for locally generated packets, and kernel space for forwarded packets or
packets generated by the kernel (e.g., ICMP messages).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 497

Instead of having one shared function that takes care of all the possible combina-
tions of protocols and optional operations to apply, it is easier and cleaner to have
multiple small functions tailored to each protocol’s need. To keep ip_append_data as
generic as possible, it allows each protocol to specify the function to use to copy the
data by means of the input parameter getfrag. In other words, ip_append_data uses
getfrag to copy the input data into the buffers; the result of this copying consists of
the memory areas labeled “L4 payload” in Figures 21-2 through 21-9.

Table 21-1 lists the functions used by the most common L4 protocols that invoke ip_
append_data. Another function, ip_reply_glue_bits, is used by ip_send_reply (see
the section “Key Functions That Perform Transmission”).

getfrag receives four input parameters (from, to, offset, and len), and simply copies
len bytes from from to to+offset, taking into account that from could be a pointer
into user-space memory and thus has to be handled accordingly (it may require
translation from user to kernel memory). It also takes care of the L4 checksum: while
copying data into the kernel buffer, it updates skb->csum according to the skb->ip_
summed configuration.

In a situation where the origin of the getfrag function’s input—user space versus
kernel—is always the same, the function does not need to distinguish between the
two cases. For example:

• icmp_glue_bits is used by the ICMP protocol when transmitting a message.
Because the ICMP message is either built by the kernel or derived from another
ICMP message previously received (which therefore is in kernel memory), icmp_
glue_bits knows the data is in kernel space.

• When an application issues a sendmsg system call on a UDP or raw IP socket, the
kernel ends up calling ip_append_data, passing ip_generic_getfrag as the
getfrag function. In this case, the input data is known to always come from user
space.

Let’s take a closer look at the generic function ip_generic_getfrag:

int
ip_generic_getfrag(void *from, char *to, int offset, int len, int odd,
 struct sk_buff *skb)
{
 struct iovec *iov = from;

Table 21-1. getfrag routines

Protocol API

ICMP icmp_glue_bits

UDP ip_generic_getfrag

RAW IP ip_generic_getfrag

TCP (via ip_send_reply) ip_reply_glue_bits

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

 if (skb->ip_summed == CHECKSUM_HW) {
 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
 return -EFAULT;
 } else {
 unsigned int csum = 0;
 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
 return -EFAULT;
 skb->csum = csum_block_add(skb->csum, csum, odd);
 }
 return 0;
}

The section “sk_buff structure” in Chapter 19 explained the meaning of CHECKSUM_HW,
and how skb->csum and skb->ip_summed are used. In the section “L4 checksum,” we
will see how ip_append_data decides whether the L4 checksum should be computed
in hardware or software (or not computed at all). In the previous snapshot, you can
see that ip_generic_getfrag uses two different functions to copy the data (memcpy_
fromiovecend and csum_partial_copy_fromiovecend), based on whether the L4 check-
sum is going to be computed in hardware or must be computed in software.

Buffer allocation

ip_append_data chooses the size of the buffers to allocate based on:

Single transmission versus multiple transmissions
If ip_append_data is told there will be other transmission requests soon after (if
MSG_MORE is set), it could make sense to allocate a bigger buffer so that data from
future transmissions can be merged into the same buffer. See the earlier section
“Basic memory allocation and buffer organization for ip_append_data” for fur-
ther explanation.

Scatter/Gather I/O
If the device can handle Scatter/Gather I/O, fragments could be more efficiently
stored into memory pages. See the earlier section “Memory allocation and buffer
organization for ip_append_data with Scatter Gather I/O” for further explanation.

The following piece of code decides the size of the buffer to allocate (alloclen) based
on the two points just stated. The buffer is created with the maximum size (based on
the PMTU) if more data is expected and if the device can’t handle Scatter/Gather I/O.
If either of those conditions is not true, the buffer is made just large enough to hold
the current data.

 if ((flags & MSG_MORE) &&
 !(rt->u.dst.dev->features&NETIF_F_SG))
 alloclen = mtu;
 else
 alloclen = datalen + fragheaderlen;

 if (datalen == length)
 alloclen += rt->u.dst.trailer_len;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 499

Note that when ip_append_data generates the last fragment, it needs to take into
account the presence of trailers (such as for IPsec).

datalen is the amount of data to be copied into the buffer we are allocating. Its value
was previously initialized based on three factors: the amount of data left (length), the
maximum amount of data that fits into a fragment (fraghdrlen), and an optional
carry from the previous buffer (fraggap).

The last component, fraggap, requires an explanation. With the exception of the last
buffer (which holds the last IP fragment), all fragments must respect the rule that the
size of the payload of an IP fragment must be a multiple of eight bytes. For this rea-
son, when the kernel allocates a new buffer that is not for the last fragment, it may
need to move a piece of data (whose size ranges from 0 to 7 bytes) from the tail of the
previous buffer to the head of the newly allocated one. In other words, fraggap is
zero unless all of the following are true:

• The PMTU is not a multiple of eight bytes.

• The size of the current IP fragment has not reached the PMTU yet.

• The size of the current IP fragment has passed the highest multiple of eight bytes
that is less than or equal to the PMTU.

Figure 21-10 shows an example where fraggap is nonzero and alloclen has been ini-
tialized to mtu. Note that when the kernel moves the data from the current buffer,
skb_prev, to the new one, skb, it also needs to adjust the L4 checksum on both skb_
prev and skb (see the section “L4 checksum”). The figure shows the buffers as two
flat memory areas for simplicity, but they both could be paged (as in Figure 21-5)
and nonpages (as in Figure 21-6): the function used to move the fraggap area skb_
copy_and_csum_bits can handle both formats. The same function also updates the L4
checksums.

Figure 21-10. Respecting the 8-byte boundary rule on IP fragments

skb_prev

maxfraglen

mtu (PMTU)

less than
8 bytes

skb

hh_len fraghdrlen

fraggap

length

datalen

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

Main loop

The while loop that potentially creates extra buffers may look more complex than it
actually is. Figure 21-11 summarizes its job.

Initially, the value of length represents the amount of data that the ip_append_data’s
caller wants to transmit. However, once the loop is entered, its value represents the
amount of data left to handle. This explains why its value is updated at the end of
each loop and why ip_append_data loops until length becomes zero.

Figure 21-11. ip_append_data function: main loop

Is
sk_write_queue

empty?

NETIF_F_SG?

Copy data into the buffer

Is there any
data left?

Has the buffer
been filled in?

Copy data into the page

Is page allocated?

Allocate page

NETIF_F_SG?

MSG_MORE?

Allocate buffer with max size

Allocate buffer with exact size

Return

Yes

Yes

Yes

No

No

NoYes

Yes

No

No

No

Yes

Yes

Buffer allocation

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 501

We already know that MSG_MORE indicates whether the L4 layer expects more data,
and that NETIF_F_SG indicates whether the device supports Scatter/Gather I/O. These
settings have no effect on the first task within the loop, which is to allocate and ini-
tialize sk_buff structures within the first if block inside the loop. Also, the first data
fragment is always copied into the sk_buff area (see Figure 21-5(a) and
Figure 21-6(a)).

ip_append_data allocates a new sk_buff structure and queues it to sk_write_queue
every time one of the following occurs:

• sk_write_queue is empty (that is, for the first fragment).

• The last element of sk_write_queue has been filled in completely.

The piece of code that precedes the loop takes care of the first case by forcing alloca-
tion when the queue is empty:

 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
 goto alloc_new_skb;

The first part inside the loop handles the second case. First it initializes copy to the
amount of space that is left in the current IP fragment: mtu – skb->len. If the data left
to add (length) is greater than the amount of free space, copy, there is a need for one
more IP fragment. In that case, copy is updated. To enforce the 8-byte boundary rule,
copy is lowered to the closest 8-byte boundary. At this point, the kernel can decide
whether it needs to allocate a new buffer (i.e., a new IP fragment). This is the logic
associated with the if condition that compares copy against 0:

copy > 0
This means that skb (the last element of sk_write_queue) has some space avail-
able. ip_append_data first uses that space. If the space left was not sufficient (i.e.,
length is greater than the space available), the loop will iterate again, and this
time it will fall into the next category (see Figures 21-3 and 21-4).

copy = 0
This means that it is time to allocate a new sk_buff because the last one has been
filled in completely. In this case, the code inside the if block allocates a new
buffer, copies the input data into the buffer, and queues the new fragment to sk_
write_queue. The following fragments will be either merged to the previous one
or copied into memory pages allocated specifically for Scatter/Gather I/O.

copy < 0
This is a special case of the previous one. When copy is negative, it means that
some data must be deleted from the current IP fragment and moved to the new
one. See the earlier section “Buffer allocation” for more details.

Every time a new loop ends, the function needs to move ahead the pointer to the
data to copy (offset) and to update the amount of data left to copy (length). Once
the fragment has been queued with _ _skb_queue_tail, the function may need to
restart the loop if any data is left.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

L4 checksum

We saw in the section “net_device structure” in Chapter 19 that the L3 and L4
checksums can be computed by the egress NIC when its device driver advertises that
capability by setting the right flags in dev->features. In particular, skb->ip_summed
(and eventually skb->csum) must be initialized to show whether the egress device pro-
vides support for L4 hardware checksumming. Refer to the aforementioned section
for more details.

Whether hardware checksumming can be used is decided when ip_append_data is
called for the first fragment (i.e., transhdrlen is nonzero). Hardware checksumming
is applicable only when all of the following conditions are met:

• The IP packet built by ip_append_data is not going to be fragmented (i.e., the
total data fed to ip_append_data does not exceed the PMTU).

• The egress device supports hardware checksumming.

• There are no transformation headers (i.e., protocols of the IPsec suite). Such
transformations can, for example, compress or encrypt the data the NIC is sup-
posed to read when computing the checksum. These transformations also insert
additional headers between the IP header and the L4 header. This means that L4
hardware checksumming and IPsec transformations cannot coexist.

Hardware checksumming might also have to be turned off under other conditions.

The first bullet in the previous list requires an explanation. Hardware checksum-
ming does not work when the IP packet is fragmented (as in the example in
Figure 21-3). However, because ip_append_data can be called several times before the
actual transmission takes place (i.e., before ip_push_pending_frames is called), the IP
layer may not know that fragmentation is required when ip_append_data is first
called and therefore the initial decision is based only on the input data (length): if
fragmentation is required based on length, hardware checksumming is not used.

 if (transhdrlen &&
 length + fragheaderlen <= mtu &&
 rt->u.dst.dev->features&(NETIF_F_IP_CSUM|NETIF_F_NO_CSUM|NETIF_F_HW_CSUM) &&
 !exthdrlen)
 csummode = CHECKSUM_HW;

The local variable csummode initialized here will be assigned to skb->ip_summed on the
first buffer. If there is a need for fragmentation and ip_append_data allocates more
buffers accordingly (one for each IP fragment), skb->ip_summed on the subsequent
buffers will be set to CHECKSUM_NONE. When getfrag is called to copy the data into the
buffers, it also takes care of the L4 checksum if it is passed a buffer with skb->ip_
summed initialized to CHECKSUM_NONE (see the section “Copying data into the frag-
ments: getfrag”).

Note that ip_append_data checksums only the L4 payloads. In the section “Changes
to the L4 Checksum” in Chapter 18, we saw that the L4 checksum must include the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 503

L4 header as well as the so-called pseudoheader. If ip_push_pending_frames is called
by the L4 layer when sk_write_queue has only one IP fragment and the egress device
supports hardware checksumming, the L4 protocol only needs to initialize skb->csum
to the right offset and the L4 header’s checksum field with the pseudoheader check-
sum, as we saw in the section “sk_buff structure” in Chapter 19. If instead the egress
device does not support hardware checksumming, or the latter is supported but can-
not be used because sk_write_queue has more than one IP fragment, the L4 check-
sum must be computed in software. In this case, getfrag computes the partial
checksums on the L4 payloads while copying data into the buffers, and the L4 proto-
col will combine them later to get the value to put into the L4 header. See the sec-
tion “Putting Together the Transmission Functions” to see how UDP takes care of
the L4 checksum before invoking ip_push_pending_frames.

For an example of how a device driver instructs the NIC to compute the L4 hard-
ware checksum when required, see the boomerang_start_xmit routine in drivers/net/
3c59x.c and cp_start_xmit in drivers/net/8139cp.c. In both cases, you can also see
how a paged skb is handled when setting up the DMA transfers.

The ip_append_page Function
We saw in the section “Copying data into the fragments: getfrag” that a transmis-
sion request from user space, with a call like sendmsg, requires a copy to move the
data to transmit from user space to kernel space. This copy is made by the getfrag
function passed as an input parameter to ip_append_data.

The kernel provides user-space applications with another interface, sendfile, which
allows applications to optimize the transmission and make the data copy. This inter-
face has been widely publicized as “zero-copy” TCP/UDP.

The sendfile interface can be used only when the egress device supports Scatter/
Gather I/O. In this case, the logic implemented by ip_append_data can be simplified
so that no copy is necessary (i.e., the data the user asked to transmit is left where it
is). The kernel just initializes the frag vector with the location of the data buffer
received in input, and takes care of the L4 checksum if needed. This simplified logic
is what is provided by ip_append_page. While ip_append_data receives the location of
the data with a void* pointer, ip_append_page receives the location as a pointer to a
memory page and offset within it, which makes it straightforward to initialize one
entry of frag.

The only piece of code that differs from ip_append_data with regard to Scatter/Gather
I/O is the following:

 i = skb_shinfo(skb)->nr_frags;
 if (len > size)
 len = size;
 if (skb_can_coalesce(skb, i, page, offset)) {
 skb_shinfo(skb)->frags[i-1].size += len;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

 } else if (i < MAX_SKB_FRAGS) {
 get_page(page);
 skb_fill_page_desc(skb, i, page, offset, len);
 } else {
 err = -EMSGSIZE;
 goto error;
 }

 if (skb->ip_summed == CHECKSUM_NONE) {
 unsigned int csum;
 csum = csum_page(page, offset, len);
 skb->csum = csum_block_add(skb->csum, csum, skb->len);
 }

When adding a new fragment to a page, ip_append_page tries first to merge the new
one with the previous fragment already in the page. To do that, it first checks, by
means of skb_can_coalesce, whether the point where the new one should be added
matches with the point where the last one ends. If merging is possible, all it has to do
is update the length of the previous fragment already in the page to include the new
data.

When merging is not possible, the function initializes the new fragment with skb_
fill_page_desc. In this case, it also increments the reference count on the page with
get_page. The reference count must be incremented because ip_append_page uses the
page it receives as input, and this page could potentially be used by someone else,
too.

ip_append_page is currently used by UDP only. We said that TCP does not use the
ip_append_data and ip_push_pending_frames functions because it implements the
same logic in tcp_sendmsg. The same applies to this zero-copy interface: TCP does
not use ip_append_page, but implements the same logic in do_tcp_sendpage. Unlike
UDP, TCP allows the application to use the zero-copy interface only if the egress
device supports L4 hardware checksumming.*

The ip_push_pending_frames Function
As explained near the beginning of this chapter, ip_push_pending_frames works in
tandem with ip_append_data and ip_append_page. When the L4 layer decides it is
time to wrap up and transmit the fragments queued to sw_write_queue through ip_
append_data or ip_append_page (either because of some protocol-specific criterion or
because it is explicitly told by the higher-level application to send the data), it simply
calls ip_push_pending_frames:

int ip_push_pending_frames(struct sock *sk)

* Zero-copy can also be used if the device does not require an L4 checksum. See the description of NETIF_F_
NO_CSUM in Chapter 19.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 505

The function receives a sock structure in input. It needs access to several fields, nota-
bly the pointer to the socket’s sk_write_queue structure.

We saw in the section “Memory allocation and buffer organization for ip_append_
data with Scatter Gather I/O” that the data in the packet is organized differently in
the sk_buff structure, depending on whether Scatter/Gather I/O is used.

The code in this half queues all the buffers that follow the first one into a list named
frag_list that is part of the first element, as shown in Figure 21-12, and updates the
len and data_len fields of the buffer at the head of the list to account for all of the
fragments. This last operation is performed because it is useful to the ip_fragment
routine that comes later in the code path (see Figure 18-1 in Chapter 18, and see
Chapter 22). As buffers are queued onto frag_list, they are cleared off of sk_write_
queue. It requires very little time to create the new list (no data is copied; only point-
ers are changed) and the result is to free the sk_write_queue list, which therefore
allows the L4 layer to consider the data transmitted. The data is now out of the
hands of the L4 layer and completely under the care of the IP layer.

Remember, as you look at Figure 21-12, that nr_frags reflects the number of Scatter/
Gather I/O buffers, and not the number of IP fragments. Two points are worth men-
tioning about Figure 21-12:

• The input to ip_push_pending_frames shown in the example in Figure 21-12(a)
reflects the no Scatter/Gather case (i.e., no use of the frags vector). With Scat-
ter/Gather, you would have a list of buffers like the one in Figure 21-7.

• The skb_shinfo block is shown only on the buffer in Figure 21-12(b) that uses it,
but it is there for all the other sk_buff structures, too.

After that, it is time to fill in the IP header. If there are multiple fragments, only the
first is going to have its IP header filled in by ip_push_pending_frames; the others will
be taken care of later (we will see how in Chapter 22).

The setting of the TTL field of the IP header (iph->ttl) depends on whether the des-
tination address is multicast. Usually, a smaller value is used for multicast traffic
because multicasting is most often used to deliver streaming (and sometimes interac-
tive) data such as audio and video that can become useless if it is received too late.
The default values assigned to the TTL field for multicast and unicast packets are 1
and 64, respectively.*

 if (rt->rt_type == RTN_MULTICAST)
 ttl = inet->mc_ttl;
 else
 ttl = ip_select_ttl(inet, &rt->u.dst);
 ...
 iph->ttl = ttl;

* Either value can be changed with ip_setsockopt, but only the unicast value can be set with the /proc interface
(see the section “Tuning via /proc Filesystem” in Chapter 23).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

If there are IP options in the header, ip_options_build is used to take care of them.
The last input parameter to ip_options_build is set to zero to tell the API that it is
filling in the options of the first fragment. This distinction is needed because the first
fragment’s IP options are treated differently, as we saw in the section “IP Options” in
Chapter 18. The length of the header is also updated to reflect the length of the
options.

 if (inet->cork.flags & IPCORK_OPT)
 opt = inet->cork.opt;
 ...
 iph->ihl = 5;
 if (opt) {
 iph->ihl += opt->optlen>>2;
 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
 }

Figure 21-12. (a) Before and (b) after removing buffers from the sk_write_queue queue

IP header

L4 payload

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

L2 header

L4 header

next

IP header

L4 payload

head
data
tail
end

struct sk_buff

L2 header

next

IP header

L4 payload

head
data
tail
end

struct sk_buff

L2 header

next

(a)

IP header

L4 payload

sk_write_queue

struct sock

head
data
tail
end

struct sk_buff

L2 header

L4 header

next

IP header

L4 payload

head
data
tail
end

struct sk_buff

L2 header

next

IP header

L4 payload

head
data
tail
end

struct sk_buff

L2 header

next

(b)

frag_list
nr_frag=0

skb_shinfo(skb)

Initialized by ip_push_pending_frame

Initialized by ip_push_pending_frame’s caller

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 507

The Don’t Fragment flag IP_DF of the IP header is set when the socket’s configura-
tion enforces the use of that flag on all packets (i.e., IP_PMTUDISC_DO), and when the
route rt has PMTU enabled (i.e., IP_PMTUDISC_WANT) and not locked (see the defini-
tion of ip_dont_fragment):*

if (inet->pmtudisc != IP_PMTUDISC_DO)
 skb->local_df = 1
 ...
 if (inet->pmtudisc == IP_PMTUDISC_DO ||
 skb->len <= dst_mtu(&rt->u.dst) &&
 ip_dont_fragment(sk, &rt->u.dst)))
 df = htons(IP_DF);
 ...
 iph->frag_off = df;

The value just assigned to the df variable, reflecting the packet’s Don’t Fragment sta-
tus, determines in turn how the IP packet ID is set. The section “Selecting the IP
Header’s ID Field” in Chapter 23 goes into more detail on how that ID is computed.

 if (!df) {
 _ _ip_select_ident(iph, &rt->u.dst, 0);
 } else {
 iph->id = htons(inet->id++);
 }

skb->priority is used by Traffic Control to decide which one of the outgoing queues
to enqueue the packet in. See the similar initialization by ip_queue_xmit in the sec-
tion “Building the IP header.”

 iph->version = 4;
 iph->tos = inet->tos;
 iph->tot_len = htons(skb->len);
 iph->protocol = sk->sk_protocol;
 iph->saddr = rt->rt_src;
 iph->daddr = rt->rt_dst;
 ip_send_check(iph);
 skb->priority = sk->sk_priority;
 skb->dst = dst_clone(&rt->u.dst);

Before passing the buffer to dst_output to complete the transmission, the function
needs to ask Netfilter permission to do so. Note that Netfilter is queried only once
for all the fragments of a packet. In an earlier version of the kernel (2.4), Netfilter
was queried for each fragment. This gave Netfilter the chance to filter IP packets with
a higher granularity, but it also forced Netfilter to defragment and refragment pack-
ets in case there were filters that examined the L4 or higher levels. The overhead was
judged too burdensome for the value it offered.

* The PMTU is one of the metrics that can be assigned to routes. When a metric is locked, it cannot be changed
by protocol events. Metrics are introduced in Chapters 30 and 36.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

508 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

Note that when dst_input is passed a list of sk_buff buffers (as opposed to a single
buffer), as shown in Figure 21-12(b), only the first one gets its IP header initialized.
We will see in Chapter 22 how such a list is taken care of by ip_fragment.

 err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
 skb->dst->dev, dst_output);

Before returning, the function clears the IPCORK_OPT field, which invalidates the con-
tents of the cork structure. This is because later packets to the same destination reuse
the cork structure, and the IP layer needs to know when old data should be thrown
away.

Putting Together the Transmission Functions
To see how the functions we’ve been examining, ip_append_data and ip_push_
pending_frames, work together, let’s focus on a function called by the UDP layer,
udp_sendmsg, and see how it calls them.

int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 size_t len)
{

 struct udp_opt *up = udp_sk(sk);

 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;

 err = ip_append_data(sk, ip_generic_getfrag, msg->msg_iov, ulen,
 sizeof(struct udphdr), &ipc, rt,
 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
 if (err)
 udp_flush_pending_frames(sk);
 else if (!corkreq)
 err = udp_push_pending_frames(sk, up);

The local flag corkreq is initialized based on multiple factors, and will be passed to
ip_append_data to signal whether buffering should be used. Among those factors are:

MSG_MORE
This flag can be set or cleared individually on each transmission request.

corkflag (UDP_CORK)
This is applied once to a socket and remains active until explicitly disabled.

These two flags have a comparable purpose. After some discussion over which was
the best one, in the end both of them were made available in the kernel.

udp_sendmsg first calls ip_append_data, and then forces the immediate transmission of
the data with udp_push_pending_frames only if corkreq is false. In case ip_append_data
failed for any reason, udp_sendmsg flushes the queue with udp_flush_pending_frames,
which is a wrapper for the IP function ip_flush_pending_frames.

Figure 21-13 shows the internals of udp_push_pending_frames. Note how the L4
checksum is handled according to the logic we saw in the section “L4 checksum.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Key Functions That Perform Transmission | 509

For an example of how to use ip_append_page, you can take a look at udp_sendpage.

Figure 21-13. udp_push_pending_frames function

Number of IP
fragments in

sk_write_queue

ip_push_pending_frames

Copy skb -> csum into the
UDP header

Add pseudo-header
checksum to skb -> csum

Compute the checksum on
the UDP header and payload

and save it in skb -> csum

Compute the checksum on UDP
header and payload and save it

in skb -> csum

skb -> ip_summed

Add the checksum on the
UDP header to skb -> csum

skb ip_summed

Initialize skb -> csum
offset

Compute the checksum on UDP
header and payload and copy it

into the UDP header

Compute the pseudo-header
checksum and copy it into

the UDP header

Is L4
checksum disabled

on the socket?

Initialize UDP header
on skb

Get pointer skb to the first
buffer in sk_write_queue

Yes

>11

No

CHECKSUM_NONE CHECKSUM_NONE

CHECKSUM_HW CHECKSUM_HW

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 21: Internet Protocol Version 4 (IPv4): Transmission

Raw Sockets
It is possible for raw sockets (sockets using raw IP) to include the IP header in the
data they pass to the IP layer. This means that the IP layer can be asked to send a
piece of data that already includes an initialized IP header. To do this, raw IP uses
the IP_HDRINCL (header included) option, which can be set, for instance, with the
setsockopt system call (see the ip_setsockopt routine).

When this option is set, neither ip_push_ pending_frames nor ip_queue_xmit is used.
Raw IP directly invokes dst_output instead. See the raw_sendmsg and raw_send_hdrinc
functions for examples.

Interface to the Neighboring Subsystem
As shown in Figure 18-1 in Chapter 18, transmissions end with a call to ip_finish_
output. The latter is a simple wrapper for a Netfilter hook point. Note that ip_
finish_output does not follow the naming convention do_something + do_something_
finish, but instead the convention do_something + do_something2. ip_finish_output2
is described in the section “Interaction Between Neighboring Protocols and L3
Transmission Functions” in Chapter 27.

int ip_finish_output(struct sk_buff *skb)
{
 struct net_device *dev = skb->dst->dev;

 skb->dev = dev;
 skb->protocol = _ _constant_htons(ETH_P_IP);

 return NF_HOOK(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
 ip_finish_output2);
}

When everything is finally in place (including the L2 header), the dev_queue_xmit
function is called (via hh->hh_output or dst->neighbour->output) to do the “hard job”
of transmission. We already discussed in detail how that function works in
Chapter 11.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

511

Chapter 22 CHAPTER 22

Internet Protocol Version 4
(IPv4): Handling

Fragmentation

Fragmentation and defragmentation are complex tasks because of the variety of
inputs that the IP layer of a host can receive both when fragmenting and when
defragmenting a packet. We have seen much of the work that goes into fragmenta-
tion as part of the functions shown in previous chapters on IPv4. This chapter
describes the ip_fragment function, which is defined in net/ipv4/ip_output.c, where
all of these efforts reach their final culmination and result in separate packets ready
to transmit. This chapter also describes the corresponding ip_defrag function,
defined in net/ipv4/ip_fragment.c, where incoming fragments are reassembled into a
packet prior to being passed to the L4 layer via ip_local_deliver. Helper functions
are described in each section as well.

These two functions can be used by other subsystems besides IPv4. For example,
Netfilter uses them when it is forced to defragment (and refragment) an IP packet to
be able to access header fields above the L3 layer. This is necessary mostly for for-
warded packets and was discussed in the section “The ip_push_pending_frames
Function” in Chapter 21.

How does the IP layer recognize that a packet is a fragment of a larger packet? Based
on what we saw in Chapter 17, we need both the Offset and MF fields of the IP
header to tell. If the packet has not been fragmented, Offset=0 and MF=0. If instead
we have a fragment on our hands, the following is true:

• The first fragment has Offset=0 and MF=1.

• All the fragments between the first and the last one have both of the fields non-
zero.

• The last fragment has MF=0 and Offset nonzero.

We said earlier that ip_local_deliver is one of the places where defragmentation
could take place. Here is a snapshot from the function that shows how a fragment is
recognized and passed to ip_defrag based on the considerations just listed:

 if (skb->nh.iph->frag_off & htons(IP_MF|IP_OFFSET)) {
 skb = ip_defrag(skb);

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

 if (!skb)
 return 0;
 }

Similar logic can be found in fragmentation code to correctly tag fragments.

The fragmentation/defragmentation subsystem is initialized by ipfrag_init, which is
invoked at boot time by inet_init. The initialization function does not do much; it
mainly starts a timer and initializes one variable to a random value. Both of these
tasks are needed to handle an optimization added to protect the kernel from a possi-
ble Denial of Service (DoS) attack; see the section “Hash Table Reorganization” for
details.

IP Fragmentation
As shown in Figure 18-1 in Chapter 18, the dst_output function is called by both
locally generated and forwarded packets, so the ip_fragment function in the area
below dst_output can run in both situations. Thus, the input to ip_fragment can be:

• Forwarded packets that are whole

• Forwarded packets that the originating host or a router along the way has frag-
mented

• Buffers created by local functions that, as described in the previous chapter, have
started the fragmentation process but have not added the headers that are
required for transmission as packets

In particular, ip_fragment must be able to handle both of the following cases:

Big chunks of data that need to be split into smaller parts.
Splitting the big buffer requires the allocation of new buffers and memory cop-
ies from the big buffer to the small ones. This, of course, impacts performance.

A list or array of data fragments that do not need to be fragmented further.
If the buffers were allocated such that they have room to allow the addition of
lower-layer L3 and L2 headers, ip_fragment can handle them without a memory
copy. All the IP layer needs to do is add an IP header to each fragment and han-
dle the checksum.

Previous kernel versions used to handle IP fragmentation entirely at the IP layer. The
IP functions used to transmit a packet could receive a payload of any size between 0
and 64 KB, and had to split that payload into multiple IP fragments when the size of
the packet exceeded the PMTU. We saw this in the section “Packet Fragmentation/
Defragmentation” in Chapter 18.

The approach used by newer kernels is to make the L4 protocols aid in the fragmen-
tation task in advance: instead of passing to the IP layer a single buffer that will have
to be fragmented, they can pass a set of buffers appropriate to the PMTU. This way,
the IP fragmentation handled at the IP layer consists simply of creating an IP header

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Fragmentation | 513

for each data fragment already formed. This does not mean that the L4 protocols
implement IP fragmentation; it simply means that since L4 protocols are aware of IP
fragmentation, they try to cooperate and make life easier for the IP layer. The L4 pro-
tocols do not touch the IP headers.

Before the introduction of the ip_append_data/ip_append_page functions discussed in
Chapter 21, IP fragmentation used to be simpler than IP defragmentation. Now both
processes are equally complex.

Fragmentation can currently be done in two ways: the so-called fast (or efficient)
way, and the slow (or old-style) way. Both of them are taken care of by ip_fragment.
Before seeing how those two approaches differ, let’s review the main tasks required
to fragment an IP packet:

1. Split the L3 payload into smaller pieces to fit within the MTU associated with
the route being used to send the packet (PMTU). As we will see in a moment,
this task may or may not involve some memory copies. If the size of the IP pay-
load is not an exact multiple of the fragment size, the last fragment is smaller
than the others. Also, since the fragment offset field of the IP header is measured
in units of 8 bytes, this value is aligned to an 8-byte boundary. Every fragment,
with the possible exception of the last one, has this size. See Figure 18-10 in
Chapter 18.

2. Initialize each fragment’s IP header, taking into account that not all of the
options have to be replicated into all of the fragments. ip_options_fragment,
introduced in section “IP Options” in Chapter 18, does this job.

3. Compute the IP checksum. Each fragment has a different IP header, so the
checksum has to be recomputed for each one.

4. Ask Netfilter, the Linux filtering system, for permission to complete the trans-
mission.

5. Update all the necessary kernel and SNMP statistics (such as IPSTATS_MIB_
FRAGCREATES, IPSTATS_MIB_FRAGOKS, and IPSTATS_MIB_FRAGFAILS).

In kernel versions prior to 2.4, a function named ip_build_xmit_slow created and
transmitted IP fragments for locally generated packets in reverse order: last to first.
This approach had a couple of advantages:

• The last fragment is the only one that can tell the receiver the size of the origi-
nal, unfragmented packet. To know this as soon as possible could help the
defragmenter handle its memory better.

• It makes it more likely that the defragmenter can build up a packet faster. As
described in the section “IP Defragmentation,” fragments are added into a list
(ipq) in increasing order of offset. If each fragment arrives after the fragment that
comes after it, fragments can be added speedily at the head of the list.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

While this sort of optimization works when the receiver is a Linux box, it might have
no effect or even be a drawback if the receiver uses some other operating system that
makes different assumptions.* Therefore, starting with 2.4, the Linux kernel trans-
mits fragments in forward order.

Functions Involved with IP Fragmentation
The previous chapter, which described the functions that transmit data at the IP
layer, covered the ip_append_data/ip_append_page set of functions that do a lot of the
groundwork for fragmentation. The rest of this section focuses on ip_fragment,
which turns the buffers waiting for transmission into actual packets.

Here are a couple of support routines used by the fragmentation code:

ip_dont_fragment
Decides whether the IP packet can be fragmented, based on Path MTU discov-
ery configuration (see the section “Path MTU Discovery” in Chapter 18).

ip_options_fragment
Modifies the IP header of the first fragment so that it can be recycled by the fol-
lowing ones. See the section “IP Options” in Chapter 19.

ip_dont_fragment and ip_options_fragment are defined in include/net/ip.h and net/
ipv4/ip_options.c, respectively.

The ip_fragment Function
We already mentioned in the previous section that ip_fragment can take care of frag-
mentation in two different ways. Let’s first see what the common part does. In the
next two sections, we will analyze the two cases separately.

int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))

Here are the meanings of the function’s input parameters:

skb
Buffer containing the IP packet to fragment. The packet includes an already ini-
tialized IP header, which will have to be adapted and replicated into all the frag-
ments. See Figure 21-12(b) in Chapter 21 for an example of what skb may look
like.

output
Function to use to transmit the fragments. In Figure 18-1 in Chapter 18, you can
see some of the places where ip_fragment is called. You can check them to see
what function is used as output (for example, ip_output uses ip_finish_output).

* For example, the PIX firewall from Cisco Systems has an option that lets the administrator prevent IP frag-
ments from passing through unless they are received in order from first to last.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Fragmentation | 515

ip_fragment begins by initializing a few key variables that will be used later. It
extracts their values from the device and IP header structures that are obtained via
the input skb parameter. The egress device dev and the PMTU mtu are extracted from
the routing entry used to transmit the packet (rt). You will see in Chapter 36 what
other parameters are kept in that data structure.

If the input IP packet cannot be fragmented because the source has set the DF flag,
ip_fragment sends an ICMP packet back to the source to notify it of the problem,
and then drops the packet. The local_df flag shown in the if condition is set mainly
by the Virtual Server code when it does not want the condition just described to gen-
erate an ICMP message.

dev = rt->u.dst.dev;
 iph = skb->nh.iph;

 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
 htonl(dst_pmtu(&rt->u.dst)));
 kfree_skb(skb);
 return -EMSGSIZE;
 }

 hlen = iph->ihl * 4;
 mtu = dst_mtu(&rt->u.dst) - hlen;

Fast fragmentation is used when ip_fragment receives an sk_buff whose data is
already fragmented. This is possible, for example, for packets locally generated by an
L4 protocol that uses the ip_append_data and ip_push_pending_frames functions. It is
also possible for packets generated by L4 protocols that use the ip_queue_xmit func-
tion, because they take care of creating fragments themselves. See Chapter 21.

The slow path is used in all the other cases, among which we have:

• Packets being forwarded

• Locally generated traffic that has not been fragmented before reaching dst_
output

• All of those cases where fast fragmentation was disabled due to a sanity check on
the buffers (see the beginning of ip_fragment)

Even if ip_fragment was given a buffer whose data was already broken into fragment-
size buffers as input, it may not be possible to use the fast path due to an error in the
organization of the fragments. An error could be caused by a broken feature that
performs a faulty buffer manipulation, or by the transformers used by the IPsec
protocols.

In both cases (slow and fast), if any of the fragment transmission fails, ip_fragment
returns immediately with an error code and the following fragments are not transmit-
ted. When this happens, the destination host will receive only a subset of the IP frag-
ments and therefore will fail to reassemble them.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

Slow Fragmentation
Unlike the fast fragmentation done in collaboration with ip_append_page/ip_append_
data, slow fragmentation does not need to keep any state information (such as the
list of fragments, etc.). The process simply consists of splitting the IP packet into
fragments whose size is given by the MTU of the outgoing interface, or by the MTU
associated with the route used if path MTU discovery is enabled.

Before entering the loop, the function needs to initialize a few local variables.

ptr is the offset into the packet about to be fragmented; it will be moved as fragmen-
tation proceeds. left is initialized to the length of the IP packet. In calculating left,
the ip_fragment function subtracts hlen (the L2 header length) because that compo-
nent is not part of the IP payload and the function must leave room for it because it
will be copied into each fragment.

The IP header places the fragment offset and the DF and MF flags together in a sin-
gle 16-bit field. The formula in the following code extracts the offset field from it.

The local variable not_last_frag, as the name suggests, is true when more data is
supposed to follow the current fragment in the packet. This is an important bit of
data because the last fragment in the packet indicates the size of the packet, which is
valuable information for allocating memory efficiently; the function acts on this
information later. The not_last_frag variable is not set, however, on the first frag-
ment within the packet (that is, the original packet—if a packet is fragmented into
two pieces, for example, and the second piece is later fragmented, all fragments in
the second piece will have the not_last_frag variable set).

 left = skb->len - hlen;
 ptr = raw + hlen;

 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
 not_last_frag = iph->frag_off & htons(IP_MF);

ip_fragment next starts a loop to create a new buffer for each fragment (skb2). The
input parameter skb contains the original IP packet.

 while(left > 0) {
 len = left;

For each fragment, the length is set to the MTU value defined earlier through the
PMTU field. The size of the fragment is also aligned to an 8-byte boundary, as
imposed by the IP RFC. The only cases where the following condition is not met are
when we are transmitting the last fragment or when fragmentation is not needed. But
the second case should never occur because if fragmentation were not needed, the
function would not execute in the first place.

 if (len > mtu)
 len = mtu;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Fragmentation | 517

 if (len < left) {
 len &= ~7;
 }

The size of the buffer allocated to hold a fragment is the sum of:

• The size of the IP payload

• The size of the IP header

• The size of the L2 header

The last of those values is initialized just before the while loop and is retrieved from
the routing table cache. The IP layer can learn, from the routing table, the L2 device
to be used to transmit the fragments. The ip_fragment function can extract the size
of the header associated with the device’s protocol from the associated net_device
data structure. This value is aligned to a 16-byte boundary by the LL_RESERVED_
SPACE[_EXTRA] macros and is stored in the local variable ll_rs (Link Layer Reserved
Space). This alignment has nothing to do with the 8-byte alignment just performed
on the payload. When the kernel is compiled with support for L2 firewalling (i.e.,
the CONFIG_BRIDGE_NETFILTER kernel option), ll_rs and mtu are updated accordingly
to accommodate a possible 802.1Q header.

 if ((skb2 = alloc_skb(len+hlen+ll_rs,
 GFP_ATOMIC)) == NULL) {
 NETDEBUG(printk(KERN_INFO "IP: frag: no memory for new fragment!\n"));
 err = -ENOMEM;
 goto fail;
 }

Now the function needs to copy into the newly allocated buffer skb2 the value of a
few fields from the sk_buff structure (the original IP packet) being replicated. Some
of them are copied here, and others are taken care of by ip_copy_metadata, which
also may copy some fields based on whether specific features (such as Traffic Con-
trol and Netfilter) are built into the kernel. The pointers to the L3 (nh.raw) and L4
(n.raw) headers are also initialized.

 ip_copy_metadata(skb2, skb);
 skb_reserve(skb2, ll_rs);
 skb_put(skb2, len + hlen);
 skb2->nh.raw = skb2->data;
 skb2->h.raw = skb2->data + hlen;

The newly allocated buffer is associated with the socket attempting the transmis-
sion, if any. (This is the case, for instance, when the transmission was requested with
the functions on the left side of Figure 18-1 in Chapter 18.)

 if (skb->sk)
 skb_set_owner_w(skb2, skb->sk);

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

Now it is time to fill in the new buffer skb2 with some real data. (So far the function
has taken care of only the management fields of the sk_buff structure.) This is done
in two parts:

• The IP header is copied with a simple memcpy.

• Then a piece of payload from the original packet is copied into the fragment.

The latter task cannot use a simple memcpy, because the data may be stored in skb in a
variety of ways using a list of fragments or memory page extensions (see Chapter 21).
The slow path could be invoked when a packet contains all its data in the memory
area pointed to by skb->data (see Figure 21-2 in Chapter 21), or when data has
already been fragmented before reaching ip_fragment but one of the sanity checks
described earlier rules out the fast path. The logic to handle the various possibilities
for data layout is in the helper function skb_copy_bits, which ip_fragment calls.

 memcpy(skb2->nh.raw, skb->data, hlen);

 if (skb_copy_bits(skb, ptr, skb2->h.raw, len))
 BUG();

 left -= len;
 iph = skb2->nh.iph;
 iph->frag_off = htons((offset >> 3));

The first fragment (where offset is 0) is special from the IP options point of view
because it is the only one that includes a full copy of the options from the original IP
packet. Not all the options have to be replicated into all of the fragments; only the
first fragment will include all of them.

 if (offset == 0)
 ip_options_fragment(skb);

ip_options_fragment, described in Chapter 19, cleans up the content of the ip_opt
structure associated with the original IP packet so that fragments following the first
one will not include options they do not need. Therefore, ip_options_fragment is
called only during the processing of the first fragment (which is the one with
offset=0).

The MF flag (for More Fragments) is set if either of the following conditions is met:

• The packet being fragmenting is not a fragment itself, and the fragment created
in this loop is not the last one (left>0).

• The packet being fragmented is a fragment itself, but is not the last one, and
therefore all of its fragments must have MF set (not_last_frag=1).
 if (left > 0 || not_last_frag)
 iph->frag_off |= htons(IP_MF);

The following two statements update two offsets. It is easy to confuse the two.
offset is maintained because the packet currently being fragmented may be a frag-
ment of a larger packet; if so, offset represents the offset of the current fragment

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Fragmentation | 519

within the original packet (otherwise, it is simply 0). ptr is an offset within the
packet we are fragmenting and changes as the loop progresses. The two variables
have the same value in two cases: where the packet we are fragmenting is not a frag-
ment itself, and where this fragment is the very first fragment.

 ptr += len;
 offset += len;

Finally, the slow path needs to update the header length (taking into account the size
of the options), compute the checksum with ip_send_check, and transmit the frag-
ment using the output function passed as a parameter. The output function used by
IPv4 is ip_finish_output (see Figure 18-1 in Chapter 18).

 iph->tot_len = htons(len + hlen);
 ip_send_check(iph);

 err = output(skb2);

Fast Fragmentation
ip_fragment tries the fast path when it sees that the frag_list pointer of the input
skb buffer is not NULL. However, as described earlier in this chapter, it must make
sure that the fragments are suitable for the fast path. Here are the sanity checks
related to protocol requirements:

• The size of each fragment should not exceed the PMTU.

• Only the last fragment can have an L3 payload whose size is not a multiple of
eight bytes.

• Each fragment must have enough space at the head to allow the addition of an
L2 header later.

And there are some other buffer management checks as well:

• The fragment cannot be shared, because that would forbid ip_fragment from
editing it to add the IP header. It is acceptable for ip_fragment to receive a shared
buffer when using the slow path because the buffer is going to be copied into
many other new buffers, but it is not acceptable for the fast path.
 if (skb_shinfo(skb)->frag_list) {
 struct sk_buff *frag;
 int first_len = skb_pagelen(skb);

 if (first_len - hlen > mtu ||
 ((first_len - hlen) & 7) ||
 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
 skb_cloned(skb))
 goto slow_path;

 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
 if (frag->len > mtu ||
 ((frag->len & 7) && frag->next) ||

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

 skb_headroom(frag) < hlen)
 goto slow_path;

 if (skb_shared(frag))
 goto slow_path;
 ...
 }

The initialization of the IP header of the first fragment is completed outside the loop
because it can be optimized slightly. For instance, when this function runs, it knows
there are at least two fragments, and therefore it does not need to check frag->next
on the first fragment to initialize iph->frag_off: as the first fragment, this fragment
must have the IP_MF flag set and the rest of the offset set to 0 (iph->frag_off = IP_
MF). The other packets must have the IP_MF bit set in frag_off without disturbing the
rest of the value (iph->frag_off |= IP_MF).

Let’s suppose the fast path can be used. The rest of the code is pretty simple, and to
some extent it is similar to the code seen for the slow path. After the first fragment
has been sent (i.e., after the first loop of the for block), the IP header is modified
with ip_options_fragment so that it can be recycled by the following fragments. If we
exclude that special case, all we need to do to transmit a fragment is:

• Copy the (modified) header from the first IP fragment into the current fragment.

• Initialize those fields of the IP header that may differ. Among them are the offset
and the IP checksum, which is computed with ip_send_check. Also, if the frag-
ment is not the last one, set the MF flag.

• Copy from the first fragment to the current fragment the rest of the sk_buff
fields, using ip_copy_metadata. These fields are management parameters; they do
not have anything to do with the content of the IP fragment.

• Transmit the fragment with the function output passed as a parameter.

In case of errors, memory for all the subsequent fragments in frag_list is freed (not
shown in the following snapshot). Note that the code inside the if (frag) {...}
block prepares the fragment that will be transmitted in the following loop iteration,
and the call to output transmits the current one.

 skb->data_len = first_len - skb_headlen(skb);
 skb->len = first_len;
 iph->tot_len = htons(first_len);
 iph->frag_off = htons(IP_MF);
 ip_send_check(iph);

 for (;;) {
 if (frag) {
 frag->ip_summed = CHECKSUM_NONE;
 frag->h.raw = frag->data;
 frag->nh.raw = _ _skb_push(frag, hlen);
 memcpy(frag->nh.raw, iph, hlen);
 iph = frag->nh.iph;
 iph->tot_len = htons(frag->len);

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Defragmentation | 521

 ip_copy_metadata(frag, skb);
 if (offset == 0)
 ip_options_fragment(frag);
 offset += skb->len - hlen;
 iph->frag_off = htons(offset>>3);
 if (frag->next != NULL)
 iph->frag_off |= htons(IP_MF);
 ip_send_check(iph);
 }

 err = output(skb);

 if (err || !frag)
 break;

 skb = frag;
 frag = skb->next;
 skb->next = NULL;
 }

IP Defragmentation
Defragmentation is needed, obviously, when a packet has reached its final destina-
tion and has to be passed to an upper network layer (in Linux, it is handled by the
ip_local_deliver function). Routers, by contrast, usually just pass packets through
without caring whether they are fragments of a larger packet. But defragmentation
can sometimes be required on a router: generally speaking, defragmentation is
needed whenever a host has to do some processing on the entire packet. Two such
cases on routers are:

• The IP header contains the Router Alert option, which forces the router to pro-
cess the packet (see ip_call_ra_chain, called from ip_forward, and Figure 18-1
in Chapter 18).

• Netfilter has to look at the packet to decide what to do with it. Given the scheme
in Figure 18-1 in Chapter 18, the hook points where Netfilter may force defrag-
mentation are NF_IP_PRE_ROUTING and NF_IP_LOCAL_OUT.

But the way defragmentation works does not depend on the circumstances in which
it is triggered, so I will describe the implementation from a high-level standpoint.

Organization of the IP Fragments Hash Table
As IP fragments are received, they are organized into a hash table of struct ipq ele-
ments. Figure 22-1 shows an example of how the data structure is organized and
used.

#define IPQ_HASHSZ 64
static struct ipq *ipq_hash[IPQ_HASHSZ];

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

Each IP packet being defragmented is represented by an ipq instance, which consists
of a list of fragments. Figure 22-1 shows an example of an IP packet with ID 1234,
for which only two fragments have been received so far. At the bottom of the figure
you can see where those two fragments fit into the original IP packet, which is 1,250
bytes in length. The figure shows the roles of some of the most important fields in
the data structures involved.

Near the bottom of the figure you can see that an offset for each fragment is stored in
a field called cb within each sk_buff. We saw in Chapter 2 that this field is a buffer
that can be used by the various network layers to store private information. The data
stored in that buffer may change depending on whether the buffer is being received
or transmitted.

In the context of IP defragmentation, IP uses the sk_buff->cb field to store an ipfrag_
skb_cb structure, which in turn is a simple wrapper for inet_skb_parm, the structure
used to store IP options and flags. (The same structure is commonly used by higher
layers, too.) The new field added in ipfrag_skb_cb is the offset the fragment lies at
inside the original IP packet. That data structure can be accessed with the macro
FRAG_CB, defined in net/ipv4/ip_fragment.c. Thus, the IP layer uses FRAG_CB for the
purpose of defragmentation and IPCB (defined in include/net/ip.h) for accessing the
options for any other purpose; they point to data structures with different names but
ultimately to the same locations in memory.

The ipq_hash table is protected by ipfrag_lock, which can be taken either in shared
(read-only) or exclusive (read-write) mode. Do not confuse this lock with the one
embedded in each ipq element.

Key Issues in Defragmentation
As you read the rest of this section, it will help you to keep in mind the constraints
that make defragmentation complex:

• Fragments must be stored in kernel memory until they are totally processed by
the network subsystem, and memory is expensive. Therefore, there must be a
way to limit memory use.

• The most efficient structure for storing large amounts of information (just think
of a router passing through millions of packets per second) is a hash table. A
hash table can become unbalanced, however, particularly if malicious attackers
figure out the hash algorithm and deliberately try to weigh down particular ele-
ments of the hash table to slow down processing. In the section “Hash Table
Reorganization” we will see how Linux makes the hash algorithm use an addi-
tional random component to make the output produced by a given input less
predictable.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Defragmentation | 523

• Networking often uses unreliable media, so fragments can be lost. This is partic-
ularly true because different fragments within a packet may travel along differ-
ent paths. Therefore, the IP layer must maintain a timer on each packet and give
up at some point, throwing away any fragments received. Checksums must also
be employed to maximize the chance that corruption will be detected.

Figure 22-1. Structure used to store IP fragments

saddr
daddr
Protocol
ID
Fragments

ne
xt

saddr
daddr
Protocol
ID
Fragments

ne
xt

saddr
daddr
Protocol
ID
Fragments

ne
xt

ipq_hash

saddr
daddr
Protocol
ID
Fragments

ne
xt

saddr
daddr
Protocol
ID
Fragments

ne
xt

saddr
daddr
Protocol
ID
Fragments

ne
xt

struct ipq struct ipq struct ipq

saddr
daddr
Protocol
ID
Fragments

ne
xt

struct ipq

IP
Q_

HA
SH

SZ
=

 6
4

saddr = IP1
daddr = IP2
protocol = IPPROTO_TCP
id = 1234
len = 996
meat = 384
fragments

ne
xt

struct ipq

next
len = 256
data
tail

offset= 256
cb

IP header

IP payload 256

struct sk_buff

st
ru

ct
ip

fra
g_

 sk
b_

cb

next
len = 128
data
tail

offset= 768
cb

IP header

IP payload 128

struct sk_buff

0 256 512 768 996

128256

1250

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

• If a source host does not receive acknowledgment for some data after a certain
amount of time and the transport protocol implements flow control, it retrans-
mits the data. Therefore, multiple overlapping fragments may be received at the
destination for a single IP packet. To make this problem more complex, the sec-
ond IP packet may travel a different path from the first and therefore be frag-
mented differently, so the boundaries between fragments might not match up.
We saw in Chapter 18 that when an IP packet is retransmitted, it is given a new
IP ID, which helps reduce the likelihood of this problem. Unfortunately, as we
saw in the same chapter, the IP ID can wrap around quickly in a fast network, so
the problem of mixing fragments from different IP datagrams still exists. For the
criteria used by the IP protocol to associate IP fragments to IP detagrams, please
refer to the section “Associating fragments with their IP packets” in Chapter 18.

Together, these requirements lead to the implementation described on the following
pages. Fragments are stored in a hash table that is periodically scrambled by intro-
ducing a random component into the input passed to the hash function (more details
in the section “Hash Table Reorganization”). Each packet is associated with a timer,
and is removed if the timer expires. Each fragment is checked for corruption and for
overlaps with fragments received earlier.

Functions Involved with Defragmentation
As explained earlier, the main function used to handle defragmentation is ip_defrag.
It receives a single fragment as input on each call and tries to add it to the proper
packet. The function returns success only when the last fragment has been found and
the packet is complete. The next section goes into detail on its implementation. The
function also receives a second input parameter, user, that identifies the reason why
defragmentation is requested. See the description of user in the section “ipq Struc-
ture” in Chapter 23.

Figure 22-1 shows the data structure used to store received IP fragments; it consists
of a hash of data structures, one for each complete packet, that in turn point to the
fragments for that packet.

Here are some of the support routines used (directly or indirectly) by ip_defrag, all
defined in net/ipv4/ip_fragment.c:

ip_evictor
Removes ipq structures of incomplete packets one by one, starting from the old-
est, until the memory used by the fragments goes below the sysctl_ipfrag_low_
thresh threshold.

For ip_evictor to work properly, a Least Recently Used (LRU) list has to be kept
updated. This is achieved simply by adding new ipq structures at the end of a
global list (ipq_lru_list), and by moving an ipq structure to the end of that list
every time a new fragment is added to it. This means that the element that

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Defragmentation | 525

remains untouched for the longest time is at the head of ipq_lru_list; thus,
packets that have no hope of being completed (because the transmitting host
went down, for instance) stand out at the front.

ip_find
Finds the packet (fragment list) associated with the fragment being processed.
The lookup is based on four fields of the IP header: the ID, the source and desti-
nation IP addresses, and the L4 protocol. This makes it pretty certain (but not
absolutely certain) that the right packet is chosen (see the section “Example of
an unsolvable defragmentation problem: NAT” in Chapter 18). The lookup key
actually includes a local parameter too: the user. This parameter is used to iden-
tify the reason behind the defragmentation effort (see the section “ipq Struc-
ture” in Chapter 23).

ip_frag_queue
Queues a given fragment to the list of fragments (the ipq structure) associated
with the same IP packet. See Figure 22-1 and the section “The ip_frag_queue
Function.”

ip_frag_reasm
Builds the original IP packet from its fragments, once all of them have been
received.

Here are a few other support routines used to handle the deletion of an ipq:

ip_frag_destroy
Removes the ipq structure passed to it, and all of its associated IP fragments, and
updates the global counter ip_frag_mem (see the section “The ip_defrag Func-
tion”). This function is called from the wrapper ipq_put function, instead of
being called directly.

ipq_put
Decrements the reference count on the ipq structure passed to it, and removes
the structure and fragments with ip_frag_destroy if no one else is holding a ref-
erence to it:

static _ _inline_ _ void ipq_put(struct ipq *ipq, int *work)
{
 if (atomic_dec_and_test(&ipq->refcnt))
 ip_frag_destroy(ipq, work);
}

When the input parameter work is not a NULL pointer, ipq_put returns with work
initialized to the amount of memory freed by ip_frag_destroy. This is useful, for
instance, to an ip_evictor invocation that was called to free a given amount of
memory and therefore needs to know how much each call to ipq_put manages to
free.

ipq_kill
Marks an ipq structure as eligible to be removed because some of the fragments
did not arrive in time. See the section “Garbage Collection” for details.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

In the next two sections, we will see ip_defrag and ip_frag_queue in more detail.
Let’s first see how a new fragment list (ipq instance) is created.

New ipq Instance Initialization
The first task of ip_defrag is to search for the packet to which it should add the frag-
ment it receives as input. To find the packet, the function invokes ip_find. If the
fragment happens to be the first of a packet (in terms of the time it arrives, not neces-
sarily its position within the packet), ip_find will fail. In this case, ip_find creates a
new ipq instance using the ip_frag_create function. Whether a structure is found or
newly created, ip_find returns a pointer to it. ip_defrag uses this pointer to insert the
new fragment into the ipq structure of the proper packet. The only case where ip_
find fails (returns NULL) is when there is an error trying to create a new ipq element.

While the insertion of a new fragment is handled by ip_defrag, the insertion of a new
ipq instance is handled by ip_frag_create via ip_frag_intern. Besides initializing a
bunch of parameters in the new structure, this function also starts a garbage collec-
tion timer that will clean up the new ipq structure (and all of its fragments) if the
associated defragmentation fails to complete within a given amount of time. This
timeout, by default, is 30 seconds, but it can be configured via /proc (see the section
“Tuning the /proc Filesystem” in Chapter 23). The function that does the garbage
collection, ip_expire, also generates an ICMP message to inform the source host
about the failed defragmentation attempt.

The ip_defrag Function
The actual ip_defrag function is quite simple, because all the complexity is within
the four functions it uses internally: ip_find, ip_frag_queue, ip_frag_reasm, and ip_
evictor.

struct sk_buff *ip_defrag(struct sk_buff *skb, u32 user)

The fragment skb received in input by ip_defrag contains all the information dis-
cussed earlier that is needed to identify the ipq instance it belongs to (if one is
already created).

The function starts with a check on the memory used up by IP fragments, and may
trigger a garbage collection with ip_evictor if a configurable threshold has been
reached. See the section “Garbage Collection.”

If this is the first fragment of a new IP packet, ip_find creates a new ipq structure;
otherwise, it simply returns the one it finds. In case a new one was created, the latter
will be added to ipq_hash later with ip_frag_queue.

 if ((qp = ip_find(iph)) != NULL) {
 struct sk_buff *ret = NULL;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Defragmentation | 527

Finally, the fragment is enqueued. ip_frag_queue is quite a complex function, and we
will analyze it in detail in the next section. The list of fragments, qp, is protected by a
lock to make sure there cannot be simultaneous incompatible accesses to the list:

 spin_lock(&qp->lock);
 ip_frag_queue(qp, skb);

If both the first and the last fragments have been received and the total size of the
fragments equals the size of the original IP packet, it is time to join the fragments
together to obtain the original packet and pass it to the higher layer. ip_frag_reasm
stops the timer associated with the qp element, glues together the fragments, updates
a few global variables, such as the one that represents the memory used by frag-
ments (ip_frag_mem), and takes care of the L4 hardware checksum (see the section
“L4 checksum”). We will not describe this function in detail because it is composed
mostly of predictable, low-level instructions.

 if (qp->last_in == (FIRST_IN|LAST_IN) &&
 qp->meat == qp->len)
 ret = ip_frag_reasm(qp, dev);

 spin_unlock(&qp->lock);
 ipq_put(qp, NULL);
 return ret;
 }

 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
 kfree_skb(skb);
 return NULL;
}

The ip_frag_queue Function
The task of adding a new fragment to an ipq structure (the list of fragments associ-
ated with the same IP packet) is complex because the data structure used to store
fragments is not a trivial array where fragments are copied using the offset field.
That solution would have one major problem: because the size of the original IP
packet is not known until the last fragment is received, this would force the IP layer
to allocate a buffer of a size equal to the maximum IP packet size. As you can imag-
ine, this would waste a lot of memory. Also, while easy to implement, such a solu-
tion would not perform well and would make it very easy to bring a router to its
knees by means of a DoS attack.

The use of a list to handle fragments optimizes the memory used, but makes it a lit-
tle bit more complicated to handle the fragments. Let’s summarize the main tasks
accomplished by ip_frag_queue:

• Figures out where the input fragment falls within the original packet, based on
both its offset and its length.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

• Based on the considerations detailed at the start of this chapter, determines
whether this is the last fragment of a packet and, if so, extracts the length of the
IP packet from it.

• Inserts the fragment into the list of fragments associated with the same IP
packet, handling possible overlaps. (As I explained in an earlier chapter, frag-
ments can overlap if a packet was believed to be lost and was retransmitted by a
host, possibly over a different route with a different PMTU.)

• Updates those fields of the ipq structure that are used by the garbage collection
task (i.e., timestamp and memory used).

• Invalidates the L4 checksum computed in hardware if necessary (e.g., when a
fragment needs to be truncated by ip_frag_queue).

This is the prototype:

static void ip_frag_queue(struct ipq *qp, struct sk_buff *skb)

where qp is the IP packet the fragment belongs to (found by the caller by use of the
ip_find function) and skb is the new fragment.

The function starts by extracting data from the IP header and doing a number of gen-
eral checks to make sure the fragment is valid. First comes a general check to make
sure the function has not been called by mistake when the IP packet has already been
completely received. The COMPLETE flag, usually set after all the fragments have been
received, could also be set in other unusual circumstances—for instance, when ipq_
kill marks an ipq element as dead.

 if (qp->last_in & COMPLETE)
 goto err;

The offset is stored in the 13 least-significant bits of the 16-bit Offset field in the IP
header. Two of the three most-significant bits are used by two flags: DF and MF.*

One bit is not used.

Because the offset is expressed in units of eight bytes, the value in the field must be
multiplied by 8 before being usable. The header length ihl is expressed in units of
four bytes and therefore must be multiplied by 4 before being usable. IP_OFFSET is
simply a mask that is used to extract the lower 13 bits from the 16-bit field.

offset = ntohs(skb->nh.iph->frag_off);
flags = offset & ~IP_OFFSET;
offset &= IP_OFFSET;
offset <<= 3;
ihl = skb->nh.iph->ihl * 4;

Since the IP fragment carries both its offset and its length, we can easily calculate
where the fragment ends within the original IP packet. skb->len – ihl is the size of

* See the file include/net/ip.h, and Figure 18-2 in Chapter 18.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Defragmentation | 529

the IP payload, and since that payload is at offset offset in the original IP packet,
their sum gives the offset where this fragment terminates in the original IP packet.

end = offset + skb->len - ihl;

If the MF flag is not set, it means that the fragment is the last one; we can therefore
extract the total length of the original IP packet, store this length in qp->len, and set
the flag LAST_IN. If the size of the original packet derived from this last fragment (end)
does not match the value we already defined earlier (if any), it means that this frag-
ment or one of the previous ones got corrupted, and therefore this fragment is
dropped.

 if ((flags & IP_MF) == 0) {
 if (end < qp->len ||
 ((qp->last_in & LAST_IN) && end != qp->len))
 goto err;
 qp->last_in |= LAST_IN;
 qp->len = end;
 } else {

Every fragment except the last must be a multiple of eight bytes. Thus, if the current
fragment is not the last one (MF is not set) and its size is not a multiple of eight
bytes, the kernel truncates it to make its size a multiple of eight bytes. (The hope
here is that another fragment will arrive with the truncated information and will
make the reconstructed packet correct.) Since this operation changes the L4 payload
(by truncating the data), the function must also invalidate the checksum in case it
had already been computed.* The receiving L4 layer will have to recompute it.

 if (end&7) {
 end &= ~7;
 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
 skb->ip_summed = CHECKSUM_NONE;
 }

If the point where the fragment ends (offset+len) is bigger than the current value of
qp->len, the latter is updated. Note that qp->len represents the length of the original
defragmented packet only if the last fragment has already been received. For this rea-
son, if a fragment ends past qp->len when the last fragment has been received, it
means there is an error somewhere and the fragment is dropped.†

 if (end > qp->len) {
 if (qp->last_in & LAST_IN)
 goto err;
 qp->len = end;
 }
 }

* See comments in ip_rcv and ip_rcv_finish for similar conditions.

† In theory, the corrupted packet could have been the one with MF=0 that previously set qp->len, instead of the
one we are dropping now.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

530 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

By definition of the IP protocol, the IP header cannot be fragmented. This means that
if a packet has been fragmented, there must be a nonempty payload. It follows that
the case of a fragment without a payload (that is, the fragment ends where it starts)
would not make sense; therefore, if a fragment meets this condition, it is considered
corrupted.

 if (end == offset)
 goto err;

Now the function removes the IP header by moving the skb->data offset forward to
the IP payload and updating skb->len; this is done by calling pskb_pull. Then the
function calls pskb_trim to set the length of the buffer data portion to the length of
the IP payload (end-offset). Note that the second operation is actually needed only
in the following two cases:

• The buffer still contains some L2 padding. This should never be the case,
because if there was any L2 padding, it would have been removed earlier in the
path by ip_rcv.

• The size of the IP fragment is not a multiple of eight bytes. In this case, the func-
tion has shortened the length to a multiple of eight bytes, thus leaving some gar-
bage at the end of the buffer.
 if (pskb_pull(skb, ihl) == NULL)
 goto err;
 if (pskb_trim(skb, end-offset))
 goto err;

The list of fragments contained in the input qp parameter (see Figure 22-1) is kept
sorted, with the lowest fragment offset at the head of the list. Therefore, the function
now needs to find where in the list to add the new fragment.

 prev = NULL;
 for(next = qp->fragments; next != NULL; next = next->next) {
 if (FRAG_CB(next)->offset >= offset)
 break;
 prev = next;
 }

Handling overlaps

Now it is time to handle potential overlaps with previously received frames. This is
done in two steps: first the function handles conflicts with fragments that have a
smaller starting offset, and then it handles the others, which have higher starting off-
sets. The next and prev variables, which point inside the qp list described in the pre-
vious section, manage the list of old fragments.

If the new fragment does not have to be placed at the head of the list (prev!=NULL),
which means we already received at least one fragment with a smaller offset, we
need to handle the insertion by removing the common part (if there is any) from one
of the overlapping fragments.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Defragmentation | 531

To do this, the function just needs to determine the size of the overlapping portion,
and remove a block of that size from the head of the new fragment. Note in the fol-
lowing code that the presence of an overlap is marked by i being a positive number:

 if (prev) {
 int i = (FRAG_CB(prev)->offset + prev->len) - offset;

 if (i > 0) {
 offset += i;
 if (end <= offset)
 goto err;
 if (!pskb_pull(skb, i))
 goto err;
 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
 skb->ip_summed = CHECKSUM_NONE;
 }
 }

When there is indeed an overlap with the previous fragment in the list, the function
updates the offset field it extracted earlier from the header by removing the redun-
dant part from the new fragment using pskb_pull, and invalidates the L4 checksum
computed in hardware. If moving the offset ahead means that the start becomes
higher than the end of the fragment, it means the new fragment is completely con-
tained in the ones already received, so the function can simply return.

Having dealt with the preceding fragments, the function can now take care of a pos-
sible overlap with the following fragments (the ones with higher offsets). There can
be two such cases:

• One or more following fragments is completely included in the new one.

• One following fragment overlaps partially with the new one.

Both cases are illustrated in Figure 22-2, where P indicates a new fragment and F an
old one. P1 overlaps only with F2 (completely including it), whereas P2 overlaps
with both F3 (which is completely included) and F4 .

At this point, next refers to the fragment whose offset value is the first one greater
than the offset of the new fragment. The function goes fragment by fragment until it
finds an overlap, simply comparing where the new fragment ends and where the

Figure 22-2. Example of single and multiple overlaps among fragments

P1 P2

F1 F2 F3 F4

300 900

0 200 400 600 800 1000 1200 1250

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

ones in the list end. (Remember that the fragments already in the list are sorted in
increasing order of offset.)

 while (next && FRAG_CB(next)->offset < end) {
 int i = end - FRAG_CB(next)->offset;

If the size of the overlapping part is smaller than the size of the new fragment, it
means that the function reached the last overlapping fragment of the list and that the
only action needed is to remove the overlapping part from the fragment already in
the list. The new fragment will be added later. Since the function truncates part of a
fragment already in the list, both qp->meat and the offset field of the truncated frag-
ment must be updated and the hardware checksum must be invalidated. Note that
when the overlap is with a previous fragment, the function removes data from the
new one, but that when the overlap is with a following fragment, the function does
the opposite.

 if (i < next->len) {
 if (!pskb_pull(next, i))
 goto err;
 FRAG_CB(next)->offset += i;
 qp->meat -= i;
 if (next->ip_summed != CHECKSUM_UNNECESSARY)
 next->ip_summed = CHECKSUM_NONE;
 break;
 } else {

If instead the fragment is completely contained in the new one, the function can
remove it from the list (once again updating qp->meat as well).*

If the fragment being removed is the head of the list, the head pointer has to be
updated:

 struct sk_buff *free_it = next;
 next = next->next;

 if (prev)
 prev->next = next;
 else
 qp->fragments = next;

 qp->meat -= free_it->len;
 frag_kfree_skb(free_it, NULL);
 }
 }

Finally, after having resolved all possible overlaps, the function can insert the new
fragment into the list and update a few parameters of the qp structure, such as meat,
stamp, and last_in. skb->truesize and the memory currently used by fragments (ip_
frag_mem) also are updated. qp is also moved to the end of the ipq_lru_list list.

* frag_kfree_skb updates ip_frag_mem as well.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Defragmentation | 533

 qp->stamp = skb->stamp;
 qp->meat += skb->len;
 atomic_add(skb->truesize, &ip_frag_mem);

 if (offset == 0)
 qp->last_in |= FIRST_IN;

L4 checksum

Ingress IP fragments could already have their L4 checksum computed if the ingress
device supports L4 hardware checksumming. When the fragments are reassembled
by ip_frag_reasm, it combines the checksums of the individual fragments with csum_
add and saves the result in the reassembled buffer. However, when one of the follow-
ing conditions is met, the hardware checksum on the reassembled buffer is invali-
dated (i.e., skb->ip_summed is set to CHECKSUM_NONE):

• A fragment (with the exception of the last one) has been truncated in ip_defrag
because its size was not a multiple of eight bytes.

• A fragment overlapped with at least one other previously received fragment.
Because the overlapping is taken care of by removing the redundant part, the
checksum (which covers the redundant part as well) must be invalidated.

Garbage Collection
The kernel implements two kinds of garbage collection for IP fragments:

• System memory usage limit

• Defragmentation timer

As a protection against an abuse of the memory used by the IP defragmentation sub-
system, a limit on that memory is imposed and stored in the sysctl_ipfrag_high_
thresh variable, whose value can be changed at runtime through the /proc filesys-
tem. The global ip_frag_mem variable represents the memory currently used by frag-
ments. It is updated every time a new fragment is added to or removed from the ipq_
hash table structure. When the system limit is reached, ip_evictor is invoked to free
some memory.

 if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh)
 ip_evictor();

The check on the memory limit is implemented by ip_defrag (see the section “The
ip_defrag Function”).

When the first fragment of a new IP packet is added to the ipq_hash table (i.e., when
a new ipq instance is created), the kernel starts a defragmentation timer. The timer is
used to discard all the fragments for the incomplete packet to avoid having incom-
plete IP packets sit in ipq_hash for too long (see the discussion of sysctl_ipfrag_time
in the section “Tuning via /proc Filesystem” in Chapter 23). If a fragment is lost or

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 22: Internet Protocol Version 4 (IPv4): Handling Fragmentation

delayed long enough, the timer expires and its handler ip_expire is called to do the
cleanup, which consists of the following operations:

1. Unlinking the ipq structure from the ipq_hash table and from the lru_list list.

2. If ipq includes the first fragment of the IP packet, sending an ICMP TIME
EXCEEDED message back to the source host. The local host must have received
the first fragment to be able to transmit the ICMP message because this message
needs to include a portion of the original IP packet in its payload, and only the
first fragment includes the original IP header (with all of the options of the
unfragmented packet) and all or part of the L4 header (see Figure 21-4 in
Chapter 21). The ICMP message is sent only if the device the last fragment was
received from is still up and running, because it will most probably be used to
transmit the ICMP.

3. Updating the SNMP counters for the failed defragmentation event.

The first operation is accomplished by ipq_kill (by calling ipq_unlink). Because this
function is called in other contexts, too—not just by ip_expire—its attempt to stop
the ipq’s timer is not useless. It will not stop any timer when invoked by ip_expire,
but it may stop one in the other cases. If a timer is running for the packet, the ipq’s
reference count was incremented when the timer was started. Therefore, to keep the
reference count correct, ipq_kill decrements the reference count after deleting the
timer.

Besides ip_expire, here are two other cases that may lead to a call to ipq_kill:

• ip_frag_reasm calls it when the last missing fragment is received.

• ip_evictor (introduced at the beginning of this section) calls it to kill the ipq
structures it selects for deletion.

Regardless of the reason why ipq_kill was called, the COMPLETE flag is set and the ipq
structure is unlinked from all lists it was on. This means that the COMPLETE flag does
not necessarily refer to completely defragmented IP packets.

Hash Table Reorganization
We saw in Figure 22-1 how incoming fragments are organized in memory while wait-
ing to be defragmented. At the top level, all fragments for all packets are accessed
through a hash table named ipq_hash. A hash table performs best when the hash
function can spread the various elements as uniformly as possible. Allowing a large
number of collisions, which would cause IP fragments to be bunched up in a few lists
that are hanging off of a few elements of ipq_hash, would degrade performance and
even allow DoS attacks. To avoid these collisions, the Linux kernel regularly reorga-
nizes all of the IP fragments in the table using a different hash function. This mecha-
nism can be effective only if the reorganization is done frequently and, every time a
new function is selected, the new one cannot be guessed from the previous one.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Defragmentation | 535

Reorganization of fragments is kicked off by a timer that is started by ipfrag_init
and that expires every 10 minutes by default. (The expiration time can be configured
by means of the /proc interface, described in “Tuning via /proc Filesystem” in
Chapter 23.

The function executed when the timer expires, ipfrag_secret_rebuild, is pretty sim-
ple. Every time it is executed, it generates a random value with get_random_bytes and
stores the value in the global variable ipfrag_hash_rnd, which is used by the
ipqhashfn hash function. Then, one by one, each element in the hash table is first
unlinked, its hash (i.e., bucket) is recomputed with ipqhashfn (that now uses the new
value of ipfrag_hash_rnd), and finally it is re-inserted into the table.

ipfrag_hash_rnd is first initialized in ipfrag_init, without using get_random_bytes,
because the latter function depends on a quality of the system known as “entropy,”
built up over time by checking system events that traditionally happen at unpredict-
able times. At boot time, there may not be enough entropy yet to rely on get_random_
bytes for a random number.

The reorganizations of the ipq structures do not affect the ipq_lru_list list.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

536

Chapter 23CHAPTER 23

Internet Protocol Version 4
(IPv4): Miscellaneous Topics

This chapter wraps up our discussion of the IPv4 layer in the networking code. It
covers general topics such as the management of information in the IPv4 layer by the
kernel, statistics, and the user interface through /proc. The chapter also includes a
brief discussion of the limitations of the IPv4 protocol, which led to the develop-
ment of IPv6.

Long-Living IP Peer Information
At the IP layer, there is no concept of a stateful connection. Because IP is a stateless
protocol, there are no parameters or connection-related data structures to keep,
except for statistics. (These are optional and are not required by the protocol itself.)
However, to improve performance, the kernel keeps information about some param-
eters on a per-destination IP address basis. We will see an example in a moment.

Any host that has recently carried on an exchange of data with a Linux box is consid-
ered an IP peer. The kernel allocates a data structure for each peer to preserve some
long-living information. At the moment, not many parameters are kept in the struc-
ture. The most important one is the IP packet ID. We saw in Chapter 18 that each IP
packet is identified by a 16-bit field called ID. Instead of having a single shared ID,
incremented for each IP packet regardless of the destination, one unique instance is
kept for each IP peer. (This solution is an implementation choice; it is not imposed
by any standard.) We already had a little discussion on the packet ID in Chapter 18.

Peers are represented by inet_peer structures. These structures, defined in include/
net/inetpeer.h and described in the section “inet_peer Structure,” are organized in an
AVL tree, which is a well-known type of data structure optimized for lookups. I will
not go into detail about the AVL data structure; you can find it in any programming
book.* However, it is worthwhile to underline the trade-offs involved in an AVL tree.

* The comment at the top of net/ipv4/inetpeer.c is quite clear and self-explanatory.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Long-Living IP Peer Information | 537

Essentially, the tree is kept balanced thanks to the way in which insert and delete
operations are defined. Because the tree is balanced, a search will always take O(lg n)
time, where n is the number of elements in the tree. Generally speaking, because
keeping the tree balanced comes at a cost, this kind of data structure is usually used
when there are many lookups relative to insert/delete/change operations, and when
the speed of these lookups is particularly important.

The whole AVL tree and the associated global variables (such as peer_total) are pro-
tected by the peer_pool_lock lock. The lock can be acquired in both shared and
exclusive modes. Lookups need only read privilege and therefore will acquire the
lock in shared mode, whereas insert/delete operations have to acquire the lock in
exclusive mode.

Initialization
The peer subsystem is initialized by inet_initpeers, which is defined in net/ipv4/
inetpeer.c and is invoked by ip_init when the IPv4 protocol is initialized at boot time.

That function accomplishes three main tasks:

• Allocates the cache that will be used to hold inet_peer structures, which will be
allocated as peers are recognized.

• Defines a threshold (inet_peer_threshold) that will be used to limit the amount
of memory used by inet_peer structures. Its value is computed based on the
amount of RAM in the system. When a new entry is created, the global counter
peer_total is incremented; it is of course decremented when an element is
removed. If peer_total becomes bigger than the threshold, the least recently
used element is removed (see inet_getpeer).

• Starts the garbage collection timer. We describe this task in the section “Gar-
bage Collection.”

Lookups
The key for a search is the destination’s IP address. There are two main functions:

lookup
This is a macro local to net/ipv4/inetpeer.c that implements a simple search in an
AVL tree.

inet_getpeer
This function can be used from other subsystems, such as TCP and routing, to
search a given entry. This function is built on top of lookup.

inet_getpeer is passed the search key (the peer’s IP address) and a flag (create) that
can be used to ask for the creation of a new entry in case the search failed. When a
new entry is created, the initial IP packet ID is initialized to a random value by means
of secure_ip_id.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

Figure 23-1 shows the internals of inet_getpeer. The function is pretty simple and
does not need much explanation. However, there is one point worth clarifying: why
there are two lookups to see whether there is already an entry with the same destina-
tion address as the one being requested. The second check is not superfluous
because a similar entry could have been created and added to the tree between the
time the read lock was released and the write lock was acquired.

How the IP Layer Uses inet_peer Structures
Among the few fields of the inet_peer structure, only two are currently used by the
IP layer: v4addr, which identifies the peer, and ip_id_count.

The value of ip_id_count can be retrieved via inet_getid, which automatically incre-
ments its value at the same time. The latter is never called directly. The section
“Selecting the IP Header’s ID Field” offers a list of the wrappers that are used by the
IP layer depending on the context.

Garbage Collection
Because the number of inet_peer instances that can be created is limited, there is a
timer (peer_periodic_timer) that is started at subsystem initialization time (inet_
initpeers) and that at regular intervals causes the removal of entries that have not
been used for a given amount of time. The timer handler is peer_check_expire.

The amount needed to classify an entry as old depends on how loaded the system is.
A system is considered loaded when the number of elements (peer_total) is greater
than or equal to the threshold (inet_peer_threshold). On a loaded system, entries are
removed after an inactivity period of 120 seconds (inet_peer_minttl). On a system
that is not loaded, the value lies between 120 seconds and 10 minutes (inet_peer_
maxttl) and is inversely proportional to the number of outstanding inet_peer entries
(peer_total). To avoid making the timer a CPU hog, the number of elements remov-
able at each timer expiration is set to PEER_MAX_CLEANUP_WORK (30).

When the timer is first started, the timeout is set to expire after inet_peer_minttl,
with a little perturbation to avoid synchronization with other timers started at boot
time. After that, the timer does not really run at regular intervals. Instead, the expira-
tion time is set to a value between 10 seconds (inet_peer_gc_mintime) and 120 sec-
onds (inet_peer_gc_maxtime), inversely proportional to the number of entries (see
peer_check_expire), which means that the more entries there are, the faster they
expire.

When an entry expires, it is inserted into the unused list, whose head and tail are
pointed to by the two global variables inet_peer_unused_head and inet_peer_unused_
tailp. The unused list is protected by the inet_peer_unused_lock lock. If an expired
entry is still referenced (that is, the reference count is greater than 1), it cannot be
freed and it is kept in the unused list; otherwise it, is freed now.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Long-Living IP Peer Information | 539

When an inet_peer structure is to be removed, because it expired or because it is not
used anymore (i.e., its reference count dropped to 0), it is inserted into the unused
list but is kept in the AVL tree, too. This means that subsequent lookups on the AVL
tree can return inet_peer entries currently in the unused list.

Figure 23-1. inet_getpeer function

Get read lock
(peer_pool_lock)

Does the peer
exist already?

(lookup)
Increment the

reference count

Return NULL

No

No

Yes

Release read lock
(peer_pool_lock)

Is the Create
flag set?

Allocate and initialize
new element

Get write lock
(peer_pool_lock)

Increment the
reference count

Remove from
UNUSED list

Free the new element
allocated above

Return pointer to the
existing element

Insert new element
into the AVL tree

Update global counter
(peer_total)

Release write lock
(peer_pool_lock)

Global counter
> Maximum

Return pointer to the
new element

Remove the oldest
element

Remove from
UNUSED list

Does the peer
exist already?

YesNo

Release write lock
(peer_pool_lock)

Yes

No

Release readlock
(peer_pool_lock)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

The way entries are purged is through the cleanup_once function, which is called by
the timer handler peer_check_expire, and by inet_getpeer when the number of
entries passes the allowed limit. The input parameter to cleanup_once specifies how
long an inet_peer instance must have spent on the unused list before being eligible
for deletion. The value 0, as used by inet_getpeer, means that any instance is
eligible.

When an entry that is in the unused list is accessed (i.e., selected by a lookup on the
AVL tree), it gets removed from that list. For this reason, an entry can join and leave
the unused list several times during its life (see inet_getpeer).

Selecting the IP Header’s ID Field
The main function for the initialization of the IP packet ID is _ _ip_select_ident.
This function can be called both directly and indirectly via ip_select_ident or ip_
select_ident_more. Both of these wrapper functions differentiate between packets
that can and cannot be fragmented (based on the MF flag). Two cases are defined:

Packets cannot be fragmented (DF=1)
This case was added to handle a bug found with some Windows systems’ IP
stacks.* The ID is extracted indirectly from the sock data structures (inet_
sk(sk)->sk), where it is incremented each time the wrapper accesses it. This
ensures that the IP ID changes at every transmission.

Packets can be fragmented (DF=0)
ip_select_ident takes care of the ID.

ip_select_ident_more, which is used by TCP (see ip_queue_xmit), receives one more
input parameter (more) that is used in those cases where the device supports TCP off-
loading.

Let’s go back to _ _ip_select_ident:

void _ _ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
{
 struct rtable *rt = (struct rtable *) dst;

 if (rt) {
 if (rt->peer == NULL)
 rt_bind_peer(rt, 1);
 if (rt->peer) {
 iph->id = htons(inet_getid(rt->peer, more));
 return;
 }
 } else
 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",

* According to the comment in the source code, the issue has to do with the implementation of the TCP/IP
header compression algorithm described in RFC 1144.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Statistics | 541

 _ _builtin_return_address(0));

 ip_select_fb_ident(iph);
}

We saw in the section “Long-Living IP Peer Information” that for each IP peer there
is an inet_peer data structure that keeps, among other things, a counter that can be
used to set the IP packet ID (iph->id). _ _ip_select_ident uses this ID when it is
available, and falls back to ip_select_fb_ident otherwise.

If the inet_peer structure is not already initialized in the routing cache entry rt, rt_
bind_peer first looks for the inet_peer structure associated with the peer, and if it
does not exist, the function tries to create it (because the last input parameter to rt_
bind_peer is set to 1). Such creation attempts can fail on a loaded system that runs
out of memory and thus cannot afford the allocation of a new inet_peer structure. In
this case, _ _ip_select_ident generates an ID with ip_select_fb_ident, which repre-
sents the last recourse.

The way ip_select_fb_ident (where fb stands for fallback) works is simple: it keeps
a static variable, ip_fallback_id, combines it with the destination IP address of the
peer, and passes it to the secure_ip_id function we already saw in the section “Look-
ups.” The only drawback of this solution is that because this function can poten-
tially be used for several peers, there is no longer a guarantee that the IDs assigned to
consecutive IP packets sent to any given peer within a reasonable amount of time will
be different. It is important that different IP packets addressed to the same destina-
tion have different IDs because the IP ID is one of the fields used to take care of
defragmentation. Thus, if different IP packets with the same ID get fragmented and
the fragments get mixed, there is no way for the receiver to distinguish the fragments
belonging to the different IP packets (see the section “Associating fragments with
their IP packets” in Chapter 18).

IP Statistics
The Linux kernel keeps several sets of statistics about different events and condi-
tions that can be useful for accounting, debugging, or confirming compatibility with
standards. In this chapter, we will only briefly see what statistics are kept by the IP
protocol layer (without touching on the SNMP infrastructure) and how they are
updated. In previous chapters, especially when describing the various functions, we
saw a few cases where macros such as IP_INC_STATS were used to update the value of
some counters.

Let’s start with the data structure that contains all of the counters associated with the
IP protocol. It is called ip_statistics and is defined in net/ipv4/ip_input.c. It is a vec-
tor with two pointers, each one pointing to a vector of ipstats_mib* structures
(defined in include/net/snmp.h), one per CPU. The allocation of such vectors is done
in init_ipv4_mibs in net/ipv4/af_inet.c.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

static int _ _init init_ipv4_mibs(void)
{
 ...
 ip_statistics[0] = alloc_percpu(struct ipstats_mib);
 ip_statistics[1] = alloc_percpu(struct ipstats_mib);
 ...
}

The ipstats_mib structure is simply declared as an array of unsigned long fields of
size _ _IPSTATS_MIB_MAX, which happens to be the size of the IPSTATS_MIB_XXX enu-
meration list in include/linux/snmp.h.

Here is the meaning of the IPSTATS_MIB_XXX values, classified into four groups. For a
more detailed description, you can refer to RFC 2011 for IPv4 and RFC 2465 for
IPv6. The IPSTATS_MIB_XXX counters that are not used by IPv4 (with the exception of
IPSTATS_MIB_INADDRERRORS) are not defined in RFC 2011.

Fields related to received packets

IPSTATS_MIB_INRECEIVES
Number of packets received. This field does not distinguish between com-
plete IP packets and fragments. It also includes both the ones that will be
accepted and the ones that will be discarded for any reason (with the excep-
tion of those dropped because an interface in promiscuous mode delivered
frames to ip_rcv that were not addressed to the receiving interface). It is
updated at the beginning of ip_rcv.

IPSTATS_MIB_INHDRERRORS
Number of packets (fragments as well as nonfragmented packets) that were
discarded because of corrupted IP headers. This field can be updated both in
ip_rcv and in ip_rcv_finish for different reasons.

IPSTATS_MIB_INTOOBIGERRORS
Not used by IPv4. IPv6 uses it to count those ingress IP packets that cannot
be forwarded because they would need to be fragmented (which is not an
allowed operation for a router in IPv6, unlike IPv4).

IPSTATS_MIB_INNOROUTES
Not used at the moment. It is supposed to count those ingress packets that
could not be forwarded because the local host does not have a valid route.

IPSTATS_MIB_INADDRERRORS
Not used at the moment by IPv4. IPv6 uses it to count those packets
received with a wrong address type.

IPSTATS_MIB_INUNKNOWNPROTOS
Number of packets received with an unknown L4 protocol (i.e., no handler
for the protocol was registered). This field is updated in ip_local_deliver_
finish.

* MIB, as mentioned earlier, stands for Management Information Base, and is used to refer to a collection of
objects (typically counters).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Statistics | 543

IPSTATS_MIB_INTRUNCATEDPKTS
The packet is truncated (i.e., it does not include a full IP header). It is used
by IPv6, but not by IPv4.

IPSTATS_MIB_INDISCARDS
Number of packets discarded. This counter does not include the packets
dropped because of header errors; it mainly includes memory allocation
problems. This field is updated in ip_rcv and ip_rcv_finish.

IPSTATS_MIB_INDELIVERS
Number of packets successfully delivered to L4 protocol handlers. This field
is updated in ip_local_deliver_finish.

IPSTATS_MIB_INMCASTPKTS
Number of received multicast packets. It is used by IPv6, but not by IPv4.

Fields related to transmitted packets

IPSTATS_MIB_OUTFORWDATAGRAMS
Number of ingress packets that needed to be forwarded. This counter is
actually incremented before the packets are transmitted and when they theo-
retically could still be discarded for some reason. Its value is updated in ip_
forward_finish (and in ipmr_forward_finish for multicast).

IPSTATS_MIB_OUTREQUESTS
Number of packets that the system tried to transmit (successfully or not),
not including forwarded packets. This field is updated in ip_ouput (and in
ip_mc_output for multicast).

IPSTATS_MIB_OUTDISCARDS
Number of packets whose transmission failed. This field is updated in sev-
eral places, including ip_append_data, ip_push_pending_frames, and raw_
send_hdrinc.

IPSTATS_MIB_OUTNOROUTES
Number of locally generated packets discarded because there was no route
to transmit them. Normally this field is updated after a failure of ip_route_
output_flow. ip_queue_xmit is one of the functions that can update it.

IPSTATS_MIB_OUTMCASTPKTS
Number of transmitted multicast packets. Not used by IPv4 at the moment.

Fields related to defragmentation

IPSTATS_MIB_REASMTIMEOUT
Number of packets that failed defragmentation because some of the frag-
ments were not received in time. The value reflects the number of complete
packets, not the number of fragments. This field is updated in ip_expire,
which is the timer function executed when an IP fragment list is dropped
due to a timeout. Note that this counter is not used as defined in the two
RFCs mentioned at the beginning of this section.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

IPSTATS_MIB_REASMREQDS
Number of fragments received (and therefore the number of attempted reas-
semblies). This field is updated in ip_defrag.

IPSTATS_MIB_REASMFAILS
Number of packets that failed the defragmentation. This field is updated in
several places (_ _ip_evictor, ip_expire, ip_frag_reasm, and ip_defrag) for
different reasons.

IPSTATS_MIB_REASMOKS
Number of packets successfully defragmented. This field is updated in ip_
frag_reasm.

Fields related to fragmentation

IPSTATS_MIB_FRAGFAILS
Number of failed fragmentation efforts. This field is updated in ip_fragment
(and in ipmr_queue_xmit for multicast).

IPSTATS_MIB_FRAGOKS
Number of fragments transmitted. This field is updated in ip_fragment.

IPSTATS_MIB_FRAGCREATES
Number of fragments created. This field is updated in ip_fragment.

The values of these counters are exported in the /proc/net/snmp file.

Each CPU keeps its own accounting information about the packets it processes. Fur-
thermore, it keeps two counters: one for events in interrupt context and the other for
events outside interrupt context. Therefore, the ip_statistics array includes two ele-
ments per CPU, one for interrupt context and one for noninterrupt context. Not all
of the events can happen in both contexts, but to make things easier and clearer, the
vector has simply been defined of double in size; those elements that do not make
sense in one of the two contexts are simply not to be used.

Because some pieces of code can be executed both in interrupt context and outside
interrupt context, the kernel provides three different macros to add an event to the IP
statistics vector:

#define IP_INC_STATS (field) SNMP_INC_STATS (ip_statistics, field)
#define IP_INC_STATS_BH (field) SNMP_INC_STATS_BH (ip_statistics, field)
#define IP_INC_STATS_USER(field) SNMP_INC_STATS_USER(ip_statistics, field)

The first can be used in either context, because it checks internally whether it was
called in interrupt context and updates the right element accordingly. The second
and the third macros are to be used for events that happened in and outside inter-
rupt context, respectively. The macros IP_INC_STATS, IP_INC_STATS_BH, and IP_INC_
STATS_USER are defined in include/net/ip.h, and the three associated SNMP_INC_XXX mac-
ros are defined in include/net/snmp.h.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Configuration | 545

IP Configuration
The Linux IP protocol can be tuned and configured manually by a system adminis-
trator in different ways. This tuning includes both changes to the protocol itself and
to device configuration. The four main interfaces are:

ioctl calls made via ifconfig
ifconfig is the older Unix-legacy tool for configuring IP on network devices.

RTNetlink via ip
ip, which is part of the IPROUTE2 package, is the newer tool that Linux offers
for configuring IP on network devices.

/proc filesystem
Protocol behavior can be tuned via a collection of files in the directory /proc/sys/
net/ipv4.

RARP/BOOTP/DHCP
These three protocols can be used to dynamically assign an IP configuration to a
host and its interfaces.

The last set of protocols in the preceding list have an interesting twist. They are
normally implemented in user space, but Linux also has a simple kernel-space
implementation that is useful when used together with the nfsroot boot option.
The latter allows the kernel to mount the root directory (/) via NFS. To do that, it
needs an IP configuration at boot time before the system is able to initialize the IP
configuration from user space (which, by the way, could be stored in a remote par-
tition and not even be available to the system when it mounts the root directory).
Via kernel boot options, it is possible to give nfsroot a static configuration, or spec-
ify what protocols (yes, more than one can be used concurrently) to use to obtain
the configuration. The IP configuration code is in net/ipv4/ipconfig.c, and the one
used by nfsroot is in fs/nfs/nfsroot.c. The two files cross-reference variables and
functions, but they are actually simple to read. We will not cover them, because
network filesystems and user-space clients are outside the scope of this book. Once
you know how to read _ _setup macros (described in Chapter 7), reading the code
should become a piece of cake. It is clear and well commented.

The third item in the list, /proc, is covered later in the section “Tuning via /proc
Filesystem.”

In this section, I will say a bit about the kernel interfaces that support the behavior of
the first two items, ifconfig and ip. The purpose here is not to cover the internals of
the user-space commands or the associated kernel counterparts that handle configu-
ration requests. It is to show how user space and kernel space communicate, and the
kernel functions that are invoked in response to a user-space command.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

Main Functions That Manipulate IP Addresses and Configuration
In net/ipv4/devinet.c, you can find several functions that can be used to add an IP
address to a network interface, delete an address from an interface, modify an
address, retrieve the IP configuration of a device given its device index or net_device
data structure, etc. Here I introduce only a few of the functions that will be useful, to
help you to understand the functions described later when we talk about the ip and
ifconfig user-space tools.

Before reading these descriptions of functions, it would be worthwhile reviewing the
key data structures used by the IP layer, introduced in Chapter 19 and described in
detail later in this chapter. For instance, a single IP address is represented by an in_
ifaddr structure and the complete IPv4 configuration of a device by an in_device
structure.

inetdev_init and inetdev_destroy
inetdev_init is invoked when the first IP configuration is applied to a device. It
allocates the in_device structure and links it to the associated net_device
instance. It also creates a directory in /proc/sys/net/ipv4/conf/ (see the section
“Tuning via /proc Filesystem”).

The IP configuration can be removed with inetdev_destroy, which simply
undoes whatever was done in inetdev_init, plus removes all of the linked in_
ifaddr structures. The latter are removed with inet_free_ifa, which also decre-
ments the reference count on the in_device structure with in_dev_put. When the
last reference is released, probably with the last call to inet_free_ifa, the in_
device instance is freed with in_dev_finish_destroy.

inet_alloc_ifa and inet_free_ifa
Those two functions allocate and free, respectively, an in_ifaddr data structure.
A new one is allocated when a user adds a new address to an interface. A dele-
tion can be triggered by the removal of a single address, or by the removal of all
of the devices’ IP configurations together. Both routines use the read-copy
update (RCU) mechanism as a means to enforce mutual exclusion.

inet_insert_ifa and inet_del_ifa
inet_insert_ifa adds a new in_ifaddr structure to the list within in_device. It
detects duplicates and marks the address as secondary if it finds out that it falls
within another address’s subnet. Suppose, for instance that eth0 already had the
address 10.0.0.1/24. When a new 10.0.0.2/24 address is added, it will be recog-
nized as secondary with respect to the first. Primary addresses are also used to
feed the entropy of the kernel random number generator with net_srandom. More
information on primary and secondary addresses can be found in Chapter 30.

inet_del_ifa simply removes an in_ifaddr structure from the associated in_
device instance, making sure that, if the address is primary, all of the associated
secondary addresses are removed too, unless the administrator has explicitly
configured the device via its /proc/sys/net/ipv4/conf/dev_name/promote_

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Configuration | 547

secondaries file not to remove secondary addresses. Instead, a secondary address
can be promoted to a primary one when the associated primary address is
removed. Given the in_device instance, this configuration can be accessed with
the IN_DEV_PROMOTE_SECONDARIES macro. The inet_del_ifa function accepts an
extra input parameter that can be used to tell whether the in_device structure
should be freed when the last in_ifaddr instance has been removed. While it is
normal to remove the empty in_device structure, sometimes a caller might not
do it, such as when it knows it is going to add a new in_ifaddr soon.

In both cases, addition and deletion, successful completion leads to a Netlink
broadcast notification with rtmsg_ifa (see the section “Change Notification:
rtmsg_ifa”) and a notification to the other kernel subsystems via the inetaddr_
chain notification chain (see Chapter 4).

inet_set_ifa
This is a wrapper for inet_insert_ifa that creates an in_device structure if none
exists for the associated device, and sets the scope of the address to local (RT_
SCOPE_HOST) for addresses like 127.x.x.x. Refer to the section “Scope” in
Chapter 30 for more details on scopes.

Many other, smaller functions can be used to make the code more readable. Here are
a few of them:

inet_select_addr
This function is used to select an IP address among the ones configured on a
given device. The function accepts an optional scope as a parameter, which can
be used to narrow down the lookup domain. We will see where this function is
useful in Chapter 35.

inet_make_mask and inet_mask_len
Given the number of 1s the netmask is composed of, inet_make mask creates the
associated netmask. For example, an input of 24 would generate the netmask
with the decimal representation 255.255.255.0.

inet_mask_len is the converse, returning the number of 1s in a decimal netmask.
For instance, 255.255.0.0 would return 16.

inet_ifa_match
Given an IP address and a netmask, inet_ifa_match checks whether a given sec-
ond IP address falls within the same subnet. This function is often used to
classify secondary addresses and to check whether a given IP address belongs to
one of the locally configured subnets. See, for instance, inet_del_ifa.

for_primary_ifa and for_ifa
These two functions are macros that can be used to browse all of the in_ifaddr
instances associated with a given in_device structure. for_primary_ifa considers
only primary addresses, and for_ifa goes through all of them.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

Change Notification: rtmsg_ifa
Netlink provides the RTMGRP_IPV4_IFADDR multicast group to user-space applications
interested in changes to the locally configured IP addresses. The kernel uses the
rtmsg_ifa function to notify those applications that registered to the group when any
change takes place on the local IP addresses. The function can be called when two
types of events occur:

RTM_NEWADDR
A new address has been configured on a device.

RTM_DELADDR
An address has been removed from a device.

The generated message is initialized with inet_fill_ifaddr, the same function used
to handle dump requests from user space (with commands such as ip addr list). The
message includes the address being added or removed, and the device associated
with it.

So, who is interested in this kind of notification? Routing protocols are a major
example. If you are using Zebra, the routing protocols you have configured would
like to remove all of the routes that are directly or indirectly dependent on an address
that has gone away. In Chapter 31, you will learn more about the way routing proto-
cols interact with the kernel routing subsystem.

inetaddr_chain Notification Chain
The IP subsystem uses the inetaddr_chain notification chain to notify other kernel
subsystems about changes to the IP configuration of the local devices. A kernel sub-
system can register and unregister itself with inetaddr_chain by means of the
register_inetaddr_notifier and unregister_inetaddr_notifier functions. Here are
two examples of users for this notification chain:

Routing
See the section “External Events” in Chapter 32.

Netfilter masquerading
When a local IP address is used by the Netfilter’s masquerading feature, and that
address disappears, all of the connections that are using that address must be
dropped (see net/ipv4/netfilter/ipt_MASQUERADE.c).

The two NETDEV_DOWN and NETDEV_UP events, respectively, are notified when an IP
address is removed and when it is added to a local device. Such notifications are gen-
erated by the inet_del_ifa and inet_insert_ifa routines introduced in the section
“Main Functions That Manipulate IP Addresses and Configuration.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IP Configuration | 549

IP Configuration via ip
Traditionally, Unix system administrators configured interfaces and routes manually
using ifconfig, route, and other commands. Currently Linux provides an umbrella ip
command to handle IP configuration, with a number of subcommands.

In this section we will see how IPROUTE2 handles the main addressing operations,
such as adding and removing an address. Once you are familiar with these opera-
tions, you can easily understand and read through the code for the others.

Figure 23-2 shows the files and the main functions of the IPROUTE2 package that
are involved with IP address configuration activities. The labels on the lines are ip
keywords, and the nodes show the function invoked and the file the latter belongs to.
For instance, the command ip address add would be handled by ipaddr_modify.

Table 23-1 shows the association between the operation specified with a command-
line keyword (e.g., add) and the kernel handler run by the kernel. For instance, when
the kernel receives a request for an RTM_NEWADDR operation, it knows it is associated
with an add command and therefore invokes inet_rtm_newaddr. Some kernel opera-
tions are overloaded, and for these, the kernel needs extra flags to figure out exactly
what the user-space command is asking for. See Chapter 36 for an example. This
association is defined in net/ipv4/devinet.c in the inet_rtnetlink_table structure. For
an introduction to RTNetlink, refer to Chapter 3.

The list and flush commands need some explanation. list is simply a request to the
kernel to dump information, for instance, about a given device, and flush is a request
to clear the entire IP configuration on the device.

Figure 23-2. IPROUTE2 files and functions for address configuration

Table 23-1. ip route commands and associated kernel operations

CLI keyword Operation Kernel handler

add RTM_NEWADDR inet_rtm_newaddr

delete RTM_DELADDR inet_rtm_deladdr

list, lst, show RTM_GETADDR inet_dumpifaddr

flush RTM_GETADDR inet_dumpifaddr

main (ip.c)

ipaddr_modify ipaddr_list_or_flush multiaddr_modify multiaddr_list

do_ipaddr (ipaddress.c) do_multiaddr (ipmaddr.c)

address maddress

list/lst/showadd
delete

list/lst/show
flush

add
delete

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

The two functions inet_rtm_newaddr and inet_rtm_deladdr are wrappers for the
generic functions inet_insert_ifa and inet_del_ifa that we introduced in the sec-
tion “Main Functions That Manipulate IP Addresses and Configuration.” All the
wrappers do is translate the request that comes from user space into an input under-
standable by the two more-general functions. They also filter bad requests that are
associated with nonexistent devices.

IP Configuration via ifconfig
ifconfig is implemented in the ifconfig.c user-space file (part of the net-tools package).
Unlike ip, ifconfig uses ioctl calls to interface to the kernel. However, a set of func-
tions are used by both the ip and ifconfig handlers. In Chapter 3, we had an overview
of how ioctl calls are handled by the kernel. Here all we need to know is that the
requests related to IPv4 configuration are handled by the inet_ioctl function in net/
ipv4/af_inet.c. Based on the ioctl code you can see what helper functions inet_ioctl
uses to process the user-space commands (e.g., devinet_ioctl).

As for IPROUTE2, user-space requests from ifconfig are handled on the kernel side
by wrappers that end up calling the functions in the section “Main Functions That
Manipulate IP Addresses and Configuration.”

IP-over-IP
IP-over-IP, also called IP tunneling (or IPIP), consists of transmitting IP packets
inside other IP packets. This protocol is useful in some very interesting cases, includ-
ing in a Virtual Private Network (VPN). Of course, nothing comes for free; you can
well imagine the extra weight of the doubling of the protocol: because each IP packet
has two IP headers, the overhead becomes huge for small packets. There are subtle
complexities in implementation, too. For instance, what is the relationship between
the IP options of the two headers?

If you consider just the IPv4 and IPv6 protocols, you already have four possible com-
binations of tunneling. But not all of these combinations are likely to be used.

To make things more complex (I should actually say “flexible”), keep in mind that
there is no limit to the number of recursions in tunneling.*

The different tunnel interfaces that can be created in Linux are not covered in this
book. However, given the background on the IP implementation in this part of the
book, you can study the code in net/ipv4/ipip.c and include/net/ipip.h to derive the
implementation details.

* IPv6 defines the “tunnel encapsulation limit” as the maximum number of nested encapsulations. See section
6.6 of RFC 2473.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IPv4: What’s Wrong with It? | 551

IPv4: What’s Wrong with It?
We saw in the section “IP Protocol: The Big Picture” in Chapter 18 what the main
tasks are of the IP protocol. IPv4 was designed almost 25 years ago (in 1981), and
given the speed with which the Internet and network services have evolved since
then, the protocol is showing its age. Because IPv4 was not originally designed with
today’s big network topologies and commercial uses in mind, it has shown several
limitations over the years. These have been only partially solved, sometimes with
special extensions to the protocol (e.g., classless interdomain routing), DiffServ Code
Point (DSCP) replacement to ToS, congestion notification, etc.), and other times by
defining specialized external protocols such as IPsec.

Thanks to the experience gained with IPv4, the new IPv6 version of the protocol has
been designed to address the known shortcomings of IPv4, taking into consideration
such aspects as:

• Functionality

• Ease of configuration

• Performance

• Transition from IPv4 networks to IPv6 networks

• Security

Naturally, the committees designing the new protocol have tried to keep IPv4 and
IPv6 as compatible as possible, and the transition from one to another as painless as
possible. This compatibility and interaction have to be handled not only at the appli-
cation layer, but also at the kernel layer.

When analyzing IPv4 packet transmission, we saw that fragmentation and options
processing were the two most expensive tasks. It should not come as a surprise,
therefore, that IPv6 addressed both points:

• Fragmentation has been limited in IPv6: an IP packet can be fragmented only at
the source.

• The presence of IP options may sometimes inhibit the fast processing path: this
is true for both software routers like Linux on a PC and commercial hardware IP
implementations. For a commercial implementation, it could mean that IP pack-
ets without options can be forwarded in hardware at much higher speed, and the
ones with options have to be handled in software. The way options are handled
by IPv6 is also different: IPv6 uses the concept of extensions, whose main advan-
tage is that not all of the routers have to process them.

One other big limitation of IPv4 is the 32-bit size of its addresses and the limited
hierarchy they come with. Network Address Translation (NAT) is only a short-term
solution that partially solves the problem. NAT comes with some limitations, which
are listed on the following page.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

• Each protocol has to be treated specially, so some protocols don’t always work
passing through a NAT router (e.g., H323).

• The NAT router becomes a single point of failure. Because it needs to keep state
information for all the connections passing through it, designing a network with
redundancy or security in mind is not easy.

• Its tasks are complex and computationally heavy when there is a need to sup-
port those complex protocols that have not been designed with NAT support in
mind (these are considered to be “not NAT-friendly”*).

The limited number of addresses in IPv4 also contributes (because of its limited hier-
archy) to the creation of huge routing tables. A core router can have up to hundreds
of thousands of routes. This trend is bad, for a couple of reasons:

• The routes require lots of memory.

• Lookups are slower.

Classless interdomain routing helps in reducing the size of the routing tables, but
cannot solve the limited address space problem of IPv4.

In IPv6, the address has been made four times bigger in size, which does not mean
four times as many addresses, but rather 296 times as many! This potentially brings
systems outside the NAT router and makes them full-fledged citizens of the Internet,
with implications for new types of applications.

IPv4 was not designed with security in mind. Because of this, several approaches of
different granularity have been developed: application end-to-end solutions such as
Secure Sockets Layer (SSL), host end-to-end solutions such as IPsec, etc. Each has its
own pros and cons. SSL requires the applications to be written to use that security
layer (which sits on top of TCP), whereas IPsec (which is what most people identify
VPNs with) does not: IPsec sits at the L3 layer and therefore is transparent to appli-
cations. IPsec can be used by both IPv4 and IPv6, but it fits better with IPv6.

With IPv6, the neighboring system has changed as well. It is called neighbor discov-
ery, and represents the counterpart to ARP for IPv4. The QoS component is also
expanded.

With IPv4 networks, it is already possible to carry out automatic host configuration,
thanks to protocols such as DHCP; however, some constraints make that solution
less Plug and Play (PnP) than it should be. This issue has been solved by IPv6 too,
with the so-called autoconfiguration feature.

* You can read RFC 3235 if you would like to see what is considered a NAT-friendly protocol or application.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 553

Tuning via /proc Filesystem
The /proc filesystem was introduced in Chapter 3; it provides a simple interface for
users to view and change kernel parameters and is the model for the newer sysfs
directory. It contains a huge number of files (or rather, virtual data structures that
look to the user just like files) that map to variables and functions inside the kernel
and that can be used to tune the behavior of the networking component of the ker-
nel as well.

The files used for IPv4 tuning are located mainly in two directories:

/proc/sys/net/ipv4/
Table 23-2 shows some of the files in this directory that are used by IPv4. The
kernel variables associated with those files are declared in net/ipv4/sysctl_net_
ipv4.c and are statically registered at boot time (see Chapter 3). Note that the
directory contains many more files than the ones in Table 23-2. Most of the extra
files are associated with L4 protocols, especially TCP.

/proc/sys/net/ipv4/conf/
This directory contains a subdirectory for each network device recognized by the
kernel, plus other special directories (see Figure 36-4 in Chapter 36). Those sub-
directories include configuration parameters that are device specific; among
them are accept_redirects, send_redirects, accept_source_route, and
forwarding. These will be covered in Chapter 36, with the exception of promote_
secondaries, which is described in the section “Main Functions That Manipu-
late IP Addresses and Configuration.”

Table 23-2. IPv4-related files in /proc/sys/net/ipv4

/proc filename Associated kernel variable Default value

ip_forward ipv4_devconf.forwarding 0

ip_no_pmtu_disc ipv4_config.no_pmtu_disc 0

ip_autoconfig ipv4_config.autoconfig 0

ip_default_ttl sysctl_ip_default_ttl IPDEFTTL (64)

ip_nonlocal_bind sysctl_ip_nonlocal_bind 0

ip_local_port_range sysctl_ip_local_port_range[0]

sysctl_ip_local_port_range[1]

1

65535a

ipfrag_high_thresh sysctl_ipfrag_high_thresh 256K

ipfrag_low_thresh sysctl_ipfrag_low_thresh 192K

ipfrag_time sysctl_ipfrag_time IP_FRAG_TIME (30 * HZ)

ipfrag_secret_interval sysctl_ipfrag_secret_interval 10 * 60 * HZ

ip_dynaddr sysctl_ip_dynaddr 0

inet_peer_gc_maxtime inet_peer_gc_maxtime 120 * HZ

inet_peer_gc_mintime inet_peer_gc_mintime 10 * HZ

inet_peer_maxttl inet_peer_maxttl 10 * 60 * HZ

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

The first three elements in Table 23-2 are members of two data structures of type
ipv4_devconf and ipv4_config, located, respectively, in include/linux/inetdevice.h and
include/net/ip.h and described later in this chapter. The other elements of those struc-
tures are either exported elsewhere or not exported at all (we will cover them in the
associated chapters). The meaning of the files and kernel variables is as follows:

ip_forward
Set to a nonzero value to enable the device to forward traffic. See the section
“Enabling and Disabling Forwarding” in Chapter 36.

ip_no_pmtu_disc
When 0, path MTU discovery is enabled.

ip_autoconfig
This is set to 1 when the IP configuration of the host was done via a protocol
such as DHCP. See the section “IP Configuration.”

ip_default_ttl
This is the default value of the IP TTL field used for unicast traffic. Multicast
traffic uses the default value of 1 and does not have an equivalent sysctl vari-
able to set it.

ip_nonlocal_bind
When nonzero, it is possible for an application to bind to an address that is not
local to the host. This allows, for instance, binding a socket to an address even if
the associated interface is down.

ip_local_port_range
Range of ports that can be used for outgoing connections.

ipfrag_high_thresh
ipfrag_low_thresh

Thresholds used to limit the amount of memory used by incoming IP fragments.
When the memory used by fragments reaches ipfrag_high_thresh, old entries
are removed until the memory used declines to ipfrag_low_thresh. See the sec-
tion “Garbage Collection.”

inet_peer_minttl inet_peer_minttl 120 * HZ

inet_peer_threshold inet_peer_threshold 65536 + 128b

a These values are updated by tcp_init at boot time based on the amount of memory available in the system.
Even if they are updated by TCP, they are used by any L4 protocol that uses ports.

b This value is updated by inet_initpeers at boot time based on the amount of memory available in the sys-
tem.

Table 23-2. IPv4-related files in /proc/sys/net/ipv4 (continued)

/proc filename Associated kernel variable Default value

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 555

ipfrag_time
Maximum amount of time incoming IP fragments are kept in memory before
expiring.

ipfrag_secret_interval
Interval after which the incoming IP fragments that are in the hash table are
extracted and reinserted with a different hash function. See the section “Hash
Table Reorganization” in Chapter 22.

ip_dynaddr
This variable is used to handle the case of sockets bound to addresses associated
with dial-on-demand interfaces that do not receive any reply until the interface
comes up. If ip_dynaddr is set, the sockets will retry binding.

inet_peer_threshold
Maximum number of inet_peer structures that can be allocated.

inet_peer_gc_maxtime
inet_peer_gc_mintime

Amount of time between regular garbage collection passes. Since the amount of
memory usable by the inet_peer structures is limited (by inet_peer_threshold),
there is a regular timer that expires unused entries based on these two variables.
inet_peer_gc_maxtime is used when the system is not heavily loaded, and inet_
peer_gc_mintime is used in the opposite case. Thus, the more entries there are,
the more frequently the timer expires.

inet_peer_maxttl
inet_peer_minttl

Maximum and minimum TTL of inet_peer entries. Its value is supposed to be
bigger than sysctl_ipfrag_time, for obvious reasons.

Data Structures Featured in This Part of the Book
The section “Main IPv4 Data Structures” in Chapter 19 gave a brief overview of the
main data structures. This section has a detailed description of each data structure
type. Figure 23-3 shows the file that defines each data structure.

iphdr Structure
The meaning of its fields has already been covered in the section “IP Header” in
Chapter 18.

ip_options Structure
This structure represents the options for a packet that needs to be transmitted or for-
warded. The options are stored in this structure because it is easier to read than the
corresponding portion of the IP header itself.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

Let’s go field by field. They should be fairly simple to understand if you have read
the section “IP Options” in Chapter 18. After this description, you will be able to
understand more easily how the parsing is done and how its results are used by the
IP layer subsystems, such as the code that processes incoming IP packets. Some of
the bit fields are grouped together into an unsigned char; the declarations of these
end with :1.

unsigned char optlen
Length of the set of options. As explained in Chapter 18, this is limited to a max-
imum of 40 bytes by the definition of the IP header.

unsigned char is_changed:1
Set if the IP header has been modified (such as an IP address or a timestamp).
This is useful to know because if the packet has to be forwarded, this field indi-
cates that the IP checksum has to be recomputed.

_ _u32 faddr
unsigned char is_strictroute:1
unsigned char srr
unsigned char srr_is_hit:1

faddr is meaningful only for transmitted packets (that is, those generated locally)
and only for those using source routing. The value of faddr is set to the first of
the IP addresses provided for source routing. See the section “Option: Strict and
Loose Source Routing” in Chapter 19.

is_strictroute is a flag set to true when Strict Source Route is among the
options.

srr contains the offset of the Source Route option in the header. If the option is
not used, the value is zero.

srr_is_hit is true if the packet was source routed and the IP address of the
receiving interface is one of the addresses in the source route list (see ip_
options_rcv_srr in net/ipv4/ip_options.c).

Figure 23-3. Distribution of data structures in kernel files

Root
(usually /usr/src/linux)

include

linux
ip.h
 iphdr
 ip_options
 icmp_cookie
 cork

net

net

ip_fragment.c
 ipq

ipv4

indevice.h
 in_device
 in_ifaddr
 ipv4_devconf
skbuff.h
 skb_frag_t

snmp.h
 ipstats_mib

inetpeer.h
 inet_peer

ip.h
 ipv4_config

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 557

unsigned char rr
When rr is nonzero, Record Route is one of the IP options and the value of this
field represents the offset inside the IP header where the option starts. This field
is used together with rr_needaddr.

unsigned char rr_needaddr:1
When rr_needaddr is true, Record Route is one of the IP options and there is still
room in the header for another route; therefore, the current node should copy
the IP address of the outgoing interface into the IP header at the offset specified
by rr.

unsigned char ts
When ts is nonzero, Timestamp is one of the IP options and this field repre-
sents the offset inside the IP header where the option starts. This field is used
together with ts_needaddr and ts_needtime.

unsigned char is_setbyuser:1
This field makes sense only for transmitted packets and is set when the options
were passed from user space with the system call setsockopt. Currently, how-
ever, it is never used.

unsigned char is_data:1
unsigned char _data[0]

These fields are used in two situations: when the local node transmits a locally
generated packet, and when the local node replies to an ICMP echo request. In
these cases, is_data is true and _data points to an area containing the options to
append to the IP header. The [0] definition is a common convention used for
reserving space for a pointer.

When forwarding a packet, the options are in the associated skb buffer (see the
ip_options_get function in the net/ipv4/ip_options.c file).

unsigned char ts_needtime:1
When this option is true, Timestamp is one of the IP options and there is still
room in the header for another timestamp; therefore, the current node should
add the time of transmission into the IP header at the offset specified by ts.

unsigned char ts_needaddr:1
Used with ts and ts_needtime to indicate that the IP address of the egress device
should also be copied into the IP header.

unsigned char router_alert
When this option is true, Router Alert is one of the IP options.

unsigned char _ _pad1, _ _pad2
Because memory accesses are faster when the location is aligned to a 32-bit
boundary, the Linux kernel data structures are often padded out with unused
fields called _ _padn in order to make their sizes a multiple of 32 bits. This is the
only purpose of _ _pad1 and _ _pad2; they are not used otherwise.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

The flags srr, rr, and ts also are useful when parsing the options in order to detect
the ones that are present more than once, which is illegal (see the section “Option
Parsing” in Chapter 19).

ipcm_cookie Structure
This structure combines various pieces of information needed to transmit a packet.

struct ipcm_cookie
{
 u32 addr;
 int oif;
 struct ip_options *opt;
};

The destination IP address is addr, the egress device is oif if defined, and the IP
options are in an ip_options structure. Note that addr is the only field that is always
set. oif is 0 if there are no constraints on which device to use.

ipq Structure
Here is the description of the fields of the ipq structure. For the sake of simplicity,
not all fields are shown in Figure 22-1 in Chapter 22.

struct ipq *next
When the fragments are put into the ipq_hash hash table, conflicting elements
(elements with the same hash value) are linked together with this field. Note that
this field does not indicate the order of fragments within the packet; it is used
simply as a standard way to organize the hash table. The order of fragments
within the packet is controlled by the fragments field (see Figure 22-1 in
Chapter 22).

struct ipq **pprev
Pointer back to the head of the list of IP packets that have the same hash value.

struct list_head lru_list
All of the ipq structures are kept sorted in a global list, ipq_lru_list, based on a
least-recently-used criterion. This list is useful when performing garbage collec-
tion. This field is used to link the ipq structure to such a list.

u32 user
The reason why an IP packet is to be defragmented, which indirectly says what
kernel subsystem asked for the defragmentation. The list of allowed values for
IP_DEFRAG_XXX is in include/net/ip.h. The most common one is IP_DEFRAG_LOCAL_
DELIVER, which is used when defragmenting ingress packets that are to be deliv-
ered locally.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 559

u32 saddr
u32 daddr
u16 id
u8 protocol

These parameters represent the source IP address, destination IP address, IP
packet ID, and L4 protocol identifier, respectively. As described in Chapter 18,
these four parameters identify the original IP packet a fragment belongs to. For
that reason, they are also the parameters used by the hash function to optimally
spread elements throughout the hash table.

u8 last_in
Stores three flags, whose possible values are:

COMPLETE
All of the fragments have been received and can therefore be joined together
to obtain the original IP packet. This flag can also be used to mark those ipq
structures that have been chosen for deletion (see ipq_kill in net/ipv4/ip_
fragment.c).

FIRST_IN
The first of the fragments (the one with offset=0) has been received. The
first fragment is the only one carrying all of the options that were in the orig-
inal IP packet.

LAST_IN
The last of the fragments (the one with MF=0) has been received. The last
fragment is important because it is the one that tells us the size of the origi-
nal IP packet.

struct sk_buff *fragments
List of fragments received so far.

int len
Offset where the fragment with the biggest offset ends. When the last fragment is
received (the one with MF=0), len will tell the size of the original IP packet.

int meat
Represents how many bytes of the original packet we have received so far. When
its value is the same as len, the packet has been completely received.

spinlock_t lock
Protects the structure from race conditions. It could happen, for instance, that
different IP fragments are received at the same time by different NICs handled by
different CPUs.

atomic_t refcnt
Counter used to keep track of external references to this packet. As an example
of its purpose, the timer timer increments refcnt to make sure that no one is
going to free the ipq structure while the timer is still pending; otherwise, the
timer might expire and try to access a data structure that does not exist any-
more. You can imagine the consequences.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

struct timer_list timer
Chapter 18 explained why IP fragments cannot stay forever in memory and
should be removed after some time if defragmentation is not possible. This field
is the timer that takes care of that.

int iif
ID of the device from which the last fragment was received. When a list of frag-
ments expires, this field is used to decide which device to use to transmit the
FRAGMENTATION REASSEMBLY TIMEOUT ICMP message (see ip_expire
in the net/ipv4/ip_fragment.c file).

struct timeval stamp
Time when the last fragment was received (see ip_frag_queue in net/ipv4/ip_
fragment.c).

The ipq_hash table is protected by ipfrag_lock, which can be taken in either shared
(read-only) or exclusive (read-write) mode. Do not confuse this lock with the one
embedded in each ipq element.

inet_peer Structure
The kernel keeps an instance of this structure for each remote host it has been talk-
ing to in the recent past. In the section “Long-Living IP Peer Information,” you saw
how it is used. All instances of inet_peer structures are kept in an AVL tree, a struc-
ture optimized for frequent lookups. The functions used to manipulate inet_peer
instances are in net/ipv4/inetpeer.c.

struct inet_peer *avl_left
struct inet_peer *avl_right

Left and right pointers to the two subtrees.

_ _u16 avl_height
Height of the AVL tree.

struct inet_peer *unused_next
struct inet_peer **unused_prevp

Used to link the node into a list that contains elements that expired. unused_
prevp is used to check whether the node is in that list.

A node can be put into that list and then taken back out of it several times with-
out ever being removed completely. See the section “Garbage Collection.”

unsigned long dtime
Time when this element was added to the unused list inet_peer_unused_head via
inet_putpeer.

atomic_t refcnt
Reference count for the element. Among the users of this structure are the rout-
ing subsystem and the TCP layer.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 561

_ _u32 v4daddr
IP address of the remote peer.

_ _u16 ip_id_count
IP packet ID to use next for this peer (see inet_getid in include/net/inetpeer.h).

_ _u32 tcp_ts
unsigned long tcp_ts_stamp

Used by TCP to manage timestamps.

ipstats_mib Structure
The SNMP protocol employs a type of object called an MIB to collect statistics about
systems. A data structure called ipstats_mib keeps statistics on the IP layer. The sec-
tion “IP Statistics” covered this structure in more detail.

in_device Structure
The in_device structure stores all of the IPv4-related configuration for a network
device, such as changes made by a user with the ifconfig or ip command. This struc-
ture is linked to the net_device structure via net_device->ip_ptr and can be retrieved
with in_dev_get and _ _in_dev_get. The difference between those two functions is
that the first one takes care of all of the necessary locking, and the second one
assumes the caller has taken care of it already.

Since in_dev_get internally increases a reference count on the in_dev structure when
it succeeds (i.e., when a device is configured to support IPv4), its caller is supposed
to decrement the reference count with in_dev_put when it is done with the structure.

The structure is allocated and linked to the device with inetdev_init, which is called
when the first IPv4 address is configured on the device. Here are the meanings of its
fields:

struct net_device *dev
Pointer back to the associated net_device structure.

atomic_t refcnt
Reference count. The structure cannot be freed until this field is 0.

int dead
This field is set to mark the device as dead. This is useful to detect those cases
where the entry cannot be destroyed because it has a nonzero reference count,
but a destroy action has been initiated. The two most common events that trig-
ger the removal of an in_device structure are:

• Unregistration of the device (see Chapter 8)

• Removal of the last configured IP address from the device (see inet_del_ifa
in net/ipv4/devinet.c)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

struct in_ifaddr *ifa_list
List of IPv4 addresses configured on the device. The in_ifaddr instances are kept
sorted by scope (bigger scope first), and elements with the same scope are kept
sorted by address type (primary first). The in_ifaddr data structure is further
described in the section “in_ifaddr Structure.”

struct neigh_parms *arp_parms
The meaning of this field is described in detail in Part VI.

struct ipv4_devconf cnf
See the section “ipv4_devconf Structure”

struct rcu_head rcu_head
Used by the RCU mechanism to enforce mutual exclusion. It accomplishes the
same job as a lock.

The rest of the fields are used by the multicast code. For instance, mc_list stores the
device’s multicast configuration and it is the multicast counterpart of ifa_list. mr_
vl_seen and mr_v2_seen are timestamps used by the IGMP protocol to keep track of
the reception of versions 1 and 2 IGMP packets.

in_ifaddr Structure
When configuring an IPv4 address on an interface, the kernel creates an in_ifaddr
structure that includes the 4-byte address along with several other fields. Here are
their meanings:

struct in_ifaddr *ifa_next
Pointer to the next element in the list. The list contains all of the addresses con-
figured on the device.

struct in_device *ifa_dev
Pointer back to the associated in_device structure.

u32 ifa_local
u32 ifa_address

The values of these two fields depend on whether the address is assigned to a tun-
nel interface. If so, ifa_local and ifa_address are the local and remote addresses
of the tunnel, respectively. If not, both contain the address of the local interface.

u32 ifa_mask
unsigned char ifa_prefixlen

ifa_mask is the netmask associated with the address. ifa_prefixlen is the num-
ber of 1s that compose the netmask. Since they are different ways of represent-
ing the same information, one of the two is normally computed from the other.
This is done, for instance, by the ip and ifconfig user-space configuration tools
described in the section “IP Configuration.” ip passes the kernel ifa_prefixlen
and lets the latter compute ifa_mask, whereas ifconfig does the opposite. The
kernel provides some functions to convert a netmask into a prefix length, and
vice versa.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 563

u32 ifa_broadcast
Broadcast address.

u32 ifa_anycast
Anycast address.

unsigned char ifa_scope
Scope of the address. The default is RT_SCOPE_UNIVERSE (which corresponds to
the value 0) and the field is usually set to that value by ifconfig/ip, although a dif-
ferent value can be chosen. The main exception is an address in the range 127.x.
x.x, which is given the RT_SCOPE_HOST scope. See Chapter 30 for more details.

unsigned char ifa_flags
The possible IFA_F_XXX bit flags are listed in include/linux/rtnetlink.h. Here is the
one used by IPv4:

IFA_F_SECONDARY
When a new address is added to a device that already has another address
with the same subnet, it is tagged as secondary.

The other flags are used by IPv6.

char ifa_label[IFNAMSIZ]
A string used mostly for backward compatibility with 2.0.x kernels that allowed
aliased interfaces with names such as eth0:1.

struct rcu_head rcu_head
Used by the RCU mechanism to enforce mutual exclusion. It accomplishes the
same job as a lock.

ipv4_devconf Structure
The ipv4_devconf data structure, whose fields are exported via /proc in /proc/sys/net/
ipv4/conf/, is used to tune the behavior of a network device. There is an instance for
each device, plus one that stores the default values (ipv4_devconf_dflt). The mean-
ings of its fields are covered in Chapters 29 and 36, with the exception of promote_
secondaries, which is described in the section “Main Functions That Manipulate IP
Addresses and Configuration.”

ipv4_config Structure
While ipv4_devconf structures are used to store per-device configuration, ipv4_
config stores configuration that applies to the host.

Here is a brief description of its fields:

int log_martians
This parameter is also present in the ipv4_devconf structure. It is used to decide
whether to print warning messages to the console when specific errors occur. Its
value is not checked directly, but via the macro IN_DEV_LOG_MARTIANS, which
gives higher priority to the per-device instance.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

int autoconfig
Not used.

int no_pmtu_disc
Used to initialize the variable inet_sock->pmtudisc that stores the PMTU config-
uration for a socket. See Chapter 18 for more details on path MTU discovery.

cork Structure
The cork structure, defined in include/linux/ip.h* inside the definition of inet_sock, is
used to handle the socket cork option (UDP_CORK for UDP, TCP_CORK for TCP). We saw
in Chapter 21 how its fields are used to maintain some context information across
consecutive invocations of ip_append_data and ip_append_page to handle data
fragmentation.

Here is a brief description of its fields:

unsigned int flags
Currently only one flag used by IPv4 can be set: IPCORK_OPT. When this flag is
set, it means there are options in opt.

unsigned int fragsize
Size of the data fragments generated. This includes both payload and L3 header
and is normally the PMTU.

struct ip_options *opt
IP options to use.

struct rtable *rt
Routing table cache entry that will be used to transmit the IP packet.

int length
Size of the IP packet (sum of all the data fragments, not including IP headers).

u32 addr
Destination IP address.

struct flowi fl
Collection of information about the two ends of the connection. More details are
in Chapter 36.

skb_frag_t Structure
We saw in Chapter 21 what a paged buffer looks like (see, for example, Figure 21-5
in that chapter). skb_frag_t includes the fields necessary to identify a data block on a
memory page:

* IPv6 defines its own version of cork in include/linux/ipv6.h.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Functions and Variables Featured in This Part of the Book | 565

struct page *page
Pointer to the memory page. On i386, the page size is 4 KB. To find the size of a
page on any given architecture xxx, look for PAGE_SIZE in include/asm-xxx/page.h.

_ _u16 page_offset
Offset, relative to the beginning of the page, where the fragment starts.

_ _u16 size
Size of the fragment.

Functions and Variables Featured in This Part
of the Book
Table 23-3 summarizes the main functions, variables, and data structure introduced
or referenced in the chapters of this book covering the IPv4 protocol.

Table 23-3. Functions, variables, and data structures in the IPv4 subsystem

/proc filename Associated kernel variable

ip_init Initializes the IPv4 protocol. See the section “IP Options” in
Chapter 19.

ip_rcv Processes ingress IP packets. See the section “Processing
Input IP Packets” in Chapter 19.

ip_forward

ip_forward_finish

Forward an ingress IP packet or fragment. See the section
“Forwarding” in Chapter 20.

ip_local_deliver

ip_local_deliver_finish

Deliver an ingress IP packet to the local host. See the section
“Local Delivery” in Chapter 20.

ipfrag_init Initializes the IP Fragmentation/Defragmentation sub-
system.

ip_defrag

ip_find

ip_frag_queue

ip_frag_reasm

ip_frag_destroy

ip_expire

ip_evictor

Handle IP defragmentation. See the section “IP Defragmen-
tation” in Chapter 22.

ip_fragment

ip_dont_fragment

getfrag

Handle IP fragmentation. See the section “IP Fragmentation”
in Chapter 22.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

ip_options_compile

ip_options_parse

ip_options_build

ip_forward_options

Handle IP options. See the section “IP options” in Chapter 19.

ip_queue_xmit,

ip_append_data, ip_push_pending_frames

Used by L4 protocols to transmit IP packets. See the section
“Key Functions That Perform Transmission” in Chapter 21.

dst_output Invokes the right transmit routine according to the result of a
previous routing lookup. See Figure 18-1 in Chapter 18.

ip_finish_output

ip_finish_output2

Interface between the IP layer transmission routines and the
neighboring subsystem. See the section “Interface to the
Neighboring Subsystem” in Chapter 21.

ip_decrease_ttl Decrements the IP header’s TTL field and updates the IP
checksum accordingly.

ip_fast_csum

ip_send_check, ...

Compute or update an IP checksum. Many more such rou-
tines are listed in the section “APIs for Checksum Computa-
tion” in Chapter 18.

in_dev_get Returns the IP configuration block in_device of a network
device and increments its reference count.

inet_initpeers Initializes the IP peer subsystem.

inet_getpeer Searches an inet_peer structure using an IPv4 address as
a key.

ip_select_ident

ip_select_ident_more

secure_ip_id

Select the IP ID to use for an egress IP packet.

ip_call_ra_chain Hands ingress IP packets that carry the Router Alert option to
the interested local Raw sockets. See the section “ip_forward
function” in Chapter 20.

IP_INC_STATS

IP_INC_STATS_BH

IP_INC_STATS_USER

Increment counters used to keep statistics on IP traffic. See
the section “IP Statistics.”

inet_rtm_newaddr

inet_rtm_deladdr

inet_dump_ifaddr

Process ip addr commands from the user-space IPROUTE2
package.

Table 23-3. Functions, variables, and data structures in the IPv4 subsystem (continued)

/proc filename Associated kernel variable

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Functions and Variables Featured in This Part of the Book | 567

inet_alloc_ifa

inet_free_ifa

inet_insert_ifa

inet_del_ifa

inet_set_ifa

inet_select_addr

inet_make_mask

inet_mask_len

inet_ifa_match

Add, remove, and manipulate the IP addresses configured on
the local devices. See the section “Main functions that
manipulate IP addresses and configuration.”

for_primary_ifa

for_ifa

Browse the IP addresses configured on a network device.

rtmsg_ifa Generates notifications about changes to the IP address con-
figuration of local devices. See the section “Change notifica-
tion: rtmsg_ifa.”

Variables

ipv4_devconf

ipv4_devconf_dflt

Store a set of parameters that can be tuned on a per-device
basis via the /proc filesystem. See the section “Tuning via
/proc filesystem.”

ip_frag_mem Amount of memory held by ingress IP fragments. See the
section “Garbage Collection” in Chapter 33.

ipfrag_lock Lock used for the table of ipq instances. See the section
“Organization of the IP Fragments Hash Table” in Chapter 22.

peer_total

inet_peer_threshold

peer_total is the number of outstanding inet_peer
structures, and inet_peer_threshold is the maximum
amount of memory that can be used to allocate inet_peer
instances.

peer_pool_lock Lock used for the AVL tree where inet_peer structures are
inserted.

inet_peer_unused_lock Lock used for the list where unused inet_peer structures
are inserted.

ip_statistics Stores statistics about IP traffic. See the section “IP Statistics.
”

Table 23-3. Functions, variables, and data structures in the IPv4 subsystem (continued)

/proc filename Associated kernel variable

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 23: Internet Protocol Version 4 (IPv4): Miscellaneous Topics

Files and Directories Featured in This Part of the Book
The net/ipv4 directory contains more files than the ones listed in Figure 23-4, but they
are covered in other chapters, including the chapters comprising Parts VI and VII.

Data structures

struct iphdr

struct ip_options

struct ipcm_cookie

struct ipq

struct ip_mib

struct inet_peer

struct in_device

struct ipv4_devconf

struct ipv4_config

struct in_ifaddr

struct cork

Main data structures used by IPv4. They are briefly
introduced in Chapter 19 and are described in detail in this
chapter.

Figure 23-4. Files and directories featured in this part of the book

Table 23-3. Functions, variables, and data structures in the IPv4 subsystem (continued)

/proc filename Associated kernel variable

Root
(usually /usr/src/linux)

include

asm-xxx

checksum.h

linux

ip.h
socket.h
inetdevice.h

net

checksum.h
snmp.h
ip.h
ipip.h

net

ipv4
ip_input.c
ip_output.c
ip_forward.c
ip_options.c
ip_fragment.c
ipconfig.c
inetpeer.c
protocol.c
sysctl_net_ipv4.c
devinet.c
af_inet.c
ip_sockglue.c

dev.c

core

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

569

Chapter 24 CHAPTER 24

Layer Four Protocol and
Raw IP Handling

This chapter describes the interface between L3 and L4 protocols. The only L3 pro-
tocol considered here is IP. The L4 protocols include the familiar TCP, UDP, and
ICMP, along with several other ones. The L4 protocols are not covered in this book
for reasons of space and complexity. However, this chapter explains what happens
when applications handle their own L4 (and sometimes L3) processing through raw
IP.

In particular, this chapter explains:

• How L4 protocols register with the kernel and tell the kernel what kind of traffic
they are interested in

• How ingress packets are passed to the correct L4 protocol handler

• How applications tell the kernel to let the application process headers

We saw in Chapter 21 the functions that L4 protocols use to transmit an IP data-
gram. Since this book focuses on IP, this chapter covers only those L4 protocols that
sit on top of IP. The chapter describes the IPv4 interface and then briefly shows
where IPv6 differs.

Available L4 Protocols
A few key L4 protocols are statically compiled into the kernel. Several less-common
protocols can be compiled as modules. Table 24-1 shows the protocols that are stati-
cally compiled in.

Table 24-1. Protocols statically compiled into the kernel

Protocol RFC# (Year)

UDP 768(1980)

ICMP 792(1981)

TCP 793(1981)

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

570 | Chapter 24: Layer Four Protocol and Raw IP Handling

Table 24-2 lists some of the protocols in the second category. They can be added to
the kernel from the section “Networking Support ➝ Networking Options” in the ker-
nel configuration.

Other protocols are available for the Linux kernel but are either implemented in user
space (routing protocols are an example) or are available as kernel patches because
they are not yet integrated into the core kernel.

Figure 24-1 shows how the L4 protocols rest on L3 protocols. The three main proto-
cols (ICMP, UDP, and TCP), as well as the IPsec suite, have IPv6 counterparts. There
is no IGMPv6 in Figure 24-1 because its functionality is implemented as part of
ICMPv6.

Note that the last four items in Table 24-2 are tunneling protocols. Their IDs iden-
tify an L3 protocol. For example, the IPIP protocol is used to transport IPv4 data-
grams inside IPv4 datagrams. Note that the value assigned to the protocol field of the
IPv4 header when it encapsulates an IP datagram has nothing to do with the value
used to initialize the protocol field of an Ethernet header when the Ethernet payload
is an IP datagram. Even though the two fields refer to the same protocol (IPv4), they
belong to two different domains: one is an L3 protocol identifier, whereas the other
is an L4 protocol identifier.

Table 24-2. Protocols implemented as modules

Protocol RFC# (Year)

Internet Group Management Protocol (IGMP) Version 1: 1112(1989)

Version 2: 2236(1997)

Version 3: 3376(2002)

Stream Control Transmission Protocol (SCTP) 2960(2000)

Protocol Independent Multicast, version 1 (PIMv1) and version 2 (PIMv2) 2362(1998)

IPsec suite: IP Authentication Header Protocol (AH), IP Encapsulating Security Payload Protocol
(ESP), IP Payload Compression Protocol (IPcomp)

AH: 2402(1998)

ESP: 2406(1998)

IPcomp: 3173(2001)

Generic Routing Encapsulation (GRE) 2784(2000)

IPv4-over-IPv4 tunnels (IPIP) 1853(1995)

IPv6 over IPv6 2473(1998)

Simple Internet Transition (IPv6-over-IPv4 tunnel, SIT) 1933(1996)

Figure 24-1. L4 protocols on top of IPv4 and IPv6 that are implemented in the Linux kernel

ICMP TCP UDP IGMP IPIP PIM SCTP GRE . . .v1
v2

IPv4

ICMPv6 UDPv6 TCPv6 SCTPv6 . . .

IPv6

Layer 4

Layer 3

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

L4 Protocol Registration | 571

L4 Protocol Registration
The L4 protocols that rest on IPv4 are defined by net_protocol data structures,
defined in include/net/protocol.h, which consist of the following three fields:

int (*handler)(struct sk_buff *skb)
Function registered by the protocol as the handler for incoming packets. This is
discussed further in the section “L3 to L4 Delivery: ip_local_deliver_finish.” It
is possible to have protocols that share the same handler for both IPv4 and IPv6
(e.g., SCTP).

void (*err_handler)(struct sk_buff *skb, u32 info)
Function used by the ICMP protocol handler to inform the L4 protocol about
the reception of an ICMP UNREACHABLE message. We will see in Chapter 35
when a Linux system generates ICMP UNREACHABLE messages, and we will
see in Chapter 25 how the ICMP protocol uses err_handler.

int no_policy
This field is consulted at certain key points in the network stack and is used to
exempt protocols from IPsec policy checks: 1 means that there is no need to
check the IPsec policies for the protocol. Do not confuse the no_policy field of
the net_protocol structure with the field bearing the same name in the ipv4_
devconf structure: the former applies to a protocol; the latter applies to a device.
See the sections “L3 to L4 Delivery: ip_local_deliver_finish” and “IPsec” for how
no_policy is used.

The include/linux/in.h file contains a list of L4 protocols defined as IPPROTO_XXX sym-
bols. (For a more complete list, see the /etc/protocols file, or RFC 1700 and its succes-
sor RFCs.) The maximum value for an L4 protocol identifier is 28–1 or 255, because
the field in the IP header allocated to specify the L4 protocol is 8 bits. The highest
number, 255, is reserved for Raw IP, IPPROTO_RAW.

Not all of the protocols defined in the list of symbols are handled at the kernel layer;
some of them (notably Resource Reservation Protocol, or RSVP, and the various
routing protocols) are usually handled in user space. This is, for example, why RSVP
and routing protocols like OSPF are not included in the list of L4 protocols sup-
ported by the kernel that is in the previous section.

Registration: inet_add_protocol and inet_del_protocol
Protocols register themselves with the inet_add_protocol function and, when imple-
mented as modules, unregister themselves with the inet_del_protocol function. Both
routines are defined in net/ipv4/protocol.c.

All of the inet_protocol structures of the L4 protocols registered with the kernel are
inserted into a table named inet_protos, represented in Figure 24-2. In earlier ver-
sions of the kernel, this was a hash table, and the word hash still appears in the code

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 24: Layer Four Protocol and Raw IP Handling

that handles the table, but currently it is a simple flat array with one item for each of
the possible 256 protocols. The protocol number from /etc/protocols is the slot in the
table where the protocol is inserted. If you’d like to see how the table was handled as
a hash table in the 2.4 kernel, look in the 2.4 sources at the ip_run_ipprot function.
Figure 24-2 shows the numbers and initials of the most common protocols; for
instance, ICMP is protocol 1 and occupies slot 1 in the inet_protos table.

Concurrent accesses to the inet_protos table are managed in this way:

• Read-write accesses (i.e., inet_add_protocol and inet_del_protocol) are serial-
ized with the inet_proto_lock spin lock.

Figure 24-2. IPv4 protocol table

0

1

2

3

4

5

6
.

.

.

.

.

.

.

.

255

M
AX

_I
NE

T_
PR

OT
OS

=
25

6

1

2

6

ICMP

IGMP

4 IPIP

TCP

IPv6

RSVP

GRE

OSPF

PIM

ISIS

SCTP

RAW

41

46

47

89

103

124

132

255

17 UDP

Statically included in the kernel

Available as a module

Implemented in user space

_p

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

L4 Protocol Registration | 573

• Read-only accesses (i.e., ip_local_deliver_finish; see the next section) are pro-
tected with rcu_read_lock/rcu_read_unlock.

inet_del_protocol, which may remove an entry of the table currently held by an
RCU reader, calls synchronize_net to wait for all the currently executing RCU read-
ers to complete their critical section before returning. There is another hash table
used by protocols that rest on IPv6. Note that IPv6 appears in the IPv4 inet_protos
table as well: the kernel can tunnel IPv6 over IPv4 (also called SIT, for Simple Inter-
net Transition). See the section “IPv6 Versus IPv4.”

As mentioned in the previous section, the ICMP, UDP, and TCP protocols are
always part of the kernel and therefore are statically added to the hash table at boot
time by inet_init in net/ipv4/af_inet.c. The following excerpts show the definitions
of their structures and the actual inet_add_protocol calls that register them:

#ifdef CONFIG_IP_MULTICAST
static struct net_protocol igmp_protocol = {
 .handler = igmp_rcv,
};
#endif

static struct net_protocol tcp_protocol = {
 .handler = tcp_v4_rcv,
 .err_handler = tcp_v4_err,
 .no_policy = 1,
};

static struct net_protocol udp_protocol = {
 .handler = udp_rcv,
 .err_handler = udp_err,
 .no_policy = 1,
};

static struct net_protocol icmp_protocol = {
 .handler = icmp_rcv,
};

static int _ _init inet_init(void)
{
...

 /*
 * Add all the base protocols.
 */

 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
 printk(KERN_CRIT "inet_init: Cannot add ICMP protocol\n");
 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
 printk(KERN_CRIT "inet_init: Cannot add UDP protocol\n");
 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
 printk(KERN_CRIT "inet_init: Cannot add TCP protocol\n");
#ifdef CONFIG_IP_MULTICAST
 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
 printk(KERN_CRIT "inet_init: Cannot add IGMP protocol\n");

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 24: Layer Four Protocol and Raw IP Handling

#endif
...
}

The IGMP handler is registered only when the kernel is compiled with support for IP
multicast.

As an example of how other protocols are dynamically registered, the following
snapshot is taken from the Zebra user-space routing daemon’s implementation of the
Open Shortest Path First IGP (OSPFIGP) protocol. The code is taken from the ospfd/
ospf_network.c file in the Zebra package. The socket call effectively registers the user-
space daemon with the kernel, giving the kernel a place to send ingress packets that
use the protocol specified in the third argument. This protocol is IPPROTO_OSPFIGP, a
symbol equal to 89, the number assigned to OSPFIGP in /etc/protocols. Note also
that the socket type is SOCK_RAW, because packets have a private format that the OSP-
FIGP protocol knows how to handle. The use of raw sockets is described later in the
section “Raw Sockets and Raw IP.”

int
ospf_serv_sock (struct interface *ifp, int family)
{
 int ospf_sock;
 int ret, tos;
 struct ospf_interface *oi;

 ospf_sock = socket (family, SOCK_RAW, IPPROTO_OSPFIGP);
 if (ospf_sock < 0)
 {
 zlog_warn ("ospf_serv_sock: socket: %s", strerror (errno));
 return ospf_sock;
 }

}

For each L4 protocol there can be only one handler in kernel space (but multiple
handlers could be present in user space, as discussed later in the section “Raw Sock-
ets and Raw IP”). inet_add_protocol complains (returns –1) when it is called to
install a handler for an L4 protocol that already has one.

L3 to L4 Delivery: ip_local_deliver_finish
The main job of ip_local_deliver_finish, which is defined in net/ipv4/ip_input.c and
was briefly described in Chapter 20, is to find the correct protocol handler based on
the protocol field of the input IP packet’s header and to hand the packet to that han-
dler. At the same time, ip_local_deliver_finish needs to handle raw IP and enforce
security policies if they are configured. These latter two tasks are described in later
sections.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

L3 to L4 Delivery: ip_local_deliver_finish | 575

Most packets, of course, are associated with an L4 protocol. ip_local_deliver_
finish extracts the number of this protocol from the 8-bit field of the IP header
shown with shading in Figure 24-3. If the inet_protos table doesn’t contain a han-
dler for this number—that is, if the kernel received a packet for an L4 protocol that
never registered itself in the manner shown in the previous section—and no raw
socket is interested in the packet, the packet is dropped and an ICMP unreachable
message is sent back to the sender.

In addition to kernel handling, however, applications can also handle packets. This
handling can be done instead of the kernel handling or in addition to it. Therefore,
regardless of whether a kernel handler is registered, the ip_local_deliver_finish
function always checks whether an application has set up a raw socket to handle the
protocol and, if so, makes a clone of the packet to hand over to the application. This
is depicted in Figure 24-4. Finally, whether the packet is processed through a regis-
tered L4 protocol or Raw IP, other protocols such as those in the IPsec suite might
have to be invoked.

Figure 24-4 shows the basic operation of the function.

The function starts as follows:

static inline int ip_local_deliver_finish(struct sk_buff *skb)
{
 int ihl = skb->nh.iph->ihl*4;
 _ _skb_pull(skb, ihl);
 skb->h.raw = skb->data;

skb->h was initialized in netif_receive_skb (described in Chapter 10) to point to the
beginning of the IP header. At this point, the kernel no longer needs the IP header
because it is finished with the IP layer and is delivering the packet to the next higher
layer. Therefore, the _ _skb_pull call shown here shortens the data portion of the
packet to ignore the L3 header, and the following statement updates the pointer in

Figure 24-3. IPv4 header and protocol identifier field

Options.

Destination address

Source address

Time to Live Protocol (8 bits) Header checksum

Identification Fragment offsetC
E

D
F

M
F

Total lengthType of ServiceVersion Header
length

32 bits

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

576 | Chapter 24: Layer Four Protocol and Raw IP Handling

skb to the value of the skb->data pointer, which points to the beginning of the L4
header.

Figure 24-4. ip_local_deliver_finish function

Unlock
(rcu_read_unlock)

Return 0

Does the
packet need to be

processed
again?

Free buffer

Invoke protocol handler

Are security
policies enabled for the

protocol?

Any handler for
the protocol?

Any RAW handler
for the protocol?

Hand the packet to
IP sec.

(xfrm4_policy_check)

Generate an ICMP DEST
UNREACHABLE

(PROTO UNREACH)

Update statistics

Any RAW handler
for the protocol?

Give each RAW handler
a copy of the packet

(raw v4 input)

Lock
(rcu_read_lock)

Hand the packet to
IP sec.

(xfrm4_policy_check)

Update statistics

No

Yes

No

SuccessFailure

Yes

YesNo

No Yes

Failure

Success

No

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

L3 to L4 Delivery: ip_local_deliver_finish | 577

The protocol ID is extracted from the skb->nh.iph->protocol variable, which points
to the protocol field of the IP header, shaded in Figure 24-3.

Figure 24-4 shows that ip_local_deliver_finish may invoke more than one proto-
col handler (ipprot->handler). One might ask how this could happen, because, as
shown in Figure 24-3, each packet header has space to list only one L4 protocol. An
example where multiple L4 protocols are invoked is the use of IPsec. With IPsec, the
kernel needs to process possible AH, ESP, and IPcomp headers before handing the
packet to the real L4 protocol. Figure 24-5 shows where the headers and trailers used
by the protocols of the IPsec suite sit. Figure 24-4 also shows that ip_local_deliver_
finish consults the IPsec security policies with xfrm4_policy_check in a couple of
places. Because IPsec is not discussed in this book, let’s just assume there is no IPsec
configuration on the host and therefore that both calls to xfm4_policy_check return
failure.

Note in Figure 24-4 that ip_local_deliver_finish does not free the buffer after suc-
cessful processing by the protocol handler: the protocol handler takes care of it.

Raw Sockets and Raw IP
Not all the L4 protocols are implemented in kernel space. For instance, an applica-
tion can use raw sockets, as shown earlier in the Zebra code, to bypass L4 in kernel
space. When using raw sockets, the applications supply the kernel with IP packets
that already include all the necessary L4 information. This makes it possible both to
implement new L4 protocols in user space and to do extra processing in user space
on those L4 protocols normally processed in kernel space. Some L4 protocols, there-
fore, are implemented entirely in kernel space (e.g., TCP and UDP), some entirely in
user space (e.g., OSPF), and some partially in kernel space and partially in user space

Figure 24-5. IPsec headers/trailers locations

IP2 Sec
header IP L4’ Payload’ Sec

trailer
Tunnel
mode

IP L4 PayloadOriginal

IP Sec
header L4’ Payload’ Sec

trailer
Transport

mode

New

May be different
from original

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

578 | Chapter 24: Layer Four Protocol and Raw IP Handling

(e.g., ICMP). Figure 24-6(a)(b)(c) shows the three cases, and Figure 24-6(d) is a spe-
cial case of Figure 24-6(b). Here is an explanation of what’s going on in the figure:

• (a) A web browser communicates with a remote web server. In this case, the
communication is done via one or more TCP sockets. TCP is implemented in
kernel space: the browser and the web server pass the kernel the TCP payload
only, and the kernel takes care of the TCP and IP headers.

• (b) Two routers running OSPF daemons talk to each other. The OSPF protocol
is implemented in user space, and passes the kernel the L4 header.* This is an
example of the use of raw sockets. See Chapter 13 for information on how raw
sockets fit into the stack.

• (c) One host pings another one. The request component is implemented in user
space. The reply component is implemented in kernel space.

• (d) A host runs traceroute to perform network troubleshooting. Both the L3 and
L4 headers are processed by the application. It specifies its L4 protocol simply as
RAW IP and sets the IP_HDRINCL (header included) option on the socket.† See
Chapter 21 for how the raw IP protocol is taken care of by IP.

When the arrow from the user-space box bypasses the “L4” box in kernel space, it
means it is a raw transmission.

ICMP is an example of a protocol that is implemented partially in user space and
partially in kernel space. When you ping a host, the ping application generates ICMP
packets and passes them to the kernel as IP packets. The kernel does not touch the
ICMP header. However, the receiving host processes ICMP_ECHO_REQUEST in kernel
space by replying back with an ICMP_ECHO_REPLY message.

Delivering Raw Input Datagrams to the Recipient Application
When learning programming, you were probably exposed to the socket call. We’ll
review it here to show its relation to raw protocols. When an application opens a
socket, the call needs to specify the family, socket type, and protocol identifier. Both
the socket and the protocol can be of type raw. Let’s see the relationship between the
two. This is the prototype of the socket system call:

socket(int family, int type, int protocol)

family is the address family; the allowed values AF_XXX are listed in include/linux/
socket.h (the value used for TCP/IP is AF_INET). type is the socket type; the allowed
values SOCK_XXX are listed in include/linux/net.h. protocol is the L4 protocol identi-
fier; the allowed values IPPROTO_XXX of IP protocols are listed in include/linux/in.h.

* Most implementations of OSPF pass the IP header as well. See the case shown in Figure 24-6(d).

† The IP packet is transmitted with the dst_output routine, described in Chapter 21. dst_output takes care of
the Layer three to Layer two address mapping if needed; therefore, case (d) is not really a direct call to L2.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

L3 to L4 Delivery: ip_local_deliver_finish | 579

Figure 24-6. Kernel versus user-space implementations of protocols

Browser

L4

L3/IP

L2

(a)

Payload

Payload

Web
server

L4

L3/IP

L2

Payload

Kernel Kernel

Payload

L4 HDR

L3 HDR

L2 HDR

Payload

L4 HDR

L3 HDR

L2 HDR

User space User space

OSPF
daemon

L4

L3/IP

L2

(b)

Payload

Payload

OSPF
daemon

L4

L3/IP

L2

Payload

Kernel Kernel

Payload

L4 HDR

L3 HDR

L2 HDR

Payload

L4 HDR

L3 HDR

L2 HDR

User space User space

L4 HDR

L4 HDR L4 HDR

Ping

L4

L3/IP

L2

(c)

Payload

Payload

L4

L3/IP

L2

Payload

Kernel Kernel

Payload

L4 HDR

L3 HDR

L2 HDR

Payload

L4 HDR

L3 HDR

L2 HDR

User space User space

L4 HDR

L4 HDR L4 HDR

APP X

L4

L3/IP

L2

(d)

Payload

Kernel

Payload

L4 HDR

L3 HDR

L2 HDR

User space

L4 HDR

L3 HDR

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

580 | Chapter 24: Layer Four Protocol and Raw IP Handling

When you open a socket of type SOCK_RAW and any chosen protocol assigned the inte-
ger value P, your application will be passed all ingress packets matching the follow-
ing criteria:

• The L4 protocol identifier in the IP header is P.

• When the socket is bound to a destination IP address, the source IP address in
the packets must match it.

• When the socket is bound to a local IP address, the destination IP address in the
packets must match it.

More than one socket can match these criteria, so a single raw IP packet can be deliv-
ered to multiple applications. For instance, think about pinging the same remote IP
address from two different terminals, as shown in Figure 24-7.

How can the two ping instances distinguish the replies so that they are not confused
by the traffic meant for the other instance? The L4 protocol must include the infor-
mation needed to distinguish the applications in its header or payload. For example,
the ICMP ECHO REQUEST messages sent by the ping command get their ICMP
header’s identifier field initialized to the sender’s process ID (pid). This field is
what will allow the ping application to recognize the input ECHO REPLY ICMP
messages that will be sent back by the recipient. The sequence number field of the
ICMP header is initialized to a counter that ping increments after each transmission.
This counter will allow ping to match ingress ICMP ECHO REQUEST messages
with their associated ICMP ECHO REPLY messages. In the example below, this
counter is printed as the icmp_seq field.

ping www.oreilly.com
PING www.oreilly.com (208.201.239.36) 56(84) bytes of data
64 bytes from www.oreillynet.com (208.201.239.36): icmp_seq=0 ttl=50 time=245 ms

Figure 24-7. Concurrent pings to the same destination IP address

L3/IP

User space

Kernel

L2

Ping 10.0.0.1 Ping 10.0.0.1

L3/IP

L2

L4/ICMP

10.0.0.1

X X

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

L3 to L4 Delivery: ip_local_deliver_finish | 581

64 bytes from www.oreillynet.com (208.201.239.36): icmp_seq=1 ttl=50 time=244 ms
...

For more details on ICMP, see Chapter 25. Note the extra overhead involved in
delivering the packet to multiple applications and having the applications screen out
the unwanted packets, instead of having the kernel do the screening through a port.
Because of this overhead, new protocols that need heavy multiplexing/demultiplex-
ing are not normally implemented in user space using raw IP.

In short, every time the kernel receives a packet that carries an L4 protocol not han-
dled by the kernel, all the sockets that registered for that protocol receive a copy of
the packet. It is up to them to accept or discard the packet. This means that the
applications must have a way to understand if the packet they receive is addressed to
them, a task rendered unnecessary in TCP and UDP by the port system.

Raw IP is suitable for ping because, while it’s possible for a few ping instances to be
running at once on the same machine, they normally do not target the same destina-
tion IP address and normally send only a few packets each. Similarly, a routing pro-
tocol such as OSPF usually runs as a single instance on each host.

When the socket type is SOCK_RAW and the protocol is RAW IP (255) it means that the
application takes care of both the L4 header and the IP header. This differs from the
Zebra routing application shown earlier in that the protocol is RAW IP instead of a
known protocol such as OSPF. Figure 24-6(d) shows the RAW IP case. Such applica-
tions set an option on a socket called IP_HDRINCL (header included) to tell the kernel
that the application will take care of the IP header and that the kernel therefore does
not need to do anything with it. When protocol P is RAW IP, the IP_HDRINCL option
is turned on by default on the socket. traceroute, which needs to play with the TTL
field of the IP header to accomplish its job, is an example of application that uses the
IP_HDRINCL option.

When an application uses a raw IP socket, it needs to give the kernel only the proto-
col ID and the destination IP address (which will be set on the IP header that the ker-
nel will generate): the kernel can ignore all the other parameters and options
normally used at the L4 layer.

The table used to store the raw handlers (raw_v4_htable) and the one used to store
the protocol handlers (inet_protos) are of the same size, so ip_local_deliver_finish
uses the same value hash to access the two tables. (As I said earlier, this value is no
longer an actual hash.) Raw packets are given to raw_v4_input. This function does
not operate directly on the input buffer, because the packet belongs to the caller (ip_
local_deliver_finish) and may be shared with many applications. Therefore, raw_
v4_input makes local copies (clones) and gives them to the main handler, raw_rcv.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

582 | Chapter 24: Layer Four Protocol and Raw IP Handling

IPsec
Before ip_local_deliver_finish delivers a packet to the right protocol handler, it
first checks with IPsec whether the packet is allowed to be processed. The same is
done when, due to the absence in the kernel of the right protocol handler, the kernel
needs to generate an ICMP error message. IPsec keeps a database of security policies
divided into ingress and egress policies. Because ip_local_deliver_finish processes
incoming traffic, the IPsec function xfrm4_policy_check is invoked with the direction
flag XFRM_POLICY_IN. The return value of this function is 1 if the packet is allowed to
be processed, and zero if it is not. Security policies are not consulted when the trans-
port protocol’s net_protocol instance has no_policy initialized to 1.

The implementation of the protocols of the IPsec suite are not discussed in this book
for lack of space.

IPv4 Versus IPv6
IPv6 is very similar to IPv4 as far as the L3 to L4 protocol interface is concerned. L4
protocols can register via inet6_add_protocol and deregister them via inet6_del_
protocol, both defined in net/ipv6/protocol.c. Handlers are stored in a table called
inet6_protos of the same size (MAX_INET_PROTOS) used by IPv4. L4 protocols that run
on top of IPv6 are represented by inet6_protocol data structures (defined in include/
net/protocol.h), whose definition is almost identical to the one used by IPv4. The only
differences are in the prototypes of the handler and err_handler function pointers
and the use of a flag instead of an integer to store such information as the presence of
security policies.

The field used by IPv6 to identify the upper-layer protocol in the IPv6 header is
called next_header and is an 8-bit value like the one used by IPv4. See Figure 24-8 for
the location of the field in the header.

Figure 24-8. IPv6 header and next_header protocol identifier

Version Prio Flow label

Source address

Payload length Next header Hop limit

Destination address

32 bits

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Functions and Variables Featured in This Chapter | 583

Tuning via /proc Filesystem
There are no files in /proc that can be used to tune the interface between L3 and L4.

Functions and Variables Featured in This Chapter
Table 24-3 summarizes the functions, variables, and data structures introduced in
this chapter.

Table 24-3. Functions, variables, and data structures featured in this chapter

Name Description

Functions

inet_add_protocol
inet_del_protocol

Registers and unregisters an L4 protocol handler for the IP stack.

inet_init Initialization routine for the AF_INET protocol family. It is where the most com-
mon L4 protocols are registered.

ip_local_deliver_finish
raw_v4_input

ip_local_deliver_finish delivers ingress IP traffic to the right L4 proto-
col handlers, and it uses raw_v4_input to give a copy to any eligible RAW IP
socket.

Variables

inet_protos Table of L4 protocol handlers for the IP stack.

raw_v4_htable Table of raw sockets.

Data structure

net_protocol L4 protocol descriptor for the IP stack.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

584 | Chapter 24: Layer Four Protocol and Raw IP Handling

Files and Directories Featured in This Chapter
The code used by the kernel to invoke the L4 protocols handlers is located mainly in
two files: include/net/protocol.h and net/ipv{4,6}/protocol.c. The more lightly shaded
files in Figure 24-9 are the ones that implement L4 protocols.

Figure 24-9. Files and directories featured in this chapter

Root
(usually/ usr/src/linux)

include

linux

in.h
in6.h

net

protocol.h

net

ipv6
protocol.c
af_inet.c

ipv4

icmp.c
udp.c

igmp.c
raw.c

tcp.c,...

protocol.c
af_inet6.c

icmp.c
udp.c

tcp_ipv6.c
raw.c

ah4.c
esp4.c

ipcomp.c

ipip.c
ip_gre.c

ipmr.c

ah6.c
esp6.c

ipcomp6.c
sit.c

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

585

Chapter 25 CHAPTER 25

Internet Control Message
Protocol (ICMPv4)

The Internet Control Message Protocol (ICMP) is a transport protocol used by Inter-
net hosts to exchange control messages, notably error notifications and information
requests. In this chapter, we will look at ICMPv4, the version used by IPv4. IPv6 uses
the ICMPv6 protocol, a protocol that includes other functionalities besides the ones
in ICMPv4.

Over the years, the ICMP protocol has increasingly been used as the basis for the
development of monitoring and measurement applications. Unfortunately, the ICMP
protocol is also often used as the basis for security attacks, such as DoS or remote
fingerprint collection. For this reason, network administrators often configure rout-
ers and firewalls to filter out most ICMP message types. Sometimes they filter too
much, going against the RFC recommendations. Regardless of whether messages are
filtered, they are often rate limited. It follows that any application built on top of
ICMP is not always reliable for measurement or monitoring purposes. However,
because measurements were not in its original design goal, ICMP often does not
allow monitoring applications to collect all the information they need. Instead, dedi-
cated applications have been written for that purpose, often based on TCP or UDP.

For readers interested in the security aspects of ICMP, I recommend the paper
“ICMP Usage in Scanning” from the Israeli security consultant Ofir Arkin (http://
www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.zip). It shows how ICMP
messages can (and are) used for network scanning purposes and why most of them
should be (and are) therefore filtered out by network administrators. The paper
includes a detailed summary of the main RFCs on ICMP as well.

In this chapter, we’ll see how Linux implements the ICMP protocol. For each ICMP
message type, we will briefly see when the kernel generates it and how the kernel
processes it when it is received. For more details, refer to the following RFCs:

• RFC 792, Internet Control Message Protocol

• RFC 950, Internet Standard Subnetting Procedure, Appendix I

• RFC 1016, Something a Host Could Do with Source Quench

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

586 | Chapter 25: Internet Control Message Protocol (ICMPv4)

• RFC 1191, Path MTU Discovery

• RFC 1122, Requirements for Internet Hosts—Communication Layers

• RFC 1812, Requirements for IP Version 4 Routers

• RFC 1256, ICMP Router Discovery Messages

• RFC 1349, Type of Service in the Internet Protocol Suite

In particular, RFC 792 describes the layout of the headers of most ICMP types, and
RFCs 1122 and 1812 tell whether hosts and routers should generate and process
each ICMP type. Part of that information is included in this chapter, too.

For a detailed list of RFCs related to ICMP messages, you can also consult this URL:
http://www.iana.org/assignments/icmp-parameters.

ICMP Header
Figure 25-1 shows the structure of the ICMP header.

The first three fields are common to all ICMP message types:

type
code

This pair identifies the ICMP message type. Sometimes type alone is sufficient to
unequivocally identify the message, and other times code is needed to distin-
guish between different variants of the same message type. See the section
“ICMP Types” for more details.

Figure 25-1. ICMP header

Type Code Checksum

Data

Unused

Sequence number

Offset Unused

Identifier

. . .

(a)

(b)

(c)

ICMP
header

8 16 32

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ICMP Payload | 587

checksum
checksum covers the IMCP header and the payload. It uses the same algorithm as
other major IP protocols (IP, UDP, TCP, and IGMP): the one’s complement sum
of the 16-bit words of the IP packet. See the section “Checksums” in Chapter 18
for more details.

The structure of the second half of the ICMP header depends on the message type.
Thanks to the value of type and code, the receiver can identify the message type and
read the rest of the header accordingly. The following 32 bits can be unused, com-
pletely used, or partially used depending on the message type; examples of these
three different layouts are shown at the bottom of Figure 25-1.

ICMP messages are classified into two categories: error and query (request/
response). In Table 25-1, you can see which ICMP types fall into each category.
Query messages use the extra 32 bits of the header to define the two fields
identifier and sequence_number (Figure 25-1(b)). These two fields are left
unchanged by the receiver (i.e., copied from the request message to the response
message) and allow the source to match the response with its original request.

ICMP error messages include a payload, whose content is described in the next
section.

In RFC 792, you can find the layout of most ICMP message types’ headers.

ICMP Payload
ICMP error messages are sent when the kernel detects an error condition while pro-
cessing an ingress IP packet. All ICMP error types include the same information in
the ICMP payload: the IP header of the IP packet that triggered the transmission of
the ICMP message, plus a portion of the IP payload. The resulting IP packet must
not exceed 576 bytes in size, including the outer IP header and the ICMP header.
(This last rule is stated in RFC 1812, section 4.3.2.3, which updates the header defi-
nitions of RFC 792. According to the older RFC 792, the ICMP payload needs to
include only the original IP header plus 64 bits of the original transport header.)

Figure 25-2 shows an example of what an ICMP_FRAG_NEEDED error message looks like
according to RFC 792. Figure 25-2(a) is the fragment that triggered the transmission
of the ICMP message, and Figure 25-2(b) is the ICMP message. Note that the ICMP
payload includes the original IP header and a piece of the transport header, too.
Linux is compliant with RFC 1812, and therefore includes the extra block shown in
Figure 25-2(a), up to a size of 576 bytes.

The protocol field of the original IP header will be used by the target of the ICMP
message to identify the right transport protocol (TCP in the example) and a portion
of the transport header in the ICMP payload (which includes source and destination
port numbers) will allow the same target host to identify a local socket. Thus, the
target host will have some help tracking down the reason it caused an error.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

588 | Chapter 25: Internet Control Message Protocol (ICMPv4)

ICMP Types
Table 25-1 lists the ICMP types and the RFCs where they are defined, shows whether
they are generally transmitted and processed by the kernel or in user space, and clas-
sifies each as an error or query message. The kernel symbols are listed in include/
linux/icmp.h. The table lists only the ICMP message types the Linux kernel cares
about (regardless of whether they are implemented). You can refer to the URL pro-
vided in the chapter’s introduction for an updated list.

Figure 25-2. Example of ICMP payload for the ICMP_DEST_UNREACH error message

Table 25-1. ICMP types

Type Name TX by RX by RFC Error/Query

0

8

Echo Reply

Echo Request

Kernel

User

User

Kernel

792

792

Query

Query

1

2

Not assigned

Not assigned

3 Destination Unreachable Kernel Kernel 792 Error

4 Source Quench
(obsolete; see RFC 1812 section 4.3.3.3)

5 Redirect Kernel Kernel 792 Error

6 Alternate Host Address (obsoletea)

7 Not assigned

9

10

Router Advertisement

Router Solicitation

User

User

User

User

1256 Query

11 Time Exceeded Kernel Kernel 792 Error

Type
DEST UNREACH

Code
FRAG NEEDED Checksum

8 16

Destination portSource port

IP header

unused MTU

0

Protocol= TCP

Protocol= ICMP

24 32

64
bits

TCP header

TCP payload

IP header
576
bytes

IP
header

ICMP
header

ICMP
payload

(a) (b)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ICMP Types | 589

ICMP types 1, 2, and 7 are simply listed as unassigned, and type 6 is not defined in
any RFC.

Types 9 and 10 are not handled (and therefore are not defined) in kernel space; the
Router discovery messages are processed in user space by applications that imple-
ment RFC 1256. For Linux, you can refer to rdisc, which is an application that comes
as part of the iputils package.

RFC 1122 and RFC 1812 tell whether the implementation for each ICMP message
type is optional or mandatory, for hosts and routers respectively. Table 25-2 summa-
rizes these requirements. For the exact interpretation of the words must, should and
may, you can refer to RFC 2119. The table does not include obsolete options.

12 Parameter Problem Kernel Kernel 792 Error

13 Timestamp Request User Kernel 792 Query

14 Timestamp Reply Kernel User 792 Query

15

16

Information Request

Information Reply
(obsolete; see RFC 1122 section 3.2.2.7 and
RFC 1812 section 4.3.3.7)

17

18

Address Mask Request

Address Mask Reply

Kernel

Kernel

Kernel

Kernel

950 Query

a This option was defined by the same author of RFC 792, but it is not defined in any RFC.

Table 25-2. Host and router requirements

Type Name Hosts (RFC 1122) Routers (RFC 1812) Linux is compliant

0

8

Echo Reply

Echo Request

Must implement an
echo server

Must implement an
echo server

Yes

3 Destination Unreachable Should transmit
Must receive

Must transmit Yes

5 Redirect Should not transmit
Must receive

Must transmit
May receive

Yes

9

10

Router Advertisement

Router Solicitation

N/A Must receive No

(Support is available
in user space)

11 Time Exceeded Must receive Must transmit Yes

12 Parameter Problem Should transmit
Must receive

Must transmit Yes

13

14

Timestamp Request

Timestamp Reply

May receive

May receive

May receive/transmit Yes

17

18

Address Mask Request

Address Mask Reply

May receive/transmit Must receive/transmit No

Table 25-1. ICMP types (continued)

Type Name TX by RX by RFC Error/Query

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

590 | Chapter 25: Internet Control Message Protocol (ICMPv4)

A router must respect the host requirements when it is the originator of the IP packet
that triggered the transmission of an ICMP message. For example, the Destination
Unreachable ICMP message is sent to the host whose IP packet could not be deliv-
ered. When an offending packet is generated by a router, the router must process the
ICMP error message according to the host requirements in Table 25-2. Note that a
router cannot be the target of a Destination Unreachable message sent for an IP
packet it has not generated (which explains why Table 25-2 does not specify how a
router must behave when it receives one).

Similar comments apply to other message types.

ICMP_ECHO and ICMP_ECHOREPLY
These are probably the most common and best-known ICMP types. They are used
by different applications, the most famous of which is ping.

The ICMP_ECHO message type is used to test the reachability of a remote host. When a
host receives an ICMP_ECHO message, it replies with an ICMP_ECHOREPLY message. See
the section “ping.”

ICMP_DEST_UNREACH
When an IP packet cannot be delivered to its destination, or when the IP payload
cannot be delivered to the target application on the remote host, this ICMP type is
used to notify the sender about the failed delivery and its cause. This ICMP type has
quite a few different subtypes (code values), all listed in Table 25-3. Not all of them
are used by Linux.

The header used for this message includes the 32-bit field shown in Figure 25-1(a).

Table 25-3. ICMP codes for ICMP type ICMP_UNREACH

Code Kernel symbol Description

0 ICMP_NET_UNREACH Network unreachable.

1 ICMP_HOST_UNREACH Host unreachable.

2 ICMP_PROT_UNREACH Protocol unreachable. The transport protocol used on top of IP is not imple-
mented on the target host.

3 ICMP_PORT_UNREACH Port unreachable. There is no application listening to the port number spec-
ified by the destination port in the transport header.

4 ICMP_FRAG_NEEDED Fragmentation needed. The IP packet needed to be fragmented but the
Don’t Fragment (DF) flag was set in the IP header.

5 ICMP_SR_FAILED Source route failed.

6 ICMP_NET_UNKNOWN Destination network unknown.

7 ICMP_HOST_UNKNOWN Destination host unknown.

8 ICMP_HOST_ISOLATED Source host isolated.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ICMP Types | 591

ICMP_SOURCE_QUENCH
This message type was originally defined as a mechanism for routers to inform peers
about congestion. However, generating more traffic to help with congestion recov-
ery did not turn out to be that effective, and RFC 1812 made this ICMP message type
obsolete.

The original goal of this ICMP type (congestion control) is now taken care of by the
Early Congestion Notification (ECN) mechanism described in RFC 3168.

ICMP_REDIRECT
ICMP REDIRECT message types are sent only by routers, and are processed by hosts
and optionally by routers.* Linux provides a file in /proc that allows you to enable
and disable the processing of ICMP_REDIRECT messages. Routers generate this type of
message when they detect that a neighboring host is using suboptimal routing; that
is, when a destination can be reached through a better gateway than the one generat-
ing the message.

The basic and most common cause for an ICMP_REDIRECT message is an ingress packet
that needs to be forwarded out of the same device it was received from. We will see
an example later in this section.

There are four subtypes for this ICMP message type, shown in Table 25-4. RFC 1812
states that only ICMP_REDIR_HOST and ICMP_REDIR_HOSTTOS should be generated
because there are cases where the use of subnetting makes it harder to handle the
other two ICMP codes. Linux follows this recommendation.

9 ICMP_NET_ANO Communication with destination network is administratively prohibited.

10 ICMP_HOST_ANO Communication with destination host is administratively prohibited.

11 ICMP_NET_UNR_TOS Destination network unreachable for Type of Service.

12 ICMP_HOST_UNR_TOS Destination host unreachable for Type of Service.

13 ICMP_PKT_FILTERED Communication administratively prohibited.

14 ICMP_PREC_VIOLATION Host precedence violation.

15 ICMP_PREC_CUTOFF Precedence cutoff in effect.

* See RFC 1812, sections 4.3.3.2 and 5.2.7.2.

Table 25-3. ICMP codes for ICMP type ICMP_UNREACH (continued)

Code Kernel symbol Description

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

592 | Chapter 25: Internet Control Message Protocol (ICMPv4)

Figure 25-3 provides a scenario where a router generates an ICMP_REDIRECT message.
From the topology it looks clear that Host X should use Router RT2 to reach Host Y.
But suppose Host X has been configured only with the default gateway RT1 so that
any traffic Host X sends outside its local network goes to Router RT1.

This is what happens when Host X transmits an IP packet to Host Y:

1. Host X sends Router RT1 a packet addressed to Host Y.

2. Router RT1 consults its routing table and realizes the next hop is Router RT2. It
also realizes that because Router RT2 is on the same subnet as Host X, Host X
could have sent the packet directly to Router RT2.

3. Router RT1 sends Host X an ICMP_REDIRECT message to inform it about the bet-
ter route. Host X will save the route and use it next time.

4. Router RT1 forwards the packet to Router RT2.

5. Router RT2 forwards the packet to Host Y.

Table 25-4. ICMP codes for ICMP type ICMP_REDIRECT

Code Kernel symbol Description

0 ICMP_REDIR_NET (obsolete) Redirect for network address

1 ICMP_REDIR_HOST Redirect for host address

2 ICMP_REDIR_NETTOS (obsolete) Redirect for network address and Type of Service

3 ICMP_REDIR_HOSTTOS Redirect for host address and Type of Service

Figure 25-3. Example of ICMP_REDIRECT

Network A

Router RT1

Internet

Router RT2 Host X

. . .

Network B

Host Y

From: X
To: Y

13

ICMP
REDIRECT

4

5

2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ICMP Types | 593

Normally, when a router detects that it is being asked to route a packet along a sub-
optimal route, it replies back to the sender with an ICMP_REDIRECT message that
describes the correct route. For security reasons, however, these suggestions are
often rejected nowadays: you can imagine how easy it otherwise could be to create
trouble by just saying, “Look, to get to that network you should use Router XYZ
rather than the one you have been configured with.”

In the section “Transmitting ICMP_REDIRECT Messages” in Chapter 31, you can
find the exact conditions that trigger the transmission of ICMP_REDIRECT messages.
Also see the section “ICMP Redirect” in Chapter 20 for the interaction between this
ICMP type and the Source Route IP option. In the section “Processing Ingress
ICMP_REDIRECT Messages” in Chapter 31, you can find details about whether an
ingress ICMP_REDIRECT message is processed.

ICMP_TIME_EXCEEDED
This message type has two subtypes, as shown in Table 25-5.

The IP header includes a field, TTL, that is decremented at each intermediate hop
between source and destination. If TTL becomes 0 before the packet reaches the des-
tination host, the IP packet is dropped. The intermediate router that drops the
packet sends an ICMP_EXEC_TTL message to the sender to inform it that its packet was
dropped. We will see in the section “traceroute” how the popular command
traceroute uses it.

The ICMP_EXC_FRAGTIME message is generated when the defragmentation of an IP
packet takes too long to complete and is therefore aborted.

ICMP_PARAMETERPROB
When a problem is found while processing the IP header of an ingress IP packet, the
host that detects the problem sends an ICMP message of this type back to the source.
The ICMP header (see Figure 25-1(c)) includes an offset that indicates where in the
IP header the problem was found.

ICMP_TIMESTAMP and ICMP_TIMESTAMPREPLY
The ICMP_TIMESTAMP message type can be used to ask a remote host for a timestamp
(actually two of them) and use it to synchronize the hosts’ clocks. A host that

Table 25-5. ICMP codes for ICMP type ICMP_TIME_EXCEEDED

Code Kernel symbol Description

0 ICMP_EXC_TTL TTL exceeded

1 ICMP_EXC_FRAGTIME Fragment reassembly time exceeded

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

594 | Chapter 25: Internet Control Message Protocol (ICMPv4)

receives an ICMP_TIMESTAMP message replies with an ICMP_TIMESTAMPREPLY message like
that in Figure 25-4.

While the first timestamp is initialized by the ICMP_TIMESTAMP sender, the other two
are initialized by the ICMP_TIMESTAMPREPLY sender. The second and third timestamps
should reflect the time the ICMP_TIMESTAMP message was received and the time the
associated ICMP_TIMESTAMPREPLY was transmitted.

These ICMP types are not of much use because other protocols are better suited for
the same purpose (e.g., NTP).

ICMP_INFO_REQUEST and ICMP_INFO_REPLY
According to RFC 1122, these two ICMP message types were made obsolete because
other protocols such as DHCP (and the older BOOTP and RARP) can do the same
thing, and much more.

ICMP_ADDRESS and ICMP_ADDRESSREPLY
The purpose of these ICMP types is to allow a host to discover the netmasks to use
on its interfaces by broadcasting a query on the attached networks. A router that
receives an ICMP_ADDRESS message replies with an ICMP_ADDRESSREPLY message. The
reply is usually unicast to the sender, but may be broadcasted when the sender uses a
source IP address of 0 (i.e., not configured).

The goal of these two message types is achieved nowadays by other means, such as
DHCP.

The Linux kernel does not reply to ingress ICMP_ADDRESS messages, but it listens to
ingress ICMP_ADDRESSREPLY messages to detect misconfigurations (such as wrong net-
mask configurations).

Among the reasons why Linux does not process ICMP_ADDRESS messages is that the
same interface can be configured with multiple IP addresses, and therefore there may
not be a unique netmask to return to any given request.

Figure 25-4. ICMP_TIMESTAMPREPLY structure

Type (8 bits)
ICMP_TIMESTAMP_REPLY

Code (8 bits)
 (Not used) Checksum (16bits)

Sequence numberIdentifier

Timestamp1: set by the ICMP_TIMESTAMP sender

Timestamp2: time at which ICMP_TIMESTAMP was received

Timestamp3: time at which ICMP_TIMESTAMPREPLY was sent

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Applications of the ICMP Protocol | 595

According to RFC 1812, the implementation of the ICMP_ADDRESS and ICMP_
ADDRESSREPLY messages is mandatory on routers, so Linux is not compliant. How-
ever, since these ICMP message types are not commonly used, this missing compli-
ance does not represent a compatibility problem in any way for Linux.

Applications of the ICMP Protocol
ICMP messages can be transmitted both by the kernel and by user-space applica-
tions. The user-space applications use the raw IP socket interface that we briefly
introduced in Chapter 13. Two well-known examples of network troubleshooting
tools that use the ICMP protocol are traceroute and ping. Other users of the raw IP
socket interface for transmitting or listening to ICMP messages are routing protocols.

ping
ping does not need an introduction. For most people, it represents the first com-
mand learned when approaching the networking area. Given an input IP address and
a set of optional flags, it transmits an ICMP_ECHO message to the input IP address, and
prints the round-trip time and other information when it receives the associated
ICMP_ECHOREPLY message. You can find the history of ping at http://ftp.arl.mil/~mike/
ping.html, the home page of its creator.

traceroute
traceroute is probably the first command you learned after ping. It is used to deter-
mine the path between the host where the command is issued and a given destina-
tion IP address. The path is represented by the list of IP addresses of the intermediate
routers.

traceroute can achieve its goal by using either UDP or ICMP.* By default, it uses
UDP, but you can force the use of ICMP with the –I switch option. As we will see,
the UDP method also depends on an ICMP message for its success. Both methods
demonstrate considerable cleverness.

Let’s see how the technique based on ICMP works. As we saw in Chapter 20, when
the IP header’s TTL field of an ingress IP packet is 1 and forwarding is required, the
receiver discards the packet and sends back to the source an ICMP message of type
ICMP_TIME_EXCEEDED and code ICMP_EXC_TTL. traceroute takes advantage of this rule to
discover the intermediate hops one at a time: by sending ICMP_ECHO messages to the
destination IP address with increasing values of the TTL field (starting with value 1),

* There is a third option, based on the use of an IP option (RFC 1393) that is not supported by Linux. The
version of traceroute that comes with the most common Linux distributions does not support RFC 1393.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

596 | Chapter 25: Internet Control Message Protocol (ICMPv4)

it makes sure that all intermediate hosts will generate ICMP_TIME_EXCEEDED messages,
and the last one (i.e., the target host) will reply with an ICMP_ECHOREPLY message.
Figure 25-5 shows an example.

I did not include the value of the TTL field for the ICMP reply messages in the figure
because different operating systems use different values (64 and 255 are the most
common).

Figure 25-5. Example of traceroute with ICMP

10.0.1.1 10.0.1.2 10.0.2.1 10.0.2.2 10.0.3.1 10.0.3.2

IP SRC: 10.0.1.1
DST:10.0.3.2
TTL=1

ICMP ICMP_ECHO

IP SRC: 10.0.1.2
DST:10.0.1.1

ICMP ICMP_TIME_EXCEEDED
ICMP_EXC_TTL

10.0.1.1 10.0.1.2 10.0.2.1 10.0.2.2 10.0.3.1 10.0.3.2

IP SRC: 10.0.1.1
DST:10.0.3.2
TTL=2

ICMP ICMP_ECHO

IP SRC: 10.0.2.2
DST:10.0.1.1

ICMP ICMP_TIME_EXCEEDED
ICMP_EXC_TTL

10.0.1.1 10.0.1.2 10.0.2.1 10.0.2.2 10.0.3.1 10.0.3.2

IP SRC: 10.0.1.1
DST:10.0.3.2
TTL=3

ICMP ICMP_ECHO

IP SRC: 10.0.3.2
DST:10.0.1.1

ICMP ICMP_ECHOREPLY

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Applications of the ICMP Protocol | 597

The technique based on the use of the UDP protocol is somewhat similar. It still
takes advantage of how the TTL field is handled, but instead of using ICMP_ECHO mes-
sages, it uses UDP packets with a high destination port number that is unlikely to be
used at the end host. When the IP packet makes it to the end host, the latter will
complain with an ICMP message of type ICMP_DEST_UNREACH and code ICMP_PORT_
UNREACH. Figure 25-6 shows an example.

Figure 25-6. Example of traceroute with UDP

10.0.1.1 10.0.1.2 10.0.2.1 10.0.2.2 10.0.3.1 10.0.3.2

IP SRC: 10.0.1.1
DST:10.0.3.2
TTL=1

UDP SPORT=32791
DPORT=33435

IP SRC: 10.0.1.2
DST:10.0.1.1

ICMP ICMP_TIME_EXCEEDED
ICMP_EXC_TTL

10.0.1.1 10.0.1.2 10.0.2.1 10.0.2.2 10.0.3.1 10.0.3.2

IP SRC: 10.0.1.1
DST:10.0.3.2
TTL=2

IP SRC: 10.0.2.2
DST:10.0.1.1

ICMP ICMP_TIME_EXCEEDED
ICMP_EXC_TTL

10.0.1.1 10.0.1.2 10.0.2.1 10.0.2.2 10.0.3.1 10.0.3.2

IP SRC: 10.0.1.1
DST:10.0.3.2
TTL=3

IP SRC: 10.0.3.2
DST:10.0.1.1

ICMP ICMP_DEST_UNREACH
ICMP_PORT_UNREACH

TTL

TTL

UDP SPORT=32791
DPORT=33436

UDP SPORT=32791
DPORT=33437

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

598 | Chapter 25: Internet Control Message Protocol (ICMPv4)

In both cases, ICMP and UDP, the intermediate hosts are discovered one by one with
independent “probe” packets. Two consequences of this are worth mentioning:

• The round-trip times associated with the intermediate routers reflect the net-
work’s congestion state at different times. Therefore, the nth intermediate router
will usually have a higher round-trip time than the (n–1)th intermediate router,
but not always.

• The intermediate routers used to reach the nth hop may not be the same ones
used to reach the (n–1)th hop. Different factors can contribute to the selection of
the route to take toward a given destination, such as dynamic routing changes,
load balancers, etc. The source code of the traceroute command, which you can
download from the most common Linux distribution’s download servers,
includes a few examples worth reading.

The Big Picture
Figure 25-7 shows the kernel subsystems with which the ICMP protocol interacts.
The figure shows only the two common transport protocols, TCP and UDP, but
many others also interact with ICMP, such as the various tunnel protocols (IPIP,
GRE), the protocols of the IPsec suite (AH, ESP, IPcomp), etc.

Figure 25-7. The big picture

RAW_IP sockets (e.g., ping, traceroute...) TCP/UDP sockets (e.g., ftp, tftp ...)

tcp_v4_err TCP

udp_err UDP

icmp_unreach
icmp_timestamp
icmp_address
icmp_echo
icmp_address_reply
icmp_redirect
icmp_discard

icmp_rcv

icmp_reply icmp_send

icmp_push_reply

ipprot -> err_handler

RAW_IP

. . .
raw_err

. . .
raw_v4_input

IPv4

ip_local_deliver_finish

Routing
ip_rt_redirect

ip_rt_frag_needed

ip_route_output_key

ip_append_data
ip_push_pending_frames

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Protocol Initialization | 599

Here are some examples of interactions between protocols:

IP protocol
The ip_local_deliver_finish routine, described in Chapter 24, delivers ingress
ICMP messages to the receive routine icmp_rcv registered by the ICMP protocol,
but it also delivers them to the raw IP sockets that registered against the ICMP
protocol (raw_v4_input). Transmission requests are submitted to the IP layer via
the ip_append_data and ip_push_pending_frames routines described in detail in
Chapter 21. The figure does not show the points where the IP protocol or the
routing subsystem call icmp_send.

Routing subsystem
ICMP messages are transmitted with icmp_reply and icmp_send. Both are
described in the section “Transmitting ICMP Messages.” These routines consult
the routing table with the ip_route_output_key function described in
Chapter 33. Also, the routines that process ingress ICMP messages may need to
interact with the routing subsystem, such as by using ip_rt_redirect and ip_rt_
frag_needed, to process the information received with an ICMP message.

Socket layer
When an ingress ICMP message carries an error indication, the socket layer is
notified by invoking the err_handler function pointer registered by the transport
protocol associated with the faulty IP packet.

Ingress ICMP messages are dispatched to the right handler based on the ICMP type.

Protocol Initialization
The ICMPv4 protocol is initialized with icmp_init in net/ipv4/icmp.c. The ICMP pro-
tocol cannot be compiled as a module, so there is no module_init or module_cleanup
function. The meaning of the _ _init macro tagging icmp_init can be found in
Chapter 7.

Initialization consists of the creation of an array of sockets, one per CPU, which will
be used when transmitting ICMP messages generated by the kernel (as opposed to
user-generated messages). Those sockets, of type SOCK_RAW and protocol IPPROTO_
ICMP, are not to be inserted into the kernel socket’s table because they are not sup-
posed to be used as targets for ingress ICMP messages. For this reason, a call to the
unhash function takes the sockets out of the hash tables where they have been added
by the generic routine sock_create_kern.

void _ _init icmp_init(struct net_proto_family *ops)
{
 struct inet_sock *inet;
 int i;
 for (i = 0; I < NR_CPUS; i++) {
 ...
 err = sock_create_kern(PF_INET, SOCK_RAW, IPPROTO_ICMP,

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

600 | Chapter 25: Internet Control Message Protocol (ICMPv4)

 &per_cpu(_ _icmp_socket, i));
 if (err < 0)
 panic("Failed to create the ICMP control socket.\n");
 ...
 inet = inet_sk(per_cpu(_ _icmp_socket, i)->sk);
 inet->uc_ttl = -1;
 inet->pmtudisc = IP_PMTUDISC_DONT;
 per_cpu(_ _icmp_socket, i)->sk->sk_prot->unhash(per_cpu(_ _icmp_socket, i)->
sk);
 }

uc_ttl, the TTL value to use for IP packets sent to unicast addresses, is initialized to
–1 to tell the kernel to use the default unicast TTL (sysctl_ip_default_ttl). The set-
ting of IP_PMTUDISC_DONT disables PMTU discovery on the sockets.

The per-CPU sockets can be accessed with the icmp_socket macro defined in net/
ipv4/icmp.c, which transparently selects the right socket based on the local CPU ID.

static DEFINE_PER_CPU(struct socket *, _ _icmp_socket) = NULL;
#define icmp_socket _ _get_cpu_var(_ _icmp_socket)

Data Structures Featured in This Chapter
The three main data structures used by the ICMP code are:

icmphdr
ICMP header.

icmp_control
ICMP message type descriptor. Among its fields is the routine used to process
ingress messages.

icmp_bxm
Input structure given as a parameter to the two transmit routines described in
the section “Transmitting ICMP Messages.” It includes all the information nec-
essary to transmit an ICMP message.

icmphdr Structure
We saw in Figure 25-1 the structure of an ICMP message. The following, from
include/linux/icmp.h, is the data structure used to define an ICMP header:

struct icmphdr {
 _ _u8 type;
 _ _u8 code;
 _ _u16 checksum;
 union {
 struct {
 _ _u16 id;
 _ _u16 sequence;
 } echo;
 _ _u32 gateway;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Chapter | 601

 struct {
 _ _u16 _ _unused;
 _ _u16 mtu;
 } frag;
 } un;
};

First come the three fields common to all ICMP types, and then a union that pro-
vides different fields based on the message type. For example, un.frag is used by
ICMP_FRAG_NEEDED messages, and un.echo by the query messages (i.e., ICMP_ECHO,
ICMP_ECHOREPLY, etc.).

icmp_control Structure
For each ICMP type there is an instance of an icmp_control data structure (defined in
net/ipv4/icmp.c). Among other fields, it includes a pointer to the routine that is to be
called to process ingress ICMP messages. Here are its fields:

int output_entry
int input_entry

Indexes used by the receive routine icmp_rcv and the transmission routines in the
section “Transmitting ICMP Messages” to update the right SNMP counter in an
array. See the section “ICMP Statistics.”

void (*handler)(struct sk_buff *skb)
Function invoked by the receiving routine icmp_rcv to process incoming ICMP
messages.

short error
Flag that is set when the ICMP type is classified as an error (as opposed to a
query). See Table 25-1.

Here are two examples where the error field is useful, as mentioned in the section
“Transmitting ICMP Error Messages”:

• The kernel can check to make sure it is not replying to an ingress ICMP error
message with another ICMP error message, which is prohibited.

• ICMP types that are classified as errors are given a better TOS (IPTOS_PREC_
INTERNETCONTROL) since they are considered more important (see icmp_send*).

Refer to the section “Receiving ICMP Messages” to see how icmp_control data struc-
tures are organized.

* This is required by RFC 1812 in section 4.3.2.5.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

602 | Chapter 25: Internet Control Message Protocol (ICMPv4)

icmp_bxm Structure
icmp_bxm is defined in net/ipv4/icmp.c. Here is a description of its fields:

struct sk_buff *skb
For ICMP messages sent with icmp_send, represents the ingress IP packet that
triggered the transmission. For ICMP messages sent with icmp_reply, represents
an ingress ICMP message request.

int offset
Offset between skb->data and skb->nh (i.e., the size of the IP header). This offset
is useful when evaluating how much data can be put into the ICMP payload for
those ICMP messages that require it (see the section “ICMP Payload”).

int data_len
Size of the ICMP payload.

struct {
 struct icmphdr icmph;
 _ _u32 times[3];
} data

icmph is the header of the ICMP message to transmit. times is used by the ICMP_
TIMESTAMPREPLY message type (see Figure 25-4).

int head_len
Size of the ICMP header.

struct ip_options replyopts
unsigned char optbuf

replyopts stores the IP options to use at the IP layer. It is initialized with ip_
options_echo based on the IP options of skb. optbuf is an extension of replyopts
that is accessed by ip_options_echo via the _ _data field of ip_options. See
Chapter 19.

Transmitting ICMP Messages
The two classes of ICMP messages introduced in the section “ICMP Header,” errors
and queries, are transmitted using two different routines:

icmp_send
Used by the kernel to transmit ICMP error messages when specific conditions
are detected.

icmp_reply
Used by the ICMP protocol to reply to ingress ICMP request messages that
require a response.

Both routines receive an skb buffer in input. However, the one used as input to icmp_
send represents the ingress IP packet that triggered the transmission of the ICMP

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transmitting ICMP Messages | 603

message, whereas the one in input to icmp_reply represents an ingress ICMP request
message that requires a response.

The code in net/core/icmp.c processes incoming ICMP messages, and therefore
always uses icmp_reply to transmit an ICMP message in response to another one
received in input. Other kernel network subsystems (i.e., routing, IP, etc.) use icmp_
send when they need to generate ICMP messages, as shown in Figure 25-8.

In both cases:

• ip_route_output_key is used to find the route to the destination (see Chapter 33).

• The two routines ip_append_data and ip_push_pending_frames are used to
request a transmission to the IP layer. These routines are described in
Chapter 21.

• ICMP messages generated in kernel space are rate limited (if the kernel has been
configured to do it via /proc) with icmpv4_xrlim_allow (see the section “Rate
Limiting”).

• Transmissions are serialized with a per-CPU spin lock through icmp_xmit_lock
and icmp_xmit_unlock. The per-CPU spin locks are accessed via the per-CPU
ICMP sockets (see the section “Protocol Initialization”). When the spin lock can-
not be acquired because it is already held, transmission fails (but neither of the
routines returns an error code).

Tables 25-6, 25-7, and 25-8 show where the ICMP types in Table 25-1 are generated
by the kernel. For those subsystems covered in this book, it also includes a reference
to the routines where the ICMP messages are generated.

Figure 25-8. Subsystems using icmp_send/icmp_reply

Raw IP socket

icmp_timestamp

Rate - limiting token
bucket (icmpv4_xrlim_allow)

icmp_reply

IP TX APIs
ip_append_data
ip_push_pending_frames

icmp_send

User

Kernel

Netfilter

ATM

GRE
routing

IP

IPIP

UDP icmp_echo

net/ipv4/icmp.c

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

604 | Chapter 25: Internet Control Message Protocol (ICMPv4)

Netfilter generates ICMP_DEST_UNREACH messages when it drops ingress IP packets
according to the configuration applied, for instance, with iptables. The –reject-with
option for the REJECT target allows the user to select which ICMP message type to use
when rejecting ingress IP packets that match a given rule.

Tunneling protocols such as IPIP and GRE, defined in net/ipv4/ipip.c and net/ipv4/ip_
gre.c, respectively, need to handle ICMP messages according to the rules in RFC
2003, section 4.

Table 25-6. Network subsystems that generate ICMP messages

Type Name Generated by

0 ICMP_ECHOREPLY ICMP (icmp_echo)

3 ICMP_DEST_UNREACH See Table 25-7

5 ICMP_REDIRECT Routing (ip_rt_send_redirect)

11 ICMP_TIME_EXCEEDED See Table 25-8

12 ICMP_PARAMETERPROB IPv4 (ip_options_compile, ip_options_rcv_srr)

14 ICMP_TIMESTAMPREPLY ICMP (icmp_timestamp)

Table 25-7. Network subsystems that generate variants of the ICMP_DEST_UNREACH message
type

Code Kernel symbol Generated by

0 ICMP_NET_UNREACH Routing (ip_error), Netfilter

1 ICMP_HOST_UNREACH Routing (ip_error, ipv4_link_failure), Netfilter, GRE, IPIP

2 ICMP_PROT_UNREACH IPv4 (ip_local_deliver_finish), Netfilter, GRE

3 ICMP_PORT_UNREACH Netfilter, GRE, IPIP, UDP

4 ICMP_FRAG_NEEDED IPv4 (ip_fragment), GRE, IPIP, Virtual Server

5 ICMP_SR_FAILED IPv4 (ip_forward)

9 ICMP_NET_ANO Netfilter

10 ICMP_HOST_ANO Netfilter

13 ICMP_PKT_FILTERED Routing (ip_error), Netfilter

Table 25-8. Network subsystems that generate variants of the ICMP_TIME_EXCEEDED message
type

Code Kernel symbol Generated by

0 ICMP_EXC_TTL IPv4 (ip_forward)

1 ICMP_EXC_FRAGTIME IPv4 (ip_expire)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transmitting ICMP Messages | 605

Transmitting ICMP Error Messages
Figures 25-9(a) and 25-9(b) show the internals of icmp_send. Here are its input
parameters:

skb_in
Input IP packet the error is associated with.

type
code

Type and code fields to use in the ICMP header.

info
Additional information: an MTU for ICMP_FRAG_NEEDED messages, a gateway
address for ICMP_REDIRECT messages, and an offset for ICMP_PARAMETERPROB
messages.

Figure 25-9(a). icmp_send function

End

Link layer
broadcast?

IP broadcast
or IP multicast?

Non-first
IP fragment?

Are we transmitting
an ICMP error

message?

Is skb_in
an ICMP error

message?

Yes
Yes

Yes

Yes

Yes

No

No

No

No

No

Filtering of illegal requests

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

606 | Chapter 25: Internet Control Message Protocol (ICMPv4)

Figure 25-9(b). icmp_send function

End

Lock
(icmp_xmit_lock)?

Select source IP and TOS

Reverse IP options
from skb_in

Initialize ICMP header

Routing lookup
(ip_route_output_key)?

Rate limiting
(icmpv4_xrlim_allow)

Select amount of data to
put in the ICMP payload

Complete transmission
(icmp_push_reply)

Unlock
(icmp_xmit_unlock)

Not dropped

Dropped

Success

Failure

Failure

Success

Failure

Success

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transmitting ICMP Messages | 607

icmp_send starts with a few sanity checks to filter out illegal requests. The following
conditions cause it to abort:

• The IP datagram is received as broadcast or multicast. This case is detected by
checking the RTCF_BROADCAST and RTCF_MULTICAST flags of the routing cache entry
associated with skb_in.

• The IP datagram is received encapsulated in a broadcast link layer frame. This
case is detected by comparing the packet type skb_in->pkt_type against PACKET_
HOST.

• The IP datagram is a fragment, and it is not the first one of the original packet.
This case can be detected by reading the offset field of the IP header (see
Chapter 22).

• The IP datagram carries an ICMP error message. You must not use an error mes-
sage to reply to an error message.

It is not the responsibility of the ICMP layer to initialize the IP header. However, a
couple of IP header fields will be initialized by the IP layer according to the require-
ments of ICMP. In particular:

Source IP address
When the target of the ICMP message is not a locally configured IP address (i.e.,
RTCF_LOCAL), the source IP address to place in the encapsulating header is
selected according to the sysctl_icmp_errors_use_inbound_ifaddr configuration
(see the section “Tuning via /proc Filesystem”).

Type of Service (TOS)
The TOS is copied from the TOS of skb_in. In addition, when the ICMP mes-
sage is classified as an error (see Table 25-1), the precedence’s component of the
TOS is initialized to IPTOS_PREC_INTERNETCONTROL (i.e., this message has higher
precedence). See Chapter 18 for more information on TOS.

IP options
The IP options are copied and reversed from skb_in with ip_options_echo. See
the section “IP Options” in Chapter 19.

Next, the function finds the route to the destination with ip_route_output_key,
which is a cache lookup routine introduced in Chapter 33.

Note that, as shown in Figure 25-8, transmissions are rate limited with a token
bucket algorithm via the icmpv4_xrlim_allow routine. When the ICMP message is not
suppressed by the token bucket algorithm, the transmission ends with a call to icmp_
push_reply, which ends up calling the two IP routines shown in Figure 25-8.

Replying to Ingress ICMP Messages
As mentioned in the section “ICMP Header,” a subset of the ICMP message types
comes in pairs: a request message and a response message. For one example, an

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

608 | Chapter 25: Internet Control Message Protocol (ICMPv4)

ICMP_ECHOREPLY message is sent in answer to an ingress ICMP_ECHO message. The
transmission of response messages is done as follows:

1. The header of the response message is first copied from the ingress request
ICMP message.

2. The type field of the ICMP header is updated (for example, ICMP_ECHO is replaced
with ICMP_ECHOREPLY).

3. icmp_reply is called to complete the transmission (i.e., to compute the checksum
on the ICMP header, find the route to the destination, fill in the IP header, etc.).

Rate Limiting
ICMP messages are rate limited in two places:

By the routing code
The routing code rate limits only the outgoing ICMP_DEST_UNREACH and ICMP_
REDIRECT message types. See the section “Routing Failure” in Chapter 35 and the
section “Egress ICMP REDIRECT Rate Limiting” in Chapter 33.

By the ICMP code
The ICMP code can rate limit all outgoing ICMP message types (with only the
few exceptions listed later in this section), including the types that are also rate
limited by the routing code.

The two types of rate limiting differ in an important way: the routing code rate lim-
its ICMP messages per destination IP address, and the ICMP code rate limits per
source IP address. This means that the types that are rate limited by both ICMP and
the routing code are rate limited twice.

Let me clarify this point. The kernel keeps the rate-limiting information needed to
apply the token bucket algorithm in the dst_entry entries of the routing cache. Each
dst_entry instance is associated with a destination IP address (more details in
Chapter 33). This alone tells us that rate limiting is applied on a per-IP-address basis,
not on a per-ICMP-message-type basis, but let’s see exactly how per-source and per-
destination rate limiting differ:

• When a kernel subsystem, such as the IPv4 protocol, processes an input IP
packet that meets certain error conditions, it sends an ICMP error message back
to the source of the ingress IP packet. The ICMP code consults the routing table,
the routing lookup returns a cache entry, and the cache entry is used to store the
rate limiting information. This cache entry is associated with the route from the
local host to the source of the faulty IP packet—that is, to the source IP address
of the faulty IP packet. This is called per-source IP address rate limiting.

• When the routing code cannot route an ingress IP packet, it generates an ICMP_
HOST_UNREACH message, whereas it generates an ICMP_REDIRECT message when the
destination IP address of the ingress IP packet is better reached via another

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transmitting ICMP Messages | 609

gateway. In both cases, the routing code adds an entry to the cache whose asso-
ciated destination IP address is the destination IP address of the ingress IP
packet. This is why this is called per-destination IP address rate limiting.
Chapter 35 explains how such cache entries will be used by subsequent match-
ing IP packets.

Implementation of Rate Limiting
Let’s see now how the ICMP code applies its rate limiting. As shown in
Figure 25-10, any time an ICMP message is transmitted and rate limiting is config-
ured in the kernel, the icmpv4_xrlim_allow function is called to enforce rate limit-
ing. Both the ICMP message types to rate limit (sysctl_icmp_ratemask) and the rate
limit’s rate (sysctl_icmp_ratelimit) can be configured via /proc (see the section
“Tuning via /proc Filesystem”).

Figure 25-10. icmpv4_xrlim_allow function

Is
this ICMP type
used by PMTU

discovery?

Is the egress device
the loopback?

No

Unknown type?

No

Do NOT rate limit
(return 1)

Yes

Yes

Is this ICMP type
configured to be

rate limited
(sysctl_icmp_ratemask)

?

Yes No

No

Let xrlim_allow decide
(Token Bucket)

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

610 | Chapter 25: Internet Control Message Protocol (ICMPv4)

icmpv4_xrlim_allow does not apply any rate limiting in the following cases:

• ICMP messages whose type is not known to the kernel (they could be important
ones).

• ICMP messages used by the PMTU protocol described in RFC 1191 (i.e., type
ICMP_DEST_UNREACH and code ICMP_FRAG_NEEDED).* PMTU is briefly described in
Chapter 18.

• ICMPs sent out on the loopback device.

icmpv4_xrlim_allow is a wrapper for a more general-purpose function, xrlim_allow,
which does the real job. It is called if, according to the sysctl_icmp_ratemask bit-
map, the ICMP message is to be rate limited.

#define XRLIM_BURST_FACTOR 6
int xrlim_allow(struct dst_entry *dst, int timeout)
{
 unsigned long now;
 int rc = 0;

 now = jiffies;
 dst->rate_tokens += now - dst->rate_last;
 dst->rate_last = now;
 if (dst->rate_tokens > XRLIM_BURST_FACTOR * timeout)
 dst->rate_tokens = XRLIM_BURST_FACTOR * timeout;
 if (dst->rate_tokens >= timeout) {
 dst->rate_tokens -= timeout;
 return 1;
 }
 return rc;
}

xrlim_allow applies a simple token bucket algorithm. Whenever it is called, it
updates the available dst->rate_tokens tokens (measured in jiffies), makes sure
that the accumulated tokens are not more than a predefined maximum value (XRLIM_
BURST_FACTOR), and allows the transmission of the ICMP message if the available
tokens are sufficient. The input parameter timeout represents the rate to enforce,
expressed in Hz (for example, 1*HZ would mean a rate limit of one ICMP message
per second).

Note that since xrlim_allow is a generic routine shared by different protocols, it oper-
ates on protocol-independent routing cache entries (dst_entry structures), and
icmpv4_xrlim_allow is an IPv4 routine and therefore operates on rtable data struc-
tures. For more details on the dst_entry and rtable data structures, please refer to
Chapter 36.

* Note that the policy used by the kernel has nothing to do with the one used by the firewall. It is common,
for instance, for firewalls to drop all but a few ICMP messages. Sometimes the ones used by PMTU are
dropped too, even though it goes against the RFC recommendations.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Receiving ICMP Messages | 611

Receiving ICMP Messages
icmp_rcv is the function called by ip_local_deliver_finish to process ingress ICMP
messages.

The ICMP protocol registers its receiving routine icmp_rcv in net/ipv4/protocol.c, as
described in Chapter 24. See Chapter 20 for more details on local delivery of ingress
IP packets.

First, the ICMP message’s checksum is verified. Note that even when the receiving
NIC is able to compute the L4 checksum in hardware (which would be the ICMP
checksum in this case) and that checksum says the ICMP message is corrupted, icmp_
rcv verifies the checksum once more in software. You can refer to the section “sk_buff
structure” in Chapter 19 for more details on L4 checksumming support by NICs.

Not all ICMP message types can be sent to a multicast IP address: only ICMP_ECHO,
ICMP_TIMESTAMP, ICMP_ADDRESS, and IMCP_ADDRESSREPLY. icmp_rcv filters out those mes-
sages that do not respect this rule. In particular, ingress broadcast ICMP_ECHO mes-
sages are dropped if the system has been configured to do so. See the section
“Tuning via /proc Filesystem.”

When all sanity checks are satisfied, icmp_rcv passes the ingress ICMP message to
the right helper routine. The latter is accessed via the icmp_pointers vector that is ini-
tialized at the end of net/ipv4/icmp.c. icmp_pointers is an array of icmp_control data
structures. Table 25-9 summarizes part of icmp_pointers’s initialization. See the sec-
tion “icmp_control Structure” for the exact meaning of the handler and error fields.
Any types not in the table are obsolete, unsupported, or not supposed to be pro-
cessed in kernel space. For all these types, handler is initialized to icmp_discard.

Figure 25-11 shows the internals of icmp_rcv .

Note that neither ICMP_ADDRESS nor ICMP_ADDRESSREPLY is supported; the two han-
dlers that are registered against them are just placeholders or apply some kind of
logging.

Table 25-9. Initialization of handler and error

Type Kernel symbol Handler Error

3 ICMP_DEST_UNREACH icmp_unreach 1

4 ICMP_SOURCE_QUENCH icmp_unreach 1

5 ICMP_REDIRECT icmp_redirect 1

8 ICMP_ECHO icmp_echo 0

11 ICMP_TIME_EXCEEDED icmp_unreach 1

12 ICMP_PARAMETERPROB icmp_unreach 1

13 ICMP_TIMESTAMP icmp_timestamp 0

17 ICMP_ADDRESS icmp_address 0

18 ICMP_ADDRESSREPLY icmp_address_reply 0

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

612 | Chapter 25: Internet Control Message Protocol (ICMPv4)

Figure 25-11. icmp_rcv function

Can this type
be sent to a broadcast

address?

Return 0

Drop ICMP message

Process ICMP message
with its handler

Update statistics
(ICMP_MIB_XXX)

Update statistics
(ICMP_MIB_INERRORS)

Is type
ICMP_ECHO?

Is
system configured
to drop broadcast

ICMP_ECHO
message

Was ICMP msg
received with a

broadcast or multicast
IP packet?

Is ICMP
type recognized
by the kernel?

Is ICMP
header

truncated?

Verification

Compute the ICMP
checksum

ICMP
checksum

status

Verification

Update statistics
(ICMP_MIB_INMSGS)

Computed in hardware
(CHECKSUM_HW)

To be computed
(CHECKSUM_NONE)Failed

Passed

Passed Failed

Yes

No

No

Yes

Yes

Yes

Yes

No

No

No

Yes

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Receiving ICMP Messages | 613

Note also that the icmp_unreach handler takes care of different ICMP message types,
not just ICMP_DEST_UNREACH.

Figure 25-12(a) shows how some of skb’s pointers are initialized when icmp_rcv is
invoked, and Figure 25-12(b) shows how they are initialized when the handlers of
Table 25-9 are called. This figure can be useful when analyzing the routines in
Table 25-9, especially icmp_unreach.

Processing ICMP_ECHO and ICMP_ECHOREPLY Messages
ICMP_ECHO messages are processed according to the generic model described in the
section “Replying to Ingress ICMP Messages”:

static void icmp_echo(struct sk_buff *skb)
{
 if (!sysctl_icmp_echo_ignore_all) {
 struct icmp_bxm icmp_param;

 icmp_param.data.icmph = *skb->h.icmph;
 icmp_param.data.icmph.type = ICMP_ECHOREPLY;
 icmp_param.skb = skb;

Figure 25-12. (a) skb at the beginning of icmp_rcv; (b) skb as it is passed to the handler

head
h

data
tail
end

struck sk_buff
Link layer

header

(a)

IP header

ICMP header

IP header

IP payload

ICMP
payload

head
h

data
tail
end

struck sk_buff
Link layer

header

(b)

IP header

ICMP header

IP header

IP payload

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

614 | Chapter 25: Internet Control Message Protocol (ICMPv4)

 icmp_param.offset = 0;
 icmp_param.data_len = skb->len;
 icmp_param.head_len = sizeof(struct icmphdr);
 icmp_reply(&icmp_param, skb);
 }
}

ICMP_ECHOREPLY messages are not processed by the kernel, but by the applications
that generated the associated ICMP_ECHO messages. See the section “Raw Sockets and
Raw IP” in Chapter 24 for an example involving ping.

Processing the Common ICMP Messages
icmp_unreach is used as a handler for multiple ICMP types, as shown in Table 25-9.
The function starts with some common sanity checks, continues with some process-
ing based on the particular message type, and concludes with another common part.

The internals of the routine are shown in Figure 25-13.

The per-type processing is minimal:

• It prints a warning message for ICMP_SR_FAILED ICMPs.

• It updates the routing cache when it receives an ICMP of type ICMP_DEST_UNREACH
and code ICMP_FRAG_NEEDED. The cache is updated with ip_rt_frag_needed, but
only if PMTU discovery is enabled (i.e., if ipv4_config.no_pmtu_disc is non-
zero). When PMTU discovery is not enabled, the kernel simply logs a warning.

• It extracts the pointer field from the ICMP header when the message is of type
ICMP_PARAMETERPROB. pointer is an offset relative to the beginning of the IP header
in the ICMP payload. The field will be passed to the transport protocol.

• ICMP_SOURCE_QUENCH does not require any specific treatment in icmp_unreach, so it
is completely up to the transport protocols to handle it when notified via the
err_handler routines. Currently, all transport protocols ignore this type of ICMP
message.

For both ICMP_FRAG_NEEDED and ICMP_SR_FAILED, the logging is rate limited via LIMIT_
NETDEBUG, which is a generic routine that rate limits networking-related messages to
five per second.

The last part of icmp_unreach is again common to all ICMP types that use it as a han-
dler, and consists of the following tasks:

• When the sysctl_icmp_ignore_bogus_error_messages variable is set (by default, it
is not), the ICMP message is discarded if it is received with a broadcast IP
packet.

• The function makes sure the ICMP payload includes the whole IP header of the
IP packet that triggered the generation of the ICMP message, plus 64 bits from
the transport payload of the same IP packet. This information is necessary to

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Receiving ICMP Messages | 615

Figure 25-13. icmp_unreach function

Is the IPheader
in the ICMP payload

truncated?

Update statistics
(ICMP_MIB_INERRORS)

ICMP type

ICMP code

Return

Log warning message

Are broadcast
ICMPs to

be dropped?

Does
the ICMP

payload include the
required

information?

Deliver ICMP to raw IP sockets

Lock
(rcu_read_lock)

Notify transport protocol
(err_handler)

Unlock
(rcu_read_unlock)

Return

Is destination
IP address
broadcast?

Log warning message

Update routing cache
(ip_rt_frag_needed)

Extract pointer field from
ICMP header

No

No

Yes

Yes

ICMP_SR_FAILED

ICMP_DEST_UNREACH

Any other (valid) code

ICMP_PARAMETERPROB
ICMP_SOURCE_QUENCH
ICMP_TIME_EXCEEDED

Yes

No

Is PMTU
discovery enabled

ICMP_FRAG_NEEDED

Yes

Return

Invalid code

Log warning message
No

YesNo

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

616 | Chapter 25: Internet Control Message Protocol (ICMPv4)

allow the transport protocol to identify a local socket (i.e., the application).
When this condition is not met, the ICMP message is dropped. Note that the 64-
bit requirement comes from RFC 792, but RFC 1812 changed the requirement
(see the section “ICMP Payload”).

• The function notifies the transport protocol about this ICMP message via the
err_handler function. The right transport protocol is identified using the proto-
col field of the IP header in the ICMP payload. See the section “Passing Error
Notifications to the Transport Layer” and Figure 25-2.

Processing ICMP_REDIRECT Messages
icmp_redirect, the function used to process incoming ICMP_REDIRECT messages, is a
wrapper around ip_rt_redirect with some additional sanity checks. The logic used
by the latter function is described in the section “Processing Ingress ICMP_REDI-
RECT Messages” in Chapter 31. ip_rt_redirect adds an entry to the routing cache
with rt_intern_hash, which is described in Chapter 33. The route is initialized with
the RTCF_REDIRECTED flag toggled on, to be distinguished from the other routes. For
example, we will see in the section “Examples of eligible cache victims” in
Chapter 30 how the routing code uses this information when it is forced to delete
entries from the routing cache.

The system administrator can also influence when ICMP redirects are generated.
Through the /proc filesystem, it is possible to specify for each interface whether to
send and accept ICMP redirects (see the section “The /proc/sys/net/ipv4/conf Direc-
tory” in Chapter 36). Using the firewall capabilities, as well, the administrator can
specify from whom to accept particular types of ICMP packets and therefore whose
ICMP_REDIRECT messages to trust.

Processing ICMP_TIMESTAMP and ICMP_TIMESTAMPREPLY
Messages
Ingress ICMP_TIMESTAMP messages are handled by replying with an ICMP_
TIMESTAMPREPLY message, using the scheme discussed in the section “Replying to
Ingress ICMP Messages.” The second and third timestamps are not initialized
according to the rules we saw in the section “ICMP_TIMESTAMP and ICMP_
TIMESTAMPREPLY”: they are initialized to the same timestamp with do_
gettimeofday.

Note that head_len is initialized to include not only the default ICMP header length,
but also the three 32-bit timestamps.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ICMP Statistics | 617

Processing ICMP_ADDRESS and ICMP_ADDRESSREPLY Messages
Because the Linux kernel does not generate ICMP_ADDRESS messages, ingress ICMP_
ADDRESSREPLY messages cannot be answers to queries generated locally (not in kernel
space, at least). However, when forwarding and logging of Martian addresses* are
enabled on the ingress device, Linux listens to ICMP_ADDRESSREPLY messages with
icmp_address_reply. The latter function checks whether the mask advertised with the
message is correct with regard to the IP addresses configured on the receiving inter-
face: if the receiving interface does not have any IP address configured on the same
subnet of the source IP address used by the ICMP message sender (which also
implies the exact same netmask), the kernel logs a warning.

The sanity check on the received reply is not done when the routing cache has the
RTCF_DIRECTSRC flag set. This flag is set only when the destination address is reach-
able by the local host via a next hop that has local scope (i.e., that exists only inter-
nally to the Linux box).

ICMP Statistics
The ICMP protocol keeps the statistics defined in RFC 2011, storing them in icmp_
mib data structures. The kernel maintains statistics on a per-CPU basis, and for each
CPU it distinguishes between statistics updated in software interrupt context and
those updated outside that context. In other words, for each counter there are two
instances per CPU: one of those two instances is used by code running in software
interrupt context and the other is used by code not running in software interrupt
context. All of those icmp_mib instances are allocated by init_ipv4_mibs in net/ipv4/
af_inet.c. icmp_statistics is a two-element array, whose first element represents the
per-CPU array of icmp_mib instances used by code that runs in software interrupt
context, and whose second element represents the other per-CPU array.

static int _ _init init_ipv4_mibs(void)
{
 ...
 icmp_statistics[0] = alloc_percpu(struct icmp_mib);
 icmp_statistics[1] = alloc_percpu(struct icmp_mib);
 ...
}

The icmp_mib structure consists of an array of unsigned long members, one for each
counter defined in RFC 2011 for the ICMP protocol:

#define SNMP_MIB_DUMMY _ _ICMP_MIB_MAX
#define ICMP_MIB_MAX (ICMP_MIB_MAX + 1)
struct icmp_mib {
 unsigned long mibs[ICMP_MIB_MAX];
} _ _SNMP_MIB_ALIGN_ _;

* See the definition of log_martians in the section “File descriptions” in Chapter 36.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

618 | Chapter 25: Internet Control Message Protocol (ICMPv4)

The counters are identified via the enumeration list ICMP_MIB_XXX, defined in include/
linux/snmp.h:

enum
{
 ICMP_MIB_NUM = 0,
 ICMP_MIB_INMSG,
 ...
 ICMP_MIB_OUTADDRMASKREPS,
 _ _ICMP_MIB_MAX
}

Note that the size of the icmp_mib array is one unit bigger than the size of the ICMP_
MIB_XXX enumeration list. The extra element is used to account for ICMP message
types not recognized by the kernel.

At any time, when the kernel needs to update a given counter, it selects the right ele-
ment of icmp_statistics based on the interrupt context, and then the right icmp_mib
instance based on the current CPU. The kernel provides a set of macros in include/
net/icmp.h that need only the counter identifier in input (i.e., ICMP_MIB_XXX) and
transparently take care of the two selections just described:

ICMP_INC_STATS
This macro can be used both in and outside of software interrupt context.

ICMP_INC_STATS_BH
This macro can be used when the code that needs to update a counter always
runs in software interrupt context.

ICMP_INC_STATS_USER
This macro can be used when the code that needs to update a counter never runs
in software interrupt context.

The three macros are defined as wrappers around generic macros provided by the
SNMP subsystem:

#define ICMP_INC_STATS(field) SNMP_INC_STATS(icmp_statistics, field)
#define ICMP_INC_STATS_BH(field) SNMP_INC_STATS_BH(icmp_statistics, field)
#define ICMP_INC_STATS_USER(field) SNMP_INC_STATS_USER(icmp_statistics, field)

Here is the meaning of the ICMP_MIB_XXX values. For a more detailed description, you
can refer to RFC 2011.

Fields related to received ICMP messages
ICMP_MIB_INMSG

Number of received ICMP messages. It includes those messages that are
accounted by ICMP_MIB_INERRORS.

ICMP_MIB_INERRORS

Number of ICMP messages dropped because of some problem. icmp_rcv
and the handlers in Table 25-9 drop ingress messages when they have a
truncated ICMP header. The L4 layer err_handler function described in the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Passing Error Notifications to the Transport Layer | 619

section “Passing Error Notifications to the Transport Layer” drops ingress
messages when they have a truncated ICMP payload.

ICMP_MIB_INXXX

Besides the two general-purpose counters just listed, there is one per ICMP
message type. ICMP_MIB_INXXX counts the number of ICMP messages of type
XXX received.

ICMP_MIB_INXXX counterpart for each ICMP_MIB_OUTXXX counter:
ICMP_MIB_OUTMSG

Number of transmitted ICMP messages.

ICMP_MIB_OUTERRORS

Number of faulty ICMP transmissions. Not used.

ICMP_MIB_OUTXXX

Besides the two general-purpose counters just listed, there is one per ICMP
message type. ICMP_MIB_OUTXXX counts the number of ICMP messages of type
XXX transmitted.

ICMP_MIB_INXXX counters are updated in icmp_rcv.

ICMP_MIB_OUTXXX counters are updated within icmp_reply and icmp_send by invoking
icmp_out_count:

static void icmp_out_count(int type)
{
 if (type <= NR_ICMP_TYPES) {
 ICMP_INC_STATS(icmp_pointers[type].output_entry);
 ICMP_INC_STATS(ICMP_MIB_OUTMSGS);
 }
}

In both cases, for any ICMP type t, the right counter to increment is identified by
means of the input_entry and output_entry fields of the icmp_control data structure
associated with t. The values of these counters are exported in the /proc/net/snmp file.
You can also read them with netstat –s (and with SNMP agents, of course).

Passing Error Notifications to the Transport Layer
We saw in the section “L4 Protocol Registration” in Chapter 24 that when transport
protocols register with the kernel, they provide an instance of an inet_protocol data
structure. It includes one function pointer, err_handler, which is called by the ICMP
protocol to propagate to the transport layer error notifications received with ingress
ICMP messages. RFCs 1122 and 1256 specify, for hosts and routers, respectively,
whether each ICMP message type should be propagated to the transport layer. All
the error message types that require a notification to be sent to the transport layer are
processed by icmp_unreach. At the end of that function, the transport layer is noti-
fied with err_handler.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

620 | Chapter 25: Internet Control Message Protocol (ICMPv4)

When the transport layer processes the notification, it uses the icmp_err_convert
array defined in net/ipv4/icmp.c to convert the ICMP_DEST_UNREACH code into an error
code that is better understood by the socket layer (see udp_err in net/ipv4/udp.c for
an example). The transport layer passes that error code to the socket associated with
the error (which is identified thanks to the ICMP payload, as described in the sec-
tion “ICMP Payload”). Raw IP sockets are notified as well, by means of raw_err.
Table 25-10 shows the conversion that is applied by icmp_err_convert. Note that the
err_handler routines registered by tunneling protocols such as IPIP and GRE may
generate new ICMP messages (see ipip_err in net/ipv4/ipip.c for an example).

Tuning via /proc Filesystem
There are no compile-time kernel options for the ICMP protocol; all the tuning
parameters are defined in net/ipv4/sysctl_net_ipv4.c and are exported via the /proc
filesystem in the directory /proc/sys/net/ipv4:

icmp_echo_ignore_all
This flag is used by icmp_echo, the handler for incoming ICMP_ECHO ICMP mes-
sages, to decide whether to reply. This kind of filtering is usually done for secu-
rity reasons by firewalls; however, the ICMP subsystem provides the capability,
too.

Table 25-10. Initialization of icmp_err_convert

Code Kernel symbol errno Fatal (0=No, 1=Yes)

0 ICMP_NET_UNREACH ENETUNREACH 0

1 ICMP_HOST_UNREACH EHOSTUNREACH 0

2 ICMP_PROT_UNREACH ENOPROTOOPT 1

3 ICMP_PORT_UNREACH ECONNREFUSED 1

4 ICMP_FRAG_NEEDED EMSGSIZE 0

5 ICMP_SR_FAILED EOPNOTSUPP 0

6 ICMP_NET_UNKNOWN ENETUNREACH 1

7 ICMP_HOST_UNKNOWN EHOSTDOWN 1

8 ICMP_HOST_ISOLATED ENONET 1

9 ICMP_NET_ANO ENETUNREACH 1

10 ICMP_HOST_ANO EHOSTUNREACH 1

11 ICMP_NET_UNR_TOS ENETUNREACH 0

12 ICMP_HOST_UNR_TOS EHOSTUNREACH 0

13 ICMP_PKT_FILTERED EHOSTUNREACH 1

14 ICMP_PREC_VIOLATION EHOSTUNREACH 1

15 ICMP_PREC_CUTOFF EHOSTUNREACH 1

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 621

icmp_echo_ignore_broadcasts
When this flag is set, ICMP_ECHO messages sent to broadcast addresses are
ignored. See the section “Directed Broadcasts” in Chapter 30 for an example.
The value of this field is checked in icmp_rcv.

icmp_ignore_bogus_error_responses
When this flag is clear, ICMP error message types with a broadcast destination
IP address are ignored. icmp_unreach handles the flag.

icmp_errors_use_inbound_ifaddr
This flag is used to change how the source IP address is chosen when the local
host transmits an ICMP error message. When the flag is not set, Linux selects
the source IP address from the interface that is going to be used to transmit the
ICMP message (see Part VII). When the flag is set, Linux selects the source IP
address from the interface that received the IP packet that triggered the transmis-
sion of the ICMP message.

In most cases, the two interfaces match, but they could differ, for example, when
two hosts are reachable with asymmetric routes (see the section “Essential Ele-
ments of Routing” in Chapter 30).

icmp_ratelimit
icmp_ratemask

These two variables are used by ICMP to rate limit outgoing ICMP messages (see
the section “Rate Limiting”). sysctl_icmp_ratemask is simply a bitmap where
each bit (starting from the least-significant bit) represents an ICMP type: if the
bit corresponding to type XXX is set, outgoing ICMP messages of type XXX are rate
limited.

Table 25-11 summarizes the variables and associated files.

Table 25-11. /proc/sys/net/ipv4 files usable for tuning the ICMP subsystem

Kernel variable Filename Default value

sysctl_icmp_echo_ignore_all icmp_echo_ignore_all 0

sysctl_icmp_echo_ignore_broadcasts icmp_echo_ignore_broadcasts 0

sysctl_icmp_ignore_bogus_error_
responses

icmp_ignore_bogus_error_
responses

0

sysctl_icmp_errors_use_inbound_ifaddr icmp_errors_use_inbound_ifaddr 0

sysctl_icmp_ratelimit icmp_ratelimit 1 * HZ

sysctl_icmp_ratemask icmp_ratemask 0x1818a

a Given that each bit represents an ICMP type, and given the types in Table 25-1, this bitmap includes the
following types: ICMP_DEST_UNREACH, ICMP_SOURCE_QUENCH, ICMP_TIME_EXCEEDED, and ICMP_PARAMETERPROB.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

622 | Chapter 25: Internet Control Message Protocol (ICMPv4)

Functions and Variables Featured in This Chapter
Table 25-12 summarizes the main functions, variables, and data structures intro-
duced in this chapter.

Files and Directories Featured in This Chapter
The ICMP subsystem uses only five files—two for IPv4, two for IPv6, and one shared
by the two IP versions—as shown in Figure 25-14.

Table 25-12. Functions, variables, and data structures introduced in this chapter

Name Description

Functions

icmp_init Initializes the ICMPv4 protocol. See the section “Protocol Initialization.”

icmp_rcv Processes ingress ICMP messages. See the section “Receiving ICMP Messages.”

icmp_send
icmp_reply

Transmit an ICMP message. See the section “Transmitting ICMP Messages.”

icmp_xmit_lock
icmp_xmit_unlock

Get and release the per-CPU ICMP-socket’s transmit lock.

icmpv4_xrlim_allow
xrlim_allow

Rate limit ICMP message transmissions. See the section “Rate Limiting.”

icmp_out_count Updates SNMP counters for transmitted ICMP messages.

icmp_err_convert Converts ICMP error codes to socket error codes. See the section
“Passing Error Notifications to the Transport Layer.”

ICMP_INC_STATS
ICMP_INC_STATS_BH
ICMP_INC_STATS_USER

Increment counters used to keep statistics on ICMP messages. See the section
“ICMP Statistics.”

Variables

icmp_statistics SNMP counters. See the section “ICMP Statistics.”

Data structures

struct icmphdr
struct icmp_control
struct icmp_bxm

Main data structures used by ICMPv4. See the section “Data Structures Featured in This
Chapter.”

icmp_mib Array of counters. See the section “ICMP Statistics.”

Figure 25-14. Files and directories featured in this chapter

include net

Root
(usually /usr/src/linux)

linux
icmp.h

icmpv6.h

net

icmp.h

ipv6
icmp.c

ipv4
icmp.c

af_inet.c

.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART VI

VI.Neighboring Subsystem

Packets use a Layer three protocol such as IP to reach a LAN, and then a Layer two
protocol such as Ethernet to go from the router on the local network to the system
where the endpoint application is running. But a step is missing in this scenario.
How do the router and the application host know who each other are? In more tech-
nical terms, how can a host find the L2 address (such as a MAC address) that corre-
sponds to a given IP address? The action of finding the L2 address associated with a
given L3 address is referred to as “resolving the L3 address.” The missing piece is
filled in by a neighboring protocol.

The most familiar neighboring protocol is Address Resolution Protocol (ARP), and
Chapter 28 describes it in general terms. The corresponding protocol used in IPv6 is
Neighbor Discovery (ND). But the key principles and tasks of a neighboring pro-
tocol, and a neighboring subsystem within an operating system, can be generalized.

Here is what each chapter discusses:

Chapter 26, Neighboring Subsystem: Concepts
Describes why and when a neighboring protocol is used and lays out its major
tasks.

Chapter 27, Neighboring Subsystem: Infrastructure
Discusses the infrastructure that is common to all neighboring protocols.

Chapter 28, Neighboring Subsystem: Address Resolution Protocol (ARP)
Describes how ARP, the most common neighboring protocol and the one read-
ers are most likely to have interacted with, uses the infrastructure.

Chapter 29, Neighboring Subsystem: Miscellaneous Topics
Covers the command-line and user-space interface (including the neighboring
subsystem’s directories in the /proc filesystem).

www.ebooksworld.in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

625

Chapter 26 CHAPTER 26

Neighboring Subsystem:
Concepts

This chapter describes why and when a neighboring protocol is used and lays out its
major tasks. It is deliberately a general overview that makes only passing references
to particular neighboring protocols such as ARP. It covers such general issues as:

• The tasks taken on by a general neighboring infrastructure

• Why caching is valuable

• The states a neighbor entry in the cache can take

• Reachability detection and Network Unreachability Detection (NUD)

• What proxying is for

The terminology used in the Linux kernel source code follows the IPv6 neighbor dis-
covery model described in RFC 2461 in the section “Neighboring Protocols,” but we
will try to keep the discussion as protocol-independent as possible.

The terms L2 address, Layer two address, hardware address, MAC address, and link
layer address are commonly used to refer to the same concept. In this chapter, we
will mostly use the first term.

What Is a Neighbor?
A host is your neighbor if it is connected to the same LAN (i.e., you are directly con-
nected to it through either a shared medium or a point-to-point link) and it is config-
ured on the same L3 network. For example, on an IP network, you can say that two
hosts are neighbors if they are connected to the same LAN and each has at least one
interface on the same IP subnet. Two such hosts can speak directly using the proto-
col associated with the medium that connects them (e.g., Ethernet). Another way to
define a neighbor is to say that a host must be only one L3 hop away from its neigh-
bor; its L3 routing table must provide a way for it to talk directly to the neighbor.
Hosts that are not neighbors must communicate through a gateway or router.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

626 | Chapter 26: Neighboring Subsystem: Concepts

Two hosts can still be neighbors if they are separated by a system on the L2 layer (a
bridge). Part IV goes into more detail on this point, but we’ll look at some simple
examples here based on the IP networks of Figure 26-1.

Each topology in Figure 26-1 shows a different relationship between L3 and L2
addresses, which has implications for reaching neighbors:

Figure 26-1(a)
Host A and Host B belong to the same 10.0.1.0/24 IP subnet and therefore can
talk directly, being just one L3 hop away from each other. They are neighbors.

Figure 26-1. Neighboring and non-neighboring hosts

(a) Host BHost A

eth0
10.0.1.100/24

eth0
10.0.1.101/24

(b) Host BHost A

eth0
10.0.1.100/24

eth0
10.0.1.101/24

Router

eth0
10.0.1.1/24

eth1
10.0.2.1/24

Host DHost C

eth0
10.0.2.100/24

eth0
10.0.2.101/24

(c) Host CHost A

eth0
10.0.1.100/24

eth0
10.0.2.100/24

(d) Host B

eth0
10.0.1.101/24

Router

eth0
10.0.1.1/24

eth1
10.0.2.1/24

Host C

eth0
10.0.2.100/24

.

Host A

eth0
10.0.1.100/24

Hub/bridge/switch

LAN
NIC

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

What Is a Neighbor? | 627

Figure 26-1(b)
This shows a slightly more complex case. Host A and Host B still belong to the
same subnet and can therefore talk directly to each other. Host A and Host C,
on the other hand, belong to two different IP subnets; because of this they need
to rely on a router (assuming they have been configured properly) to talk to each
other. In this case, Host A and Host C can be considered two L3 hops away from
each other.

Figure 26-1(c)
This shows a case of two hosts, connected to the same hub, that cannot talk to
each other. Even if each host can receive whatever the other host transmits, they
cannot talk to each other at the L3 layer because they have been configured with
different IP subnets. Thus, Host A thinks it can reach only hosts within the sub-
net 10.0.1.0/24. It will not even try to send anything if the destination address is
outside that subnet. This problem can be solved easily in numerous ways; we
will see one in the following section, and more in other chapters.

Figure 26-1(d)
This shows a case where the subnet 10.0.1.0/24 actually consists of two LANs
merged into one subnet through a hub or a bridge. We saw how they differ in
Chapter 14, but from this chapter’s perspective they can be considered equiva-
lent. Note that the two interfaces used to merge the two LANs do not have IP
addresses: this is because all three device types operate below the IP layer.

When two hosts are one L3 hop away from each other, they are usually one L2
hop away as well, as in Figure 26-1(a), (b), and (c). But this is not necessarily
always the case, as shown in Figure 26-1(d), where Host A and router are one L3
hop apart (and therefore are neighbors) but two L2 hops apart.

Furthermore, the relationship between physical subnets (LANs) and logical subnets
(i.e., IP subnets) is not always one-to-one, as shown in Figure 26-2(a). You can have
multiple IP subnets on one LAN, or multiple LANs on one IP subnet. For example,
Figure 26-1(c) shows two IP subnets on the same LAN, and Figure 26-1(d) shows
two LANs connected by a hub on the same IP subnet (on the left side).While the
former is not common, the latter is commonly used when configuring Proxy ARP or
bridging. You can see an example of Proxy ARP configuration in the section “Final
Common Processing” in Chapter 28, and examples of bridging in Part IV.

Figure 26-2(b) shows two groups of hosts configured to lie on different IP subnets.
Even if the hosts of the two groups share the same LAN and are therefore able to talk
to each other directly, they have to go through the router, which listens on both
sides. The router could have two different Network Interface Cards, or NICs (as
shown in Figure 26-2(b)), or a single NIC with multiple IP configurations. This sce-
nario is pretty uncommon: it could be used, for example, to address a temporary
shortage of equipment or a failure. For example, if you had the scenario in
Figure 26-2(a) and LAN1 failed, you could move LAN1’s hosts to LAN2 (including

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

628 | Chapter 26: Neighboring Subsystem: Concepts

the Router’s eth0 interface*), and everything would work again without any need to
change the IP subnet configuration of the hosts that were on LAN1. The hosts that
were already on LAN2 will still access the other hosts through the router. Even if this
scenario is uncommon, the kernel must be able to handle it properly. The implica-
tions of this scenario, especially when the router uses a single interface to access both
subnets (i.e., eth0 is removed and its address is added to eth1), will be addressed in
the section “Tunable ARP Options” in Chapter 28.

In the rest of this chapter we will not explicitly mention the case of Figure 26-2(b),
but you should keep in mind that setups like that one are possible and are not illegal.

Reasons That Neighboring Protocols Are Needed
In this section, we’ll look at the basic reasons for the neighboring subsystem. They
stem from the fundamental division of networks into layers, and the existence of
shared media such as Ethernet.

When L3 Addresses Need to Be Translated to L2 Addresses
The reason for the distinction between the network Layer two (Ethernet, 802.11
wireless, Token Ring, point-to-point, etc.) and Layer three (IP or proprietary) proto-
cols is that many different L2 protocols exist to take data between neighbors,
whereas the routing L3 layer should not have to worry what medium is being used

* An alternative would be not to move the upper router’s interface and simply add one IP address to the lower
interface.

Figure 26-2. (a) IP_subnet-LAN 1:1; (b) IP_subnet-LAN n:1

Router

.

(b)

Router

. . .

. . .

(a)

LAN1

LAN2 LAN1

eth 0

eth 1 eth 0 eth 1

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Reasons That Neighboring Protocols Are Needed | 629

for transmission. The higher layer should be able to employ the same software to
send packets between two systems whether they’re on an Ethernet or a point-to-
point connection.

Figure 26-3 shows the different situations that require different responses by the
neighboring subsystem.

Figure 26-3(a) shows a point-to-point connection, such as a dial-up line. The L2 pro-
tocol is fairly simple, handling such issues as error checking and taking turns if it’s
running on a half-duplex medium. The neighboring protocol is minimal, because it
simply has to invoke the L2 protocol. There is no choice of which neighbor to send a
packet to.

Figure 26-3(b) shows a more complicated situation: a host on an Ethernet or other
shared medium that operates through broadcasts. If Host A has data for Host B, it
must just place the data on the cable (or the radio waves, in the case of wireless) and
let all systems on the shared medium receive it. It must indicate an L2 address so that
one host knows the data is meant for it. Other hosts check the address and ignore
the data. The neighboring protocol chooses the L2 address corresponding to the L3
address in the packet.

If Host A and Host B are separated by a bridge, the latter accepts the L2 address and
directs it to the right host;* the neighboring subsystem doesn’t have to worry about
it. In fact, the bridge is invisible to the neighboring subsystem.

There is usually a one-to-one relationship between an L3 address and its correspond-
ing L2 frame. A system with multiple L3 addresses (usually a router) provides

Figure 26-3. Point-to-point connection versus shared medium

* We saw in Part IV how bridges and switches manage to direct frames only to the right host when possible,
reducing in this way the useless delivery of frames to every host in the LAN.

(a) Host BHost A

(b) Host BHost A Host C

Shared medium

HW1 HW2 HW3

NIC

From: HW1 To: HW2 Data

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

630 | Chapter 26: Neighboring Subsystem: Concepts

multiple interfaces so that the one-to-one relationship between L3 addresses and L2
addresses is preserved. But as the later section “Special Cases” explains, multiple
multicast addresses at the L3 layer can map to the same L2 address. It is also possi-
ble for an interface to be configured with multiple IP addresses.

Shared Medium
In a shared medium, any frame transmitted by one host is received by all the hosts
directly connected to it. A simple example is a wireless link. Another common exam-
ple is the shared coaxial cable used with Ethernet 10-base2.

For this reason, link layer protocols used in shared media need to define an address-
ing scheme so that a transmitter can specify the recipient of each frame, and the
recipient can identify the sender. The addressing scheme usually also defines special
addresses that can be used to address a frame to multiple hosts or to all of the hosts:
the multicast and broadcast addresses.

Because multiple hosts may need to transmit and therefore use the shared medium at
the same time, the link layer protocol must include a way to make sure all hosts con-
nected to the medium detect this situation—called a collision—because the result is a
corrupted frame. Ethernet uses the so-called Carrier Sense Multiple Access with Col-
lision Detection protocol (CSMA/CD). We won’t look at how collisions are handled
because that is off-topic for this chapter. Information on all things Ethernet-related
can be found in Ethernet: The Definitive Guide (O’Reilly).

On the other hand, point-to-point media, such as serial lines, are designed for com-
munication between two endpoints only. In this case, there is no need to use a link
layer address to identify the source and destination endpoints. The two endpoints
can communicate in either half duplex or full duplex, depending on whether they
share the same wire or have one each. In either case, there is no need for a collision
detection mechanism: the two endpoints are either assigned one wire each (full
duplex) or have a mechanism that each end can use to take ownership of the shared
wire. As a consequence, there is no need for a neighboring protocol when two hosts
are connected through a point-to-point medium.

Ethernet was first designed to work with a shared medium, allowing hosts to share
the same medium and rely on CSMA/CD to handle collisions. This was the shared
coaxial cable era (i.e., 10Base-2). However, over time the use of shared coaxial cables
has been replaced with the use of unshielded twisted pair (UTP) wire, or RJ-45 wire,
for a variety of reasons. The latter allows Ethernet interfaces to be configured in both
half-duplex and full-duplex mode, because the UTP cable includes enough wires to
allow both ends to speak at the same time. Ethernet in full-duplex mode can be used
only on point-to-point connections between two Ethernet interfaces. In such a case,
each end of the connection is assigned one wire for transmission and one for recep-
tion, so there is no need for CSMA/CD.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Reasons That Neighboring Protocols Are Needed | 631

Nowadays, Ethernet LANs are mainly implemented with switches:* you connect each
host to a switch with a UTP cable. In these scenarios, you can either configure the
interfaces in half-duplex mode, in which case CSMA/CD is used to handle collisions
between the switch port and the host’s Ethernet adapter, or you can configure the
two interfaces in full-duplex mode and allow both the host and the switch to trans-
mit simultaneously. Both endpoints must use the same duplex configurations. In
most cases, there is no need to explicitly configure the duplex mode on the two ends
of the connection, because a duplex detection mechanism takes care of it.

Note that the frames generated by the hosts are never addressed to the switch
(although there are exceptions to this general rule); the switch is used by a host to
reach the other hosts connected to the same switch. Therefore, even though you do
not need CSMA/CD when the interfaces are in full-duplex mode, you still need the
source and destination addresses, and therefore a neighboring protocol. This also
means that the multicast and broadcast capabilities that were provided by a really
shared medium, such as the coaxial cable, are now provided by the switch by other
means: when the switch receives a frame addressed to a multicast or broadcast link
layer address, it copies it to all ports except for the one from which the frame is
received. We saw in Part IV that switches are actually smarter than this.

Given that modern LANs are mainly implemented with Ethernet switches, and hosts
are connected to switches with point-to-point links (UTP), the use of CSMA/CD has
become of secondary importance in the design of newer Ethernet standards. Also for
this reason (among others), newer Ethernet standards designed for higher speeds
made the use of CSMA/CD optional or removed it altogether.

Table 26-1 indicates which flavors of Ethernet support CSMA/CD. Note that Giga-
bit Ethernet still supports CSMA/CD (shared), even though it is mainly used for full-
duplex point-to-point connections. 10 Gigabit Ethernet, standardized mainly for use
with WANs (as opposed to LANs), does not support CSMA/CD at all, and can be
used for point-to-point links over fiber-optic media only. For each element of
Table 26-1 there are actually many variants, but I did not include them because they
are not needed for our discussion.

* In this book, bridges and switches are used to refer to the same type of device. See Part IV for more details.

Table 26-1. Ethernet flavors and point-to-point/shared medium capabilities

Ethernet flavor Point-to-point only Shared (i.e., supports CSMA/CD)

Ethernet (10 Mbit/s) X

Fast Ethernet (100 Mbits/s) X

Gigabit Ethernet X

10 Gigabit Ethernet X

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

632 | Chapter 26: Neighboring Subsystem: Concepts

Why Static Assignment of Addresses Is Not Sufficient
We already saw in Chapter 13 the roles of L2 and L3 addresses and protocols. L3
addresses, such as IP addresses, are logical; this means that any valid address can be
assigned to any interface. L2 addresses, on the other hand, are bound to NICs and
are not supposed to be configurable: they are assigned to the interfaces by the ven-
dors and are unique worldwide. However, most NICs can be configured to use arbi-
trary L2 addresses via common tools like ifconfig. This may be useful when dealing
with local IEEE addresses, as described in Chapter 13. But when you change the L2
address of an NIC to a value that you do not own, you do it at your own risk: you are
not assured anymore that the address is unique and can therefore operate correctly
on a shared medium where NICs are identified by their L2 addresses. Normally this
is done in special configurations by highly educated administrators, such as virtual
servers or high-availability setups.

Because L3 addresses are logical, they can change for many reasons. Here are some
common cases where an L3 address can change. These require the mapping between
the L3 address and the associated L2 address to change as well.

Dynamic configuration
In IP networks, a host can be assigned a dynamic IP address by means of a proto-
col such as DHCP. The same host can be given a different IP address every time
it asks for one, but the hardware address is hardcoded into the Ethernet or wire-
less card, so the L3-to-L2 mapping must be updated accordingly.

Replacement of a faulty interface
The L2 address changes once the NIC is replaced, but the administrator would
probably prefer to keep the same logical configuration on the network, and
therefore the same L3 address.

Moving an L3 address
A server may go down and require the same traffic to be handled by a different
server; this means the old L3 address should be associated with a new server and
a new interface. The change is required also if an administrator keeps the L3
address on the same host but uses a different interface.

To keep all of these changes isolated from both the L2 and L3 layers—because they
have plenty of work to do without handling all the eventualities and caching
involved—a protocol is needed to manage the association of L3 to L2 addresses.
That is the neighboring protocol discussed in this part of the book.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Reasons That Neighboring Protocols Are Needed | 633

Special Cases
Sometimes there is no need for any protocol to resolve the L3 address to an L2
address. These cases include the following:

• There is only one host that data can be sent to on a point-to-point medium, such
as a dial-up connection or a cable connecting a system temporarily to one that an
administrator wants to monitor. Here, there is no addressing scheme at all at the
L2 level. (However, even point-to-point media use L2 addresses in some contexts.)

• There may be special L3 addresses whose associated L2 addresses can be
obtained with a simple formula; because there is no ambiguity and no dynamic
allocation, no protocol is needed.

• Multicast addresses can be statically translated without any protocol. On IPv4/
ARP networks, multicast addresses are resolved using the function arp_mc_map,
which in turn invokes the very simple function ip_eth_mc_map when the device is
an Ethernet NIC. The mapping in ip_eth_mc_map is done by a formula, without
any protocol, as explained here and illustrated in Figure 26-4:

• The most-significant 24 bits are assigned the static value 01:00:5E allocated
by IANA.

• Bit 23 (the most-significant bit of the lower 24) is set to 0.

• The least-significant 23 bits are copied from the least-significant 23 bits of
the IP address.

Note that the same Ethernet multicast address can be assigned to multiple IP
addresses (because the most-significant 9 bits of the IP address are not used).

• Broadcast addresses (IP subnet broadcasts) are statically resolved to the link
layer broadcast address (FF:FF:FF:FF:FF:FF for Ethernet). The L2 broadcast
address of each device can also be explicitly configured, if needed.

Figure 26-4. Generation of an Ethernet multicast address from an IPv4 multicast address

X Y Z K. . .

IPv4

Ethernet0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0

01 00 5E: :

Ethernet multicast bit
0= Internet multicast
1= reserved 23 bits copied

from the IP address

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

634 | Chapter 26: Neighboring Subsystem: Concepts

Solicitation Requests and Replies
When an L3-to-L2 mapping cannot be resolved through a static translation as
described in the previous section, a neighboring protocol is needed to do the map-
ping. Different protocols may use different mechanisms. But for all of these proto-
cols, it’s useful to be familiar with the following terminology, which we’ll use
extensively in this part of the book:

Solicitation request (also called a neighbor solicitation)
This refers to the transmission of a packet on the network to ask all of the hosts
whether any knows the L2 address associated with a given L3 address. This
request can be sent as unicast, multicast, or broadcast, depending on both the
protocol and the context.

Solicitation reply (also called a neighbor advertisement)
This is the packet that is normally sent in reply to a solicitation request. But it
could also be generated independently (see the section “Gratuitous ARP” in
Chapter 28 for an example). Under normal conditions, the host associated with
the target L3 address generates the reply, but it is possible to have another host
reply in its place (see the section “Proxying the Neighboring Protocol”). It is nor-
mally sent as unicast, but under specific conditions broadcasts are possible, too.

Linux Implementation
Early Linux kernels had L3 protocols call functions provided by neighboring proto-
cols directly. The IPv4 subsystem, therefore, interacted directly with the ARP code.
In recent versions of the kernel, developers have identified common requirements for
different protocols and have abstracted them into a new layer called the neighboring
infrastructure.

Because the kernel still includes old pieces of code that have not been updated to the
new, protocol-independent layer, you can still find direct calls to a few deprecated
functions of the ARP code (e.g., arp_find), but they are exceptions. The section
“Common Interface Between L3 Protocols and Neighboring Protocols” in
Chapter 27 discusses in detail the interface to the neighboring infrastructure.

Figure 26-5 shows the key parts of Linux’s neighboring subsystems and the other
parts of the kernel with which they interact. The L3 protocols interact with the
neighboring layer via a common interface, which uses the right neighboring protocol
(ARP, ND, etc.) depending on the L3 protocol that is asking for the service.*

When transmitting a packet, the following steps take place:

1. The routing subsystem of the local host selects the L3 destination address (the
next hop).

* The figure does not include DECnet and ATM, because they are not covered in this book.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Linux Implementation | 635

2. If according to the routing table, this hop is on the same network (if, that is, the
next hop is a neighbor), the neighboring layer resolves the destination’s L3
address to its L2 address. This association is cached for future use. Thus, if one
application sends several packets of data in a short amount of time to another
application, the neighboring protocol is used only once, to send the first packet.

3. Eventually, a function such as dev_queue_xmit (described in Chapter 11) takes
care of the transmission, handing the packet to the Traffic Control or Quality of
Service (QoS) layer. Although Figure 26-5 shows only dev_queue_xmit, the neigh-
boring layer can actually invoke other functions as well (mostly wrappers around
dev_queue_xmit), as we will see later in this chapter.

Note that dev_queue_xmit is called when the packet to transmit is ready to go, so if an
L2 header is needed, the neighboring layer must add it before calling the function.
Certain types of transmissions—point-to-point connections, broadcasts, and multi-
casts—do not require any L2 layer header and therefore do not need an L3-to-L2
mapping; these transmissions are covered in the section “Special Cases.” Other
transmissions use a shared medium and therefore need an L2 header, either from the
neighboring subsystem’s cache or through a request issued by the neighboring sub-
system to the network.

Neighboring Protocols
Two protocols are in use in IP networks today. The vast majority of systems use ARP
with IPv4. A more general-purpose protocol called Neighbor Discovery (ND) was
developed for IPv6. Other neighboring protocols are also implemented in the Linux
kernel for use with proprietary networks, such as the one used by DECnet, but we
will not cover them in this book due to their limited use.

Figure 26-5. The big picture

IPv4 IPv6

ARP ND

Generic neighboring interface (VFT)

Generic neighboring interface

Traffic control (QoS)

Device drivers

ARP
cache ND

cache

Routing
cache

Routing table

dev_queue_xmit

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

636 | Chapter 26: Neighboring Subsystem: Concepts

Although ARP is considered an L3 protocol, the task has been moved into L4 by the
designers of IPv6. As shown in Figure 26-6, the ND protocol is considered a part of
the IPv6 implementation of the Internet Control Message Protocol (ICMP). This
choice was based on years of experience with IPv4. It provides ND with several
advantages, among them the opportunity to take advantage of L3 features such as
IPsec encryption. The section “Improvements in ND (IPv6) over ARP (IPv4)” in
Chapter 28 gives an overview of the key differences between ND and ARP.

As mentioned, Linux also provides a common infrastructure to reduce overhead and
code replication for services that are very similar across all neighboring protocols.
The generic neighboring infrastructure provides services that can be tailored by dif-
ferent protocols to suit their needs. Here are some of the services provided by the
infrastructure to the protocols:

• A per-protocol cache to store the results of L3-to-L2 translations.

• Functions to add, remove, change, and look up a specific translation entry in the
cache. Because the lookup function influences the performance of the system
most of all, it must be fast.

• An aging mechanism for the entries in the per-protocol cache.

• A choice of policies to follow when there is a request for a new translation entry
to be created in the cache, and the cache is full.

• A per-neighbor request queue. When a packet is ready to be sent and the L2
address is not already in the cache, the packet must be buffered until a solicita-
tion request is sent and the reply is received. See the section “Queuing” in
Chapter 27.

To let each protocol tailor the behavior of the neighboring subsystem, it defines a set
of placeholder or virtual functions for which each protocol plugs in the functions it
wants to use. This is similar to the way much of the Linux kernel allows customiza-
tion. The neighboring layer also provides a bunch of tuning parameters that can be
configured via user-space commands, /proc, or the protocol itself. Finally, the func-
tions to access the cache are common to all of the protocols, but different protocols
may use keys (addresses) of different sizes. Therefore, the infrastructure provides a
generic way to define which type of key to use. Later chapters will cover all of these
points in detail.

Each protocol can run and be configured independently from the others. The sec-
tion “Protocol Initialization and Cleanup” in Chapter 27 shows how a neighboring
protocol registers and unregisters itself with the kernel.

Figure 26-6. Positions of the ARP/ND protocols in the network stack

ICMPv4

IPv4ARP

L4

L3

ICMPv6

IPv6

ND

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Proxying the Neighboring Protocol | 637

Proxying the Neighboring Protocol
When a host intercepts traffic addressed to another host and processes it in place of
the latter, it is said to act as a proxy. The term does not, of course, cover a malicious
host that launches a man-in-the-middle attack. Rather, a common example of a
proxy is a caching HTTP server that cuts down on network traffic by intercepting
requests directed to popular web servers and serving up pages from those web serv-
ers that are stored in its own cache.

If hosts and applications do not need to be explicitly configured to benefit from the
services provided by a proxy, this proxy is said to be transparent. The caching HTTP
server just mentioned is an example of a transparent proxy. But as Figure 26-7
shows, a service could be provided by either a transparent proxy or a nontranspar-
ent proxy. The figure shows two examples of an HTTP proxy in use:

• (a) The proxy is installed on the router used by a local network to access the
Internet. All browser requests from hosts on the network go through the router,
so the administrator can configure the router to intercept and proxy all HTTP
requests. This is considered transparent proxying because no configuration or
specially programmed browser is needed on Host B.

• (b) The browser of Host B is configured to use the proxy on the host named
Proxy to browse the Internet. The host Proxy uses the router when it is needed
(that is, when there is a cache miss).

Of course, several other options are possible. For instance, the proxy may be a sepa-
rate machine, while the router is configured to relay HTTP requests to the proxy. I
will not go into detail on this topic, because it is a large topic outside the context of
this book. Proxies for neighboring protocols are normally transparent.

Figure 26-7. (a) Transparent proxy; (b) nontransparent proxy

(b)

Router and
proxy

(a)

Internet

Host BHost A

Router

Internet

Host BHost AProxy

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

638 | Chapter 26: Neighboring Subsystem: Concepts

The previous example showed one popular type of proxying: HTTP or web proxy-
ing. Now let’s consider proxying in relation to this part of the book. A proxying
server for a neighboring protocol is a host that is configured to reply to solicitation
requests for addresses it does not own, in place of other hosts that actually have
those addresses. Thanks to the proxy, hosts located on different LANs can talk to
each other as if they were on the same LAN.

For instance, proxy ARP is commonly used in IPv4 networks to help in transitions
from flat to subnetted networks. The hosts do not need special protocols or configu-
ration because the proxy is transparent to them. But if the proxy server goes down,
the connectivity to the hosts being proxied is lost, too. This can be mitigated by pro-
viding multiple proxy servers. In that case, a host may receive multiple solicitation
replies to its (broadcast) requests. By selecting the first one, a host probably gets the
fastest or least-loaded proxy server.

The use of proxies can also simplify the configuration of hosts taken care of by a
proxy; one example is provided in the section “Proxy VS Router” in Chapter 28.

Among the neighboring protocols implemented in the Linux kernel, only IPv4 and
IPv6 can use the proxy feature. The common infrastructure is shared by both proto-
cols, each of which tailors proxying behavior to its needs. The differences are
explained in the section “Improvements in ND (IPv6) over ARP (IPv4)” in
Chapter 28.

In the section “Acting As a Proxy” in Chapter 27, we will see the implementation of
the protocol-independent component of this feature in detail (timers, queues, etc.).
In the section “Proxy ARP” in Chapter 28, we will see details on the specific case of
IPv4 and ARP.

Conditions Required by the Proxy
Not all of the solicitation requests received by a proxy are processed. A proxy server
replies to a solicitation request for an address if all of the following conditions are met:

• The address does not belong to the same subnet as the one configured on the
interface where the proxy received the request. Because a proxy server replies to
solicitation requests in place of other hosts, these hosts must not reside on the
same subnet as the sender of the solicitation request. Otherwise, the target host
would respond as well as the proxy and it would not be clear which one the
sender would choose.

• The proxy feature is enabled. This stipulation may sound obvious, but it is not.
Several criteria can determine whether proxying applies to a given request, and
these differ across different neighboring protocols. Furthermore, the Linux ker-
nel provides both a general and a more-specific form of proxying:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Proxying the Neighboring Protocol | 639

Device based
All valid requests received on the device are processed. This is the most
common case in IPv4 networks. IPv6 does not use it.

Destination based
Both the destination address and the device are taken into account during
the decision whether to proxy. This means that a proxy can reply to requests
for selected IP addresses. Destination-based proxying is standard in IPv6
networks, but is available for IPv4, too.

Figure 26-8 shows the precedence between the two kinds of proxying. When a
host receives a solicitation request for an address outside the local subnet, the
host may process it if proxying is enabled. First the subsystem checks whether
proxying is enabled globally on the device, and if not, whether the device is con-
figured to proxy that particular address.

• Forwarding is enabled on the proxy server on which the request was received.

Because the proxy server interpolates itself between hosts, it has to accept for-
warded traffic between the two endpoints.*

Figure 26-8. Priority between device and address proxying

* This does not mean that by enabling proxying on the proxy host, you also automatically enable forwarding.
The two features are configured separately, but proxying requires forwarding to function properly.

Local ADDR?

Ignore request

No

Is proxy enabled
on RX NIC?

Is requested
address proxied on

RX NIC?

Reply to solicitation
request

No

No

Yes

Yes

Yes

Device proxying

Destination-based proxying

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

640 | Chapter 26: Neighboring Subsystem: Concepts

ARP solicitation requests are always sent to the L2 broadcast address. This ensures
that all of the hosts sharing the same medium receive it. Thus, a proxy can intercept
requests addressed to those hosts it proxies for without having to put any of its inter-
faces into promiscuous mode. When doing reachability confirmation (see the sec-
tion “Reachability Confirmation”), ARP uses unicasts rather than broadcasts.

ND uses L3 multicast addresses to handle solicitation requests and replies. When a
router wants to proxy a given IP address, it needs to subscribe to the associated L3
multicast address.

When Solicitation Requests Are Transmitted and
Processed
In this section, we will see when a solicitation request is processed, based on the con-
figuration of the receiving host and the physical topology of the network. Figure 26-9
covers the factors that lead a host to send out a solicitation request, and Figure 26-10
shows the most-common factors that determine whether a request is processed by
the Linux host that receives it. To show the potential complexity of the recipient’s
decision, Figure 26-10 assumes that the recipient implements both proxying and
bridging*; removing either of these features would simplify the flowchart.
Figure 26-10 also assumes device-based proxying; destination-based proxying is sim-
ilar, but leaves out a step. Note that Figure 26-10 shows both the case of a proxy
server and the case of a common host that does not implement any proxying: “proxy
enabled” denotes a proxy server, and “proxy disabled” denotes a common host.

This is a protocol-independent analysis; particulars about ARP are shown in
Chapter 28.

* I added bridging to Figure 26-10 to show that bridging is handled before the neighboring protocols, and
therefore the latter may not always see ingress solicitation requests. Bridging is described in detail in Part IV.

Figure 26-9. Transmitting solicitation requests

Different logical
subnet

Same logical
subnet

Solicitation for
destination address

No route available
(and no default GW)

Route available
(or default GW)

Solicitation for
GW address

Error, no solicitation
is generated

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

When Solicitation Requests Are Transmitted and Processed | 641

When bridging is enabled, solicitation requests are not processed by the receiving
host, but are instead forwarded (bridged) to the right interfaces according to the
bridging configuration. Bridging takes place before the neighboring protocol has a
chance to look at the ingress packets. In other words, as the figure shows, bridging is
handled before proxying in the Linux implementation of handling solicitation
requests. See Part IV for details.

Let’s suppose bridging is disabled. Keeping in mind that a host that sits on a shared
medium can receive solicitation requests for addresses that belong to other hosts,
here are the variables that can influence whether a Linux host replies to an ingress
solicitation request:

Logical subnet (e.g., IP subnet)
“Same logical subnet” in Figure 26-10 is true when the solicited address and
the L3 address configured on the NIC that receives the solicitation request
belong to the same logical subnet (according to the configuration of the receiv-
ing host). If we take IPv4 as an example, 10.0.0.1 (as the solicited address) and
10.0.0.2/24 (as the address configured on the receiving NIC) would belong to
the same 10.0.0.0/24 IP subnet.

Figure 26-10. Processing ingress solicitation requests

Bridging
disabled

Bridging
enabled

Different
logical subnet

Same
logical subnet

Solicitation
is bridged

Remote
address

Local
address

Proxy
enabled

Proxy
disabled

Solicitation
is processed

Solicitation
is ignored

(target host
will reply to

the solicitation)

Solicitation
is dropped

Invalid
address

Valid
address

Solicitation
will be

processed
by the proxy

Proxy will
NOT reply

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

642 | Chapter 26: Neighboring Subsystem: Concepts

When two hosts belong to the same logical subnet, they can talk directly. Other-
wise, they need the help of a router.

Note that an interface may be configured with multiple addresses on the same
logical subnet (one will be primary and the others secondary), with multiple
addresses on different logical subnets, or a combination of these two. If the
receiving NIC was configured with multiple addresses on different subnets, the
solicited address must belong to one of those subnets.

Physical subnet (LAN)
When two hosts belong to the same LAN, they theoretically can talk directly,
but whether they actually do so depends on the logical (L3) configuration. In
Figure 26-1(c), for instance, hosts are on the same LAN but on different IP sub-
nets.

A host does not try to resolve the address of another host that belongs to a differ-
ent logical subnet; instead, it resolves the router’s address because the router is
the host it needs to talk to, to reach the remote host. See Figure 26-9.

Given this, a host will never (if we exclude corner cases and bugs) receive a solic-
itation request on an NIC for an L3 address known to reside on a different NIC,
unless proxying is being used. Because Figure 26-10 shows the receiver’s per-
spective, it does not distinguish between “Same physical subnet” and “Different
physical subnet” under the “Different logical subnet” node because it would not
make any difference: only the proxy status is important.

Proxy requirement
Not all of the solicitation requests received by a proxy are processed. See the sec-
tion “Conditions Required by the Proxy” for details.

The section “Processing Ingress ARP Packets” in Chapter 28 shows how the various
situations in Figure 26-10 are handled by the ARP protocol.

Neighbor States and Network Unreachability Detection
(NUD)
Figure 26-11 is a simplified summary of the steps the kernel has to go through when
transmitting a packet to a given L3 address.

Figure 26-12 is a simplified model that shows the states a neighbor can go through.

The two simple models in Figures 26-11 and 26-12 would work in most cases, but
the Linux kernel uses a more sophisticated model to handle all possible states. The
next section will expand the model in Figure 26-12, and later sections will focus on
the details in Figure 26-11.

As you can see, an important part of managing neighbors is to know whether they
are reachable.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Neighbor States and Network Unreachability Detection (NUD) | 643

Reachability
Reachability, from the neighboring subsystem’s perspective, can be described
through a real-life analogy. Suppose you are in a dark room with other people,
including me. If you say “Everybody out of the room!” everybody will leave the room

Figure 26-11. L3-to-L2 address resolution steps

Figure 26-12. States of an L3-to-L2 mapping

Is resolution
needed?

End

Success

No

Is result already
in cache?

Resolve it

Yes

Return an
error

No

Yes

Failure

Store it the cache

Get it from
the cache

Just
created

Send
solicitation

Resolution
failed

Resolution
completed
sucessfully

Solicitation
failed

Start
resolution

Received
solicitation

reply

No reply within
a given amount

of time

Max num solicitations
not reached

Max num solicitations
reached

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

644 | Chapter 26: Neighboring Subsystem: Concepts

because they all can hear you. But if you want only me to go out, you will need one
more piece of information: my name.

Thus, a solicitation reply sent to a broadcast destination address does not carry the
same amount of information as one with a unicast destination address: anyone can
receive a broadcast, but you need the exact address if you want to talk to a given
recipient.

From the neighboring perspective, a host is considered reachable if the kernel has
proof that the recipient can correctly receive frames addressed at its unicast address,
and vice versa. In other words, you need bidirectional reachability for the kernel to
consider a neighbor reachable. In the rest of this chapter, we will therefore use the
term reachable to mean bidirectional reachability. We will see in the section “Reach-
ability Confirmation” that there are two possible ways in which reachability can be
confirmed: L4 confirmation and a solicitation reply.

Transitions Between NUD States
IPv6 defines an NUD mechanism that can help determine quickly whether neigh-
bors have disconnected or gone down. The Linux kernel uses the same mechanism
for both IPv4 and IPv6. Similar models are used by the other protocols we will not
cover in the book, such as DECnet.

Figure 26-13 summarizes the states a neighbor can assume and the conditions that
can trigger a change of state. An entry can be created by several events, including the
request to transmit a data packet to a neighbor, or the reception of a solicitation
request from a neighbor.

The state of an entry may change several times during its lifetime, and the same state
can be entered multiple times by one entry. Different protocols may carry out differ-
ent transitions, including some not shown in the figure, to take advantage of special
conditions. For example, the link that puts a newly created entry directly into NUD_
STALE is used by IPv4, but not by IPv6.

A description of the states in Figure 26-13 follows. The possible values are grouped
based on some common properties. This description will be followed by a discus-
sion of the transitions in the graph, and in particular the NUD mechanism.

Basic states

The states in Figure 26-13 are defined as follows. We start with the default state of a
newly created entry:

NUD_NONE
The neighbor entry has just been created and no state is available yet.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Neighbor States and Network Unreachability Detection (NUD) | 645

This next set comes from the IPv6 neighboring definition and has been adopted by
the latest Linux ARP/IPv4 implementation as well:

NUD_INCOMPLETE
A solicitation has been sent, but no reply has been received yet. In this state,
there is no hardware address to use (not even an old one, as there is with NUD_
STALE).

NUD_REACHABLE
The address of the neighbor is cached and the latter is known to be reachable
(there has been a proof of reachability).

NUD_FAILED
Marks a neighbor as unreachable because of a failed solicitation request, either
the one generated when the entry was created or the one triggered by the NUD_
PROBE state.

Figure 26-13. Transitions among NUD states

New entry

NUD_NONE NUD_NOARPNUD_PERMANENT

NUD_INCOMPLETE

NUD_REACHABLE

Solicit request sent

Special cases

Multicast/broadcast
OR

loopback device
OR

point-to-point device
OR

device that does not need
to resolve the mapping

Received proof of
reachability
(solicit reply)

Timer expired
(no more attempts
available)Timer expired

(more attempts
available)

Address learned from
an ingress solicit request

NUD_DELAY NUD_PROBENUD_STALE

Received proof of
reachability
(solicit reply or L4 confirm)

Received proof of
reachability
(solicit reply or L4 confirm)

Entry not used
for more than
REACHABLE_TIME
seconds

Reachability
confirmation

Entry used Timer expired
(delay_probe_time)

Entry not used
for less than
gc_staletime seconds

Timer expired
(no more attempts
available)

Timer expired
(more attempts
available)

NUD_FAILED

Garbage collection

Entry deletion

Entry not used for
more than gc_staletime
seconds (and reference count= 1)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

646 | Chapter 26: Neighboring Subsystem: Concepts

NUD_STALE
NUD_DELAY
NUD_PROBE

Transitional states; they will be resolved when the local host determines whether
the neighbor is reachable. See the section “Reachability Confirmation.”

The next set of values represents a group of special states that usually never change
once assigned:

NUD_NOARP
This state is used to mark neighbors that do not need any protocol to resolve the
L3-to-L2 mapping (see the section “Special Cases”). The section “Start of the
arp_constructor Function” in Chapter 28 shows how and why this state is set in
IPv4/ARP. But even though the name of this state suggests that it applies only to
ARP, it can actually be used by any neighboring protocol.

NUD_PERMANENT
The L2 address of the neighbor has been statically configured (i.e., with user-
space commands) and therefore there is no need to use any neighboring proto-
col to take care of it. See the section “System Administration of Neighbors” in
Chapter 29.

Derived states

In addition to the basic states listed in the previous section, the following derived val-
ues are defined just to make the code clearer when there is a need to refer to multi-
ple states with something in common:

NUD_VALID
An entry is considered to be in the NUD_VALID state if its state is any one of the fol-
lowing, which represent neighbors believed to have an available address:

NUD_PERMANENT
NUD_NOARP
NUD_REACHABLE
NUD_PROBE
NUD_STALE
NUD_DELAY

NUD_CONNECTED
This is used for the subset of NUD_VALID states that do not have a confirmation
process pending:

NUD_PERMANENT
NUD_NOARP
NUD_REACHABLE

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Neighbor States and Network Unreachability Detection (NUD) | 647

NUD_IN_TIMER
The neighboring subsystem is running a timer for this entry, which happens
when the status is unclear. The basic states that correspond to this are:

NUD_INCOMPLETE
NUD_DELAY
NUD_PROBE

Let’s look at an example of why a derived state is useful in kernel code. When a
neighbor instance is removed, the host needs to stop all the pending timers associ-
ated with that data structure. Instead of comparing the neighbor’s state to the three
states known to have a pending timer associated with them, it is just cleaner to
define NUD_IN_TIMER and compare the neighbor’s state against it using the bitwise
operator &.

Initial state

When a neighbor instance is created, the NUD_NONE state is assigned to it by default,
but the state can also be explicitly set to something different when the creation is
caused by an explicit user command (see Chapter 29).

As explained in the section “Neighbor Initialization” in Chapter 27, the protocol’s
constructor method may also change the state depending on the characteristics of
the associated device (e.g., point-to-point) and L3 address (e.g., broadcast).

Reachability Confirmation
We saw in the section “Why Static Assignment of Addresses Is Not Sufficient” that it
is possible for an L3-to-L2 mapping to change. Because of this, it makes sense to con-
firm the information stored in the cache regularly, if the information has not been
used for some time. This is called reachability confirmation.

Note that a change in reachability status is not necessarily due to the reasons listed in
the section “Reasons That Neighboring Protocols Are Needed”; a router, bridge, or
other network device may just be experiencing some problems. While the reachabil-
ity confirmation is in progress, the cached information is temporarily used under the
assumption that it is most likely still valid.

The three NUD states NUD_STALE, NUD_DELAY, and NUD_PROBE support the task of reach-
ability confirmation. The key reason for the use of these states is that there is no need
to start a reachability confirmation process until a packet needs to be sent to the
associated neighbor.

Let’s define once again the exact meaning of these three NUD states, and then look
at the two ways a mapping can be confirmed:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

648 | Chapter 26: Neighboring Subsystem: Concepts

NUD_STALE
The cache contains the address of the neighbor, but the latter has not been con-
firmed for a certain amount of time (see the discussion of reachable_time in the
section “neigh_parms Structure” in Chapter 29). The next time a packet is sent
to the neighbor, the reachability verification process will be started.

NUD_DELAY
This state, closely tied to NUD_STALE, represents an optimization that can reduce
the number of transmissions of solicitation requests.

This state is entered when a packet is sent to a neighbor whose associated entry
is in the NUD_STALE state. The NUD_DELAY state represents a window of time where
external sources could confirm the reachability of the neighbor. The simplest
sort of external confirmation is when the neighbor in question sends a packet,
thus indicating that it is running and accessible.

This state gives some time to the upper network layers to provide a reachability
confirmation, which may relieve the kernel from sending a solicitation request
and thus save both bandwidth and CPU usage. This state may look like a small
optimization, but if you think in terms of big networks, you can imagine the gain
it can provide.

If no confirmation is received, the entry is put into the next state, NUD_PROBE,
which resolves the status of the neighbor through explicit solicitation requests or
whatever other mechanism a protocol might use.

NUD_PROBE
When the neighbor has been in the NUD_DELAY state for the allotted amount of
time and no proof of reachability has been received, its state is changed to NUD_
PROBE and the solicitation process starts.

The reachability status of a neighbor can be confirmed in two main ways. As we will
see, these two methods do not have the same level of authority. They are:

Confirmation from a unicast solicitation’s reply
When your host receives a solicitation reply in answer to a solicitation request it
previously sent out, it means that the neighbor received the request and was able
to send back a reply; this in turn means that either it already had your L2
address or it learned your address from your request (see the section “Creating a
neighbour Entry” in Chapter 27. It also means that there is a working path in
both directions. Note, however, that this is true only when the solicitation’s
reply is sent as a unicast packet. The reception of a broadcast reply would move
the state to NUD_STALE rather than NUD_REACHABLE. (You can find more discussion
of this from the standpoint of ARP in the section “Processing Ingress ARP Pack-
ets” in Chapter 28.)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Neighbor States and Network Unreachability Detection (NUD) | 649

External confirmation
If your host is sure it received a packet from the neighbor in response to some-
thing previously sent, it can assume the neighbor is still reachable. Figure 26-14
shows an example, where the TCP layer of Host A confirms the reachability of
Host B when it receives a SYN/ACK in reply to its SYN. Note that if Host B was
not a neighbor of Host A, the reception of the SYN/ACK from Host B would con-
firm the reachability of the next hop gateway used by Host A to reach Host B.

Confirmation is done via dst_confirm, which confirms the validity of the routing
table cache entry used to route the SYN packet toward Host B. dst_confirm is a
simple wrapper around neigh_confirm, which accomplishes the task we
described earlier: it confirms the reachability of the neighbor and therefore the
L3-to-L2 mapping. Note that neigh_confirm only updates the neigh->confirmed
timestamp; it will be the neigh_periodic_timer function (which is executed by
the expiration of the timer started when the neighbor entered the NUD_DELAY
state) that actually upgrades the neighbor entry’s state to NUD_REACHABLE.*

Note that the correlation between the two packets in Figure 26-14 could not be
performed at the IP layer because the latter doesn’t have any knowledge of data

Figure 26-14. Example of external neighbor reachability confirmation

* The delay between the reception of the confirmation from the L4 layer and the setting of the state to NUD_
REACHABLE does not affect traffic in any way.

TCP
dst_confirm

IP
neigh_confirm

NEIGH

TCP

IP

NEIGH

SYN

SYN/ACK

1

2
3a

3b

eth0 10.0.1.2

eth0 10.0.1.2

eth0 10.0.1.2

NUD_STALE

NUD_DELAY

NUD_REACHABLE

1

3

eth0eth0

Host A
IP: 10.0.1.1/24
MAC: 00:20:ED:76:1E:12

Host B
IP: 10.0.1.2/24
MAC: 00:20:ED:76:1E:13

Subnet 10.0.1.0/24

00:20:ED:76:1E:13

00:20:ED:76:1E:13

00:20:ED:76:1E:13

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

650 | Chapter 26: Neighboring Subsystem: Concepts

streams. This is why the L4 layer takes care of the confirmation. TCP SYN/ACK
exchanges are only one example of an L4 protocol providing external confirma-
tion. Given a socket, and therefore the associated routing cache entry and its
next-hop gateway, a user-space application can confirm the reachability of the
gateway by using the MSG_CONFIRM option with transmission calls such as send
and sendmsg.

While the reception of a solicitation’s reply can move the state to NUD_REACHABLE
regardless of the current state, external confirmations can be used only when the
current state is NUD_STALE. This means that if the entry had just been created and
it was in the NUD_INCOMPLETE state, external confirmations would not be allowed
to confirm the reachability of the neighbor (see Figure 26-13).

Note that NUD_DELAY/NUD_PROBE and NUD_NONE can lead to NUD_REACHABLE, as shown in
Figure 26-13; however, from NUN_NONE to get to NUD_REACHABLE, you need full proof of
reachability, while from NUD_DELAY/NUD_PROBE, any kind of confirmation is sufficient.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

651

Chapter 27 CHAPTER 27

Neighboring Subsystem:
Infrastructure

In Chapter 26, we saw the main problems that the neighboring protocols are asked
to solve. You also learned that the Linux kernel abstracted out parts of the solution
into a common infrastructure shared by various neighboring protocols. In this chap-
ter, we will see how the infrastructure is designed. In particular, we will see how pro-
tocols interface to the common infrastructure, how caching and proxying are
implemented, and how external subsystems such as higher-layer protocols notify the
neighboring protocols about interesting events. We will conclude the chapter with a
description of how L3 protocols such as IPv4 actually interface with their
neighboring protocols, and how queuing is implemented for buffers awaiting address
resolution.

Main Data Structures
To understand the code for the neighboring infrastructure, we first need to describe a
few data structures used heavily in the neighboring subsystem, and see how they
interact with each other.

Most of the definitions for these structures can be found in the file include/net/
neighbour.h. Note that the Linux kernel code uses the British spelling neighbour for
data structures and functions related to this subsystem. When speaking generically
of neighbors, this book sticks to the American spelling, which is the spelling found in
RFCs and other official documents.

struct neighbour
Stores information about a neighbor, such as the L2 and L3 addresses, the NUD
state, the device through which the neighbor can be reached, etc. Note that a
neighbour entry is associated not with a host, but with an L3 address. There can
be more than one L3 address for a host. For example, routers, among other sys-
tems, have multiple interfaces and therefore multiple L3 addresses.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

652 | Chapter 27: Neighboring Subsystem: Infrastructure

struct neigh_table
Describes a neighboring protocol’s parameters and functions. There is one
instance of this structure for each neighboring protocol. All of the structures are
inserted into a global list pointed to by the static variable neigh_tables and pro-
tected by the lock neigh_tbl_lock. This lock protects the integrity of the list, but
not the content of each entry.

struct neigh_parms
A set of parameters that can be used to tune the behavior of a neighboring proto-
col on a per-device basis. Since more than one protocol can be enabled on most
interfaces (for instance, IPv4 and IPv6), more than one neigh_parms structure can
be associated with a net_device structure.

struct neigh_ops
A set of functions that represents the interface between the L3 protocols such as
IP and dev_queue_xmit, the API introduced in Chapter 11 and described briefly in
the upcoming section “Common Interface Between L3 Protocols and Neighbor-
ing Protocols.” The virtual functions can change based on the context in which
they are used (that is, on the status of the neighbor, as described in Chapter 26).

struct hh_cache
Caches link layer headers to speed up transmission. It is faster to copy a cached
header into a buffer in one shot than to fill in its fields one by one. Not all device
drivers implement header caching. See the section “L2 Header Caching.”

struct rtable
struct dst_entry

When a host needs to route a packet, it first consults its cache and then, in the
case of a cache miss, it queries the routing table. Every time the host queries the
routing table, the result is saved into the cache. The IPv4 routing cache is com-
posed of rtable structures. Each instance is associated with a different destina-
tion IP address. Among the fields of the rtable structure are the destination
address, the next hop (router), and a structure of type dst_entry that is used to
store the protocol-independent information. dst_entry includes a pointer to the
neighbour structure associated with the next hop. I cover the dst_entry data
structure in detail in Chapter 36. In the rest of this chapter, I will often refer to
dst_entry structures as elements of the routing table cache, even though dst_
entry is actually only a field of the rtable structure.

Figure 27-1 shows how dst_entry structures are linked to hh_cache and
neighbour structures.

The neighboring code also uses some other small data structures. For instance,
struct pneigh_entry is used by destination-based proxying, and struct neigh_
statistics is used to collect statistics about neighboring protocols. The first struc-
ture is described in the section “Acting As a Proxy,” and the second one is described

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Main Data Structures | 653

in the section “Statistics” in Chapter 29. Figure 27-2 also includes the following data
structure types, described in greater detail in Chapters 22 and 23:

in_device, inet6_dev
Used to store the IPv4 and IPv6 configurations of a device, respectively.

net_device
There is one net_device structure for each network device recognized by the ker-
nel. See Chapter 8.

Figure 27-2 shows the relationships between the most important data structures.
Right now it might seem a big mess, but it will make much more sense by the end of
this chapter.

Here are the main points shown in Figure 27-2:

• In the central part of the figure, you can see that each network device has a
pointer to a data structure that holds the configuration for each L3 protocol con-
figured on the device. In the example shown in the figure, IPv6 is configured on
one device and IPv4 is configured on both. Both the in_device structure (IPv4
configuration) and inet6_dev structure (IPv6 configuration) include a pointer to
the configuration used by their neighboring protocols, respectively ARP and ND.

All of the neigh_parms structures used by any given protocol are linked together in
a unidirectional list whose root is stored in the protocol’s neigh_table structure.

• The top and bottom of the figure show that each protocol keeps two hash tables.
The first one, hash_buckets, caches the L3-to-L2 mappings resolved by the proto-
col or statically configured. The second one, phash_bucket, stores those IP
addresses that are proxied, as described in the section “Per-Device Proxying and
Per-Destination Proxying.” Note that phash_bucket is not a cache, so its ele-
ments do not expire and don’t need confirmation. Each pneigh_entry structure

Figure 27-1. Relationship among dst_entry, neighbour, and hh_cache structures

Host BHost A

*neighbour

eth0: 11:11:11:11:11:11
IP: 10.0.0.1

eth0: 22:22:22:22:22:22
IP: 10.0.0.2

*hh

ha=DA

*hh

struct rtable struct
neighbour

struct
dst_entry

*hh_next
hh_type=ETH_P_IP

hh_output

struct
hh_cache

hh_data

. . .

SA
11:11:11:11:11:11

DA
22:22:22:22:22:22 Type

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

654 | Chapter 27: Neighboring Subsystem: Infrastructure

Figure 27-2. Data structures’ relationships

params

next
. . .
tbl

hash_mask
hash_buckets
phash_buckets
stats

next

neigh_tables

struct neigh_table

hash_mask+1

PNEIGH_HASHMASK+1

struct neigh_statistics

struct
neigh_params

next
. . .
tbl

nd_parms
. . .
dev

struct inet 6_dev

next
. . .
ip6_ptr
ip_ptr

struct net_device
next
. . .
ip6_ptr
ip_ptr

struct net_device

dev
. . .
arp_parms

dev
. . .
arp_parms

struct
in_device

struct
in_device

params

next
. . .
tbl

hash_mask
hash_buckets
phash_buckets
stats

next

struct neigh_table

struct neigh_statistics

next
. . .
tbl

struct
neigh_parms

next
. . .
tbl

struct
neigh_parms

dev
parms
tbl
ops
output
. . .
ha
primary_key
next
hh

hh_next
. . .

st
ru

ct
 n

ei
gh

bo
ur

struct hh_cache

next
dev
key

struct pneigh_entry

dev
parms
tbl
ops
output
. . .
ha
primary_key
next
hh

hh_next
. . .

st
ru

ct
 n

ei
gh

bo
ur

struct hh_cache

next
dev
key

struct pneigh_entry

dev
parms
tbl
ops
output
. . .
ha
primary_key
next
hh

hh_next
. . .

st
ru

ct
 n

ei
gh

bo
ur

struct hh_cache

ar
p_

tb
l

nd
_t

ab
le

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Interface Between L3 Protocols and Neighboring Protocols | 655

includes a pointer (not depicted in Figure 27-2) to its associated net_device
structure. Figure 27-6 gives more detail on the structure of the cache hash_
buckets.

• Each neighbour instance is associated with one or more hh_cache structures, if
the device supports header caching. The section “L2 Header Caching,” and Fig-
ures 27-1 and 27-10, give more details about the relationship between neighbour
and hh_cache structures.

Common Interface Between L3 Protocols
and Neighboring Protocols
The Linux kernel has a generic neighboring layer that connects L3 protocols to the
main L2 transmit function (dev_queue_xmit) via a virtual function table (VFT). A VFT
is the mechanism frequently used in the Linux kernel for allowing subsystems to use
different functions at different times. The VFT for the neighboring subsystem is
implemented as a data structure named neigh_ops. A pointer to one of these struc-
tures is embedded as a field named ops in each neighbour structure.

The flexibility of the VFT interface allows different L3 protocols to use different
neighboring protocols. This in turn allows different neighboring protocols to behave
quite differently while allowing the neighboring subsystem to provide a common
generic interface between the neighboring protocols and the L3 protocols.

In this section, we examine the VFT-based interface between the L3 protocols and
the neighboring protocols, the advantages of using the VFT, when it is first initial-
ized, and how it is updated during the lifetime of a neighbor. The section concludes
with a brief overview of the functions used to control the initialization of the VFT.
To better understand this section, you are invited to first read the section “neigh_ops
Structure” in Chapter 29.

Let’s start with an overview of how the routines in the VFT are invoked. Given a
neighbour instance and its embedded VFT neighbour->ops, the function to which the
output field points could in theory be invoked directly like this:

neigh->ops->output

But this construct is not found in the Linux code because even this is not general
enough. The function in the output field of the neigh_ops structure is only one of four
functions that perform similar tasks, each function having its own field in neigh_ops.
The individual protocol has to decide which of the four functions to use. The proper
function depends on events, the context, and the configuration of the interface and
device. So, to leave the neighboring infrastructure protocol-independent, the
neighbour structure contains its own output field. The individual protocol assigns the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

656 | Chapter 27: Neighboring Subsystem: Infrastructure

proper function from one of the fields in neigh->ops to neigh->output. This allows
the code to be simpler and clearer. For instance, instead of doing:

if (neighbour is not reachable)
 neigh->ops->output(skb)
else
if (the device used to reach the neighbor can use cached headers)
 neigh->ops->hh_output(skb)
else
 neigh->ops->connected_output(skb)

the neighboring infrastructure can just call:

 neigh->output

as long as neigh->output has been initialized by the protocol to the right neigh_ops
method. Of course, each neighboring protocol uses its own logic to initialize neigh->
output; it does not necessarily have to follow the rules in this snapshot.

When a neighbor is created, its neighbour->ops field is initialized to the proper
neigh_ops structure, as shown in Figure 27-3(a). This assignment does not change
during the neighbor’s lifetime. However, as depicted in Figure 27-3(b), neigh->
output can be changed to different functions many times during the lifetime of the
neighbor structure, driven both by events that take place during protocol operation,
and (much less often) by user commands. The following sections will go into detail
on both initializations shown in Figure 27-3.

Figure 27-3. (a) Initialization of neigh->ops; (b) initialization of neigh->output

generic_ops

output=o1
hh_output=h1
connected_output=c1
queue_xmit=x1

(a) direct_ops

output=o2
hh_output=h2
connected_output=c2
queue_xmit=x2

hh_ops

output=o3
hh_output=h3
connected_output=c3
queue_xmit=x3

. . .

(b)

output

struct neighbour

output connected_output hh_output queue_xmit

Selection
of neigh_ops

neigh_ops
VFT

.

dev_queue_xmit

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Interface Between L3 Protocols and Neighboring Protocols | 657

Initialization of neigh->ops
On certain types of devices, the initialization of the functions listed in Figure 27-3(b)
could be further optimized to speed up transmissions. These include, for instance,
the situations described in the section “Special Cases” in Chapter 26, where there is
no need to map an L3 address to an L2 address. In those cases, the neighboring sub-
system can almost be bypassed altogether and only the queue_xmit function
described in Chapter 11 is needed. The protocol code needs to know this kind of
detail, but the general neighboring infrastructure does not, so the protocol can just
initialize neigh->output to neigh->ops->queue_xmit and everything remains transpar-
ent to the upper layers. Simple!

For this reason, each protocol provides for three different instances of the neigh_ops
VFT:

• A generic table that can be used in any context (xxx_generic_ops). This is the one
that is normally used to handle neighbors whose L2 addresses need to be
resolved.

• An optimized set of functions that can be used when the device driver provides
its own set of functions to manipulate L2 headers and thus take advantage of the
speedup coming from the use of cached headers (xxx_hh_ops).

• A table that can be used when the device does not need to map L3 addresses to
L2 addresses (xxx_direct_ops). An example is the use of ISDN with raw IP
encapsulation.

When the neighbor instance is created, the protocol initializes the neigh_ops VFT to
the right instance depending on several factors. See the section “neigh_ops Struc-
ture” in Chapter 29.

In the specific case of IPv4/ARP, a fourth instance of neigh_ops called arp_broken_ops
is used to initialize those neighbour instances associated with old devices that have
not been adapted to the new neighboring infrastructure and therefore would not
work otherwise. This once again shows how generic the neighboring infrastructure
is: by initializing the neigh_ops VFT in the right way, the kernel is even able to use
the old ARP code.

Initialization of neigh->output and neigh->nud_state
The state of a neighbor (neigh->nud_state) and the neigh->output function depend
on each other. When nud_state changes, output often has to be updated accord-
ingly. As a simple example, if the state becomes stale, confirmation of reachability is
required. But the neighboring infrastructure doesn’t waste time confirming reachabil-
ity right away; there might be no further traffic and the effort might be wasted.
Instead, the neighboring infrastructure stops using the optimized output function
that blindly plugs in the current address, and switches to the slower output function

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

658 | Chapter 27: Neighboring Subsystem: Infrastructure

that checks the address. In the example in Figure 27-3(a), we would change
connected_output from c1 to o1.

For help in understanding this section, check Figure 26-13 in Chapter 26 for the pos-
sible states that neigh->nud_state can assume, based on device type and protocol
events.

The neighboring subsystem provides a generic routine, neigh_update, that moves a
neighbor to the state provided as an input argument. A later section in this chapter
describes neigh_update in detail, but let’s first look at the most common changes of
state and the helper routines that can be called, either directly or via neigh_update, to
take care of them.

Let’s start with the most common case: a device that needs a neighboring protocol,
an address that does not belong to any of the special cases described in Chapter 26,
and a change of state caused by a transition (that is, we exclude creation and dele-
tion).* Figure 26-13 in Chapter 26 can then be simplified to produce Figure 27-4. The
figure also shows the kernel functions where the transitions are handled. However,
not all of the transitions made by calls to neigh_update are shown, because most are
too generic to add any value to the figure; only the transition triggered by the recep-
tion of a solicitation reply is shown.

* For the first initialization of neigh->output, check the source code of the constructor routines (e.g., arp_
constructor/ndisc_constructor for ARP/ND). For ARP, see the section “Initialization of a neighbour Struc-
ture” in Chapter 28.

Figure 27-4. Possible state transitions for a neighbor that has been resolved at least once

neigh_suspect neigh_connect

NUD_REACHABLE

NUD_DELAYNUD_STALE NUD_PROBE

1 1

1

1

1

2

3

NUD_FAILED

1

2

3

neigh_timer_handler

neigh_update (RX solicitation reply)

_ _neigh_event_send (via neigh_event_send)

Neighbor timer running

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Interface Between L3 Protocols and Neighboring Protocols | 659

Note that some of the transitions in Figure 27-4 are asynchronous: they are taken
care of by a timer and are therefore triggered by timestamp comparisons.* Other tran-
sitions are taken care of synchronously by the protocols (e.g., neigh_event_send†).

Common state changes: neigh_connect and neigh_suspect

The main ways a neighbor can enter the NUD_REACHABLE state (all described in
Chapter 26) are:

Reception of a solicitation reply
When a solicitation reply is received, either to resolve a mapping for the first
time or to confirm a neighbor in the NUD_PROBE state, the protocol updates
neigh->nud_state via neigh_update. This update is synchronous and happens
right away.

L4 confirmation
The first time neigh_timer_handler is executed after the reception of an L4 reach-
ability confirmation, the state is changed to NUD_REACHABLE (see the section
“Reachability Confirmation” in Chapter 26). An L4 confirmation is asynchro-
nous and may be slightly delayed.

Manual configuration
When a new neighbour structure is created by the user through a system admin-
istration command, this command can specify the state, and NUD_REACHABLE is a
valid state. In this case, neigh_connect is invoked via neigh_update.

Whenever the NUD_REACHABLE state is entered, the neighboring infrastructure calls the
neigh_connect function to make the neigh->output function point to neigh_ops->
connected_output.

When a neighbor in the NUD_REACHABLE state moves to NUD_STALE or NUD_DELAY, or is
simply initialized to a state different from one of the states in NUD_CONNECTED (for
example, by a call to neigh_update), the kernel invokes neigh_suspect to enforce con-
firmation of reachability (see the section “Reachability Confirmation” in
Chapter 26). neigh_suspect does this by setting neighbour->output to neigh_ops->
output.

Both neigh_connect and neigh_suspect also update the neighbour->output and
neighbour->hh_output functions of all of the hh_cache structures linked to the input
neighbour instance (see Figure 27-1). Neither function, however, updates the NUD
state of a neighbour instance, because that is already taken care of by their callers.
Later in this chapter I’ll use the forms “connect the neighbor” and “suspect the

* The routines used to compare timestamps, such as time_after_eq and time_before_eq, are defined in include/
linux/jiffies.h.

† Part of neigh_event_send is also depicted in Figure 27-13 as part of the expanded neigh_resolve_output
flowchart.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

660 | Chapter 27: Neighboring Subsystem: Infrastructure

neighbor” to refer to the invocation of neigh_connect and neigh_suspect, respec-
tively, for that neighbor.

Some transitions (changes of NUD state) can happen at any time and more than
once during the lifetime of a neighbour instance. Others can take place only once.
With some knowledge of networking, it is not hard to look at Figure 26-13 in
Chapter 26 and identify the transitions that belong to each of the two categories. For
those neighbour instances initialized to permanent states (for instance, NUD_NOARP),
neigh->output can be initialized to neigh_ops->connected right away and it will never
change.

Routines used for neigh->output

As explained in the previous section, neigh->output is initialized by the neighbor’s
constructor function, and later is manipulated as a consequence of protocol events
via the two routines neigh_connect and neigh_suspect. neigh->output is always set to
one of the virtual functions of neigh_ops. This section lists the functions that can be
assigned to the neigh_ops virtual functions. The dev_queue_xmit function, which is
not really part of the neighboring subsystem, is defined in net/core/dev.c. The other
routines are defined in net/core/neighbour.c.

dev_queue_xmit
The L3 layer always calls this function when transmitting a packet, regardless of
the kind of device or L2 and L3 protocols used. A neighboring protocol initial-
izes the function pointers of neigh_ops to dev_queue_xmit when all the informa-
tion needed to transmit on the egress device is present and there is no extra work
for the neighboring subsystem to do. If you look at arp_direct_ops in
Chapter 28, you can see that all four transmission virtual functions are set to
dev_queue_xmit. That function is described in Chapter 11.

neigh_connected_output
This function just fills in the L2 header and then calls neigh_ops->queue_xmit.
Therefore, it expects the L2 address to be resolved. It is used by neighbour struc-
tures in the NUD_CONNECTED state.

neigh_resolve_output
This function resolves the L3 address to the L2 address before transmitting, so it
is used when that association is not ready yet or needs to be confirmed. Except
for the situations in the section “Special Cases” in Chapter 26, neigh_resolve_
output is usually the default routine used when a new neighbour structure is cre-
ated and its L3 address needs to be resolved.

neigh_compat_output
This function is present for backward compatibility. Before the neighboring
infrastructure was introduced, it was possible to call dev_queue_xmit even if the
L2 address was not ready yet.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Interface Between L3 Protocols and Neighboring Protocols | 661

neigh_blackhole
This function is used to handle the temporary case where a neighbour structure
cannot be removed because someone is still holding a reference to it. neigh_
blackhole discards any packet received in input. This is necessary to ensure that
no attempt to transmit a packet to the neighbor will take place, because the
neighbor’s data structures are about to be removed. See the section “Neighbor
Deletion.”

The section “Initialization of a neighbour Structure” in Chapter 28 shows how ARP
uses these functions to initialize the different instances of the neigh_ops VFT. The
choices made by the functions are also shown in the flowchart in Figure 27-13.

Updating a Neighbor’s Information: neigh_update
neigh_update, defined in net/core/neighbour.c, is a generic function that can be used
to update the link layer address of a neighbour structure. This is its prototype, with a
brief description of the input parameters:

int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
 u32 flags)

neigh
Pointer to the neighbour structure to update.

lladdr
New link layer (L2) address. lladdr may not always be initialized to a new value.
For instance, when neigh_update is called to delete a neighbour structure (by set-
ting its state to NUD_FAILED, as described in the section “Neighbor Deletion,” it is
passed a NULL value for lladdr.

new
New NUD state.

flags
Used to convey information such as whether an existing link layer address can
be overridden, etc. Here are the available flags, from include/net/neighbour.h:

NEIGH_UPDATE_F_ADMIN
Administrative change. This means the change derives from a user-space
command (see the section “System Administration of Neighbors” in
Chapter 29).

NEIGH_UPDATE_F_OVERRIDE
The current L2 address can be overridden by lladdr. Administrative changes
use this flag to distinguish between replace and add commands, among
other things (see Table 29-1 in Chapter 29). Protocol code can use this flag
to enforce a minimum lifetime for an L2 address (see, for example, the sec-
tion “Final Common Processing” in Chapter 28).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

662 | Chapter 27: Neighboring Subsystem: Infrastructure

The next three flags are used only by IPv6 code:

NEIGH_UPDATE_F_ISROUTER
The neighbor is a router. This flag is used to initialize the IPv6 flag NTF_
ROUTER in neighbour->flags.

NEIGH_UPDATE_F_OVERRIDE_ISROUTER
The IPv6 NTF_ROUTER flag can be overridden.

NEIGH_UPDATE_F_WEAK_OVERRIDE
If the link layer address lladdr supplied in input differs from the current
known link layer address of the neighbor neigh->ha, the address is sus-
pected (i.e., its state is moved to NUD_STALE so that reachability confirmation
is triggered).

The IPv6’s ND protocol uses flags in the protocol header that can influence the
setting of the NEIGH_UPDATE_F_XXX flags just listed. The discussion that follows
skips over the parts of neigh_update that deal with the IPv6-only flags.

neigh_update is used by all of the administrative interfaces to change the link layer
address of a neighbour structure, as shown in Figure 29-1 in Chapter 29. The func-
tion can also be used by the neighboring protocols themselves, but it is not the only
function that changes state.

Figures 27-5(a) and 27-5(b) show a high-level description of neigh_update’s internals.
The flowchart is divided into different areas, each area taking care of a different task:

• Sanity checks

• Changes applied to a neighbor whose current state is not NUD_VALID

• Selection of the L2 address to use for a change applied to a neighbor whose
current state is NUD_VALID

• Setting a new link layer address

• Change of NUD state

• Handling an arp_queue queue

The following subsections explain the code in detail.

neigh_update optimization

Before changing the state of a neighbor, neigh_update first checks to see whether it is
possible to avoid the change. An optimization discards the change of state if both of
the following conditions are met (see (c)):

• The link layer address has not been modified (that is, the input lladdr is the
same as the current neigh->ha).

• The new state is NUD_STALE and the current one is NUD_CONNECTED, which means
that the current state is actually better than the new one.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Interface Between L3 Protocols and Neighboring Protocols | 663

Initial neigh_update operations

In this section, we trace the decisions made by neigh_update as it handles various val-
ues for the current state (neighbour->nud_state) and the requested state (the new
parameter).

Figure 27-5(a). neigh_update function

2

Optimization?

Keep the current state Set the new state and
update timer if needed

Is the new
state NUD_VALID?

Update updated/confirmed
timestamps Stop timer

Select new link
layer addr to use

Is old state
NUD_CONECTED?

Set the new state

Is old state
NUD_VALID?

1

ARPD needs to be notified

SUSPECT the neighbour

Lock neighbour

Is current state
NUD_NOARP or

NUD_PERMANENT

Is this an
administrative

change?

1

3

NoYes

No

No

Yes

Yes

Yes No

None available

Yes

Yes

No

No

a

bc

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

664 | Chapter 27: Neighboring Subsystem: Infrastructure

Figure 27-5(b). neigh_update function

Has lladdr
changed?

Set new lladdr
(neigh -> ha)

Has state changed?
No

Yes

Yes No

e

d

In new state
NUD_CONNECTED?

SUSPECT
the neighbor

CONNECT
the neighbor

No Yes

Update cached headers
(neigh_update_hhs)

Move confirmed
back in time if needed

ARPD needs to be notified

Is old state
NUD_VALID?

Is NEW state
NUD_VALID?

Is arp_queue empty?

Purge arp_queue

1

Dequeue a buffer

Unlock neighbour

Kick out the buffer
(neigh -> output function)

Lock neighbour

1

No

No

Yes

Unlock neighbour

Does ARDP need
a notification?

Send notification

End

2 13

1 Return value: 0

2 Return value: -EPERM

3 Return value: -EINVAL

Yes

No

Yes

No

Yes

f

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Common Interface Between L3 Protocols and Neighboring Protocols | 665

Only administrative commands (NEIGH_UPDATE_F_ADMIN) can change the state of a
neighbor that is currently in the NUD_NOARP or NUD_PERMANENT state. A sanity check at
the beginning of neigh_update causes it to exit right away if these constraints are
violated.

When the new state new is not a valid one—if it is NUD_NONE or NUD_INCOMPLETE—the
neighbor timer is stopped if it is running, and the entry is marked suspect (that is,
requiring reachability confirmation) through neigh_suspect if the old state was NUD_
CONNECTED. See the section “Initialization of neigh->output and neigh->nud_state.”
When the new state is a valid one, the neighbor timer is restarted if the new state
requires it (NUD_IN_TIMER).

When neigh_update is asked to change the NUD state to a value different from the
current one, which is normally the case, it needs to check whether the state is chang-
ing from a value included in NUD_VALID to another value not in NUD_VALID (remember
that NUD_VALID is a derived state that includes multiple NUD_XXX values). In particular,
when the old state was not NUD_VALID and the new one is NUD_VALID, the host has to
transmit all of the packets that are waiting in the neighbor’s arp_queue queue. Since
the state of the neighbor could change while doing this (because the host may be a
symmetric multiprocesing, or SMP, system), the state of the neighbor is rechecked
before sending each packet.

Changes of link layer address

The reason for calling neigh_update is to change the NUD state, but it can also
change the destination link layer address by which a neighbor is reached. The func-
tion will do this if a new link layer address is provided (that is, if the lladdr parame-
ter is not NULL) and if the input parameter flags allows it. When the link layer
address is changed, all of the cached headers need to be updated accordingly. This is
taken care of by neigh_update_hhs.

When no link layer address is supplied to neigh_update (i.e., lladdr is NULL), and
the current NUD state is not a valid one, neigh_update discards the input frame skb
and returns with an error (no change of state is applied if there is no valid link layer
address for the neighbor).

Notifications to arpd

Some sites with large networks choose to manage ARP requests through a user-space
daemon called arpd instead of making the kernel do it. When the kernel is compiled
with support for arpd, and its use is configured (that is, app_probes > 0), neigh_
update notifies the daemon about the following events:*

• When a state is modified from NUD_VALID to a state that is not valid

• When the link layer address is changed

* See the section “ARPD” in Chapter 28, and the section “neigh_parms Structure” in Chapter 29.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

666 | Chapter 27: Neighboring Subsystem: Infrastructure

General Tasks of the Neighboring Infrastructure
This section describes a few general concepts that you should be familiar with before
delving into specific functions within the neighboring infrastructure: caching, refer-
ence counting, and timers.

Caching
The neighboring layer implements two kinds of caching:

Neighbor mappings
As with any other kind of data that can be used multiple times, it makes sense to
cache the results of the L3-to-L2 mappings. Negative results (where an attempt
to resolve the address failed) are not cached. But the neighbour structures associ-
ated with failed mappings are set to the NUD_FAILED state so that the garbage col-
lection timer can clean them up (see the section “Garbage Collection”).

L2 headers
The neighboring infrastructure caches L2 headers to speed up the time required
to encapsulate an L3 packet into an L2 frame. Otherwise, the infrastructure
would have to initialize each field of the L2 header one by one.

Because the caching of neighbor mappings is central to the operation of the neigh-
boring subsystem, this section describes it in detail. (The later section “L2 Header
Caching” describes L2 header caching.) The contents of a neighbour structure are
described in the section “neighbour Structure” in Chapter 29, and the structure’s cre-
ation and deletion are described in later sections in this chapter. Here we will stay at
a higher level, describing how those structures are organized and accessed by the
neighboring infrastructure.

The neighboring infrastructure places neighbour structures into caches, one per pro-
tocol, which are implemented as typical hash tables where elements that collide into
the same bucket are linked into a singly linked list. New elements are added at the
head of the lists (see the function neigh_create in the section “The neigh_create
Function’s Parameters”). The inputs to the hash function that distributes elements
into buckets are the L3 address, the associated device, and a random value that is
recomputed regularly to reduce the effectiveness of a hypothetical Denial of Service
(DoS) attack. Figure 27-6 shows the structure of the cache. In Figure 27-2, you can
see its relationship to other key data structures, such as the per-protocol neigh_table
structure.

Hash tables are allocated and freed with neigh_hash_alloc and neigh_hash_free,
respectively. Each hash table is created with a size of two elements at protocol initial-
ization time (see neigh_table_init). When the number of elements in the table grows
bigger than the number of buckets, the table is reorganized as follows. First, the size
of the table is doubled (thus, the size of the hash table is always a power of 2). The

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Tasks of the Neighboring Infrastructure | 667

random value used for hashing is recalculated. Finally, the elements are redistrib-
uted throughout the table using the same previously mentioned variables: L3
address, device, and random number. This extension of the hash table is performed
by neigh_hash_grow, which is called by neigh_create when necessary.

Note that extension of the hash table is easily triggered. Therefore, it rarely has more
than one or two structures per bucket.

The maximum number of elements in a table is controlled by the gc_threshX vari-
ables described in the section “Garbage Collection.” These limits are needed to
prevent possible DoS attacks.

Figure 27-6. neighbour’s cache

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

struct neighbour

...
ha
primary_key, dev
arp_queue
...

ne
xt

ne
ig

h_
ta

bl
e -

>
 h

as
h_

m
as

k+
1

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

668 | Chapter 27: Neighboring Subsystem: Infrastructure

When the “neighboring system” needs to search a hash table for a neighbor, the
search key is the destination L3 address (primary_key) together with the device (dev)
through which the neighbor can be reached. Because different protocols may use
keys of different lengths, the common lookup APIs need to take into account the key
length. Therefore, the key length is stored in the neigh_table structure.

The main function used to query a neighbor protocol’s cache is neigh_lookup. There
are two others, both wrappers around neigh_lookup, that can either force the cre-
ation of a neighbour entry if the lookup fails or decide whether to create one accord-
ing to an input parameter. Here is a brief description of the three routines:

neigh_lookup
Checks whether the element being searched for exists, and returns a pointer to it
when successful.

struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
 struct net_device *dev)
{
 struct neighbour *n;
 int key_len = tbl->key_len;
 u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;

 read_lock_bh(&tbl->lock);
 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
 if (dev == n->dev &&
 !memcmp(n->primary_key, pkey, key_len)) {
 neigh_hold(n);
 NEIGH_CACHE_STAT_INC(tbl, hits);
 break;
 }
 }
 read_unlock_bh(&tbl->lock);
 return n;
}

_ _neigh_lookup
A wrapper around neigh_lookup that creates the neighbour entry by means of
neigh_create when the lookup fails and when _ _neigh_lookup was invoked with
the creat input flag set.

_ _neigh_lookup_errno
Uses neigh_lookup to see whether the entry exists, and always creates a new
neighbour instance when the lookup fails. This function is basically the same as
_ _neigh_lookup without the input creat flag.

Chapter 28 describes another function, arp_find, which is a wrapper around _ _neigh_
lookup and is kept for backward compatibility, for use by legacy code. Another func-
tion, neigh_lookup_nodev, is currently used only by DECnet.

Each protocol also maintains a separate cache and an associated set of lookup APIs
used for destination proxying. You can find more details about them in the section
“Acting As a Proxy.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Tasks of the Neighboring Infrastructure | 669

Timers
The neighboring subsystem uses several timers. Some are global, whereas others are
created on a one-per-neighbor basis. Some run periodically, and others are started
only when needed. The following is a brief overview of the timers we will see in more
detail in later sections:

Transitions between states (neighbour->timer)
Some transitions between NUD states are driven by the passage of time rather
than by events in the system. These transitions include:

From NUD_REACHABLE to NUD_DELAY or NUD_STALE
This transition takes place when a certain amount of time goes by without
sending or receiving traffic from a neighbor; the neighboring subsystem
automatically suspects that the neighbor may not be reachable.

From NUD_DELAY to NUD_PROBE or NUD_REACHABLE
This is the next state after the neighbor’s reachability is suspected; either it
must be confirmed by an external event or the neighboring subsystem must
launch an explicit probe. The timer simply detects the condition required to
change state and takes care of it. For example, we saw in Figure 26-14 in
Chapter 26 how neigh_confirm may be called when TCP provides confirma-
tion of reachability. neigh_confirm updates a timestamp in the neighbour
structure but does not change the state. Instead, when this timer detects the
new timestamp, it changes the neighbor’s state.

A timer in each neighbour structure controls both of these transitions. Its call-
back is initialized to neigh_timer_handler when the neighbour entry is created
with neigh_alloc. You can find more information on this in Figure 27-4, and in
the section “Reachability Confirmation” in Chapter 26.

Failed solicitation requests
If no answer to a solicitation request is received within a given amount of time, a
new solicitation is sent. The maximum number of solicitation requests that can
be sent is given by the XXX_probes fields of the neigh_parms structure, described
in the section “neigh_parms Structure” in Chapter 29.

After the final failed attempt, the neighbor entry is moved to the NUD_FAILED state
(see Figure 27-13). After the state becomes NUD_FAILED, it is up to the garbage
collection timer to remove the entry.

Garbage collection (neigh_table->gc_timer)
A periodic timer is used to make sure that no memory is wasted by unused data
structures. The callback handler is neigh_periodic_timer. The section “Garbage
Collection” describes the garbage collection mechanism in detail.

neigh_periodic_timer also updates the value of reachable_time in the neighbour
structure to a random value* every 300 seconds. The value is random rather than
fixed because you want to avoid having too many entries expiring at the same
time: in a pretty big network, that could create a burst of traffic and CPU usage.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

670 | Chapter 27: Neighboring Subsystem: Infrastructure

Proxy (neigh_table->proxy_timer)
For a proxy that might receive a large number of solicitation requests, it may be
useful to delay the processing of requests. This timer is used to enforce the delay.
See the section “Delayed Processing of Solicitation Requests.”

Reference Counts on neighbour Structures
Many kernel subsystems involved in the creation of neighbors keep a reference to the
neighbour structure in some data structure; the routing subsystem does so, for
instance. Therefore, the neighbour structure includes a reference count named
refcnt, which is incremented and decremented with neigh_hold and neigh_release,
respectively.

The most common event that increments a neighbor reference count is a packet
transmission. Whenever a packet is sent out, the associated sk_buff buffer holds a
reference to a neighbour structure, so neighbour->refcnt is incremented to make sure
that the transmission can complete without problems. Once the packet has been
transmitted, the count is decremented again.

This was an example of a short-term reference; others can last significantly longer.
One example is the reference kept by the routing table cache (under both IPv4 and
IPv6*), as depicted in Figure 27-10.

The reference count is also incremented every time a per-neighbor timer is fired up,
as shown in the following snapshot taken from neigh_update:

if (new & NUD_IN_TIMER) {
 neigh_hold(neigh);
 neigh->timer.expires = jiffies +
 ((new & NUD_REACHABLE) ?
 neigh->parms->reachable_time : 0);
 add_timer(&neigh->timer);
}

When an entry is to be removed for some reason (see neigh_ifdown in the section
“Interactions with Other Subsystems”) but it cannot be freed because someone still
holds a reference to it, it is marked as dead with neighbour->dead set to 1. The gar-
bage collection timer will soon take care of it, as explained in the section “Garbage
Collection.”

* To be more exact, it is a random value in the range base_reachable_time/2 to (3×base_reachable_time)/2, as
computed by the neigh_rand_reach_time routine.

* Both IPv4’s rt_intern_hash (described in Chapter 33) and IPv6’s ip6_route_add end up calling _ _neigh_
lookup_errno.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating a neighbour Entry | 671

Creating a neighbour Entry
Like most cached items, the creation of neighbour entries is event driven: an instance
is created when the system needs a neighbor and there is a cache miss. Specifically, a
new instance is created when one of the following takes place:

Transmission request
When there is a transmission request toward a host whose L2 address is not
known, the address needs to be resolved. This is the most common case and is
depicted in Figure 27-13(a). When the target host is not directly connected to
the sender, the L2 address to resolve will be that of the next hop gateway, not
that of the target host.

 Reception of a solicitation request
Because the host sending the request identifies itself in that request, the recipi-
ent automatically creates a cache entry on the assumption that communication
between the two systems is imminent. (For details involving ARP, see
Figure 28-2 in Chapter 28). However, information learned in this way (pas-
sively) is not considered as authoritative as information learned with an explicit
solicitation request and reply (see the section “Transitions Between NUD States”
in Chapter 26 for more details).

Manual coding
An administrator can create a cache entry through an ip neigh add command, as
described in the section “System Administration of Neighbors” in Chapter 29.

When one of these events happens, and a query to the neighboring subsystem cache
returns a miss, the neighboring protocol tries to resolve the association (normally by
sending a solicitation request) and stores the resulting neighbour entry in the per-pro-
tocol cache.

The neigh_create Function’s Parameters
Now that we know what triggers the creation of a neighbour structure, we can look
at the main functions involved with its creation.

The data structure itself is created with neigh_create, whose return value is a pointer
to the neighbour data structure. Here is the prototype and a description of the three
input parameters:

struct neighbour * neigh_create(struct neigh_table *tbl, const void *pkey,
 struct net_device *dev)

tbl
Identifies the neighboring protocol used. The way this parameter is set is sim-
ple: if it is being called from IPv4 code (i.e., from arp_rcv) it is set to arp_tbl, etc.

pkey
L3 address. It is called pkey because it is the field that will be used as the search
key for the cache lookup.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

672 | Chapter 27: Neighboring Subsystem: Infrastructure

dev
Device the entry is associated with. Because each neighbour entry is associated
with an L3 address and the latter is always associated with a device, it follows
that a neighbour instance is always associated with a device.

New neighbour data structures are allocated with neigh_alloc, which is also used to
initialize a few parameters such as the embedded timer, the reference count, a
pointer to the associated neigh_table (neighboring protocol) structure, and global
statistics about the number of neighbour structure allocations.

neigh_alloc uses a memory pool created at subsystem initialization time (see the sec-
tion “Protocol Initialization and Cleanup”). The function fails only if the number of
structures currently allocated is greater than some configurable threshold and, on top
of that, an attempt by the garbage collector (via neigh_forced_gc) to free some mem-
ory failed (see the section “Synchronous cleanup: the neigh_forced_gc function”).

pkey is copied into the data structure with the help of key_len, which provides the
size of the data to be copied. This is necessary because the neighbour structures are
used by protocol-independent cache lookup routines and the various neighboring
protocols use addresses of different sizes.

 memcpy(n->primary_key, pkey, key_len);

Also, because the neighbour entry holds a reference to the net_device structure dev,
the kernel increases the reference count on the latter with dev_hold to make sure the
device will not be removed until the neighbour structure ceases to exist.

Neighbor Initialization
There are two kinds of initialization for a neighbour structure: one done by the neigh-
boring protocol and one done by the device.

 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
 rc = ERR_PTR(error);
 goto out_neigh_release;
 }

The protocol’s initialization is carried out by the neigh_table->constructor function
invoked, as shown here, from the function’s tbl parameter. Chapter 28 explains how
the ARP constructor does the job.

Device initialization is done through the neigh_setup virtual function:

 if (n->parms->neigh_setup &&
 (error = n->parms->neigh_setup(n)) < 0) {
 rc = ERR_PTR(error);
 goto out_neigh_release;
 }

This function is actually defined by only a few devices. For instance, the shaper
virtual device (an old piece of code in drivers/net/shaper.c that has been rendered

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Neighbor Deletion | 673

obsolete by the Traffic Control subsystem but is needed for backward compatibility)
uses the setup function to make sure the device is associated with a specific instance
of the neigh_ops structures provided by ARP (see the section “Initialization of neigh-
>ops”). Some WAN devices use a setup function for similar reasons.

The neigh_create function ends by setting the entry’s confirmed field to indicate that
the neighbor is reachable. Normally, this field is updated by a proof of reachability
and is set to the current time expressed in jiffies. But here, at the point of creation,
the function subtracts a small amount of time (one-half the value reachable_time) to
make the state move to NUD_STALE a little faster than usual and to require proof of
reachability.

 n->confirmed = jiffies - (n->parms->base_reachable_time<<1);

Once the entry has been initialized, it is added to the main cache using the hash
function provided by the neighboring protocol.

Neighbor Deletion
A neighbour data structure can be removed for three main reasons:

• The kernel tries to send a packet to a host that is not reachable. There are many
reasons this could happen: the host went down, its cable came unplugged, it was
a wireless device that moved out of range, its network configuration got cor-
rupted, or somebody manually created an entry for a nonexistent host. What-
ever the cause, the neighboring subsystem notices the failure and puts the
associated neighbour structure into the NUD_FAILED state so that it is cleaned up
by asynchronous garbage collection, described in the section “Asynchronous
cleanup: the neigh_periodic_timer function.”

• The host associated with the neighbor structure has changed its L2 address (per-
haps because its NIC was replaced) but still has the same L3 configuration.
Thus, the neighbour structure has an outdated L2 address. A host with an out-
dated neighbor entry has to put it into the NUD_FAILED state and create a new
one.*

• The structure gets old and the kernel needs its memory. It is therefore removed
by garbage collection, described in the section “Synchronous cleanup: the
neigh_forced_gc function.”

The transition to NUD_FAILED is taken care of by the NUD algorithm introduced in the
section “Transitions Between NUD States” in Chapter 26. Asynchronous garbage
collection is performed by the neigh_periodic_timer function, which is associated

* Some device drivers let the administrator change the MAC address either temporarily (i.e., it returns to its
original value after a power cycle) or permanently. This operation is limited to special scenarios and is not
needed by the average user.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

674 | Chapter 27: Neighboring Subsystem: Infrastructure

with the neigh_table->gc_timer timer (see the sections “Timers” and “Garbage Col-
lection” for more details).

A structure is removed only when its reference count goes to zero. Thus, the func-
tion that carries out the deletion, neigh_destroy, is called only from neigh_release,
which is called every time a reference to a structure is released. neigh_release decre-
ments the structure’s reference count and calls neigh_destroy to actually remove the
structure when the count goes down to zero:

static inline void neigh_release(struct neighbour *neigh)
{
 if (atomic_dec_and_test(&neigh->refcnt))
 neigh_destroy(neigh);
}

neigh_destroy carries out the following tasks:

• Stops any pending timer. This is a belt-and-suspenders precaution. In theory, no
timer should be pending when executing neigh_destroy because the condition
required by neigh_release to invoke neigh_destroy is a reference count value of
0, and timers always hold a reference when running.

• Releases any references to external data structures, such as the associated device
and cached L2 headers. See Figures 27-1 and 27-10.

The section “L2 Header Caching,” later in this chapter, explains the purpose of
the cache and shows the relationship between the neighbour structure and the
hh_cache structures that contain the headers. Each hh_cache structure is strictly
coupled with a neighbour entry and therefore should not be used once the
neighbour entry has been removed or marked NUD_FAILED. Thus, when a
neighbour entry is deleted, any hh_cache structures to which it refers are unlinked
from the cache and freed if their reference counts allow it, and neigh_destroy
sets the hh_cache->hh_output field in the cached header to neigh_blackhole (for
that function, see the section “Routines used for neigh->output”). After this, any
transmission attempt using the neighbour entry will silently fail and the packet
will be dropped. At the L3 layer, the results of dropping the packet can be seen
in the section “Interaction Between Neighboring Protocols and L3 Transmission
Functions.”

• If a destructor method has been provided by the neighboring protocol, executes
it to give the protocol a chance to do its own cleanup.

• If the arp_queue queue is not empty, purges it (i.e., removes all of its elements).
arp_queue is described in the section “Egress Queuing.”

• Decrements the global counter indicating the number of neighbour entries used
by the host.

• Frees the neighbour data structure (i.e., gives it back to its memory pool).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Neighbor Deletion | 675

Garbage Collection
Garbage collection refers to the process of eliminating resources that are not in use
anymore. Like many Linux kernel subsystems (networking and others), the neigh-
boring subsystem maintains a timer that runs periodically and executes a function
whenever the timer expires, to clean up the unused data structures.

The garbage collection algorithm used by the neighboring infrastructure has two
main components:

Synchronous cleanup
This takes place immediately when the neighboring infrastructure needs to allo-
cate a new neighbour structure and the memory pool for such structures is used
up.

Asynchronous cleanup
This takes place periodically to remove neighbour structures that have not been
used for a certain amount of time. This time is configurable and is stored in the
gc_staletime variable. The neigh_periodic_timer function, described in the sec-
tion “Timers,” enforces this rule.

This relatively complex system was chosen because, in the case of the neighboring
subsystem, the designers thought it would be more efficient than simpler designs
such as deleting a structure the moment its reference count went down to zero.
While the asynchronous cleanup tries to free structures that have no further value,
the synchronous cleanup tries to sacrifice some of the less-needed entries to free
some memory. Therefore, the criteria used to select the eligible structures are differ-
ent in the two types of cleanup.

It is interesting to note that an asynchronous cleanup can be triggered by an external
subsystem, too. For instance, when the routing subsystem cannot insert a new rout-
ing entry into its cache, it tries to remove unused cache entries (see the description of
the rt_intern_hash function in Chapter 33), which indirectly causes neighbour struc-
tures to be freed, too.

The parameters that tune garbage collection behavior are:

• From neigh_table:

—gc_interval

—gc_thresh1, gc_thresh2, gc_thresh3

—last_flush

—gc_timer

• From neigh_parms:

—gc_staletime

The following two sections explain their meaning and use. Also consult the section
“neigh_table structure,” the section “neigh_parms structure,” and Table 29-3 in
Chapter 29 for information on these variables.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

676 | Chapter 27: Neighboring Subsystem: Infrastructure

Figures 27-7 and 27-8 show the behavior of neigh_periodic_timer and neigh_forced_
gc, the two routines described in the next two sections.

Synchronous cleanup: the neigh_forced_gc function

Figure 27-7 shows the internals of neigh_forced_gc.

Figure 27-7. neigh_forced_gc function

Browse
neighbor list

Ref count=1?

No

Next neighbour

End of neighbors

Get lock on
neighbor

Is state
NUD_PERMANENT?

Release lock on
neighbor

No

Is state
NUD_INCOMPLETE?

Release lock on
neighbor

Decrement ref
count on neighbor

Mark as dead

Yes

Yes

No

Browse
table’s buckets

Get lock on
neigh_table

Has at least
one structure been

removed?

Return 1Return 0

Release lock on
neigh_table

Update the timestamp
of the last forced GC

End of buckets Next bucket

Yes

YesNo

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Neighbor Deletion | 677

If there is no memory to allocate a new neighbour instance, the host cannot transmit
any packet to neighbors for which there is not already a neighbour structure in the
cache. Without a policy to handle this case, the consequences would be pretty bad:
no communication could take place with a new host until another neighbour struc-
ture happened to be removed for some reason.

The neigh_alloc function, which we have seen is responsible for allocating memory
in the neighboring subsystem, is the natural place to kick off synchronous garbage
collection. To determine whether there is a danger situation and do garbage
collection before memory is actually exhausted, neigh_alloc checks two variables
named gc_thresh2 and gc_thresh3. (Another variable, gc_thresh1, is currently
declared in the kernel but is not used.)

When the number of neighbour instances is greater than gc_thresh3, the neigh_alloc
function forces garbage collection. When the number of instances is between gc_
thresh2 and gc_thresh3, garbage collection is forced if the previous garbage collec-
tion took place at least 5 seconds earlier. The reason for the second check is to rate
limit the time spent doing garbage collection.

The default values for gc_thresh2 and gc_thresh3 are 512 and 1,024, respectively.
These look like big numbers, but are designed to support proxy ARP. Without a
proxy ARP server, each host usually creates ARP entries for only a few local
machines and the router, so it would never get near those thresholds. But when
proxy ARP is in use, hosts request more L3 addresses because they rely less on the
default gateway. The reception of a solicitation request by the proxy ARP server leads
to the indirect creation of a neighbour entry for the sender’s address. See the earlier
section “Creating a neighbour Entry,” and the description of arp_process in
Chapter 28. In a medium-size network, the thresholds are pretty safe and the cache is
not likely to overflow.

The routine invoked to do synchronous cleanup is neigh_forced_gc, which is
depicted in Figure 27-7. neigh_forced_gc removes all of the eligible elements from
the hash table. Eligible elements are the ones that meet both of the following
requirements:

• The reference count is 1, meaning that nobody is using the element, and the sub-
system holding the remaining reference is free to delete the element.

• The element is not in the NUD_PERMANENT state. Elements in that state have been
statically configured and therefore do not expire.

Elements are added by neigh_create at the head of the bucket’s lists in the hash
table.

Asynchronous cleanup: the neigh_periodic_timer function

Figure 27-8 shows the internals of neigh_periodic_timer.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

678 | Chapter 27: Neighboring Subsystem: Infrastructure

gc_timer is a per-protocol timer that expires periodically. When the timer expires, it
invokes the garbage collection routine neigh_periodic_timer. The kernel actually
invokes a function specified in a field of the neigh_table structure (one of which

Figure 27-8. neigh_periodic_timer function

Browse
neighbor list

If needed, update
reachable_time

Is state
NUD_PERMANENT or

NUD_IN_TIMER?

Update “used”

Yes

No

Next neighbor

Restart gc_timer

End of neighbors

Select table’s bucket
to scan

Get lock on
neigh_table

Release lock on
neigh_table

Get lock on
neighbor

“Confirmed”
>”used”?

Ref count=1?

Release lock on
neighbor

Yes

No

Is state
NUD_FAILED?

Is neighbor not
used for more than

gc_staletime? Release lock on
neighbor

Decrement ref
count on neighbor

Mark as dead

Yes Yes

Yes

No

No

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Acting As a Proxy | 679

exists for each neighboring protocol), so each protocol could theoretically have its
own implementation of the garbage collection handler, but in practice the field is ini-
tialized to the same routine across all the protocols in the neigh_table_init function.

How often gc_timer expires depends on the size of the hash_buckets table: because
neigh_periodic_timer scans only one bucket of the table every time it is called, and
because the whole table is scanned (by design choice) once every base_reachable_
time/2 seconds, it follows that the timer must be set to expire every (base_reachable_
time/2)/number_of_buckets.

Every time neigh_periodic_timer is called, it remembers the last bucket scanned,
thanks to neigh_table’s field, hash_chain_gc, and scans the following one.

The neigh->confirmed timestamp is updated every time the reachability of the neigh-
bor is confirmed, for example, by calling neigh_confirm, as we saw in the section
“Reachability Confirmation” in Chapter 26. Even though its name suggests it, the
neigh->used timestamp is not updated every time the neighbour structure is used (i.e.,
with the transmission of each packet to the neighbor). Because of this, it is possible
that at some point, neigh->confirmed represents a more updated timestamp marking
the last use of the neighbour structure. For this reason, neigh_periodic_timer updates
neigh->used if that is needed (i.e., if neigh->confirmed is greater than neigh->used). It
is important to keep neigh->used updated because that’s the timestamp used by
neigh_periodic_timer to eliminate old entries.

As Figure 27-8 shows, eligible elements marked for deletion by neigh_periodic_timer
meet both of the following criteria:

• The reference count is 1, meaning it is no longer used.

• The entry either is in the NUD_FAILED state, which means that resolution failed, or
has simply not been used for more than the configurable gc_staletime time.

Acting As a Proxy
The section “Proxying the Neighboring Protocol” in Chapter 26 described why prox-
ies are useful and gave a few examples of their use. It also showed the criteria by
which neighboring protocols decide whether a given solicitation request is taken care
of by the proxy. This section goes into detail on the implementation of proxying.

We saw in the section “Conditions Required by the Proxy” in Chapter 26 that two
kinds of proxying can be configured: a host either can proxy all requests received on
a particular NIC (per-device proxying) or, more selectively, can proxy requests for a
particular address received on a particular NIC (per-destination proxying).

The precedence shown in Figure 26-8 in Chapter 26 is enforced in protocol-specific
code. ARP’s implementation is shown in Chapter 28, and you can look at the routine
neigh_recv_ns for IPv6’s implementation. The section “Per-Device Proxying and Per-
Destination Proxying” also goes into more detail about these two types of proxying.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

680 | Chapter 27: Neighboring Subsystem: Infrastructure

Before digging into the code, let me introduce a naming convention used extensively
there. The neighboring subsystem contains pairs of functions and data structures
whose names differ only in the presence or absence of an initial p (e.g., neigh_lookup
versus pneigh_lookup). The p stands for proxy. Because addresses intercepted by
proxies are handled differently, there is a dedicated set of functions to manipulate
them.

Delayed Processing of Solicitation Requests
Solicitation requests handled by the proxy can be processed right away or after a
configurable delay. The main reason for introducing a delay is to give proxy entries
lower priority than more authoritative hosts, such as the real owners of the solicited
L3 addresses. A host that sends a request locks the first reply for a small amount of
time and waits in case another arrives, to enforce the priority; details are described in
the section “Final Common Processing” in Chapter 28.

The delay applied is a random value between 0 and the configured value proxy_delay
(see the function pneigh_enqueue). The use of a random value reduces the likelihood
of synchronized requests by multiple hosts, and the congestion that could result. For
example, if a power failure occurs at a site, and upon recovery it powers up hun-
dreds of hosts at the same time, all of the hosts probably solicit the same set of serv-
ers or default gateways. A random delay smoothes out the spike in traffic that would
result.

To apply a delay, the neighboring subsystem creates a queue storing ingress solicita-
tion requests, and a timer. The timer expires after the configured delay has passed
and triggers the execution of a special handler that dequeues the elements from the
queue. They are then processed as if they had just been received from the network.

Figure 27-9 depicts the model just described.

The major variables and virtual functions involved in handling the proxy delay are:

• From neigh_table (per-protocol parameters)

proxy_queue
Queue where the ingress solicitation requests are temporarily buffered. Ele-
ments are added to the end of the list. When the proxy_queue list has
reached the maximum length specified in proxy_qlen (discussed later), new
elements are dropped; they do not replace the oldest ones.

proxy_timer
Timer used to enforce the delay. The timer is initialized by neigh_table_init
and the default handler is neigh_proxy_process.

proxy_redo
Function that processes the dequeued requests. As shown in Figure 27-9, it
consists of just a call to the same function that processes freshly received
packets.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Acting As a Proxy | 681

• From neigh_parms (per-device parameters)

proxy_delay
Configurable delay used to load the timer.

proxy_qlen
Maximum length of the temporary storage queue.

For a more detailed, field-by-field description of the most important data structures,
refer to Chapter 29.

Figure 27-9. Generic model of a protocol proxy handler

From?

Enqueue
(pneigh_enqueue)

Yes

Proxy
needed/allowed?

Configured delay?

NIC

Yes

No

No

Unicast probe?

No

Dequeue and re-inject
(proxy_redo)

pr
ox

y_
tim

er

Yes

Protocol handler

From NIC

proxy_queue

proxy_queue

Max size
(proxy_qlen)

st
am

p.
tv

_s
ec

 =
LO

CA
LL

Y_
EN

QU
EU

ED

Proxy infrastructure

(From proxy_queue)

Process packet

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

682 | Chapter 27: Neighboring Subsystem: Infrastructure

For each protocol, there is a private queue (neigh_table->proxy_queue) shared by all
the NICs using that protocol. New elements are added to proxy_queue with pneigh_
enqueue. proxy_queue is a doubly linked list that is kept sorted to make it easier for
the timer to handle the pending requests in chronological order. If proxy_queue
already contains any requests when pneigh_enqueue adds a new one, the function
restarts the timer to make it expire either at the currently scheduled timeout or at the
timeout required by the new element, whichever comes first.

Linux uses the same routine to process both new solicitation requests received from
network devices and solicitation requests dequeued from the proxy queue, as shown
in Figure 27-9 (both for IPv4 and IPv6). Because of this, the routine needs to be able
to distinguish between the following two categories of packets:

• Packets that have just been received and that therefore need to be queued to
proxy_queue

• Packets that have been dequeued from the proxy queue after a delay

Linux distinguishes between these two cases by using a special value for one field of
the sk_buff buffer structure: skb->stamp.tv_sec. The field is a timestamp that is ini-
tialized to the local receive time by netif_rx (see Chapter 10) when a packet is first
received. The neighboring protocol handlers are called after netif_rx (see
Chapter 13) and therefore the value of skb->stamp.tv_sec is normally non-negative
when accessed within the protocol handlers. However, when an entry is queued to
proxy_queue, its stamp.tv_sec is initialized to LOCALLY_ENQUEUED, which is equivalent
to the value –2. Thus, when the packet is dequeued by the proxy timer and is passed
to the neighboring protocol handler, the handler will know the buffer comes from
the proxy queue, as shown in Figure 27-9.

When proxy_delay is 0, no buffering is used and requests are processed right away.
When proxy_delay is nonzero, requests are queued into proxy_queue. As explained
earlier, a random value from 0 to proxy_delay is introduced into the delay to prevent
a flood of simultaneous requests from different hosts.* Because of this, entries may
not be processed in the same order in which they are received, but that is not a
problem.

Per-Device Proxying and Per-Destination Proxying
When proxying is globally enabled on a device, state information is simple: the
device just needs to be associated with a flag that says whether proxying is enabled.
Per-destination proxying, on the other hand, needs to store the proxied addresses.
These L3 addresses for which the host should intercept solicitation requests are

* The random delay is one of the topics covered in RFC 2461. That document deals with IPv6/ND, but Linux
does the same for IPv4/ARP.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

L2 Header Caching | 683

stored in the neigh_table->phash_buckets hash table (see Figure 27-2), which can be
searched with pneigh_lookup, the proxying counterpart of neigh_lookup.

Like neigh_lookup, which is described in the section “Caching,” pneigh_lookup
accepts an input parameter that can be used to force the creation of a neighbour
structure if the search fails. Unlike hash_buckets, phash_buckets does not have a max-
imum size. Furthermore, there is no garbage collection because it would not make
sense given the different nature of its elements: these addresses are explicitly config-
ured to be proxied, so they remain valid until they are explicitly configured not to be
proxied anymore. In IPv4, these addresses can be configured only manually. In IPv6,
these addresses can also be configured by the protocol under certain conditions.

New entries can be added to the table dynamically by the neighboring protocols or
statically by an administrative command (see the section “System Administration of
Neighbors” in Chapter 29). Entries can be removed with pneigh_delete.

L2 Header Caching
L2 headers tend to be the same on all packets sent from one host to another. This is
in contrast to L3 headers, which usually have different IDs, different fragment off-
sets when fragmentation occurs, and other ways of changing from one packet to the
next. Therefore, the kernel doesn’t bother caching L3 headers, but it does cache L2
headers. Complex L2 protocols may not have consistent headers, but the most com-
mon ones, such as Ethernet, do. (See Chapter 13 for more details on Ethernet.)
When caching is used, the device driver of the egress device has to support it.

After sending the first packet to a given destination, a driver saves the L2 header in a
dedicated structure named hh_cache. The next time a packet is sent to the same
neighbor, the sender does not need to fill in the L2 header field by field, but simply
copy it in one shot from the cache. The relationship of hh_cache to other neighbor-
ing protocol structures was introduced earlier in the section “Main Data Structures,”
and in Figure 27-2 in that section. The structure is described in more detail in the
section “hh_cache Structure” in Chapter 29.

Header caching at the L2 layer is tied to caching by the routing subsystem at the L3
layer, described in Chapter 33. As shown in Figure 27-1, each dst_entry element of
the IPv4 routing cache includes a pointer to the neighbour structure associated with
the next hop, and that entry includes a list of hh_cache cached headers. While multi-
ple headers could be cached for each neighbor, usually only one is cached.
Figure 27-1 shows the case of an Ethernet header.*

* The Ethernet header does not include the preamble and the checksum, because they are taken care of by the
NIC itself.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

684 | Chapter 27: Neighboring Subsystem: Infrastructure

The relationship between the data structures in different caches is shown in action in
Figure 27-10. The figure shows a simple scenario: two LANs connected by a router.
From Host C’s perspective, Host A, Host B and Router are reachable via the next
hop Router. If Host C had exchanged some data with each of those three hosts, its
routing cache would have a dst_entry (routing cache element) for each one. As
explained previously, each dst_entry has a link to the neighbour structure of the
associated next hop, which in this case is Router. Note that both the neighbour and
the dst_entry structures have a link to the hh_cache entry. Note also that one cached
header is sufficient because all three hosts (Host A, Host B, and Router) are reach-
able via the same next hop.

Figure 27-10. Example of caches used with routing

ha=22:22:22:22:22:22

*hh

struct
neighbour

*neighbour

*hh

struct dst_entry

HostA

*hh_next
hh_refcnt=4

hh_type=ETH_P_IP
hh_output

struct hh_cache

hh_data

SA
33:33:33:33:33:33

DA
22:22:22:22:22:22 Type

Host BHost A

eth0: 55:55:55:55:55:55
10.0.1.100/24

eth0: 44:44:44:44:44:44
10.0.1.101/24

eth0: 11:11:11:11:11:11
10.0.1.1/24

eth1: 22:22:22:22:22:22
10.0.2.1/24

Host C

eth0: 33:33:33:33:33:33
10.0.2.100/24

Router

*neighbour

*hh

struct dst_entry

HostB

*neighbour

*hh

struct dst_entry

Router

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

L2 Header Caching | 685

The reference count on the hh_cache structure (hh_refcnt) in Figure 27-10 is 4, which
is the number of dotted links. Both the references held by the dst_entry structures
and the reference held by the neighbour structure are set via neigh_hh_init, as
described in the section “Link Between Routing and L2 Header Caching.” Reference
counts on hh_cache structures are incremented via direct calls to atomic_inc. As
shown in the section “Reference Counts on Neighbour Structures,” the kernel pro-
vides a special wrapper for neighbour structures.

The use of L2 header caching is transparent to L3 protocols, as shown in the later
section, “Interaction Between Neighboring Protocols and L3 Transmission
Functions.”

Methods Provided by the Device Driver
For L2 caching to be used, the device driver has to cooperate by providing a routine
that stores the L2 header in an hh_cache structure. In Chapter 2, I described the
methods or virtual functions in the net_device data structure. It is worthwhile
reviewing some of those methods now in light of the knowledge you have developed
from reading this chapter. We will take the ones defined for Ethernet devices as
examples for this section; these methods are initialized in ether_setup (see
Chapter 8).

hard_header
Fills in the L2 header field by field. When the device does not use any L2 header
(see the section “Special Cases” in Chapter 26), this method is initialized to
NULL. The neighbor’s constructor method checks hard_header to select the
right neigh_ops method from the virtual table; a NULL entry is treated specially.
See the ARP example in the section “Start of the arp_constructor Function” in
Chapter 28. ndisc_constructor acts similarly for the ND protocol.

hard_header is used when header caching is not supported by the device driver
(as in neigh_connected_output), or when the header is not ready yet and there-
fore is not present in the cache (as in neigh_resolve_output). When invoked,
hard_header usually receives an skb buffer in input. The skb->data field points to
the beginning of the L3 header. hard_header uses skb_push to make the space
needed to prepend the L2 header.

hard_header_cache
Caches an L2 header in an hh_cache structure. This is done, of course, only the
first time a packet is sent to a neighbor, and only when all of the header’s fields
are ready (for instance, not before address resolution has completed).

header_cache_update
Updates an existing hh_cache entry by replacing its cached header with a new
one. This function is usually called from within neigh_update_hhs, which is used

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

686 | Chapter 27: Neighboring Subsystem: Infrastructure

by neigh_update to update a neighbor entry (see the section “Updating a Neigh-
bor’s Information: neigh_update”).

hard_header_parse
Retrieves the source L2 address from a buffer and returns its length.

rebuild_header
Deprecated and kept only for backward compatibility with pre-2.2 kernel device
drivers. Devices using this function cannot use the cached resolved address in
dst_entry->neigh.

Link Between Routing and L2 Header Caching
When a neighbor entry has just been created, neigh->output points to neigh_
resolve_output, which is in charge of associating the neighbor with the L2 header.
Thus, transmitting functions at the L3 layer (described in Chapter 21 and in the sec-
tion “Interaction Between Neighboring Protocols and L3 Transmission Functions” in
this chapter) transparently trigger address resolution.

Here is a snapshot from neigh_resolve_output, where dst is the routing table cache
entry briefly introduced in the section “Main Data Structures”:

 if (dev->hard_header_cache && !dst->hh) {
 write_lock_bh(&neigh->lock);
 if (!dst->hh)
 neigh_hh_init(neigh, dst, dst->ops->protocol);
 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
 neigh->ha, NULL, skb->len);
 write_unlock_bh(&neigh->lock);
 } else {
 read_lock_bh(&neigh->lock);
 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
 neigh->ha, NULL, skb->len);
 read_unlock_bh(&neigh->lock);
 }

If the device can use header caching (that is, hard_header_cache is set) but the header
has not been cached yet (!dst->hh), neigh_resolve_output has to initialize and cache
the L2 header. It does so by calling the neigh_hh_init function, which creates the hh_
cache entry and links it to the dst->hh routing table cache entry (the operation shown
by dotted lines in Figure 27-10).

If, instead, caching is not supported by the device, the L2 header is filled in with
hard_header.

In both cases, the neighbour structure is accessed under the protection of a lock. But
the first case accesses the structure in exclusive mode to write the header; the second
accesses it in shared mode. Note that in the first case, neigh_resolve_output checks
the status of dst->hh once more after having acquired the lock. This is a standard
way to avoid a race condition with locks; it is done in this case because dst->hh may

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Protocol Initialization and Cleanup | 687

have been initialized by another CPU between the previous check and the acquisi-
tion of the lock.

For the internals of neigh_resolve_output, see Figure 27-13.

Cache Invalidation and Updating
A cached header may include many different fields, but the two that are most likely
to change and therefore invalidate the cached header are the source and destination
addresses.

When a local device changes its L2 address, all of the cached headers associated with
the address become out of date. When the neighboring subsystem is notified about
this event (NETDEV_CHANGEADDR, described in the section “Updates via neigh_change-
addr (netdevice notification chain)”), it flushes all of the neighbour entries associated
with the device, thereby also invalidating all of the associated cached L2 headers.

When the system detects that the L2 address of a neighbor has changed, it invokes
neigh_update_hhs. This function updates all of the cached headers used by that
neighbour structure by invoking, in turn, the header_cache_update function provided
by the device driver and introduced in the section “Methods Provided by the Device
Driver.” See the section “Updating a Neighbor’s Information: neigh_update.”

Protocol Initialization and Cleanup
Each neighboring protocol has an initialization function that is executed at boot time
if the protocol is included in the kernel, or at module load time if the protocol has
been compiled as a module. As for other kernel subsystems, the initialization func-
tion allocates all of the resources that are needed by the subsystem to function prop-
erly. The four initialization functions of the four neighboring protocols implemented
in the Linux kernel are listed in Table 27-1.

Here are some of the common tasks accomplished by these functions:

Table 27-1. Neighboring protocol init/cleanup functions

Protocol Init function Cleanup function File

ARP arp_inita

a arp_init is described in the section “ARP Protocol Initialization” in Chapter 28.

None net/ipv4/arp.c

Neighbor Discovery (ND) ndisc_init ndisc_cleanup net/ipv6/ndisc.c

DECnet dn_neigh_init dn_neigh_cleanup net/decnet/dn_neigh.c

ARP over IP (clip)b

b clip represents a special case under ARP, not an independent protocol. Therefore, unlike the other three pro-
tocols, clip does not register with neigh_table_init, but accomplishes its initialization (such as memory
pool allocation) by itself. Basically, it initializes its neigh_table structure and lets the ARP protocol (arp_
bind_neighbour) take care of it.

atm_clip_init atm_clip_exit net/atm/clip.c

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 27: Neighboring Subsystem: Infrastructure

• Initialize the neigh_table structure with neigh_table_init.

• Register a group of variables in the /proc filesystem if needed (usually to allow
tuning by an administrator).

• Register a protocol handler. IPv4 registers arp_rcv to use ARP (see Chapter 13).
Neighbor handling in IPv6 is part of the more general-purpose protocol,
ICMPv6, so IPv6 registers an ICMPv6 protocol handler, which invokes IPv6’s
counterpart of arp_rcv (ndisc_rcv) for those ICMPv6 messages that have to do
with its neighboring protocol, ND.

neigh_table_init accomplishes the following:

• Allocates a memory pool to reserve memory for neighbour structures.

• Allocates a neigh_statistics structure that collects statistics about the protocol.
See the section “neigh_statistics Structure” in Chapter 29.

• Allocates the two hash tables hash_buckets and phash_buckets, used respectively
as the cache for resolved associations and as a database of proxied addresses. See
Figure 27-2.

• Creates a file under /proc/net that can be used to dump the contents of the cache.
The name of the file is taken from neigh_table->id.

• Starts the gc_timer garbage collector timer. See the section “Garbage Collection.”

• Initializes (but does not start yet) the proxy_timer proxy timer and the associ-
ated queue, proxy_queue. See the section “Delayed processing of solicitation
requests.”

• Adds neigh_table structures to the neigh_tables global list. The latter is pro-
tected by a lock, as shown in Figure 27-2.

• Initializes a few other parameters, such as reachable_time.

When a protocol is run through a module and the module is unloaded, neigh_table_
clear is called to undo what neigh_table_init did at initialization time and to clear
any other resources allocated by the protocol during its lifetime, such as timers and
queues.

Table 27-1 shows the protocol cleanup functions that use neigh_table_clear to clean
up protocol resources. IPv4 is the only one that cannot be compiled as a module, so
ARP does not have a cleanup function.

Interaction with Other Subsystems
The neighboring subsystem interacts with other subsystems, both by generating and
by receiving notifications when specific events take place. Here are some of the other
subsystems involved in these interactions:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interaction with Other Subsystems | 689

Routing
The relationship between caching at this layer and header caching at the neigh-
bor layer is described in the section “L2 Header Caching.”

Traffic equalizer (TEQL)
TEQL is one of Traffic Control’s queuing disciplines that can be configured
through the IPROUTE2 package’s tc command. This feature groups a set of links
at the L3 layer and uses them in round-robin fashion when transmitting packets
to a given destination. The impact on the neighboring protocol is that the resolu-
tion of a single IP address (the master address) may actually trigger the resolu-
tion of multiple slave IP addresses.

Because each link in the group has to resolve the L3-L2 address binding, the first
round over the devices in the group will need that binding to be resolved when
moving from one slave to another.

IPsec
IPsec defines a series of transformations that need to be applied to a packet
before it can be transmitted—notably encryption. Because of this, if the effects
of IPsec were added to Figure 27-1, it would show multiple dst_entry structures
in a linked list, and only the last one would have a pointer to a neighbour struc-
ture (see Figure 33-5 in Chapter 33).

Netfilter (iptables)
Netfilter hooks are placed at various points affecting the ingress, egress, and for-
warding of packets; as these potentially affect all traffic, they affect solicitation
requests and responses on the neighboring layer, too. The interaction between
Netfilter and the neighboring protocols is taken care of independently from the
neighboring infrastructure, partly because different neighboring protocols sit at
different layers of the network stack.

Figure 28-13 in Chapter 28 shows how Netfilter and ARP interact by means of
the three dedicated hook points NF_ARP_IN, NF_ARP_OUT, and NF_ARP_FORWARD.
Unlike ARP, ND sits on top of its L3 protocol, IPv6, so it can be firewalled with
the default NF_IP6_PRE_ROUTING, NF_IP6_POST_ROUTING, NF_IP6_LOCAL_IN, and NF_
IP6_LOCAL_OUT hooks used for IPv6 traffic. To get an idea where those IPv6 hook
points are positioned inside the IPv6 stack, take as a reference the IPv4 counter-
part depicted in Figure 18-1 in Chapter 18.

In the following subsections, we’ll see some of these interactions from the point of
view of the neighboring subsystem.

Events Generated by the Neighboring Layer
When a neighbor is classified as unreachable, and therefore enters the NUD_FAILED
state, the neighboring layer executes the neigh_ops->error_report function, which
notifies the upper layer about the failure. For example, in the case of an ARP failure,

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

690 | Chapter 27: Neighboring Subsystem: Infrastructure

the IPv4 layer would be notified. All of this is taken care of by neigh_timer_handler,
the timer handler described in the section “Timers.”

Events Received by the Neighboring Layer
As we have seen, entries maintained by the neighboring system become invalid
whenever one of their main constituents—L3 address, L2 address, or device—
changes. Therefore, the kernel must make sure the neighboring protocols are noti-
fied whenever one of these pieces of information changes. This is accomplished
through two main functions provided by the neighboring subsystem:

neigh_ifdown
A generic function that external kernel subsystems can invoke to notify the
neighboring subsystem about changes to devices and L3 addresses. Notifica-
tions about changes to L3 addresses are sent by L3 protocols.

neigh_changeaddr
A function that neighboring protocols can invoke to update a protocol’s cache
when the L2 address of a local device has changed. Each protocol can register
with the kernel to be notified of these events. See the section “Received Events”
in Chapter 28 for an example involving ARP. Notifications about changes to L2
addresses are sent by the kernel when a user command changes the hardware
address of a device.

Updates via neigh_ifdown

Figure 27-11 summarizes the activities and functions that generate the external
events in which the neighboring protocols are interested. Among the main events
are:

Device shutdown
Each neighbor entry is associated with a single device. Therefore, if a device is
shut down, all of the associated entries have to be removed. To be more exact,
the event represents not the shutdown of the device itself, but the clearing of the
L3 configuration on the device that results, and that renders the association
between the L3 address and L2 address invalid.

The opposite case, of a device being added to the system, is not of interest to the
neighboring subsystem.

L3 layer address change
If an administrator changes the configuration of an interface, hosts that were
reachable through that interface before might no longer be reachable through it.
For that reason, changing an interface’s address triggers a call to neigh_ifdown.

Protocol shutdown
If an L3 protocol installed as a module is removed from the kernel, all of the
associated neighboring entries become unusable and have to be removed.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interaction with Other Subsystems | 691

Figure 27-11 shows two functions that do this kind of cleanup: dn_neigh_cleanup
for the removal of DECnet and ndisc_cleanup for the removal of IPv6. IPv4 is not
represented because it is not implemented as a module and is never removed.

The function neigh_ifdown is pretty simple. It browses all the neighbour structures
and makes the ones associated with the device that has triggered the event unusable.
(They are not removed right away because references to them may be left in the
neighboring subsystem.) Here are the main activities neigh_ifdown performs on each
affected neighbour structure:

• Stops all pending timers.

• Changes the entry’s state to NUD_NOARP so that any traffic that tries to use that
entry does not trigger a solicitation request.

• Sets neigh->output to neigh_blackhole so that packets sent to the neighbor are
dropped rather than delivered. See the description of this function in the section
“Routines used for neigh->output.”

• Invokes skb_queue_purge to drop all pending packets in the arp_queue queue.
After neigh_ifdown clears the entries associated with the guilty device from the
cache, the function calls pneigh_ifdown to do the same for the proxy cache, and
the proxy’s proxy_queue queue is purged.

Figure 27-11. Contexts where neigh_ifdown is called

Configuration changes

IPv4

fib_netdev_event fib_inetaddr_event

fib_disable_ip

arp_ifdown

NETDEV_DOWN
NETDEV_UNREGISTER

NETDEV_DOWN
(last address is
removed from dev)

addrconf_notify
addrconf_cleanup

inet6_addr_del
NETDEV_DOWN
NETDEV_UNREGISTER (last address is

removed from dev)

addrconf_ifdown

neigh_ifdown

neigh_table_clear

dn_neigh_cleanup

ndisc_cleanup

Module cleanup

IPv6

(From IPv6 module cleanup function)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

692 | Chapter 27: Neighboring Subsystem: Infrastructure

Updates via neigh_changeaddr (netdevice notification chain)

The netdevice chain keeps track of numerous networking-related events, listed in
Chapter 4. Neighboring protocols register with the kernel in their initialization rou-
tines (arp_init, ndisc_init, etc.) to ask for notifications from the netdevice chain.

The most important event for the neighboring subsystem is NETDEV_CHANGEADDR,
which is generated by the do_setlink function when the L2 address of a device is
changed with a command such as:

ip link set eth0 lladdr 01:02:03:04:05:06

When neigh_changeaddr is invoked by the change, it browses all the entries in the
protocol cache and marks the ones associated with the changed device as dead. The
garbage collection process then takes care of them.

Interaction Between Neighboring Protocols and L3
Transmission Functions
We saw in Chapter 21 that packet transmission in the IPv4 subsystem ends with a
call to ip_finish_output2, which passes the packet down to the L2 layer. In this sec-
tion, we’ll see how this function interacts with the neighboring subsystem. The func-
tion that has a similar name and task within the IPv6 subsystem behaves the same
way, except that it calls the ND protocol instead of IPv4’s ARP protocol.

The skb buffer input to ip_finish_output2, includes the packet data (but without an
L2 header), along with information such as the device to use for transmission and the
routing table cache entry (dst) that was used by the kernel to make the forwarding
decision. As we saw in Figure 27-1, that dst entry includes a pointer to the neighbour
entry associated with the next hop (which can be either a router or the final destina-
tion itself). The decisions made by ip_finish_output2 that are of interest to us in this
chapter are summarized in Figure 27-12.

If a cached L2 header is available (hh is not NULL), it is copied into the skb buffer.
(skb->data points to the start of the user data, which is where the L2 header should
be placed.) Finally, hh_output is invoked.

If no cached L2 header is available, ip_finish_output2 invokes the neigh->output
method. As explained earlier in this chapter, the precise function associated with
neigh->output depends on the state of the neighbour entry. If the L2 address is ready,
the function will probably be neigh_connected, so the header can be filled in right
away and the packet transmitted. Otherwise, neigh->output will probably be initial-
ized to neigh_resolve_output, which will put the packet in the arp_queue queue, try
to resolve the address by sending a solicitation request, and wait until the solicita-
tion reply arrives, whereupon the packet is transmitted. Whether the packet is sent
immediately or queued, ip_finish_output2 returns the same value, indicating suc-
cess. The packet is not the IP subsystem’s responsibility after this point; when the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interaction Between Neighboring Protocols and L3 Transmission Functions | 693

solicitation reply arrives, the neighboring subsystem dequeues the packet from arp_
queue and sends it to the device.

As described earlier in the sections “Neighbor Deletion” and “Updates via neigh_
ifdown,” if the necessary neighbour entry (the one associated with the routing table
cache element used to transmit the dst->neighbour packet) ceases to exist when ip_
finish_output2 is invoked, the packet is dropped. This condition is supposed to be
impossible, but the code is ready to handle this exception if it takes place.

Figures 27-13(a) and 27-13(b) offer a more detailed version of Figure 27-12 that
shows what happens depending on which function is assigned to neigh->output and
on the state of the neighbour entry. If you look at the source code, you can see that
the part of the flowchart that represents neigh_resolve_output consists mostly of the
expansion of neigh_event_send, with the exception of the part that is marked with
the dotted box.

When a new neighbour entry is in the NUD_NONE state, its state is changed to NUD_
INCOMPLETE and its timer is fired. The timer is initialized to expire right away. neigh_
timer_handler, the timer handler, then generates a solicitation request to resolve the
address.

dev_queue_xmit was introduced in Chapter 21. As shown in Figure 18-1 in
Chapter 18, dev_queue_xmit is the interface between the neighboring subsystem and
the Traffic Control subsystem, which stands between the neighboring protocol and
the device driver.

Figure 27-12. ip_finish_output2 function: compact version

Drop buffer

No

No Is the L2 header
cached and set

in DST?

Is there a
neighbour entry
associated with

DST?

Yes

Return
neigh-> output

Return -EINVAL

Get lock on
cached header

Copy cached header
into the buffer

Release lock on
cached header

Return
hh-> hh_output

Yes

www.ebooksworld.in

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

694 | Chapter 27: Neighboring Subsystem: Infrastructure

Figure 27-13(a). ip_finish_output2 function: expanded version

Is the link
layer header cached

and set in
DST?

No

Invoke
hh_output Is there a

neighbout entry
associated with

DST?

Update neigh -> used
timestamp

Get write lock
on neighbour

Set neigh -> state to
NUD_DELAY and

start neigh -> timer

Release write lock
on neighbour

Device driver with
L2 header caching

capabilities AND hh
not initialized yet?

Drop the packet

Get write lock
on neighbour

Cache the header and init.
dst -> hh (neigh_hh_init)

[2] Fill in header
(dev -> hard_header)

Release write lock
on neighbour

Drop the packet

Drop the packet

Yes

neigh -> output

neigh -> state

No

Yesdev_queue_xmit

neigh_blackhole
neigh_connected_output

neigh_resolve_output

NUD_NONE
NUD_INCOMPLETE NUD_FAILED

NUD_CONNECTED
NUD_DELAY
NUD_PROBE

NUD_STALE

NoYes

Get read lock
on neighbour

Release read lock
on neighbour

[1] Fill in header
(dev -> hard_header)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interaction Between Neighboring Protocols and L3 Transmission Functions | 695

Figure 27-13(b). ip_finish_output2 function: expanded version

neigh -> state

Get write look
on neighbour

Are solicitations
allowed?

Set neigh -> state to
NUD_FAILED

Start neigh -> timer

Remove the oldest entry from
arp_queue if full

Queue packet in
arp_queue

Release write lock
on neighbour

Release write lock
on neighbour

Drop the packet

Send solicitation
(neigh -> solicit)

Update counter
neigh -> probes

Set neigh -> state to
NUD_INCOMPLETE

See neigh_timer_handler

NoYes

NUD_INCOMPLETE

NUD_NONE

Drop the packet

DId
[1] or [2]

fail?

dev_queue_xmit

No

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

696 | Chapter 27: Neighboring Subsystem: Infrastructure

Queuing
Ingress packets—solicitations and replies to solicitations—delivered to the neighbor-
ing protocol handlers are normally processed right away. However, as described in
the section “Delayed Processing of Solicitation Requests” and as shown in
Figure 27-9, proxying can be configured to queue and delay them.

Packets transmitted by the L3 layer, if they are addressed to unresolved L2 addresses,
can be temporarily queued by the neighboring layer to await address resolution, as
described in the section “Interaction Between Neighboring Protocols and L3 Trans-
mission Functions.” (In contrast, the solicitations and replies generated by the neigh-
boring protocols themselves are transmitted right away.)

The following subsections go into more detail on both ingress and egress queuing.

Ingress Queuing
All neighboring protocols share certain tasks when ingress packets are queued. These
include adding packets to the cache, flushing arp_queue when a solicitation reply is
received, and using the proxy’s proxy_queue. There are also tasks specific to an indi-
vidual neighboring protocol. Details on what ARP needs to do are described in
Chapter 28.

Egress Queuing
When transmitting a data packet, if the association between the destination layer L3
and L2 address has not been resolved yet, the neighboring protocol inserts the packet
temporarily into the arp_queue queue. (Each neighboring protocol has a queue
named arp_queue, not just the ARP protocol.) If the association is resolved in a timely
manner, the packet is dequeued and transmitted; otherwise, it is dropped.
Figure 27-13 shows how IPv4 packets are queued into ARP’s arp_queue when the L2
address is not ready.

Each neighbour entry has its own small, private arp_queue; by default it contains
three elements, but it can be configured on a per-device basis via /proc (see
Chapter 29). Having these queues private, rather than shared by all neighbors, makes
searching them faster when the protocol receives replies to a given solicitation, and
also assures a better level of fairness. If there is no space left when new elements are
added to a private queue, new elements simply replace older ones (see _ _neigh_
event_send).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Queuing | 697

Figure 27-13. Packets handled in three common situations

ARP

To: 192.168.1.1

TXhandler RXhandler

1

(a)

192.168.1.1=?
. . .

2

6
192.168.1.1 is
00:20:ED:78:12

3

7 4
Who is

192.168.1.1?

5
192.168.1.1 is
00:20:ED:78:1E:12

To
dev_queue_xmit

From
CPU's queue

neigh_ops layer

(b)

neigh_ops layer

(c)

neigh_ops layer

ARP cache

Cache lookup

ARP

To: 192.168.1.1

TXhandler RXhandler

1

192.168.1.1=?
. . .

2

3

ARP cache

Cache lookup

ARP

To: 192.168.1.1

TXhandler RXhandler

1

192.168.1.1=
00:20:ED:78:1E:12 . . .

2

3

To
dev_queue_xmit

ARP cache

Cache lookup

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

698 | Chapter 27: Neighboring Subsystem: Infrastructure

Figure 27-13 shows three common cases, ignoring proxies for the sake of simplicity:

(a) Empty cache
The steps are as follows.

1. The L3 layer submits a request to transmit a packet to the L3 destina-
tion address 192.168.1.1.

2. The cache is queried, generating a cache miss.

3. The packet is temporarily inserted into the queue.

4. A solicitation request is sent.

5. The solicitation reply arrives.

6. The cache is populated.

7. The packet waiting in the queue is sent out.

(b) Address resolution pending
The steps are as follows.

1. The L3 layer submits a request to transmit a packet to the L3 destina-
tion address 192.168.1.1.

2. The cache is queried.

3. The address is not in the cache, but the kernel has already started the
task of resolving the address, so the packet is temporarily inserted into
the queue to wait for the reply to the pending request.

This case can occur when another packet is waiting at step (5) of case (a).

(c) Address already resolved
The steps are as follows.

1. The L3 layer submits a request to transmit a packet to the L3 destina-
tion address 192.168.1.1.

2. The cache is queried.

3. Because the cache returns a hit, the packet can be sent out right away.

www.ebooksworld.in

sagar
Highlight

sagar
Highlight

sagar
Highlight

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

699

Chapter 28 CHAPTER 28

Neighboring Subsystem:
Address Resolution

Protocol (ARP)

Chapter 27 described the services provided by the infrastructure common to all
neighboring protocols. This chapter will show how ARP, the protocol used by IPv4,
fits into the modular design of the infrastructure. Readers familiar with ARP may
have seen the outlines of its behavior in the description of the general neighboring
subsystem in the previous chapters, although the nomenclature used to describe the
subsystem is drawn more from IPv6’s ND protocol than from ARP.

The presence of a common infrastructure makes the design and implementation of
ARP simpler. To cover ARP in this chapter, we look at the following points:

• How the neigh_table structure arp_tbl is initialized to tune the behavior of the
common neighboring infrastructure for ARP

• How the neigh_parms structure is initialized to tune the behavior of the common
neighboring infrastructure for ARP (e.g., to set timer expiration periods)

• How the reception of ARP packets (i.e., ARPOP_REQUEST/ARPOP_REPLY) interacts
with the neighboring subsystem, and how the solicit method works

• How the neigh_ops structure is initialized depending on the device type and the
type of L3 address (unicast, multicast, or broadcast)

• How proxy ARP uses the common infrastructure

• How the behavior of ARP can be further tailored by means of compile options
and the explicit configuration of special features

• How the kernel can hand some work over to a user-space daemon, arpd, to han-
dle a particularly heavy workload

• The relationship between ARP and Reverse ARP (RARP)

• What events ARP can notify to other kernel subsystems, and vice versa

The chapter concludes with a brief overview of the improvements made by IPv6’s
ND over ARP.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

700 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

ARP Packet Format
Figure 28-1 shows an ARP packet encapsulated in an Ethernet frame.

Here is a field-by-field description of the ARP packet’s fields, represented in Linux
with an arphdr structure:*

Hardware type
Hardware type identifier (e.g., Ethernet). See the ARPHDR_XXX values in include/
linux/if_arp.h.

Protocol type
L3 protocol identifier (e.g., IPv4). See the ETH_P_XXX values in include/linux/if_
ether.h.

Hardware size
Size in octets of an L2 address (e.g., 6 for Ethernet).

Figure 28-1. ARP packet encapsulated in an Ethernet frame

* The arphdr structure does not contain placeholders for the last four fields of the ARP frame (the addresses);
those are extracted by simply reading past the end of the Oper field, which is made possible thanks to the
HS and PS fields.

HW size

Proto
size

HW
type

Proto
type

HW
size

Proto
size Oper Eth source addr Proto source addr Eth target addr

HW size

Proto target addr

Proto
size

Ethernet header

ARP packet

Eth source addr Eth dest addr Frame type

ETH_P_ARP
(0x0806)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ARP Packet Format | 701

Protocol size
Size in octets of an L3 address (e.g., 4 for IPv4).

Oper
Operation code, described following this list.

SHA, SPA (Sender Hardware Address, Sender Protocol Address)
Hardware and protocol addresses of the sender.

THA, TPA (Target Hardware Address, Target Protocol Address)
Hardware and the protocol addresses of the “target” (or receiver). The sender of
a solicitation request normally sets THA to 0, because this address is just what
the sender is trying to discover with the solicitation. But sometimes the sender
tries to confirm an existing neighbour entry by sending a request containing the
current, known THA.

Because ARP is normally used only for IPv4, kernel code uses the abbreviations SIP
and TIP (Source IP address and Target IP address) to refer to SPA and STA.

A large number of ARP message types are offered in the ARPOP_XXX list of opcodes
described in include/linux/if_arp.h. Two are used by RARP and are described later, in
the section “Reverse Address Resolution Protocol (RARP)”. Several are used by a rel-
atively recent protocol named InARP, which is an extension to ARP (defined in RFC
2390) that is used by Frame Relay and ATM and is beyond the scope of this book.
Here we will cover the two that are basic to ARP:

ARPOP_REQUEST
This is used to send a solicitation in an attempt to resolve an L3 address to an L2
address. For a new neighbor entry, a host sends the message to the broadcast
address associated with the device’s hardware. To confirm an existing neighbour
entry, the host sends the message directly to the neighbor’s L2 address. A
request is equivalent to what IPv6 calls neighbor solicitation.

Solicitations also can be used for other reasons, such as those discussed in the
section “Gratuitous ARP.”

ARPOP_REPLY
This is the message sent in answer to an ARPOP_REQUEST. Normally it is sent
directly to the host that sent the request. But sometimes it can be sent to the
broadcast address; a host can do this to update the caches of its neighbors after
it changes its configuration. A broadcast reply is equivalent to what IPv6 calls
neighbor advertisement.

Destination Address Types for ARP Packets
The address type of an L3 address can be unicast, broadcast, or multicast. The type is
saved in the neighbour structure (as the neigh->type field), as explained in the sec-
tion “Initialization of a neighbour Structure,” and can be determined by invoking the
routine inet_addr_type. Each type is handled by ARP as follows:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

702 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

Unicast
This is the most common case, and is resolved by ARP’s normal solicitation
method.

Broadcast
ARP simply maps the L3 broadcast address directly to the L2 broadcast address
associated with the device.

Multicast
ARP uses the routine arp_mc_map to derive the L2 multicast address from the L3
multicast address. ARP does not need to generate a solicitation request, because
the L2 address can be derived by a formula that depends on the hardware type
(Ethernet, Token Ring, etc.). See the section “Special Cases” in Chapter 26.

Example of an ARP Transaction
Figure 28-2 shows a simple case where one host asks for the L2 address associated
with the IP address 10.0.0.4, and the owner of that address replies. The MAC target
(the address to resolve) in the request is 0, to indicate that it should be filled in by
whoever (probably the owner of the target IP address) replies.

If you look carefully at Figure 28-2, you can see that the sender hardware address is
present twice: once in the Ethernet header and once in the ARP payload. They usu-
ally match, but not always (see the section “Acting As a Proxy” in Chapter 27).

More-detailed examples appear later in the section “Examples.”

Gratuitous ARP
Normally an ARPOP_REQUEST is sent because the sender wants to talk to a given IP
address and needs to find out the associated L2 address. But sometimes the sender
generates an ARPOP_REQUEST to inform the receivers about some information, instead
of asking for information. This is called gratuitous ARP and is commonly used in the
following situations:

• Change of L2 address

• Duplicate address detection

• Virtual IP

Each is described in the subsections that follow.

Change of L2 Address
We already saw in the section “Reasons That Neighboring Protocols Are Needed” in
Chapter 26, that a change of L2 address (which invalidates neighbour entries for
other nodes on the network) cannot be detected without the help of a protocol.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Gratuitous ARP | 703

Instead of waiting for the old association to expire and forcing each node to start a
new protocol transaction (and therefore suffer a temporary black hole), it makes
sense to trigger the update of the association in advance. The node that changed the
address accomplishes the update through gratuitous ARP. See net/irda/irlan/irlan_
eth.c for an example.

Duplicate Address Detection
No two hosts on a local network should have the same L3 address, but this problem
can happen, especially in big networks with a mix of static and dynamic (that is,
DHCP-based) configurations. The most common reasons for duplicate addresses are

Figure 28-2. Example of ARP usage

Ethernet
ARP

From 00:20:ED:76:1E:13 to FF:FF:FF:FF:FF:FF

OP: ARP_REQUEST

MAC_SOURCE: 00:20:ED:76:1E:13
IP_SOURCE: 10.0.0.2

MAC_TARGET: 00:00:00:00:00:00
IP_TARGET: 10.0.0.4

IP= 10.0.0.2
MAC= 00:20:ED:76:1E:13

IP= 10.0.0.1
MAC= 00:20:ED:76:1E:12

IP= 10.0.0.4
MAC= 00:20:ED:76:1E:15

IP= 10.0.0.3
MAC= 00:20:ED:76:1E:14

IP= 10.0.0.5
MAC= 00:20:ED:76:1E:16

Ethernet
ARP

From 00:20:ED:76:1E:15 to 00:20:ED:76:1E:13

OP: ARP_REPLY

MAC_SOURCE: 00:20:ED:76:1E:15
IP_SOURCE: 10.0.0.4

MAC_TARGETE: 00:20:ED:76:1E:13
IP_TARGET: 10.0.0.2

IP= 10.0.0.2
MAC= 00:20:ED:76:1E:13

IP= 10.0.0.1
MAC= 00:20:ED:76:1E:12

IP= 10.0.0.4
MAC= 00:20:ED:76:1E:15

IP= 10.0.0.3
MAC= 00:20:ED:76:1E:14

IP= 10.0.0.5
MAC= 00:20:ED:76:1E:16

LAN

LAN

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

704 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

the presence of multiple DHCP servers with overlapping address pools, and incor-
rect manual configurations.

To detect the presence of a duplicate address, a host can use gratuitous ARPs. If you
send an ARP solicitation for your own address, you will receive a reply only when
another host is configured with your IP address. If there is no duplicate address, no
replies should be received.

Let’s see an example using the topology in Figure 28-3. When Host A boots up, as
soon as it configures its eth0 interface with IP address 10.0.0.4, it sends a request
asking who has IP address 10.0.0.4 (its own IP address). If none of the hosts in the
subnet was misconfigured, Host A will not receive a reply. But since Host Bad_guy is
configured with the same 10.0.0.4 IP address as Host A, it replies to the ARPOP_
REQUEST, thus informing Host A of the presence of a duplicate address.

Of course, allowing hosts to send out ARP packets at random intervals on large net-
works is bad for performance. Instead, as shown in the section “Requests with zero
addresses,” a DHCP sever usually issues the request before granting an address to a
client, which is a more scalable solution.

The Linux kernel does not generate any gratuitous ARP when you configure an IP
address on the local interfaces. However, most Linux distributions come with the
iputils package installed, which includes the arping command. arping can be used to
generate ARP_REQUEST frames. When you enable a network interface with the /sbin/
ifup command (part of the initscripts package), it uses arping to check for duplicate
addresses.

Virtual IP
Another common use for gratuitous ARP is to allow failover in a pool of servers.
Commonly, to provide redundancy, a site provides one active server along with a
number of similarly configured hosts in standby mode. When the active server fails
for some reason, a mechanism often referred to as a heartbeat timer (implemented
through some protocol on the pool of servers) detects the failure and triggers the
election of a new active server. This new server generates a gratuitous ARP to update
the ARP cache of all the other hosts in the network. Because the new server has taken
the IP address of the old server, the ARPOP_REQUEST is not answered, but all the recipi-
ents update their caches accordingly.

Note that in this way, the IP layer and higher layers can keep communicating with-
out even noticing the change. Of course, because heartbeats are sent out at regular
intervals, a small window of time exists after the old server fails and the new one
takes over, during which traffic is not delivered. So some nodes may discover the fail-
ure and mark their neighbor entries as failed until the new ARPOP_REQUEST arrives.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Gratuitous ARP | 705

The example in Figure 28-4* shows two routers, one taking the active role and the
other taking the standby role (a). The server labeled Active has the IP address 10.0.0.1.
The hosts of LAN2 use this router to communicate with the hosts of LAN1, and vice
versa.

A failover system is in place so that when the Active router fails, the Standby router
takes over the IP address 10.0.0.1 and becomes the Active router (b). When the
Standby router becomes the new Active router, sends out a gratuitous ARP request
that changes the entries of all local hosts (c) so that 10.0.0.1 is associated with the L2

Figure 28-3. Example of duplicate address detection

* The MAC addresses in the figure are truncated for convenience. For example, 00:…:03 stands for 00:00:00:
00:00:03. I used simple MAC addresses like that one to simplify the figure.

From 00:20:ED:76:1E:13 to FF:FF:FF:FF:FF:FF

OP: ARP_REQUEST

MAC_SOURCE: 00:20:ED:76:1E:13
IP_SOURCE: 10.0.0.4

MAC_DESTINATION: 00:00:00:00:00:00
IP_DESTINATION: 10.0.0.4

IP= 10.0.0.4
MAC= 00:20:ED:76:1E:13

IP= 10.0.0.1
MAC= 00:20:ED:76:1E:12

IP= 10.0.0.4
MAC= 00:20:ED:76:1E:15

IP= 10.0.0.3
MAC=00:20:ED:76:1E:14

IP= 10.0.0.5
MAC=00:20:ED:76:1E:16

Ethernet
ARP

From 00:20:ED:76:1E:15 to 00:20:ED:76:1E:13

OP: ARP_REPLY

MAC_SOURCE:00:20:ED:76:1E:15
IP_SOURCE: 10.0.0.4

MAC_DESTINATION:00:20:ED:76:1E:13
IP_DESTINATION: 10.0.0.2

IP= 10.0.0.4 DUPLICATE!!!
MAC= 00:20:ED:76:1E:13

IP= 10.0.0.1
MAC= 00:20:ED:76:1E:12

IP= 10.0.0.4
MAC=00:20:ED:76:1E:15

IP= 10.0.0.3
MAC=00:20:ED:76:1E:14

IP= 10.0.0.5
MAC= 00:20:ED:76:1E:16

eth0 eth0

A Bad Guy

eth0 eth0

Ethernet
ARP

LAN

LAN

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

706 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

Figure 28-4. Example of gratuitous ARP

10.0.0.1

LAN1
(a)

.

LAN2

MAC: 00:.....01
IP: 10.0.0.1

Active Standby

MAC: 00:.....02
IP: none

00:.....: 01
...

MAC: 00:.....03
IP: 10.0.0.3

MAC: 00:.....04
IP: 10.0.0.4

MAC: 00:.....05
IP: 10.0.0.5

ARP CACHE

10.0.0.1 00:.....: 01
...

ARP CACHE

10.0.0.1 00:.....: 01
...

ARP CACHE

10.0.0.1

LAN1
(b)

.

LAN2

Standby

MAC: 00:.....02
IP: 10.0.0.1

00:.....: 01
...

MAC: 00:.....03
IP: 10.0.0.3

MAC: 00:.....04
IP: 10.0.0.4

MAC: 00:.....05
IP: 10.0.0.5

ARP CACHE

10.0.0.1 00:.....: 01
...

ARP CACHE

10.0.0.1 00:.....: 01
...

ARP CACHE

Active

OP: ARP_REQUEST

MAC_SOURCE: 00.....: 02
IP_SOURCE: 10.0.0.1

MAC_DESTINATION: 00:.....: 02
IP_DESTINATION: 10.0.0.1

10.0.0.1

LAN1
(c)

.

LAN2

Standby

MAC: 00:.....02
IP: 10.0.0.1

00:.....: 02
...

MAC: 00:.....03
IP: 10.0.0.3

MAC: 00:.....04
IP: 10.0.0.4

MAC: 00:.....05
IP: 10.0.0.5

ARP CACHE

10.0.0.1 00:.....: 02
...

ARP CACHE

10.0.0.1 00:.....: 02
...

ARP CACHE

Active

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Responding from Multiple Interfaces | 707

address of the new active router. Subsequent IP traffic from LAN2 comes to this
router. The new Active router also sends a gratuitous ARP request to LAN1, but this
is not shown in the figure. The figure also does not show another detail that a real-
life administrator would configure: each router would have a second IP address on
each of its interfaces, used mainly to provide connectivity when the current role is
not active.

Responding from Multiple Interfaces
Linux has a rather unusual design: it considers an IP address as belonging to a host
rather than an interface, even though administrators always assign IP addresses to
particular interfaces.* This has impacts that some administrators complain about:

• A Linux host replies to any ARP solicitation requests that specify a target IP
address configured on any of its interfaces, even if the request was received on
this host by a different interface. To make Linux behave as if addresses belong to
interfaces, administrators can use the ARP_IGNORE feature described later in
the section “/proc Options.”

• Hosts can experience the ARP flux problem, in which the wrong interface
becomes associated with an L3 address. This problem is described in the text
that follows.

Imagine you have a host with two NICs on the same LAN, and that another host
sends an ARP request for one of the addresses. The request is received by both inter-
faces, as shown in Figure 28-5, and both interfaces reply.

* Using the options described in the section “Tunable ARP Options,” you can make Linux behave as if IP
addresses belonged to the interfaces. For an interesting discussion of this design, including its advantages
and disadvantages, you can refer to the (pretty long) thread “ARP responds on all devices” on the netdev
mailing list, which is archived at http://oss.sgi.com/archives/netdev.

Figure 28-5. The ARP flux problem

eth1eth0: 10.0.0.1 eth0

. . .
10.0.0.2???????
. . .

Host A Host B

ARP cache

ARPOP_REQUEST: Who is 10.0.0.2?

ARPOP_REPLY: 10.0.0.2 is 11:11:11:11:11:11

ARPOP_REPLY: 10.0.0.2 is 22:22:22:22:22:22

eth0: IP 10.0.0.2 MAC 11:11:11:11:11:11
eth1: IP 10.0.0.3 MAC 22:22:22:22:22:22

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

708 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

The host sending the solicitation therefore receives two replies to its request. One
comes from the NIC with the correct L2 address (eth0) but the other bears the other
NIC’s address (eth1). Which address is entered by the correspondent in its ARP
cache depends on the order in which the requests happen to be received and the
host’s way of handing duplicate replies—in short, it’s nondeterministic.

The ARP flux problem can be solved with the features described in the section “Tun-
able ARP Options.”

Tunable ARP Options
The kernel allows the user to tune the ARP behavior via both the /proc filesystem and
compile-time options. We will see details on how to configure those features, their
allowed settings, and their defaults in the section “Tuning via /proc Filesystem” in
Chapter 29, but let’s introduce the main ones here.

Compile-Time Options
Two ARP options can be enabled at compile time:

ARPD (CONFIG_ARPD)
This allows a user-space daemon to handle ARP, which can improve perfor-
mance on a very large and busy network. See the section “ARPD.”

UNSOLICITED ARP (CONFIG_IP_ACCEPT_UNSOLICITED_ARP)
By default, when a host receives an ARPOP_REPLY for which it had no pending
ARPOP_REQUEST, the kernel drops the reply. Sometimes, however, it could be use-
ful to accept it. This feature, which establishes that unsolicited replies are
accepted, is actually not supported by Linux anymore: the code is commented
out (in the function arp_process) and the kernel configuration menu does not
provide any way to enable it.

Do not confuse the effect of this feature with gratuitous ARP. ARP_UNSOLICITED
accepts unsolicited ARPOP_REPLY packets, whereas gratuitous ARP causes a
“push” update via an ARPOP_REQUEST. As Figure 28-18 shows, only unicast unso-
licited requests are accepted.

/proc Options
Most of those features can be configured both globally and on a per-device basis.
Code can check whether they are enabled by using the IN_DEV_XXX macros defined in
include/linux/inetdevice.h (e.g., IN_DEV_ARP_ANNOUNCE, IN_DEV_ARP_IGNORE, and IN_DEV_
ARPFILTER). Please refer to the definition of those macros to see which features are
global and which are local. All of the macros take, as their input parameter, the
device’s IP configuration block (net_device->ip_ptr), which is normally retrieved
with the routine in_dev_get.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tunable ARP Options | 709

Some of those options have been introduced to address issues specific to Linux Vir-
tual Servers (LVS). In the LVS HOWTO, in the section “LVS: the ARP problem,”
you can find detailed information on what these features are for and how they can be
configured. You will also find information about previous approaches.

ARP_ANNOUNCE

This option controls which source IP addresses can be put in the ARP headers of
solicitation requests, when the host generating the request offers multiple addresses.
Table 28-1 lists the allowed levels and tells how the IP address is selected from the
ones configured on the local system. The section “Solicitations” shows how ARP
uses it. ARP_ANNOUNCE is handled in the arp_solicit function.

ARP_IGNORE

This option controls the criteria that determine whether to process ARPOP_REQUEST
packets.

Normally, all requests that can be handled by a host are processed. As explained in
the section “Responding from Multiple Interfaces,” IP addresses in Linux belong to
the host, not to its interfaces. Because of that, an ARPOP_REQUEST will be processed by
a host as long as the target IP address is configured on any of the interfaces, includ-
ing the loopback interface.* In some cases, such as with LVS, that would be a prob-
lem. By configuring ARP_IGNORE properly, an administrator can solve the problem. See
the LVS HOWTO for a detailed description of the problem and the possible
solutions.

Figure 28-6 shows an example of virtual server configuration. The address by which
the server is known to the world is shown as VIP, which is configured on an NIC on
the virtual server and as the loopback address on the two real servers. All replies to
requests for the address VIP should come from only the virtual server. But when the
virtual server receives a request for the services it provides, it forwards it to one of the
real servers using a well-defined selection algorithm. The receiving hosts accept the
packets because they have VIP locally configured. Both real servers configure ARP_
IGNORE on their eth0 interface so that they will not respond to ARPOP_REQUEST for the
VIP address.

Table 28-1. ARP_ANNOUNCE levels

Value Meaning

0 (Default) Any local IP address is fine.

1 If possible, pick an address that falls within the same subnet of the target address. If not possible, use level 2.

2 Prefer primary addresses.

* 127.x.x.x addresses are an exception; ARP requests for them are never handled.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

710 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

Figure 28-6. Example of scenario for the use of ARP_IGNORE

Router

eth0
MAC:00:20:ED:76:1E:12

IP:140.105.1.1 (VIP)

IP:151.41.221.195

1

2

3 eth0 eth0 eth0

Subnet
140.105.1.0/24

Virtual
server

Real
server 1

Real
server 2

eth0
MAC:00:20:ED:76:1E:13

IP:140.105.1.2
arp_announce=1

lo
IP:140.105.1.1 (VIP)

eth0
MAC:00:20:ED:76:1E:14

IP:140.105.1.3
arp_announce=1

lo
IP:140.105.1.1 (VIP)

Router

eth0
MAC:00:20:ED:76:1E:12

IP:140.105.1.1 (VIP)

5

4

eth0 eth0 eth0

Virtual
server

Real
server 1

Real
server 2

eth0
MAC:00:20:ED:76:1E:13

IP:140.105.1.2
arp_announce=1

lo
IP:140.105.1.1 (VIP)

eth0
MAC:00:20:ED:76:1E:14

IP:140.105.1.3
arp_announce=1

lo
IP:140.105.1.1 (VIP)

1 Source IP:151.41.221.195. Destination IP:140.105.1.1 (VIP).

2 ARP request: Who is 140.105.1.1?

3 ARP reply: 140.105.1.1 is 00:20:ED:76:1E:12. Only the virtual server replies.

4 The router forwards the IP packet to the virtual server.

5 The virtual server selects one real server (say, 1) and forwards the packet to the latter.
Real server 1 receives the IP packet and processes it (since the destination IP address 140.105.1.1 [VIP] is a local one.)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tunable ARP Options | 711

ARP_IGNORE is handled in the arp_process function. Possible values are listed in
Table 28-2.

ARP_FILTER

This option controls whether an interface should reply to an ingress ARPOP_REQUEST in
scenarios where multiple NICs are connected to the same LAN and are configured
on the same IP subnet. In this scenario, where each NIC receives a copy of the ARPOP_
REQUEST, you want only one interface (chosen deterministically, not at random) to
reply. This feature is useful mainly in networks where the IP source routing options
are used.

Let’s take the example in Figure 28-7. When Host A tries to resolve the 10.0.0.1 IP
address, both of Host B’s interfaces receive the ARPOP_REQUEST. For both requests, Host
B consults the routing table and replies only to the request that was received on the
interface that would be used by Host B to reach the sender’s IP address (10.0.0.3).
Host B’s routing table shows that the 10.0.0.3 address is reachable via both eth0 and
eth1. However, we will see in Part VII that when multiple routes are available toward
any given IP address, a routing lookup always returns the same one* (i.e., the first one
that matches).

When configured, ingress ARPOP_REQUEST packets are processed only if the kernel
knows how to reach the sender’s IP address, and if the device used to reach the
sender’s IP address is the same as the device where the request was received.

Note that ARP filtering has nothing to do with the filtering that can be done with
Netfilter. The two are configured and enforced independently.

Unlike the previous two options, ARP_FILTER can only be enabled or disabled; there
are no intermediate states. It is handled in the arp_process function.

Table 28-2. ARP_IGNORE values

Value Meaning

0 (Default) Reply for any local address.

1 Reply only if the target IP is configured on the receiving interface.

2 Like 1, but the source IP (sender’s address) must belong to the same subnet as the target IP.

3 Reply only if the scope of the target IP is not the local host (e.g., that address is not used to communicate
with other hosts).

4–7 Reserved.

8 Do not reply.

>8 Unknown value; accept request.

* Unless the kernel comes with support for multipath caching. That feature is described in Chapter 33.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

712 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

Medium ID

This is a feature that can be used to handle certain rare cases where a subnet spans
different LANs, and where a host offering proxy ARP has multiple NICs on that sub-
net serving the different LANs. The term medium refers to a network served by a sin-
gle broadcast address. If a hub or switch ties two such media together, a situation
could arise where a proxy ARP host acts as a proxy inappropriately, responding to a
request on behalf of a host on a different LAN that could handle the request itself.

We already saw in Chapter 26 that a proxy ARP server does not reply to an ARPOP_
REQUEST that is received on the same device through which the solicited IP address
can be reached. However, when multiple NICs are connected to the same LAN, this
condition may not be sufficient to ensure proper behavior. Let’s look at the example
in Figure 28-8.*

Host B is configured with two NICs on the same LAN (medium). eth0 is used to
reach all of the IP addresses in the 10.0.0.0/24 subnet, and eth1 is used to communi-
cate to Host C only, thanks to the /30 netmask. Host B acts as a proxy for both
LAN1 and LAN3.

Let’s assume now that Host A needs to transmit something to Host C but does not
have its L2 address. Host A will send a broadcast ARPOP_REQUEST, which will be
received by both eth0 and eth1 on Host B as well as by Host C. Host B should not
reply to the ARPOP_REQUEST because Host C will do so by itself.

Figure 28-7. Example of scenario for the use of ARP_FILTER

* This is an extended version of the example provided by Julian Anastasov and Alexey Kuznetsov at http://
www.ssi.bg/~ja/medium_id.txt. The document also describes a common scenario where this feature can be
useful.

eth1eth0 eth0

Host B's routing table
10.0.0.0/24 reachable via interface eth0
10.0.0.0/24 reachable via interface eth1

Host A Host B

ARPOP_REQUEST: Who is 10.0.0.1?

eth0: 10.0.0.1/24
eth1: 10.0.0.2/24

eth0: 10.0.0.3/24

. . .

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tunable ARP Options | 713

Let’s suppose Host B is a proxy ARP server with proxying enabled on all of its inter-
faces, and see how it behaves when it receives the ARPOP_REQUEST on both of its inter-
faces:

Request received on eth0
According to the routing table, the solicited address 10.0.0.1 is reachable via a
different interface (eth1). Therefore, Host B processes the request. Note that
Host B has two routes that match the destination address 10.0.0.1, but the one
with netmask /30 is more specific and therefore wins.

Request received on eth1
In this case, the receiving interface and the one used to reach 10.0.0.1 match, so
Host B does not process the request.

As you can see, there is a need for a way to tell the proxy ARP server that its two
interfaces reside on the same broadcast domain, and that therefore neither of the two
ARPOP_REQUESTs should be processed. This is done by assigning an ID called the
medium ID to interfaces connected to the same LAN. In this case, the same medium
ID should be assigned to both eth0 and eth1 on Host B. A host replies to an ingress
solicitation request only when the solicited address is reachable through a device
with a medium ID different from the one associated with the ingress device. Medium
IDs are positive numbers; other values have special meanings as shown in
Table 28-3.

Figure 28-8. Example of use of medium ID

Table 28-3. Value of medium ID

Value Meaning

–1 Proxy ARP is disabled.

0 (default) Medium ID feature is disabled.

>0 Valid medium ID.

eth1eth0: 10.0.0.3/24 eth0

Host B's routing table
10.0.0.0/30 reachable via interface eth1
10.0.0.0/24 reachable via interface eth0

Host A Host B (Proxy ARP server)

ARPOP_REQUEST: Who is 10.0.0.1?

LAN1

Host C

eth0: 10.0.0.1/24

LAN3 (10.0.0.0/24)

eth2
eth0: 10.0.0.5/24 (medium_id=1)
eth1: 10.0.0.2/30 (medium_id=1)

. . .

. . .

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

714 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

The medium ID configuration is not necessary in the topology in Figure 28-9, where
Host B’s interfaces are connected to two different LANs. For details on the purpose
and use of medium IDs, see http://www.ssi.bg/~ja/medium_id.txt.

Figure 28-10 shows the logic implemented by arp_fwd_proxy, the routine invoked by
arp_process to see whether a given ARP request can be proxied based on the proxy
ARP and Medium ID configuration.

ARP Protocol Initialization
The ARP protocol is initialized by arp_init in net/ipv4/arp.c.

The skeleton of a general protocol initialization routine was shown in the section
“Protocol Initialization and Cleanup” in Chapter 27. In this chapter we’ll examine
what is ARP-specific.

The first step in the function is to register a table of virtual functions and other gen-
eral parameters used by ARP; this is done by neigh_table_init. The contents of the
table, arp_tbl, are described in the next section.

We saw in Chapter 13 how dev_add_pack is used to install a protocol handler. If you
remember how that routine is used, from the following definition of arp_packet_type
it should be clear that ARP packets will be processed by the arp_rcv function
(defined in the same net/ipv4/arp.c file).

static struct packet_type arp_packet_type = {
 .type: _ _constant_htons(ETH_P_ARP),
 .func: arp_rcv,
};

arp_proc_init creates the /proc/net/arp file, which can be read to see the contents of
the ARP cache (including proxy destinations).

Figure 28-9. Redesign of the topology in Figure 28-8 that does not need the medium ID
configuration

eth1eth0: 10.0.0.3/24 eth0

Host B's routing table
10.0.0.0/30 reachable via interface eth1
10.0.0.0/24 reachable via interface eth0

Host A Host B (Proxy ARP server)

ARPOP_REQUEST: Who is 10.0.0.1?

LAN1

Host C

eth0: 10.0.0.1/24

LAN3

eth2
eth0: 10.0.0.2/24
eth1: 10.0.0.2/30

. . .

. . .

LAN2

(10.0.0.0/24)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ARP Protocol Initialization | 715

When the kernel is compiled with support for sysctl, the directory /proc/sys/net/
ipv4/neigh is created to export the default tuning parameters of the neigh_parms
structure by means of neigh_sysctl_register. Note that the first input parameter to
the latter is set to NULL, which, as we will see in the section “Directory creation,” in
Chapter 29, means that the caller (arp_init) wants to register the default directory.

register_netdevice_notifier registers a callback function with the kernel to receive
notifications about changes to the configurations and status of devices. See the sec-
tion “External Events” for more details.

The arp_tbl Table
This is the basic data structure that contains essential variables to which the ARP
protocol refers. The role of the structure, which is of type neigh_table, was described

Figure 28-10. arp_fwd_proxy function

Does the
Medium ID

configuration
disable proxy-ARP?

Request can be proxied

Yes

Yes

No

Yes

Is proxy ARP
enabled on the egress

device?

Is IN dev
Medium ID != OUT dev

Medium ID?

No

No

Request can NOT be
proxied

Is Medium
ID configured on the

ingress device?

Yes

Is proxy
ARP enabled on the

 ingress device?

Yes

No

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

716 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

in the section “Main Data Structures” in Chapter 27. ARP initializes its table as
follows:

struct neigh_table arp_tbl = {
 .family: AF_INET,
 .entry_size: sizeof(struct neighbour) + 4,
 .key_len: 4,
 .hash: arp_hash,
 .constructor: arp_constructor,
 .proxy_redo: parp_redo,
 .id: "arp_cache",
 .parms: {
 .tbl: &arp_tbl,
 .base_reachable_time: 30 * HZ,
 .retrans_time: 1 * HZ,
 .gc_staletime: 60 * HZ,
 .reachable_time: 30 * HZ,
 .delay_probe_time: 5 * HZ,
 .queue_len: 3,
 .ucast_probes: 3,
 .mcast_probes: 3,
 .anycast_delay: 1 * HZ,
 .proxy_delay: (8 * HZ) / 10,
 .proxy_qlen: 64,
 .locktime: 1 * HZ,
 },
 .gc_interval: 30 * HZ,
 .gc_thresh1: 128,
 .gc_thresh2: 512,
 .gc_thresh3: 1024,
};

As an example of the significance of these fields, the value of the base_reachable_
time field (described in the section “neigh_parms Structure” in Chapter 29) indicates
that ARP considers an entry NUD_REACHABLE only if the last proof of reachability
arrived within the last 30 seconds. Similarly, the retrans_time field (described in the
same section) indicates that if no reply is received to a solicitation, a new one will be
sent after 1 second.

In the following sections, we’ll examine the hash, constructor, and proxy_redo meth-
ods. We will also see how arp_rcv processes ingress ARP packets.

Initialization of a neighbour Structure
As we saw in earlier chapters, a neighbour structure stores all of the information
needed to perform the neighboring protocol’s job—translating an L3 address to an
L2 address—for a single L3-to-L2 address mapping. Each protocol specifies the func-
tion used to create a neighbour structure in its neigh_table->constructor virtual func-
tion. ARP’s initialization function, as you can see from the definition of the arp_tbl
structure in the previous section, is arp_constructor.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Initialization of a neighbour Structure | 717

Basic Initialization Sequence
Figure 28-11 shows the basic steps in creating a neighbor entry.

We saw in the section “Creating a neighbour Entry” in Chapter 27 that a neighbor
can be created for different reasons and in different initial states. Because of that, the
default values assigned to the fields of the neighbour structure can be overridden by
the caller. For instance, neigh->nud_state is set to NUD_NONE when the neighbour
structure is created as a consequence of a transmission request toward the associ-
ated neighbor. But it could also be NUD_PERMANENT or NUD_STALE if the entry was cre-
ated from the command line. Broadcast and multicast IP addresses do not need any
help from ARP to be translated to an L2 broadcast or multicast corresponding
address, so in these cases, nud_state is set to NUD_NOARP.

Particularly important are the initializations of the following fields:

nud_state
The initial state of the neighbour structure depends on the type of L3 address and
the reason the entry was created.

output
output is initialized based on the value assigned to nud_state.

ha
This field is the L2 address, which is what the ARP protocol is there to discover.
Once again, ARP is not needed for the addresses described in the section “Spe-
cial Cases” in Chapter 26, and the L2 address can be derived from the L3
address right away.

ops
As described in Chapter 27, this collection of virtual functions determines the
operations invoked by the IP subsystem. Figure 28-12 summarizes the criteria
used by ARP (more exactly, arp_constructor) to select which instance of neigh_
ops to use, among the four defined in net/ipv4/arp.c.

When not explicitly set by neigh_create, the fields just described inherit the values
assigned by neigh_alloc, which is called by neigh_create before it invokes the
constructor virtual function.

Figure 28-11. Initialization sequence for a new neighbour structure

neigh_create

neighbour -> parms -> neigh_setup (Device specific initialization)

neigh_table -> constructor (Protocol specific initialization)

neigh_alloc

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

718 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

Virtual Functions in the ops Field
In the section “Common Interface Between L3 Protocols and Neighboring Proto-
cols” in Chapter 27, we saw an overview of the functions provided by the neighbor-
ing infrastructure in net/core/neighbour.c for the output, connected_output, hh_output,
and queue_xmit methods used by a neighboring protocol. In this chapter, we focus on
the ones provided by the ARP protocol. The four sets of methods that can be
assigned to neigh->ops (depending on the state of the neighbour) are:

static struct neigh_ops arp_generic_ops = {
 .family: AF_INET,
 .solicit: arp_solicit,
 .error_report: arp_error_report,
 .output: neigh_resolve_output,
 .connected_output: neigh_connected_output,
 .hh_output: dev_queue_xmit,
 .queue_xmit: dev_queue_xmit,
};

static struct neigh_ops arp_hh_ops = {
 .family: AF_INET,
 .solicit: arp_solicit,
 .error_report: arp_error_report,
 .output: neigh_resolve_output,
 .connected_output: neigh_resolve_output,
 .hh_output: dev_queue_xmit,
 .queue_xmit: dev_queue_xmit,
};

static struct neigh_ops arp_direct_ops = {
 .family: AF_INET,
 .output: dev_queue_xmit,
 .connected_output: dev_queue_xmit,
 .hh_output: dev_queue_xmit,
 .queue_xmit: dev_queue_xmit,
};

Figure 28-12. Initialization of neigh->ops in arp_constructor

Yes

No

Use direct_ops

Device that does
not use an L2

header

Yes

No

Use broken_ops

Device whose driver
has not been adapted to

the new neighbor
infrastructure

Yes

No

Use hh_ops

Device whose
driver can cache L2

 headers

Use generic_ops

Needed to handle legacy code

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Initialization of a neighbour Structure | 719

struct neigh_ops arp_broken_ops = {
 .family: AF_INET,
 .solicit: arp_solicit,
 .error_report: arp_error_report,
 .output: neigh_compat_output,
 .connected_output: neigh_compat_output,
 .hh_output: dev_queue_xmit,
 .queue_xmit: dev_queue_xmit,
};

The three fields with an ARP-specific initialization are set to the same value in all
four neigh_ops instances (except that arp_direct_ops does not need some of the
fields, and therefore omits their definitions).

family
AF_INET simply indicates that ARP works with IPv4.

solicit
arp_solicit is called to generate a solicitation request, either to resolve an
address for the first time or to confirm one that is already in the cache. In the lat-
ter case, it is triggered by the expiration of a timer, as discussed in the section
“Timers” in Chapter 27.

The transmission is done with arp_send, which is described in the section
“Transmitting ARP Packets: Introduction to arp_send.”

error_report
arp_error_report notifies the upper networking layers when there is an error in
an ARP transaction. See the section “Generated Events.”

Start of the arp_constructor Function
The first task of arp_constructor is to retrieve an in_dev structure from the device
associated with the neighbor. This structure stores the IP layer configuration of the
network device, which includes the ARP configuration information, too. If it does
not exist, the device the neighbor is associated with does not have an IP configura-
tion and therefore the use of ARP does not make sense; the function therefore termi-
nates with an error.

If the device has an IP configuration, the ARP configuration information is stored in
the neighbour entry via the neigh->parms pointer.

static int arp_constructor(struct neighbour *neigh)
{
 u32 addr = *(u32*)neigh->primary_key;
 struct net_device *dev = neigh->dev;
 struct in_device *in_dev;
 struct neigh_parms *parms

 neigh->type = inet_addr_type(addr);

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

720 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

 rcu_read_lock();
 in_dev = rcu_dereference(_ _in_dev_get(dev));
 if (in_dev == NULL) {
 rcu_read_unlock();
 return -EINVAL;
 }

 parms = in_dev->arp_parms;
 _ _neigh_parms_put(neigh->parms);
 neigh->parms = neigh_parms_clone(parms);

 rcu_read_unlock();

 if (dev->hard_header == NULL) {
 /* Case1: Device that does not use L2 */
 } else {
 /* Case2: Device that does use L2 */
 }

The following steps depend on whether the device driver provides an L2 protocol
header, dev->hard_header.

Devices That Do Not Need ARP
When dev->hard_header is not set, it means that the device driver does not provide a
function to fill in the L2 header. This in turn means that the device does not have an
L2 header, so the state of the neighbour entry should be set to NUD_NOARP. Moreover,
neigh_ops is initialized to arp_direct_ops, which consists of a neigh_ops structure
with all the functions initialized to dev_queue_xmit: because there is no need for a
neighboring protocol, arp_direct_ops simply goes straight to the lower layer.

 neigh->nud_state = NUD_NOARP;
 neigh->ops = &arp_direct_ops;
 neigh->output = neigh->ops->queue_xmit;

Note that neigh->ops is not necessarily set to arp_direct_ops every time state is set
to NUD_NOARP. There are cases, such as IP broadcast addresses, where the L2 layer uses
a header (dev->hard_header is not NULL) but ARP is not needed.

Also note that neigh->ha is not initialized, because it is not needed.

Devices That Need ARP
As shown in Figure 28-12, once arp_constructor establishes that a device needs ARP,
it has to further differentiate between devices whose drivers have been updated to the
new neighboring infrastructure and those that still use the old one (see the functions
noted as obsolete in net/ipv4/arp.c).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Initialization of a neighbour Structure | 721

Device types are identified by the ARP header type, a list of ARPHDR_XXX values
included in include/linux/if_arp.h. arp_constructor uses these types to distinguish
between old- and new-style drivers.

At the moment, only the amateur radio devices and some WAN cards are still using
the old code. For these, neigh->ops is initialized to arp_broken_ops, which consists of
virtual functions based on the old code.

 switch (dev->type) {
 default:
 break;
 case ARPHRD_ROSE:
#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 case ARPHRD_AX25:
#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 case ARPHRD_NETROM:
#endif
 neigh->ops = &arp_broken_ops;
 neigh->output = neigh->ops->output;
 return 0;
#endif
 ;}

For other devices, the kernel initializes neigh->ops based on the capabilities of the
device driver. If the device driver provides a function to manage L2 header caching
(dev->hard_header_cache), arp_hh_ops is used. Otherwise, the generic arp_generic_
ops is selected. To know whether a given device provides this service, look at the
device’s associated xxx_setup function (e.g., ether_setup for Ethernet cards, as
described in Chapter 8).

 if (dev->hard_header_cache)
 neigh->ops = &arp_hh_ops;
 else
 neigh->ops = &arp_generic_ops;

The initialization of neigh->output, as described earlier in the section “Basic Initial-
ization Sequence,” depends on nud_state. For example, when the neighbour struc-
ture is ready to be used (NUD_VALID), the output function can be initialized directly to
connected_output. See the section “Routines used for neigh->output” in Chapter 27
for more details about neigh->output.

 if (neigh->nud_state&NUD_VALID)
 neigh->output = neigh->ops->connected_output;
 else
 neigh->output = neigh->ops->output;

The loopback device (lo) and devices configured with the IFF_NOARP flag do not need
to use ARP to resolve the address. However, because the neighboring subsystem still
needs an address to put into the L2 header, this function assigns the one associated
with the device.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

722 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

 neigh->type = inet_addr_type(addr);

 if (neigh->type == RTN_MULTICAST) {
 neigh->nud_state = NUD_NOARP;
 arp_mc_map(addr, neigh->ha, dev, 1);
 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
 neigh->nud_state = NUD_NOARP;
 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
 neigh->nud_state = NUD_NOARP;
 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 }

Transmitting and Receiving ARP Packets
The functions used to send and receive ARP packets are:

arp_send
The neighboring subsystem calls neigh_ops->solicit to transmit a solicitation
request. In the case of ARP, the solicit function (arp_solicit) is a simple wrap-
per around arp_send. arp_send fills in the ARP header and payload and uses the
dev_queue_xmit function to transmit the request.

arp_rcv
Because ARP is a protocol in its own right (unlike ND for IPv6), it registers a
handler in arp_init. The next section describes arp_rcv in detail, along with how
the two main ARP packet types are processed.

As shown in Figure 28-13, both transmission and reception of ARP packets can be
controlled by Netfilter.

The dotted lines between arp_rcv and arp_send indicate that in some cases, the
reception of an ARP packet triggers the transmission of at least one other ARP
packet. This occurs when:

• Bridging is configured. A bridge receiving an ARP packet may just forward it to
other bridge interfaces without processing it.

• The ingress packet is an ARPOP_REQUEST and the neighboring subsystem decides it
can reply according to its configuration. The subsystem generates an ARPOP_
REPLY.

As Figure 28-13 shows, arp_send is also triggered by external events and a few kernel
features such as bonding; details are provided in later sections.

Transmitting ARP Packets: Introduction to arp_send
arp_send is the routine provided by ARP to transmit both solicitation requests and
replies, as shown in Figure 28-14. Chapter 27 explained on a protocol-independent

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transmitting and Receiving ARP Packets | 723

level how the neighbor infrastructure takes care of solicitation transmissions and
retransmissions. Here we’ll see how arp_send accomplishes its job.

As shown in Figure 28-13(b), arp_send is split into two parts: arp_create initializes
the ARP packet, and arp_xmit hooks into Netfilter and then invokes dev_queue_xmit.

arp_send is split into these two parts so that drivers that need to manipulate a
packet—for instance, by inserting extra headers—can call arp_create and arp_xmit
separately. The driver can thus perform some customization in between. See, for

Figure 28-13. (a) arp_rcv; (b) arp_send

Is the buffer
shared?

No

Sanity check
(e.g. Should we

process it?)

Is the ARP
frame fragmented

in memory?

Passed

Make a local copy

1

No

Drop it
Failed

Yes

Linearize it
Yes

Reception of
an APR packet

Netfilter

arp_process 3Netfilter

Bridging code

dev_queue_xmit

2Netfilter

Fill in header and payload
arp_create

arp_xmit

Transmission of an
ARP packet(a) (b)

1 NF_ARP_IN

2 NF_ARP_OUT

3 NF_ARP_FORWARD

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

724 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

example, how the bonding code manages to add the 802.1Q tag if needed (rlb_
update_client in drivers/net/bonding/bond_alb.c).

Solicitations
We saw in the section “Creating a neighbour Entry” in Chapter 27, the times when
the kernel may need to generate a solicitation request. In this section, we analyze
arp_solicit, the routine used by ARP to accomplish this task.

The caller of arp_solicit is responsible for counting the number of probes (solicita-
tion transmission attempts) made and ensuring that the maximum has not yet been
reached. arp_solicit, therefore, doesn’t have to worry about this task.

Here is its prototype and the meaning of the two input parameters:

static void arp_solicit(struct neighbour * neigh, struct sk_buff *skb)

neigh
Neighbor whose L3 address needs to be resolved.

skb
Buffer holding the data packets whose transmission attempts triggered the gener-
ation of the solicitation request.

To understand the implementation of arp_solicit, it is important to understand the
relationships and differences between the following two groups of parameters:

• The source IP addresses in the IP header of the skb buffer, and the source IP
address selected by arp_solicit to put in the ARP header (see Figure 28-1 for the
ARP header format).

When the traffic is generated locally, the source IP address in the IP header is
local to the system. When the packet is being forwarded, the source IP address is
that of the original sender.

• The destination IP address in the IP header of the skb buffer, and the destination
IP address that arp_solicit is asked to resolve (neigh->primary_key).

The address that ARP is asked to resolve is the address of the next hop used to
route skb. This matches the destination IP address in the IP header only when
the next hop is also the final destination.

Figure 28-14. Examples of contexts where arp_send is used

Solicitations
(arp_solicit)

arp_send

Replies to request
(arp_process)<gratuitous requests>

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transmitting and Receiving ARP Packets | 725

The main tasks of arp_solicit are:

• Select the source IP address to put in the ARP header. This can be influenced by
the ARP_ANNOUNCE configuration mentioned in the section “/proc Options.”
Figure 28-15 shows the internals of arp_solicit and in particular how the source
IP address is selected.

• Update the number of solicitation requests generated.

• Transmit the solicitation using arp_send.

The next section will go into detail on the selection of the source IP address. Let’s
briefly see how the other two tasks are accomplished.

arp_solicit differentiates between requests that should be generated by the kernel
and requests that should be generated from user space. The latter can happen when
an arpd ARP daemon is running; this requires that the kernel be compiled with the
ARPD option, and is discussed in the section “ARPD.” The two cases are handled as
follows:

• For kernel-generated requests, the solicitation is transmitted with arp_send.

• For user-space requests, arp_solicit makes a call to neigh_app_ns to notify the
interested user-space application about the need to generate a solicitation
request. If the kernel has not been compiled with support for ARPD, arp_solicit
simply returns without making the solicitation request.

ARP_ANNOUNCE and selection of source IP address

Most hosts have just one IP address, so this can be copied into the ARP header.
When a host offers multiple IP addresses, the choice can be influenced by ARP_
ANNOUNCE. arp_solicit simply applies the logic described in Table 28-1 and depicted
in Figure 28-15. In order to accomplish its job, it makes use of three routines made
available by the routing and configuration subsystems:

inet_addr_type
Given an IP address in input, this function returns the address type. In the con-
text of this chapter, we are interested in the value RTN_LOCAL, which indicates an
address that belongs to the local host.

inet_addr_onlink
Given a device and two IP addresses, this function checks whether the two
addresses belong to the same subnet.

inet_select_addr
Given a device, an IP address (usually not local to the system), and a scope, this
function searches the device configuration for an IP address that falls within the
same subnet as the ingress address and with a scope that is the same or smaller.
The scope typically covers a site, a link, or a host. An input address of 0 makes
any primary address configured on the input device eligible for selection. You
can find a more detailed description in Chapter 30.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

726 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

Note that when ARP_ANNOUNCE is configured at level 0 or 1 and the source IP
address in the IP header cannot be used, arp_solicit falls back to level 2. inet_
select_addr is invoked with a scope of RT_SCOPE_LINK. Given a device dev and a tar-
get IP address IP, inet_select_addr browses the IP addresses configured on dev and
selects the first one that matches the subnet of the target IP address IP and has a
scope greater than or equal to RT_SCOPE_LINK. Scopes are described in the section
“Scope” in Chapter 30.

Processing Ingress ARP Packets
As explained in the section “ARP Protocol Initialization,” ARP registers the arp_rcv
routine as its protocol handler. Let’s see how this handler processes incoming ARP
packets.

The ARP packet can be accessed from the skb buffer that is the function’s input argu-
ment; in particular, the ARP header is at skb->nh.arph. The function’s first task is to
make sure the ARP packet is not fragmented; that is, that it can be accessed linearly
in memory. This task is necessary because sometimes the skb buffer is fragmented in
memory.* If it is, arp_rcv calls the generic routine pskb_may_pull to make sure there is
enough room in the main buffer for the ARP header and payload.

Figure 28-15. Selection of source IP in arp_solicit

* This has nothing to do with IP packet fragmentation. Details are in Chapter 2.

Select best source address
given device and target IP

(inet_select_addr)

ARP_ANNOUNCE
Level 1

Use source address in the
IP header

20 (default)

Yes
Is src IP

addr in IP hdr local?
(RTN_LOCAL)

Is src IP addr
in IP hdr on the same

subnet as the target IP?
(inet_addr_onlink)

Is src IP
addr in IP hdr local?

(RTN_LOCAL)

No

Yes
No

No

1

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing Ingress ARP Packets | 727

int arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt)
{
 struct arphdr *arp;

 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
 (2 * dev->addr_len) +
 (2 * sizeof(u32)))))
 goto freeskb;

An input ARP packet is dropped by arp_rcv if one of the following conditions is met:

• It was received on a device that does not use ARP (i.e., one tagged with the IFF_
NOARP flag).

The loopback interface is a special case within this category. Packets sent to and
from the loopback interface are classified with the PACKET_LOOPBACK type. Since
such an interface is virtual and does not have a hardware address, there is no
need to use ARP.

• It was not addressed to the receiving interface (i.e., the destination address was
not the receiving interface’s address or the broadcast address).

In case the buffer was shared (that is, someone else holds a reference to it), arp_rcv
clones the buffer with skb_share_check. Cloning is necessary to make sure that no
one will change the content of skb (in particular, its header pointers) while process-
ing the ARP packet. See the section “Cloning and copying buffers” in Chapter 2 for
more details.

Refer to the section “ARP Packet Format” for the meaning of SIP and TIP. Once an
ingress ARP packet is ready to be processed, supposing Netfilter does not kidnap it,
arp_process takes care of it, as shown in Figure 28-13.

Figure 28-16 shows the structure of the arp_process function. It starts with some
sanity checks common to all the ARP packet types it understands, and then contin-
ues with operations specific to particular packet types. The final part of the function
is another common piece of code that updates the cache with the new information,
unless the entry to update is locked (see the section “Final Common Processing”).
Requests for multicast IP addresses are dropped because they are illegal: we saw in
the section “Special Cases” in Chapter 26 that multicast IP addresses do not need the
use of ARP to be translated to link layer addresses.

Initial Common Processing
arp_process processes both ARPOP_REQUEST and ARPOP_REPLY packet types. Any other
ARP packet type is dropped. Packets with a multicast or broadcast destination
address, which can be detected with the LOOPBACK and MULTICAST macros,* are also

* LOOPBACK recognizes the addresses 127.x.x.x and MULTICAST recognizes the addresses 224.x.x.x (class D).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

728 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

dropped because ARP is not needed for them, as described in the earlier section
“Destination Address Types for ARP Packets,” and the section “Special Cases” in
Chapter 26.

Some device types are supported by the kernel only when it has been explicitly com-
piled with support for them. They are not included by default because they are not
used very often, so the kernel developers decided to reduce the kernel size by mak-
ing their support optional. The switch statement shown here simply goes one by one
through these device types (using a #ifdef to make sure each one has been compiled
into the kernel) and checks whether the protocol specified on the ARP packet is cor-
rect for that device type. This part of the code is long and repetitive.

 switch (dev_type) {
 default:
 if (arp->ar_pro != htons(ETH_P_IP)) ||
 htons(dev_type) != arp->ar_hrd)

Figure 28-16. arp_process function

Is TIP the
loopback or
multicast?

SIP=0.0.0.0?

Operation

Drop packet

No

Sanity
check header

fields based on the
device type

Passed

See Figure 28-18 See Figure 28-17

Other

APR_REPLY

No

APR_REQUEST

Is operation
ARP_REQUEST?

Is TIP a
local address?

Send ARP_REPLY

Yes Yes Yes

Failed

Yes

No No

Duplicate address detection

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing Ingress ARP Packets | 729

 goto out;
 break;
#ifdef CONFIG_NET_ETHERNET
 case ARPHRD_ETHER:

 if (arp->ar_hrd != htons(ARPHRD_ETHER) &&
 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 arp->ar_pro != htons(ETH_P_IP))
 goto out;
 break;
#endif
#ifdef CONFIG_TR
 case ARPHRD_IEEE802_TR:

#endif

#endif
 }

The last task in this section of arp_process is to initialize a few local variables from
fields of the ARP header to make later code cleaner. This part of the function is not
shown here, but is fairly easy to understand by consulting Figure 28-1. arp_ptr
points to the end of the hardware header.

Processing ARPOP_REQUEST Packets
Figure 28-17 is a high-level description of how ARPOP_REQUEST packets are processed
by arp_process. arp_process processes both requests for local IP addresses and
requests for nonlocal IP addresses. The latter case—that is, the left side of the fig-
ure—is described in the section “Proxy ARP.” Table 28-4 explains the meanings of
SIP and TIP.

An ARPOP_REQUEST is processed only if all of the following are true:

• The kernel knows how to reach the address requested by the sender (that is,
there is a valid route to the address in the routing table).
 if (arp->ar_op == htons(ARPOP_REQUEST) &&
 ip_route_input(skb, tip, sip, 0, dev) == 0) {
 /* Process packet */
 }

Table 28-4. Parameters extracted from the ARP packet

ARP packet field Local variable name

Sender Ethernet address sha

Sender IP address sip

Target Ethernet address tha

Target IP address tip

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

730 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

Figure 28-17. ARPOP_REQUEST handling by arp_process

End

Is there a route
between TIP and SIP?

Is TIP a
local address?

Is there already
a neighbour entry

for SIP?

Is IPv4
forwarding enabled?

Is DNAT
configured for SIP?

TIP is unicast
and INdev!=OUTdev

Is proxy
ARP enabled

(see figure 28-8)?

Create it

ARP filter
or ARP ignore?

Send ARP_REPLY

Is the
requested entry

present in the proxy
ARP table?

Is there already
 a neighbour entry

for SIP?

proxy_delay=0?
Was the packet
dequeued from
proxy_queue?

Was the packet
sent to the

broadcast address?

Enqueue packet into
proxy_queue

Update entry and set
state to NUD_STATE

Is the last
update older than

Locktime?

Is there already a
neighbour entry

for SIP?

Update it

Create itUpdate it

Send ARP_REPLY

YesYesYes

No

No

No

Yes

Yes

Yes

No

No

NoNo

Yes

Yes

Yes

No

No

No

Yes

Yes

No Yes

Yes

No

Yes

No

(Proxy handling on this side)

Yes

No

See the section
(”Final Common Processing”)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing Ingress ARP Packets | 731

This is a simple way to filter out requests for IP addresses about which the local
system has no knowledge. When the local system is a host, it replies only to
requests for IP addresses configured on the local interfaces. When the local sys-
tem is a proxy ARP server, it also replies to requests for IP addresses that fall
within any of the subnets configured on the local interfaces (i.e., IP addresses
belonging to neighbor hosts).

We will see in Part VII that the routing subsystem adds an entry to the routing
table for each IP address configured locally, and one for the subnet associated to
each of those IP addresses. In both cases, therefore, a routing lookup is suffi-
cient to filter out the requests for those IP addresses the local host should not
reply to.

• Either the requested address is on the system, or it is a remote address handled
by this host as a proxy ARP host. In this section, we address the local case, iden-
tified by the RTN_LOCAL flag. The section “Proxy ARP” describes the remote case.

• There is no configuration explicitly forbidding the transmission of an ARPOP_
REPLY (see the earlier sections “ARP_IGNORE” and “ARP_FILTER”).

If everything is OK, arp_process calls arp_send with the right input parameters. arp_
send was described in the section “Transmitting ARP Packets: Introduction to arp_
send.”

 rt = (struct rtable*)skb->dst;
 addr_type = rt->rt_type;

 if (addr_type == RTN_LOCAL) {
 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 if (n) {
 int dont_send = 0;

 if (!dont_send)
 dont_send |= arp_ignore(in_dev,dev,sip,tip);
 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 dont_send |= arp_filter(sip,tip,dev);
 if (!dont_send)
 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,
 tip,sha,dev->dev_addr,sha);
 neigh_release(n);
 }
 goto out;
 } else {

 /* Handle Proxy ARP if all the required conditions */
 /* are met. See the section "Proxy ARP" */

Passive learning and ARP optimization

The section “Creating a neighbour Entry” in Chapter 27 mentioned that at the end
of an ARP transaction, both the requester and the replier learn something. The

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

732 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

sender achieves its essential goal of learning the target’s address from the ARPOP_
REPLY; this is called active learning. But the target host that receives the ARPOP_REQUEST
learns the sender’s address from the request itself; this is called passive learning. It is
a valuable optimization of the neighboring protocol.

Passive learning is taken care of by neigh_event_ns. The latter checks if it already has
an entry associated to the requester; it then updates an existing entry or creates a
new entry if one doesn’t already exist.

Whether updating an existing entry or creating a new one, the function sets the state
of the neighbor to NUD_STALE. ARP does not take the optimistic step of calling it NUD_
REACHABLE because that state is reserved for hosts that have provided proof of reach-
ability, a stricter requirement described in Chapter 27.

neigh_event_ns returns NULL when it fails to create an entry (usually because of a
lack of memory—that is, no space is available in the cache). In this case, a reply is
not sent to the requester. This policy is a little conservative; a more aggressive
approach would be to reply anyway on the basis that even though we are tempo-
rarily unable to create an entry on our system for the neighbor, we should not
deprive it of the ability to transmit data to us.

neigh_event_ns calls one of the lookup functions described in the section “Caching” in
Chapter 27. Because these always increment the entry’s reference counter when the
search succeeds, neigh_event_ns needs to decrement the reference count
correspondingly.

Requests with zero addresses

When the source IP address in an ARP request is set to 0 (0.0.0.0 in standard quad
notation), it could be a corrupted packet, because 0.0.0.0 is not a valid IP address.
However, it could also be a special packet used by DHCP to detect duplicated
addresses. See the earlier section “Duplicate Address Detection” for the conditions
under which these packets are sent, and RFC 2131, section 2.2, for the use of a 0
address.

A DHCP server or client can optionally send an ARPOP_REQUEST for a DHCP-assigned
IP address to double-check whether, by mistake, the same address is already in use
by another host. That special ARPOP_REQUEST is sent with a source IP address of 0.0.0.0
so that it will not create any trouble for the other hosts on the subnet.

The following code in arp_process runs when the source IP address (sip) is 0, and
lets the local host claim an address when the packet’s sender is making this type of
request:

 if (sip == 0) {
 if (arp->ar_op == htons(ARPOP_REQUEST) &&
 inet_addr_type(tip) == RTN_LOCAL &&
 !arp_ignore(in_dev, dev, sip, tip))

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Processing Ingress ARP Packets | 733

 arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,
 dev->dev_addr,dev->dev_addr);
 goto out;
 }

Processing ARPOP_REPLY Packets
Incoming ARPOP_REPLY packets are processed if one of the following conditions is
met:

• There is a pending ARPOP_REQUEST that matches the received ARPOP_REPLY. In
other words, the ARPOP_REPLY is a reply to an ARPOP_REQUEST the kernel generated
earlier. This is the most common case.

• There is no pending ARPOP_REQUEST, but the kernel has been compiled with sup-
port for UNSOLICITED_ARP (see the section “Compile-Time Options”). In this case,
a new neighbor entry is created by calling _ _neigh_lookup with a non-NULL last
parameter.

#ifdef CONFIG_IP_ACCEPT_UNSOLICITED_ARP
 if (n == NULL &&
 arp->ar_op == htons(ARPOP_REPLY) &&
 inet_addr_type(sip) == RTN_UNICAST)
 n = _ _neigh_lookup(&arp_tbl, &sip, dev, -1);
#endif

The right and left sides of Figure 28-18, respectively, show how these two cases are
handled.

Figure 28-18. ARPOP_REPLY handling by arp_process

Unicast
packet?

Create entry

Is the last
update older than

locktime?

Update entry and set state
to NUD_REACHABLE

Yes

Is there already
a neighbour entry

for SIP?

Yes

End

Yes

Accept unsolicited
ARP_REPLY?

Yes

No

No

No

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

734 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

Regardless of why the packet is accepted, the existing neighbour entry is updated by
the common code described in the next section (and is shown in the dotted box in
the figure) to reflect the information in the ARPOP_REPLY packet.

Final Common Processing
The last part of arp_process is executed for all ARPOP_REPLY packets, and for ARPOP_
REQUEST packets that have not been processed because they did not meet the condi-
tions listed in the section “Processing ARPOP_REQUEST Packets.”

Remember that when a host replies to an ARPOP_REQUEST, it inverts the source and
destination fields of the ARP header, as well as fills in the empty spaces.

Another concept to understand, in reading this code, is the locktime. This is unre-
lated to the semaphore type of locking used frequently by the kernel. Rather, it’s a
simple kind of timeout that takes care of the chance that a host could receive more
than one ARPOP_REPLY for the same ARPOP_REQUEST. This could happen if there is some
kind of misconfiguration or if there are multiple proxy ARP servers on the same
LAN; the arp_process function reacts by using only the first reply and rejecting sub-
sequent replies.

The mechanism is as follows: the neighboring subsystem introduces the locktime
parameter in the neigh_table structure; the parameter can also be tuned by /proc.
The following code sets override to a time in the future that reflects locktime.
(locktime is expressed in jiffies, so a value of HZ means 1 second.) The neigh_update
function is called to update an entry only if it wasn’t called for that same entry dur-
ing the preceding locktime.

Thus, the final code is:

 n = _ _neigh_lookup(&arp_tbl, &sip, dev, 0);
 ...
 if (n) {
 int state = NUD_REACHABLE;
 int override;

 override = time_after(jiffies, n->updated + n->parms->locktime);

 if (arp->ar_op != htons(ARPOP_REPLY) ||
 skb->pkt_type != PACKET_HOST)
 state = NUD_STALE;

 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 neigh_release(n);
}

The code has to select the right state to assign to the neighbour entry being updated.
As explained in the section “Reachability” in Chapter 26, unicast and broadcast
replies have different levels of authority. A unicast reply (PACKET_HOST) sets the neigh-
bor state to NUD_REACHABLE, and a broadcast reply sets it to NUD_STALE. Updates caused
by ARPOP_REQUEST packets always set the state to NUD_STALE.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Proxy ARP | 735

Proxy ARP
In the section “Processing Ingress ARP Packets,” we saw how requests for local
addresses were handled by arp_process. Now we will see how and when requests for
remote addresses are handled by the same function.

We saw in the sections “Conditions Required by the Proxy” in Chapter 26 and “Per-
Device Proxying and Per-Destination Proxying” in Chapter 27, that the kernel sup-
ports two types of proxying: device-based and destination-based (or global). Per-
device proxy ARP is disabled on a host by default. It can be enabled either globally or
on a per-device basis via the /proc interface. The kernel can check whether proxying
ARP is enabled on a given device through the IN_DEV_PROXY_ARP macro defined in
include/linux/inetdevice.h. Per-destination proxying can be configured with either the
arp or the ip neigh command (see the section “System Administration of Neighbors”
in Chapter 29).

ARP adds one more condition under which it does proxying: Destination Network
Address Translation. We will see in the section “Destination NAT (DNAT)” why the
kernel needs to proxy requests when DNAT is configured.

For an ARPOP_REQUEST to be eligible for handling by a proxy server, the following con-
ditions must be true:

• Forwarding is enabled on the receiving device, or globally on the proxying host.

• The target IP address is unicast (because other address types don’t need ARP to
be resolved, as we saw in the section “Special Cases” in Chapter 26). In code
terms, addr_type==RTN_UNICAST.

• The device receiving this request is not the one through which the target IP
address can be reached (because if it was, no proxying would be needed: the tar-
get host can reply by itself). In code terms, rt->u.dst.dev!=dev.

The following code from the arp_process function shows how it checks for the con-
ditions just listed:

 if (addr_type == RTN_LOCAL) {

 } else if (IN_DEV_FORWARD(in_dev)) {
 if ((rt->rt_flags&RTCF_DNAT) ||
 (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
 (arp_fwd_proxy(in_dev, rt) ||
 pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {

If the basic conditions are met, the proxy host checks its configuration of device-
based and destination-based proxying. The logic is shown in Figure 26-8 in
Chapter 26. The following conditions determine whether the proxy host responds to
the address.

• Proxy ARP is enabled either on the device or globally.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

736 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

• The ingress and egress interfaces are not on the same medium, as explained in
the section “Medium ID.”

• The target address is in the database of addresses being proxied. This database is
organized by destination address and is queried through the pneigh_lookup
function.

Let’s suppose that arp_process has the green light to process the ARPOP_REQUEST.

First, neigh_event_ns is used to create (or just update) a neighbour entry for the
sender’s IP address, just as it does when ARP is processing requests for local
addresses as described in the section “Passive learning and ARP optimization.”

Processing of proxy ARP can be delayed to prevent bursts of traffic on the network,
as described in the section “Delayed Processing of Solicitation Requests” in
Chapter 27. Thus, if a packet comes directly from another host and delayed process-
ing is configured, it is enqueued on the proxy queue. If the packet comes from the
queue (that is, it was previously enqueued and the time has come to handle it) or if
delayed processing is not configured, the packet is processed now.

 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 if (n)
 neigh_release(n);

 if (skb->stamp.tv_sec == LOCALLY_ENQUEUED ||
 skb->pkt_type == PACKET_HOST ||
 in_dev->arp_parms->proxy_delay == 0) {
 arp_send(ARPOP_REPLY,ETH_P_ARP,
 sip,dev,tip,sha,dev->dev_addr,sha);
 } else {
 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
 in_dev_put(in_dev);
 return 0;
 }
 goto out;
 }
 }

Destination NAT (DNAT)
Destination NAT, also called Route NAT in IPROUTE2 terminology, allows a host
to define dummy (NAT) addresses: ingress packets addressed to them are detected
by the host and forwarded to another address. DNAT is used mainly by routers, and
bears no relation to the Destination NAT implemented by Netfilter.*

* All flavors of NAT supported by Linux—SNAT, DNAT, Masquerading, etc.—are implemented by Netfilter.
Because this book does not cover the Netfilter internals, I have not included a discussion on NAT in the book
either. For a discussion of the differences between the NAT flavors, you can refer to the Netfilter project’s
home page, http://www.netfilter.org.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Proxy ARP | 737

It should be noted that although the ARP code in Linux handles DNAT, the routing
code seems to have dropped support for it. Therefore, this feature is currently bro-
ken in kernel 2.6.

Figure 28-19 illustrates DNAT. The router RT has been configured with the dummy
NAT address 10.0.0.5. Whenever RT receives traffic addressed to 10.0.0.5, it
changes the destination address to 10.0.1.10 and forwards the traffic to the host with
that address. Of course, the configuration ensures that reverse traffic is also taken
care of.

All of this is done using proxy ARP. In the 10.0.0.0/24 subnet, no host is configured
with the 10.0.0.5 address. However, that address is publicized as the address of a
given host (for instance, a web server). Whenever a host on the subnet 10.0.0.0/24
wants to talk to 10.0.0.5, it sends an ARP request for that address like any other.
Because the ARP request is sent to the Ethernet broadcast address, RT receives it and
proxies it by replying to the ARP request, providing the L2 address of its eth0 inter-
face. From that moment on, RT proxies traffic between the requester and 10.0.1.10.

When a host configures a dummy NAT address, a special routing table entry is cre-
ated and tagged with the RTCF_DNAT flag so that ARP can check and proxy the
address.

Proxy ARP Server as Router
At this point, a proxy and a router may seem similar, and to some extent they are. In
fact, routers are usually the hosts that handle proxy ARP under IPv4, and (as
described in RFC 2461) only routers are allowed to do it under IPv6. But proxying
and routing differ in the following aspect: while a proxy ARP server is usually
transparent to the hosts being served by it, a router is not. Each host needs to be

Figure 28-19. DNAT example

10.0.1.2 10.0.1.10

RT

. . .

. . .

eth1: 10.0.1.1Subnet 10.0.1.0/24

Subnet 10.0.0.0/24 eth0: 10.0.0.1

DNAT: 10.0.0.5 10.0.1.10

. . .

10.0.0.2 10.0.0.3

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

738 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

explicitly configured to use the router. In the most common scenario, a proxy server
acts as a transparent router between hosts located in different LANs but configured
with the same IP subnet, as shown in Figure 28-20.

Figure 28-20(a) shows a simple topology where two subnets with a /25 netmask
communicate via a router. Figure 28-20(b) shows how the same topology allows
hosts on the two subnets to communicate via a proxy rather than a router by sim-
ply changing their netmasks from /25 to /24; this change joins the 10.0.1.0/25 and
10.0.1.128/25 subnets. Figure 28-20(c) is the topology that the hosts of the two
subnets perceive with the configuration of Figure 28-20(b).

Note that the examples in Figure 28-20 are not meant to suggest any configuration or
preference between a proxy ARP server and a router. The two devices are used to
accomplish different tasks: a router segregates subnets into LANs, whereas a proxy
ARP server merges different LANs into a single subnet. The example is provided only
to show how the configuration of the hosts changes based on whether the hosts in
the two LANs communicate via a router or a proxy ARP server. Of course, you may
be able to place all hosts in a single LAN with no need for any routers and proxy
ARP servers, but since we are discussing proxy ARP, I need to provide an example of
its use.

There is a special case worth mentioning: a proxy ARP server can be configured to
act as a transparent default gateway. In other words, instead of configuring a default
route on each host on a LAN, the administrator can let hosts use proxy ARP to reach
the default route. To do this, the administrator configures the hosts with addresses
that have a /0 netmask, the same netmask used when defining the default gateway
route. In this way, the proxy ARP server handles all traffic to unknown addresses,
effectively becoming the default gateway. The proxy ARP server can even change its
address without any impact on the hosts, as long as it updates all the old neighbour
entries in the host’s caches (see the section “Gratuitous ARP” for how this can be
done). However, this clever-looking scenario is not very efficient, for reasons I’ll
explain next.

A network topology that includes a proxy ARP server, like the one in
Figure 28-20(b), registers a high volume of solicitation requests and replies. When
the number of hosts being proxied is high, the percentage of bandwidth used by
solicitations may become considerable.

Given a network like the one in Figure 28-20(a), the worst-case scenario is where the
/25 subnet contains a full 126 hosts (the number that fits in 7 bits, minus the default
and broadcast addresses), and each host needs to resolve the address of every other
host. This would lead to (126–1) * (126–1) different solicitation requests. However, a
worst-case scenario like that one is far from average, because a host usually has to
access only a few local machines, such as servers. Most of a host’s traffic goes to
hosts beyond the router, so the L3 and L2 address of this gateway router is all the
host needs.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Proxy ARP | 739

If we keep the same network topology but change the /24 netmask to a /0 netmask,
the worst-case scenario explodes—and the average scenario starts to approach the
worst-case scenario. Any time a host wants to communicate with another host,
regardless of whether the latter is remote or local, there will always be a separate
solicitation. Instead of making a single solicitation for the default gateway, which can
be used to reach any host beyond the router, a host must make a separate solicita-
tion for each host, because it has no knowledge about the router.

Figure 28-20. Proxy versus router

(a)

eth0
10.0.1.2/25

eth0
10.0.1.126/25

Router

eth0
10.0.1.130/25

eth0
10.0.1.254/25

. . .

. . .

eth0
10.0.1.1/25

eth1
10.0.1.129/25

(b)

eth0
10.0.1.2/24

eth0
10.0.1.126/24

Proxy

eth0
10.0.1.130/24

eth0
10.0.1.254/24

. . .

. . .

eth0
10.0.1.1/25

eth1
10.0.1.129/25

Subnet 10.0.1.0/25

Subnet 10.0.1.128/25

Subnet 10.0.1.0/24

Subnet 10.0.1.0/24

(c)

eth0
10.0.1.1/24

eth0
10.0.1.254/24

. . .

Subnet 10.0.1.0/24

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

740 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

To summarize, the use of a proxy ARP server as a router can simplify the configura-
tion of the hosts on a subnet, and require a lighter TCP/IP stack on the hosts because
there is no routing. But the load on the network and on the proxy’s CPU can grow
quite high, due to the higher number of solicitations.

Examples
Let’s take the topology of Figure 28-21 as an example.

Let’s make the following hypotheses:

• All the hosts use Ethernet cards.

• All the hosts of LAN1 and LAN2 are configured with a netmask of 255.255.255.0
(/24). They do not have any routes in their routing tables, nor do they have a
default gateway configured. In other words, hosts in LAN1 and LAN2 can com-
municate only with other hosts within their same logical subnet.

• All neighbor caches are empty, which means that no one host knows any link
layer address of any other host.

• Bridging is disabled everywhere. This excludes the top-right case of Figure 26-10
in Chapter 26. If the implications of this hypothesis are not clear, you should
read Part IV.

Figure 28-21. Example of network with proxy ARP configured on host RT

10.0.0.4/24
Host D

10.0.0.2/24

RT

. . .

10.0.0.131/2410.0.0.130/24
Host A

. . .

LAN1

LAN2

eth0
10.0.0.1/25

Host E
10.0.0.3/24

Proxy
router

10.0.0.132/24

Subnet
10.0.0.0/24
(10.0.0.0/255.255.255.0)

eth1
10.0.0.129/25

10.0.0.126/24

10.0.0.256/24

eth2
10.0.1.1/24

Subnet
10.0.1.0/24

(10.0.1.0/255.255.255.0)

10.0.1.2/24
HostF

10.0.1.3/24

10.0.1.4/24

10.0.1.254/24

LAN3

.

.

.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Examples | 741

Note that even if both hosts on LAN1 and LAN2 have been configured as belonging
to the same logical subnet (network 10.0.0.0/24, netmask 255.255.255.0), they actu-
ally belong to different LANs. This means that as far as the configuration is con-
cerned, they share the same subnet and can communicate with each other without
the help of any router. However, by looking at the network topology, it is clear that
they cannot do that without the help of RT.

For RT to give the hosts of LAN1 and LAN2 the illusion that they are on the same
subnet, RT needs to have some extra knowledge: the real netmask of the LANs it
wants to merge, which is 255.255.255.128 or /25. If RT was not a proxy ARP server,
RT or the hosts in LAN1 and LAN2 would be considered misconfigured.*

For RT to make hosts in LAN1 and LAN2 communicate transparently, RT needs to
have some more knowledge about the network topology, and more exactly it needs
to know who is where. Note that the simple solution where RT forwards on one side
whatever it receives on the other has nothing to do with proxying; Part IV covered
that scenario. If RT wants to represent (e.g., reply in place of) the hosts of LAN1 to
the requests of/from LAN2, it needs to know who is on what side. For instance, RT
should not reply to requests generated on LAN1 and addressed to other hosts within
LAN1 (because the hosts of LAN1 already belong to the same subnet, 10.0.0.0/24).
Thanks to the right netmasks on its eth1 and eth2 NICs, RT knows that:

• On eth0, there are hosts with addresses ranging from 10.0.0.1 to 10.0.0.126 (10.0.
0.127 is the broadcast and 10.0.0.0 is the network).

• On eth1, there are hosts with addresses ranging from 10.0.0.129 to 10.0.0.254
(10.0.0.255 is the broadcast and 10.0.0.128 is the network).

Let me remind you that a router is needed to forward packets from one subnet to
another one (i.e., sender and receiver are not in the same subnet). Note that the two
NICs of router RT that go to LAN1 and LAN2 would be misconfigured if proxy ARP
was not enabled on RT.

Let’s now analyze a few common cases. You can refer to Figure 26-9 and
Figure 26-10 in Chapter 26 for the expected behaviors:

• (a) From LAN1 to LAN1 (e.g., from Host D to Host E)

Since Host D (10.0.0.2) is in the same subnet (10.0.0.0/24) as Host E, it can send
a solicitation request (ARPOP_REQUEST) for the IP address 10.0.0.3. All of the hosts
in LAN1 will receive that request, but only Host E will reply to Host D specify-
ing its L2 address. Note that RT would not reply even if proxying was enabled
on eth0. The reason is that RT received the solicitation on eth0 (LAN1), and
since it knows that 10.0.0.3 is located within the same subnet of the sender, it

* The statement is correct if we exclude the use of special features, like bridging.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

742 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

does not need to intercept the request: Host E resides in the network the solicita-
tion comes from and therefore it can answer by itself.

• (b) From LAN1 to an illegal IP address in LAN1 (e.g., from Host D to 10.0.0.
128)

From A’s perspective, 10.0.0.128 is a valid host address; from RT’s perspective it
is not (it is a network address). No one is going to reply. This is true regardless
of whether RT is a proxy.

The tricky part here is that even if the hosts of LAN1 and LAN2 are configured
with a 10.0.0.0/24 netmask, they have been physically divided on the two sides
according to RT’s configuration. RT does not reply because it recognizes 10.0.0.
128 as a network address.

• (c) From LAN1 to LAN2 (e.g., from Host D to Host A)

Since the host with address 10.0.0.130 is on another LAN, the host would not be
able to receive the request and reply. However, since RT is configured with
proxy enabled on eth0, it will reply with the address of its eth0 interface. This
means that when Host D sends data to Host A, it will actually send it to RT,
which will simply forward it to Host A. The opposite would have happened if
Host A had asked for Host D’s address.

• (d) From LAN1 to LAN3 (e.g., From Host D to Host F)

Since Host F is not on the same subnet as Host D (10.0.1.2 is not in 10.0.0.0/24)
and no routes are defined in Host D to reach LAN3 (10.0.1.0/24), the IP layer of
the kernel in Host D would reply with a message saying that no route is avail-
able to reach Host F, and Host D would not even generate a solicitation request.*

External Events
ARP can both receive and generate notifications when special conditions come into
being. The section “Interaction Between Neighboring Protocols and L3 Transmis-
sion Functions” in Chapter 27 gives an overview of how neighboring protocols
interact with the rest of the kernel. Here we will see in particular how ARP takes care
of these notifications.

Received Events
We saw in the section “ARP Protocol Initialization” that ARP registers with the kernel
for the notification of device events and that arp_netdev_event is the handler that
takes care of those events. Among the various event types that the function receives,
ARP is interested only in NETDEV_CHANGEADDR, which is generated when the L2 address

* Note that it would be true even if Host F were physically in LAN1 while still keeping its address of LAN3
(which would, in most cases, be a misconfiguration, as shown in Figure 26-1(c) in Chapter 26).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

External Events | 743

of a device is changed (e.g., via manual configuration). The kernel routine that pro-
cesses the user-space request to change a device link layer address, and that therefore
generates the NETDEV_CHANGEADDR notification, is do_setlink, defined in net/core/
rtnetlink.c.

static int
arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
{
 struct net_device *dev = ptr;

 switch (event) {
 case NETDEV_CHANGEADDR:
 neigh_changeaddr(&arp_tbl, dev);
 rt_cache_flush(0);
 break;
 default:
 break;
 }

 return NOTIFY_DONE;
}

neigh_changeaddr is described in the section “Events Received by the Neighboring
Layer” in Chapter 27.

rt_cache_flush flushes the IPv4 routing cache so that the IP layer is forced to start
using the new L2 address. This function does not selectively delete the entries associ-
ated with the device that generated the notification, but simply removes everything
in the cache. Chapter 33 contains details about the meaning of the input parameter
and the routing cache in general.

Generated Events
The error_report virtual function, which is part of the neigh_ops structure, was men-
tioned in the section “Events Generated by the Neighboring Layer” of Chapter 27. In
ARP, this function is carried out by arp_error_report. The ARP subsystem invokes
the routine when an ARP transaction fails. Its two main tasks are:

• Remove the entry associated with the unreachable neighbor from the routing
table cache.*

• Notify the sender about the unreachable neighbor by means of an ICMP
UNREACHABLE message.

Wake-on-LAN Events
Some sophisticated NICs support a feature called Wake-on-LAN (WOL).

* To be exact, the entry is removed from the protocol-independent cache, which is covered in detail in
Chapter 33.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

744 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

WOL, briefly introduced in Chapter 6 is a feature that allows an NIC to wake up a
system in standby mode when it receives a specific type of frame. Among the various
types of frames that cause wake-ups are ARP packets. The feature is implemented at
the hardware level because a system in standby mode does not have a device driver
running in the CPU that can process incoming packets. WOL-enabled NICs need to
have their own source of power to be able to scan for those special frames. I will not
go into detail on this feature because it is handled entirely by the NIC’s drivers, not
by the ARP module. For details, browse the code for the WAKE_ARP keyword.

ARPD
The number of neighbors on a network segment can range from a few to many thou-
sands. On large networks, the memory required by neighbour data structures can
therefore grow quite big and affect system performance. Increasing the values of the
gc_threshn configuration parameters in the neigh_table structure simply changes the
maximum number of entries that can be created, but it does not solve the perfor-
mance problem of over-consumption of limited kernel memory.

arpd is a user-space daemon that can offload work from the kernel by keeping its
own (bigger) cache. A user-space implementation of ARP cannot be as fast as a ker-
nel implementation, but the difference is acceptable in most cases.

To use arpd, a kernel has to be compiled with support for the ARPD feature. The
kernel documentation calls ARPD an experimental feature, but it has actually been
around for a long time.

Two arpd daemons are currently available for download. One is old and does not
work properly, and the other is part of the IPROUTE2 package and does work. I will
refer to the second one in this section.

The arpd daemon is responsible for intercepting ARP requests from other systems
and maintaining its own database in lieu of a kernel cache. We won’t say much
about the internals of the daemon in this chapter, but we will focus on the interac-
tion between the daemon and the kernel. While arpd maintains its own relationship
with the network, the kernel can also continue to handle ARP requests, and is
responsible for notifying arpd about events the kernel knows about. They communi-
cate via a Netlink socket, which is supported by default in the 2.6 kernel.

Figure 28-22 gives the big picture of the interaction between the neighboring sub-
system, ARP, and arpd. Essentially, the neighboring subsystem sends notifications to
the daemon and the daemon listens for them. The next two sections go into more
detail on this interaction.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ARPD | 745

Kernel Side
When ARPD is enabled, the neighboring subsystem sends messages to the user-space
daemon. Here we review the routines used to send those messages and the condi-
tions under which the routines are invoked:

neigh_app_ns
This is called from the protocol’s solicit function (arp_solicit) when the num-
ber of solicitations (probes) the kernel is allowed to send is exhausted and the
number of user-space-generated solicitations is not. The rule for using arpd is
that the kernel must use up all the probes for a neighbor before invoking the
daemon. However, nothing prevents an administrator from configuring ARPD
so that the kernel generates no probes at all, and invokes arpd right away.

neigh_app_ns generates messages of type RTM_GETNEIGH.

neigh_app_notify
This is used to send ARPD two kinds of notifications:

• A neighbour entry has been moved to the NUD_FAILED state and will soon be
deleted by the garbage collector. This change of state and the call to neigh_
app_notify are handled in this case by neigh_periodic_timer (described in
Chapter 27).

• The state of a neighbor has changed from a valid one (the derived state NUD_
VALID) to an invalid one, or the neighbor’s L2 address has changed. These
changes of state and the calls to neigh_app_notify are handled in this case by
neigh_update.

neigh_app_notify generates messages of type RTM_NEWNEIGH.

Figure 28-22. Interaction between ARP and arpd daemon

Cache ARPD

Netlink

neigh_app_ns neigh_app_notify

RTM_NEWNEIGHRTM_GETNEIGH

Neighbor
layer

ARPCache

User space

Kernel space

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

746 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

User-Space Side
In the previous section we saw when the kernel sends notifications to arpd. Now
we’ll see how arpd handles them. Here’s the skeleton of the daemon (the main
function):

1. Parse command-line options
2. Open database
3. Load database from file if option present
 (3.1) Open socket for reception and transmission of ARP packets
 (3.2) Open socket with kernel for ARPD notifications
4. Infinite loop
 (4.1) Poll the two sockets
 (4.2) If events appear on socket (1), process input ARP packet
 (4.3) If events appear on socket (2), process input kernel message

A simplified model of this behavior is shown in Figure 28-23. (Figure 28-23(a) repre-
sents 4.2, and Figure 28-23(b) represents 4.3.) It should clearly show a correspon-
dence to the kernel behavior described in the previous section.

The daemon accepts a few command-line options to tune its behavior. For instance,
the administrator can specify:

• How many probes to send before giving up

• Whether the kernel should generate probes too, or just the daemon

• Uploading entries into the cache from a file

The current arpd daemon implements its ARP cache using a generic Berkeley DB
Database, which is the reason why, when an administrator installs the IPROUTE2
package, it includes a dependency on the Berkeley DB package.

One difference between arpd and the kernel’s ARP subsystem is worth mentioning:
unlike the kernel ARP cache, the arpd cache stores negative results. When an attempt
to resolve an address fails, the daemon stores that information in its cache and does
not retry the resolution for a certain amount of time.

Reverse Address Resolution Protocol (RARP)
RARP is an old protocol that can be used to autoconfigure a dynamic host. Its func-
tion was replaced by bootp and then DHCP. Although RARP has a different purpose
from ARP, RARP also uses ARP packets (with different operation codes from ARPOP_
REQUEST and ARPOP_REPLY) and shares the same transmit routine arp_send. RARP is
not included by default on the Linux kernel; it has to be added explicitly at compila-
tion time.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Reverse Address Resolution Protocol (RARP) | 747

Figure 28-23. (a) Processing ARP packets; (2) processing kernel messages

Sanity checks

Ignore packet

Duplicate address
detection (DAD)?

Update statistics
and DB

Is this a
dump of the
ARP table?

Sanity checks

Update sysctl config
(do_sysctl_adjustments)

Message type

Is state
NUD_PROBE? Notification type

Abort/do nothing

Create/update the DB
with a negative entry

Update DB with
new L2 address

Is there a
valid address in

ARPD DB?

Invalidate entry
in DB

Reply to Kernel with
information in DB

Is there a
negative entry in the

ARPD DB?

Generate probe

Any probe left?

Do nothing

(a)

(b)

Ignore packet

No

No

Yes

Yes

No

Yes

Yes No

RTM_GETNEIGH RTM_NEWNEIGH

Change of L2
address

Valid address
now is invalid

NoYes

Passed

Failing

Yes

Passed Failed

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

748 | Chapter 28: Neighboring Subsystem: Address Resolution Protocol (ARP)

Improvements in ND (IPv6) over ARP (IPv4)
As explained in Chapter 26, the IPv6 neighboring protocol ND has a very different
design from ARP. Here are some of the improvements in ND:

• ND is a function provided by ICMPv6, a powerful protocol that covers the func-
tionalities of ARP, ICMPv4, and more. In particular, as we saw in the section
“Neighboring Protocols” in Chapter 26, putting ND into ICMP allows ND to
take advantage of any L3 feature provided, notably encryption.

• ND uses multicast solicitations rather than broadcasts. The multicast address to
use is derived from the target address to solicit, which means that only those
hosts that register for a given IP multicast address receive the associated solicita-
tion requests. In a big network, this can drastically reduce the number of solici-
tations that hosts receive and discard because they are not the target.

• ND uses a neighbor unreachability detection algorithm to detect dead neigh-
bors. This is not part of every ARP implementation, but as we saw in
Chapter 27, Linux implements it for ARP as well.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

749

Chapter 29 CHAPTER 29

Neighboring Subsystem:
Miscellaneous Topics

With this chapter, we conclude the part of this book on the neighboring protocol.
The chapter shows how the user-space commands used to configure neighboring
protocols interact with the kernel, summarizes the variables and functions intro-
duced in the previous three chapters in easy-to-read tables, and concludes with a
detailed description of the main data structures used by the neighboring subsystem.

System Administration of Neighbors
Neighbor entries can be added, removed, and modified with two user-space tools:

arp
This is the older tool. It is part of the net-tools package, which includes other
common commands such as ifconfig, route, netstat, etc. arp handles entries only
for the IPv4 neighboring protocol ARP, as the name indicates. Like its compan-
ions, arp uses ioctl calls to communicate with the kernel.

ip
This is considered the current tool. The ip command is part of the IPROUTE2
package and is used to configure a wide range of networking subsystems (rout-
ing, traffic control, etc.). It can be used to configure any neighboring protocol,
and it talks to the kernel using the Netlink socket.

Both tools can also be used to configure destination-based proxying.

This chapter does not go into detail on the commands’ syntax, features, or imple-
mentation, but it is worth knowing what is executed on the kernel side when the
commands manipulate a neighbour entry.

The next three sections give you an overview of how configuration commands are
propagated to the kernel. In the case of IPROUTE2, I’ll also show briefly how the
user-space code is organized.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

750 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

Common Routines
Even though ip and arp use different mechanisms to talk to the kernel and therefore,
as we will see in the next two sections, use different kernel handlers to process the
configuration commands, in the end they actually talk to the neighboring layer via
the same set of routines:

Lookup routines
Before applying a change to an existing entry or adding a new one, the kernel
needs to do a lookup in the cache. These lookups are done using the functions
described in the section “Caching” in Chapter 27.

neigh_update
neigh_update is a generic routine that can accomplish a variety of different opera-
tions depending on its input parameters. The function is described in the sec-
tion “Updating a Neighbor’s Information: neigh_update” in Chapter 27.

pneigh_update
pneigh_update is used instead of neigh_update by destination proxying. See the
section “Acting As a Proxy” in Chapter 27.

The lookup routines, when necessary, create or delete neighbour entries with the
neigh_add and neigh_destroy routines described in Chapter 27.

Figure 29-1 summarizes the relationships described in this section and the previous
one.

New-Generation Tool: IPROUTE2’s ip Command
ip is a generic command that replaces a number of traditional Unix commands such
as ifconfig, route, and arp. The first argument of the ip command—address, route,

Figure 29-1. Interface between the user space and the kernel for arp and ip neighbour

arp

Syscall IOCTL /proc/net/arp

inet_ioctl

Family INET

arp_ioctl
SIOCSARP: arp_req_set
SIOCDARP: arp_req_delete
SIOCGARP: arp_req_get

Protocol ARP

ip neighbor

NETLINK

Neighboring layer

neigh_add neigh_delete neigh_dump_info

neigh_lookup neigh_update . . .

ARP ND . . .

User

Kernel

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

System Administration of Neighbors | 751

neighbour, etc.—indicates the object that ip acts on, and thus whether it does the job
of ifconfig, route, arp, and so on. In terms of the kernel, the ip object determines
what subsystem the command interacts with.

The commands used to configure neighboring protocols are the ones that start with
ip neighbour. Figure 29-2 shows the key files and functions of the IPROUTE2 pack-
age that implement the configuration of neighboring protocols.

The second argument to ip is the command that indicates what the administrator
wants to do to the subsystem. Table 29-1 summarizes the commands and indicates
the corresponding operation, flags, and handler in the kernel code. Thus, the com-
mand ip neighbour add ..., which adds a new entry to the neighboring subsystem,
sends the kernel a RTM_NEWNEIGH command with both the NLM_F_CREATE (create an
entry if one doesn’t exist) and NLM_F_EXCL (leave an entry alone if it does exist) flags
set. The command is taken care of by the kernel handler neigh_add.

If you look at one of the kernel functions listed, such as neigh_add, thanks to
Table 29-1 you should be able to identify what each part of the function does. Of
course, a minimal knowledge of the Netlink layer is also required, for example, to

Figure 29-2. Structure of IPROUTE2 package’s neighbor files and functions

Table 29-1. Parameters set by do_ipneigh in IPROUTE2 and associated kernel handlers

Command-line keyword Operation Flags Kernel handler

add RTM_NEWNEIGH NLM_F_CREATE
NLM_F_EXCL

neigh_add

change, chg RTM_NEWNEIGH NLM_F_REPLACE neigh_add

replace RTM_NEWNEIGH NLM_F_CREATE
NLM_F_REPLACE

neigh_add

delete RTM_DELNEIGH None neigh_delete

show, list, lst RTM_GETNEIGH NLM_F neigh_dump_info

flush RTM_GETNEIGH NLM_F neigh_dump_info

do_show_or_flushipneigh_modify

Main
@ip.c

neighbour
neighbor
neigh

do_ipneigh
@ipneigh.c

show, list, lst
flush

add
change, chg

replace
delete

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

752 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

understand how input data is parsed. Netlink is introduced in Chapter 3; however,
its internals could not be covered for lack of space.

Old-Generation Tool: net-tools’s arp Command
People who prefer the old Unix commands to the IPROUTE2 package use arp on the
rare occasion that they need to manipulate a host’s ARP tables by hand (the com-
mand has nothing to offer other neighboring protocols, of course). Table 29-2 lists
the main arp commands along with the kernel handlers that process them. The table
also shows the ip neigh command that achieves the same functionality. Note that no
arp command corresponds to ip neigh change or ip neigh_replace (instead, one would
issue a delete followed by an add).

The arp_req_xxx routines are defined in net/ipv4/arp.c. In the same file, you can find
the routines that manipulate the virtual /proc/net/arp file. arp reads this file instead of
issuing ioctl calls to the kernel to obtain information, even though the kernel pro-
vides a routine named arp_req_get that can perform the request. See the definition of
the arp_seq_ops structure in net/ipv4/arp.c to find out more about the use of the /proc
file.

Tuning via /proc Filesystem
As we saw in an earlier chapter, the neighboring protocols follow the common ker-
nel practice of offering a convenient interface in the /proc directory to let administra-
tors tune the subsystem’s parameters. The neighboring subsystem’s parameters
reside in four directories, two for IPv4 and two for IPv6:

/proc/sys/net/ipv4/neigh
/proc/sys/net/ipv6/neigh

Generic parameters of the neighboring subsystem, such as the timers used to
control when cache operations take place

/proc/sys/net/ipv4/conf
/proc/sys/net/ipv6/conf

Particular behaviors within the protocol, such as the ones described in the sec-
tion “Tunable ARP Options” in Chapter 28

Table 29-2. arp commands, corresponding ip commands, and kernel functions invoked

User-space command Kernel function invoked by net-tools

net-tools IPROUTE2

arp –s ... ip neigh add ... arp_req_set

arp –d ... ip neigh del ... arp_req_delete

arp ip neigh show ... /proc/net/arp file

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 753

Each directory contains a subdirectory for each NIC device on the system, a default
subdirectory, and (in the case of the conf directory) an all subdirectory that can be
used to apply a change to all the devices at once. Under conf, the default subdirec-
tory shows the global status of each feature, while under neigh, the default subdirec-
tory shows the default setting (i.e., configuration parameters) of each feature. The
values of the default subdirectories are used to initialize the per-device subdirecto-
ries when the latter are created.

The directories for individual devices take precedence over the more general directo-
ries. But not all devices pay attention to all the parameters; if a parameter is not rele-
vant to a device, the associated directory contains a file for the parameter but the
kernel ignores it. For instance, the gc_thresh1 value is not used by any protocol, and
only IPv4 uses locktime.

Figure 29-3 shows the layout of the files and the routines that register them.

The three files arp, arp_cache, and ndisc_cache at the top-right corner of Figure 29-3
are not used to configure anything, but just to export read-only data. Note that they
are in the /proc/net directory, not in /proc/sys. /proc/net/arp is used by the arp com-
mand to dump the contents of the ARP cache (there is no counterpart for ND), as dis-
cussed in the section “Old-Generation Tool: net-tools’s arp Command.” The /proc/net/
stat/xxx_cache files export statistics about the protocol caches. Most of their files rep-
resent fields of neigh_statistics structures, described in the section “neigh_statistics
Structure.”

The /proc/sys/net/ipv4/neigh Directory
This directory contains parameters from neigh_parms structures, which were intro-
duced in Chapter 27. As that chapter explained, each device has one neigh_parms
structure for each neighboring protocol that it interacts with (see Figure 27-2 in
Chapter 27). We have also seen that another neigh_parms instance is included in the
neigh_table structure to store default values.

However, not all fields of the neigh_parms structure are exported to /proc. For
instance, reachable_time is a derived field whose value is indirectly calculated from
base_reachable_time and therefore cannot be changed by the user. In addition, tbl
and neigh_setup are used by the kernel to organize its data structures and do not
have anything to do with the protocol itself, so they are not exported.

In addition to exporting most of the parameters in the neigh_parms structure to /proc,
the neighboring subsystem exports a few from the neigh_table structure, too.

Initialization of global and per-device directories

Because the default values are provided by the protocol itself, the default subdirec-
tory is installed when the protocol is initialized (see the arp_init and ndisc_init
functions) and populated with files whose names are based on those of the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

754 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

associated fields in the neigh_parms structure. You can find the default values of the
fields in Table 29-3 directly in the initializations of the xxx_tbl tables; Chapter 28
shows an example for ARP.

The relationships between the kernel variables and the names of the files in /proc/sys/
net/ipv4/neigh/xxx/ are shown in Table 29-3. See the initialization of neigh_sysctl_
template in net/core/neighbour.c; a guide to reading the template is in Chapter 3.

Figure 29-3. Example of /proc/sys file registration for the neighboring subsystem

/

proc

sys

net

ipv4

conf

net

stat

arp_cache
ndisc_cache

arp_proc_init

all lo eth0 eth1

arp_announce
arp_filter
arp_ignore
medium_id
proxy_arp

inetdev_init

arp

neigh_table_init

neigh

ipv6

neigh

default

devinet_init

default lo eth0 eth1

anycast_delay
app_solicit
base_reachable_time
delay_first_probe_time
locktime
mcast_solicit
proxy_delay
proxy_qlen
retrans_time
ucast_solicit
unres_qlen

inetdev_init

gc_interval
gc_thresh1
gc_thresh2
gc_thresh3

arp_init

default lo eth0

ipv6_add_dev

anycast_delay
app_solicit
base_reachable_time
delay_first_probe_time
locktime
mcast_solicit
proxy_delay
proxy_qlen
retrans_time
ucast_solicit
unres_qlen

gc_interval
gc_thresh1
gc_thresh2
gc_thresh3

ndisc_init

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 755

Each device’s directories are created when the device is first configured. The first
time an address is configured on device D, a directory with the name D is created
under /proc/sys/net/ipv4/neigh. All of the parameters apply to the device rather than
to a specific address, so there is only a single directory for each device, even if it is
configured with multiple addresses.

Figure 29-3 shows the directory tree you would see if a host had three devices named
eth0, eth1, and eth2; if eth0 and eth1 had been given IPv4 addresses; if eth0 had also
been given an IPv6 address; and if eth2 has not been configured yet.

The two functions in charge of configuring IPv4 and IPv6 devices are inetdev_init
and ip6_add_dev, respectively. Each calls neigh_sysctl_register to create the
device’s subdirectory under /proc, as described in the following section.

Directory creation

Both the default and the per-device directories in /proc/sys/net/ipv4/neigh are created
with the neigh_sysctl_register function. The latter differentiates between the two
cases by using the value of the input parameter dev. If we take IPv4 as an example,
you can compare the way arp_init (a protocol initialization function) and inetdev_
init (a device’s configuration block initializer) call neigh_sysctl_register. neigh_
sysctl_register needs to differentiate between the two cases to:

• Pick the name of the directory to create. It will be default when dev is NULL, and
extracted from the device itself (dev->name) otherwise.

Table 29-3. Kernel variables and associated files in /proc/sys/net/ipv4/neigh subdirectories

Kernel variable name Filename Default value for IPv4/IPv6

mcast_probes mcast_solicit 3

ucast_probes ucast_solicit 3

app_probes app_solicit 0

retrans_time retrans_time 100 * HZ

base_reachable_time base_reachable_time 30 * HZ

delay_probe_time delay_first_probe_time 5 * HZ

gc_staletime gc_stale_time 60 * HZ

queue_len unres_qlen 3

proxy_qlen proxy_qlen 64

anycast_delay anycast_delay 1 * HZ

proxy_delay proxy_delay (8*HZ)/10

locktime locktime 1 * HZ

gc_interval gc_interval 30 * HZ

gc_thresh1 gc_thresh1 128

gc_thresh2 gc_thresh2 512

gc_thresh3 gc_thresh3 1,024

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

756 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

• Decide what parameters to add as files to that directory; the default directory
will include a few more parameters than the others (four to be exact). While the
parameters extracted from neigh_parms are meaningful when configured on a
per-device basis, the ones in neigh_table are not. Thus, the four parameters
taken from neigh_table go only in the default directory (see the end of
Table 29-3). Those four parameters are related to the garbage collection process:

—gc_interval

—gc_thresh1, gc_thresh2, gc_thresh3

Here is the meaning of the input parameters to neigh_sysctl_register:

struct net_device *dev
Device associated with the directory being created. When dev is NULL, it means
the function has been invoked to create the default directory.

struct neigh_parms *p
Structure whose parameters will be exported. A device using ARP, for instance,
passes in_dev->arp_parms. When dev is NULL, this is the neigh_parms instance
embedded in the protocol’s neigh_table structure (neigh_table->neigh_parms),
which stores the protocol’s defaults.

int p_id
Protocol identifier. See the NET_XXX values in include/linux/sysctl.h. ARP, for
instance, uses NET_IPV4.

int pdev_id
Class identifier of parameters being exported. See the NET_IPV4_XXX values in
include/linux/sysctl.h. ARP, for example, uses NET_IPV4_NEIGH.

char *p_name
String indicating the L3 protocol that refers to the neighboring protocol fields.
ARP, for example, uses “ipv4”.

proc_handler *handler
Function that the kernel invokes when the value of one of the exported fields is
modified by the user. Only IPv6 passes a non-NULL value, and the function it
provides is simply a wrapper to the default handler that the kernel would install
otherwise. See ndisc_ifinfo_sysctl_change in net/ipv6/ndisc.c for an example.

The only tricky part in the function is how the four gc_xxx parameters are extracted
from the neigh_table structure. It relies on a trick of memory layout: the four param-
eters related to garbage collection are stored in the neigh_table structure right after
the neigh_parms structure, as shown here:

struct neigh_table
 ...
 struct neigh_parms parms;
 int gc_interval;
 int gc_thresh1;
 int gc_thresh2;

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 757

 int gc_thresh3;
 ...

Thus, all the function needs to do to retrieve the neigh_table values is to go past
neigh_parms, cast the pointer to an integer, and extract four integers in a row:

 if (dev) {
 dev_name_source = dev->name;
 t->neigh_dev[0].ctl_name = dev->ifindex;
 memset(&t->neigh_vars[12], 0, sizeof(ctl_table));
 } else {
 t->neigh_vars[12].data = (int *)(p + 1);
 t->neigh_vars[13].data = (int *)(p + 1) + 1;
 t->neigh_vars[14].data = (int *)(p + 1) + 2;
 t->neigh_vars[15].data = (int *)(p + 1) + 3;
 }

The /proc/sys/net/ipv4/conf Directory
The files in the /proc/sys/net/ipv4/conf subdirectories are associated with the fields of
the ipv4_devconf structure, which is defined in include/linux/inetdevice.h. Not all of
its fields are used by the neighboring protocols (see Chapters 23 and 36 for the other
fields). Table 29-4 lists the parameters relevant to the neighboring protocols; their
meanings were described in the section “Tunable ARP Options” in Chapter 28.

As shown in Figure 29-3, in addition to the per-device subdirectories, there are also
two special ones named default and all. See Chapter 36 for more details.

Data Structures Featured in This Part of the Book
In the section “Main Data Structures” in Chapter 27, we had a brief overview of the
main data structures used by the neighboring subsystem. This section presents a
detailed description of each data structure’s field.

Figure 29-4 shows the files that define each data structure. The ones with a lighter
color are not part of the neighboring subsystem, but I referred to them in this part of
the book.

Table 29-4. Kernel variables and associated files in /proc/sys/net/ipv4/conf subdirectories

Kernel variable name Filename Default value for IPv4/IPv6

ipv4_devconf.arp_announce arp_announce 0

ipv4_devconf.arp_filter arp_filter 0

ipv4_devconf.arp_ignore arp_ignore 0

ipv4_devconf.medium_id medium_id 0

ipv4_devconf.proxy_arp proxy_arp 0

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

758 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

neighbour Structure
Neighbors are represented by struct neighbour structures. The structure is complex
and includes status fields, virtual functions to interface with L3 protocols, timers,
and cached L2 headers.

Here is a field-by-field description:

struct neighbour *next
Each neighbour entry is inserted in a hash table. next links the structure to the
other ones that collide and share the same bucket. Elements are always inserted
at the head of the list (see the section “Creating a neighbour Entry,” and
Figure 27-2 in Chapter 27).

struct neigh_table *tbl
Pointer to the neigh_table structure that defines the protocol associated with
this entry. If the neighbor is an IPv4 address, for instance, tbl points to arp_tbl.

struct neigh_parms *parms
Parameters used to tune the neighboring protocol behavior. When a neighbour
structure is created, parms is initialized with the values of the default neigh_parms
structure embedded in the protocol’s associated neigh_table structure. When
the protocol’s constructor method is called by neigh_create (e.g., arp_
constructor for ARP), that block is replaced with the configuration block of the
associated device, if any. While most devices use the system defaults, a device
can start up with different parameters or be configured by the administrator later
to use different parameters, as discussed earlier in this chapter.

Figure 29-4. Distribution of data structures in kernel files

Root
(usually /usr/src/linux)

include

linux

netdevice.h

net

struct hh_cache

inetdevice.h
struct in_device

neighbour.h
struct neighbour
struct neigh_table
struct neigh_parms
struct neigh_ops
struct neigh_statistics
struct pneigh_entry

route.h
struct rtable

dst.h
struct dst_entry

if_inet6.h
struct inet6_dev

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 759

struct net_device *dev
The device through which the neighbor is reachable. Only one device can be
used to reach each neighbor. Thus, the value NULL never appears here as it does
in other kernel subsystems that use it as a wildcard to refer to all devices.

unsigned long confirmed
Timestamp (in jiffies) when the reachability of the entry was most recently
confirmed. L4 protocols can update it with neigh_confirm (see Figure 26-14 in
Chapter 26). The neighboring infrastructure updates it in neigh_update,
described in "Updating a Neighbor’s Information: neigh_update" in Chapter 27.

unsigned long updated
Timestamp of the most recent time the entry was updated by neigh_update (the
only exception is the first initialization by neigh_alloc). Do not confuse updated
and confirmed, which keep track of very different things. The updated field is set
when the state of a neighbor changes, whereas the confirmed field merely records
one particular change of state: the one that occurs when the entry was most
recently confirmed to be valid.

unsigned long used
Most recent time the entry was used. Its value is not always updated synchro-
nously with the data transmissions. When the entry is not in the NUD_CONNECTED
state, this field is updated by neigh_event_send, which is called by neigh_
resolve_output. In contrast, when the entry is in the NUD_CONNECTED state, its
value is sometimes updated by neigh_periodic_timer to the time the entry’s
reachability was most recently confirmed.

_ _u8 flags
Possible values for this field are listed in include/linux/rtnetlink.h and include/net/
neighbour.h:

#define NTF_PROXY 0x08
When the ip neigh user-space command is used to add entries to the proxy
tables (for instance, ip neigh add proxy 10.0.0.2 dev eth0), this flag is set in
the data structure sent to the kernel, to let the kernel handler neigh_add
know that the new entry has to be added to the proxy table (see the section
“System Administration of Neighbors”).

#define NTF_ROUTER 0x80
This flag is used only by IPv6. When set, it means the neighbor is a router.
Unlike NTF_PROXY, this flag is not set by user-space tools. The IPv6 neighbor
discovery code updates its value when receiving information from the
neighbor.

_ _u8 nud_state
Indicates the entry’s state. The possible values are defined in include/net/
neighbour.h and include/linux/rtnetlink.h with names of form NUD_XXX. The role of
states is described in the section “Transitions Between NUD States” in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

760 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

Chapter 26. Figure 26-13 in Chapter 26 shows how the state changes depending
on various events.

_ _u8 type
This parameter is set when the entry is created with neigh_create by calling the
protocol constructor method (e.g., arp_constructor for ARP). Its value is used in
various circumstances, such as to decide what value to give nud_state. type can
assume the values in Table 36-12 in Chapter 36, listed in include/linux/rtnetlink.h.

In the context of this chapter, not all of the values of that table are actually used:
we are mostly interested in RTN_UNICAST, RTN_LOCAL, RTN_BROADCAST, RTN_ANYCAST,
and RTN_MULTICAST.

Given an IPv4 address (such as the L3 address associated with a neighbour
entry), the inet_addr_type function finds the associated RTN_XXX value (see
Chapter 28). For IPv6, there is a similar function called ipv6_addr_type.

_ _u8 dead
When dead is set to 1 it means the structure is being removed and cannot be
used anymore. See neigh_ifdown in the section “External Events” in Chapter 32,
and neigh_forced_gc and neigh_periodic_timer for examples of usage.

atomic_t probes
Number of failed solicitation attempts. Its value is checked by the neigh_timer_
handler timer, which puts the neighbour entry into the NUD_FAILED state when the
number of attempts reaches the maximum allowed value.

rwlock_t lock
Used to protect the neighbour structure from race conditions.

unsigned char ha[]
The L2 address (e.g., Ethernet MAC address for Ethernet NICs) associated with
the L3 address represented by primary_key (discussed shortly). The address is in
binary format. The size of the vector ha is MAX_ADDR_LEN (defined as 32 in include/
linux/netdevice.h), rounded up to the first multiple of a C long. An Ethernet
address requires only six octets (i.e., 48 bits), but other link layer protocols may
require more. For each hardware address type, the kernel defines a symbol that
is assigned the size of the address. Most symbols use names like XXX_ALEN or XXX_
ADDR_LEN. Ethernet, for example, defines the ETH_ALEN symbol in include/linux/if_
ether.h.

struct hh_cache *hh
List of cached L2 headers. See the section “L2 Header Caching” in Chapter 27.

atomic_t refcnt
Reference count. See the sections “Caching” and “Reference Counts on neigh-
bour Structures” in Chapter 27.

int (*output)(struct sk_buff *skb)
Function used to transmit frames to the neighbor. The actual routine this func-
tion pointer points to can change several times during the structure’s lifetime,

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 761

depending on several factors. It is first initialized by the neigh_table’s
constructor method (see the section “Initialization of a neighbour Structure” in
Chapter 28). It can be updated by calling neigh_connect or neigh_suspect when
the neighbor state goes to NUD_REACHABLE or NUD_STALE state, respectively.

struct sk_buff_head arp_queue
Packets whose destination L3 address has not been resolved yet are temporarily
placed into this queue. Despite the name of this field, it can be used by all neigh-
boring protocols, not just ARP. See the section “Egress Queuing” in Chapter 27.

struct timer_list timer
Timer used to handle several tasks. See the section “Timers” in Chapter 15.

struct neigh_ops *ops
VFT containing the methods used to manipulate the neighbour entry. Among the
methods, for instance, are several used to transmit packets, each optimized for a
different state or associated device type. Each protocol provides three or four dif-
ferent VFTs; which is used for a specific neighbour entry depends on the type of
L3 address, the type of associated device, and the type of link (e.g., point-to-
point). See the upcoming section “neigh_ops Structure,” and the section “Initial-
ization of neigh->ops” in Chapter 27.

u8 primary_key[0];
L3 address of the neighbor. It is used as the key by the cache lookup functions. It
is an IPv4 address for ARP entries and an IPv6 address for neighbor discovery
entries.

neigh_table Structure
This structure is used to tune the behavior of a neighboring protocol. There are a few
instances of neigh_table in the kernel, each for a different protocol:

arp_tbl
ARP protocol used by IPv4 (see net/ipv4/arp.c)

nd_tbl
Neighbor discovery protocol used by IPv6 (see net/ipv6/ndisc.c)

dn_neigh_table
Neighbor discovery protocol used by DECnet (see net/decnet/dn_neigh.c)

clip_tbl
ATM over IP protocol (see net/atm/clip.c)

These neigh_table structures are initialized when the associated subsystems are ini-
tialized in the kernel, and are inserted into a global list pointed to by neigh_tables, as
shown in Figure 27-2 in Chapter 27.

The data structures contain most (if not all) of the information required by the
neighboring protocol. Therefore, each neighbour entry has a neigh->tbl pointer to its

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

762 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

associated neigh_table; for instance, a neighbour entry associated with an IPv4
address will have a pointer to the arp_tbl structure, whereas an IPv6 entry will have
a pointer to nd_tbl.

To understand the field-by-field descriptions more easily, refer to the initializations
of the four tables as examples—in particular, arp_tbl, which is also discussed in the
section “The arp_tbl Table” in Chapter 28.

struct neigh_table *next
Links all the protocol tables in a list.

rwlock_t lock
Lock used to protect the table from possible race conditions. It is used in read-
only mode by functions such as neigh_lookup that only need read permission,
and in read/write mode by other functions such as neigh_periodic_timer.

Note that the whole table is protected by a single lock, as opposed to something
more granular such as a different lock for each bucket of the table’s cache.

char *id
This is just a string that identifies the protocol. It is used mainly as an ID when
allocating the memory pool used to allocate neighbour structures (see neigh_
table_init).

struct proc_dir_entry *pde
File registered in /proc/net/stat/ to export statistics about the protocol. For
instance, ARP creates /proc/net/stat/arp_cache. The file is created by neigh_
table_init when the protocol is initialized.

int family
Address family of the entries represented by the neighboring protocol. Its possi-
ble values are listed in the file include/linux/socket.h, with names in the form AF_
XXX. For IPv4 and IPv6, the associated values are AF_INET and AF_INET6, respec-
tively.

int entry_size
Size of the structures inserted into the cache. Since a neighbour structure
includes a field (primary_key) whose size depends on the protocol, entry_size is
set to the sum of the size of a neighbour structure and the size of the primary_key
provided by the protocol. In the case of IPv4/ARP, for instance, this field is ini-
tialized to sizeof(struct neighbour) + 4, where 4 is, of course, the size in bytes
of an IPv4 address. The field is used, for instance, by neigh_alloc when clearing
the content of the entries retrieved from the cache.*

* When a neighbour structure is put back into the memory pool by neigh_destroy, its content is not cleared.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 763

int key_len
Length of the key used by the lookup functions (see the section “Caching” in
Chapter 27). Because the key is the L3 address, this is 4 for IPv4, 8 for IPv6, and
2 for DECnet.

_ _u32 (*hash)(const void *pkey, const struct net_device *)
Hash function applied to the search key (e.g., L3 address) to select the right
bucket of the hash table when doing a lookup.

int (*constructor)(struct neighbour *)
The constructor method is invoked by neigh_create when creating a new entry,
and initializes the protocol-specific fields of a new neighbour entry. For example,
the one used by ARP (arp_constructor) is described in detail in the section “Ini-
tialization of a neighbour Structure” in Chapter 28.

struct neigh_parms parms
This data structure contains some parameters used to tune the behavior of the
protocol, such as how much time to wait before resending a solicitation request
after not receiving a reply, and how many packets to keep in a queue waiting for
the reply before transmitting them. See the section “neigh_parms Structure.”

struct neigh_parms *parms_list
Not used.

kmem_cache_t *kmem_cachep
Memory pool used when allocating neighbour structures. It is allocated and ini-
tialized at protocol initialization time by neigh_table_init. You can check its
status by dumping the contents of the /proc/slabinfo file.

atomic_t entries
Number of neighbour instances currently in the protocol’s cache. Its value is
incremented when allocating a new entry with neigh_alloc and decremented
when deallocating an entry with neigh_destroy. See the description of gc_
thresh1, gc_thresh2, and gc_thresh3 later in this section.

unsigned long last_rand
Time (expressed in jiffies) when the variable reachable_time of the neigh_
parms structures associated with the table (there is one for each device) was most
recently updated.

struct neigh_statistics *stats
Various statistics about the neighbour instances in the cache. See the section
“neigh_statistics Structure.”

struct neighbour **hash_buckets
Hash table that stores the neighbour entries.

unsigned int hash_mask
Size of the hash table. See Figure 27-6 in Chapter 27.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

764 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

_ _u32 hash_rnd
Random value used to distribute neighbour entries in the cache when its size is
increased. See the section “Caching” in Chapter 27.

The following variables and functions are used by the garbage collection algorithm
described in the section “Garbage Collection” in Chapter 27:

int gc_interval
This controls how often the gc_timer timer expires, kicking off garbage collec-
tion. It used to be 30 seconds but now it is shorter. The timer causes garbage col-
lection on only one bucket of the hash table each time. See the section “Garbage
Collection” in Chapter 27 for more information.

int gc_thresh1
int gc_thresh2
int gc_thresh3

These three thresholds define different levels of memory usage granted to the
neighbour entries currently cached by the neighboring protocol.

unsigned long last_flush
This variable, measured in jiffies, represents the most recent time neigh_
forced_gc was executed. In other words, it represents the most recent time a gar-
bage collection process was forced because of low memory conditions.

struct timer_list gc_timer
Garbage collector timer. See the section “Garbage Collection” in Chapter 27.

unsigned int hash_chain_gc
Keeps track of the next bucket of the hash table the periodic garbage collector
timer should scan. The buckets are scanned sequentially.

The following fields are used when the system acts as a proxy. See the section “Act-
ing As a Proxy” in Chapter 27.

struct pneigh_entry **phash_buckets
Table that stores the L3 addresses that must be proxied.

int (*pconstructor)(struct pneigh_entry *)
void (*pdestructor)(struct pneigh_entry *)

pconstructor is the counterpart of constructor. Right now, only IPv6 uses
pconstructor; it registers a specific multicast address when the associated device
is first configured.

pdestructor is called when releasing a proxy entry. It is used only by IPv6 and
undoes the work of the pconstructor method.

struct sk_buff_head proxy_queue
Received solicit requests (e.g., received ARPOP_REQUEST packets in the case of
ARP) are queued into this queue when proxying is enabled and configured with
a non-null proxy_delay delay. New elements are queued at the tail.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 765

void (*proxy_redo)(struct sk_buff *skb)
Function that processes the solicit requests (e.g., ARPOP_REQUEST packets for ARP)
after they are extracted from the proxy queue neigh_table->proxy_queue. See the
section “Delayed Processing of Solicitation Requests” in Chapter 27.

struct timer_list proxy_timer
This timer is started when there is at least one element in proxy_queue. The han-
dler that is executed when the timer expires is neigh_proxy_process. The timer is
initialized at protocol initialization by neigh_table_init. Unlike the timer neigh_
table->gc_timer, this one is not periodic and is started only if needed (for
instance, a protocol might start it when the first element is added to proxy_
queue). The section “Acting As a Proxy” in Chapter 27 describes why and when
elements are queued to proxy_queue and how proxy_timer processes them.

neigh_parms Structure
The neigh_parms data structure stores the configurable parameters of the neighbor-
ing protocol. For each configured L3 protocol that uses a neighbor protocol, there is
one instance of neigh_parms for each device* plus one that stores the default values.

Here is the field-by-field description:

struct neigh_parms *next
Pointer that links neigh_parms instances associated with the same protocol fam-
ily. This means that each neigh_table has its own list of neigh_parms structures,
one instance for each configured device (see Figure 27-2 in Chapter 27).

int (*neigh_setup)(struct neighbour *)
Initialization function used mainly by those devices that are still using the old
neighboring infrastructure. This function is normally used just to initialize
neighbour->ops to the arp_broken_ops instance (see the section “neigh_ops Struc-
ture” later in this chapter, and the section “Initialization of neigh->ops” in
Chapter 27). Look at shaper_neigh_setup in drivers/net/shaper.c for an example.
To see when this initialization function is called during the initialization phase of
a new neighbour instance, see Figure 28-11 in Chapter 28.

Do not confuse this virtual function with net_device->neigh_setup. The latter is
called when the first L3 address is configured on a device, and normally initial-
izes neigh_parms->neigh_setup, too. net_device->neigh_setup is called only once
for each device, and neigh_parms->neigh_setup is called once for each neighbour
structure that will be associated with the device.

* This statement is not 100% correct. Because a neigh_parms structure is used to tune the behavior of a neigh-
boring protocol, its presence is needed only if there is at least one device whose L3 configuration uses the
neighboring subsystem.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

766 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

struct neigh_table *tbl
Back pointer to the neigh_table structure that holds this structure.

int entries
void *priv

Not used.

void *sysctl_table
This table, initialized at the end of the file net/ipv4/neighbour.c, is involved in
allowing users to modify the values of those parameters of the neigh_parms data
structure that are exported via /proc, as described in the section “Tuning via /proc
Filesystem.”

int base_reachable_time
int reachable_time

base_reachable_time is the interval of time (expressed in jiffies) since the most
recent proof of reachability was received. Note that this interval is used as a base
value to compute the real one, which is stored in reachable_time* and is given a
random (and uniformly distributed) value ranging between base_reachable_time
and 3/2 base_reachable_time. This random value is updated every 300 seconds
by neigh_periodic_timer, but it can also be updated by other events (especially
for IPv6).

int retrans_time
When a host does not receive a reply to a solicitation request within retrans_
time, a new one is sent, up to a given number of maximum attempts. retrans_
time is expressed in jiffies.

int gc_staletime
A neighbour structure is removed if it has not been used for gc_staletime time
and no one holds a reference to it. gc_staletime is expressed in jiffies.

int delay_probe_time
This indicates how long a neighbor in the NUD_DELAY state waits before entering
the NUD_PROBE state. See Figure 26-13 in Chapter 26.

int queue_len
Maximum number of elements that can be queued in the arp_queue queue.

int proxy_qlen
Maximum number of elements that can be queued in the proxy_queue queue.

* With ND/IPv6, reachable_time can also be explicitly exchanged between routers and hosts using a field in
the protocol header.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 767

int ucast_probes
int app_probes
int mcast_probes

ucast_probes is the number of unicast solicitations that can be sent to confirm
the reachability of an address.

app_probes is the number of solicitations that can be sent by a user-space appli-
cation when resolving an address (see the section “ARPD” in Chapter 28 for the
IPv4/ARP case).

mcast_probes is the number of multicast solicitations that can be sent to resolve a
neighbor’s address. For ARP/IPv4, this is actually the number of broadcast solic-
itations, because ARP does not use multicast solicitations. IPv6 does.

Note that mcast_probes and app_probes are mutually exclusive (only one can be
non-null).

int anycast_delay
Not used.

int proxy_delay
Amount of time (expressed in jiffies) that neighboring protocol packets han-
dled by a proxy should be kept in a queue before being processed. See the sec-
tion “Delayed Processing of Solicitation Requests” in Chapter 27.

int locktime
Minimum time, expressed in jiffies, that has to pass between two updates of
the fields of a neighbour entry (typically nud_state and ha). This window helps
avoid some nasty ping-pong effects that can take place, for instance, when more
than one proxy ARP server is present on the same network segment and all of
them reply to the same query solicitations with conflicting addresses. Details of
this behavior are discussed in the section “Final Common Processing” in
Chapter 28.

int dead
Boolean flag that is set to mark the neighbor instance as “Being removed.” See
neigh_parms_release.

atomic_t refcnt
Reference count.

struct rcu_head rcu_head
Used to take care of mutual exclusion.

The use of the reference count refcnt deserves a few more words. Please refer to
Figure 27-2 in Chapter 27 during this discussion. Because there is an instance of
neigh_parms per device per protocol, and one instance embedded in the neigh_table
structure to hold the default values, plus a pointer in each neighbour structure, it may
be confusing to understand who points to whom and who is who. Let’s try to clarify
these points.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

768 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

Each neigh_table, and therefore each protocol, has its own instance of neigh_parms.
That instance holds the default values that the protocol provides. Each device’s net_
device can be configured with more than one L3 protocol. For each L3 protocol con-
figured, net_device has a pointer to a protocol-specific structure that stores the con-
figuration (e.g., in_device for IPv4). That structure includes a pointer to an instance
of neigh_parms that is used to store the device-specific configuration of the neighbor-
ing protocol used by the L3 protocol (e.g., ARP for IPv4).

Table 29-5 lists the main protocol initialization routines, which allocate neigh_parms
structures. For the two IP protocols, you can see the result in Figure 29-3.

Let’s stick to IPv4 for the rest of the description. The neigh_parms instance used by
ARP is allocated by inetdev_init, the IPv4 routine called when an IPv4 configura-
tion is first applied to a device. The initial content of the new neigh_parms instance is
copied from neigh_table->parms, where neigh_table is arp_tbl for ARP. Whenever a
neighbour instance in created, neigh->parms is initialized to point to the neigh_parms
instance of the associated device. As we saw in the section “Tuning via /proc Filesys-
tem,” both the global defaults (neigh_table->parms) and the per-device configura-
tion can be changed by the administrator.

Because each per-device neigh_parms structure is referenced by all the neighbour
instances associated with the device, neigh_parms->refcnt is used to keep track of
them. The routines that directly or indirectly update the reference count are:

neigh_parms alloc
neigh_parms_destroy

Allocate and destroy an instance of neigh_parms. neigh_parms_destroy is called
only when the structure can be freed because the reference count is 0.

_ _neigh_parms_put
neigh_parms_put

_ _neigh_parms_put only decrements the reference count, and neigh_parms_put
also invokes neigh_parms_destroy if the reference count becomes 0.

neigh_parms_release
Marks the instance as dead and indirectly invokes neigh_parms_put.

neigh_parms_clone
Increases the reference count on a structure and returns a pointer to it.

Table 29-5. L3 protocol init functions

Protocol Function File

IPv4 inetdev_init net/ipv4/devinet.c

IPv6 ipv6_add_dev net/ipv6/addrconf.c

DECnet dn_dev_create net/decnet/dn_dev.v

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 769

neigh_rcu_free_parms
Called by neigh_parms_release to actually delete the structure (here is where
neigh_parms->rcu_head is used).

neigh_ops Structure
The neigh_ops structure consists of pointers to functions invoked at various times
during the lifetime of a neighbour entry. Most of them are virtual functions that act as
the interface between the L3 protocol and the dev_queue_xmit API introduced in
Chapter 11. Some of them are provided by the overarching neighboring infrastruc-
ture (neigh_xxx functions), and others are provided by individual neighboring proto-
cols (e.g., arp_xxx for ARP). See the section “Initialization of a neighbour Structure”
in Chapter 28.

The main difference between the functions lies in the context where they are used.
The section “Special Cases” in Chapter 26 covered the two most common cases.

Here is the field-by-field description:

int family
We already saw this field when describing the analogous family field of the
neigh_table structure.

void (*destructor)(struct neighbour *)
Function executed when a neighbour entry is removed by neigh_destroy. It basi-
cally is the complementary method of neigh_table->constructor. But for some
reason, constructor is in the neigh_table structure and destructor is in the
neigh_ops structure.

void (*solicit)(struct neighbour *, struct sk_buff*)
Function used to send solicitation requests.

void (*error_report)(struct neighbour *, struct sk_buff*)
Function invoked when a neighbor is classified as unreachable. See the section
“Events Generated by the Neighboring Layer” in Chapter 27.

The following four methods are used to transmit data packets, not neighboring pro-
tocol packets. The difference between them lies in the context where they are used.
See the section “Common Interface Between L3 Protocols and Neighboring Proto-
cols” in Chapter 27.

int (*output)(struct sk_buff*)
This is the most generic function and can be used in all the contexts. It checks if
the address has already been resolved and starts the resolution in case it has not.
If the address is not ready yet, it stores the packet in a temporary queue and
starts the resolution. Because it does everything necessary to ensure the recipient
is reachable, it is a relatively expensive operation. Do not confuse neigh_ops->
output with neighbour->output.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

770 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

int (*connected_output)(struct sk_buff*)
Used when the neighbor is known to be reachable (i.e., the state is NUD_
CONNECTED). It simply fills in the L2 header, because all the required information
is available, and therefore is faster than output.

int (*hh_output)(struct sk_buff*)
Used when the address is resolved and a copy of the whole header has already
been cached from a previous transmission. See the section “Interaction Between
Neighboring Protocols and L3 Transmission Functions” in Chapter 27.

int (*queue_xmit)(struct sk_buff*)
The previous functions, with the exception of hh_output, do not actually trans-
mit the packets. All they do is make sure the header is compiled and call the
queue_xmit method when the buffer is ready for transmission. See Figure 27-3(b)
in Chapter 27.

hh_cache Structure
The data structure used to store a cached L2 header is struct hh_cache, defined in
include/linux/netdevice.h. (The name comes from “hardware header.”) The following
is a description of its fields; the section “L2 Header Caching” in Chapter 27 describes
how it is used.

unsigned short hh_type
Protocol associated with the L3 address (see the ETH_P_XXX values in the file
include/linux/if_ether.h).

struct hh_cache *hh_next
More than one cached L2 header can be associated with the same neighbour
entry. However, there can be only one entry for any given value of hh_type (see
neigh_hh_init).

atomic_t hh_refcnt
Reference count.

int hh_len
Length of the cached header expressed in bytes.

int (*hh_output)(struct sk_buff *skb)
Function used to transmit the packet. As with neigh->output, this method is ini-
tialized to one of the methods of the neigh->ops VFT.

rwlock_t hh_lock
Lock used to protect the hh_cache structure from possible race conditions. For
instance, an IP function that wants to transmit a packet (see the section “Interac-
tion Between Neighboring Protocols and L3 Transmission Functions” in
Chapter 27) acquires the read lock before copying the header from the hh_cache
structure to the skb buffer. The lock is held in exclusive mode when a field of the
structure needs to be updated: for instance, the lock is acquired when hh_output

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 771

needs to be initialized to a different function* or when the hh_cache->hh_data
header needs to be updated because the destination link layer address has
changed.

unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]
Cached header.

neigh_statistics Structure
This structure stores statistics about the neighboring protocols, available for users to
peruse. Each protocol keeps its own instance of the structure. This is the definition
of the structure from include/net/neighbour.h. The following is a description of its
fields:

unsigned long allocs
Total number of neighbour structures allocated by the protocol. Includes ones
that have already been removed.

unsigned long destroys
Number of removed neighbour entries. Updated in neigh_destroy.

unsigned long hash_grows
Number of times that the hash table has been increased in size. Updated in
neigh_hash_grow (see the section “Caching” in Chapter 27).

unsigned long res_failed
Number of times an attempt to resolve a neighbor address failed. This value is
not incremented every time a new solicitation is sent; it is incremented by neigh_
timer_handler only when all the attempts have failed.

unsigned long lookups
Number of times the neigh_lookup routine has been invoked.

unsigned long hits
Number of times neigh_lookup returned success.

unsigned long rcv_probes_mcast
unsigned long rcv_probes_ucast

These two fields are used only by IPv6 and represent the number of solicitation
requests (probes) received that were sent to multicast and unicast addresses,
respectively.

unsigned long periodic_gc_runs
unsigned long forced_gc_runs

The number of times neigh_periodic_timer and neigh_forced_gc have been
invoked, respectively. See the section “Garbage Collection” in Chapter 27.

* A good illustration of the use of the hh_lock field can be found in neigh_destroy in net/core/neighbour.c. Here
the lock is used to handle the case of a neighbour entry that cannot be removed because its reference count
number is nonzero.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

772 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

The kernel keeps an instance of these counters for each CPU. The counters are
updated with the NEIGH_CACHE_STAT_INC macro, defined in include/net/neighbour.h.
Note that the macro updates the counter on the current CPU.

The fields of the neigh_statistic structure are exported in the per-protocol /proc/net/
stat/{protocol_name}_cache files.

Data Structures Featured in This Part of the Book
Table 29-6 summarizes the main functions, variables, and data structures intro-
duced or referenced in the chapters of this book covering the neighboring subsystem.

Table 29-6. Functions, variables, and data structures in the neighboring subsystem

Functions Description

dev_queue_xmit

neigh_compat_output

neigh_resolve_
output

neigh_connected_
output

neigh_blackhole

Main routines used for packet transmission. See the section “Routines used for neigh->out-
put” in Chapter 27.

neigh_update

neigh_update_hhs

neigh_sync

Update the information stored in a neighbour structure. See the section “Updating a Neigh-
bor’s Information: neigh_update” in Chapter 27.

neigh_confirm Confirms the reachability of a neighbor.

neigh_create

neigh_destroy

Create and delete a neighbour structure as a consequence of protocol events. See the sec-
tions “Creating a neighbour Entry” and “Neighbor Deletion” in Chapter 27.

neigh_add

neigh_delete

Create and delete a neighbour structure as a consequence of a user-space command. See
the section “System Administration of Neighbors.”

neigh_alloc Allocates a neighbour structure.

neigh_connect

neigh_suspect

Used to implement reachability. See the section “Initialization of neigh->output and neigh->
nud_state” in Chapter 27.

neigh_table_init Registers a neighboring protocol.

neigh_ifdown Handles changes of state in the L3 address when notified by external subsystems. See the sec-
tion “Updates via neigh_ifdown” in Chapter 27.

neigh_proxy_process Function handler executed when the proxy timer expires. See the section “Delayed Processing
of Solicitation Requests” in Chapter 27.

neigh_timer_handler See the section “Timers” in Chapter 15.

neigh_periodic_
timer

neigh_forced_gc

Used by the garbage collection algorithm. See the section “Garbage Collection” in Chapter 27.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 773

neigh_lookup

_ _neigh_lookup

_ _neigh_lookup_
errno

arp_find

Check for an entry in the cache. See the section “Caching” in Chapter 27.

neigh_hold

neigh_release

Increment/decrement the reference count on a neighbour structure.

pneigh_enqueue

pneigh_lookup

Used for destination-based proxying. See the sections “Delayed Processing of Solicitation
Requests” and “Per-Device Proxying and Per-Destination Proxying” in Chapter 27, and the
section “Proxy ARP” in Chapter 28.

arp_rcv

ndisc_rcv

Protocol handlers for ARP and ND packets, respectively.

ip_finish_output2

ip6_output_finish

Transmission functions for IPv4 and IPv6, respectively. See the section “Interaction Between
Neighboring Protocols and L3 Transmission Functions” in Chapter 27.

neigh_hh_init Initializes an hh_cache structure with an L2 header and binds it to the associated routing
table cache entry. See the section “Link Between Routing and L2 Header Caching” in
Chapter 27.

Variables

neigh_tables List of registered protocols.

arp_tbl

nd_tbl

dn_neigh_table

clip_tbl

The four neigh_table structures that define the four neighboring protocols implemented
in the kernel.

Data structures

struct neighbour

struct neigh_table

struct neigh_parms

struct neigh_ops

struct hh_cache

struct neigh_
statistics

Main data structures, described in Chapter 27 and detailed in reference style in the section
“Functions and Variables Featured in This Part of the Book.”

Table 29-6. Functions, variables, and data structures in the neighboring subsystem (continued)

Functions Description

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

774 | Chapter 29: Neighboring Subsystem: Miscellaneous Topics

Files and Directories Featured in This Part of the Book
Figure 29-5 shows the main files and directories referred to in the chapters on the
neighboring subsystem.

Figure 29-5. Files and directories featured in this part of the book

Root
(usually /usr/src/linux)

include

linux

socket.h
rtnetlink.h
if_arp.h
if_ether.h
netdevice.h
inetdevice.h

net

neighbour.h

net

neighbour.c

core

clip.c

atm

dn_neigh.c

decnet

ndisc.c
ip6_output.c
addrconf.c

ipv6

arp.c
ip_output.c
devinet.c

ipv4

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART VII

VII.Routing

Layer three protocols, such as IP, must find out how to reach the system that is sup-
posed to receive each packet. The recipient could be in the cubicle next door or
halfway around the world. When more than one network is involved, the L3 layer is
responsible for figuring out the most efficient route (so far as that is feasible) and for
directing the message toward the next system along that route, also called the next
hop. This process is called routing, and it plays a central role in the Linux net-
working code. Here is what is covered in each chapter:

Chapter 30, Routing: Concepts
Introduces the functionality that a basic router, and therefore the Linux kernel,
must provide.

Chapter 31, Routing: Advanced
Introduces optional features the user can enable to configure routing in more
complex scenarios. Among them we will see policy routing and multipath rout-
ing. We will also look at the other subsystems routing interacts with.

Chapter 32, Routing: Linux Implementation
Gives you an overview of the main data structures used by the routing code,
describes the initialization of the routing subsystem, and shows the interactions
between the routing subsystem and other kernel subsystems.

Chapter 33, Routing: The Routing Cache
Describes the routing cache, including the protocol-independent cache (destina-
tion cache, or DST). The description covers how elements are inserted and
deleted from the cache, along with the garbage collection and lookup algo-
rithms.

Chapter 34, Routing: Routing Tables
Describes the structure of the routing table, and how routes are added to and
deleted from it.

www.ebooksworld.in

Chapter 35, Routing: Lookups
Describes the routing table lookups, for both ingress and egress traffic, with and
without policy routing.

Chapter 36, Routing: Miscellaneous Topics
Concludes this part of the book with a detailed description of the data struc-
tures introduced in Chapter 32, and a description of the interfaces between user
space and kernel. This includes a description of the old and new generations of
administrative tools, namely the net-tools and IPROUTE2 packages.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

777

Chapter 30 CHAPTER 30

Routing: Concepts

Figure 30-1 shows where the routing subsystem (the gray box) fits into the network
stack. The figure does not include all the details (Netfilter, bridging, etc.) but shows
the other major kernel subsystems that are traversed before and after routing.

To explain some of the features or the details of their implementation, I’ll often show
snapshots of user-space configurations. You are encouraged to use Chapter 36 as a
reference if you need to learn more about the user-space tools I employ in the exam-
ples.

The discussion on routing will focus on IPv4 networks. However, I will point out the
aspects of IPv6 that differ significantly.

Figure 30-1. Relationship between the routing subsystem and the other main network subsystems

Layer four protocols
(e.g. , TCP/UDP/ICMP/IGMP)

Layer three protocols
(e.g., IPv4/IPv6/DECnet)

Receive Transmit

Forward

Neighboring

Egress
traffic control

Ingress
traffic control

Drivers
(FASTROUTE)

eth0 eth3eth1 eth2NICs

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

778 | Chapter 30: Routing: Concepts

Routers, Routes, and Routing Tables
In its simplest form, a router can be defined as a network device that is equipped
with more than one network interface card (NIC), and that uses its knowledge of the
network to forward ingress traffic appropriately.*

The information required to decide whether an ingress packet is addressed to the
local host or should be forwarded, together with the information needed to correctly
forward the packets in the latter case, is stored in a database called the Forwarding
Information Base (FIB). It is often referred to simply as the routing table.

Figure 30-2 shows a simple scenario with a LAN whose hosts are configured on the
10.0.0.0/24 subnet, and a router, RT, that is used by the hosts of the LAN to reach
the Internet.

Most hosts, not being routers, have only one interface. The host is configured to use
a default gateway to reach any nonlocal addresses. Thus, in Figure 30-2, traffic for
any host outside the 10.0.0.0/24 network (designated by 0.0.0.0/0) is sent to the
gateway on 10.0.0.1. For hosts on the 10.0.0.0/24 network, the neighboring sub-
system described in Part VI is used.

Regardless of the role played by a host in the network, each host maintains a routing
table that it consults whenever it needs to handle network traffic, both when send-
ing and receiving. Routers may need to run specialized software that is not usually
needed by hosts, called routing protocols; after all, they need more knowledge about
how to reach remote networks, and the nonrouter hosts depend on them for that.
The routing protocols are beyond the scope of this book.

The routing capabilities required by hosts may be reduced even further under spe-
cific scenarios, such as the one described in the section “Proxy ARP Server as Router”
in Chapter 28. In this chapter, however, we will stick to the common case just laid
out.

* Unlike IPv4, IPv6 explicitly defines the router role by using a special flag in the IP header.

Figure 30-2. Basic example of router and routing table

Default GW

eth0: 10.0.0.2 eth0: 10.0.0.1

Subnet 10.0.0.0/24

. . .

Routing table
10.0.0.0/24
0.0.0.0/0

Local (eth0)
Next hop 10.0.0.1

RT Internet

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Routers, Routes, and Routing Tables | 779

The routing table is nothing but a collection of routes. A route is a collection of
parameters used to store the information necessary to forward traffic toward a given
destination. In Chapter 32, we will see in detail how Linux defines a route, but we
can anticipate here the minimum set of parameters needed to define a route. Let’s
use Figure 30-2 again as a reference.

Destination network
The routing table is used to forward traffic toward its destination. It should not
come as a surprise that this is the most important field used by the routing
lookup routines. Figure 30-2 shows a routing table with two routes: one that
leads to the local subnet 10.0.0.0/24 and another one that leads everywhere else.
The latter is called the default route and is recorded as a network of all zeros in
the table (see the section “Default Gateway Selection”).

Egress device
This is the device out of which packets matching this route should be transmit-
ted. For example, packets sent to the address 10.0.0.100 would be sent out eth0.

Next hop gateway
When the destination network is not directly connected to the local host, you
need to rely on other routers to reach it. For example, the host in Figure 30-2
needs to rely on the router RT to reach any host located outside the 10.0.0.0/24
subnet. The next-hop gateway is the address of that router.

Nonrouting Multihomed Hosts
Earlier, I said that a router usually has more than one NIC, given that its main job is
to forward data received on one interface out to another. However, nonrouting
hosts—especially servers—can also have multiple NICs without actually doing any
packet forwarding. It is not uncommon for a big server to have multiple NICs for one
or more of the following reasons:

High availability
If one interface goes down or fails, traffic can be taken over by a second one
(which may be connected to a different LAN as well).

Greater routing capabilities
The server may be configured with more routes than just one default. For
instance, it may use static routes or multiple NICs to reach specific hosts or sub-
nets for particular reasons (for instance, to facilitate system logging). Figure 30-3
shows an example where a multihomed host has a second NIC connected to
another LAN to let it reach Host A. Note that the multihomed host does not for-
ward traffic between the two LANs; otherwise it would be a router by definition.

Channeling
It is possible to bind together multiple interfaces and make them look like a sin-
gle one to the routing subsystem. This extra layer (which is transparent to the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

780 | Chapter 30: Routing: Concepts

routing subsystem) can increase the overall bandwidth over a given connection,
which can be a valuable feature for highly loaded servers.

In none of the preceding cases is the host considered a router, because it does not
forward traffic from one interface to another. Another way to say this is that such a
host never receives traffic addressed to any host but itself (where “itself” includes
broadcast and multicast traffic), except in error or under very specific conditions
(proxying, promiscuous interfaces, etc.). Multicast and broadcast traffic can be con-
sidered traffic addressed to the host.

Varieties of Routing Configurations
Routing is a complex topic; we will not be able to analyze all the possible scenarios,
problems, and solutions. However, it is important to be aware of some of them to go
through the source code and understand why some seemingly superfluous condi-
tions are taken into consideration and handled specially.

Figure 30-4 shows three configurations you should understand to make sense of the
design of the routing subsystem. The routers in these configurations are named Rn.
Let’s see what is so special about these cases:

• (a) This is the most common case, where different interfaces are configured on
different subnets, and each subnet is associated with a different LAN.

• (b) Router RT has two interfaces on the same LAN (shown below the router),
but they are configured on two different subnets.

• (c) Router RT still has one address on each subnet 10.0.2.0/24 and 10.0.3.0/24,
but both of those addresses have been configured on the same NIC. This can be
accomplished in two different ways: by using the multiple IP address capability
introduced with IPROUTE2, or by creating old-style aliasing interfaces. We will
briefly compare the two approaches later in this chapter.

Cases (b) and (c) are not common, but they are perfectly legitimate and show how
flexible Linux and IP are. Their implications may not be clear to you yet. We will
point them out and justify them later in this chapter, but let’s start with a couple of
simple implications.

Figure 30-3. Example of a multihomed host

Default GW

. . .
Internet

Multihomed host

A

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Essential Elements of Routing | 781

• A LAN is a broadcast domain. All the hosts that belong to the same L2 broad-
cast domain receive each other’s broadcast. This means that in cases (b) and (c),
if RT (or any other host in network 10.0.2.0/24) sends a packet to the broadcast
address 10.0.2.255, all the hosts of subnet 10.0.3.0/24 will receive it (even
though they will discard it), including, of course, RT.

• The ingress interface is not necessarily different from the egress interface,
although it usually is. Forwarding usually consists of receiving a packet on one
interface and retransmitting it out to another one. In case (c), however, RT can
receive a packet on one subnet and forward it to the other one on the same LAN
using the same NIC.

In Chapter 26, we saw the implications of the setups in Figure 30-4(b) and 30-4(c)
on lower-layer neighboring protocols. In this chapter, we will look at the implica-
tions with regard to routing.

Questions Answered in This Part of the Book
At this point, you may be asking yourself general questions such as:

• If a router is supposed to forward packets, how does the kernel know that for-
warding is enabled?

• Is routing something you enable globally or between interface pairs?

• Are there tuning parameters that can significantly influence the performance of a
Linux router?

• What is the syntax of the routing table?

Or more specific ones such as:

• What is the algorithm used to find the information needed to forward a packet?

• Is the routing table used only to forward traffic, or is there any other use for it?

• How does the kernel interact with dynamic routing protocol daemons running
in user space?

With this and the following routing chapters, you’ll be able to answer both kinds of
questions.

Essential Elements of Routing
In this section, I’ll introduce some terms and basic elements of the routing land-
scape. It’s important to have a clear understanding of the meanings of a few key
terms that are used extensively in this part of the book, and that appear as part of the
variable and function names in the associated kernel code. Fortunately, the routing
code uses naming conventions pretty consistently.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

782 | Chapter 30: Routing: Concepts

Figure 30-4. Examples of network topologies.

RT1

. . .

10.0.1.1

10.0.4.1

10.0.1.100

10.0.1.2

10.0.2.1 10.0.3.2

.

RT2 RT3

(a)

Subnet 10.0.4.0/24

Subnet 10.0.1.0/24

Subnet 10.0.2.0/24 Subnet 10.0.3.0/24

RT

10.0.2.1

10.0.1.1

(b) Subnet 10.0.1.0/24

10.0.3.1

Subnet 10.0.2.0/24 Subnet 10.0.3.0/24

RT

10.0.2.1

10.0.1.1

(c) Subnet 10.0.1.0/24

10.0.3.1

Subnet 10.0.2.0/24 Subnet 10.0.3.0/24

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Essential Elements of Routing | 783

A few definitions are simple and are shown in the following list. Other concepts are
presented in their own subsections.

Internet Service Provider (ISP)
Company or organization that provides access to the Internet.

Forwarding Information Base (FIB)
This is simply the routing table. See the earlier section “Routers, Routes, and
Routing Tables.”

Symmetric routes and asymmetric routes
Usually, the route taken from Host A to Host B is the same as the route used to
get back from Host B to Host A; the route is then called symmetric. In complex
setups, the route back may be different; in this case, it is asymmetric.

Metrics
A metric is an optional parameter that can be configured on a route. Do not con-
fuse these metrics with the ones used by routing protocols: the latter use metrics
to quantify how good a route is. Examples of routing protocol metrics are the
end-to-end delay, the number of hops, a configuration weight or cost, etc.

When you configure a route with IPROUTE2, you can provide additional
parameters called metrics, as defined in the section “Essential Elements of Rout-
ing.” One of them—Path Maximum Transmission Unit, or Path MTU—is
described in Chapter 18. Others are used by the Transmission Control Protocol
(TCP) as starting values for internal variables that may later be adjusted by the
protocol. You can refer to any book on TCP for their meaning and use:

• Window

• Round trip

• Round-trip time variation

• Slow-start threshold

• Congestion window

• Maximum segment size to advertise

• Reordering

Realm
A numerical domain identifier. See the section “Routing Table Based Classifier”
in Chapter 31.

Address class
IP addresses are classified into various classes, shown in Table 30-1. Table 30-2
shows, for each class of IP addresses, the size of the network and host compo-
nents (note that classes D and E are special cases of class C).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

784 | Chapter 30: Routing: Concepts

Routable and nonroutable addresses
The IP specifications have set aside certain ranges of addresses (shown in
Table 30-3) as nonroutable, which means they are reserved for use on a LAN.
Routable addresses must be handed out by centralized bodies and are unique
worldwide. Anyone, in contrast, can configure nonroutable addresses, and these
are the ones most users have on their systems behind their routers. Nonroutable
addresses cannot be used to provide any Internet service because they are not
unique and Internet routers are not supposed to pass traffic to them.

The 127.0.0.0/8 subnet is a special range of addresses whose scope* is just the
host where they are configured. No packet can leave a host with one of these
addresses as either the source or the destination.

Figure 30-5 shows a topology with two subnets using the same range of nonroutable
IP addresses 10.0.1.0/24, and one subnet using the routable subnet 100.0.1.0/24. For
hosts from either 10.0.1.0/24 subnet to communicate with hosts outside their sub-
net, their routers must use some form of Network Address Translation (NAT) to

Table 30-1. Classification of IPv4 addresses based on class

Class First address Last address Leftmost bits of addresses

A 0.0.0.0 127.255.255.255 0----

B 128.0.0.0 192.255.255.255 10---

C 192.0.0.0 223.255.255.255 110--

D (Multicast) 224.0.0.0 239.255.255.255 1110-

E (Reserved) 240.0.0.0 255.255.255.255 11111

Table 30-2. Network and host components

Class
Size of network address
component

Size of host address
component

Number of hosts (including
network and broadcast addresses)

A 8 24 16,777,216 (224)

B 16 16 65,535 (216)

C 24 8 256 (28)

* The section “Scope” describes the exact meaning of the term when applied to IP addresses.

Table 30-3. Nonroutable and loopback IPv4 addresses

Addresses Class

10.0.0.0/8 1 x Class A

172.16.0.0/16 to 172.31.0.0/16 16 x Class B

192.168.0.0/16 256 x Class C

127.0.0.0/8 (Loopback) 1 x Class A

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Essential Elements of Routing | 785

hide the local, nonroutable subnets. Note also that each host is configured by default
with the 127.0.0.1 address. The interfaces that connect the three routers to their ISPs
are configured with routable IP addresses assigned by the ISPs.

Scope
Both routes and IP addresses are assigned scopes, which tell the kernel the contexts
in which they are meaningful and usable. If you understand the concept of scope,
you will have an easier time understanding the various sanity checks done by the
routing code, and the distinctions it makes between differently scoped routes and IP
addresses.

The scope of a route in Linux is an indicator of the distance to the destination net-
work. The scope of an IP address is an indication of how far from the local host the
address is known, which, to some extent, also tells you how far the owner of that
address is from the local host.

Chapter 32 offers a more detailed list of scopes, but let’s see a few examples here,
using a terminology very similar to the one used in the code so that it will be easier to
associate the code with these concepts.

Let’s start with common scopes for IP addresses:

Host
An address has host scope when it is used only to communicate within the host
itself. Outside the host this address is not known and cannot be used. An exam-
ple is the loopback address, 127.0.0.1.

Figure 30-5. Routable versus nonroutable addresses

RT3

RT2

. . .

Subnet 10.0.1.0/24
(Nonroutable addresses)

Internet
RT1

. . .

. . .

lo: 127.0.0.1
Host B

lo: 127.0.0.1
Host A

10.0.1.2 10.0.1.2
lo: 127.0.0.1 lo: 127.0.0.1

lo: 127.0.0.1

Host C

100.0.1.2

100.0.1.1

203.203.203.1

202.202.202.1201.201.201.1

10.0.1.1 10.0.1.1

Subnet 10.0.1.0/24
(Nonroutable addresses)

Subnet 100.0.1.0/24

ISP 3

ISP
1

ISP
2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

786 | Chapter 30: Routing: Concepts

Link
An address has link scope when it is meaningful and can be used only within a
LAN (that is, a network on which every computer is connected to every other
one on the link layer). An example is a subnet’s broadcast address. Packets sent
to the subnet broadcast address are sent by a host on that subnet to the other
hosts on the same subnet.*

Universe
An address has universe scope when it can be used anywhere. This is the default
scope for most addresses.

Note that the scope does not reflect the distinction between nonroutable (private) and
routable (public) addresses. Both 10.0.0.1 (which is nonroutable) and 165.12.12.1
(which is routable) can be given either link or universe scope. The scope is assigned
by the system administrator when she configures the addresses (or is assigned a
default value by the configuration commands). Since universe scope is the default for
both of the addresses mentioned, the administrator must explicitly specify a scope if
something different is desired. The broadcast and loopback addresses are assigned
the proper scope automatically by the kernel.

Let’s see now the meaning of the same three scopes when applied to routes:

Host
A route has host scope when it leads to a destination address on the local host.

Link
A route has link scope when it leads to a destination address on the local net-
work.

Universe
A route has universe scope when it leads to addresses more than one hop away.

We will see in the section “Adding an IP address” in Chapter 32 that Linux creates a
route for each local address configured, plus one for the broadcast address of each
configured subnet. That section should help you understand the relationship
between the scopes of addresses and of routes.

Use of the scope

The scope of both addresses and routes is used extensively by the routing code and
other parts of the kernel.

First of all, remember that in Linux, even though an administrator configures IP
addresses on interfaces, addresses belong to the host, not to the interfaces. See the
section “Responding from Multiple Interfaces” in Chapter 28 for more details.

* There are exceptions, of course. See the section “Directed Broadcasts” for an example.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Essential Elements of Routing | 787

It is not uncommon for a host to be configured with multiple addresses, either on a
single interface or on multiple interfaces. When the local system transmits a packet,
the kernel needs to select what source IP address to use. This is trivial when the host
has only one NIC with a single IP address configured, but it is less obvious when you
run a complex setup with multiple addresses of different scopes. Depending on the
location of the destination address, you may prefer to select a source IP address with
a specific scope, which the destination can then use to return traffic or for other pur-
poses at the remote site.

The routing code also uses scopes to enforce simple yet powerful sanity checks on
the configuration. Suppose you need to transmit a packet to remote Host B, which is
not directly reachable in any of the subnets configured on the local host. A routing
lookup will return you the address of the gateway to use—say, RT. Now you know
that to reach Host B, you need to send your packet to RT, which will take care of for-
warding it. To avoid a loop, RT must be closer to the destination than you are. In
other words, the scope of the route to Host B must be wider than the scope of the
route toward RT. (There are exceptions, which are often required by special
configurations.)

Let’s look at an example using the topology of Figure 30-6. For Host A to reach Host
B, a routing lookup on the former returns the default route via 10.0.1.1, whose scope
is RT_SCOPE_UNIVERSE. The gateway’s address 10.0.1.1 is reachable directly via A’s
eth0 interface, according to the other route shown in the figure. This second route
has scope RT_SCOPE_LINK, which is narrower than the previous scope and therefore
enables the interface to be used to send the packet to the address with the broader
scope.

Figure 30-6. Simple network topology

.

10.0.1.50

eth0

eth0

eth0

Subnet 10.0.1.0/24 Subnet 10.0.2.0/24

eth0

eth0

eth0

.

B

A

10.0.2.100

eth1
10.0.2.1

eth0
10.0.1.1

Routing table
10.0.1.0/24eth0
Scope Link

0.0.0.0/0 eth0, via 10.0.1.1
Scope UNIVERSE

RT

UNIVERSE
LINK

HOST

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

788 | Chapter 30: Routing: Concepts

In the section “Egress lookup” in Chapter 33, you can find an example of using
scope involving ARP.

Default Gateway
The default gateway, often referred to as the 0.0.0.0/0 route, is the one used when
there is no explicit route to a destination.* A single host connected to the Internet is
usually configured with a route to the local network (which is indirectly derived from
the NIC’s configuration) and one default route (usually given by the ISP) that is used
to reach the Internet. A router, on the other hand, may or may not be configured
with default routes; it depends on where the router is placed in the network topol-
ogy and what role the router plays.

The Linux kernel does not have any restriction on the number of default gateways
you can configure. See Chapter 35 for details.

Directed Broadcasts
A broadcast packet is simply a packet sent to a subnet’s broadcast address. Subnet
broadcasts are usually generated by hosts located within the same subnet. This
means that the broadcast packet is addressed to all the hosts in its own subnet.

A directed broadcast, on the other hand, is addressed to the broadcast address of a
remote subnet. An example of the use of a directed broadcast is the remote announce
feature used by SAMBA servers to advertise resources (printers or folders) on remote
subnets.

Let’s illustrate directed broadcasts by referring to Figure 30-7(a). When Host A sends
an IP packet to the address 10.0.0.255, it generates a local broadcast (this case is not
in the figure). When it sends a packet to the address 10.0.1.255 instead, it generates
a directed broadcast. In our example, Host A and the destination network (10.0.1.0/
24) are separated by only one hop, but they could have been more distant; the defini-
tion of a directed broadcast includes any case where the sender does not belong to
the local network to which it addresses the broadcast.

A host can identify a directed broadcast only if the host is on the subnet to which
the broadcast is directed. For example, in Figure 30-7(c), RT1 cannot tell whether
100.0.1.127 is a subnet broadcast, but RT2 can. Directed broadcasts can therefore
be recognized as such only by the last gateway on the path to the destination subnet,
because that gateway has one IP address configured on that subnet.

You may wonder why this is important. Essentially, a misuse of directed broadcasts
can generate Denial of Service (DoS) attacks, and it is unfortunately difficult to

* There are topologies where a default gateway is not needed. See the section “Proxy ARP Server as Router”
in Chapter 28 for an example.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Essential Elements of Routing | 789

distinguish benign directed broadcasts from malign ones. One case, however, is
known to probably be malign: ICMP ECHO REQUEST packets (i.e., pings) sent as
directed broadcasts.

Let’s take the example in Figure 30-7(a) and (b) and imagine 10.0.0.200 sending an
ICMP ECHO REQUEST to the broadcast address 10.0.1.255 (which is not its own
subnet), using the source IP address 10.0.0.100 (which is not its own address). This
would make each host in the remote subnet 10.0.1.0/24 reply to the ICMP ECHO
REQUEST by sending an ICMP ECHO REPLY to the victim host with IP address 10.
0.0.100. The latter would simply discard those packets, since it never sent any ICMP
ECHO REQUEST, but even discarding a huge number of packets is CPU-consum-
ing. As you can imagine, if there were a lot of hosts in the 10.0.1.0/24 subnet, the
victim could be flooded with garbage traffic.

The routing subsystem of the Linux kernel does not allow you to discard any
directed broadcasts. (You can, however, use the filtering subsystem to weed them
out.) Linux does handle ICMP ECHO REQUESTS addressed to a broadcast address
specially: the administrator can indicate whether a host should reply to an ICMP
ECHO REQUEST when the destination address is a local subnet broadcast.

Primary and Secondary Addresses
Sometimes it’s necessary to configure multiple IP addresses on the same NIC. This
may be required, for instance, because:

• You run multiple services on the same host and you prefer to advertise each ser-
vice with a different IP address. This can also simplify the firewall rules.

• You may be short of hardware and forced to temporarily merge two subnets
onto the same hub or switch. In that case, a single NIC would be sufficient to
provide connectivity to both subnets.

You may be surprised to hear that, when you configure multiple IP addresses on the
same NIC, the kernel’s routing code may not consider them equivalent even when
they are assigned the same scope. Distinctions can be made by calling some
addresses primary and others secondary.

When you configure an IP address on an interface, you are always required to pro-
vide a netmask as well. When you do not provide it and the system does not com-
plain, it means the system has selected a default netmask for you. (It may, for
example, be based on the class the IP address belongs to. See the section “Essential
Elements of Routing.”) Without a netmask, the routing subsystem wouldn’t know
which addresses are directly reachable through that interface. So every address is
accompanied by a netmask, and if you configure multiple IP addresses on the same
interface, you need to specify a netmask for each one. Those netmasks may or may
not be the same, depending on the configuration you want to enforce.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

790 | Chapter 30: Routing: Concepts

Figure 30-7. Examples of malign directed broadcasts

RT

(a)

Subnet 10.0.0.0/24
(Broadcast: 10.0.0.255)

10.0.0.100 10.0.0.200

(Broadcast: 10.0.1.255)
Subnet 10.0.1.0/24

RT

(b)
10.0.0.100 10.0.0.200

Src = 10.0.1.100
Dst= 10.0.1.255

(c)
. . . RT1

RT2 . . .

Subnet 100.0.1.0/25
(Broadcast: 100.0.1.127)

Internet

Subnet 10.0.0.0/24
(Broadcast: 10.0.0.255)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Essential Elements of Routing | 791

An address is considered secondary if it falls within the subnet of another already
configured address on the same NIC. This includes the case where the subnets are
the same. Thus, the order in which addresses are configured is important: you do not
explicitly say that a given address is primary or secondary when you configure it, but
the decision is made automatically based on the presence of an existing address
encompassing the subnet.

Let’s see a couple of examples.

The following is the configuration of a single NIC named eth0 after it is configured
with two addresses having the same netmask, first 10.0.0.1/24 and then 10.0.0.2/24.
Since the two addresses fall within the same 10.0.0.0/24 subnet, the first one config-
ured will be primary and the other one will be secondary.

[root@router kernel]# ip address add 10.0.0.1/24 broadcast 10.0.0.255 dev eth0
[root@router kernel]# ip address list dev eth0
4: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
 link/ether 00:60:97:77:d1:8c brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.1/24 brd 10.0.0.255 scope global eth0

[root@router kernel]# ip address add 10.0.0.2/24 broadcast 10.0.0.255 dev eth0
[root@router kernel]# ip address list dev eth0
4: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
 link/ether 00:60:97:77:d1:8c brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.1/24 brd 10.0.0.255 scope global eth0
 inet 10.0.0.2/24 brd 10.0.0.255 scope global secondary eth0

Each interface can have as many primary and secondary addresses as you like. For a
particular netmask (the /24 netmask in this case), only one address can be primary. If
we added a third address—say, 10.0.0.3/24—it would be classified as a secondary
address associated with the primary address 10.0.0.1/24.

On the other hand, 10.0.0.1/24 and 10.0.0.3/25 are on different subnets (because of
the different netmasks) even though they cover an overlapping range of addresses.
Therefore, if we added the 10.0.0.3/25 address to the previous two, it would be clas-
sified as another primary address on eth0. This would be the output of ip address list:

[root@router kernel]# ip address add 10.0.0.3/25 broadcast 10.0.0.127 dev eth0
[root@router kernel]# ip address list dev eth0
4: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
 link/ether 00:60:97:77:d1:8c brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.1/24 brd 10.0.0.255 scope global eth0
 inet 10.0.0.2/24 brd 10.0.0.255 scope global secondary eth0
 inet 10.0.0.3/25 brd 10.0.0.127 scope global eth0

In the section “Helper Routines” in Chapter 35 we will see how the kernel manages
to select one IP address when there are multiple primary addresses with overlapping
subnets.

In short, it is not only the IP address that decides the primary-secondary status: you
also need to take into account the netmask because it identifies the subnet. When

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

792 | Chapter 30: Routing: Concepts

configuring multiple IP addresses on an interface, it is important to understand the
difference between primary and secondary addresses. It is also important when look-
ing at the routing code. We will see in Chapter 32 that the response to many events
and conditions depends on whether the IP address is primary or secondary. Here are
some examples:

• Primary addresses contribute to the entropy of the CPU that happens to run the
code that applies the configuration.

• When you delete a primary address, all the associated secondary addresses are
also removed. There is an option, configurable via /proc, that allows secondary
addresses to be promoted to primary when the current primary address is
removed (see Chapter 18).

• When a host selects the source IP address for locally generated traffic, it consid-
ers only primary addresses.

Old-generation configuration: aliasing interfaces

You may have noticed that in the previous sections, I always used the ip address com-
mand to configure addresses. That’s for a good reason: ifconfig, the old-generation
interface configuration command and the most common tool used by Unix adminis-
trators for this purpose, cannot distinguish between primary and secondary
addresses. ifconfig does not even show the secondary addresses, so the output of
ifconfig and ip address list would not match in the examples in the previous sections.
Chapter 36 offers a deeper comparison between ifconfig, offered by Linux’s net-tools
package, and the new-generation ip address tool, offered by the IPROUTE2 package.

Before the introduction of IPROUTE2 and its advanced routing capabilities, Linux
used the concept of aliasing interfaces, which is still available with newer kernels for
backward compatibility. The only way to configure multiple addresses on a single
NIC with ifconfig was to define virtual devices like eth0:0, eth0:1, etc. Each virtual
device could be used as a real NIC: you could configure an address on it, use it as a
device when configuring routing, and so on.

Relationship between aliasing devices and primary/secondary status

Because the kernel supports both the advanced capabilities of IPROUTE2 and old-
style aliasing, those two models need to coexist somehow. We will see the details of
the kernel internals in Chapter 32, but we can examine here how the two coexist
from a user-space perspective.

When you configure an aliasing device, the primary/secondary status is still assigned
based on the same rule we introduced in the section “Primary and Secondary
Addresses.” However, the output of ip address list now adds a reference to the alias-
ing device. The following snapshot shows an example where we start with an inter-
face with one configured address (eth1), add an address within the same subnet on

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Routing Table | 793

an aliasing device (eth1:1), and then add another address in a different subnet on
another aliasing device (eth1:2). Because of the differing subnets, eth1:1 becomes sec-
ondary and eth1:2 becomes primary.

[root@router kernel]# ip address list
...
11: eth1: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 1000
 link/ether 00:0a:41:04:bd:16 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.101/24 brd 192.168.1.255 scope global eth1
...
[root@router kernel]# ifconfig eth1:1 192.168.1.102 netmask 255.255.255.0
[root@router kernel]# ifconfig eth1:2 192.168.1.103 netmask 255.255.255.128
[root@router kernel]# ip address list
...
11: eth1: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 1000
 link/ether 00:0a:41:04:bd:16 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.101/24 brd 192.168.1.255 scope global eth1
 inet 192.168.1.103/25 brd 192.168.1.255 scope global eth1:2
 inet 192.168.1.102/24 brd 192.168.1.255 scope global secondary eth1:1
...

An obvious question is whether you can configure multiple addresses on an aliasing
device using IPROUTE2. This is not possible, because IPROUTE2 does not treat
aliasing devices as real, independent devices as ifconfig does: an aliasing device to
IPROUTE2 is just a label on an address.

[root@router kernel]# ip address add 192.168.1.104/24 dev eth1:1
Cannot find device "eth1:1"

Routing Table
The routing table is the core of the routing sysbsystem. In its simplest definition, it
consists of a database of routes that is available to other subsystems—IPv4, for
example—through various functions, the most important being the one used to do
lookups.

As you may already imagine, routes do not consist only of the basic information
shown in the section “Routers, Routes, and Routing Tables.” Over time, due both to
code optimizations and to the introduction of new features, the amount of informa-
tion that makes up an entry in the routing table has grown quite a bit. We will look
at those details in Chapter 34.

In the following subsections, we will briefly see:

• How Linux routes packets addressed to local addresses

• What algorithm is used to look up addresses in the routing table

• What administrative actions can be applied to traffic matching a route besides
the default forwarding action

• What extra information is stored in a route by upper protocols for their
convenience

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

794 | Chapter 30: Routing: Concepts

Special Routes
When a packet is received, a router needs to determine whether to deliver it locally
to the next-higher layer (because the local host is the final destination) or to forward
it. A simple way to accomplish this is to store all the local addresses in a list and scan
the list for each packet as part of the routing lookup. Of course, a list would not be
the best choice; there are better data structures that can provide faster lookup time.
Linux uses a separate hash-based routing table where it stores only local addresses.
To be more exact, it stores all of those addresses that it listens to, which includes
both the locally configured addresses and the subnet broadcasts.

This means that by default, Linux uses two routing tables:

• A table for local addresses. A successful lookup in this table means that the
packet is to be delivered on the host itself. We will see in Chapter 32 how the
kernel populates this table.

• A table for all other routes, manually configured by the user or dynamically
inserted by routing protocols.

Route Types and Actions
We saw in the section “Routers, Routes, and Routing Tables” what a basic route
consists of. By default, the action taken to process a packet that matches a given
route is to forward it according to the forwarding information returned from the
routing table for that route: the next-hop router and the egress device.

However, Linux allows you to optionally define other kinds of actions as well.* Here
are the main ones:

Black hole
Packets matching this type of route are silently discarded.

Unreachable
Packets matching this type of route are discarded and generate an Internet Con-
trol Message Protocol (ICMP) host unreachable message.

Prohibit
Packets matching this type of route are discarded and generate an ICMP packet
filtered message.

Throw
This type is used in conjunction with policy routing, a feature covered in
Chapter 31. When policy routing is configured, a matching route of this type
will make the lookup abandon the current table and continue with the following
one (if any).

* We will see in Chapter 36 that you can configure these alternative route types only using the new-generation
configuration tool IPROUTE2.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Routing Table | 795

Routing Cache
Depending on the role played by the router, the number of routes in its routing table
can range from a few units to a few hundred thousand. Because of that, it should be
obvious that it would be beneficial to maintain a smaller table that caches the results
of lookups, both positive and negative. Linux splits the routing cache into two com-
ponents (where a protocol, in this context, means an L3 protocol such as IPv4 and
IPv6):

• A protocol-dependent cache

• A protocol-independent destination cache, often called just DST

The first component represents the skeleton of the cache, where each element is
defined as a collection of protocol-specific fields. The second component, which is
embedded in the first, stores only protocol-independent information. Both the proto-
col-dependent cache and the protocol independent component of it are described in
Chapter 33.

We will see in Chapter 31 that it is possible to create multiple independent routing
tables on a Linux system that supports the policy routing feature. Regardless of the
number of routing tables, Linux uses only one routing cache. If policy routing is sup-
ported, the cache does not provide any fairness, so it is possible that the routes of
one routing table use many more entries of the cache than other routing tables (i.e.,
the space in the cache is not equally distributed among the routing tables). This
approach, however, ensures greater routing throughput overall.

Routing Table Versus Routing Cache
The routing table and the routing cache, besides differing in size and structure, also
differ in the granularity of their objects. The routing table uses subnets, aggregates of
consecutive addresses. Entries of the cache, on the other hand, are associated with
single IP addresses. Because of this, the lookup algorithm used by the routing table
and the routing cache also differs, as we will see in the section “Lookups.”

Let’s view an example. Suppose our routing table includes, among other routes, the
one in Table 30-4, which is the only one that leads to the subnet 10.0.1.0/24.

Let’s also suppose the kernel was asked to transmit two packets to the addresses
10.0.1.100 and 10.0.1.101, respectively. Since the route in Table 30-4 would match
in both cases, the kernel would use it to route the two packets and would install two
entries into the routing cache that would look like those in Table 30-5.

Table 30-4. Example of routing table entry

Destination Next hop Device to use

10.0.1.0/24 10.0.0.1 eth0

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

796 | Chapter 30: Routing: Concepts

The elements in Table 30-5 are a simplified version, of course. In Chapter 33, we will
see that entries of the routing cache include the source address, too.

Routing Cache Garbage Collection
Garbage collection is responsible for eliminating data structures, owned by the rout-
ing subsystem, that are no longer in use. However, data structures may be removed
even if they are in use, for example, to free the memory needed to store something
more important. The effects of the deletions done by the garbage collection will not
lead to any loss of data, because all the information eliminated can be re-created. The
deletion of an element from the cache can lead only to a cache miss in the worst case.

There are two kinds of garbage collection:

Synchronous
When the routing subsystem sees the need to free some memory, a cleanup is
done right away. There are two cases where the routing code may force garbage
collection without waiting for the regular timer to do it:

• When a new entry is to be added to the routing cache and the number of
entries currently in the cache has reached a particular threshold, which is
configurable by the user.

• When memory is needed by the neighboring subsystem cache. We saw in
Chapter 27 that the routing cache and the neighboring subsystem cache
keep references to each other. The creation of a new routing cache entry
could trigger the creation of a new neighbor cache entry. If the neighboring
protocol—say, ARP—failed to allocate the memory it needed, the routing
subsystem would force a garbage collection to indirectly free data structures
owned by the neighboring protocol and therefore help the latter find the
memory it needed.

Asynchronous
To keep the cache size reasonable, a periodic timer is used to trigger regular
cleanups. By default, routing cache entries do not expire. However, it is possible
for external subsystems to tell the routing cache to expire certain entries after a
given amount of time. The routing subsystem runs a timer that periodically
scans the cache, looking for entries that:

• Are expired and should be removed

• Are not expired, but could be sacrificed if the kernel needs to free some
memory

Table 30-5. Example of routing cache entry

Destination Next hop Device to use

10.0.1.100 10.0.0.1 eth0

10.0.1.101 10.0.0.1 eth0

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Routing Table | 797

Examples of events that can expire cache entries

An entry is set to expire only in specific cases, including:

• When the local system receives an ICMP UNREACHABLE or ICMP FRAG-
MENTATION NEEDED message, it hands it to the ICMP layer. Such a mes-
sage notifies the local host about a packet that it previously sent out whose size
exceeded the MTU of a router along the path to the destination address. The
ICMP handler will scan the routing cache, update the PMTU field of all the
affected entries, and set the latter to expire after a certain configurable amount of
time, which is 10 minutes by default.

ICMP also notifies the L4 protocol associated with the packet that triggered the
ICMP message. For instance, TCP may use these notifications for the Path MTU
discovery algorithm. See Chapters 18 and 25 for more details on path MTU
discovery.

• A destination IP address can be classified as unreachable when the neighboring
protocol has failed to resolve the L3-to-L2 mapping (see Chapter 27) or when
the local host is at one end of an IP tunnel, and the other end becomes unreach-
able for some reason (for example, a routing problem or misconfiguration).

When a destination IP address is classified as unreachable, all the entries of the
cache associated with the address need to be flushed and therefore will be set to
expire right away.

Examples of eligible cache victims

There may be cases where the kernel needs to free some cache entries to make room
for new ones, and the periodic timer is not able to guarantee by itself that the cache
will always have some free room (i.e., to keep its size below some threshold). In
those cases, the host must delete entries that the periodic timer would not pick
because they are still valid. Even if the garbage collection system needs to select vic-
tims from valid entries, it can reduce the damage by selecting those that can be re-
created quickly with only a small overhead.

Good candidates for removal include routes to broadcast and multicast addresses.
Normally, when the routing subsystem deletes a routing cache entry, it may indi-
rectly remove the L3-to-L2 association as well. When this happens, the next time the
host needs to send data to the L3 address, the neighboring subsystem will need to
resolve the L3-to-L2 association again. However, broadcast and multicast addresses
can be resolved with low overhead because they do not need any solicitation request
(see the section “Special Cases” in Chapter 26).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

798 | Chapter 30: Routing: Concepts

Particularly bad (high-overhead) candidates for removal include:

REDIRECT routes
This kind of route has been learned through an ICMP REDIRECT message; if it
is removed, the host will use suboptimal routing for further traffic along that
route. Removing the entry may also be a waste of time because the host will
most likely receive another ICMP REDIRECT that just leads to reinserting the
route.

Routes manually configured by the administrator
These are routes that a user, via a command such as ip route get 10.0.0.1
monitor, has asked the kernel to send a notification (via the Netlink socket)
when it changes state. The user probably considers this route important for
some reason. See Table 36-11 in Chapter 36 for more information.

In any case, entries with non-null reference counts are never considered eligible for
deletion.

Lookups
As mentioned in the section “Routing Cache,” Linux uses both a routing cache and a
routing table. Figure 30-8 summarizes the steps in a routing table lookup. To keep
the “Route/deliver packet” simple, it does not reflect the variety of routes described
earlier in the section “Special Routes.”

Lookups in the routing cache are based on an exact match in a simple hash table.
Lookups in the potentially much bigger and more complex routing table are based
on a Longest Prefix Match (LPM) algorithm, described in the following section. As
we will see in Chapter 34, a routing table is organized as a complex mesh of data
structures. This makes LPM faster and easier to implement, scales well with a large
number of routes, and reduces the duplication of instances of data structures that
can be shared.

Longest Prefix Match
If there were only one route toward each destination, routing lookups would be triv-
ial. As soon as you found a route whose destination subnet included your destina-
tion address—the key of the lookup—you would be done. However, routing is a
complex topic. Without going into detail on the network topologies or specific cases
where this complexity occurs, suffice it to say that it is not uncommon to have multi-
ple routes to the same destinations. The overlapping between the routes can be any-
where from one address to an entire subnet.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Lookups | 799

In case of multiple matches, the routing algorithm needs a rule to deterministically
decide which of the eligible routes should be selected as the best candidate. Here is
where LPM comes into play and partially solves the problem: the best route is the
most specific one. This means the one with the smallest subnet size, or equivalently,
the longest netmask.

Let’s look at an example. Suppose our routing table had two routes that matched the
lookup for the destination address 10.0.0.100, as shown in Table 30-6.

Since the second route has 24 bits (out of 32) in common with the destination
address and the first one has only 16, the second one is said to have the longest pre-
fix match and wins. It is not uncommon to define routes like the ones in Table 30-6,
where one route leads to a subset of addresses of another one. This can be neces-
sary, for instance, to route traffic addressed to a specific subnet differently from the
rest of the network, due to administrative or security reasons. But it is also the easi-
est way to configure routing: the alternative would be to split the 10.0.0.0/16 range
into multiple /24 ranges (i.e., from 10.0.0.0/24 to 10.0.255.0/24) and therefore put

Figure 30-8. Routing lookup

Table 30-6. Routing table example 1

Destination Next hop Device to use

10.0.0.0/16 10.0.1.1 eth0

10.0.0.0/24 10.0.0.1 eth1

Cache lookup

Route/deliver packet

Hit

Miss

Local addresses
lookup

Remote addresses
lookup

Miss

Drop packet

Hit

Hit

Miss

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

800 | Chapter 30: Routing: Concepts

255 routes into the routing table, 254 with the same next hop. This would make
routing lookups slower and more CPU expensive.

However, LPM alone is not sufficient to deterministically select one route when mul-
tiple ones match a given destination. Let’s take the example in Table 30-7.

In this case, there are two routes with the same matching prefix length.

We will see in Chapter 35 that lookups include the Type of Service (TOS) in the
search key: this means that when configured, the TOS can be used as a tie breaker.

When the TOS is not sufficient to select a route, the route with higher priority (lower
priority value) is selected.

If the priority is also not sufficient to unequivocally choose one route, the kernel will
simply choose the first one. This means that it matters in which order routes to the
same destination and with the same prefix length are added to the routing table.

Packet Reception Versus Packet Transmission
The routing table is used to route both packets that are transmitted and those that
are received, because either type may be delivered locally or forwarded. But besides
those obvious uses of the routing table, there are others that are less obvious.

Figure 30-9 shows a couple of examples of routing table use. It distinguishes between
lookups triggered by the reception of data (left side) and the transmission of data
(right side). Note that the routing information required to forward an input packet is
collected when the packet is first received, which explains why the Forwarding block
does not have an arrow toward the Routing block in Figure 30-9. The figure also
includes pointers to those chapters where you can find more details about a given
kernel component. Here are some details concerning the activities shown:

• Address Resolution Protocol (ARP) packets are not routed, but ARP may need to
do a route lookup to enforce some sanity checks. See Chapter 28.

• IP-over-IP is a simple tunneling protocol that encapsulates IP packets within
larger IP packets. When the IP handler is handed an ingress IP-over-IP packet, it
redelivers the payload to the IP layer. The inner IP packet is routed like any other
ingress packet, so the routing subsystem needs to make another routing lookup.

Table 30-7. Routing table example 2

Destination Next hop Device to use

10.0.0.0/16 10.0.1.1 eth0

10.0.0.0/24 10.0.0.1 eth1

10.0.0.0/24 10.0.0.2 eth1

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Packet Reception Versus Packet Transmission | 801

• Routing a packet normally requires only one lookup, regardless of where the
packet originated (locally or remotely). That lookup returns all the information
needed to route the packet, including the kernel functions that will take care of
it. There are a few exceptions: you may have a feature that for some reason
needs to make additional lookups, as with the case of IP-over-IP just described.

• The routing core first checks whether the cache already contains the required
information, and falls back to the routing table otherwise.

Figure 30-9. Ingress and egress traffic routing

L4 protocols TXRX (Chapter 24)

Forwarding
(Chapter 20)

GRE

IP over IP

. . .

IP
(Chapter 19)

. . .

ARP
(Chapter 28)

IN
(Chapter 10)

ARP
(Chapter 28)

. . .

ICMP
(Chapter 25)

IP
(Chapter 21)

OUT
(Chapter 11)

Cache

Routing core

Policies

Routing table 1

Routing table 2

. . .

Routing table n

User
Kernel

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

802

Chapter 31CHAPTER 31

Routing: Advanced

The previous chapter gave an introduction to basic routing. This chapter introduces
routing features such as policy routing and multipath that can be used to configure
routing in more complicated scenarios. It also shows how routing interacts with the
Traffic Control subsystem in charge of QoS, and the firewall code (Netfilter). The
chapter concludes with two smaller features: ICMP redirects and reverse path
filtering.

Concepts Behind Policy Routing
We saw in the section “Special Routes” in Chapter 30 that the Linux kernel uses two
routing tables by default, one for local routes and one configurable by the adminis-
trator. When the kernel is compiled with support for policy routing, you can have up
to 255 distinct and independent routing tables. In this chapter, we will see what pol-
icy routing can be used for, and in Chapter 35 we will see its implications on the
design of the routing subsystem.

The main idea behind policy routing is to allow the user to configure routing based
on more parameters than just the destination IP addresses.

The Internet thrived for years with most routers configured just to route packets
based on the destination IP address. (For the sake of simplicity, I’ll leave out particu-
lar factors such as crossing ISP or country boundaries.) And basing the route on only
the destination address can (with the help of some external configuration parame-
ters) lead to pretty optimal routing tables for a surprisingly wide range of situations.

But the commercial world needs to take many other things into account, such as sep-
arating streams of traffic for security or accounting purposes, or sending real-time
streaming traffic over a separate route. Here is where policy routing comes into play.
Because there are such varied criteria for routing, for the purposes of this chapter I’ll
just say that any routing based on more than just the destination address is policy
routing.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Concepts Behind Policy Routing | 803

An example of the use of policy routing is for an ISP to route traffic based on the
originating customer, or on Quality of Service (QoS) requirements. The customer
can often be easily identified by the port on which the traffic arrives at the ISP’s
router, the source IP address, or a combination of the two. A router can also use a
combination of source and destination addresses to identify a profile of traffic or an
aggregate of traffic from a given source. The QoS requirements can be derived from
the DiffServ Code Point (DSCP) field of the IP header and from a combination of the
fields of the higher-layer headers (these identify the applications).

Since this book is about kernel internals, we want to know how those policies are
passed to the kernel, see how they are embedded in the routing table, and find out
how they affect the routing lookups. We will learn all of this, but let’s start with an
example, using the topology of Figure 31-1 as a reference.

Let’s focus on the configuration of the router RT, which is used to connect Campus
1 and Campus 2 to both Campus 3 and the Internet (let’s not bother about how the
routers manage to translate the nonroutable addresses 10.0.x.x; this is just an exam-
ple). Let’s also suppose we want to enforce the following two policies:

• Traffic directed to Campus 3 will go through router RT1 when originated from
Campus 1, and through RT2 when originated from Campus 2. One reason could
be that the administrator of Campus 2 is willing to pay more and therefore is
allowed the use of the faster network that connects RT to Campus 3.

• Traffic directed to the Internet (e.g., any destination except the three campuses)
will go through DG1 (default gateway 1) for Campus 1, and through DG2 for
Campus 2. This could be needed, perhaps, to enforce security or bandwidth
policies.

This example is a simple one with just a few routes and only two policies. Of course,
the advantage of providing independent routing tables appears only in much bigger
and more complex scenarios. And even this example is incomplete—we are ignor-
ing, for instance, incoming routes from the Internet to the campuses.

There are two conceivable ways to configure routing on router RT, one of which
(multiple tables) is the approach used by Linux.

Single table approach
Table 31-1 is a simplified version of the routing table configured on RT to
enforce the two policies listed earlier. Note that because Campus 1 is the only
network connected to RT’s eth0, and Campus 2 is the only one connected to
RT’s eth1, the routes do not need to specify the source IP addresses. Instead of
routing just on the destination address—because the same destination address
can match multiple routes—multiple criteria are checked to choose a unique
route. In this case, the incoming device is checked along with the destination
address.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

804 | Chapter 31: Routing: Advanced

Figure 31-1. Example of topology that may require policy routing

Table 31-1. Single routing table example

Ingress device Source IP Destination IP Next hop Egress device

Routes to Campuses 2 and 3 for traffic
originated in Campus 1

eth0 Not specified 10.0.3.0/24 10.0.0.10 (RT1) eth2

eth0 Not specified 10.0.2.0/24 Not specified eth1

Routes to Campuses 1 and 3 for traffic
originated in Campus 2

eth1 Not specified 10.0.3.0/24 10.0.0.20 (RT2) eth2

Internet

eth2 10.0.0.1/24

10.0.0.2110.0.0.2010.0.0.1010.0.0.11

Campus 3
10.0.3.0/24

Slow net Fast net

Campus 1 Campus 2

10.0.0.0/24

DG1 RT1 RT2 DG2

eth1eth0

10.0.1.0/24 10.0.2.0/24

RT

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Concepts Behind Policy Routing | 805

Multiple table approach
Because so many criteria could potentially be involved in every route lookup, it’s
faster and easier for a host to maintain independent routing tables and choose
the right one from particular criteria. For instance, the source IP address or the
ingress device could be used to choose a routing table, and that table could con-
tain more criteria to help make the final route selection.

Thus, when multiple routing tables are used, the kernel has to select the right
routing table before it can do a lookup—the choice of a routing table is where
policies come into effect. Thus, the rules for router RT in our example could be
determined by the following rules, in conjunction with Tables 31-2 and 31-3:

• Traffic coming in on eth0 is checked against Routing Table 1 (Table 31-2).

• Traffic coming in on eth1 is checked againstRouting Table 2 (Table 31-3).

The first entry in Tables 31-2 and 31-3 does not need to be explicitly configured
because the kernel derives it from the configuration of interfaces eth0 and eth1,
respectively. We will see how this is achieved in Chapter 32.

As we will see in Chapter 33, Linux maintains only one routing cache that is updated
by all the routing tables. These tables also share the memory pools used to allocate
the building blocks of the tables. Linux does not enforce any fairness mechanism to
share these common resources equitably among the various routing tables. In

eth1 Not specified 10.0.1.0/24 Not specified eth0

Default routes for Campus 1 and Campus 2

eth0 Not specified 0.0.0.0/0 10.0.0.11 (DG1) eth2

eth1 Not specified 0.0.0.0/0 10.0.0.21 (DG2) eth2

Table 31-2. RT1 used to route traffic from Campus 1

Destination IP Next hop Egress device

10.0.2.0/24 None eth1

10.0.3.0/24 10.0.0.10 (RT1) eth2

0.0.0.0/0 10.0.0.11 (DG1) eth2

Table 31-3. RT2 used to route traffic from Campus 2

Destination IP Next hop Egress device

10.0.1.0/24 None eth0

10.0.3.0/24 10.0.0.20 (RT2) eth2

0.0.0.0/0 10.0.0.21 (DG2) eth2

Table 31-1. Single routing table example (continued)

Ingress device Source IP Destination IP Next hop Egress device

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

806 | Chapter 31: Routing: Advanced

addition to simplifying the implementation, this actually maximizes overall routing
throughput, because more system resources are allocated to the routing tables with
higher needs. However, it may have an externally detectable effect: that is, when one
Linux host using different routing tables manages traffic from different sources, the
overall experience from a customer perspective may be different from the experience
provided by independent routers or even by a single host that stringently separates
the resources used by routes.

Lookup with Policy Routing
When policy routing is in use, a lookup for a destination consists of two steps:

1. Identify the routing table to use, based on the policies configured. This extra
task inevitably increases routing lookup times.

2. Do a lookup on the selected routing table.

Of course, before taking these two steps, the kernel always tries the routing cache.

Policies can be assigned an administrative type, like routes (see the section “Route
Types and Actions” in Chapter 30). This allows the kernel to make a quick decision
based on a type assigned to an entire policy, without waiting to look up the route.
For example, the kernel generates an ICMP HOST UNREACHABLE message when
the matching policy is configured with an UNREACHABLE type, instead of waiting
and finding a matching route configured with an UNREACHABLE type.

Figure 31-2 is a revised version of Figure 30-9 in Chapter 30, with added support for
policy routing and details about the optional policy types.

Routing Table Selection
The policies that let the kernel select the routing table to use can be based on the fol-
lowing parameters:

Source and/or destination IP address
It is possible to specify both the source IP address and the destination IP address,
each with a netmask.

Ingress device
Depending on the context, the receiving device can be a more appropriate crite-
rion for routing policy than the source IP address. There are cases where a
packet with one source IP address could arrive on more than one interface, but
we would like the configuration to be based on the receiving device—for
instance, if traffic on one device was considered real time and higher priority. In
that case, the source IP address would not be of much help. The use of the

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Concepts Behind Policy Routing | 807

device rather than of the source IP address could be preferable in these cases as
well:

• When multiple, discontinuous ranges of source IP addresses are on the same
device that we want to associate with the same routing table. In this case,
instead of adding a rule for each distinct range of IP addresses, you can sim-
plify the configuration by using a single rule based on the device.

• When the selection of the routing table has more to do with the physical
network topology than with the source of the traffic.

Figure 31-2. Policy routing lookup

Local table
lookup

Match

Policy lookup
(one by one)

Policy type

ICMP
Pkt filtered

Miss

1

Cache
lookup

Miss

ICMP host
unreachable Silent dropICMP host

net unreachable

2 3

ProhibitUnreachable Black hole

Default (main)
table lookup

Miss

End of policies

No match

4

Route/deliver
packet

Table
lookup

Unicast

Miss

Route
type

1 2 3

Unreachable

Prohibit

Black hole

Hit

Unicast
Local
Broadcast
Anycast
Multicast

4

Throw

Hit

Hit

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

808 | Chapter 31: Routing: Advanced

TOS
The use of this parameter can help in classifying the type of traffic (e.g., bulk
data, interactive, etc.), as opposed to the parameters based on the source and
destination of the traffic.

Fwmark
This is one of the features that shows the power of Linux firewalling. Policy rout-
ing rules can be defined in terms of firewall classification. Of course, for this to
be possible, the firewall has to classify traffic before routing comes into the pic-
ture. See the section “Policy Routing and Firewall-Based Classifier.”

Any combination of the preceding parameters also represents a valid way to deter-
mine the policy.

Concepts Behind Multipath Routing
Multipath is a feature that allows an administrator to specify multiple next hops for a
given route’s destination. In environments with substantial requirements, there are
several reasons for doing this. A router could just use one ISP most of the time, and
switch to the other when the first one fails for some reason. Another application of
multipath is to keep a path on standby and enable it only when bandwidth require-
ments surpass a predefined threshold.

Figure 31-3 shows a topology where the network on the left is connected to the Inter-
net via router RT, which is configured to use two uplinks simultaneously via two dif-
ferent ISPs.

Figure 31-3. Example of topology with multipath

.

RT

.

100.100.100.2

200.200.200.2

100.100.100.1

200.200.200.1

RT1

RT2

ISP 1

ISP 2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Concepts Behind Multipath Routing | 809

Let’s suppose we want to have RT use both RT1 and RT2 as default gateways, keep-
ing them always available. On RT, we could define a multipath route, simply by pro-
viding the route with more than one next hop. The following user-space command,
using the newer IPROUTE2 package, would enable multipath:

ip route add default scope global nexthop via 100.100.100.1 weight 1 nexthop via 200.
200.200.1 weight 2

Note that even if the route includes multiple next hops, the route is still considered a
single route. Therefore, given a route (in our example, the default route 0.0.0.0/0)
with more than one next hop, the kernel needs a mechanism to select the next hop to
use each time the route matches a route lookup. There are different ways to do that,
each one with its pros and cons. For an interesting analysis of the most common
algorithms for multipath routing, I suggest you read RFCs 2991 and 2992.

Linux provides flexibility among algorithms by allowing the administrator to assign
each next hop a weight with the weight keyword. The number of times a next hop is
selected is proportional to its weight in relation to all the other next hops. If all the
next hops are assigned the same weight, the algorithm falls back to the so-called
equal cost multipath algorithm.

Note, however, that the granularity used to distribute traffic among the next hops is
measured not in packets, but in the number of routing cache entries. This is because
once a next hop is selected, an entry is added to the cache. Because the routing sub-
system always consults the cache before invoking any check on routing tables, subse-
quent packets belonging to the same traffic flow (aggregate of traffic) will be handled
straight from the cache. As explained in Chapter 36, a flow is a collection of packets
that match a set of criteria. These consist mainly of the source or destination
addresses, the ingress or egress devices, and the IP TOS field. You will see in the sec-
tion “Per-Flow, Per-Connection, and Per-Packet distribution” that when Multipath
support for the cache is enabled, traffic can also be distributed on a per-connection
basis instead of on a per-flow basis.

From purely a throughput point of view, this granularity may be suboptimal, because
different flows may have very different bandwidth requirements, and therefore the
kernel may be unfair even when all of the next hops are configured with the same
weight—and what is worse, the unfairness would not be deterministic. So Linux pro-
vides an option that allows you to use per-packet rather than per-flow granularity
(see the section “Equalizer algorithm”). However, in most cases, given the high num-
ber of flows that usually traverse a router, the next hops are likely to get, on average,
a load that is proportional to their weights.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

810 | Chapter 31: Routing: Advanced

Next Hop Selection
The selection of the next hop is based on a weighted round-robin algorithm.

We saw in the previous section a sample user-space command that specified a weight
for each next hop. Usually, an administrator assigns a weight to each path to indi-
cate whether it is preferred. That is the weight used by the round-robin algorithm.
The method used to define the weight is an administrative issue based on criteria
such as bandwidth and cost, so I will not go into detail about it.

The easiest way to select the next hops, proportionally to their weights, would be to
simply have each one consume its tokens one by one and then restart. For instance, if
we had two next hops with weights of 3 and 5, respectively, we could select the first
one three times, the second one five times, and then again the first one three times,
etc. But the distribution of traffic with this approach could be too bursty.

Therefore, Linux adds a randomness component to the selection of the next hop.
Given the weight Wi for the ith next hop, and given the sum W of all the next hops,
Linux selects a next hop randomly W times, and each next hop is selected a number
of times equal to its weight Wi. The randomness introduced is not too accurate, but
it is an acceptable approximation, and it falls back to a simple sequential selection
(from first to last next hop) when all the next hops are assigned the same weight 1.

Here is how it is implemented. The kernel defines the round-robin budget as the sum
of all the next hop weights. The budget (number of tokens) of each next hop is ini-
tialized to the value of its weight. At each round, the kernel generates a random value
ranging from 0 to the total round-robin budget. Then it browses the next-hop list
until it finds one with a budget greater than or equal to the generated random value.
After each next-hop selection, it decrements both the round-robin budget and the
selected next hop’s budget.

Note that it is possible for none of the next hops to match on the first round. Imag-
ine a case with three next hops whose weights are 1, 2, and 3. The total budget
would be 6. Valid random values are the ones in the range 0 to 5. However, values 4
and 5 would not select any next hop because none has a budget that big. When this
happens, the kernel subtracts the weight of each nonmatching next hop from the
total budget and checks again.

Let’s continue our example to show how this works. Suppose our random number
was 5. We start browsing the list of next hops. The first one has a budget of 1, which
is not sufficient. We therefore do not select it, and reduce our requirement from the
following next hop by lowering the random value to 5–1, or 4. The following next
hop has a budget of 2, which again is not sufficient. So we lower the random value
again to 4-2, or 2. The last next hop has a budget of 3, which is greater than or equal
to 2 and therefore is selected. This, by the way, is the worst case in terms of perfor-
mance: the last of the next hops is the one selected.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Concepts Behind Multipath Routing | 811

Next hops of a multipath route can be temporarily unavailable (see the section
“Effects of Multipath on Next Hop Selection” in Chapter 35). These, of course, will
not be taken into consideration by the next-hop selection algorithm.

Cache Support for Multipath
By default, the routing cache does not support multipath. Therefore, as we saw in
the section “Concepts Behind Multipath Routing,” once the algorithm in the section
“Next Hop Selection” has chosen one of the next hops, it will be used for all subse-
quent traffic matching the same lookup key because a route is added to the cache
with a reference to that next hop.

Starting with version 2.6.12, the Linux kernel comes with an option that allows the
user to enable multipath support for the cache, and also allows the system adminis-
trator to select what algorithm to use to distribute traffic between the different next
hops specified by a given multipath route.

Here are the available algorithms:

Random
The next hop to use is selected randomly. This is fast because it does not require
any state information to be kept. On average, it distributes traffic equally on all
next hops.

Weighted random
Next hops are assigned a weight, and traffic is distributed randomly to all next
hops proportionally to their weights.

Round robin
Standard round-robin algorithm, distributing each transmission to the next
route in order.

Device round robin
Instead of distributing traffic based on the routes, traffic is distributed in round-
robin fashion on the interfaces. Multiple next hops sharing a common device are
considered one unit.

When you configure a route with IPROUTE2’s ip route command, you can use the
new mpath keyword to select the algorithm to use. This is an example of a route con-
figured to use the round-robin algorithm:

ip route add 10.0.1.0/24 mpath rr nexthop via 192.168.1.1 weight 1
 nexthop via 192.168.1.2 weight 2

When the mpath keyword is not provided, multipath caching is kept disabled on the
route.

The weighted random and device round-robin algorithms are described in more
detail in the next subsections.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

812 | Chapter 31: Routing: Advanced

Weighted random algorithm

Assume we have a multipath route with four next hops, assigned the weights 1, 1, 2,
and 4. Let’s align the four weights along a line as shown in Figure 31-4. The sum of
the weights is 8, so if you generate a random number in the range 0–8 you can
unequivocally identify a next hop in the line. For example, the value 2.8 would select
the third-next hop. It should be clear that the next hops are selected proportionally
to their weights.

Device round-robin algorithm

The next hops of a multipath route can be reachable through a single device, each
can be reachable through a different device, or you can have a hybrid situation.
These three cases are shown in Figure 31-5.

A pure round-robin algorithm would distribute traffic equally to the various next
hops, but not necessarily equally to the various devices associated with those next
hops. For example, a multipath route with three next hops, two of which share the
same egress device, as in Figure 31-5(c), would load one of the two egress devices
twice as much as the other.

Thus, the goal of the device round-robin algorithm is to distribute traffic equally
among a pool of devices, instead of on a per-multipath-route basis. All traffic that
matches any route configured to use this algorithm is considered a single aggregate of
traffic to distribute equally among devices. Therefore, the decision concerning which
device to use for a given multipath route depends not only on the devices previously
used to route traffic with the same multipath route, but also on the devices used by
other multipath routes.

Note that while a pure round-robin algorithm assumes that the bottleneck in the for-
warding path is the target routers’ CPUs, device round robin aims at optimizing the
use of the devices’ bandwidths, giving less importance to the target CPUs.

Figure 31-4. Example of weighted random selection

1 1 2 4

8
2.8

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Concepts Behind Multipath Routing | 813

Figure 31-5. Different ways to assign next hops to interfaces

(a)

10.0.50.1 10.0.50.2

10.0.1.1 10.0.1.2

10.0.1.100

10.0.50.0/24

10.0.1.0/24

ip route add 10.0.50.0/24
nexthop via 10.0.1.1
nexthop via 10.0.1.2

(b)

10.0.1.100

10.0.2.100

10.0.2.1

10.0.1.0/24

10.0.2.0/24

ip route add 10.0.50.0/24
nexthop via 10.0.1.1
nexthop via 10.0.2.1

10.0.1.1

10.0.50.1

10.0.50.2

10.0.50.0/24

(c)

10.0.1.100

10.0.2.100

10.0.2.1

10.0.1.0/24

10.0.2.0/24

ip route add 10.0.50.0/24
nexthop via 10.0.1.1
nexthop via 10.0.1.2
nexthop via 10.0.2.1

10.0.1.2

10.0.50.2

10.0.50.3

10.0.50.0/24

10.0.50.1

10.0.1.1

same
device

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

814 | Chapter 31: Routing: Advanced

Per-Flow, Per-Connection, and Per-Packet Distribution
Given a multipath route, traffic matching the route could be distributed between the
next hops on a per-flow, per-connection, or per-packet basis:

Per flow
The next hop to be used is selected for each unique combination of source and
destination IP addresses. Therefore, multiple connections between the same pair
of hosts would require only one selection.

Per connection
The next hop to be used is selected every time a new connection is started. This
means that multiple connections between the same pair of hosts can be distrib-
uted over multiple next hops. A connection is typically identified by the 5-tuple
of source IP, destination IP, L4 protocol, source L4 port, and destination L4
port.

Per packet
The next hop to be used is selected for each packet. Packets that belong to the
same connection can be spread over multiple next hops.

Per-connection and per-flow distribution are needed for connection-oriented proto-
cols such as TCP to work correctly, but per-packet distribution could work well with
connectionless protocols such as the User Datagram Protocol (UDP).

When there is no support for Multipath caching, Linux always distributes traffic
between the different next hops of a Multipath route on a per-flow basis proportion-
ally to the weights of the flows, as seen in the section “Concepts Behind Multipath
Routing.”

When multipath caching is enabled, traffic is distributed differently depending on
where it originates:

Locally generated traffic
Traffic is distributed on a per-connection basis using one of the algorithms listed
in the section “Cache Support for Multipath.”

Ingress traffic that needs to be forwarded
Traffic is distributed as if there was no support for multipath caching: the first
matching cached route is always used. This is necessary to reduce the likelihood
that IP packets of any given connection will reach the destination host out of
order.

Equalizer algorithm

The Linux kernel at times has offered per-packet distribution, called equalization.
Here is an example of a command (not implemented in the current Linux kernel)
that asks for an equalized route through the eql option:

ip route add eql 100.100.100.0/24 nexthop via 10.0.0.2 nexthop via 10.0.0.3
ip route list

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interactions with Other Kernel Subsystems | 815

100.100.100.0/24 equalize
 nexthop via 10.0.0.2 dev eth0 weight 1
 nexthop via 10.0.0.3 dev eth0 weight 1
...

Given how much time has passed since support for this option was announced as
being in the works, it is not likely to be added anytime soon, probably because there
is no need for it.

Interactions with Other Kernel Subsystems
Between the time a packet makes its appearance in the system, because it was either
received on one interface or generated locally, and the time it is delivered to the next
hop (if forwarded) or locally (if addressed to the local host), several network sub-
systems may place their hands on it. Among them are the Firewall and Traffic Con-
trol subsystems. Both of them can classify traffic based on various databases of
information and store the result of their classification into a field of the buffer
descriptor. The routing subsystem code can also classify traffic and store the result in
the buffer descriptor.

Figure 31-6 is a simplified overview of how routing, Firewall, and Traffic Control
interact, and when a given subsystem comes into the picture. The figure shows how
an input packet goes through the various subsystems and gets its firewall and rout-
ing tags initialized.

In the next subsections, we will take a closer look at how policy routing and Firewall
compute their tags and make them available to other kernel subsystems for use.

Routing Table Based Classifier
Among the many classifiers available to the Traffic Control subsystem is one called
the routing table based classifier that can classify routes based on realms. Realms are
numerical tags that can be assigned to both policies and routes. Each route and pol-
icy can be assigned up to two realms: an ingress realm and an egress realm.

In the following subsections, we will first see how realms are configured to get more
familiar with the feature. Then I’ll describe the logic used by the routing code to
derive the classification tag (which will be used by Traffic Control) from the realms’
configuration.

The file ip-cref.ps included with the IPROUTE2 package offers some examples of the
purpose and use of realms. In this book, we will consider only how realms are con-
figured via IPROUTE2 commands.

Both routes and policies are configured with the ip command. The first keyword that
follows ip determines the object type you want to configure. The route keyword
denotes a route, and the rule keyword denotes a policy.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

816 | Chapter 31: Routing: Advanced

Configuring policy realms

Routing policies are configured with the IPROUTE2’s ip rule command. Its syntax is:

ip rule add ... realms [source_realm/]destination_realm

As you can see, the source realm is optional while the destination realm is not, which
means that if you provide only one value, you configure the destination realm.

Here are a couple of examples of commands that configure policy realms. The fol-
lowing associates the policy destination realm 128 with all traffic that originates in
the subnet 10.0.1.0/24:

ip rule add from 10.0.1.0/24 realms 128

The following command associates the policy source realm 64 and the policy desti-
nation realm 128 with traffic that originates in the 10.0.1.0/24 subnet and that is
addressed to the 10.0.2.0/24 subnet:

ip rule add from 10.0.1.0/24 to 10.0.2.0/24 realms 64/128

Figure 31-6. Interactions among routing, Traffic Control, and Firewall (Netfilter)

L4 protocols TXRX (Chapter 24)

Forwarding
(chapter 20)

IP
(Chapter 19)

IN
(Chapter 10)

IP
(Chapter 21)

OUT
(Chapter 11)

Routing core

Policies
config

Routing table 1

. . .

Routing table n

User
Kernel

FW

firewall

firewallFW tag= ?
RT tag= ?

LOCALLY
GENERATED

PACKET

firewall

firewall

RT tag= ?

RT tag= ?
FW tag= ?

Traffic Control

RT tag= ?
FW tag= ?

Check the value of the tag

TC
config FW/RT

FW tag= ?

firewall ACLs
config

INPUT
PACKET

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interactions with Other Kernel Subsystems | 817

Configuring route realms

A route’s realms are configured very similarly to policy realms. The syntax of the
IPROUTE2 command for this purpose is:

ip route add ... realms [source_realm/]destination_realm

Note that even though the command’s help message does not show both the source
and destination realms, the syntax is just the same as for policies.

Here is an example command for traffic directed to the 10.0.1.0/24 subnet that for-
wards the traffic to the gateway with address 10.0.0.3 and assigns to the destination
realm 100:

ip route add 10.0.1.0/24 via 10.0.0.3 realms 100

In the following command, traffic directed to the 10.0.1.0/24 subnet is forwarded to
the gateway with address 10.0.0.3 and assigned to the source realm 100 and the des-
tination realm 200:

ip route add 10.0.1.0/24 via 10.0.0.3 realms 100/200

Computing the routing tag

Because realms can be assigned to both individual routes and whole policies, a rout-
ing decision can come up with two realms for a single direction: for instance, an
ingress destination realm derived from the policy and another ingress destination
realm derived from the route. In such a case, the realm derived from the route is
given higher priority. Usually, such a decision is necessary only for a destination
realm; administrators rarely define source realms on the basis of the route.

If a realm is missing—not provided by either route or policy—the kernel computes
the reverse route (from the local host back to the source of the packet being classi-
fied) and checks whether it can use the associated realms. For instance, if the kernel
cannot derive a source realm for ingress traffic, it figures out and uses the destina-
tion realm for egress traffic on the reverse path. This heuristic assumes that the realm
configurations on the two directions should be symmetric.

Let’s look at a simple example using the topology in Figure 31-7, which shows a
router between two networks. The policy routing configuration says that traffic com-
ing from subnet 10.0.1.0/24 belongs to Realm A, and that traffic coming from sub-
net 10.0.2.0/24 belongs to Realm B. Assume that no route realm is configured; only
the two policy realm configurations shown in Figure 31-7. Both of those policies pro-
vide only the source realm—so when forwarding, a realm is specified for ingress but
not for egress. Let’s suppose now that the router receives a packet from host 10.0.1.
100 (Realm A) directed to the destination address 10.0.2.200 (Realm B). When the
routing subsystem makes a lookup to route the packet, it also computes the routing
tag. The following list explains what happens.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

818 | Chapter 31: Routing: Advanced

1. The routing lookup returns route R2 and policy P1. Because no realm is config-
ured on route R2, the source realm A from policy P1 is used.

2. Because the destination realm is not initialized, the kernel computes the reverse
route from 10.0.2.200 to 10.0.1.100. The routing lookup this time returns route
RT1 and policy P2. Once again, no realm is configured on the matching route
RT1, so the kernel relies on the policy realm, which is B. However, because this
was found during a reverse lookup, the source realm B on the reverse path is
used as a destination realm on the forward path.

In the end, the routing tag is initialized to source realm A and destination realm B.
When the QoS layer is traversed later, it can use those two realms to correctly clas-
sify the packet.

Figure 31-8 summarizes the logic used to compute the tag.

Policy Routing and Firewall-Based Classifier
The Netfilter firewall software can classify traffic to see whether, based on its filter-
ing criteria, it needs to drop or mangle packets. The firewall can also be configured
to simply classify a packet using its powerful classification engine just to provide a
service to other kernel subsystems. The firewall has multiple hooks in the network
stack. If Routing or Traffic Control runs after one of the hooks that places a tag,
those subsystems can see and act on the tag. Figure 31-6, earlier in the chapter,
showed the sequence in which various subsystems and firewall hooks access packets.

Figure 31-7. Example of realm configuration

Realm BRT
eth0 eth1

10.0.1.1/24 10.0.2.1/24
Realm A

Ro
ut

in
g

Tr
af

fic
 Co

nt
ro

l

Policies Routes

P1: from 10.0.1.0/24 Realms: Src: A, Dst:/
P2: from 10.0.2.0/24 Realms: Src: B, Dst:/

R1: from 10.0.1.0/24 eth0 - Realms: Src: /, Dst:/
R2: from 10.0.2.0/24 eth1 - Realms: Src: /, Dst:/

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Routing Protocol Daemons | 819

Routing Protocol Daemons
Routes can be inserted into the kernel routing tables from three main sources:

• Static configuration via user commands (e.g., ip route, route)

• Dynamic configuration via routing protocols such as Border Gateway Protocol
(BGP), Exterior Gateway Protocol (EGP), and Open Shortest Path First (OSPF),
implemented as user-space routing daemons

• ICMP redirect messages received and processed by the kernel due to suboptimal
configurations

We will cover the first source in Chapter 36, and we will see the third one later in
this chapter. Let’s take a look at the second source now, and in particular the rout-
ing daemons available for Linux systems. The details of their interaction with the

Figure 31-8. Logic used to compute the routing tag

Use it

Does the route
have a DST realm?

End

Does the policy
have a DST realm?

No

Does the policy
have an SRC realm?

Are both the SRC
and DST realms set?

No

Yes

Use it
No

Use it

Yes

Policy routing only

Yes

Use the SRC realm from
reverse route/policy if available

Is the DST
realm set?

Is the SRC
realm set?

No

Use the DST realm from
reverse policy if available

No

Ingress traffic only

Yes

Swap SRC and DST realms
for both route and policy

Compute reverse route
(from local host to source)

Yes

Yes

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

820 | Chapter 31: Routing: Advanced

kernel will be covered in Chapter 32. Here is a list of projects that are no longer
maintained but are nevertheless interesting:

Routed
The oldest Unix routing protocol daemon. It includes only the RIP protocol,
both Versions 1 and 2 (see RFC 2453).

GateD (http://www.gated.org)
Includes most of the routing protocols. It started as a research project by the
Merit GateD Consortium, but its rights were later acquired by NextHop. The
research version is no longer maintained.

BIRD (http://bird.network.cz)
A project started at the Charles University in Prague. It supports the most com-
mon routing protocols.

The following is a list of routing protocol suites that are still maintained and
deployed:

Zebra (http://www.zebra.org)
Includes most of the routing protocols. It is already widely deployed and its
mailing lists are actively used. However, the release cycle has become a little
slow, leading to the birth of Quagga.

Quagga (http://www.quagga.net)
A fork of Zebra that was created in 2003 to provide the user community with a
faster development cycle, faster bug fixing, and more documentation.

XORP (http://www.xorp.org)
A new project started at the International Computer Science Institute in Berke-
ley, California.

Refer to the URLs within the parentheses to find exactly what protocols and exten-
sions each package provides.

The routing daemon implementations are not covered in this book because they do
not belong to the kernel, but we briefly look here at how they talk to the kernel. It is
important to know, for instance, how the daemons inject into the routing tables the
routes that they learn from their peers or from user configuration, and how they
remove defunct routes.

Each daemon maintains its own routing tables in user space. These are not used to
select any routes directly—only the kernel’s routing tables in kernel memory are used
for that. However, the daemons are one of the sources used to populate the kernel
tables, as mentioned earlier in this section. Most of the daemons introduced earlier
implement multiple routing protocols. Each routing protocol, when running, keeps
its own routing table. Depending on the design of the daemon, each protocol might
install routes into the kernel’s routing table on its own (as shown on the left side of
Figure 31-9), or the protocols may share a common layer within the daemon that

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Verbose Monitoring | 821

does the talking to the kernel (as shown on the right side of Figure 31-9). The
approach used is a user-space design choice outside the scope of this book.

Communication between routing protocols and the kernel is bidirectional:

• The routing protocols install routes into the kernel’s routing table and remove
routes they have determined to be expired or no longer valid.

• The kernel notifies routing protocols about the installation or removal of new
routes, and about a change of state in a local device link (which of course indi-
rectly affects all the associated routes). This is possible only when the routing
daemons talk to the kernel via a Netlink socket; that is, a bidirectional channel.

The IPROUTE2 package allows the user not only to configure routes, but also to lis-
ten to the aforementioned notifications generated by the kernel and by routing dae-
mons. Thus, an administrator can log them or dump them on the screen for
debugging purposes.

Verbose Monitoring
When support for this option is added to the kernel and the option is enabled (it is
disabled by default), the kernel prints warning messages on the console when input
packets have suspicious or invalid source or destination IP addresses. These mes-
sages are rate limited to one every five seconds, to avoid potential DoS attacks.

Figure 31-9. Interface between user space and kernel

Routing
table

Routing
table

Routing
table

Routing
table

Routing
table

Routing
protocol X

Routing
protocol Y

Routing
protocol Z

Routing
protocol A

Routing
protocol B

Common interface

User/kernel interface

Static
config
(CLI)

Routing core Cache

Routing table

User

Kernel

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

822 | Chapter 31: Routing: Advanced

Ingress packets that are dropped by sanity checks in the routing subsystem, due to
faulty source or destination addresses, trigger a warning message. The kernel can
make some of these checks easily using the classifications listed in Table 30-1 and
Table 30-3 in Chapter 30. In summary, these classifications are:

• Source address: Multicast, Loopback, Reserved, Invalid (zeronet)

• Destination address: Loopback, Reserved, Invalid (zeronet)

The kernel makes additional sanity checks on ingress packets based on the routing
table. In particular:

• When reverse path filtering is enabled (an anti-IP-spoofing check), the source IP
address must be reachable through the same interface from which the packet
was received. See the section “Reverse Path Filtering.”

• The source IP address cannot be a subnet broadcast address or one of the
addresses configured on the receiving interface. This check can help prevent IP
spoofing attempts (i.e., another host claiming the same IP address as the receiv-
ing interface), and can also detect cases of address duplication such as might be
caused by DHCP misconfiguration.

When the Verbose Monitoring feature is enabled, the ICMP layer can also generate
warning messages under specific conditions:

Transmission of ICMP REDIRECT messages
When the kernel has sent a certain number of ICMP REDIRECT messages to a
remote host that appears to ignore them, the kernel prints a warning. The pre-
cise number is configurable. See the section “Transmitting ICMP_REDIRECT
Messages.”

Reception of ICMP REDIRECT message
Whenever an ingress ICMP redirect is rejected, the kernel prints a warning. The
processing of ingress ICMP REDIRECT messages is a little more complex than
their transmission, because the kernel may reject ingress ICMP REDIRECT mes-
sages for several reasons, some of them configurable by the user. See the section
“Processing Ingress ICMP_REDIRECT Messages.”

ICMP_REDIRECT Messages
The ICMP protocol defines a number of different messages to control traffic flow and
notify hosts of network problems. One such message, REDIRECT,* is used to notify
a source of traffic about its suboptimal use of routing. Refer to Chapter 25 for a
detailed description of the ICMP messages. In this chapter, we focus on the tuning

* There are four ICMP REDIRECT message subtypes. In this chapter, we look only at REDIRECT HOST,
used to redirect traffic addressed to a specific IP address. See Chapter 25 for the other subtypes.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ICMP_REDIRECT Messages | 823

parameters provided by the routing subsystem to decide whether to process ingress
ICMP REDIRECT messages and whether to transmit one when the default required
conditions are met.

The decision about whether an ICMP REDIRECT should be sent, and whether an
ingress ICMP REDIRECT should be processed, can be influenced by user configura-
tion. In particular, the user can say whether:

• Ingress or egress ICMP REDIRECT messages can be accepted or generated. As
we will see in Chapter 36, this is configurable on a per-device basis.

• For ingress ICMP packets, it is also possible to specify whether to accept only
secure redirects. An ICMP REDIRECT is considered secure when the new gate-
way advertised by the message is already known by the local host as a gateway.
This can be determined, for instance, by checking in the routing table whether
the suggested gateway is already used as the next hop for any of the configured
routes.

• Each device can be configured with a flag that says whether the device is
attached to a shared medium.

The last bullet deserves a little explanation, which is provided in the next section.

Shared Media
In the early 1990s, IP protocol designers started looking at the tendency (then some-
what new, but now almost universal) of creating LANs on media such as Ethernet
and attaching these LANs to other networks. Sometimes administrators would con-
nect groups of hosts configured on different IP subnets to a single LAN while sepa-
rating them with routers. There are many reasons related to history or convenience
for doing this; nowadays there is rarely any reason to do it and it is rarely found.
Nonetheless, the routing subsystem must be designed to handle it.

When hosts configured on different subnets are plugged into the same LAN, IP rout-
ing documents call it a shared medium. Note that this term refers to network configu-
ration rather than the device’s capabilities. In other words, in the normal case where
all the hosts sharing an L2 connection also share an IP subnet, this term does not
apply; nor do the issues here. In this section, the issue concerning us is that ICMP
REDIRECT messages are more likely to be generated.

Figure 31-10 shows an example of a shared medium. Three different subnets are con-
figured on the hosts connected to the same LAN. The two routers RT1 and RT2 are
used to connect the IP subnets: each router is part of two subnets, having one NIC
configured with an address on each side.

A typical way to configure routing in Figure 31-10 (although not the only way) is
described next.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

824 | Chapter 31: Routing: Advanced

• The hosts of subnet 10.0.0.0/24 define RT1 as their default gateway and are con-
figured to send all traffic to other subnets through that gateway. The other two
subnets and the gateway used to reach the Internet are reachable via RT1.

• The hosts of subnet 10.0.1.0/24 have a similar configuration, using RT2 as their
default gateway. However, they need one extra route through RT1 to reach sub-
net 10.0.0.0/24.

• Hosts of subnet 10.0.2.0/24 use DG as their default gateway, and are configured
with two explicit routes to reach the other two subnets via RT2.

The key aspect of this routing scenario is that it specifies inefficient routes. The hosts
of subnet 10.0.0.0/24 and 10.0.0.2/24, for instance, could exchange packets on the
L2 layer without any routing, but the configuration tells them to use two routers. A
cleverer configuration would consist in configuring only the default gateway on the
hosts, and have the default gateways take care of the routes to the other subnets in
the LAN.

Luckily, the routing subsystem has ways to overcome this inefficiency on its own and
gradually find the directly connected hosts. The mechanism is ICMP REDIRECT
messages. We’ll ignore the presence of DG and the Internet connection.

Suppose Host A wants to talk to Host B. According to its routing table, Host A sees
that Host B is reachable via router RT1. However, when RT1 receives a packet sent
by Host A and addressed to Host B, it realizes that Host A could have sent the packet
directly to Host B because both of them (Host A and Host B) are reachable via the
same device eth0. This looks like the classic condition that triggers the generation of
an ICMP REDIRECT: suboptimal routing. However, there’s a catch: even if Host A
and Host B are connected to the same shared medium and can therefore talk to each
other from a link layer point of view (i.e., Ethernet), from the IP layer perspective
that’s not possible. Host A does not know that the hosts of the 10.0.1.0/24 subnet
are reachable via eth0. All Host A knows is that the 10.0.1.0/24 subnet is reachable
via RT1.

Figure 31-10. Sample configuration for a shared media topology

eth0 eth0 eth0

eth0

eth0 eth0

eth0

.

RT1

. . .

RT2

A B C DG

Subnet 10.0.0.0/24 Subnet 10.0.1.0/24 Subnet 10.0.2.0/24 LAN (i.e., HUB)

Internet

10.0.0.0/24 Local (eth0)
Default GW: RT1 via eth0

10.0.1.0/24 Local (eth0)
10.0.0.0/24 Next hop: RT1 via eth0

Default GW: RT2 via eth0

10.0.0.0/24 Next hop: RT2 via eth0
10.0.1.0/24 Next hop: RT2 via eth0

10.0.2.0/24 Local (eth0)
Default GW: DG via eth0

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ICMP_REDIRECT Messages | 825

To understand why, look back, if necessary, to the section “When Solicitation
Requests Are Transmitted and Processed” in Chapter 26. For a host to talk to
another one based on L3 addresses, it must first make an L3-to-L2 address
resolution. A sending host can do that only for hosts that belong to one of the sub-
nets it is connected to; for all others, finding the host is a router’s business. In our
case, Host B does not belong to Host A’s subnet. This means that for an ICMP
REDIRECT that tells Host A to talk to Host B directly to work, hosts must be able to
accept what is called a foreign redirect: a redirect whose suggested new next hop does
not belong to any of the local subnets known to the receiver of the redirect.

Foreign redirects are meaningful only in shared media scenarios like the one depicted
in Figure 31-10. This is because after Host A receives the redirect and accepts it, it
sends an ARP request for Host B’s address.* In the topology of Figure 31-10, thanks
to the shared medium, Host B will receive the ARP request. But if Host B was located
in another LAN, it would not be able to receive any ARP requests from Host A.†

It is interesting to see what happens if Host A wants to talk to Host C and uses RT1.
According to RT1, Host C is reachable via RT2. So RT1 sends an ICMP REDIRECT
to Host A, providing RT2 as the suggested new gateway. RT2 will detect the same
suboptimal routing condition later when it is asked by Host A to send another
packet to Host C, so RT2 will send an ICMP REDIRECT and Host A will finally real-
ize that it can reach Host C directly. In short, the process of resolving shared media
connections through foreign redirects is iterative.

In this section, you have seen the implications of configuring the hosts connected to
the same shared medium on different IP subnets. RFC 1620 goes into more detail on
the subject and is well worth reading. In the next two sections, you will see how the
user can explicitly configure an interface to be connected to a shared medium, to
influence the transmission and the processing of ingress ICMP REDIRECT messages
so that scenarios like the one in this section are taken care of properly.

Transmitting ICMP_REDIRECT Messages
It may seem superfluous to check the shared media configuration when the routing
subsystem has already seen that the ingress and egress devices match. In fact, that
check is not superfluous. The use of forwarding shortcuts, as a result of using the
ICMP REDIRECT messages described in the previous section, may not always be
desirable. The shortcuts allow hosts to bypass certain routers, but the system admin-

* We said earlier that an IP host would never ARP for an IP address that does not belong to one of its locally
configured subnets. Note that the behavior described here (i.e., a host that ARPs for an IP address located
on a foreign subnet) is possible because the redirected route is installed directly in the routing cache, there-
fore bypassing the routing table (that is the one that would make it impossible to ARP a foreign IP).

† It is interesting to note that IPv6 has optimized ICMP redirects. Under IPv6, a redirect includes the L2
address of the suggested new gateway. So a host that receives an ICMP REDIRECT does not need to resolve
the L3-to-L2 association to know the new gateway’s address.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

826 | Chapter 31: Routing: Advanced

istrator might be using those routers to apply policies to all traffic. An example
would be where RT1 and RT2 were firewalls* or proxy hosts.

Figure 31-11 shows the logic that the routing code follows when it routes an ingress
packet that needs to be forwarded. There is only one part of the flowchart that I have
not described yet: the check made when the device is not configured as a shared
medium. In that case, the sender is sent an ICMP REDIRECT message only if the
next hop found by consulting the routing table belongs to the same subnet as the
sender (which is identified by the sender’s source IP address). When this is not true,
the sender would not (according to the router’s knowledge) be able to reach the new
next hop. And this is exactly why the check for shared media precedes the check for
a gateway on the same subnet.

Note that since support for Fast NAT has been dropped in kernel 2.6 (see the sec-
tion “Recently Dropped Options” in Chapter 32), the check on NAT/MASQ is never
successful.

See Chapter 20 and the section “Forwarding” in Chapter 35 for details on how the
ip_forward routine decides whether to transmit ICMP REDIRECT messages. Also,
see Chapter 25 for more details on the ICMP code that takes care of transmission.

* The use of firewalls in scenarios like Figure 31-10, where all hosts share an L2 broadcast domain, would be
a bad choice anyway. But it can give you an idea of why routing shortcuts are not always desirable.

Figure 31-11. Conditions needed to generate an ICMP REDIRECT

IN dev
=

OUT dev?

Do not send an
ICMP_REDIRECT

No

No

Is this a
NAT (or MASQ)

route?

Is device
configured as

shared media?

Yes

Send an ICMP_REDIRECT

Is new GW
on same subnet

of sender?

No

No

Yes

Yes Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ICMP_REDIRECT Messages | 827

Processing Ingress ICMP_REDIRECT Messages
For an ingress ICMP REDIRECT to be accepted, it needs to pass a few sanity checks
and comply with the user configuration. Figure 31-12 shows all the logic with a flow-
chart. We’ll go over it piece by piece.

First come a few basic sanity checks to pass, and one user configuration to comply
with:

Figure 31-12. Conditions needed to process an ingress ICMP REDIRECT

Is basic
sanity check passed?

Yes

Is device configured
to process ingress
ICMP_REDIRECT?

Is device
configured as

shared media?

Accept

Is new GW
known to be a remote

unicast host
address?

Yes

1

No

Yes

Is new GW
on link?

Yes

Yes

Is device
configured to accept

only secure
ICMP_REDIRECTS?

No

No

Reject

Is this
ICMP_REDIRECT

secure? YesNo

No

No

No

1 User configuration

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

828 | Chapter 31: Routing: Advanced

• The new gateway advertised by the ICMP REDIRECT should be different from
the current one (otherwise, there is no need for an ICMP REDIRECT).

• The new gateway IP address cannot be Multicast, Invalid (zeronet), or Reserved.

• The receiving interface must be configured to accept ingress ICMP REDIRECTs.

Second, the routing subsystem must take into account the shared media configuration:

If the device is not configured as a shared medium
In this case, the host can accept a new gateway only if it knows, once again
according to the routing table, that the gateway resides on the same subnet as
the old one (i.e., it is directly connected to the host).

If the device is configured as a shared medium
The new gateway is accepted as long as, according to the routing table, the host
knows how to reach it. Two other sanity checks are performed: the gateway’s
address must not be local to the host, and must not be a broadcast address.

As mentioned in the section “Shared Media,” it is possible to configure a device so
that it accepts redirects only when the new gateway is already known to it as a
gateway.

The ip_rt_redirect function that processes ingress ICMP REDIRECT messages,
based on the logic described in this section, is analyzed in Chapter 25.

Reverse Path Filtering
We saw what an asymmetric route is in the section “Essential Elements of Routing”
in Chapter 30. Asymmetric routes are not common, but may be necessary in certain
cases. The default behavior of Linux is to consider asymmetric routing suspicious
and therefore to drop any packet whose source IP address is not reachable through
the device the packet was received from, according to the routing table. However,
this behavior can be tuned via /proc on a per-device basis, as we will see in
Chapter 36. See also the section “Input Routing” in Chapter 35.

In Figure 30-7(a) and (b) in Chapter 30, we saw an example of a malicious user send-
ing ICMP ECHO REQUEST messages with the source IP address of another host
within the same subnet. Figure 31-13 shows another malicious user, this time using

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Reverse Path Filtering | 829

as its source IP address (e.g., its victim) an address in the target subnet. As
Figure 31-13(a) shows, this attempt is detected and dropped by Linux by default.
Figure 31-13(b) shows what would have happened if the ICMP ECHO REQUEST
message was not dropped by the router RT.

The example uses a directed broadcast ICMP packet, but reverse path filtering
applies to any kind of traffic.

Figure 31-13. Example of reverse path filtering

RT

(a)

Subnet 10.0.0.0/24
(Broadcast: 10.0.0.255)

10.0.0.100 10.0.0.200

Subnet 10.0.1.0/24
(Broadcast: 10.0.1.255)

10.0.1.150

RT

(b)
10.0.0.100 10.0.0.200

10.0.1.150

Src = 100.0.1.150
Dst= 10.0.1.255

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

830

Chapter 32CHAPTER 32

Routing: Linux
Implementation

Chapter 30 provided an overview of the main tasks of the routing subsystem, and
Chapter 31 introduced the features such as Policy Routing and Multipath that IP
implements on top of the basic routing functionality. In this chapter, I introduce the
main data structures used by the routing code. I then show:

• How scopes are defined for routes and IP addresses

• How the routing subsystem is initialized

• What kind of external events the routing subsystem needs to be notified of to
keep its routing information updated

Later chapters will go into detail on the routing cache, routing tables, and routing
lookups.

Kernel Options
As we will see in the rest of this chapter, routing does not involve just receiving a
packet on one interface, consulting the routing table, and forwarding the packet out
of the right outgoing interface. There are a number of additional tasks to take care of
at the same time. Quite a few interesting routing-related features have been imple-
mented in the Linux kernel. In addition to those we will see later in this chapter,
many others are waiting for the green light from Linus or owners of other sub-
systems to be integrated into the kernel.

Here I briefly introduce the features of the Linux kernel that influence the behavior
of the routing code so that you will not suffer confusion when you peruse the source
code. Each feature is further described in dedicated sections in this and later chap-
ters.

Routing options can be classified into two categories:

• The ones that are always supported, and that only need to be enabled or config-
ured by the user, such as via /proc.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Kernel Options | 831

• The ones whose support may be added or removed by recompiling the kernel
with the right options. The CONFIG_WAN_ROUTER option and the options under the
CONFIG_IP_ROUTE_MULTIPATH_CACHED menu can be compiled as modules; the oth-
ers must be compiled into the main kernel.

We will look at both categories of options in the rest of this and the following chap-
ters, but in this section we will start with an overview of the compile-time options.
These options can be configured from the Networking Options menu, as shown in
the make xconfig snapshot in Figure 32-1.

The following two sections include the CONFIG_XXX kernel symbol associated with
each option within parentheses. You can use the symbol to identify the kernel code
that is conditionally executed only when support for the feature is included in the
kernel. When an entire file is used by a specific feature, though, you will not find
CONFIG_XXX in the file.

Basic Options
Here are a few basic routing options. None of them is covered in this chapter.

IP: multicast routing (CONFIG_IP_MROUTE)
IP: PIM-SM version 1 support (CONFIG_IP_PIMSM_V1)

IP: PIM-SM version 2 support (CONFIG_IP_PIMSM_V2)

Figure 32-1. Kernel configuration (make xconfig)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

832 | Chapter 32: Routing: Linux Implementation

If you enable IP multicast routing, you can then selectively enable either of the
two versions of the Protocol Independent Multicast (PIM) protocol supported by
the kernel. Multicast routing is not covered in this book.

WAN router (CONFIG_WAN_ROUTER)
This option allows configuration of X.25, Frame Relay, HDLC, and other non-IP
protocols to perform routing on WAN devices. In the kernel configuration
menu, you can see the list of available drivers under “Network device support
➝ Wan interfaces.” To be able to configure WAN devices you need to download
a piece of software that normally does not come by default with the most com-
mon Linux distributions.* WAN routing is not covered in this book.

Advanced Options
When you enable the “IP: Advanced router” option in the Networking Options
menu, you can then enable a few additional features. In Chapter 31, we already
introduced each one. Here is a brief overview:

IP: policy routing (CONFIG_IP_MULTIPLE_TABLES)
In some situations, traffic handling must be based on other criteria besides the
destination IP address. Policy routing is one of the answers to this limitation. In
these situations, the routing code must be enhanced to consider the additional
parameters. See the section “Concepts Behind Policy Routing” in Chapter 31.

IP: use netfilter MARK value as routing key (CONFIG_IP_ROUTE_FWMARK)
When this option is enabled, routing table lookups can take into account a tag
set by the firewall. See the section “Policy Routing and Firewall-Based Classi-
fier” in Chapter 31. You can see this option if you first enable the “IP: policy
routing” option.

IP: equal cost multipath (CONFIG_IP_ROUTE_MULTIPATH)
Sometimes a route can be defined with multiple next hops. In that case, distrib-
uting traffic over all the routes might increase overall bandwidth. That is exactly
what this feature is about. In the section “Concepts Behind Multipath Routing”
in Chapter 31, we saw that the implementation of this feature is not as trivial as
it may look.

IP: equal cost multipath with caching support (CONFIG_IP_ROUTE_MULTIPATH_CACHED)
Add support for Multipath to the routing cache. This option can be selected only
if the previous one is first enabled. When you select it, you get a submenu with a
list of the available algorithms that can be used for the selection of the next hop
from the cached routes. See the section “Cache Support for Multipath” in
Chapter 31.

* See the file documentation/networking/wan-router.txt.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Kernel Options | 833

IP: verbose route monitoring (CONFIG_IP_ROUTE_VERBOSE)
There are a few places where weird conditions are detected, as when doing a
sanity check on the traffic processed. In those cases, it can be useful to have
some extra warning messages printed; that is the purpose of this feature. The
output of those messages is rate limited to one every five seconds to avoid DoS
attacks.

Recently Dropped Options
Following are a couple of features currently supported in the 2.4 kernel series, but
not included in the 2.6 series:

IP: fast network translation (CONFIG_IP_ROUTE_NAT)
NAT is a feature typically configured on routers to modify the source or destina-
tion IP addresses of the forwarded IP packets according to a specific configura-
tion. The NAT implemented by the routing code has nothing to do with the one
implemented by the firewall code and has been determined to be superfluous. Its
support was removed completely in kernel version 2.6.9.

Fast switching (CONFIG_NET_FASTROUTE)
This feature allows data traffic to be forwarded between NICs directly at the
device driver layer. The packets are forwarded to the outgoing interface without
having to pass through the higher layer (IP) and without any need to consult the
routing table. In Figure 30-1 in Chapter 30, this feature is represented by the
dotted line inside the driver box. The feature is currently supported by only one
family of NICs, the Tulip cards.*

This feature, which was removed in kernel version 2.6.8, is not compatible with
other important features for the simple reason that this low-level switching
would bypass them. Examples of such features are the Netfilter firewall,
advanced routing, and virtual devices (i.e., bonding).

Forwarding between high-speed interfaces (CONFIG_NET_HW_FLOWCONTROL)
This feature allows network cards to start and stop the kernel from sending them
packets to transmit, based on the availability of buffer space in their memory.
Not all network cards support it. An example of cards that support it is the Tulip
family (drivers/net/tulip/*). Given the introduction of NAPI, described in
Chapter 10, this interesting but almost unused feature has been dropped in ker-
nel version 2.6.10.

* There is a patch you can download and apply to the kernel that allows the Tulip 8390 card to use the “fast
switching” feature on 2.4 kernels. A link to this patch is provided by the help window you can open when
you enable this feature (e.g., with make xconfig).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

834 | Chapter 32: Routing: Linux Implementation

Main Data Structures
The routing code uses a huge number of different data structures that reference each
other. To understand the current routing code and any future improvements, it is
important to see the relationships between them clearly.

Any code’s performance can be significantly affected by the data structures used and
the overall code design. This is especially true for kernel code. A kernel subsystem
such as routing, which is the core of the network stack, therefore needs to make sure
that it not only provides robust functionality, but also considers performance. We
will see in the following chapters how the data structures listed in this section come
together to make it easier to implement algorithms that are optimized from the point
of view of CPU and RAM consumption, as well as caching.

The following list explains the main data structures defined and used by the routing
code. The most important ones have dedicated sections with field-by-field descrip-
tions in Chapter 36. The rt, fib, and fn prefixes in the data structures’ names stand
for route, Forwarding Information Base, and function, respectively.

struct ip_rt_acct
Used by the routing table based classifier (see the section “Routing Table Based
Classifier” in Chapter 31) to keep statistics, expressed in both bytes and number
of packets, about the traffic for routes that have been associated with a tag. The
structure contains an array of counters, with 256 elements for each processor.*

The size is 256 because route tags lie in the range from 0 to 255. The vector is
allocated by ip_rt_init for IPv4; nothing is allocated for IPv6. The four fields of
ip_rt_acct are updated in ip_rcv_finish. See the section “Policy Routing and
Routing Table Based Classifier” in Chapter 35.

struct rt_cache_stat
Stores statistics about routing lookups. There is one instance of this data struc-
ture for each processor. Even though the name suggests that only counters
related to the routing table cache are counted, a few instances are used for more
general statistics about routing lookups. See the section “Statistics” in
Chapter 36.

struct inet_peer
Maintains long-living information about remote IP peers. This data structure is
described in the section “Long-Living IP Peer Information” in Chapter 23.

struct fib_result
Structure returned by a lookup in the routing table. The contents do not simply
represent the next hop but also include some more parameters that are needed,
for instance, by policy routing.

* Do not get confused by the fact that the data structure and the array have the same name.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Main Data Structures | 835

struct fib_rule
Represents the rules used by policy routing to select the routing table to use in
routing traffic. See the section “Concepts Behind Policy Routing” in Chapter 31.

struct flowi
flowi is to some extent similar to an Access Control List (ACL): it defines an
aggregate of traffic based on the value of selected L3 and L4 header fields, such
as IP addresses, L4 port numbers, etc. It is used, for example, as a search key for
routing lookups.

The following data structures are the building blocks of routing tables. Their rela-
tionships are described in greater detail in Chapter 34.

struct fib_node
A routing table entry; the data structure used to store the information gener-
ated, for example, when adding a route with the command route add or ip route
add.

struct fn_zone
A zone represents a set of routes with the same netmask length. Because the net-
mask is a 32-bit value (for IPv4), there are 33 zones for each routing table. Thus,
routes to the subnets 10.0.1.0/24 and 10.0.2.0/24 would go into the 24-bit zone
list (the 25th zone), and routes to the subnet 10.0.3.128/25 would go into the
25-bit zone list.

struct fib_table
A routing table. Do not confuse it with the routing table cache.

struct fib_info
Some parameters can be shared between different routing table entries. These
parameters are stored in fib_info data structures. When the set of parameters
used by a new routing entry match those of an already existing entry, the exist-
ing fib_info structure is recycled. A reference count keeps track of the number
of users. Figure 34-1 in Chapter 34 shows an example.

struct fib_alias
Routes that lead to the same destination network but differ with regard to other
parameters, such as the TOS, are distinguished by means of fib_alias instances.

struct fib_nh
The next hop. If you define a route with a command such as ip route add 10.0.0.
0/24 scope global nexthop via 192.168.1.1, the next hop will be 192.168.1.1.
Normally there is only one next hop for a route, but when the multipath feature
is compiled into the kernel, you can configure routes with more than one next
hop. See the section “Concepts Behind Multipath Routing” in Chapter 31.

struct fn_hash
Contains the pointers to the heads of the 33 fn_zone lists, and a list that links
together the active zones (the ones with at least one element). The elements of

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

836 | Chapter 32: Routing: Linux Implementation

the latter are sorted by decreasing netmask length. See Figure 34-1 in
Chapter 34.

The next block of structures is used by the protocol routing cache code and the pro-
tocol-independent routing cache code (DST), described in more detail in Chapter 33:

struct dst_entry
The protocol-independent part of the routing table cache entries (DST). Fields of
the routing table cache entries that apply to any L3 protocols (e.g., IPv4, IPv6,
DECnet) are put into this structure, which is then normally embedded in the
data structures used by the L3 protocols to represent a routing table cache entry.

struct dst_ops
Virtual function table (VFT) used by the DST core code to notify the protocol of
specific events (for instance, link failures). Each L3 protocol provides its own set
of functions to handle those events in the way it prefers. Not all of the fields of
the VFT are used by all of the protocols. See the section “Interface Between the
DST and Calling Protocols” in Chapter 33.

struct rtable
Used by IPv4 to represent a routing table cache entry.*

The following structures are commonly used in configuration:

struct kern_rta
When the kernel receives a request to add or delete a route from an IPROUTE2
command in user space, it parses the request and stores it into a kern_rta struc-
ture. See the section “inet_rtm_newroute and inet_rtm_delroute functions” in
Chapter 36.

struct rtentry
Used by the route command when sending the kernel a request to add or delete a
route. IPROUTE2’s ip route command uses a different data structure.

struct fib_iter_state
Stores context information used while browsing the data structure instances that
compose a routing table. It is used by the code that handles the /proc interface.

The next block of data structures is used by the multipath caching feature, described
in Chapter 33:

struct ip_mp_alg_ops
Multipath caching algorithm. It consists of function pointers.

struct multipath_device
Used by the device round-robin caching algorithm to keep information about a
device.

* IPv6 uses struct rt6_info.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Route and Address Scopes | 837

struct multipath_candidate
struct multipath_dest
struct multipath_bucket
struct multipath_route

Used by the weighted random caching algorithm to keep the state information
needed by the algorithm.

Lists and Hash Tables
Two other general-purpose data structures are used by the routing code. We will see
them often in this part of the book, so they deserve a little introduction.

hlist_head
hlist_node

Hash tables are implemented with these two data structure types. The buckets of
the table are defined as type hlist_head, and the actual elements that are added
to the table embed an element of type hlist_node that is used to link them to the
table. The only difference between the types is that hlist_head includes only a
forward pointer, whereas hlist_node has both forward and back pointers.

Thus, the lists in hash table buckets are bidirectional. Because the head does not
have a backward pointer, the list is not circular, so it is expensive to reach the tail of
the list, but for a hash table this is not a problem. By leaving the backward pointer
out of the bucket’s head, this implementation reduces the size of the bucket by 50%,
and therefore doubles the number of buckets it can store with the same amount of
memory.

Figure 32-2 shows an example of a hash table built with hlist_head and hlist_node
structures. Note that the hlist_node structure does not necessarily need to be the
first field of the structure it links.

Not all hash tables defined by the routing code use the model in Figure 32-2: in
Chapter 34, you will see a few examples of use involving the routing tables and the
organization of its data structures; in Chapter 33, you will see that the routing cache
uses its own definition instead.

Lists with two pointers in the head element can also be implemented, using list_
head structures. You can find more details about both kinds of lists in include/linux/
list.h. It includes definitions of the most common manipulation routines (add,
remove, browse, etc.).

Route and Address Scopes
The concept of scope was introduced in the section “Scope” in Chapter 30. Let’s see
here how the scopes described in that section are defined by the kernel, and see some
examples of their use.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

838 | Chapter 32: Routing: Linux Implementation

The kernel defines an rt_scope_t enum that lists possible scopes in include/linux/
rtnetlink.h. Its values range from 0 to 255, where 0 (RT_SCOPE_UNIVERSE) represents
the broadest scope. The kernel actually uses only a few values. The others are left to
the discretion of the user; at the moment, there are no practical uses for them.

Route Scopes
The scope of a route is saved in the fa_scope field of the fib_alias data structure (see
Figure 34-1 in Chapter 34). Here are the main scopes used by the IPv4 routing code,
in order of increasing scope:

RT_SCOPE_NOWHERE
This value, which was not listed in Chapter 30, is treated by the code as illegal.
The literal meaning is that the route does not lead anywhere, which basically
means there is no route to the destination.

RT_SCOPE_HOST
Examples of these routes are the ones created automatically when configuring IP
addresses on the local interfaces (see the section “Adding an IP address”).

RT_SCOPE_LINK
This includes routes to the local network (as defined by the netmask) and to the
subnet broadcast addresses derived from locally configured addresses (see the
section “Adding an IP address”).

RT_SCOPE_UNIVERSE
This is used for all routes that lead to remote destinations not directly con-
nected (i.e., the ones that require a next-hop gateway).

Figure 32-2. Generic hash table and use of lists

struct
hlist_head

. . .

struct
hlist_head

. . .

struct
hlist_node

struct
hlist_node

struct
hlist_node

struct XXX struct XXX struct XXX

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Route and Address Scopes | 839

Address Scopes
The scope of an address is saved in the ifa_scope field of the in_ifaddr structure.
There is an in_ifaddr instance for each IP address configured on a device (see
Chapter 19). We saw examples of addresses for each main scope in Chapter 30.

The next-hop gateway in a route is another object type that is assigned a scope. Each
route can be assigned zero, one, or multiple next hops. Each next hop is defined with
an instance of a fib_nh structure (see Figure 34-1 in Chapter 34). Two of the fib_nh’s
fields are nh_gw and nh_scope: nh_gw is the IP address of the next-hop gateway, and
fib_scope is the scope of that address (which consists of the scope of the route
needed to reach the next-hop gateway from the local host).

Relationship Between Route and Next-Hop Scopes
While the scope of a route and the scope of locally configured addresses are either
explicitly set by the user or assigned a default value by the kernel, the scope of a
route’s next hop (fib_nh structure) is always assigned by the kernel.

In the section “Adding a Route” in Chapter 34, you will see how fn_hash_insert
manages to insert a new route into a routing table. Here it suffices to say that fn_
hash_insert uses fib_create_info to allocate the necessary data structures for the
new route and to initialize the next hop’s scope. This last task is taken care of by
fib_create_info, with the help of fib_check_nh. The next hop’s nh_scope scope is
derived from the scope of the route being configured: normally, given a route and its
next hop, the value assigned to nh_scope is the scope of the route that would be used
to reach the next hop. There are special cases that require different rules, such as
routes to locally configured addresses and other direct routes, which do not include a
next hop.

Now that we know how nh_scope is initialized, let’s see how its value can be used to
enforce sanity checks on the routes.

The routing code enforces sanity checks on the scopes of routes and next hops in dif-
ferent places. Most of those sanity checks are based on an interesting property of the
relationship between the scope of a route and the scope of its next hops. When a
host forwards an IP packet, it is supposed to get closer to the final destination.* Based
on this simple property, it follows that the scope of a route should always be greater
than or equal to the scope of the next hop used by the route.

* This does not necessarily mean physically closer. Sometimes, complex routing scenarios may need to force
packets to go through specialized devices, which may require suboptimal routes. However, given the path
that a packet is supposed to follow to go from source to destination, every system that forwards it must make
it go one more hop toward its final destination.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

840 | Chapter 32: Routing: Linux Implementation

Let’s see a couple of examples using the topology in Figure 32-3. Remember that for
every route, nh_scope is the next hop’s scope and nh_gw is the next hop’s IP address.

• When Host A sends a packet to Host C, the matching route has scope RT_SCOPE_
UNIVERSE and the next hop to use is RT. The scope of the route to RT must be
narrower than RT_SCOPE_UNIVERSE for the routing to converge. Thus, a lookup in
the routing table for a route from Host A to Host RT will return a route with
scope RT_SCOPE_LINK, which is a narrower scope than RT_SCOPE_UNIVERSE and
therefore correct. Because an RT_SCOPE_LINK route does not need a gateway (and
in fact you do not need a gateway for Host A to reach Host RT), the kernel ini-
tializes nh_gw to 0 and the nh_scope scope to a scope smaller than RT_SCOPE_LINK
(e.g., RT_SCOPE_HOST).

• When Host A sends a packet to itself, the matching route has scope RT_SCOPE_
HOST. In this case, you do not need a gateway, so nh_gw is set to 0. nh_scope is set
to a scope smaller than RT_SCOPE_HOST: RT_SCOPE_NOWHERE.

The recursion just described ends when the result of a routing lookup is a direct
route (i.e., no next-hop gateway is necessary). Here are the two possible cases:

The route returned by the routing lookup has scope RT_SCOPE_HOST
In this case, the destination is a locally configured address, so the host can
deliver the packet locally.

The route returned by the routing lookup has scope RT_SCOPE_LINK
Because the destination is directly connected and there is no need for a gateway,
the host can send the packet to the destination directly using an L2 protocol.*

Figure 32-3. Example of initialization of next hop’s scopes

* This includes the case of onlink routes, described in Chapter 33.

RT

1)

Subnet 1

Subnet 2

A B

C

A C
route scope: RT_SCOPE_UNIVERSE
nh_gw=RT
nh_scope= RT_SCOPE_LINK(<RT_SCOPE_UNIVERSE)

A RT
route scope: RT_SCOPE_LINK
nh_gw=0
nh_scope= RT_SCOPE_HOST(<RT_SCOPE_LINK)

2) A A
route scope: RT_SCOPE_HOST
nh_gw=0
nh_scope= RT_SCOPE_NOWHERE(<RT_SCOPE_HOST)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Primary and Secondary IP Addresses | 841

Primary and Secondary IP Addresses
We saw in the section “Primary and Secondary Addresses” in Chapter 30 that an IP
address can be configured as primary or secondary on a device. The kernel often
needs to browse all the addresses configured on a device to find one that matches a
given condition. Let’s see how the two types of addresses are distinguished and how
addresses are browsed.

Secondary IPv4 addresses are tagged with the IFA_F_SECONDARY flag in their in_ifaddr
data structures (see Chapter 19). Because there are only two configurations—pri-
mary and secondary—there is no need for an IFA_F_PRIMARY flag: if an address is not
secondary, it is considered primary.

The kernel provides macros in include/linux/inetdevice.h that make it easier to browse
interfaces meeting specific criteria. For each criterion selected, there are usually two
macros that are used to bracket a loop: the programmer places the code to process a
single address in a block that is started by one macro and terminated by another. The
effect is to run a loop applying the code to each address meeting selected criteria.

Here is an example of the macros in use:

for_ifa {

do something with ifa

} endfor_ifa

The for_ifa macro starts a loop with the variable ifa to represent each address
selected. The code between the macros does not need to be placed in brackets, but it
usually is, to make variables such as ifa local and usable only within the loop.

A few such macros include:

for_ifa
endfor_ifa

Given a device, these two macros can be used to browse all of its in_device data
structures.*

for_primary_ifa
endfor_ifa

Given a device, these two macros can be used to selectively browse only the in_
device instances associated with primary IP addresses.

* We saw in Chapter 19 that in_device is the data structure used to store the IP configuration of a network
device.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

842 | Chapter 32: Routing: Linux Implementation

Generic Helper Routines and Macros
The routing code uses quite a few small routines and macros that make the code
more readable. This section lists some of the generic ones; more-specialized ones will
be introduced later in the section “Helper Routines.” It is important to keep in mind
that the same function or macro can have different definitions, depending on such
factors as:

• Support for policy routing in the kernel

• Support for multipath routing in the kernel

• L3 protocol (e.g., IPv4 versus DECnet)

The generic routines follow:

FIB_RES_XXX
Given a fib_result structure, these macros extract specific fields. For example,
FIB_RES_DEV extracts the nh_dev field. These macros are defined in include/net/ip_
fib.h.

change_nexthops
for_nexthops
endfor_nexthops

Used to browse all the fib_nh structures of a given fib_info instance. change_
nexthops starts a loop over the structures, designating the local variable nh to rep-
resent each structure; as the name of the macro suggests, it can be used to alter
the structures. for_nexthops is very similar and ends with the same endfor_
nexthops macro. The only difference is that for_nexthop defines the local vari-
able nh as a pointer to a constant and therefore the code inside the loop cannot
change the content of any of the fib_nh instances browsed.

For IPv4, these macros are defined in net/ipv4/fib_semantics.c. Note that for each
macro there are two versions: one used when there is Policy Routing support in
the kernel and one when there is no Policy Routing. The second one is opti-
mized by taking into account that without Policy Routing you always have at
most one fib_nh instance per fib_info instance (that is, at most one next hop
per route).

inet_ifa_byprefix
Given a device, a prefix, and a mask, this function browses all the primary IP
addresses configured on the input device looking for an address that matches the
input prefix and mask. In case of success, it returns the address that matches.

fib_get_table
Given a routing table identifier (a number from 0 to 255), this function returns
the associated fib_info structure from the fib_tables array shown in
Figure 34-1 in Chapter 34. It is defined in include/net/ip_fib.h.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Global Locks | 843

fib_new_table
This function creates and initializes a new routing table and links it to the fib_
tables vector (see Figure 34-1 in Chapter 34).

LOOPBACK
ZERONET
MULTICAST
LOCAL_MCAST/BADCLASS

These macros, defined in include/linux/in.h, are used to quickly classify some
well-known categories of IP addresses. See Tables 30-1 and 30-2 in Chapter 30.

LOOPBACK identifies 127.x.x.x addresses.

ZERONET identifies 0.x.x.x/8 addresses, which in most cases are not legal.

MULTICAST identifies addresses in the class D range.

LOCAL_MCAST identifies a subset of the class D range used for local multicast:
224.0.0.0/24.

BADCLASS identifies addresses in the class E range.

Global Locks
The routing code uses a few locks for protection against race conditions. The
following list includes only global locks; those that are embedded in the data struc-
ture (i.e., applied to single entries) will be addressed in the associated data structure
descriptions.

fib_hash_lock
This read-write spin lock (rwlock) protects all the routing tables. For instance,
the insertion of a new fib_node instance requires the lock to be taken in exclu-
sive mode, and a routing table lookup requires the lock to be acquired just in
shared mode. Since there is only one lock for all the routing tables, it means that
it is not possible to add two routing entries to two distinct routing tables at the
same time. However, this does not really represent a bottleneck, because config-
uration changes are rare events and the user can live with a shared lock without
any major impact on router performance.

fib_info_lock
This rwlock protects all the fib_info data structures. It is used, for instance,
when accessing fib_info structures through the hash tables described in the sec-
tion “Organization of fib_info Structures” in Chapter 34.

fib_rules_lock
This rwlock protects the fib_rules global list of fib_rule data structures.

rt_flush_lock
This spin lock is used by rt_cache_flush to protect the manipulation of the rt_
deadline global variable and the rt_flush_timer timer. The cache is protected by

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

844 | Chapter 32: Routing: Linux Implementation

the per-bucket locks. See Figure 33-1 and the section “Flushing the Routing
Cache,” both in Chapter 33.

fib_multipath_lock
This spin lock is used when modifying fields of the fib_info structure that are
used by the multipath feature.

alg_table_lock
This spin lock serializes access to the ip_mp_alg_table vector. It is used by the
multipath_alg_register and multipath_alg_unregister functions. See the sec-
tion “Registering a Caching Algorithm” in Chapter 33.

Routing Subsystem Initialization
The initialization of the IPv4 routing code starts in net/ipv4/route.c with ip_rt_init,
which is called by the IP subsystem when it is initialized with ip_init in net/ipv4/ip_
output.c at boot time. ip_init is described in Chapter 19; here we will see ip_rt_
init.* Figure 32-4 shows how the main routing initialization routines are invoked.

In ip_rt_init, the IPv4 routing code initializes its data structures and global vari-
ables. Among other things, the function:

• Defines the size of the routing cache based on the available RAM.

• Creates the memory pool that will be used to allocate elements of the routing
cache.

• Initializes the routing cache

Figure 32-4. Sequence of calls for the main routing initialization functions

* IPv6 does something similar in inet6_init by calling ip6_route_init.

ip_rt_init

@net/ipv4/ip_output.c
ip_init

@net/ipv4/route.c

devinet_init
@net/ipv4/devinet.c

ip_fib_init
@net/ipv4/fib_frontend.c

fib_hash_init
@net/ipv4/fib_hash.c

fib_rules_init
@net/ipv4/fib_rules.c

(LOCAL_TABLE, MAIN_TABLE)

No policy routing Policy routing

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

External Events | 845

• Defines the gc_thresh threshold used by the garbage collection algorithm (see
the section “rt_garbage_collect Function” in Chapter 33).

• Starts the timer rt_periodic_timer (see the section “Garbage Collection” in
Chapter 33).

• Starts the rt_secret_timer timer (see the section “Flushing the Routing Cache”
in Chapter 33).

• Adds a few files to the /proc filesystem (see the section “Tuning via /proc Filesys-
tem” in Chapter 36).

Two routines are of particular interest:

ip_fib_init
Initializes the default routing tables and registers two handlers with the two noti-
fication chains* netdev_chain and inetaddr_chain (see the section “External
Events”).

devinet_init
Registers another handler with the notification chain netdev_chain, registers the
handlers for the address and route commands (i.e., ip addr … and ip route …)
with the Netlink socket, and creates the /proc/sys/net/conf and /proc/sys/net/conf/
default directories. See Chapter 36 for the last two tasks.

When the kernel is compiled with support for IPsec, ip_rt_init also invokes a cou-
ple of IPsec initialization routines (xfrm_init and xfrm4_init).

See the section “Routing Cache Initialization” in Chapter 33 for the details on how
the rt_hash_xxx global variables are initialized by ip_rt_init.

Policy routing is initialized with fib_rules_init, defined in net/ipv4/fib_rules.c. The
initialization consists simply of registering a handler with the netdev_chain notifica-
tion chain. The registered handler is fib_rules_event, and is described in the section
“Impacts on the policy database.”

External Events
The routing subsystem plays a central role in the network stack. Because of this, it
needs to know when changes take place that may affect the routing table and rout-
ing cache. Changes to the network topology are taken care of by optional routing
protocols running in user space. On the other hand, changes to the local host config-
uration require kernel attention.

In particular, the routing subsystem is interested in two kinds of events:

• Changes in the status of a network device

* Notification chains are described in Chapter 4.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

846 | Chapter 32: Routing: Linux Implementation

• Changes in IP configuration on a network device

To receive notifications when these take place, the routing subsystem registers with
the netdev_chain and inetaddr_chain notification chains, respectively. The sections
“Changes in Device Status” and “Changes in IP Configuration” go into more detail
on the handlers registered for the two classes of events.

Figure 32-5 shows a high-level description of the two handlers registered in ip_rt_
init and described in the sections “Impacts on the routing tables” and “Impacts on
the IP configuration.” Some of the events are handled by calling certain helper rou-
tines with varying input parameters. Some of those routines are described in the
upcoming section “Helper Routines.” See the description of fib_sync_down in that
section for the meaning of the force parameter shown in Figure 32-5.

We will see that a variety of events can flush the routing cache. Refer to the section
“Flushing the Routing Cache” in Chapter 33 for a complete list of such events.

Helper Routines
In the following sections, we will see in detail how fib_netdev_event and fib_
inetaddr_event are implemented. This section gives an overview of some of the rou-
tines called by those two handlers; you can use this section as a reference when read-
ing about the handlers themselves.

void rt_cache_flush(int delay)
Schedules a flush of the routing cache after a given amount of time, which is
specified with an input parameter. See the section “Flushing the Routing Cache”
in Chapter 33.

int fib_sync_down(u32 local, struct net_device *dev, into force)
Updates the routing tables when a device is shut down or a local address is
removed. Here is the meaning of the input parameters:

local
IP address that has been removed.

dev
Device that has been shut down.

force
Determines when certain activities are performed. Refer to Figure 32-5 to see
when each of the following values is used. The meanings are as follows.

0: An IP address has been deleted.

1: A device has been shut down.

2: A device has been unregistered.

The force parameter is overloaded; it is used to decide two things:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

External Events | 847

The scope of the routes to delete
When force is 0, the handler deletes all eligible routes except for the ones
that lead to locally configured addresses (i.e., scope RT_SCOPE_HOST). When
force is 1 or 2, the handler deletes all eligible routes regardless of the scope.

Figure 32-5. fib_netdev_event and fib_inetaddr_event functions

Ev
en

t t
yp

e

b

fib
_n

et
de

v_
ev

en
t

Fo
r e

ac
h

IP
 ad

dr
es

s
co

nf
ig

ur
ed

 o
n

th
e d

ev
ice

Ad
d

de
riv

ed
 ro

ut
es

(fi
b_

ad
d_

ifa
dd

r)

En
ab

le
 th

e n
ex

t h
op

s t
ha

t a
re

m
ar

ke
d

DE
AD

 (f
ib

_s
yn

c_
up

)

Flu
sh

 th
e r

ou
tin

g
ta

bl
e

ca
ch

e a
fte

r d
ef

au
lt

de
lay

Flu
sh

 th
e r

ou
tin

g
ta

bl
e

ca
ch

e r
ig

ht
 aw

ay

Di
sa

bl
e t

he
 IP

 p
ro

to
co

l o
n

th
e

de
vic

e
(fi

b_
di

sa
bl

e_
ip

)

a

Ev
en

t t
yp

e

fib
_i

ne
ta

dd
r_

ev
en

t

Ad
d

de
riv

ed
 ro

ut
es

(fi
b_

ad
d_

ifa
dd

r)
De

le
te

 d
er

ive
d

ro
ut

es
(fi

b_
de

l_
ifa

dd
r)

En
ab

le
 th

e n
ex

t h
op

 if
 m

ar
ke

d
DE

AD
 (

fib
_s

yn
c_

up
)

W
as

 th
e I

P
ju

st
re

m
ov

ed
 th

e l
as

t o
ne

le
ft

on
 th

e i
nt

er
fa

ce
?

c

Flu
sh

 th
e r

ou
tin

g
ta

bl
e c

ac
he

af
te

r d
ef

au
lt

de
lay

Flu
sh

 th
e r

ou
tin

g
ta

bl
e c

ac
he

af
te

r d
ef

au
lt

de
lay

a
Fo

rce
=

0

b
Fo

rce
=

2

c
Fo

rce
=

1

CO
NF

IG
_I

P_
RO

UT
E_

M
UL

TI
PA

TH

Ne
xt

En
d

Ye
s

No

CO
NF

IG
_I

P_
RO

UT
E_

M
UL

TI
PA

TH

NE
TD

EV
_U

P
NE

TD
EV

_D
OW

N

NE
TD

EV
_D

OW
N

NE
TD

EV
_U

NR
EG

IS
TE

R
NE

TD
EV

_U
P

NE
TD

EV
_C

HA
NG

E
NE

TD
EV

_C
HA

NG
EM

TU

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

848 | Chapter 32: Routing: Linux Implementation

How to handle multipath routes
When force is 2, the handler deletes a multipath route if at least one of its
next hops uses the input device dev. When force is 0 or 1, the handler
deletes a multipath route only if all the next hops are dead.

fib_sync_down is usually called to handle only one type of event at a time, so
either the dev or local argument is set and the other is null.

When local is provided, fib_sync_down removes all the routes that use local as
their preferred source address. Remember that routes can be assigned a pre-
ferred address, and not necessarily one configured on the route’s egress device.

When dev is provided, fib_sync_down removes all the routes whose next hop is
reachable via dev.

In both cases, routes are not removed directly; they are just marked dead (not
usable) by setting the RTNH_F_DEAD flag. A multipath route is marked dead only
when all of its next hops are marked as such. Also, when a next hop of a multi-
path route is marked dead, the parameters fib_power and nh_power have to be
updated as well, to reflect the status of the current next hop (see the section
“Next Hop Selection” in Chapter 35).

The return value is the number of fib_info structures marked dead by fib_sync_
down. This value is used, for instance, by the caller (such as fib_disable_ip,
described later in this section) to decide whether to flush the routing cache.

int fib_sync_up(struct net_device *dev)
This routine is used only when the kernel has support for multipath. Its main job
is to update some of the route’s parameters in the fib_info structure when some
of the route’s next hops are alive. The return value is the number of fib_info
structures whose RTNH_F_DEAD flag has been cleared.

void fib_flush(void)
Scans the ip_fib_main_table and ip_fib_local_table routing tables and deletes
all the fib_info structures that have their RTNH_F_DEAD flags set. It removes both
the fib_info structure and the associated fib_alias structure. When there are no
more fib_alias structures for a fib_node instance, the latter is also removed. See
Table 34-1 in Chapter 34 for the default routine invoked by fib_flush, and
Figure 34-1 in Chapter 34 for the relationships between the aforementioned data
structures.

When there is support for multipath in the kernel, fib_flush scans all the rout-
ing tables.

When at least one fib_info instance is removed, the routing cache is then
flushed with rt_cache_flush.

The return value is the number of fib_info instances removed.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

External Events | 849

static void fib_disable_ip(struct net_device *dev, int force)
Disables the IP protocol on the device received in input by calling fib_sync_down.
When the number of deleted routes is positive (as determined from the return
value of fib_sync_down), the function also flushes the routing table immediately:
fib_sync_down marks routes as dead, and fib_flush actually removes these
routes. fib_disable_ip also flushes the routing cache immediately and asks ARP
to clear from its cache all the entries that refer to the device where the IP proto-
col is being shut down.

Note that the input parameter force is passed as it is to fib_sync_down.
Figure 32-6 shows the internals of fib_disable_ip.

Changes in IP Configuration
Whenever a device’s IP configuration changes, the routing subsystem receives a noti-
fication and handles it by running fib_inetaddr_event. Figure 32-5 summarizes the
actions triggered by all the possible events that can be conveyed by this notification
chain. Here is how the main events are handled:

Figure 32-6. fib_disable_ip function

For each nexthop

Do device and scope
match?

For each fib_info
structure

Next

Mark next hop as DEAD

Yes

Have all next
hops been marked

DEAD?

Mark fib_info as DEAD

Yes

Next

No

End

Has at least one
fib_info been marked

DEAD?

Flush the routing table
cache right away

No

Delete all the ARP entries
associated with the device

(arp_ifdown)

Clean up routing tables
(fib_flush)

Yes

End

y

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

850 | Chapter 32: Routing: Linux Implementation

NETDEV_UP
A new IP address has been configured on a local device. The handler must add
the necessary routes to the local_table routing table. The routine responsible for
this is fib_add_ifaddr.

NETDEV_DOWN

An IP address has been removed from a local device. The handler must remove
these routes that were added by the previous NETDEV_UP event. The routine
responsible for this is fib_del_ifaddr.

As mentioned in the section “Special Routes” in Chapter 30, every time an IP address
is configured on an interface, the kernel adds a set of special routes to a separate
routing table named ip_fib_local_table. The routine that takes care of adding these
special routes is fib_add_ifaddr, which does it by calling fib_magic for each new
route. fib_magic is described in Chapter 36.

Most of the routines invoked during event handling were described earlier in the sec-
tion “Helper Routines.” The following subsections describe fib_add_ifaddr and fib_
del_ifaddr.

Adding an IP address

The logic of fib_add_ifaddr is summarized in Figure 32-7. When this routine is noti-
fied about a new address on a device, the device may not necessarily be enabled. The
choice about whether to add routes to that device depends on whether it is enabled.
Let’s first see what routes are derived from an IP address, and then which ones are
added when the device is enabled or disabled. As a basic example, here are the possi-
ble routes pertaining to the IP address 10.0.1.1/24:

Route to the address 10.0.1.1/32
This is simply the route to the specified host address.

Route to the network address 10.0.1.0/24
This is derived from the IP address and its netmask. In our example, it is the
result of 10.0.1.1 & 255.255.255.0.

Routes to the broadcast addresses 10.0.1.255/32 and 10.0.1.0/32
This represents a compromise between what is mandated by the specification
and what is most practical.

Linux is generous in handling the different requirements: it adds routes to both ver-
sions of the broadcast address in the ip_fib_local_table routing table. Note that
routing can distinguish between the network address and limited broadcast address
because they have different netmasks (10.0.1.0/24 versus 10.0.1.0/32). In addition, a
user can configure a broadcast address explicitly. In this case, the fib_add_ifaddr
routine adds a route to that address in addition to the other two.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

External Events | 851

Figure 32-7. fib_add_ifaddr function

Add route to the explicit
broadcast (in LOCAL table)

Is device UP?

End

Is broadcast
address explicitly

configured?

No

Yes

Is the address
secondary?

Add route to IP address
(in LOCAL table)

No

Is address
secondary?

Is netmask
smaller that /32?

Is there a
primary address?

Yes

Yes

Is it the
limited broadcast

(255.255.255.255)?

Yes

Yes No

No

No

Add route to the network
(in MAIN table)

Is this the
loopback device?

Yes

No

Add route to the network
(in LOCAL table)

Is netmask
smaller than /31?

Add routes to the two derived
broadcasts (in LOCAL table)

Yes

No

Yes

Yes

No

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

852 | Chapter 32: Routing: Linux Implementation

The handling of broadcast addresses reflects a split between theory and practice. In
theory, the broadcast address is supposed to be derived from the address class. In the
case of our address 10.0.0.1/24, this would lead to an address of 10.255.255.255,
and that is the default broadcast address assigned if you configure an address with
ifconfig.

Usually, however, you want a broadcast address derived from the netmask. This is
derived from the network address by setting to 1 all the bits in the host’s component
of the address, which in our case produces a broadcast address of 10.0.1.255. This
more useful broadcast address is the default one assigned if you configure an address
with ip addr.

This difference between the two solutions derives from the fact that 10.0.0.1 is an
address in the class A network 10.0.0.0/8. Class A networks are commonly subnetted
into smaller networks. For example, 10.0.0.0/24 is a class C subnet of the class A net-
work 10.0.0.0/8. If we had configured the address 192.168.1.1, both ifconfig and ip
addr would have derived the same broadcast address 192.168.1.255, as 192.168.1.1 is
an address in the class C network 192.168.1.0/24. See the section “Essential Elements
of Routing” in Chapter 30 for more details.

We saw in the section “Responding from Multiple Interfaces” in Chapter 28 that IP
addresses belong to the system, not to the interfaces on which they are configured.
Because of that, the route to the IP address is always added to the ip_fib_local_
table routing table regardless of the device status. However, the routes to the net-
work identified by the address and the broadcast addresses are not: when the device
is down, neither the network nor the broadcast addresses are reachable, so it would
not be correct to create two routes for them. fib_add_ifaddr uses the device’s IFF_UP
flag to discover its status.

 fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
 if (!(dev->flags&IFF_UP))
 return;

When you configure an IP address on a disabled device, you therefore add only the
route to the IP address. When the device is later enabled, the fib_add_ifaddr routine
will be called again and will add all the routes. It adds the route to the IP address
again at this point, but this is not a problem because the routing table rejects dupli-
cate routes.

Note that the command you use to configure an IP address on a device sometimes
enables the device as well. For example, when you configure an IP address with
ifconfig, you also enable the device. IPROUTE2 separates the two functions: you use
ip addr add to configure an IP address and ip link set to enable or disable a device. It
is important to understand these distinctions when you browse the source code and
try to figure out how a given piece of kernel code behaves in response to input from a
user-space command. The user-space commands are described in more detail in
Chapter 36.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

External Events | 853

Table 32-1 shows some sample commands and the routes created.

When the explicit broadcast happens to match the limited broadcast address 255.
255.255.255, no route is added toward the explicit broadcast address because the
latter is checked by the lookup routines, as we will see in the sections “Input Rout-
ing” and “Output Routing” in Chapter 35).

 if (ifa->ifa_broadcast && ifa->ifa_broadcast != 0xFFFFFFFF)
 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);

The explicit configuration of a broadcast address allows you to define a broadcast
address even on a /32 subnet where you theoretically have only one IP address, as in
the fourth example in Table 32-1 (note that the broadcast address 10.0.1.255 does
not fall within the subnet 10.0.1.1/32).

Under some conditions, the function may not need to add the routes to the broad-
cast addresses. These depend on the length of the netmask, which is stored in the
local variable prefixlen:

• When prefixlen is 32, there is only one valid address in the subnet, so there is
no need for either the derived broadcast or the network routes.

• When prefixlen is 31, there is only one bit to play with, so there are just two
addresses within the subnet. The one with the clear bit identifies the network,
and the one with the set bit is the host address (the one the function is configur-
ing). In this case, routes are needed for these two addresses, but not for any
derived broadcast addresses.

• When prefixlen is smaller than 31, there is room for other addresses, because
the local address together with the network and broadcast addresses use only
three out of four or more addresses. Thus, the kernel adds a route to both the
derived broadcast addresses and the network.

Table 32-1. Examples of IP configurations and the associated derived routes

Command Main Local

ip addr add 10.0.1.1/24 dev eth0 10.0.1.0/24 10.0.1.1/32 (address)

10.0.1.0/32 (broadcast)

10.0.1.255/32 (broadcast)

ip addr add 10.0.1.1/24 broadcast
10.0.1.100 dev eth0

10.0.1.0/24 10.0.1.1/32 (address)

10.0.1.100/32 (broadcast)

10.0.1.0/32 (broadcast)

10.0.1.255/32 (broadcast)

ip addr add 10.0.1.1/32 dev eth0 10.0.1.1/32 (address)

ip addr add 10.0.1.1/32 broadcast
10.0.1.255 dev eth0

10.0.1.1/32 (address)

10.0.1.255/32 (broadcast)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

854 | Chapter 32: Routing: Linux Implementation

The following code shows how these cases are handled for primary addresses:

 if (!ZERONET(prefix) && !(ifa->ifa_flags&IFA_F_SECONDARY) &&
 (prefix != addr || ifa->ifa_prefixlen < 32)) {
 fib_magic(RTM_NEWROUTE, dev->flags&IFF_LOOPBACK ? RTN_LOCAL :
 RTN_UNICAST, prefix, ifa->ifa_prefixlen, prim);
 if (ifa->ifa_prefixlen < 31) {
 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix|~mask, 32, prim);
 }
 }
}

Secondary addresses have none of these issues. When you add a secondary address
there must already be a primary address on the same subnet (prefix) configured on
the same device. If there is no such primary address, you have made an error and the
configuration cannot be accepted. Thus, routes to the network and to the derived
broadcasts are not needed for secondary addresses: these routes were already added
when the associated primary address was configured.

Removing an IP address

When you remove an IP address from an interface, the routing subsystem is notified
so that it can clean up its routing tables and cache. The routine that takes care of this
is fib_del_ifaddr, whose logic is described in Figure 32-8.

The routine starts with a sanity check. If you try to remove a secondary address,
there must be a primary address on the same subnet. If there isn’t, something must
have gone wrong earlier somewhere and the routine returns an error.

When fib_del_ifaddr is invoked, the IP address whose associated route is being
removed has already been removed from the list of configured addresses on the
affected device (see, for example, when inet_del_ifa triggers the NETDEV_DOWN
notification).

Because routes to broadcast addresses and the network address may not always have
been added along with the primary address, as we saw in the previous section, fib_
del_ifaddr scans all the configured addresses on the device and checks what needs to
be removed. You can see, for example, in Table 32-1 what routes are added when
configuring a local IP address.

In most cases, when a secondary address is removed, the routing subsystem needs to
remove only the route to the IP address. The routes to the network and broadcast
addresses are not removed because they are still needed by the primary address (and
other secondary addresses, if any). However, it is possible that when removing a sec-
ondary IP address, it is not even necessary to remove the route to its IP address: this
is the case, for example, when an administrator configures the same address with
two different netmasks, as in the following example:

ip addr add dev eth0 192.168.0.1/24
ip addr add dev eth0 192.168.0.1/16

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

External Events | 855

The example does not represent a common scenario, but the code must be able to
handle it.

The routes to the network and broadcast addresses derived by the two commands
(as described in the section “Adding an IP address”) are different, but they share a
route to the IP address.

Figure 32-8. fib_del_ifaddr function

Remove route to network

Is there a
primary address for

this subnet?

Remove those derived routes
 that are not needed anymore

Yes

Address type

Has the IP addr
been really removed?

No

Secondary

End

Has at least
one fib_info been

marked DEAD?

Delete all fib_node associated
with DEAD fib_info (fib_flush)

Is fib_info using this
IP address as

preferred source IP
address on the route?

Mark fib_info as DEAD

Yes

For each fib_info

Primary

No (error)

Yes

End

No

Yes

No

fib_sync_down

Next

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

856 | Chapter 32: Routing: Linux Implementation

After removing the routes that need to be removed, fib_del_ifaddr cleans up the
routing table with fib_sync_down and fib_flush.

When fib_del_ifaddr removes the last IP address from a device, fib_inetaddr_event
disables the IP protocol on that device with fib_disable_ip (see Figure 32-5).

Changes in Device Status
The routing subsystem registers three different handlers with the netdev_chain notifi-
cation chain to handle changes in the status of a device:

• fib_netdev_event updates the routing tables.

• fib_rules_event updates the policy database, when policy routing is in effect.

• ip_netdev_event updates the device’s IP configuration.*

The next three sections describe how these routines handle the notifications they
receive.

Impacts on the routing tables

Whenever a device changes state or something else in its configuration (besides the
IP configuration, which is taken care of by another notification chain), the routing
subsystem receives a notification and handles it by running fib_netdev_event.

Figure 32-5 summarizes the actions triggered by all the possible events that can be
notified by this notification chain. Here is how the main events are handled:

NETDEV_UNREGISTER
When a device is unregistered, all the routes that use this device are removed
from the routing tables (cache included). Multipath routes are also removed if at
least one of the next hops uses this device.

NETDEV_DOWN
When a device goes down, all the routes that use this device are removed from
the routing tables (cache included) with fib_disable_ip.

NETDEV_UP
When a device comes up, routing entries for all its IP addresses must be added to
the local routing table ip_fib_local_table. This is accomplished by calling fib_
add_ifaddr for each IP configured on the device. fib_add_ifaddr was described in
the section “Adding an IP address.”

NETDEV_CHANGEMTU
NETDEV_CHANGE

When a configuration change is applied to a device, the routing table cache is
flushed. Among the most common notified changes are modifications of the
MTU or the PROMISCUITY status.

* This handler is registered by ip_rt_init, but it actually belongs to the IP subsystem.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

External Events | 857

Note that the routing subsystem is not interested in the NETDEV_REGISTER event.
NETDEV_UP is already sufficient to trigger the necessary actions for a newly activated
device.

Unregistering a device and shutting down a device can have different effects on the
routing table. Some of the reasons a device can be unregistered include a user remov-
ing the driver from the kernel or unplugging a hotplug device such as a PCMCIA
Ethernet card. Some of the reasons a device can be shut down include a user unplug-
ging the cable or issuing an administrative command. In each case, different routes
are removed from the routing tables.

Let’s look at an example. The first column in Table 32-2 shows the routes that would
be added to the routing table with the following two commands, and the last two
columns show what routes would be removed when the device eth0 is shut down or
unregistered, respectively.

ip addr add dev eth0 192.168.1.100
ip route add 10.0.1.0/24 via 192.168.1.111

The route to the IP address is not removed when the device is shut down because its
IP address belongs to the host, not to the interface. This address exists as long as its
associated device exists. See the section “Responding from Multiple Interfaces” in
Chapter 28.

Impacts on the policy database

A policy (i.e., a rule) can be associated with a device. You can specify, for instance,
that traffic received on eth0 and addressed to the subnet 10.0.1.0/24 should be
assigned a specific priority. Therefore, when a device is unregistered, all the associ-
ated policies (i.e., fib_rule data structures) are marked as unusable by setting their
device ID, the r_ifindex field of the data structure, to the invalid value –1 with fib_
rules_detach.

On the other hand, when a device is registered, if there is any disabled policy associ-
ated with this device it is re-enabled with fib_rules_attach. Because the device ID of
disabled policies is –1, the kernel uses the device’s name saved in fib_rule’s r_ifname
field to recognize the device with which a policy is associated.

Table 32-2. Routes dropped when a device is shut down or unregistered

Route Routing table Shut down Unregistered

192.168.1.0/24 Main Yes Yes

192.168.1.0/32 Local Yes Yes

192.168.1.255/32 Local Yes Yes

192.168.1.100/32 Local No Yes

10.0.1.0/24 Main Yes Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

858 | Chapter 32: Routing: Linux Implementation

Impacts on the IP configuration

Here is how the handler’s inetdev_event routine handles the notifications received
from the netdev_chain chain:

NETDEV_UNREGISTER
Disables the IP protocol on the device.

NETDEV_UP
Enables the multicast configuration (if present) with ip_mc_up. When the device
going up is the loopback device, configure the 127.0.0.1/8 address on it.

This notification is ignored if the device going up has a configured MTU smaller
than the minimum value of 68 that is necessary to enable the IP protocol. This is
only a sanity check.

NETDEV_DOWN
Disables the multicast configuration (if present) with ip_mc_down.

NETDEV_CHANGEMTU
Checks whether the device’s MTU has been set to a value smaller than the mini-
mum necessary to run the IP protocol (68), and if so, disables the IP protocol on
the device.

NETDEV_CHANGENAME
Updates the name of the directories /proc/sys/net/ipv4/conf/devname and /proc/sys/
net/ipv4/neigh/devname to reflect the new device name. These directories are
described in Chapters 23 and 29, respectively.

For both NETDEV_UNREGISTER and NETDEV_CHANGEMTU, the IP protocol is disabled with
inetdev_destroy. That function removes all IP configurations from the device and
clears the ARP cache accordingly with arp_ifdown.

Interactions with Other Subsystems
The section “Interactions with Other Subsystems” in Chapter 31 anticipated the
main interactions that the routing subsystem has with other ones, such as Traffic
Control and Firewall. In the following subsections, we will see some more details.
The interaction with the routing table based classifier is deferred until Chapter 35
because it requires some background on the routing table structure and on how
lookups are implemented.

Netlink Notifications
When a route is added or removed, a notification is sent to the Netlink group
RTMGRP_IPV4_ROUTE using the routine rtmsg_fib. Notifications for creation and dele-
tions are respectively generated in fn_hash_insert and fn_hash_delete, two impor-
tant routines that we will see in Chapter 34. See also the section “Change
Notifications” in Chapter 36.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interactions with Other Subsystems | 859

Policy Routing and Firewall-Based Classifier
As anticipated in the section “Interactions with Other Kernel Subsystems” in
Chapter 31, policy routing can use a tag initialized by the firewall code as a discrimi-
nator to decide which routing table to use for both ingress and egress traffic. Rout-
ing based on firewall tagging requires special support to be compiled into the kernel.
When available, the firewall tag is part of the cache and routing table lookup keys
(represented by flowi structures). The firewall subsystem copies the tag into the
skb->nfmark buffer field, where it can be used as a discriminator by Policy Routing to
decide which routing table to use to route ingress and egress traffic.

In Chapter 33, you will see how the two cache lookup routines ip_route_input and
_ _ip_route_output_key check the value of the firewall tag. Chapter 34 shows how
the two routing table lookup routines ip_route_input_slow and ip_route_output_slow
initialize the nfmark field of the lookup key flowi with the firewall tag skb->nfmark.
A 0 value for skb->nfmark means that no tag exists.

Figure 31-4 in Chapter 31 shows when, inside the network stack, the firewall can tag
a buffer based on its configuration, and when the policy routing engine uses it for its
policy rules lookup.

Routing Protocol Daemons
Routes can be added both by users with commands such as ip route or route and by
routing protocols running in user space, such as BGP, IGRP, and OSPF. We saw the
big picture in the section “Routing Protocol Daemons” in Chapter 31. In this sec-
tion, we will go into a little more detail on the user/kernel interface, and Chapter 36
will go into more detail on the utilities themselves. However, we will not cover the
internals of any routing protocol in detail because it is outside the scope of the book.

Routing protocols run in user space, but they need to inject their knowledge into the
kernel to have their routes be incorporated into the kernel’s routing tables. While the
routing protocol code is independent from the underlying operating system, the way
those protocols inject routes into the kernel has to adapt to the user/kernel inter-
faces provided by the underlying operating system.

If you like browsing source code, I urge you to look at how the platform-independent
code (basically, the routing protocols) interact with the platform-dependent code to
inject routes into the kernel’s routing table. You will see, for instance, how different
operating systems may require different interfaces. Even different versions of the
same operating system may require or make available different interfaces.

With regard to Linux, the old-generation ioctl interface is still available, but the new
Netlink is preferred by the kernel because it is more powerful. While ioctl is pretty
common to all the Unix flavors, Netlink is Linux-specific and plays the same role in
the Linux world that the routing socket plays in the BSD world. It is important to

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

860 | Chapter 32: Routing: Linux Implementation

note that when Netlink is compiled into the kernel, it is preferred over ioctl because
of its better control and bidirectional capabilities. (For instance, with Netlink—as
with the routing socket on BSD—when the kernel detects changes on an NIC, it can
communicate it to a user-space application over a Netlink socket so that the applica-
tion can take some action.)

Table 32-3 lists the most common routing daemons and shows which ones can
handle the ioctl interface and Netlink. Chapter 36 goes into more detail on these
interfaces.

Table 32-3. Interfaces to the Linux kernel used by the most common routing daemons

Daemon ioctl Netlink

ROUTED (v 0.17) Yes No

GATED (v3.6) Yes Yes

BIRD (v1.0.9) Yes Yes

ZEBRA (v0.94) Yes Yes

QUAGGA (v 0.98.0) Yes Yes

MRT (v2.2.0) Yes Yes

XORP (v1.0) Noa

a XORP uses ioctl, but not to insert or delete routes. The purpose and operation of XORP are described in an
interesting document, http://www.xorp.org/releases/current/docs/fea/fea.pdf.

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

861

Chapter 33 CHAPTER 33

Routing: The Routing
Cache

The routing cache is used to reduce the lookup time on the routing tables. The cen-
ter of the routing cache is the Protocol Independent Destination Cache, which is sim-
ply called DST. Even if policy routing is in effect—creating multiple routing tables—
a single routing cache is always shared by all the routing tables.

The main job of the cache is to store information that allows the routing subsystem
to find destinations for packets, and to offer this information through a set of func-
tions to higher layers. The cache also offers some functions to manage cleanup. The
cache stores the information about the routing table cache entries that applies to all
L3 protocols and can therefore be included in any data structure used to represent a
routing table cache entry.

In this chapter, we will see:

• How the cache is implemented

• How new elements are inserted and existing ones are deleted

• How ingress and egress lookups are implemented, and where they differ

• How external subsystems can interact with the cache via an interface provided
by the DST

• How different kinds of garbage collection keep the size of the cache under con-
trol

• How the DST provides a rate-limiting mechanism for egress ICMP REDIRECT
messages

Routing Cache Initialization
The routing cache is implemented as a hash table. It is initialized in ip_rt_init,
which is the initialization function of the routing subsystem and is described in the
section “Routing Subsystem Initialization” in Chapter 32.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

862 | Chapter 33: Routing: The Routing Cache

The size of the cache depends on the amount of physical memory available in the
host. On your system, you can find the size of the hash table in the messages printed
at boot time, or later in the output of the dmesg command. Look for the string “IP:
routing cache hash table of …”, which is printed by ip_rt_init itself. The size is
stored in rt_hash_mask, and the base two logarithm of it is saved in rt_hash_log (that
is, 2rt_hash_log=rt_hash_mask). The default size assigned by the kernel can be overrid-
den by the user boot option rhash_entries, which stores the hash table size to use in
the variable rhash_entries.

In particular, ip_rt_init initializes the following:

rt_hash_table
The routing cache, defined as a hash table.

rt_hash_mask
rt_hash_log

The size (number of buckets) of the hash table rt_hash_table, and the base two
logarithm of that number, which often is useful when a value has to be shifted by
that number of bits.

rt_hash_rnd
A parameter that is assigned a new random value every time the routing cache is
flushed with rt_run_flush. This parameter is used to prevent DoS attacks, as
part of an algorithm that distributes elements in the routing cache to make their
distribution less deterministic. This variable is first initialized by ip_rt_init
based on parameters related to available memory and the current jiffies. Later,
after the system has been up for a while and there is a chance for it to build up
good entropy, the variable is reset using the get_random_bytes routine.

Hash Table Organization
The data structures described in this section vary slightly among L3 protocols. In
IPv4, hash table buckets are of type rt_hash_bucket, a structure that includes only a
pointer to the list of colliding elements and a lock. The use of the lock is described in
the section “Cache Locking.”

Elements of the cache are of type rtable. This structure includes some protocol-
dependent fields, described in the section “rtable Structure” in Chapter 36, and a
protocol-independent data structure of type dst_entry, shown in Figure 33-1. The
dst_entry structure includes the interface to the neighboring layer and its cache,
transformers (such as IPsec), and routing cache management. The section “dst_entry
Structure” in Chapter 36 describes the data structure in detail, and Chapter 27 goes
over the interface to the neighboring layer.

The first field of the rtable structure is a union; this makes it easy for the rtable and
dst_entry structures to share values such as the pointer to the next colliding hash

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hash Table Organization | 863

table entry. The names of the pointers differ (dst_entry uses next, whereas rtable
uses rt_next), but they refer to the same memory location.

struct rtable
{
 union
 {
 struct dst_entry dst;
 struct rtable *rt_next;
 } u;

}

A pointer to an rtable structure can be safely typecast to a pointer to a dst_entry,
and vice versa.

When accessing the table for an insertion, deletion, or lookup, the routing sub-
system selects the bucket of the table through a combination of the source and desti-
nation IP addresses, the TOS field, and the ingress or egress device. The ingress
device ID is used when routing ingress traffic, and the egress device ID is used when
routing egress traffic that is locally generated. However, while there is always a
known ingress device for ingress traffic, the egress device may not yet be known for
egress traffic. The egress device is known only after the routing lookup, unless the
routing lookup key includes the egress device (which is possible for locally generated
traffic, but not necessary).

Figure 33-1. Routing cache structure

chain
lock

rt_next/next

struct dst_entry

struct rtable

rt_next/next

struct dst_entry

struct rtable

chain
lock

chain
lock

rt_next/next

struct dst_entry

struct rtable

struct rt_hash_bucket

rt_
ha

sh
_m

as
k

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

864 | Chapter 33: Routing: The Routing Cache

Major Cache Operations
The protocol-independent (DST) part of the cache is a set of dst_entry data struc-
tures. Most of the activities in this chapter happen through a dst_entry structure.
The IPv4 and IPv6 data structures rtable and rt6_info both include a dst_entry data
structure.

The dst_entry structure offers a set of virtual functions in a field named dst_ops,
which allows higher-layer protocols to run protocol-specific functions that manipu-
late the entries. The DST code is located in net/core/dst.c and include/net/dst.h.

All the routines that manipulate dst_entry structures start with a dst_ prefix. Note
that even though they operate on dst_entry structures, they actually affect the outer
rtable structures, too.

DST is initialized with dst_init, invoked at boot time by net_dev_init (see
Chapter 5).

Cache Locking
Read-only operations, such as lookups, use a different locking mechanism from read-
write operations such as insertion and deletion, but they naturally have to cooper-
ate. Here is how they are handled:

Read-only operations
These use the routines presented in the section “Cache Lookup” and are pro-
tected by a read-copy-update (RCU) read lock, as in the following snapshot:

rcu_read_lock();
...
perform lookup
...
rcu_read_unlock();

This code actually does no locking, because read operations can proceed simul-
taneously without interfering with each other.

Read-write operations
The insertion of an entry (see the section “Adding Elements to the Cache”) and
the deletion of an entry (see the section “Deleting DST Entries”) use the spin
lock embedded in each bucket’s element and shown in Figure 33-1. Note that
the provision of a per-bucket lock lets different processors write simultaneously
to different buckets.

Chapter 1 explains the RCU algorithm used to implement locking in the routing
table cache, and how read-write spin locks coexist with RCU.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Major Cache Operations | 865

Cache Entry Allocation and Reference Counts
A memory pool used to allocate new cache entries is created by ip_rt_init at boot
time. Cache entries are allocated with dst_alloc, which returns a void pointer that is
cast by the creator to the right data type. Despite the function’s name, it does not
allocate dst_entry structures, but instead allocates the larger entries that contain
those structures: rtable structures for IPv4 (as shown in Figure 33-1), rt6_info for
IPv6, and so on. Because the function can be called to allocate structures of different
sizes for different protocols, the size of the structure to allocate is indicated through
an entry_size virtual function, described in the section “Interface Between the DST
and Calling Protocols.”

Adding Elements to the Cache
Every time a cache lookup required to route an ingress or egress packet fails, the ker-
nel consults the routing table and stores the result into the routing cache. The kernel
allocates a new cache entry with dst_alloc, initializes some of its fields based on the
results from the routing table, and finally calls rt_intern_hash to insert the new entry
into the cache at the head of the bucket’s list. A new route is also added to the cache
upon receipt of an ICMP REDIRECT message (see Chapter 25). Figures 33-2(a) and
33-2(b) shows the logic of rt_intern_hash. When the kernel is compiled with sup-
port for multipath caching, a cache miss may lead to the insertion of multiple routes
into the cache, as discussed in the section “Multipath Caching.”

The function first checks whether the new route already exists by issuing a simple
cache lookup. Even though the function was called because a cache lookup failed,
the route could have been added in the meantime by another CPU. If the lookup suc-
ceeds, the existing cached route is simply moved to the head of the bucket’s list.
(This assumes the route is not associated with a multipath route; i.e., that its DST_
BALANCED flag is not set.) If the lookup fails, the new route is added to the cache.

As a simple way to keep the size of the cache under control, rt_intern_hash tries to
remove an entry every time it adds a new one. Thus, while browsing the bucket’s list,
rt_intern_hash keeps track of the most eligible route for deletion and measures the
length of the bucket’s list. A route is removed only from those that are eligible for
deletion (that is, routes whose reference counts are 0) and when the bucket list is
longer than the configurable parameter ip_rt_gc_elasticity. If these conditions are
met, rt_intern_hash invokes the rt_score routine to choose the best route to remove.
rt_score ranks routes, according to many criteria, into three classes, ranging from
most-valuable routes (least eligible to be removed) to least-valuable routes (most eli-
gible to be removed):*

* See the section “Examples of eligible cache victims” in Chapter 30.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

866 | Chapter 33: Routing: The Routing Cache

• Routes that were inserted via ICMP redirects, are being monitored by user-space
commands, or are scheduled for expiration.

• Output routes (the ones used to route locally generated packets), broadcast
routes, multicast routes, and routes to local addresses (for packets generated by
this host for itself).

• All other routes in decreasing order of timestamp of last use: that is, least
recently used routes are removed first.

rt_score simply stores the time the entry has not been used in the lower 30 bits of a
local 32-bit variable, then sets the 31st bit for the first class of routes and the 32nd bit
for the second class of routes. The final value is a score that represents how impor-
tant that route is considered to be: the lower the score, the more likely the route is to
be selected as a victim by rt_intern_hash.

Figure 33-2(a). rt_intern_hash function

Move matching element at the
head of the bucket’s list and

increment ref count

Unlock
hash table’s bucket

Drop new cache route
(rt_drop)

Any reference to
this element?

Update info about the best
candidate for deletion

Update bucket’s list
length (local variable)

Match?

For each element of the bucket

Lock hash table’s bucket

Select hash table bucket

No

Yes
Yes

No

Next

End

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Major Cache Operations | 867

Figure 33-2(b). rt_intern_hash function

Any candidate
for deletion?

Is it to be
removed according to
ip_rt_gc_elasticity?

Delete it
(rt_free)

Output route OR
UNICAST fwd route?

Add new route cache at the
head of the bucket’s list

Unlock
hash table’s bucket

Return 0

Bind route
(next hop)

to ARP?

Memory error?
(-ENOBUFS)

Are we in
software interrupt?

Drop new cache entry
(rt_drop)

Return -ENOBUF

Drop new cache entry
(rt_drop)

Return ERROR

Aggressive GC
run already?

Run aggressive GC
(rt_garbage_collect)

Unlock
hash table’s bucket

No

No

Yes
Yes

Yes

No

Error

Yes

No
OK

Yes

Yes

No

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

868 | Chapter 33: Routing: The Routing Cache

Binding the Route Cache to the ARP Cache
Most routing cache entries are bound to the ARP cache entry of the route’s next hop.
This means that a routing cache entry requires either an existing ARP cache entry or
a successful ARP lookup for the same next hop. In particular, the binding is done for
output routes used to route locally generated packets (identified by a NULL ingress
device identifier) and for unicast forwarding routes. In both cases, ARP is asked to
resolve the next hop’s L2 address. Forwarding to broadcast addresses, multicast
addresses, and local host addresses does not require an ARP resolution because the
addresses are resolved using other means.

Egress routes that lead to broadcast and multicast addresses do not need associated
ARP entries, because the associated L2 addresses can be derived from the L3
addresses (see the section “Special Cases” in Chapter 26). Routes that lead to local
addresses do not need ARP either, because packets matching the route are delivered
locally.

ARP binding for routes is created by arp_bind_neighbour. When that function fails
due to lack of memory, rt_intern_hash forces an aggressive garbage collection opera-
tion on the routing cache by calling rt_garbage_collect (see the section “Garbage
Collection”). The aggressive garbage collection is done by lowering the thresholds
ip_rt_gc_elasticity and ip_rt_gc_min_interval and then calling rt_garbage_
collect. The garbage collection is tried only once, and only when rt_intern_hash has
not been called from software interrupt context, because otherwise, it would be too
costly in CPU time. Once garbage collection has completed, the insertion of the new
cache entries starts over from the cache lookup step.

Cache Lookup
Anytime there is a need to find a route, the kernel consults the routing cache first and
falls back to the routing table if there is a cache miss. The routing table lookup pro-
cess is described in Chapter 35; in this section, we will look at the cache lookup.

The routing subsystem provides two different functions to do route lookups, one for
ingress and one for egress:

ip_route_input
Used for input traffic, which could be either delivered locally or forwarded. The
function determines how to handle generic packets (whether to deliver locally,
forward, drop, etc.) but is also used by other subsystems to decide how to han-
dle their ingress traffic. For instance, ARP uses this function to see whether an
ARPOP_REQUEST should be answered (see Chapter 28).

ip_route_output_key
Used for output traffic, which is generated locally and could be either delivered
locally or transmitted out.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Major Cache Operations | 869

Possible return values from the two routines include:

0
The routing lookup was successful. This case includes a cache miss that triggers
a successful routing table lookup.

-ENOBUF
The lookup failed due to a memory problem.

-ENODEV
The lookup key included a device identifier and it was invalid.

-EINVAL
Generic lookup failure.

The kernel also provides a set of wrappers around the two basic functions, used
under specific conditions. See, for example, how TCP uses ip_route_connect and ip_
route_newports.

Figure 33-3 shows the internals of two main routing cache lookup routines. The
egress function shown in the figure is _ _ip_route_output_key, which is indirectly
called by ip_route_output_key.

The routing cache is used to store both ingress and egress routes, so a cache lookup
is tried in both cases. In case of a cache miss, the functions call ip_route_input_slow
or ip_route_output_slow, which consult the routing tables via the fib_lookup routine
that we will cover in Chapter 35. The names of the functions end in _slow to

Figure 33-3. (a) ip_route_input_key function; (b) _ _ip_route_output_key function

Return result

Cache lookup

Is destination
multicast?

ip_route_input_mcip_route_input_slow

Cache lookup

(a) ip_route_input

(b) __ip_route_output_key

Return resultip_route_input_slow

HitMiss

HitMiss

No Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

870 | Chapter 33: Routing: The Routing Cache

underline the difference in speed between a lookup that is satisfied from the cache
and one that requires a query of the routing tables. The two paths are also referred to
as the fast and slow paths.

Once the routing decision has been taken, through either a cache hit or a routing
table, and resulting either in success or failure, the lookup routines return the input
buffer skb with the skb->dst->input and skb->dst->output virtual functions initial-
ized. skb->dst is the cache entry that satisfied the routing request; in case of a cache
miss, a new cache entry is created and linked to skb->dst.

The packet will then be further processed by calling either one or both of the virtual
functions skb->dst->input (called via a simple wrapper named dst_input) and skb->
dst->output (called via a wrapper named dst_output). Figure 18-1 in Chapter 18
shows where those two virtual functions are invoked in the IP stack, and what rou-
tines they can be initialized to depending on the direction of the traffic.

Chapter 35 goes into detail on the slow routines for the routing table lookups. The
next two sections describe the internals of the two cache lookup routines in
Figure 33-3. Their code is very similar; the only differences are:

• On ingress, the device of the ingress route needs to match the ingress device,
whereas the egress device is not yet known and is therefore simply compared
against the null device (0). The opposite applies to egress routes.

• In case of a cache hit, the functions update the in_hit and out_hit counters,
respectively, using the RT_CACHE_STAT_INC macro. Statistics related to both the
routing cache and the routing tables are described in Chapter 36.

• Egress lookups need to take the RTO_ONLINK flag into account (see the section
“Egress lookup”).

• Egress lookups support multipath caching, the feature introduced in the section
“Cache Support for Multipath” in Chapter 31.

Ingress lookup

ip_route_input is used to route ingress packets. Here is its prototype and the mean-
ing of its input parameters:

int ip_route_input(struct sk_buff *skb, u32 daddr, u32 saddr,
 u8 tos, struct net_device *dev)

skb
Packet that triggered the route lookup. This packet does not necessarily have to
be routed itself. For example, ARP uses ip_route_input to consult the local rout-
ing table for other reasons. In this case, skb would be an ingress ARP request.

saddr
daddr

Source and destination addresses to use for the lookup.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Major Cache Operations | 871

tos
TOS field, a field of the IP header.

dev
Device the packet was received from.

ip_route_input selects the bucket of the hash table that should contain the route,
based on the input criteria. It then browses the list of routes in that bucket one by
one, comparing all the necessary fields until it either finds a match or gets to the end
without a match.

The lookup fields passed as input to ip_route_input are compared to the fields
stored in the fl field* of the routing cache entry’s rtable, as shown in the following
code extract. The bucket (hash variable) is chosen through a combination of input
parameters. The route itself is represented by the rth variable.

 hash = rt_hash_code(daddr, saddr ^ (iif << 5), tos);
 rcu_read_lock();
 for (rth = rcu_dereference(rt_hash_table[hash].chain; rth;
 rth = rcu_dereference(rth->u.rt_next)) {
 if (rth->fl.fl4_dst == daddr &&
 rth->fl.fl4_src == saddr &&
 rth->fl.iif == iif &&
 rth->fl.oif == 0 &&
#ifdef CONFIG_IP_ROUTE_FWMARK
 rth->fl.fl4_fwmark == skb->nfmark &&
#endif
 rth->fl.fl4_tos == tos) {
 rth->u.dst.lastuse = jiffies;
 dst_hold(&rth->u.dst);
 rth->u.dst._ _use++;
 RT_CACHE_STAT_INC(in_hit);
 rcu_read_unlock();
 skb->dst = (struct dst_entry*)rth;
 return 0;
 }
 RT_CACHE_STAT_INC(in_hlist_search);
 }
 rcu_read_unlock();

In the case of a cache miss for a destination address that is multicast, the packet is
passed to the multicast handler ip_route_input_mc if one of the following two condi-
tions is met, and is dropped otherwise:

• The destination address is a locally configured multicast address. This is checked
with ip_check_mc.

• The destination address is not locally configured, but the kernel is compiled with
support for multicast routing (CONFIG_IP_MROUTE).

* See the description of the flowi structure in the section “Main Data Structures” in Chapter 32.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

872 | Chapter 33: Routing: The Routing Cache

This decision is shown in the following code:

 if (MULTICAST(daddr)) {
 struct in_device *in_dev;

 rcu_read_lock();
 if ((in_dev = _ _in_dev_get(dev)) != NULL) {
 int our = ip_check_mc(in_dev, daddr, saddr,
 skb->nh.iph->protocol);
 if (our
#ifdef CONFIG_IP_MROUTE
 || (!LOCAL_MCAST(daddr) && IN_DEV_MFORWARD(in_dev))
#endif
) {
 rcu_read_unlock();
 return ip_route_input_mc(skb, daddr, saddr,
 tos, dev, our);
 }
 }
 rcu_read_unlock();
 return -EINVAL;
 }

Finally, in the case of a cache miss for a destination address that is not multicast, ip_
route_input calls ip_route_input_slow, which consults the routing table:

 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
}

Egress lookup

_ _ip_route_output_key is used to route locally generated packets and is very similar
to ip_route_input: it checks the cache first and relies on ip_route_output_slow in the
case of a cache miss. When the cache supports Multipath, a cache hit requires some
more work: more than one entry in the cache may be eligible for selection and the
right one has to be selected based on the caching algorithm in use. The selection is
done with multipath_select_route. More details can be found in the section “Multi-
path Caching.”

Here is its prototype and the meaning of its input parameters:

int _ _ip_route_output_key(struct rtable **rp, const struct flowi *flp)

rp
When the routine returns success, *rp is initialized to point to the cache entry
that matched the search key flp.

flp
Search key.

A successful egress cache lookup needs to match the RTO_ONLINK flag, if it is set:

 !((rth->fl.fl4.tos ^ flp->fl4_tos) &
 (IPTOS_RT_MASK | RTO_ONLINK)))

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Multipath Caching | 873

The preceding condition is true when both of the following conditions are met:

• The TOS of the routing cache entry matches the one in the search key. Note that
the TOS field is saved in the bits 2, 3, 4 and 5 of the 8-bit tos variable (as shown
in Figure 18-3 in Chapter 18).*

• The RTO_ONLINK flag is set on both the routing cache entry and the search key or
on neither of them.

You will see the RTO_ONLINK flag in the section “Search Key Initialization” in
Chapter 35. The flag is passed via the TOS variable, but it has nothing to do with the
IP header’s TOS field; it simply uses an unused bit of the TOS field (see Figure 18-1
in Chapter 18). When the flag is set, it means the destination is located in a local
subnet and there is no need to do a routing lookup (or, in other words, a routing
lookup could fail but that would not be a problem). This is not a flag the administra-
tor sets when configuring routes, but it is used when doing routing lookups to spec-
ify that the route type searched must have scope RT_SCOPE_LINK, which means the
destination is directly connected. The flag is then saved in the associated routing
cache entries when they are created. Lookups with the RTO_ONLINK flag set are made,
for example, by the following protocols:

ARP
When an administrator manually configures an ARP mapping, the kernel makes
sure that the IP address belongs to one of the locally configured subnets. For
example, the command arp –s 10.0.0.1 11:22:33:44:55:66 adds the mapping of
10.0.0.1 to 11:22:33:44:55:66 to the ARP cache. This command would be
rejected by the kernel if, according to its routing table, the IP address 10.0.0.1
did not belong to one of the locally configured subnets (see arp_req_set and
Chapter 26).

Raw IP and UDP
When sending data over a socket, the user can set the MSG_DONTROUTE flag. This
flag is used when an application is transmitting a packet out from a known inter-
face to a destination that is directly connected (there is no need for a gateway),
so the kernel does not have to determine the egress device. This kind of trans-
mission is used, for instance, by routing protocols and diagnostic applications.

Multipath Caching
The concepts behind this feature are introduced in the section “Cache Support for
Multipath” in Chapter 31. When the kernel is compiled with support for multipath

* The TOS field, as shown in Figure 18-3 in Chapter 18, is an 8-bit field, of which bit 0 is ignored and bit 1
through 7 are used. However, the routing code uses only the bits 1, 2, 3 and 4. It does not take the precedence
component (bits 5, 6, 7) into consideration for egress routes. Those bits are masked out with the macro RT_
TOS.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

874 | Chapter 33: Routing: The Routing Cache

caching, the lookup code adds multiple routes to the cache, as shown in the section
“Multipath Caching” in Chapter 35. In this section, we will examine the key routines
used to implement this feature, and the interface provided by caching algorithms.

Registering a Caching Algorithm
Caching algorithms are defined with an instance of the ip_mp_alg_ops data structure,
which consists of function pointers. Depending on the needs of the caching algo-
rithm, not all function pointers may be initialized, but one is mandatory: mp_alg_
select_route.

Algorithms register and unregister with the kernel, respectively, using multipath_alg_
register and multipath_alg_unregister. All the algorithms are implemented as mod-
ules in the net/ipv4/ directory.

Interface Between the Routing Cache and Multipath
For each function pointer of the ip_mp_alg_ops data structure, the kernel defines a
wrapper in include/net/ip_mp_alg.h. Here is when each one is called:

multipath_select_route
This is the most important routine. It selects the right route from the ones in the
cache that satisfy a given lookup (because they are associated with the same mul-
tipath route). This routine is called by _ _ip_route_output_key, the lookup func-
tion we saw earlier.

multipath_flush
Clears any state kept by the algorithm when the cache is flushed. It is called by
rt_cache_flush (see the section “Flushing the Routing Cache”).

multipath_set_nhinfo
Updates the state information kept by the algorithm when a new multipath
route is cached.

multipath_remove
Removes the right routes in the cache when a multipath route is removed (for
example, by rt_free).

None of the algorithms supports multipath_remove, and only the weighted random
algorithm uses multipath_flush and multipath_set_nhinfo.

In later sections, we will see what state information the various algorithms need to
keep, and how they implement the mp_alg_select_route routine.

Helper Routines
Here are a couple of routines used by the multipath code:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Multipath Caching | 875

multipath_comparekeys
Compares two route selectors. It is used mainly by the mp_alg_select_route
algorithm’s functions to find cached routes that are associated with the same
multipath route as another cached route.

rt_remove_balanced_routes
Given an input cached route, removes it and all the other cached routes on the
same hash table’s bucket that are associated with the same multipath route. The
last input parameter to rt_remove_balanced_routes returns the number of cached
routes removed. The function’s return value is the next rtable instance in the
hash bucket’s list that follows the input parameter’s route. This return value is
used by the caller to resume its scan on the table from the right position. When
rt_remove_balanced_routes removes the last rtable instance of the bucket’s list,
it returns NULL.

Common Elements Between Algorithms
Keeping the following three points in mind will help you understand the code that
deals with multipath caching, and in particular, the implementation of the mp_alg_
select_route routine provided by the caching algorithms:

• Entries of the routing cache associated with multipath routes can be recognized
thanks to the DST_BALANCED flag, which is set prior to their insertion into the
cache (see the section “dst_entry Structure” in Chapter 36). We will see exactly
how and when this is done in Chapter 35. This flag is often used in the routing
cache code to apply different actions, depending on whether a given entry of the
cache is associated with a multipath route.

• The dst_entry structure used to define cached routes includes a timestamp of
last use (dst->lastuse). Each time a cached route is returned by a cache lookup,
this timestamp is updated for the route. Cache entries associated with multipath
routes need to be handled specially. When the cache entry returned by a lookup
is associated with a multipath route, all the other entries of the cache associated
with the same multipath route must have their timestamps updated, too. This is
necessary to avoid having routes purged by the garbage collection algorithm.

• The input to the mp_alg_select_route routine is the first cache entry that
matches the lookup key. Given how elements are added to the routing table
cache, all the other entries of the cache associated with the same multipath route
are located within the same bucket. For this reason, mp_alg_select_route will
browse the bucket list starting from the input cache element and identify the
other routes thanks to the DST_BALANCED flag and the multipath_comparekeys
routine.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

876 | Chapter 33: Routing: The Routing Cache

Random Algorithm
This algorithm does not need to keep any state information, and therefore it does not
need any memory to be allocated, nor does it take up significant CPU time to make
its decisions. All the algorithm does is browse the routes of the input table’s bucket,
count the number of routes eligible for selection, generate a random number with the
local routine random, and select the right cache entry based on that random number.

The algorithm is defined in net/ipv4/multipath_random.c.

Weighted Random Algorithm
This is the algorithm with the most complicated implementation. Each next hop of a
multipath route can be assigned a weight. The algorithm selects the right next hop (i.e.,
the right route in the cache) randomly and proportionally to the weights.

For each multipath route’s next hop there is an instance of the fib_nh data structure
that stores the weight, among other parameters. We will see in Chapter 34 where
those data structures are located in the routing table. In particular, you can refer to
Figure 34-1 in that chapter.

The section “Weighted Random Algorithm” in Chapter 31 explains the basic con-
cepts behind this algorithm. To help make a quick decision, the algorithm builds a
local database of information that it uses to access fib_nh instances and to read the
weights of the next hops. Figure 33-4 shows what that database would look like after
configuration of the following two multipath routes:

ip route add 10.0.1.0/24 mpath wrandom nexthop via 192.168.1.1 weight 1
 nexthop via 192.168.2.1 weight 2
ip route add 10.0.2.0/24 mpath wrandom nexthop via 192.168.1.1 weight 5
 nexthop via 192.168.2.1 weight 1

The database is actually not built right away when the multipath routes are defined:
it is populated at lookup time.

Remember that the input to the mp_alg_select_route routine (wrandom_select_route
in this case) is the first cached route of the routing cache that matches the search key.
All other eligible cached routes will be in the same routing cache bucket.

Selection of the route by mp_alg_select_route is accomplished in two steps:

1. mp_alg_select_route first browses the routing cache’s bucket, and for each
route, checks whether it is eligible for selection with the multipath_comparekeys
routine. In the meantime, it creates a local list of eligible cached routes, with the
main goal of defining a line like the one in Figure 31-4 in Chapter 31.
Figure 33-5 shows what the list would look like for the example in that chapter.
Each route added to the list gets its weight using the database in Figure 33-4 and
initializes the power field accordingly.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Multipath Caching | 877

2. mp_alg_select_route generates a random number and, given the list of eligible
routes, selects one route using the mechanism described in the section
“Weighted Random Algorithm” in Chapter 31.

Figure 33-4. Next-hop database created by the weighted random algorithm

Figure 33-5. Example of temporary list created for the next-hop selection

head
lock

list

head
lock

head
lock

struct
multipath_bucket

M
UL

TI
PA

TH
_S

TA
TE

_S
IZ

E(
15

)

state

. . .

. . .

oif
gw=192.168.1.1
dests

. . .

list

nh_info
netmask=255.255.255.0
network=0.10.0.1
prefixlen=24

struct
multipath_dest

list

nh_info
netmask=255.255.255.0
network=0.10.0.2
prefixlen=24

struct
multipath_dest

list

oif
gw=192.168.2.1
dests

. . .

list

nh_info
netmask=255.255.255.0
network=0.10.0.1
prefixlen=24

struct
multipath_dest

list

nh_info
netmask=255.255.255.0
network=0.10.0.2
prefixlen=24

struct
multipath_dest

struct
multipath_route

struct
multipath_route

next
power=10,000
rt

first_mpc

struct
multipath_candidate

struct rtable

next
power=20,000
rt

struct
multipath_candidate

struct rtable

next
power=40,000
rt

struct
multipath_candidate

struct rtable

next
power=80,000
rt

struct
multipath_candidate

struct rtable

last_mpc

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

878 | Chapter 33: Routing: The Routing Cache

Let’s see how a lookup on the state database works. Let’s keep in mind that cached
routes (that is, rtable instances) contain the next hop router and the egress device.
Given a cached route, _ _multipath_lookup_weight first selects the right state’s bucket
based on the egress device: state is indexed based on that device. Once a bucket of
state has been selected, the list of multipath_route elements is scanned, looking for
one that matches the gateway and device fields. Once the right multipath_route
instance has been identified, the list of associated multipath_dest structures is
scanned, looking for one that matches the destination IP address of the input lookup
key fl. From the matching multipath_dest instance, the function can read the next-
hop weight via the pointer nh_info that points to the right fib_nh instance.

The state database is populated by the multipath_set_nhinfo routine we saw in the
section “Interface Between the Routing Cache and Multipath.”

This algorithm is defined in net/ipv4/multipath_random.c.

Round-Robin Algorithm
The round-robin algorithm does not need additional data structures to keep the state
information it needs. All the required information is retrieved from the dst->_ _use
field of the dst_entry structure, which represents the number of times a cache
lookup returned the route. The selection of the right route therefore consists simply
of browsing the routes of the input table’s bucket, and selecting, among the eligible
routes, the one with the lowest value of _ _use.

The algorithm is defined in net/ipv4/multipath_rr.c.

Device Round-Robin Algorithm
The purpose and effect of this algorithm were explained in the section “Device
Round-Robin Algorithm” in Chapter 31. This algorithm selects the right egress
device, and therefore the right entry in the cache for a given multipath route, with
the drr_select_route routine as follows:

1. The global vector state keeps a counter for each device that indicates how many
times is has been selected.

2. For each multipath route, only the first next hop on any given device is consid-
ered. This speeds up the decision but implies that there is no load sharing
between next hops that share the same egress device: for each device, only one
next hop of any multipath route is used.

3. While browsing the routes (i.e., next hops) for the computation of the lowest use
count, routes associated with devices that have not been used yet are given
higher preference. When a new device is selected, a new entry is added to state.

4. The first route analyzed for the device with the lowest use count is selected.

 The algorithm is defined in net/ipv4/multipath_drr.c.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interface Between the DST and Calling Protocols | 879

Interface Between the DST and Calling Protocols
The DST cache is an independent subsystem; it has, for instance, its own garbage
collection mechanism. As a subsystem, it provides a set of functions that various pro-
tocols can use to change or tune its behavior. When external subsystems need to
interact with the routing cache, such as to notify it of an event or read the value of
one of its parameters, they do it via a set of DST routines defined in the files net/core/
dst.c and include/net/dst.h. These routines are wrappers around a set of functions
made available by the L3 protocol that owns the cache, by initializing an instance of
a dst_ops VFT, as shown in Figure 33-6.

The key structure presented by DST to higher layers is dst_entry; protocol-specific
structures such as rtable are merely wrappers for this structure. IP owns the routing
cache, but other protocols often keep references to routing cache elements. All of
those references refer to dst_entry, not to its rtable wrapper. The sk_buff buffers
also keep a reference to the dst_entry structure, not to the rtable structure. This ref-
erence is used to store the result of the routing lookup.

The dst_entry and dst_ops structures are described in detail in the associated sec-
tions in Chapter 36. There is an instance of dst_ops for each protocol; for example,
IPv4 uses ipv4_dst_ops, initialized in net/ipv4/route.c:

struct dst_ops ipv4_dst_ops = {
 .family = AF_INET,
 .protocol = _ _constant_htons(ETH_P_IP),
 .gc = rt_garbage_collect,
 .check = ipv4_dst_check,
 .destroy = ipv4_dst_destroy,
 .ifdown = ipv4_dst_ifdown,
 .negative_advice = ipv4_negative_advice,
 .link_failure = ipv4_link_failure,
 .update_pmtu = ip_rt_update_pmtu,
 .entry_size = sizeof(struct rtable),
};

Figure 33-6. dst_ops interface

APIs
dst_link_failure, etc.

ARP, TCP, IPsec, IPIP, etc.

DST

ip
v4

_d
st

_o
ps

IPv4
ip

v6
_d

st
_o

ps

IPv6

IPv4
routing
cache

IPv6
routing
cache

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

880 | Chapter 33: Routing: The Routing Cache

Whenever the DST subsystem is notified of an event or a request is made via one of
the DST interface routines, the protocol associated with the affected dst_entry
instance is notified by an invocation of the proper function among the ones pro-
vided by the dst_entry through its instance of the dst_ops VFT. For example, if ARP
would like to notify the upper protocol about the unreachability of a given IPv4
address, it calls dst_link_failure for the associated dst_entry structure (remember
that cached routes are associated with IP addresses, not with networks), which will
invoke the ipv4_link_failure routine registered by IPv4 via ipv4_dst_ops.

It is also possible for the calling protocol to intervene directly in DST’s behavior. For
example, when IPv4 asks DST to allocate a new cache entry, DST may then realize
there is a need to start garbage collection and invoke rt_garbage_collect, the rou-
tine provided by IPv4 itself.

When a given type of notification requires some kind of processing common to all
the protocols, the common logic may be implemented directly inside the DST APIs
instead of being replicated in each protocol’s handler.

Some virtual functions in the DST’s dst_ops structure are invoked through wrappers
in higher layers; functions that do not have a wrapper are invoked directly through
the syntax dst->ops->function. Here is the meaning of the dst_ops virtual functions
and a brief description of the IPv4 subsystem’s routines (listed in the preceding snap-
shot of code) that would be assigned to them:

gc
Takes care of garbage collection. It is run when the subsystem allocates a new
cache entry with dst_alloc and that function realizes there is a shortage of mem-
ory. The IPv4 routine rt_garbage_collect is described in the section “Synchro-
nous Cleanup.”

check
A cached route whose dst_entry is marked as dead is normally not usable. How-
ever, there is one case, where IPsec is in use, where that’s not necessarily true.
This routine is used to check whether an obsolete dst_entry is usable. For
instance, look at the ipv4_dst_check routine, which performs no check on the
submitted dst_entry structure before removing it, and compare it to the corre-
sponding xfrm_dst_check routine used to do “xfrm” transforms for IPsec. Also
see how routines such as sk_dst_check (introduced in Chapter 21) check the sta-
tus of a cached route. There is no wrapper for this function.

destroy
Called by dst_destroy, the routine that the DST runs to delete a dst_entry struc-
ture, and informs the calling protocol of the deletion to give it a chance to do any
necessary cleanup first. For example, the IPv4 routine ipv4_dst_destroy uses the
notification to release references to other data structures. dst_destroy is
described in the section “Deleting DST Entries.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interface Between the DST and Calling Protocols | 881

ifdown
Called by dst_ifdown, which is invoked by the DST subsystem itself when a
device is shut down or unregistered. It is called once for each affected cached
route (see the section “External Events”). The IPv4 routine ipv4_dst_ifdown
replaces the rtable’s pointer to the device’s IP configuration idev with a pointer
to the loopback device, because that is always sure to exist.

negative_advice
Called by the DST function dst_negative_advice, which is used to notify the
DST about a problem with a dst_entry instance. For example, TCP uses dst_
negative_advice when it detects a write timeout.

The IPv4’s routine ipv4_negative_advice uses this notification to delete the
cached route. When the dst_entry is already marked as dead (through its dst->
obsolete flag, as we will see in the section “Deleting DST Entries”), ipv4_
negative_advice simply releases the rtable’s reference to the dst_entry.

link_failure
Called by the DST function dst_link_failure, which is invoked when a trans-
mission problem is detected due to an unreachable destination.

As an example of this function’s use, the neighbor protocols ARP and Neighbor
Discovery—used by IPv4 and IPv6, respectively—invoke it to indicate that they
never received a reply to solicitation requests they generated to resolve an L3-to-
L2 address association. (They can usually tell this because of a timeout; see, for
example, arp_error_report in net/ipv4/arp.c for the behavior of the ARP proto-
col.) Other higher-layer protocols, such as the various tunnels (IP over IP, etc.),
do the same when they have problems reaching the other end of a tunnel, which
could be several hops away; see, for example, ipip_tunnel_xmit in net/ipv4/ipip.c
for the IP-over-IP tunneling protocol.

update_pmtu
Updates the PMTU of a cached route. It is usually invoked to handle the recep-
tion of an ICMP Fragmentation Needed message. See the section “Processing
Ingress ICMP_REDIRECT Messages” in Chapter 31. There is no wrapper for
this function.

get_mss
Returns the TCP maximum segment size that can be used on this route. IPv4
does not initialize this routine, and there is no wrapper for this function. See the
section “IPsec Transformations and the Use of dst_entry.”

Besides the wrappers around the functions just shown, the DST also manipulates
dst_entry instances through functions that do not need to interact with other sub-
systems. For example, the section “Asynchronous Cleanup” shows dst_set_expires,
and Chapter 26 shows how dst_confirm is used to confirm the reachability of a
neighbor. See the files net/core/dst.c and include/net/dst.h for more details.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

882 | Chapter 33: Routing: The Routing Cache

IPsec Transformations and the Use of dst_entry
In the previous sections, we saw the most common use for dst_entry structures: to
store the protocol-independent information regarding a cached route, including the
input and output methods that process the packets to be received or transmitted after
a routing lookup.

Another use for dst_entry structures is made by IPsec, a suite of protocols used to
provide secure services such as authentication and confidentiality on top of IP. IPsec
uses dst_entry structures to build what it calls transformation bundles. A transforma-
tion is an operation to apply to a packet, such as encryption. A bundle is just a set of
transformations defined as a sequence of operations. Once the IPsec protocols decide
on all the transformations to apply to the traffic that matches a given route, that
information is stored in the routing cache as a list of dst_entry structures.

Normally, a route is associated with a single dst_entry structure whose input and
output fields describe how to process the matching packets (forward, deliver locally,
etc., as shown in Figure 18-1 in Chapter 18). But IPsec creates a list of dst_entry
instances where only the last instance uses input and output to actually apply the
routing decisions; the previous instances use input and output to apply the required
transformations, as shown in Figure 33-7 (the model in the figure is a simplified
one).

Figure 33-7. Use of dst_entry (a) without IPsec; (b) with IPsec

dst
sp

(a)

input
output

sk_buff

dst_entry

dst
sp

(b)

input
output

sk_buff
DST_NOHASH

path

child

dst_entry

input
output

DST_NOHASH
path

child

dst_entry

input
output

DST_NOHASH
path

child

dst_entry

input
output

DST_NOHASH
path

child

dst_entry

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interface Between the DST and Calling Protocols | 883

dst_entry lists are created using the child pointer in the structure. Another pointer
named path, also used by IPsec, points to the last element of the list (the one that
would be created even when IPsec is not in use).

Each of the other dst_entry elements in the list—that is, each element except the
last—is there to implement an IPsec transformation. Each sets its path field to point
to the last element. In addition, each sets its DST_NOHASH flag so that the DST sub-
system knows it is not part of the routing cache hash table and that another sub-
system is taking care of it.

The implications of IPsec on routing lookups are as follows: both input and output
routing lookups are affected by the data structure layout shown for IPsec configura-
tion in Figure 33-7(b). The result returned by a lookup is a pointer to the first dst_
entry that implements a transformation, not the last one representing the real rout-
ing information. This is because the first dst_entry instance represents the first trans-
formation to be applied, and the transformations must be applied in order.

You can find interactions between the IP or routing layer and IPsec in several other
places:

• For egress traffic, ip_route_output_flow (which is called by ip_route_output_key,
introduced in the section “Cache Lookup”) includes extra code (i.e., a call to
xfrm_lookup) to interact with IPsec.

• For ingress traffic that is to be delivered locally, ip_local_deliver_finish calls
xfrm4_policy_check to consult the IPsec policy database.

• ip_forward makes the same check for ingress traffic that needs to be forwarded.

Sometimes the IP code makes a direct call to the generic xfrm_xxx IPsec routines, and
sometimes it uses IPv4 wrappers with the names xfrm4_ xxx.

External Events
When dst_init initializes the DST subsystem, it registers with the device event noti-
fication chain netdev_chain, introduced in Chapter 4. The only two events the DST is
interested in are the ones generated when a network device goes down (NETDEV_DOWN)
and when a device is unregistered (NETDEV_UNREGISTER). You can find the complete
list of NETDEV_XXX events in include/linux/notifier.h.

When a device becomes unusable, either because it is not available anymore (for
instance, it has been unregistered from the kernel), or because it has simply been
shut down for administrative reasons, all the routes using that device become unus-
able as well. This means that both the routing tables and the routing cache need to
be notified about this kind of event and react accordingly. We will see how the rout-
ing tables are handled in Chapter 34. Here we will see how the routing cache is

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

884 | Chapter 33: Routing: The Routing Cache

cleaned up. The dst_entry structures for cached routes can be inserted in one of two
places:

• The routing cache.

• The dst_garbage_list list. Here deleted routes wait for all their references to be
released, to become eligible for deletion by the garbage collection process.

The entries in the cache are taken care of by the notification handler fib_netdev_
event (described in the section “Impacts on the routing tables” in Chapter 32),
which, among other actions, flushes the cache. The ones in the dst_garbage_list list
are taken care of by the routine that DST registers with the netdev_chain notification
chain. As shown in the following snippet from net/core/dst.c, the handler DST uses to
process the received notifications is dst_dev_event:

static struct notifier_block dst_dev_notifier = {
 .notifier_call = dst_dev_event,
};

void _ _init dst_init(void)
{
 register_netdevice_notifier(&dst_dev_notifier);
}

dst_dev_event browses the dst_garbage_list list of dead dst_entry structures and
invokes dst_ifdown for each one. The last input parameter to dst_ifdown tells it what
event it is being called to handle. Here is how it handles the two event types:

NETDEV_UNREGISTER
When the device is unregistered, all references to it have to be removed. dst_
ifdown replaces them with references to the loopback device, for both the dst_
entry structure and its associated neighbour instance, if any.*

NETDEV_DOWN
Because the device is down, traffic cannot be sent to it anymore. Therefore, the
input and output routines of dst_entry are set to dst_discard_in and dst_
discard_out, respectively. These two routines simply discard any input buffer
passed to them (i.e., any frame they are asked to process).

We saw in the section “IPsec Transformations and the Use of dst_entry” that a dst_
entry structure could be linked to other ones through the child pointer. dst_ifdown
goes child by child and updates all of them. The input and output routines are
updated only for the last entry, because that entry is the one that uses the routines
for reception or transmission.

We saw in Chapter 8 that unregistering a device triggers not only a NETDEV_
UNREGISTER notification but also a NETDEV_DOWN notification, because a device has to
be shut down to be unregistered. This means that both events handled by dst_dev_
event occur when a device is unregistered. This explains why dst_ifdown checks its

* See the section “L2 Header Caching” in Chapter 27.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Flushing the Routing Cache | 885

unregister parameter and deliberately skips part of its code when the parameter is
not set, while running other parts only when it is set.

Flushing the Routing Cache
Whenever a change in the system takes place that could cause some of the informa-
tion in the cache to become out of date, the kernel flushes the routing cache. In many
cases, only selected entries are out of date, but to keep things simple the kernel
removes all entries. The main events that trigger flushing are:

A device comes up or goes down
Some addresses that used to be reachable through a given device may not be
reachable anymore, or may be reachable through a different device with a better
route.

An IP address is added to or removed from a device
We saw in the sections “Adding an IP address” and “Removing an IP address” in
Chapter 32 that Linux creates a special route for each locally configured IP
address. When an address is removed, any associated route in the cache also has
to be removed. The removed address was most likely configured with a netmask
different from /32, so all the cache entries associated with addresses within the
same subnet should go away* as well. Finally, if one of the addresses in the same
subnet was used as a gateway for other indirect routes, all of them should go
away. Flushing the entire cache is simpler than keeping track of all of these pos-
sible cases.

The global forwarding status, or the forwarding status of a device, has changed
If you disable forwarding, you need to remove all the cached routes that were
used to forward traffic. See the section ““Enabling and Disabling Forwarding” in
Chapter 36.

A route is removed
All the cached entries associated with the deleted route need to be removed.

An administrative flush is requested via the /proc interface
This is described in the section “The /proc/sys/net/ipv4/route Directory” in
Chapter 36.

The routine used to flush the cache is rt_run_flush, but it is never called directly.
Requests to flush the cache are done via rt_cache_flush, which will either flush the
cache right away or start a timer, depending on the value of the input timeout pro-
vided by the caller:

* This is not true when you remove a secondary address. See the section “Removing an IP address” in
Chapter 32.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

886 | Chapter 33: Routing: The Routing Cache

Less than 0
The cache is flushed after the number of seconds specified by the kernel parame-
ter ip_rt_min_delay, which can be tuned via /proc as described in the section
“The /proc/sys/net/ipv4/route Directory” in Chapter 36.

0
The cache is flushed right away.

Greater than 0
The cache is flushed after the specified amount of time.

Once a flush request is submitted, a flush is guaranteed to take place within ip_rt_
max_delay seconds, which is set to 8 by default. When a flush request is submitted
and there is already one pending, the timer is restarted to reflect the new request;
however, the new request cannot ask the timer to expire later than ip_rt_max_delay
seconds since the previous timer was fired. This is accomplished by using the global
variable rt_deadline.

In addition, the cache is periodically flushed by means of a periodic timer, rt_
secret_timer, that expires every ip_rt_secret_interval seconds (see the section
“The /proc/sys/net/ipv4/route Directory” in Chapter 36 for its default value). When
the timer expires, the handler rt_secret_rebuild flushes the cache and restarts the
timer. ip_rt_secret_interval is configurable via /proc.

Garbage Collection
As explained in the section “Routing Cache Garbage Collection” in Chapter 30,
there are two kinds of garbage collection:

• To free memory when a shortage is detected. This is actually split into two tasks,
one synchronous and one asynchronous. The synchronous task is triggered at
irregular times by particular conditions, and the asynchronous task runs more or
less regularly at the expiration of a timer.

• To clean up dst_entry structures that the kernel asked to be removed, but that
could not be deleted right away because someone still held a reference to them.

This section covers both the synchronous and asynchronous cases of the first type of
garbage collection. The section “Deleting DST Entries” goes into detail on the other
type.

Both synchronous and asynchronous garbage collection use a common routine to
decide whether a given dst_entry instance is eligible for deletion: rt_may_expire. The
routine accepts two parameters (tmo1, tmo2) that represent the minimum time that
candidates must have spent in the cache before being eligible for deletion. Specifi-
cally, tmo2 applies to those candidates that are considered particularly good for dele-
tion, and tmo1 applies to all the other candidates, as described in the section

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Garbage Collection | 887

“Examples of eligible cache victims” in Chapter 30. The ip_rt_gc_timeout parameter
specifies the time for other entries in the cache.

The lower those two values are, the more likely it is that entries will be deleted.
That’s why, as shown in the section “Asynchronous Cleanup,” rt_check_expire
halves the local variable tmo every time an entry is not removed. As we will see in the
section “rt_garbage_collect Function,” rt_garbage_collect does the same with both
thresholds.

Synchronous Cleanup
A synchronous cleanup is triggered when the DST subsystem detects a shortage of
memory. While it is up to the DST to decide when to trigger garbage collection, the
routine that takes care of it is provided by the protocol that owns the cache. Every-
thing is controlled through the dst_ops virtual functions introduced in the section
“Interface Between the DST and Calling Protocols.” We saw there that dst_ops has a
function called gc, which IPv4 initializes to rt_garbage_collect. gc is invoked in the
following two cases:

• When a new entry is added to the routing cache and a memory shortage comes
up. When adding an entry, rt_intern_hash has to bind the route to the
neighbour data structure associated with the next hop (see the section “Binding
the Route Cache to the ARP Cache”). If there is not enough memory to allocate
a new neighbour data structure, the routing cache is scanned in an attempt to
free some memory. This is done because there could be some cache entries that
have not been used for a while, and removing them could allow the associated
neighbour entries to be removed, too. (I said “could” allow it, because as we
know, a data structure cannot be removed until all the references to it have been
removed.)

• When a new entry is added to the routing cache and the total number of entries
exceeds the threshold gc_thresh. The dst_alloc function that allocates the entry
triggers a cleanup to keep down memory use by restricting the cache to a fixed
size. gc_thresh is configurable via /proc (see the section “Tuning via /proc File-
system” in Chapter 36).

The next section gives the internals of rt_garbage_collect.

rt_garbage_collect Function
The logic of rt_garbage_collect is described in Figures 33-8(a) and 33-8(b).

The garbage collection done by the rt_garbage_collect routine is expensive in terms
of CPU time. Therefore, the routine returns without doing anything if less than ip_
rt_gc_min_interval seconds have passed since the last invocation, unless the number

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

888 | Chapter 33: Routing: The Routing Cache

of entries in the cache reached the maximum value ip_rt_max_size, which requires
immediate attention.

ip_rt_max_size is a hard limit. Once that threshold is reached, dst_alloc fails until
rt_garbage_collect manages to free some memory.

Here is the logical structure of rt_garbage_collect:

Figure 33-8(a). rt_garbage_collect function

Remove route/s

Update goal

Can route be
removed?

(rt_may_expire)

For each cached route

Get bucket’s lock

Make requirements
more aggressive

For each bucket
of the hash table

Estimate number of cache
entries to remove (goal)

Has the minimum
required interval passed

since the last GC?
(ip_rt_gc_min_interval)

Increment counter
gc_total

Is the cache full?
(ip_rt_max_size)

Update counter
gc_goal_miss

Update rover
(last scanned bucket)

Has goal been met?

Release bucket’s lock

1

Take into account
the multipath caching feature

Yes

Yes

No

No

Next

Next

End

End

Yes

Yes

No

No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Garbage Collection | 889

• First it computes the number of cache entries it would like to remove (goal). From
this value and the number of entries currently in the cache (ipv4_dst_ops.entries),
it derives the number of entries that would be left once goal entries are removed,
and stores this number in equilibrium.

• It browses the hash table and tries to expire the most-eligible entries, checking
their eligibility with rt_may_expire. Entries eligible for deletion are deleted with
rt_free directly or with rt_remove_balanced_route, depending on whether they
are associated with multipath routes (see the section “Helper Routines”).

Figure 33-8(b). rt_garbage_collect function

Can requirements
be made more

aggressive?

Update counter
gc_goal_miss

2

Has goal
been met?

Is the cache full?
(ip_rt_max_size)

Can we do
another loop over

the hash table?

Make requirements
more aggressive

Is the cache full?
(ip_rt_max_size)

Return success (0) Updat counter
gc_dst_overflow

Return failure (1)

Yes

No

No

Yes

No

No Yes

No Yes

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

890 | Chapter 33: Routing: The Routing Cache

• Once the table has been scanned completely, it checks whether the goal has been
met, and if not, it repeats the loop with more-aggressive eligibility criteria.

The number of entries to remove (goal) depends on how heavily loaded the hash
table is. The goal is to expire entries faster when the table is more heavily loaded.

With the help of Figure 33-9, let’s clarify some of the thresholds used by rt_garbage_
collect to define goal:

• The size of the hash table is rt_hash_mask+1, or 2rt_hash_log. rt_garbage_collect
is called when the number of entries in the cache is bigger than gc_thresh, whose
default value is the size of the hash table.

• The maximum number of entries that the cache can hold is ip_rt_max_size,
which by default is set to 16 times the size of the hash table.

• When the number of entries in the cache is bigger than ip_rt_gc_
elasticity*(2rt_hash_log), which by default is eight times the size of the hash table,
the cache is considered to be dangerously large and the garbage collection starts
setting goal more aggressively.

Once the thresholds have been defined, rt_garbage_collect browses the hash table
elements looking for victims. The table is not simply browsed from the first to the
last bucket. rt_garbage_collect keeps a static variable, rover, that remembers the
last bucket that was scanned at the previous invocation. This is because the table
does not necessarily need to be scanned completely. By remembering the last
scanned bucket, the routine handles all the buckets fairly, instead of always selecting
victims from the first buckets. Victims are identified by rt_may_expire. This routine,
already described in the section “Garbage Collection,” is passed two time thresholds
that define how two categories of entries should be considered eligible for deletion.
While scanning elements of a bucket, one of the thresholds is lowered (halved) every
time an element is not selected. At the end of each bucket’s list, the function checks
again whether the number of deleted entries meets the goal set at the beginning of
the function (goal). If not, the function goes ahead with the next bucket. This

Figure 33-9. Garbage collection thresholds

(rt_hash_mask+1=2rt_hash_log)
gc_thresh

ip_rt_gc_elasticity*2rt_hash_log

=8*(rt_hash_mask+1)

ip_rt_max_size
=16*(rt_hash_mask+1)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Garbage Collection | 891

continues until the whole table has been scanned. At that point, the function lowers
the value of the second time threshold passed to rt_max_expire, to make it even more
likely to find eligible victims. Then a new scan over the table starts, if it would not be
too time consuming. The new scan is considered too time consuming and is skipped
if the routine was called in software interrupt context, or if the previous scan took
more than one jiffies of time (e.g., 1/1000 of a second on an x86 platform).

Asynchronous Cleanup
Synchronous garbage collection is used to handle specific cases of memory shortage;
but it would be better to avoid waiting for extreme conditions to emerge before tak-
ing action: in other words, it is better to make extreme conditions less likely. This is
what the asynchronous cleanup does by means of a periodic timer.

The timer, rt_periodic_timer, is started by ip_rt_init when the routing subsystem
is initialized, and invokes the handler rt_check_expire every time it expires. Each
time it is invoked, rt_check_expire scans just a part of the cache. It keeps a static
variable (rover) to remember the last bucket it scanned at the previous invocation
and starts scanning each time from the next one. rt_check_expire restarts the timer
and returns when it has finished scanning the entire table or has run for at least one
jiffies.

Entries are removed with rt_free if their time in the cache has expired, or if they are
considered eligible by rt_may_expire. When the entry is associated with a multipath
route, the deletion is taken care of by rt_remove_balanced_route.

 while ((rth = *rthp) != NULL) {
 if (rth->u.dst.expires) {
 if (time_before_eq(now, rth->u.dst.expires)) {
 tmo >>= 1;
 rthp = &rth->u.rt_next;
 continue;
 }
 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
 tmo >>= 1;
 rthp = &rth->u.rt_next;
 continue;
 }
 /* Cleanup aged off entries. */
#ifdef CONFIG_IP_ROUTE_MULTIPATH_CACHED
 /* remove all related balanced entries if necessary */
 if (rth->u.dst.flags & DST_BALANCED) {
 rthp = rt_remove_balanced_route(
 &rt_hash_table[i].chain,
 rth, NULL);
 if (!rthp)
 break;
 } else {
 *rthp = rth->u.rt_next;
 rt_free(rth);

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

892 | Chapter 33: Routing: The Routing Cache

 }
#else /* CONFIG_IP_ROUTE_MULTIPATH_CACHED */
 *rthp = rth->u.rt_next;
 rt_free(rth);
#endif /* CONFIG_IP_ROUTE_MULTIPATH_CACHED */
 }
 ...
 if (time_after(jiffies, now)))
 break;

The timer expires by default every ip_rt_gc_interval seconds, whose value is 60 by
default but can be changed via the /proc/sys/net/ipv4/route/gc_interval file (see the
section “Tuning via /proc Filesystem” in Chapter 4). The first time the timer fires, it
is set to expire after a random number of seconds between ip_rt_gc_interval and
2*ip_rt_gc_interval (see ip_rt_init). The reason for using the random value is to
avoid the possibility that timers from different kernel subsystems might expire at the
same time and use up the CPU. This is conceivable if many subsystems start up at
the same time during the boot process and schedule times at regular intervals.

Expiration Criteria
By default, routing cache entries never expire because dst_entry->expires is 0.*

When an event that can expire cache entries occurs (see the section “Examples of
events that can expire cache entries” in Chapter 30), entries are expired by setting
their dst_entry->expires timestamp field to a nonzero value with dst_set_expires†:

• When an ICMP UNREACHABLE or FRAGMENTATION NEEDED message is
received, the PMTU of all the related routes (those that have the same destina-
tion IP as the one specified by the IP header carried in the payload of the ICMP
message) must be updated to the MTU specified in the ICMP header. Thus, the
ICMP core code calls ip_rt_frag_needed to update the routing cache. The
affected entries are set to expire after the configurable time ip_rt_mtu_expires,
which by default is 10 minutes and can be changed with /proc/sys/net/route/mtu_
expires. See Chapter 25 for more details.

• When the TCP code updates the MTU of a route with the path MTU discovery
algorithm, it calls the ip_rt_update_mtu function, which in turns calls dst_set_
expires. Refer to Chapter 18 for more details on path MTU discovery.

• When a destination IP address is classified as unreachable, the associated dst_
entry structure in the cache is marked as unreachable by directly or indirectly
calling the link_failure method of the dst_ops data structure (see the section
“Interface Between the DST and Calling Protocols”).

* The dst_entry->expires field is set in dst_alloc with a global memset call.

† Note that when dst_set_expires is called to expire an entry immediately, it replaces the input value of 0 with
1, to distinguish this situation from the 0 that means never to expire.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Garbage Collection | 893

Deleting DST Entries
In the previous sections, we saw how rtable cache entries are deleted by synchro-
nous or asynchronous cleanups and background garbage collection. In this section,
we will see how the embedded dst_entry structures are taken care of. The function
that deletes a dst_entry is dst_free.

The reference count on a dst_entry is incremented and decremented with dst_hold
and dst_release, respectively. But when dst_release is called to release the last refer-
ence, the entry is not deleted automatically. Instead, it is removed indirectly when
the associated rtable structures are removed with rt_free and rt_drop. These func-
tions schedule the execution of dst_free via dst_rcu_free, which takes care of the
RCU mechanisms (see the section “Cache Locking”).

We saw in the section “IPsec Transformations and the Use of dst_entry” that dst_
entry structures are not always embedded into rtable structures. Standalone
instances are removed by calling dst_free directly.

The removal of a dst_entry is not complex, but there are a couple of points that need
to be covered to understand how dst_free and its helper routines work:

• When an entry cannot be removed because it is still referenced, it is marked as
dead by setting its obsolete flag to 2 (the default value for dst->obsolete is 0).
An attempt to delete an entry that is already dead fails.

• As we saw in the section “IPsec Transformations and the Use of dst_entry,” a
dst_entry instance could have children. When deleting the first dst_entry of a
list, the routing subsystem has to delete all the others as well. But at the same
time, you need to keep in mind that an entry cannot be removed so long as some
references are left to it.

Given these two points, let’s see now how dst_free works.

When dst_free is called to remove an entry whose reference count is 0, it removes
the entry right away with dst_destroy. The latter function also tries to remove any
children linked to the structure. When one of the children cannot be removed
because it is still referenced, dst_destroy returns a pointer to the child so that dst_
free can take care of it.

When dst_free is called to remove an entry whose reference count is not 0—which
includes the case just described, when dst_destroy could not delete a child—it does
the following:

• Marks the entry as dead by setting its obsolete flag.

• Replaces the entry’s input and output routines with two fake ones, dst_discard_
in and dst_discard_out. These ensure that no reception or transmission is
attempted on the associated routes (see the description of input and output in
the section “dst_entry Structure” in Chapter 36). This initialization is typical of a
device that is not yet operative, or in a down state (the flag IFF_UP is not set).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

894 | Chapter 33: Routing: The Routing Cache

We saw in the section “External Events” that when the two events handled by
dst_dev_event occur, dst_ifdown is called to take care of the dst_entry struc-
tures in the dst_garbage_list. In particular, it replaces their current input and
output methods with dst_discard_in and dst_discard_out. This is not superflu-
ous, because dst_free does this only when the dst_entry it is called to free is
associated with a device being shut down, which is not necessarily always the
case when one of the dst_dev_event events occurs.

• Adds the structure to the global list dst_garbage_list. This list links all entries
that should be removed, but cannot be removed yet due to nonzero reference
counts.

• Adjusts the dst_gc_timer timer to expire after the minimum configurable delay
(DST_GC_MIN) and fires it if it is not already running.

The dst_gc_timer timer periodically browses the dst_garbage_list list and removes,
with dst_destroy, entries with a reference count of 0. When the timer handler dst_
run_gc cannot remove all the entries in the list, it starts the timer again but makes it
expire a little later. To be precise, it adds DST_GC_INC seconds to its expiration delay,
up to a maximum delay of DST_GC_MAX. But each time dst_free adds a new element to
dst_garbage_list, it resets the expiry delay to the default minimum value DST_GC_MIN.

Figures 33-10(a) and 33-10(b) summarize the logic of dst_free.

Variables That Tune and Control Garbage Collection
In summary, here are the meanings of the main global variables and parameters that
control the DST garbage collection task:

dst_garbage_list
The list of dst_entry structures waiting to be removed. When dst_gc_timer
expires, the handler takes care of them. Entries are put into this list (instead of
being removed directly) only when the reference count _ _refcnt is greater than
0, preventing their deletion. New entries are inserted at the head of the list.

dst_gc_timer_expires
dst_gc_timer_inc

dst_gc_timer_expires is the number of seconds the timer waits before expiring.
Its value ranges between DST_GC_MIN and DST_GC_MAX and is increased with units
of dst_gc_timer_inc by dst_run_gc every time that function runs and cannot
manage to empty the dst_garbage_list list. dst_gc_timer_inc must be in the
range DST_GC_MIN to DST_GC_MAX as well.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Garbage Collection | 895

Figure 33-10(a). dst_free function

Does the L3
protocol provide a
destroy routine?

Free dst_entry
data structure

Grab the first child
from the list

Is entry
still referenced?

Release any reference kept
to external data structure

Is there any
child structure?

Decrement its
reference count

Is child
still referenced?

Return NULL

Run it

Yes

No

Yes

No

No

Is entry
already dead?

Return
No

Yes

Update counter
dst -> ops -> entries

Yes

Yes No

dst_destroy

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

896 | Chapter 33: Routing: The Routing Cache

The values of the three constants mentioned in the previous bullets, as defined in
include/net/dst.h, are listed in Table 33-1.

Egress ICMP REDIRECT Rate Limiting
As discussed in Chapter 25, the kernel generates ICMP REDIRECT messages when it
detects suboptimal routing. These ICMP messages are handled by the routing sub-
system, which rate limits them as suggested by section 4.3.2.8 of RFC 1812.

Figure 33-10(b). dst_free function

Table 33-1. DST_GC_XXX constants

Name Value

DST_GC_MIN HZ/10

DST_GC_MAX 120*HZ

DST_GC_INC HZ/2

Is device
dst -> dev

set?

Adjust dst_gc_timer to expire
after the minimum interval

Release lock
dst_lock

__dst_free

Add entry to list
dst_garbage_list

Mark entry as dead
(obsolete=2)

input = dst_discard_in
output= dst_discard_out

Get lock
dst_lock

Is device UP?
YesYes

No No

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Egress ICMP REDIRECT Rate Limiting | 897

The algorithm used is a simple exponential backoff algorithm. If the destination
keeps ignoring ICMP REDIRECT messages, the kernel keeps sending them up to ip_
rt_redirect_number, doubling each time the interval between consecutive messages.
After ip_rt_redirect_number such messages have been sent, the kernel stops sending
them until ip_rt_redirect_silence seconds pass while no input packet arrives that
would trigger the generation of an ICMP REDIRECT. Once ip_rt_redirect_silence
seconds are passed, the kernel starts sending ICMP REDIRECT messages again, if
they are needed.

The initial delay for the exponential backoff algorithm is given by ip_rt_redirect_
load. All three ip_rt_redirect_xxx parameters are configurable via /proc. See
Chapter 36 for the default values of those variables.

All the logic for egress REDIRECT messages is implemented in ip_rt_send_redirect,
which is the routine called by the kernel when it detects the need for an ICMP REDI-
RECT (see Chapter 20).

Two dst_entry fields implement this feature:

rate_last
Timestamp when the last IMCP REDIRECT was sent.

rate_tokens
Number of ICMP REDIRECT messages already sent to the destination associ-
ated to this dst_entry instance. rate_tokens-1, therefore, represents the number
of consecutive ICMP REDIRECT messages that the destination has ignored.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

898

Chapter 34CHAPTER 34

Routing: Routing Tables

Given the central role of routing in the network stack and how big routing tables can
be, it is important to have efficiently designed routing tables to speed up operations,
particularly lookups. This chapter describes how Linux organizes routing tables, and
how the data structures that compose a routing table are accessed with different hash
tables, each one specialized for a different kind of lookup.

Organization of Routing Hash Tables
To support the key goal of returning information quickly for a wide variety of opera-
tions, Linux defines a number of different hash tables that point to the same data
structures describing routes:

• A set of hash tables that access routes based on their netmask length (described
in the section “Organization of Per-Netmask Tables”)

• A set of hash tables that search fib_info structures directly (described in the sec-
tion “Organization of fib_info Structures”)

• One hash table, indexed on the network device, used to quickly search the next
hops of the configured routes (described in the section “Organization of Next-
Hop Router Structures”).

• One hash table that, given a route and a device, quickly identifies the gateway
used by the route’s next hop

Organization of Per-Netmask Tables
At the highest level, routes are organized into different hash tables based on the
lengths of their netmasks. Because IPv4 uses 32-bit addresses, 33 different netmask
lengths (ranging from /0 to /32, where /0 represents default routes) can be associ-
ated with an IP address. The routing subsystem maintains a different hash table for
each netmask length. These hash tables are then combined into other tables,
described in subsequent sections in this chapter.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Organization of Routing Hash Tables | 899

Figure 34-1 shows the relationships between the main data structures in a routing
table. All of these data structures were briefly introduced in Chapter 32, and are
described in detail in Chapter 36. In this chapter, we will concentrate on the relation-
ships between the data structures.

Basic structures for hash table organization

Routing tables are described with fib_table data structures. The fib_table structure
includes a vector of 33 pointers, one for each netmask, and each pointing to a data
structure of type fn_zone. (The term zone refers to the networks that share a single
netmask.) The fn_zone structures organize routes into hash tables, so routes that lead
to destination networks with the same netmask length share the same hash table.
Therefore, given any route, its associated hash table can be quickly identified by the
route’s netmask length. Nonempty fn_zone buckets are linked together, and the head
of the list is saved in fn_zone_list. We will see in Chapter 35 how this list is used.

There is one exception to the general organization of these per-netmask hash tables.
The table for the /0 zone, used for default routes, consists of a single bucket and
therefore collapses into a simple list. This design choice was made because a host
rarely maintains many default routes.

Routes are described by a combination of different data structures, each one repre-
senting a different piece of information. The information that defines a route is split
into several data structures because it is possible for multiple routes to differ by only
a few fields. Thus, by splitting routes in pieces instead of maintaining one large, flat
structure, the routing subsystem makes it easier to share common pieces of informa-
tion among similar routes, and therefore to isolate different functions and define
cleaner interfaces among the functions.

For each unique subnet there is one instance of fib_node, identified by a variable
named fn_key whose value is the subnet. For example, given the subnet 10.1.1.0/24,
fn_key is 10.1.1. Note that the fib_node structure (and therefore its fn_key variable)
is associated to a subnet, not to a single route; it’s important to keep this in mind to
avoid confusion later. The importance of this detail derives from the possibility of
having different routes to the same subnet.

Different routes leading to the same subnet (i.e., the same fn_key) share the same
fib_node. Each route is assigned its own fib_alias structure. You can have, for
instance, different routes leading to the same subnet and differing only with regard to
the TOS values: each fib_alias instance would therefore be assigned a different TOS
value. Each fib_alias instance is associated with a fib_info structure, which stores
the real routing information (i.e., how to get to the destination).

Given a fib_node instance, the associated list of fib_alias instances is sorted in
increasing order of IP TOS (i.e., the fa_tos field). fib_alias instances with the same

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

900 | Chapter 34: Routing: Routing Tables

Figure 34-1. Routing table organization

struct fib_table*

struct fib_table*

struct fib_table*

struct fib_table*

tb_id
tb_stamp
tb_lookup
...
tb_select default

tb_data

struct fn_zone*

. . .

struct fn_zone*

struct fn_zone*

. . .

struct fn_zone*

struct fn_zone*fn_zone_list

struct fn_hash

struct fib_table

fz_next

fz_hash

fz_divisor

struct fn_zone

fz_next

fz_hash

fz_divisor

struct fn_zone

fz_next

fz_hash

fz_divisor

struct fn_zone

RT
_T

AB
LE

_M
AX

+
1

33
/32

/0

Default routes

struct hlist_head

fx
_d

ivi
so

r

struct hlist_head

. . .

struct hlist_head

. . .

struct hlist_head

fn_hash
fn_alias
fn_key

struct fib_node

fa_list
fa_info
fa_tos
fa_type
fa_scope
fa_state

struct fib_alias

fn_hash
fn_alias
fn_key

struct fib_node

fa_list
fa_info
fa_tos
fa_type
fa_scope
fa_state

struct fib_alias

fn_hash
fn_alias
fn_key

struct fib_node fa_list
fa_info
fa_tos
fa_type
fa_scope
fa_state

struct fib_alias

fa_list
fa_info
fa_tos
fa_type
fa_scope
fa_state

struct fib_alias

fib_hash
fib_lhash
fib_treeref=1
fib_protocol
fib_prefsrc
fib_priority
fib_metrics
fib_nhs=1
. . .
fib_nh

*nh_hash
*nh_parent

...

struct fib_info

fib_hash
fib_lhash
fib_treeref=1
fib_protocol
fib_prefsrc
fib_priority
fib_metrics
fib_nhs=2
. . .
fib_nh

*nh_hash
*nh_parent

...

struct fib_info

fib_hash
fib_lhash
fib_treeref=2
fib_protocol
fib_prefsrc
fib_priority
fib_metrics
fib_nhs=1
. . .
fib_nh

*nh_hash
*nh_parent

...

struct fib_info

*nh_hash
*nh_parent

...

structs
fib_nh

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Organization of Routing Hash Tables | 901

value of fa_tos are sorted in increasing order of the associated fib_info’s fib_
protocol field.

I explained earlier in this chapter that the routing subsystem is broken into multiple
data structures to optimize their use and make the logic cleaner. Thus, the associa-
tion between fib_alias and fib_info is not one-to-one; several fib_alias structures
can share a fib_info structure. When different routes happen to share the same
parameter values of an existing fib_info structure, they simply point to the same
fib_info instance. Sharing is remembered through a reference count on the fib_info
structure.

If, for instance, five routes to five different networks happen to use the same next-
hop gateway, the information about the next hop would be the same for all of them
and therefore it will make sense to share it. In this case, therefore, there are five fib_
node structures and five fib_alias structures, but only one fib_info structure.

The sample configuration in Figure 34-1 shows a number of relationships among dif-
ferent structures making up the hash tables described in this section. In this figure:

• There are four routes (i.e., four fib_alias instances).

• These four routes lead to three different subnets (i.e., three fib_node instances)
because two fib_alias instances share a common fib_node instance.

• Two of the four routes share the same next-hop routers. Thus, the fa_info fields
of these two fib_alias structures point to the same fib_info structure on the
bottom-right side of the figure.

The data structure fields in the figure where a key appears on the right side are the
fields used by the lookup routines you will see in Chapter 35.

Dynamic resizing of per-netmask hash tables

The size of the hash table fz_hash is increased when the number of elements passes a
given threshold. A hash table can be resized repeatedly up to a given upper limit. The
section “Adding a Route” will explain exactly how the insertion of a new element
into the hash table triggers resizing.

Each of the 33 hash tables pointed to by fn_hash* is resized independently. A table is
resized when the number of entries reaches twice the size of the number of buckets,
which is a value stored in fz_divisor, as shown in Figure 34-1. This heuristic is cho-
sen mainly to limit the lookup time on the hash table. Keeping the number of ele-
ments below this threshold keeps lookups fast (assuming elements are well
distributed).

* Do not confuse fn_hash with fz_hash.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

902 | Chapter 34: Routing: Routing Tables

The maximum size of a table is derived from architecture-specific parameters related
to memory management. On an i386, the maximum size is 8 MB. Because each ele-
ment of the table consists of a pointer, which has a size of 4 bytes on a 32-bit proces-
sor, an i386 system can support a hash table with more than 2 million buckets.

When a hash table is first created by fn_new_zone, the table is given a default size of
16 buckets. (The only exception, as mentioned in the previous section, is the /0 zone
used for default routes.) The first two times the table is expanded, the size is
increased to 256 and 1,024, respectively. Subsequent increases will always double
the current size.

There is currently no shrink mechanism. So, if a zone’s hash table goes from 280 ele-
ments down to 10, the size of the table will not decrease from 256 to 16.

Organization of fib_info Structures
As shown in Figure 34-1, each fib_info structure includes two fields, fib_hash and
fib_lhash, that are used to insert the structures into two more-comprehensive hash
tables, shown in Figure 34-2. These hash tables are:

fib_info_hash
All fib_info structures are inserted into this hash table. Lookups on this table
are done with fib_find_info.

fib_info_laddrhash
fib_info structures are inserted into this table only when the associated routes
have a preferred source address. The use of the preferred source address is
described in the section “Preferred Source Address Selection” in Chapter 35.
That address is normally derived automatically from the device configuration,
but it can also be explicitly configured.

This hash table is mainly used to facilitate the removal of routes affected by the
deletion of a locally configured IP address (see fib_sync_down).

In both tables, new elements are added at the head of a bucket’s list by fib_create_
info.

Dynamic resizing of global hash tables

The total number of fib_info structures, in all routing tables, is stored in the counter
fib_info_cnt. Its value is incremented by fib_create_info when an instance is cre-
ated and decremented by free_fib_info when an instance is deleted.

When creating a new instance, fib_create_info checks whether fib_info_cnt has
reached fib_hash_size, which is the size of the hash table, as shown in Figure 34-2.
When this size is reached, both fib_info_hash and fib_info_laddrhash are doubled
in size. The old hash tables are removed with fib_hash_free, the new ones are

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Organization of Routing Hash Tables | 903

allocated with fib_hash_alloc, and all the fib_info instances are moved from the old
tables to the new ones with fib_hash_move.

Note that the resizing discussed in this section has nothing to do with the one dis-
cussed in the section “Dynamic resizing of per-netmask hash tables.”

Organization of Next-Hop Router Structures
As shown in Figure 34-1, each fib_info structure can include one or more fib_nh
structures, each one representing a next-hop router. The information for a next-hop
router includes the device through which it can be reached. Thus, it is easy to find a
device when the router is known, but the structure does not provide a quick way to
find a router when the device is known. The latter ability is important in two cases:

When a device is shut down
The networking subsystem has to disable all the routes associated with the
device. This is done by fib_sync_down, described in Chapter 32.

When a device is enabled or re-enabled
The networking subsystem has to enable or re-enable all the routes associated
with next-hop routers reachable via this device. This is done by fib_sync_up, also
described in Chapter 32.

Figure 34-2. fib_info structures’ organization

fib_hash
fib_lhash

struct fib_info

fib
_h

as
h_

siz
e

fib_info_laddrhash

fib_hash_size

fib_hash
fib_lhash

struct fib_info

fib_hash
fib_lhash

struct fib_info

fib_info_hash

fib_hash
fib_lhash

struct fib_info

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

904 | Chapter 34: Routing: Routing Tables

There is also another minor case pertaining to ICMP_REDIRECT messages. We saw in
the section “Processing Ingress ICMP_REDIRECT Messages” in Chapter 31 that it is
possible to have the kernel accept only ICMP redirects whose new suggested gate-
way is already known locally as a router. To check whether this condition is met, the
kernel simply needs to browse all the routes associated with the device the ICMP was
received from and look for a route that uses the new suggested gateway as its next-
hop router. This logic is implemented by ip_fib_check_default, which is called by
ip_rt_redirect. The latter is called by icmp_redirect, the handler for ingress ICMP
redirect messages.

The requirements just described are solved by creating another hash table indexed by
the device identifier; this makes lookups of next-hop routes extremely fast. The nh_
hash field shown in Figure 34-1 is used to insert fib_nh structures in the fib_info_
devhash hash table. That table is statically allocated in net/ipv4/fib_semantics with a
size of DEVINDEX_HASHSIZE (256) buckets. New elements are inserted at the head of
the table bucket’s lists by fib_create_info.

The Two Default Routing Tables: ip_fib_main_table
and ip_fib_local_table
Two routing tables are always created at boot time regardless of the kernel configura-
tion options:

ip_fib_local_table
The kernel installs routes to local addresses here, including the associated sub-
net’s address and the subnet’s broadcast addresses (see the section “Routes
Inserted by the Kernel: The fib_magic Function” in Chapter 36). This routing
table cannot be explicitly configured by the user.

ip_fib_main_table
All other routes go here (user-configured routes and routes generated by routing
protocols).

The section “Special Routes” in Chapter 30 explains the relationship between these
two routing tables. In Chapter 35, we will see how routing lookups use them.

Routing Table Initialization
Routing tables are initialized with fib_hash_init, defined in net/ipv4/fib_hash.c. It is
called by ip_fib_init, which initializes the IP routing subsystem, to create the ip_
fib_main_table and ip_fib_local_table tables (see the section “Routing Subsystem
Initialization” in Chapter 32).

The first time fib_hash_init is called, it creates the memory pool fn_hash_kmem that
will be used to allocate fib_node data structures.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Adding and Removing Routes | 905

fib_hash_init first allocates a fib_table data structure and then initializes its virtual
functions to the routines shown in Table 34-1. The function also clears the content
of the bottom part of the structure (fn_hash), which, as shown in Figure 34-1, is used
to distribute the routing entries on different hash tables based on their netmask
lengths.

Adding and Removing Routes
In Chapter 36, we will see how routes are added, deleted, and modified by user com-
mands and routing daemons. Both are satisfied through a single set of routines in the
kernel’s routing subsystem. In this section, we will see what the kernel has to do
when asked to add or remove a route from one of its routing tables. As shown in
Table 34-1, fn_hash_insert and fn_hash_delete are the routines used to insert and
delete routes, and we will analyze them in the sections “Adding a Route” and “Delet-
ing a Route.” fn_hash_insert has several related uses, all involving changes of routes.

Here are a few operations common to the two routines:

• Given a route to add or remove, derive the search key and use it to make a fib_
node lookup and a fib_alias lookup. These lookups are similar to the ones done
to route data packets, but are done for a different purpose: to check whether a
route being added is a duplicate of an existing route, or whether a route being
removed really exists.

• Populate (in case of insert) and clean up (in case of delete) the right hash tables.

• Flush the routing cache if necessary.

• Generate a Netlink broadcast notification to tell the interested listeners that a
route has been added to or removed from a routing table (see the section
“Netlink Notifications” in Chapter 32).

Adding a Route
The insertion of a new route is taken care of by fn_hash_insert, whose logic is
described in Figures 34-3(a) and 34-3(b).* This routine is actually called for many

Table 34-1. Initialization of the fib_table’s virtual functions

Method Routine used

tb_lookup fn_hash_lookup

tb_insert fn_hash_insert

tb_delete fn_hash_delete

tb_flush fn_hash_flush

tb_select_default fn_hash_select_default

tb_dump fn_hash_dump

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

906 | Chapter 34: Routing: Routing Tables

operations: in addition to the insertion of new routes, it handles appending,
prepending, changing, and replacing. The different cases are distinguished by the
NLM_F_XXX flags passed. The combination of flags associated to each operation is
listed in Table 36-1 in Chapter 36.

The different requirements of different operations complicate the function’s logic.
For instance, as mentioned in the section “Organization of Routing Hash Tables,”
different routes with different TOS values can lead to the same destination. When
the kernel adds a new route, it returns an error if there is already a route with the
same destination and TOS. However, the same condition is actually a requirement
when replacing a route. Therefore, based on the command type, the route lookup
done by fn_hash_insert is expected to return a different result.

As explained in the section “Dynamic resizing of per-netmask hash tables,” the inser-
tion of a new route may trigger the resizing of a zone’s hash table, which is taken
care of by fn_rehash_zone. As explained in the section “Organization of Next-Hop
Router Structures,” new fib_info structures are added to the fib_info_devhash hash
table when the associated routes specify a preferred source address. Each fib_nh
structure representing one of the route’s next hops is also added to the fib_info_
devhash hash table.

When a replace operation replaces an existing route with a new one, the kernel
flushes the routing cache so that the old route is no longer used.

Regardless of the type of operation, a Netlink notification is generated to notify all of
the interested subsystems.

Deleting a Route
The deletion of a route is taken care of by fn_hash_delete, whose logic is described in
Figure 34-4. Deleting a route is simpler than adding one; for example, there is only
one type of operation.

First fn_hash_delete computes the search key and uses it for a lookup to see whether
the entry to remove actually exists. When the victim fib_alias structure is found, the
function deletes it, notifies interested listeners with a Netlink broadcast, and flushes
the routing cache in case the route has been used (i.e., it has the FA_S_ACCESSED flag
set).

The deletion of a fib_alias instance can lead to the deletion of a fib_info instance
and a fib_node instance as well (use Figure 34-1 as a reference):

• When the associated fib_node instance is left empty because the deleted fib_
alias was its last instance, the fib_node gets deleted, too.

* The flowchart does not follow the source code flow precisely, but preserves the logic.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Adding and Removing Routes | 907

• When the associated fib_info instance is left with a null fib_treeref reference
count, it is freed because it is not needed anymore. In particular, fn_free_alias

Figure 34-3(a). fn_hash_insert function

Does fib_info
already exist

for KEY?

Create a new fib_info
instance

For each next hop of
this fib_info

Does the zone
exist already?

Compute search KEY
from address and netmask

Is preferred
source addr
provided?

Add next hop to hash table
fib_info_devhash

Is zone resizing
needed?

Resize zone
(fn_rehash_zone)

Add fib_info to hash table
fib_info_laddrhash

Increment reference
count and use it

Create new zone
(fn_new_zone)

Yes

No

No

No

Yes

Yes

Next

End

Yes

No

fib_create_info

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

908 | Chapter 34: Routing: Routing Tables

frees the matching fib_alias instance right away, and decrements the reference
count fib_treeref on the associated fib_info instance with fib_release_info.
When that reference count drops to zero, the fib_info instance is taken out of
all of the hash tables it was inserted into, is marked dead by setting its fib_dead
flag, and is freed with free_fib_info at the first invocation of fib_info_put. The

Figure 34-3(b). fn_hash_insert function

For each next hop of
this fib_info

Operation type

ERROR
duplicate route

Link new fib_info
and remove old one

Flush the routing cache if
the route had been used

TOS & priority
match?

Search fib_node
and fib_alias based on
KEY computed above

TOS/priority
type/scope

match?

Create new fib_info instance

Insert it into hash table fz_hash
(fib_insert_node)

Operation
type

Create and initialize a new
fib_alias instance

Link new fib_alias
instance to its fib_node

Send RTM_NEWROUTE
netlink broadcast

ERROR

ERROR
The route already exists

Add
Append
Prepend

Change
Replace

Yes

No

Next

End

Add

No

Not found

Append
Prepend

Change
Replace

Found

Yes

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Adding and Removing Routes | 909

next hops associated with the fib_info instance are also taken out of the hash
table, as described in the section “Organization of Next-Hop Router Structures.”

Manipulations of the fa_list and fn_alias lists are protected by the fib_hash_lock
lock (see Figure 34-1).

Figure 34-4. fn_hash_delete function

For each
fib_alias instance

Search fib_node
 and first eligible

 fib_alias

Remove fib_node, too
(fn_free_node)

Compute search KEY
from address and netmask

Match?

Has this route ever
been used?

Send RTM_NEWROUTE
Netlink broadcast

Did we remove
the last fib_alias

instance?

Remove matching fib_alias
instance (fn_free_alias)

Return 0

Yes

No

Flush the routing cache
(rt_cache_flush)

Yes

No

Yes

No

Next
Return -ESRCH

End

Not found

Found

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

910 | Chapter 34: Routing: Routing Tables

Garbage Collection
Routes should be deleted when they are invalidated by configuration changes or
changes of status for local devices. Several functions in the routing subsystem browse
the routing tables (or a portion of them). Under certain conditions, one of them, fib_
sync_down, marks the routes that are eligible for deletion with the RTNH_F_DEAD flag.
Later, a call to fib_flush browses the routing tables again and removes those routes
with the flag set. There is no periodic function that cleans up the routing tables in the
way the routing cache is cleaned up.

The fib_sync_down routine is described in the section “Helper Routines” in
Chapter 32.

Policy Routing and Its Effects on Routing Table
Definitions
When the kernel is compiled with support for Policy Routing, an administrator can
configure up to 255 independent routing tables. To support this optional feature,
while keeping the routing subsystem lean and simple when Policy Routing is not
used, the Linux developers have added some complexity to the source code that you
should understand before trying to read the files.

Variable and Structure Definitions
With Policy Routing, the pointers to the 255 routing tables are stored in the fib_
tables array, defined in net/ipv4/fib_frontend.c and shown in Figure 34-1.

struct fib_table *fib_tables[RT_TABLE_MAX+1];

Note that the two routing tables ip_fib_main_table and ip_fib_local_table are
defined as two elements of fib_tables in include/net/ip_fib.h:

#ifndef CONFIG_IP_MULTIPLE_TABLES
extern struct fib_table *ip_fib_local_table;
extern struct fib_table *ip_fib_main_table;
...
#else
#define ip_fib_local_table (fib_tables[RT_TABLE_LOCAL])
#define ip_fib_main_table (fib_tables[RT_TABLE_MAIN])
...
#endif

When the first route is added to a new routing table, the table is initialized with fib_
hash_init. When Policy Routing is not configured, this function is called only at
boot time and therefore is tagged with the _ _init macro.* But with Policy Routing, a

* Chapter 7 describes the use and meaning of the _ _init macro.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Policy Routing and Its Effects on Routing Table Definitions | 911

new routing table can be created at any time, so fib_hash_init cannot be so tagged.
This explains its conditional prototype definition:

#ifdef CONFIG_IP_MULTIPLE_TABLES
struct fib_table * fib_hash_init(int id)
#else
struct fib_table * _ _init fib_hash_init(int id)
#endif
{

...
}

Even with Policy Routing support, all configured routes are added to ip_fib_main_
table unless an ID for a different routing table is explicitly specified. The table ID
can be provided only with the new ip command, not with the traditional route
command.

Double Definitions for Functions
The Policy Routing feature is not transparently integrated into the routing code. For
example, the variables, routines, or pieces of code that are needed only when there is
Policy Routing support in the kernel are protected by the preprocessor conditional
variable CONFIG_IP_MULTIPLE_TABLES.*

There are also a few global variables and functions that have a double definition, one
to use when there is no policy routing support in the kernel and another one to use
when there is support. Two important ones, defined in net/ipv4/fib_rules.c and in
include/net/ip_fib.h, are:

fib_lookup
Used to make routing table lookups, and described in Chapter 35

fib_select_default
Used to select a default route when forwarding a packet when there is no explicit
route to its destination

Besides these two functions, there are double definitions for a few others, such as
fib_get_table (which returns the routing table given the table ID) and fib_new_table
(which creates a new routing table).

It is important to be aware of the double definitions of these routines when brows-
ing the source code, particularly with tools such as TAGS and cscope. Otherwise, you
may be looking at the wrong instance while analyzing a given code path.

* Do not mistake multiple tables with multipath; they are two totally different and independent features.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

912

Chapter 35CHAPTER 35

Routing: Lookups

In Chapter 33, we saw how lookups are triggered by both ingress and egress traffic.
The cache is always searched first, and when there is a miss, the routing tables are
consulted through the ip_route_input_slow and ip_route_output_slow functions. In
this chapter, we will analyze these functions; in particular, we will cover:

• How ingress and egress routing differ

• How a routing table is searched with fib_lookup

• How policy routing lookups differ from normal lookups

• When and how multipath routing is handled

• How the selection of a default gateway works

High-Level View of Lookup Functions
Regardless of the direction of the traffic, a routing table lookup is made with fib_
lookup. However, as mentioned in the section “Double Definitions for Functions” in
Chapter 34, there are two versions of fib_lookup, one used when the kernel has sup-
port for Policy Routing (net/ipv4/fib_rules.c) and one when that support is not
included (include/net/ip_fib.h). The selection of the right routine is made at compile
time, so when ip_route_input_slow and ip_route_output_slow call fib_lookup, they
transparently invoke the right one.

Let’s briefly see the key functions used to make a route lookup. You will find it help-
ful to refer to Figure 34-1 in Chapter 34 during this discussion.

The fib_lookup routine is a wrapper around the lookup function provided by each
routing table. The version provided when there is no policy routing simply runs the
lookup function for the local and main tables, and the other has more complicated
logic that allows it to consult the tables provided by policy routing.

As shown in Figure 35-1, the lookup function invoked from fib_lookup is fn_hash_
lookup, which is the routine to which the fib_table’s function pointer tb_lookup is

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Helper Routines | 913

initialized (see the section “Routing Table Initialization” in Chapter 34). This func-
tion identifies the fib_node instance whose key matches the destination address.
Then fn_hash_lookup asks fib_semantic_match to do a lookup on the fib_alias
instances associated with the matching fib_node. If one is identified, fib_semantic_
match may also need to select the right next hop when Multipath is configured.

All the functions introduced here are described in detail in later sections. In particu-
lar, they cover:

• How ingress and egress lookups use fib_lookup (the sections “Input Routing”
and “Output Routing”)

• How fn_hash_lookup is implemented (the section “The Table Lookup: fn_hash_
lookup”)

• The fib_semantic_match function (the section “Semantic Matching on Subsid-
iary Criteria”)

• How the version of fib_lookup that supports Policy Routing differs from the
basic function (the section “fib_lookup Function”)

Helper Routines
Here are a few routines used by some of the functions we will cover in this chapter:

fib_validate_source
Validates the source IP address of a packet received on a given device, to detect
spoofing attempts. Among other things, this function makes sure that unless
asymmetric routing is enabled, the source IP address of the packet is reachable
through the same interface the packet was received from (see the section
“Reverse Path Filtering” in Chapter 31). It also returns the preferred source
address spec_dst to use for the reverse direction, as described in the upcoming
section “Preferred Source Address Selection,” and initializes the routing tag, as
described in the section “Routing Table Based Classifier” in Chapter 31.

inet_select_addr
Given a device dev, an IP address dst, and a scope scope, returns the first pri-
mary address with scope scope, to use in sending a packet to the address dst out
of device dev.

Figure 35-1. Relationships among the main lookup routines

fib_lookup (select routing tables)

fn_hash_lookup (fib_node lookup)

fib_semantic_match (fib_alias lookup)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

914 | Chapter 35: Routing: Lookups

This routine is needed because a device can be configured with multiple
addresses, and each can have its own scope.

The reason for the dst argument is that if dev is configured with different IP
addresses on different subnets, dst allows this function to return an IP address
configured on the same subnet as dst.

In the section “Scope” in Chapter 30, we saw that there are primary and second-
ary addresses; inet_select_addr returns only primary addresses.

If no address configured on dev meets the conditions specified by scope and dst,
the function tries the rest of the devices, checking if any have an address config-
ured with the required scope. Because the loopback_dev device is the first one
inserted into the dev_base list, it will be the first one to be tried.

rt_set_nexthop
Given a routing cache entry rtable and a routing table lookup result res, com-
pletes the initialization of rtable’s fields, such as rt_gateway and the metrics vec-
tor of the embedded dst_entry structure. This function also initializes the
routing tag described in the section “Routing Table Based Classifier” in
Chapter 31.

The Table Lookup: fn_hash_lookup
All routing table lookups, regardless of the tables provided by Policy Routing and the
direction of the traffic, are done with fn_hash_lookup. This function is registered as
the handler for the tb_lookup function pointer of the fib_table structure in fib_hash_
init (see the section “Routing Table Initialization” in Chapter 34).

The function’s lookup algorithm uses the LPM algorithm introduced in Chapter 30.
The execution of this algorithm is facilitated by the organization of routes into per-
netmask hash tables, as shown in Figure 34-1 in Chapter 34. fn_hash_lookup searches
for the fib_node instance that has the information to route packets to a particular
destination.

The prototype for fn_hash_lookup is:

static int
fn_hash_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)

Here is the meaning of its input parameters:

tb
The routing table to search. Because fn_hash_lookup is a generic lookup routine
that runs on one table at a time, the tables to search are decided by the caller,
depending on Policy Routing support and related factors.

flp
Search key.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Table Lookup: fn_hash_lookup | 915

res
Upon success, res is initialized with the routing information.

And these are the possible return values:

0: success
res has been initialized (by fib_semantic_match) with the forwarding information.

1: failure
No route matched the search key.

Less than 0: Administrative failure
This means the lookup cannot succeed because the route found is of no value:
for instance, the associated host may be flagged as unreachable.

The LPM algorithm loops over the routes, starting with the zone that represents the
longest netmask. This is because longer netmasks mean more specific routes, which
in turn means that the packet is likely to get closer to the final destination. (For
instance, a /27 netmask that can cover only 30 hosts is preferred over a /24 netmask
that potentially covers 254.) Thus, the search browses all the active zones, starting
from the ones with the longest netmasks. As we saw in the section “Organization of
Routing Hash Tables” in Chapter 34, all the active zones are sorted by netmask
length and fn_zone_list stores the head of the list.

 struct fn_hash *t = (struct fn_hash*)tb->tb_data;
 read_lock(&fib_hash_lock);
 for (fz = t->fn_zone_list; fz; fz = fz->fz_next) {
 struct hlist_head *head;
 struct hlist_node *node;
 struct fib_node *f;

The function ANDs the destination IP address with the netmask of the active zone
being checked, and uses the result as a search key. For example, if the function is
currently checking the /24 zone, and the destination address flp->fl4_dst is 10.0.1.
2, the search key k is initialized to 10.0.1.2 & 255.255.255.0, which comes out to 10.
0.1.0. This means that the following piece of code searches for a route to the subnet
10.0.1.0/24:

 u32 k = fz_key(flp->fl4_dst, fz);

Because routes are stored in a hash table (fz_hash), head selects the right bucket of
the table by applying a hash function to the key k. The next step is to browse the list
of routes (fib_node structures) associated with the selected table’s bucket and look
for one that matches k.

 head = &fz->fz_hash[fn_hash(k, fz)];
 hlish_for_each_entry(f, node, head, fn_hash) {
 if (f->fn_key != k)) {
 continue;

 err = fib_semantic_match(&f->fn_alias,
 flp, res,

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

916 | Chapter 35: Routing: Lookups

 f->fn_key, fz->fz_mask,
 fz->fz_order);

 if (err < 0)
 goto out;
 }
 }
 err = 1;
out:
 read_unlock(&fib_hash_lock);
 return err;
}

We saw in the section “Organization of Routing Hash Tables” in Chapter 34 that a
fib_node covers all the routes that lead to the same subnet but that could differ on
other fields such as TOS. Now, if fn_hash_lookup manages to find a fib_node that
matches the search key k, the function still needs to check each potential route to
find one that also matches the other search key fields received in input through the
flp parameter. This detailed check is taken care of by fib_semantic_match, described
in the next section.

If fib_semantic_match returns success, it also initializes the input parameter res that
stores the result of the lookup, and fn_hash_lookup returns this result to its caller. fn_
hash_lookup loops through all the zones until fib_semantic_match either returns a
successful result or discovers that the table’s routes are unusable (i.e., they do not
match).

Semantic Matching on Subsidiary Criteria
fib_semantic_match is called to find whether any routes (fib_alias structures) among
the ones associated with a given fib_node match all the required search key fields.
We saw in the previous section that the main field, the final destination IP address to
which the packet must be routed, was matched by fn_hash_lookup before invoking
this function. So it falls to fib_semantic_match to check the other criteria.

Once fib_semantic_match has identified the right instance of fib_alias, it simply
needs to extract the routing information from the associated fib_node. The only
additional task required is the selection of the next hop. This last task is needed only
when the matching route uses Multipath, and it can be handled in two ways:

• By fib_semantic_match, when the search key provides an egress device.

• By fib_select_multipath, when the search key does not provide an egress device.
fib_select_multipath is called by the ip_route_input_slow or ip_route_output_
slow routine.

The logic of fib_semantic_match is shown in Figure 35-2.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Table Lookup: fn_hash_lookup | 917

Figure 35-2. fib_semantic_match function

Route-type
(fib_alias -> fa_type)

Is scope greater
than or equal to

KEY-scope?

Return <0
(NEGATIVE SUCCESS)

Is TOS configured?
Does KEY-TOS

match configured
TOS?

For each alias

Return 1
(NO ROUTE)

Is KEY-OUT-DEV
specified?

Is next-hop dead?
(RTNH_F_DEAD)

For each next-hop

Initialize RESULT

Return 0
(SUCCESS)

Does KEY-OUT-DEV
match?

Is fib_info dead?
(RTNH_F_DEAD)

End

Next

Yes

Yes

No

No

No

Yes BLACKHOLE
UNREACHABLE
PROHIBIT
THROW

UNICAST
LOCAL
BROADCAST
ANYCAST
MULTICAST

Yes

No

Next

End

Yes

Yes

No
No

No Yes

KEY-X: X field of the
lookup key 1 2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

918 | Chapter 35: Routing: Lookups

Criteria for rejecting routes

While browsing fib_alias structures, fib_semantic_match rejects the ones that:

• Do not match the TOS. Note that when routes are not configured with a TOS
value, they can be used to route packets with any TOS.

• Have a narrower scope than the one specified with the search key. For example,
if the routing subsystem is looking for a route with scope RT_SCOPE_UNIVERSE, it
cannot use one with scope RT_SCOPE_LINK.

Furthermore, the function must check whether a route or the desired next hop has
gone away, in which case the routing subsystem has marked it for deletion by setting
its RTNH_F_DEAD flag. The section “Helper Routines” in Chapter 32 shows how the
RTNH_F_DEAD flag can be set for an entire route or for a single next hop of a route.

Once an eligible fib_alias instance has been identified, and supposing the associ-
ated fib_info structure is usable (i.e., not marked RTNH_F_DEAD), fib_semantic_match
needs to browse all the next hops’ fib_nh instances to find one that also matches the
search key’s device, if a device was specified. It is possible that none of the next hops
can actually be used. This could happen for one of two main reasons:

• All the next hops are unusable (that is, they have their RTNH_F_DEAD flags set).

• The search key specifies an egress device that does not match any of the next
hop configurations.

When there is no support for Multipath, there can be only one next hop.

While browsing fib_alias instances, fib_semantic_match sets the FA_S_ACCESSED flag
on those that meet the scope and TOS requirements mentioned earlier in this sec-
tion. The flag is set regardless of whether the fib_alias is selected. If and when the
fib_alias instance is removed, this flag will be taken into account to decide whether
the cache should be flushed.

Return value from fib_semantic_match

As stated earlier, the return value from fib_semantic_match can take one of three
meanings:

• 1 means there is no matching route.

• 0 means success. In this case, the result of the lookup is stored in the input
parameter res. The result includes a pointer to the matching fib_info instance.

• A negative value represents an administrative failure.

Both 0 and the negative return values are determined from the type (fa->fa_type) of
the matching route (fa) found by fib_semantic_match. Examples of the type value are
RTN_UNICAST and RTN_LOCAL. From this type, fib_semantic_match can decide whether
the lookup should succeed or fail, and can pass back an error code that allows the
kernel to take the proper action in case of failure.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

fib_lookup Function | 919

For example, a route of type RTN_UNREACHABLE causes fib_semantic_match to return
the error –EHOSTUNREACH, which then leads the kernel to generate an ICMP unreach-
able message. A route of type RTN_THROW causes fib_semantic_match to return the
error –EAGAIN, which instructs the Policy Routing version of fib_lookup in net/ipv4/
fib_rules.c to retry the lookup with the next routing table.

Because the fa->fa_type type field drives the value returned, the error codes are
embodied in a fib_props array, defined and initialized in the file net/ipv4/fib_
semantics.c (see the section “rtable Structure” in Chapter 36). The array contains an
element for each possible route type that specifies the associated error code and an
RT_SCOPE_XXX scope. Deriving the error code and scope is as simple as referencing the
element of fib_props corresponding to the index fa->fa_type.

Table 35-1 shows how fib_props is initialized.

Note that the first few elements have a value of 0 for error: in these cases, fib_
semantic_match returns success. The others have an error code used by the routing
code to handle the routing failure correctly.

fib_lookup Function
As mentioned in the section “Special Routes” in Chapter 30, the kernel uses two
routing tables by default when there is no support for Policy Routing. A routing table
lookup simply consists of two table lookups (two calls to fn_hash_lookup), so the fib
lookup function defined in include/net/ip_fib.h is quite brief:

static inline int fib_lookup(const struct flowi *flp, struct fib_result *res)
{

Table 35-1. Initialization of fib_props

Route type Error Scope

RTN_UNSPEC 0 RT_SCOPE_NOWHERE

RTN_UNICAST 0 RT_SCOPE_UNIVERSE

RTN_LOCAL 0 RT_SCOPE_HOST

RTN_BROADCAST 0 RT_SCOPE_LINK

RTN_ANYCAST 0 RT_SCOPE_LINK

RTN_MULTICAST 0 RT_SCOPE_UNIVERSE

RTN_BLACKHOLE -EINVAL RT_SCOPE_UNIVERSE

RTN_UNREACHABLE -EHOSTUNREACH RT_SCOPE_UNIVERSE

RTN_PROHIBIT -EACCES RT_SCOPE_UNIVERSE

RTN_THROW -EAGAIN RT_SCOPE_UNIVERSE

RTN_NAT -EAGAIN RT_SCOPE_NOWHERE

RTN_XRESOLVE -EINVAL RT_SCOPE_NOWHERE

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

920 | Chapter 35: Routing: Lookups

 if (ip_fib_local_table->tb_lookup(ip_fib_local_table, flp, res) &&
 ip_fib_main_table->tb_lookup(ip_fib_main_table, flp, res))
 return —ENETUNREACH;
 return 0;
}

The search key is flp. The function first checks the ip_fib_local_table routing table,
and if that fails, it checks the ip_fib_main_table routing table. If neither table
manages to find a match, fib_loopkup returns —ENETUNREACH (unreachable destination
network).

Setting Functions for Reception and Transmission
Both received packets and locally generated packets need to be routed: in the case of
received packets, to find out whether they should be locally delivered or forwarded,
and in the case of locally generated packets, to find out whether they should be deliv-
ered locally or transmitted out.

In both cases, given a packet to route skb, the result of the routing lookup is saved in
skb->dst. This is a data structure of type dst_entry, described in detail in the section
“dst_entry Structure” in Chapter 36. This data structure includes several fields; two
of them are function pointers named input and output that process the packet in
accordance with the result of the routing lookup. The next section goes into detail on
the initializations of these function pointers.

Then the sections “Input Routing” and “Output Routing” describe in detail the rou-
tines ip_route_input_slow and ip_route_output_slow, used respectively to find routes
for ingress and egress packets when the cache lookup fails. These two functions can
be a bit scary because of their size and the extent to which they apply macros, condi-
tional code (such as #ifdef), and special feature handling (e.g., Multipath), but they
actually are simpler than they look. In addition, programmers who do not like the
use of goto statements in the source code may be disappointed by their heavy use. I
have included a flowchart for each function, which you might want to look at for
high-level descriptions before reading about the functions.

In the rest of this section, we will see how the virtual function each calls (dst->input
and dst->output) are initialized, and learn more about when they are invoked. The
functions to which they are set depend on a few factors, including:

• Whether the packet is being transmitted, received, or forwarded

• Whether the address is unicast or multicast

• Whether an error is detected during the routing lookup

Tables 35-2 and 35-3 list the routines to which dst->input and dst->output can be
initialized.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Setting Functions for Reception and Transmission | 921

Not all combinations of the functions in Tables 35-2 and 35-3 are possible;
Figure 35-3 summarizes the meaningful ones. These combinations do not include the
dst_discard_xxx routines because they are found only in special cases independent
from routing lookups (see the section “Special Cases”).

Figure 35-3 shows how dst->input and dst->output are initialized for ingress and
egress traffic. Let’s see one case at a time.

Table 35-2. Routines used for dst->input

Function Description

ip_local_deliver Deliver the packet locally. See Chapter 20.

ip_forward Forward a unicast packet. See Chapter 20.

ip_mr_input Forward a multicast packet.

ip_error Handle an unreachable destination. See the section “Routing Failure.”

dst_discard_in Simply drop any input packet.

Table 35-3. Routines used for dst->output

Function Description

ip_output Wrapper around ip_finish_ouput. See Chapter 21.

ip_mc_output Handle egress packet with multicast destination address.

ip_rt_bug Print a warning message, because it is not supposed to be called.

dst_discard_out Simply drop any input packet.

Figure 35-3. dst->input and dst->output initialization

ip_route_input_slow

.

dst_input

ip_rcv_finish

Input Traffic

dst -> input= ip_forward
dst -> output= ip_output

dst -> input= ip_local_driver
dst -> output= ip_rt_bug

dst -> input= ip_error
dst -> output= ip_rt_bug

1

ip_route_output_slow

.

dst_output

ip_queue_xmit

Output Trafic

dst -> input= <not initialized>
dst -> output= ip_output

dst -> input= ip_local_driver
dst -> output= ip_output

dst -> input=<not initialized>
dst -> output= ip_mc_output

1

2

2

dst -> input=ip_mr_input
dst -> output= ip_mc_output

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

922 | Chapter 35: Routing: Lookups

Initialization of Function Pointers for Ingress Traffic
We saw in Chapter 19 that ingress IP traffic is processed by ip_rcv_finish. This
function consults the routing table to decide whether the packet is to be delivered
locally or dropped. This decision is taken by ip_route_input, which first checks the
cache and then the routing tables (ip_route_input_slow) in case of a cache miss. ip_
route_input_slow can create three main combinations of dst->input and dst->ouput:

• If the packet is to be forwarded, the function initializes dst->input to ip_forward
and dst->output to ip_output. dst_input will therefore call ip_forward, which
indirectly ends up calling dst_output and therefore ip_output. This is case (1) in
Figure 35-3.

• If the packet is to be delivered locally, the function initializes dst->input to ip_
local_deliver. There is no need to initialize dst->output, but it’s initialized any-
way to ip_rt_error, which is a routine that prints an error message when called.
This can help detect bugs where dst->output is wrongly called when dealing
with packets being delivered locally.

• If the destination address is not reachable according to the routing table, dst->
input is initialized to ip_error, which generates an ICMP message whose type
depends on the exact result returned by the routing lookup. Since ip_error frees
the skb buffer, there is no need to initialize dst->output because it would not be
called even by mistake.

Initialization of Function Pointers for Egress Traffic
We saw in Chapter 21 that there are several different transmission routines on the IP
layer. Figure 35-3 uses ip_queue_xmit as an example, but regardless of the routine
invoked, it ultimately results in a routing lookup with _ _ip_route_output_key, which
in case of a cache miss relies on ip_route_output_slow. The latter function can create
four main combinations of dst->input and dst->output:

• If the destination is a remote host, the function initializes dst->output to ip_
output. Here there is no need to initialize dst->input. However, it would have
made sense to use a fake initialization to something like ip_rt_error to catch
bugs, as we saw in the section “Initialization of Function Pointers for Ingress
Traffic.”

• If the destination is the local system, the function initializes dst->output to ip_
output and dst->input to ip_local_deliver. This is an interesting combination
that goes in something of a circle. When dst_output calls ip_output, the latter
transmits the packet out the loopback device, leading to the execution of ip_rcv
and ip_rcv_finish. ip_rcv_finish sees that the ingress buffer already has rout-
ing information in skb->dst, and therefore calls dst_input, which in turn invokes
ip_local_deliver. This is case (2) in Figure 35-3.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Structure of the Input and Output Routing Routines | 923

• If the destination address is a locally configured multicast IP address, the func-
tion initializes dst->output to ip_mc_output. Multicast code then takes care of the
packet. dst->input is not initialized.

• The same multicast case is handled slightly differently when the kernel is com-
piled with support for multicast routing. In this case, dst->output is still initial-
ized to ip_mc_output, but dst->input is initialized as well, to the routine ip_mr_
input.

Special Cases
When a cached route dst is not supposed to be used, dst->output is initialized to
dst_discard_out and dst->input is initialized to dst_discard_in. Both routines sim-
ply drop any packet they are passed. One example of their use is when a cached
route is to be removed but cannot be destroyed because there are still references left
to it (see the section “Deleting DST Entries” in Chapter 33).

These two routines are also used when a new entry is allocated and is not ready to be
used because it is not fully initialized yet (see dst_alloc).

General Structure of the Input and Output Routing
Routines
We saw in the section “Cache Lookup” in Chapter 33 that ingress and egress rout-
ing lookups that cannot be satisfied by the cache are taken care of by ip_route_
input_slow and ip_route_output_slow, respectively.

Both routines are pretty long. To make them more readable, part of their code has
been moved to two inline* functions, called ip_mkroute_input and ip_mkroute_output,
respectively. Both routines differentiate between the case where the kernel supports
multipath caching and the case where it does not. In the latter case, they become an
alias to the two routines ip_mkroute_input_def and ip_mkroute_output_def, respec-
tively. Regardless of whether multipath caching is supported, the routing cache entry
is allocated and initialized with _ _mkroute_input and _ _mkroute_output. Regardless
of whether it is ip_route_input_slow or ip_route_output_slow that triggers the inser-
tion of a new entry into the cache, that operation is performed by rt_intern_hash.

Figure 35-4 summarizes the material in this section and shows how symmetrical the
skeletons of the two slow routines are.

* Note that since they are inline routines, they can use goto statements that refer to labels defined in the slow
routines they are part of.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

924 | Chapter 35: Routing: Lookups

The differences with regard to Multipath, like the call to fib_select_multipath in ip_
mkroute_input_def that is missing in ip_mkroute_output_def, will be explained in the
section “Multipath Caching.”

Input Routing
Ingress IP packets for which no route can be found in the cache by ip_route_input
are checked against the routing tables by ip_route_input_slow, which is defined in
net/ipv4/route.c and whose logic is shown in Figures 35-5(a) and 35-5(b). In this sec-
tion, we describe the internals of this routine in detail.

Figure 35-4. Skeleton of ip_route_input_slow and ip_route_output_slow

. . .

ip_route_input_slow

Multipath caching
supported

Multipath caching
NOT supported

fib_lookup

ip_mkroute_input

fib_select_multipath

ip_mkroute_input_def

__mkroute_input

rt_intern_hash

rt_set_nexthop

For each next hop

__mkroute_input

multipath_set_nhinfo

rt_set_nexthop

rt_intern_hash

. . .

ip_route_output_slow

Multipath caching
supported

Multipath caching
NOT supported

fib_lookup

ip_mkroute_output

ip_mkroute_output_def

__mkroute_output

rt_intern_hash

rt_set_nexthop

For each next hop

__mkroute_output

multipath_set_nhinfo

rt_set_nexthop

rt_intern_hash

fib_select_multipath

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Input Routing | 925

Figure 35-5(a). ip_route_input_slow function

Route type

LOOKUP
(fib_lookup)

Update statistics
(in_slow_tot)

Is destination
address a

broadcast?

Sanity check on
the source and dest

IP address

2

Local

Remote

Success

No

OK

Source address
sanity check

(fib_validate_source)

ip_mkroute_input

Is forwarding
enabled on the INgress

device?

Update statistics
(in_martian_src/in_martian_dst)

Return -EINVAL

Is forwarding
enabled on the
INgress device?

Update statistics
(in_no_route)

1

Return -EINVAL

Return -EINVAL

Return -EINVAL

Update statistics
(in_martian_src)

Broadcast

Yes

No

Passed

No

YesFailure

Yes

Failed

Failed

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

926 | Chapter 35: Routing: Lookups

The function starts with a few sanity checks on the source and destination addresses;
for instance, the source IP address must not be a multicast address. I already listed
most of those checks in the section “Verbose Monitoring” in Chapter 31. More san-
ity checks are done later in the function.

Figure 35-5(b). ip_route_input_slow function

Allocate a new
cache entry
(dst_alloc)

Initialize new routing
cache entry

Initialize search key
(flowi structure)

Add entry to routing
cache (rt_intern_hash)

1 Routing failure

2 Forwarding

3 Local deliverySource address
sanity check

(fib_validate_source)

Update statistics
(in_brd)

Source address
0.X.X.X?

Is L3 proto IP?

Return
-ENOBUFF

Return
-EINVAL

3

local_input:

OK

Failed

Failed

OK

No

No

Yes

Yes

brd_input:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Input Routing | 927

The routing table lookup is done with fib_lookup, the routine introduced in the sec-
tion “fib_lookup Function.” If fib_lookup cannot find a matching route, the packet is
dropped; additionally, if the receiving interface is configured with forwarding
enabled, an ICMP_UNREACHABLE message is sent back to the source. Note that the
ICMP message is sent not by ip_route_input_slow but by its caller, who takes care of
it upon seeing a return value of RTN_UNREACHABLE.

In case of success, ip_route_input_slow distinguishes the following three cases:

• Packet addressed to a broadcast address

• Packet addressed to a local address

• Packet addressed to a remote address

In the first two cases, the packet is to be delivered locally, and in the third, it needs to
be forwarded. The details of how local delivery and forwarding are handled can be
found in the sections “Local Delivery” and “Forwarding.” Here are some of the tasks
they both need to take care of:

Sanity checks, especially on the source address
Source addresses are checked against illegal values and are run through fib_
validate_source to detect spoofing attempts.

Creation and initialization of a new cache entry (the local variable rth)
See the following section, “Creation of a Cache Entry.”

Creation of a Cache Entry
I said already in the section “Cache Lookup” in Chapter 33 that ip_route_input (and
therefore ip_route_input_slow, in case of a cache miss) can be called just to consult
the routing table, not necessarily to route an ingress packet. Because of that, ip_
route_input_slow does not always create a new cache entry. When invoked from IP
or an L4 protocol (such as IP over IP), the function always creates a cache entry. Cur-
rently, the only other possibility is invocation by ARP. Routes generated by ARP are
cached only when they would be valid for proxy ARP. See the section “Processing
ARPOP_REQUEST Packets” in Chapter 28.

The new entry is allocated with dst_alloc. Of particular importance are the follow-
ing initializations for the new cache entry:

rth->u.dst.input
rth->u.dst.output

These two virtual functions are invoked respectively by dst_input and dst_
output to complete the processing of ingress and egress packets, as shown in
Figure 18-1 in Chapter 18. We already saw in the section “Setting Functions for
Reception and Transmission” how these two routines can be initialized depend-
ing on whether a packet is to be forwarded, delivered locally, or dropped.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

928 | Chapter 35: Routing: Lookups

rth->fl
This flowi structure is used as a search key by cache lookups. It is important to
note that rth->fl’s fields are initialized to the input parameters received by ip_
route_input_slow: this ensures that the next time a lookup is done with the same
parameters, ip_route_input will be able to satisfy it with a cache lookup.

rth->rt_spec_dst
This is the preferred source address. See the following section, “Preferred Source
Address Selection.”

Preferred Source Address Selection
The route added to the routing cache is unidirectional, meaning that it will not be
used to route traffic in the reverse direction toward the source IP address of the
packet being routed. However, in some cases, the reception of a packet can trigger an
action that requires the local host to choose a source IP address that it can use when
transmitting a packet back to the sender.* This address, the preferred source IP
address,† must be saved with the routing cache entry that routed the ingress packet.
Here are two cases where that address, which is saved in a field called rt_spec_dst,
comes in handy:

ICMP
When a host receives an ICMP ECHO REQUEST message (popularly known as
“pings” from the name of the command that usually generates them), the host
returns an ICMP ECHO REPLY unless it is explicitly configured not to. The rt_
spec_dst of the route used for the ingress ICMP ECHO REQUEST is used as the
source address for the routing lookup made to route the ICMP ECHO REPLY.
See icmp_reply in net/ipv4/icmp.c, and see Chapter 25. The ip_send_reply rou-
tine in net/ipv4/ip_output.c does something similar.

IP options
A couple of IP options require the intermediate hosts between the source and the
destination to write the IP addresses of their receiving interfaces into the IP
header. The address that Linux writes is rt_spec_dst. See the description of ip_
options_compile in Chapter 19.

The preferred source is selected through the fib_validate_source function men-
tioned in the section “Helper Routines” and called by ip_route_input_slow.

ip_route_input_slow initializes the preferred source IP address rt_spec_dst based on
the destination address of the packet being routed:

* The preferred source IP address to use for traffic generated locally (i.e., packets whose transmission is not
triggered or influenced by the reception of another packet) may be different. See the section “Selecting the
Source IP Address.”

† RFC 1122 calls it the “specific destination.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Input Routing | 929

Packet addressed to a local address
In this case, the local address to which the packet was addressed becomes the
preferred source address. (The ICMP example previously cited falls into this
case.)

Broadcast packet
A broadcast address cannot be used as a source address for egress packets, so in
this case, ip_route_input_slow does more investigation with the help of two
other routines: inet_select_addr and fib_validate_source (see the section
“Helper Routines”).

When the source IP address is not set in the received packet (that is, when it is
all zeroes), inet_select_addr selects the first address with scope RT_SCOPE_LINK
on the device the packet was received from. This is because packets are sent with
a null source address when addressed to the limited broadcast address, which is
an address with scope RT_SCOPE_LINK. An example is a DHCP discovery message.

When the source address is not all zeroes, fib_validate_source take cares of it.

Forwarded packet
In this case, the choice is left to fib_validate_source. (The IP options example
previously cited falls into this case.)

The preferred source IP to use for packets matching a given route can be explicitly
configured by the user with a command like this:

ip route add 10.0.1.0/24 via 10.0.0.1 src 10.0.3.100

In this example, when transmitting packets to the hosts of the 10.0.1.0/24 subnet,
the kernel will use 10.0.3.100 as the source IP address. Of course, only locally config-
ured addresses are accepted: this means that for the previous command to be
accepted, 10.0.3.100 must have been configured on one of the local interfaces, but
not necessarily on the same device used to reach the 10.0.1.0/24 subnet. (Remember
that in Linux, addresses belong to the host, not to the devices; see the section
“Responding from Multiple Interfaces” in Chapter 28.) An administrator normally
provides a source address when she does not want to use the one that would be
picked by default from the egress device.

Figure 35-6 summarizes how rt_spec_dst is selected.

Local Delivery
The following types of packets are delivered locally by initializing dst->input appro-
priately, as we saw in the section “Initialization of Function Pointers for Ingress Traf-
fic”:

• Packets addressed to locally configured addresses, including multicast addresses

• Packets addressed to broadcast addresses

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

930 | Chapter 35: Routing: Lookups

ip_route_input_slow recognizes two kinds of broadcasts:

Limited broadcasts
This is an address consisting of all ones: 255.255.255.255.* It can be recognized
easily without a call to fib_lookup. Limited broadcasts are delivered to any host
on the link, regardless of the subnet the host is configured on. No table lookup is
required.

Subnet broadcasts
These broadcasts are directed at hosts configured on a specific subnet. If hosts are
configured on different subnets reachable via the same device (see Figure 30-4(c) in
Chapter 30), only the right ones will receive a subnet broadcast. Unlike a lim-
ited broadcast, subnet broadcasts cannot be recognized without involving the
routing table with fib_lookup. For example, the address 10.0.1.127 might be a
subnet broadcast in 10.0.1.0/25, but not in 10.0.1.0/24.

ip_route_input_slow accepts broadcasts only if they are generated by the IP proto-
col. You might think that this a superfluous check, given that ip_route_input_slow is
called to route IP packets. However, as I said in the section “Cache Lookup” in
Chapter 33, the input buffer to ip_route_input (and therefore to ip_route_input_
slow in case of a cache miss) does not necessarily represent a packet to be routed.

If everything goes fine, a new cache entry, rtable, is created, initialized, and inserted
into the routing cache.

Note that there is no need to handle Multipath for packets that are delivered locally.

Figure 35-6. Selection of rt_spec_dst

* There is an obsolete form of limited broadcast that consists of all zeros: 0.0.0.0.

Is the
destination

address local to
the host?

Select address with scope
RT_SCOPE_UNIVERSE

(inet_select_addr)

Use it

No

No

Yes

Yes

Is the
destination
address a

broadcast?

Is there a
user configuration?

No

Select address with scope
RT_SCOPE_LINK

(inet_select_addr)

Yes

Use it

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Input Routing | 931

Forwarding
If the packet is to be forwarded but the configuration of the ingress device has dis-
abled forwarding, the packet cannot be transmitted and must be dropped. The for-
warding status of the device is checked with IN_DEV_FORWARD. Figure 35-7 shows the
internals of ip_mkroute_input; in particular, it shows what that function looks like
when there is no support for multipath caching (i.e., when ip_mkroute_input ends up
being an alias to ip_mkroute_input_def). In the section “Multipath Caching,” you
will see how the other case differs.

If the matching route returned by fib_lookup includes more than one next hop, fib_
select_multipath is used to choose among them. When multipath caching is sup-
ported, the selection is taken care of differently. The section “Effects of Multipath on
Next Hop Selection” describes the algorithm used for the selection.

The source address is validated with fib_validate_source. Then, based on the fac-
tors we saw in the section “Transmitting ICMP_REDIRECT Messages” in
Chapter 31, the kernel may decide to send an ICMP_REDIRECT to the source. In that
case, the ICMP message is sent not by ip_route_input_slow directly, but by ip_
forward, which takes care of it upon seeing the RTCF_DOREDIRECT flag.

As we saw in the section “Creation of a Cache Entry,” the result of a routing lookup
is not always cached.

Routing Failure
When a packet cannot be routed, either because of host configuration or because no
route matches, the new route is added to the cache with dst->input initialized to ip_
error. This means that all the ingress packets matching this route will be processed
by ip_error. That function, when invoked by dst_input, will generate the proper
ICMP_UNREACHABLE message depending on why the packet cannot be routed, and will
drop the packet. Adding the erroneous route to the cache is useful because it can
speed up the error processing of further packets sent to the same incorrect address.

ICMP messages are rate limited by ip_error. We already saw in the section “Egress
ICMP REDIRECT Rate Limiting” in Chapter 33 that ICMP_REDIRECT messages are
also rate limited by the DST. The rate limiting discussed here is independent of the
other, but is enforced using the same fields of the dst_entry. This is possible because
given any route, these two forms of rate limiting are mutually exclusive: one applies
to ICMP_REDIRECT messages and the other one applies to ICMP_UNREACHABLE messages.

Here is how rate limiting is implemented by ip_error with a simple token bucket
algorithm.

The timestamp dst.rate_last is updated every time ip_error is invoked to generate
an ICMP message. dst.rate_tokens specifies how many ICMP messages—also
known as the number of tokens, or the budget—can be sent before the rate limiting

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

932 | Chapter 35: Routing: Lookups

kicks in and new ICMP_UNREACHABLE transmission requests will be ignored. The bud-
get is decremented each time an ICMP_UNREACHABLE message is sent, and is incre-
mented by ip_error itself. The budget cannot exceed the maximum number ip_rt_
error_burst, which represents, as its name suggests, the maximum number of ICMP

Figure 35-7. ip_mkroute_input function

Is an ICMP
REDIRECT needed?

Yes

Is route to
be cached?

Allocate a
new cache entry

(dst_alloc)

Initialize search key
(flowi structure)

Set next hop
(rt_set_nexthop)

Initialize new routing
cache entry

Add entry to routing
cache (rt_intern_hash)

No

OKReturn
-ENOBUFF

Return
-ENOBUFF

Update statistics
(in_martian_src)

Source address
sanity check

(fib_validate_source)

Does the route
have more than
one nexthop?

Is the output
device specified?

Select next hop
(fib_select_multipath)

No

Yes

Yes

Yes

Set
RTCF_DOREDIRECT

No

Failed

No

CONFIG_IP_ROUTE_MULTIPATH

_ _mkroute_input

Failed

Passed

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Output Routing | 933

messages a host can send in 1 second (i.e., the burst). Its value is expressed in Hz so
that it is easy to add tokens based on the difference between the local time jiffies
and dst.rate_last.

When ip_error is invoked and at least one token is available, the function is allowed
to transmit an ICMP_UNREACHABLE message. The ICMP subtype is derived from dst.
error, which was initialized by ip_route_input_slow when fib_lookup failed to find a
route.

Output Routing
Packets generated locally are routed with ip_route_output_slow if _ _ip_route_
output_key, the routine we introduced in the section “Initialization of Function
Pointers for Egress Traffic,” encounters a cache miss. The structure of ip_route_
output_slow somewhat resembles ip_route_input_slow. A high-level overview of the
function is shown in Figures 35-8(a) and 35-8(b).

Figure 35-8.(a). ip_route_output_slow function

Yes

KEY: is dest IP
specified?

Set Dest IP=Source IP

fl.oif=loopback
res.type=RTN_LOCAL
flags|=RTCF_LOCAL

Return -EINVAL

Yes
Source IP= 127.0.0.1

Dest ip= 127.0.0.1

Sanity check on
OUT device

KEY: is source
IP specified?

Sanity check on
the KEY source

IP
Return -EINVAL

KEY: is OUT
dev specified?

KEY: is dest
IP multicast OR limited

broadcast?

Select OUT dev as DEV
associated with source IP

KEY: is source IP
specified?

Select source IP with scope
LINK from OUT device

(inet_select_addr)

(a)

KEY: is OUT
device specified?

KEY: is dest
IP a local multicast OR

limited broadcast?

KEY: is source IP
specified?

KEY: is dest
IP multicast ?

KEY: is dest
IP specified ?

Select KEY source IP using
the input scope

(inet_select_addr)

Select source IP with scope
HOST

(inet_select_addr)

KEY: is source
IP specified?

No

Yes

No

Failed

Passed

No Yes

Yes

No

Yes

No

No

No

No

Yes

Yes

No

No

No

Yes Yes

Yes Failed

Passed

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

934 | Chapter 35: Routing: Lookups

In the next few sections, we will examine in detail what ip_route_output_slow needs
to do to deliver a packet locally or transmit it out. Both local delivery and forward-
ing have to perform the following tasks, though they may do so in different ways:

• Select the egress device to use from the route that matches.

• Select the source IP address to use, based on the scope of the route being
searched.

• Create and initialize a new cache table entry and insert it into the cache.

Figure 35-8 is split into three parts by dotted lines. The top part, a, fills in the fields
of the search key that are not already initialized when it is passed to the function.

Figure 35-8(b). p_route_output_slow function

matching route
type

KEY: was OUT device
specified?

KEY: was
source IP
specified?

Select source IP with scope
LINK from OUT device

(b)

KEY: is source
IP specified?

YesFailedLOOKUP
(fib_lookup)

OUT dev=loopback
Set RTCF_LOCAL flag

KEY: Set Dest IP= Source IP

Egress device not
specified AND

more than one nexthop
available?

Return
-ENETUNREACH

Default GW
selection required?

KEY: is source IP
specified?

Create route and insert it into
the cache

(ip_mkroute_output)

Select default GW
(fib_select_default)

Select preferred source
(FIB_RES_PREFSRC)

Select next hop
(fib_select_multipath)

OK No

Type= RTN_UNICAST

No

Yes

(c)

Local
(RTN_LOCAL) Remote (unicast)

Yes

No

Yes

No

No

Yes

Yes

No

CONFIG_ROUTE_IP_MULTIPATH

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Output Routing | 935

The central part, b, makes a routing table lookup and, if needed, selects the next hop
in a multipath route or the default gateway. The bottom part, c, creates the new
cache table entry. The bottom part also initializes dst->input and dst->output based
on the result of the forwarding decisions taken earlier in the function and tracked by
the function mostly through a local flags variable.

In a few cases, a packet can be routed without the need for any routing lookup (i.e.,
no need to call fib_lookup, the central part of the figure). These are three such cases,
all depicted in Figure 35-8:

Packets addressed to a multicast or limited broadcast address, when the egress device is
not provided with the search key

This case is a hack that gets around a problem with assumptions made by multi-
media tools such as vic and vat. A comment in the function’s code explains the
problem. See the section “Special Cases” in Chapter 26.

Packets addressed to a local multicast address (i.e., 224.0.0.X) or the limited broadcast
address (i.e., 255.255.255.255) going out on a given device

Because the egress device is provided by the caller along with the search key, and
because local multicasts and limited broadcasts are addresses with scope RT_
SCOPE_LINK, the next hop is represented by the destination address itself. There-
fore, the routing subsystem already has all the information needed to route the
packet and does not need to do a lookup.* See the section “Essential Elements of
Routing” in Chapter 30 for a discussion of multicast addresses.

Packets addressed to the unknown address (0.0.0.0†).
Those packets are delivered locally. They are not sent out.

Search Key Initialization
This is how ip_route_input_slow initializes the search key that it passes to fib_lookup
for the routing table lookup. The same key will be saved along with the new cached
route for subsequent lookups using the cache.

 u32 tos = RT_FL_TOS(oldflp);
 struct flowi fl = { .nl_u = { .ip4_u =
 { .daddr = oldflp->fl4_dst,
 .saddr = oldflp->fl4_src,
 .tos = tos & IPTOS_RT_MASK,
 .scope = ((tos & RTO_ONLINK) ?
 RT_SCOPE_LINK :
 RT_SCOPE_UNIVERSE),
#ifdef CONFIG_IP_ROUTE_FWMARK
 .fwmark = oldflp->fl4_fwmark

* Note that the L3-to-L2 address mapping is also automatic, as explained in the section “Special Cases” in
Chapter 26.

† 0.0.0.0 is also an obsolete form of a limited broadcast address, but Linux does not honor that form.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

936 | Chapter 35: Routing: Lookups

#endif
 } },
 .iif = loopback_dev.ifindex,
 .oif = oldflp->oif };

The source and destination IP addresses and the firewall mark are just copied from
the function’s input. The setting of the TOS and scope, however, needs a little expla-
nation:

TOS
The two least significant bits of the fl4_tos field can be used by the caller to
store flags that ip_route_output_slow can take into account to determine the
scope of the route to search. This is possible because the TOS field itself does
not need the whole octet. See the section “Egress lookup” in Chapter 33, and see
Figure 18-3 in Chapter 18.

The RF_FL_TOS macro is defined in net/ipv4/route.c as follows:
#define RF_FL_TOS(oldflp) \
((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)

Scope
When the RTO_ONLINK flag is set, the scope of the route to search is set to RT_
SCOPE_LINK; otherwise, it is initialized to RT_SCOPE_UNIVERSE. See the section
“Egress lookup” in Chapter 33 for an example involving ARP.

Because ip_route_output_slow is called only to route locally generated traffic, the
source device in the search key fl is initialized to the loopback device. As we will see,
when the destination address is also local, the egress device is also initialized to the
loopback device.

Figure 35-8(a) shows how basic fields of the search key are initialized when they are
not provided with the input key.

Selecting the Source IP Address
The source IP address used for the search key is also the source IP address put into
the IP header of the transmitted packets. In the initial part of ip_route_output_slow,
therefore, the function selects the source IP address, if present, from the search key
fl.fl4_src; later it initializes rth->rt_src to the same value.

When the search key does not provide a source IP address,* the function chooses it
by calling inet_select_addr† with input that depends on the destination address
type. In particular, ip_route_output_slow invokes inet_select_addr with the follow-
ing scopes to handle special cases:

* See the section “Preferred Source Address Selection” for examples of when the source IP address may be pro-
vided with the search key.

† I introduced this routine in the section “Helper Routines.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Output Routing | 937

• RT_SCOPE_HOST when the packet is to be delivered locally (see the section “Local
Delivery”).

• RT_SCOPE_LINK when the packet is sent to an address that is meaningful only on
the local link, such as broadcasts, limited broadcasts, and local multicasts. This
scope is also used when fib_lookup fails but a packet is transmitted anyway,
because the search key provides the egress device and the destination is there-
fore supposed to be on the link (see the section “Transmission to Other Hosts”).

When the packet to route does not fall into the two special cases just listed, ip_
route_output_slow selects the source IP address by calling FIB_RES_PREFSRC, passing
to it the result res of the search made by fib_lookup for a route. FIB_RES_PREFSRC uses
various measures to pick the preferred source IP address: it returns a preferred source
address if one is explicitly configured for that route by the user; otherwise, it gets one
by calling inet_select_addr with the scope of the matching route (res->scope).

ip_route_output_slow gives higher priority to addresses configured on the egress
device (if this device is known), by passing it as the first input parameter to inet_
select_addr. However, other devices’ addresses can be selected as well.

Figure 35-9 summarizes the logic used to select the source IP address.

Local Delivery
A packet is delivered locally when fib_lookup says the destination address is locally
configured, or when no destination address is provided (i.e., the search contains the
unknown address 0.0.0.0). In this case:

Figure 35-9. Source IP selection

Is the
destination

address local to
the host?

Select address with scope
RT_SCOPE_LINK

Yes

No

Yes

Is the
destination onlink?

No

Use it Select address with scope
RT_SCOPE_HOST

Yes

No

Select address with scope
RT_SCOPE_UNIVERSE

Is there a user
configuration?

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

938 | Chapter 35: Routing: Lookups

• The egress device is set to the loopback address. This means that this packet will
not leave the local host; the transmission of the packet will reinject it into the IP
stack.

• dst->input is initialized to ip_local_deliver, as described in the section “Local
Delivery” in Chapter 20. Thanks to this, when the packet is reinjected and ip_
rcv_finish invokes dst_input, the ip_local_deliver function will handle the
packet.

Figure 35-10 shows the effect of these two actions as the packet moves from the out-
put functions to the input functions in the kernel network code.

When neither the source nor the destination IP address is set in the search key, the
packet is delivered locally, with both source and destination addresses set to the
default loopback address 127.0.0.1 (INADDR_LOOPBACK), which has scope RT_SCOPE_
HOST.

Transmission to Other Hosts
Unlike locally delivered packets, those that are to be transmitted out require the per-
formance of two further tasks:

• When the route returned by the lookup is a multipath route, the function needs
to select the next hop. This is taken care of by fib_select_multipath.

• When the returned route is a default route, the function needs to select the
default gateway to use. This is taken care of by fib_select_default. (The default
route is indicated by a res.prefixlen field of 0; this means that the “prefix
length,” the length of the netmask associated with the address, is 0.)

Both of these tasks are discussed in the following sections.

Even when a route lookup with fib_lookup fails, it may be possible to successfully
transmit a packet. When the egress device is provided with the search key, ip_route_
output_slow assumes the destination is directly reachable on the egress device. In this
case, a source IP address with scope RT_SCOPE_LINK is also set, if one is not already
there; an address from the egress device is used, if possible.

Figure 35-10. Handling packets generated and delivered locally

ip_output

dst_output

ip_queue_xmit

ip_rev

ip_rcv_finish

dst_input

ip_local_deliver

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Output Routing | 939

Interaction Between Multipath and Default Gateway Selection
This snapshot from ip_route_output_slow shows when the two key functions fib_
select_multipath and fib_select_default are called to take care of respectively,
multipath and default gateway selection. res is the result returned by fib_lookup.

#ifdef CONFIG_IP_ROUTE_MULTIPATH
 if (res.fi->fib_nhs > 1 && fl.oif == 0)
 fib_select_multipath(&fl, &res);
 else
#endif
 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
 fib_select_default(&fl, &res);

Note that there is no need for these two routines when the search key specifies an
egress device to use (fl.oif). In this case, res already contains the final forwarding
decision. Therefore, the main tasks performed by fib_lookup, and the fib_semantic_
match function it calls (see Figure 35-1), are to select:

• The next hop, when the matching route is a multipath route. fib_semantic_match
accomplishes this by selecting the first next hop router that matches the egress
device (see the section “Semantic Matching on Subsidiary Criteria”). This is
done in conditional code that is present only when the kernel is compiled with
multipath support.

• The default route, when the matching route is a default route. fib_semantic_
match accomplishes this by selecting the first default route that matches the
egress device. fib_semantic_match does not differentiate between routes with dif-
ferent netmask lengths, which means it does not treat default routes specially, so
this case is handled transparently by fib_semantic_match.

Multipath is described in the section “Effects of Multipath on Next Hop Selection”;
default gateway selection is described in the section “Default Gateway Selection.”

The code snippet shown at the beginning of this section could be misinterpreted
when taken out of context, and could lead to two misunderstandings:

• It suggests that Multipath cannot be used for default routes, because the logic in
the snapshot shows that the execution of fib_select_multipath precludes a call
to the following fib_select_default function.

However, Multipath can actually be used on a default route. The ip command
provided by the IPROUTE2 package (which is required for configuring Multi-
path) allows you to configure the default route with multiple next hops. There-
fore, calling fib_select_multipath on this route is sufficient to complete the
routing decision.

net-tools’s route tool allows an administrator to configure several default routes,
each one with a single next hop. In this case, Multipath is not in the picture
(fib_nhs is always 1). So fib_select_default is sufficient to complete the rout-
ing decision.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

940 | Chapter 35: Routing: Lookups

• It suggests that an administrator cannot configure multiple next hops on an
egress device, because fib_select_multipath is called only when the egress
device is null.

However, it is possible to configure a multipath route with more than one next
hop using the same egress device. A routing lookup whose search key contains a
non-null egress device (fl.oif) is handled by fib_semantic_match, which simply
returns the first available next hop that matches the device. fib_select_
multipath is not involved in the selection.

Default Gateway Selection
The selection of the right default gateway is done with fib_select_default, which is
invoked by ip_route_output_slow when both of the following conditions are met:

The route returned by fib_lookup has a /0 netmask (res.prefixlen is 0)
A default route matches any destination address, but it is checked last thanks to
having a netmask of /0, the shortest possible netmask. If none of the configured
routes matches the destination address, only default routes will match. How-
ever, because all default routes would match, fib_lookup always returns the first
one it checks. This is why fib_select_default is called to make the best choice
among the available ones.

The route returned by fib_lookup is of type RTN_UNICAST
Local routes, broadcast routes, and multicast routes do not need a gateway; its
use with them could even be considered nonsensical.

As we mentioned in the section “Double Definitions for Functions” in Chapter 34,
there are two versions of fib_select_default. This is the one used when there is no
support for Policy Routing (defined in include/net/ip_fib.h*):

static inline
void fib_select_default(const struct flowi *flp, struct fib_result *res)
{
 if (FIB_RES_GW(*res) && FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
 ip_fib_main_table->tb_select_default(ip_fib_main_table, flp, res);
}

flp is the search key, and res is the lookup result returned by a previous call to fib_
lookup in ip_route_output_slow.

Note that when the conditions required to execute tb_select_default are not met,
the caller does not receive any error or warning; fib_select_default simply returns
the same fib_result instance that was provided as input.

* See the section “Default Gateway Selection with Policy Routing” for the other definition.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Effects of Multipath on Next Hop Selection | 941

tb_select_default is initialized to fn_hash_select_default, which is defined in net/
ipv4/fib_hash.c and described in the following section. Note that fib_select_default
does a lookup on the ip_fib_main_table only when res is a route whose next hop
gateway has scope RT_SCOPE_LINK; the reason for this is described in the section “Use
of the scope” in Chapter 30.

fn_hash_select_default Function
The fn_hash_select_default function receives in input a fib_result structure, res,
where the result of a previous fib_lookup invocation was stored. This structure is
used as the starting point for the search of the default route by fn_hash_select_
default.

To be selected, the default route must have the same scope as res->scope, a priority
that is less than or equal to res->fi->fib_priority, and a next hop with scope RT_
SCOPE_LINK (i.e., it must be directly connected).

The selection of the route also takes into consideration the reachability status of the
next hops. fib_detect_death is used to give higher preference to routes whose next
hops have an L3 address that is already resolved to an L2 address (i.e., NUD_REACHABLE
state). This check ensures that when the currently used default route becomes unus-
able—for example, because the next hop gateway failed—a new one is selected, if
available.

The previously selected default route is saved in the global variable fn_hash_last_
dflt.

The entire routine runs with the fib_hash_lock held.

Effects of Multipath on Next Hop Selection
In both ip_route_input_slow and ip_route_output_slow, fib_select_multipath is
called only when:

• Multipath support is included in the kernel (CONFIG_IP_ROUTE_MULTIPATH).

• The routing lookup with fib_lookup returns a route with more than one next
hop (fib_nhs> 1).

• The egress interface was not provided with the search key.

• The destination address is not a local, broadcast, or multicast address.

The following code shows how fib_select_multipath is called to select the next hop:

#ifdef CONFIG_IP_ROUTE_MULTIPATH
 if (res.fi->fib_nhs > 1 && fl.oif == 0)
 fib_select_multipath(&key, &res);
#endif

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

942 | Chapter 35: Routing: Lookups

We already saw in the section “Next Hop Selection” in Chapter 31 how Linux selects
the next hop to use when more than one is available. Let’s see now how that algo-
rithm is implemented.

We saw in the section “Organization of Routing Hash Tables” in Chapter 34 that a
route is represented by the closely coupled data structures fib_node and fib_info,
and that each fib_info includes an array of fib_nh data structures (one for each next
hop specified in the route).

First, let’s clarify which fields of the fib_info and fib_nh structures are used to
decide whether a next hop must be chosen among a pool of available next hops, and
if so, which one is chosen.

These are the fields used to store the multipath configuration:

fib_info->fib_nhs
Number of next hops defined by the route.

fib_info->fib_nh
Array of fib_nh structures. The size of the array is given by fib_info->fib_nhs.

The following fields are used to implement the weighted random roundrobin algo-
rithm:

fib_info->fib_power
This is initialized to the sum of the weights (fib_nh->nh_weight) of all the next
hops of this fib_info instance, excluding ones that are disabled for some rea-
sons (tagged with the RTNH_DEAD flag). Every time fib_select_multipath is called
to select a next hop, fib_power is decremented. Its value is reinitialized when it
reaches zero.

fib_nh->nh_weight
Weight of this next hop. When not explicitly configured, it is set to a default
value of 1. As we will see, this value is used to make fib_select_multipath select
the next hops proportional to their weights (relative to fib_info->fib_power).

fib_nh->nh_power
Tokens allowing this next hop to be selected. This value is first initialized to fib_
nh->nh_weight when fib_info->fib_power is initialized. Its value is decremented
every time this next hop is selected by fib_select_multipath. When the value
reaches zero, this next hop is no longer selected until nh_power is reinitialized to
fib_nh->nh_weight (which happens when fib_info->fib_power is reinitialized).

Now we’ll look at how the implementation works.

Everything starts with all the next hops having a number of tokens (nh_power) that is
the same as their weights. This number, as we’ve seen, is 1 by default. The change_
nexthops loop sets the next hops’ nh_power field while accumulating the total weights
in the function’s local variable, power.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Effects of Multipath on Next Hop Selection | 943

 spin_lock_bh(&fib_multipath_lock);
 if (fi->fib_power <= 0) {
 int power = 0;
 change_nexthops(fi) {
 if (!(nh->nh_flags&RTNH_F_DEAD)) {
 power += nh->nh_weight;
 nh->nh_power = nh->nh_weight;
 }
 } endfor_nexthops(fi);

fib_info->fib_power is initialized to the sum of the next hop’s weight. Because it is
decremented each time fib_select_multipath makes a decision (in code shown later
in this section), each next hop will be selected a number of times equal to its weight
by the time fib_power reaches 0. This also ensures that by the time fib_info->fib_
power reaches 0, each next hop has been selected a number of times proportional to
its weight.

 fi->fib_power = power;
 if (power <= 0) {
 spin_unlock_bh(&fib_multipath_lock);
 res->nh_sel = 0;
 return;
 }
 }

The selection of a next hop by fib_select_multipath is pseudorandom: every time
fib_select_multipath is called, it generates a random number w ranging from zero to
fib_info->fib_power-1, and then browses all the next hops until it finds one that has
a number of tokens (fib_nh->nh_power) greater than or equal to w. Note that w is
reduced at each loop, making each loop more likely to find a next hop that matches
this condition.

 w = jiffies % fi->fib_power;
 change_nexthops(fi) {
 if (!(nh->nh_flags&RTNH_F_DEAD) && nh->nh_power) {
 if ((w -= nh->nh_power) <= 0) {
 nh->nh_power--;
 fi->fib_power--;
 res->nh_sel = nhsel;
 spin_unlock_bh(&fib_multipath_lock);
 return;
 }
 }
 } endfor_nexthops(fi);
 res->nh_sel = 0;
 spin_unlock_bh(&fib_multipath_lock);

Multipath Caching
Figure 35-4 shows when the fib_select_multipath routine described in the previous
section is called for both ingress and egress traffic, as well as how support for

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

944 | Chapter 35: Routing: Lookups

multipath caching influences the way the routing cache is populated by ip_mkroute_
input and ip_mkroute_output. Let’s analyze the ingress and egress cases separately.

Ingress traffic
When the kernel does not have support for multipath caching, ip_mkroute_input
calls fib_select_multipath when the conditions listed in the previous sections
are met, and selects one next hop according to the logic described earlier.

When the kernel has support for multipath caching, it does not select one next
hop with fib_select_multipath. Instead, it loops over all the next hops of the
Multipath route and adds an entry to the cache for each one. For each route, it
also calls multipath_set_nhinfo, described in the section “Interface Between the
Routing Cache and Multipath” in Chapter 33. That function can be used by the
caching algorithm to update the local information it uses to select the next hop.
For example, the weighted random algorithm uses the function to populate its
database of next hops (see the section “Weighted Random Algorithm” in
Chapter 33).

Egress traffic
As shown in Figure 35-4, the egress case is pretty similar to the ingress case. The
only difference is that even when the kernel supports Multipath caching, fib_
select_multipath is called and the latter invocation of ip_mkroute_output over-
rides the selection made by fib_select_multipath.

In both cases—res->nh_sel, that is, the result of the next hop selection—is initial-
ized to the last next hop of the multipath route. For subsequent packets, the selec-
tion will be done at cache lookup time. See the section “Multipath Caching” in
Chapter 33.

Policy Routing
A routing lookup in a kernel that has support for Policy Routing has to take into
account the possible presence of multiple tables. The next two sections show how
the Policy Routing versions of fib_lookup and fib_select_default differ from the
basic versions we saw earlier in this chapter.

fib_lookup with Policy Routing
When Policy Routing is configured, this function contains an extra step: it needs to
find out what routing table to use based on the configured policies.

We saw in the section “Main Data Structures” in Chapter 32 that routing policies are
defined with fib_rule data structures. All the fib_rule instances are linked together
with the global list fib_rules. The list is kept sorted in increasing order as indicated
by the priority field. This allows the configuration to define the order in which the
rules should be checked, therefore reducing lookup time. The more commonly

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Policy Routing | 945

matched rules or most important rules (as defined by the administrator, depending
on the context) are closer to the head of the list. The priority is a 32-bit field, which
means a host can theoretically have up to 232 policies. Of course, because policies are
stored in a sorted, flat list, a high number of policies can decrease routing perfor-
mance significantly.

Without any user configuration, fib_rules includes the three default instances
defined in net/ipv4/fib_rules.c, as shown in Figure 35-11:

local_rule
This is the highest-priority rule and is therefore at the head of the list. It always
matches, and its purpose is to force the first lookup to be on the ip_fib_local_
table routing table. This makes sense because the packets addressed to the local
system don’t need any further routing decision.

main_rule
This is the second table to be checked (unless the administrator inserts some
user-defined tables in between) and always matches as well. It causes a search on
the main routing table ip_fib_main_table.

default_rule
This is the default table and is put at the end of the list.

Figure 35-12 shows the logic implemented by fib_lookup. It browses policies one by
one until it either finds a match with the packet it is routing or gets to the end of the
list of policies without any match. When a matching policy is found, the action that
follows depends on the policy type (see the section “Lookup with Policy Routing” in
Chapter 31). In particular, the policy actions RTN_UNREACHABLE, RTN_BLACKHOLE, and
RTN_PROHIBIT lead to the return of an error, whose value may be used by the caller of
fib_lookup to generate the appropriate ICMP message. The policy action RTN_UNICAST
leads to a lookup with tb_lookup, which consists of a call to the fn_hash_lookup func-
tion described in the section “The Table Lookup: fn_hash_lookup.” This function
can return various results. Besides the errors already described in its dedicated sec-
tion, it is interesting to note that:

• When the lookup succeeds, res->r is initialized to the matching policy.

Figure 35-11. Default rules

r_next

preference= 0
table= RT_TABLE_LOCAL

fib_rules
local_rule

r_next

preference= 0x7FFE
table= RT_TABLE_MAIN

main_rule

r_next

preference= 0x7FFF
table= RT_TABLE_DEFAULT

default_rule

Here is where new rules would be inserted

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

946 | Chapter 35: Routing: Lookups

• When the lookup fails, fib_lookup continues its loop over the policies if the error
type is –EAGAIN. This is because that error is returned when the action type asso-
ciated with the matching route found by fn_hash_lookup is RTN_THROW (see the
section “Route Types and Actions” in Chapter 30).

Default Gateway Selection with Policy Routing
The selection of a default route with Policy Routing works just the same as when
there is no Policy Routing. The only difference is that fib_select_default, defined in
net/ipv4/fib_rules.c, uses the matching policy (res->r) to identify the routing table to
use.

void fib_select_default(const struct flowi *flp, struct fib_result *res)
{
 if (res->r && res->r->r_action == RTN_UNICAST &&
 FIB_RES_GW(*res) && FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK) {
 struct fib_table *tb;
 if ((tb = fib_get_table(res->r->r_table)) != NULL)
 tb->tb_select_default(tb, flp, res);
 }
}

Source Routing
We saw in Chapter 18 that IP packets can be source routed. Because this is taken
care of by the IP protocol directly without involving the routing subsystem, it is cov-
ered in the part of the book about IP. Here we are interested just in the implications
of source routing on the routing lookups.

Let’s use Figure 18-1 in Chapter 18 as a reference. When an ingress packet reaches
ip_rcv_finish, it triggers the first routing lookup. In the absence of source routing,
this is the only routing lookup needed. However, before ip_rcv_finish calls dst_
input, it checks whether the IP header specifies source routing and, if so, takes care
of it.

Source routing here is handled by ip_options_rcv_srr. It extracts the next hop to use
from the IP header and makes a second routing lookup with ip_route_input. This
second lookup replaces the existing skb->dst with a newer one. See the sequence of
calls in Figure 35-13.

When locally generated traffic carries the Source Routing IP option, it triggers only
one routing lookup because the correct next hop is selected before the lookup (see
ip_queue_xmit for an example).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Source Routing | 947

Figure 35-12. Policy Routing version of fib_lookup function

Return 0

table -> tb_lookup
(fn_hash_lookup)

Release lock
fib_rules_lock

Return err code from
table -> tb_lookup

Is the route
of type THROW?

Get routing table using the
ID in the matching rule

Matching rule
ACTION

Release lock
fib_rules_lock

Does the TOS
match?

Source/destination
IP address/mask

match?

For each rule

Release lock
fib_rules_lock

Return -ENETUNREACH

Get lock
fib_rules_lock

Return -EACCESS

Return -ENINVAL

Return -ENETUNREACH

Release lock
fib_rules_lock

Release lock
fib_rules_lock

Release lock
fib_rules_lock

Does the firewall
tag match?

Does the ingress
device match?

CONFIG_IP_ROUTE_FWMARK

End

Yes

Yes

No

No

Yes No

No Yes

RTN_UNREACHABLE

RTN_BLACKHOLE, etc

RTN_PROHIBIT RTN_UNICAST

OK

Failed

No

Yes

Next

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

948 | Chapter 35: Routing: Lookups

Policy Routing and Routing Table Based Classifier
We saw in the section “Routing Table Based Classifier” in Chapter 31 that the Traf-
fic Control subsystem, which implements the network QoS layer, can classify pack-
ets based on a tag computed by the routing subsystem. In the same section, we saw
how realms are configured, and the logic used to derive the routing tag from those
configurations. In this section, we will see how the realm configuration is stored in
the routing table and how the routing tag is computed by the routing code. Because
Traffic Control is outside the scope of this book, we will not cover how it uses the
routing tag.

Storing the Realms
The kernel stores the policy and route realms in the fib_rule->r_tclassid and fib_
nh->nh_tclassid fields, respectively.

fib_rule->r_tclassid
Both the source and destination realms are 8-bit values (ranging from 0 to 255)
but they are each assigned 16 bits within r_tclassid. When the source realm is
configured, it goes into the higher 16 bits, and when destination realm is config-
ured, it goes into the lower 16 bits. See Figure 35-14.

Figure 35-13. Source routing for ingress traffic

Figure 35-14. r_tclassid field structure

ip_rcv_finish

dst_input

ip_options_rcv_srr

ip_route_input

ip_route_input

ip_forward
(check for strict source routing)

16 bits

Source Realm (optional)

16 bits

Destination Realm

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Policy Routing and Routing Table Based Classifier | 949

fib_nh->nh_tclassid
Normally, only the destination realm is used to compute the routing tag; the
matching route is selected based on the destination address. However, as we saw
in the section “Computing the routing tag” in Chapter 31, sometimes the kernel
needs to make a reverse path lookup. When that happens, the destination realm
of a route is derived from the source realm of the reverse route. nh_tclassid is a
32-bit variable.

Helper Routines
Before seeing how dst.tclassid is initialized, let’s look at a few helper routines that
are used in accomplishing that task:

fib_rules_tclass
This is used to retrieve the r_tclassid field from a fib_rule data structure.
Because the result returned by fib_lookup includes a pointer to the fib_rule
instance that matched, fib_rules_tclass is useful to extract the matching rule
after a lookup. Note that this function is called only when there is support for
Policy Routing in the kernel, which makes fib_rule structures meaningful.

fib_combine_itag
Figure 35-15 shows the logic of this function, which is used to help find realms
when a reverse path lookup is necessary.

When Policy Routing is not enabled, it simply swaps the source and destination
route realms.

When Policy Routing is enabled, the function takes policy source realm (S2 in
Figure 35-15) as the destination realm. It also takes the destination route realm
(D1) as the source realm if it is provided, and takes the destination policy realm
(D2) otherwise.

The result is returned in the input parameter itag, which will be used by the
caller when invoking rt_set_nexthop (see the section “Computing the Routing
Tag”).

This function is called by fib_validate_source after a reverse path lookup. fib_
validate_source receives the source and destination IP addresses as input, swaps
them, and calls fib_lookup to do a reverse path lookup. The result returned by
fib_lookup, therefore, also has the source and destination realms swapped.
Because the realm fields are 16 bits wide and the realms returned by fib_lookup
are swapped, fib_combine_itag uses 16-bit shifts to adjust everything.

set_class_tag
Given a route (and therefore the associated dst_entry.tclassid) and a tag previ-
ously initialized by the caller, set_class_tag uses the second parameter to fill in
the realms not already initialized in dst_entry.tclassid.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

950 | Chapter 35: Routing: Lookups

Computing the Routing Tag
The routing tag has to be calculated by the ip_route_input_slow and ip_route_
output_slow functions we saw earlier in this chapter. The logic used was described in
the section “Computing the Routing Tag” in Chapter 30.

The information required to compute a routing tag is the skb packet to route and the
skb->dst result of the routing lookup. The routing tag is saved in skb->dst.tclassid.
Once ip_route_input_slow and ip_route_output_slow have successfully found the
forwarding information, they initialize a new routing cache entry, including the rout-
ing tag, and add it to the cache. Part of the cache entry initialization is done with rt_
set_nexthop, which among other things takes care of the routing tag dst_entry.
tclassid. Figure 35-4 shows exactly when rt_next_hop is called.

static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
{
 struct fib_info *fi = res->fi;

 if (fi) {

#ifdef CONFIG_NET_CLS_ROUTE
 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
#endif
 }

#ifdef CONFIG_NET_CLS_ROUTE
#ifdef CONFIG_IP_MULTIPLE_TABLES
 set_class_tag(rt, fib_rules_tclass(res));
#endif
 set_class_tag(rt, itag);
#endif

}

Figure 35-15. fib_combine_itag function

S1 D1

Source
 realm

Destination
realm

nh_tclassid

S2 D2 r_tclassid

D1 0 D2 S2 D1 S2

Policy
routing

No policy
routing

If D1 is not set If D1 is set

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Policy Routing and Routing Table Based Classifier | 951

The preceding snapshot shows that tclassid is first initialized with the destination
route’s realm, when the kernel has support for the routing table based classifier (oth-
erwise, there would be no need for that). Note that set_class_tag is called with dif-
ferent inputs based on whether the kernel has Policy Routing support:

With Policy Routing support
The components of dst.tclassid that are not yet initialized are filled in from the
policy realms.

Without Policy Routing support
The components of dst.tclassid that are not yet initialized are filled in using the
input parameter itag previously computed by the caller:

• ip_route_input_slow (called via _ _mkroute_input) passes a value of itag
computed with fib_combine_itag.

• ip_route_output_slow (called via _ _mkroute_output) passes 0, because the
packets it routes are generated locally and therefore the kernel does not use
any reverse lookup to try to fill in the missing realms.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

952

Chapter 36CHAPTER 36

Routing: Miscellaneous
Topics

In the previous chapters, we saw how the various routing features work and how
they interact with each other and with other kernel subsystems. In this chapter, we
conclude the routing part of the book with a description of how the subsystem inter-
acts with the user-space commands that configure routing. I will not describe the
commands themselves, because administration is outside the scope of this book. We
will also look at the various files exported in the /proc directory that can be used to
tune routing. The chapter concludes with a detailed description of the data struc-
tures already introduced in Chapter 32.

User-Space Configuration Tools
Routing can be configured with both the net-tools and IPROUTE2 packages, which
use ioctl and Netlink interfaces, respectively. The following subsections give more
details on these two packages, but focus on the IPROUTE2’s ip command, which is
the newer and more powerful way to configure routing on Linux.

The two sets of tools can coexist without problems, if you know their limitations and
use them accordingly. net-tools does not allow you to configure any of the advanced
routing features, such as Multipath and Policy Routing; nor can you see these fea-
tures in the results displayed by net-tools’ utilities. However, the routing configura-
tion applied by IPROUTE2 is backward compatible with net-tools.

Figure 36-1 summarizes what we will see in the subsections. The figure shows the
main functions used by the two kernel interfaces to manipulate routing tables, and
the ioctl commands used by net-tools. (IPROUTE2 allows you to configure other
objects too, such as policy rules, but these are not shown in the figure to keep it
simple.)

A few points are worth mentioning:

• Both tools end up adding or removing routes using the same routines: fn_hash_
insert and fn_hash_delete, which we saw in Chapter 34.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

User-Space Configuration Tools | 953

• Because of the previous point, the input received from the two user-space tools
must be saved in the same data structures before invoking the common fn_hash_
xxx routines. Because the two tools use different message types to talk to the ker-
nel, and because Netlink is the newer and preferred interface, the input from
ioctl commands is converted to Netlink format with fib_convert_rtentry. The
conversion also takes care of parsing the request—converting the string entered
by the user into the kernel data structure shown later in this chapter—so there is
no need for an explicit call to the parsing routine inet_check_attr (which is
instead called by the inet_rtm_xxx routines).

• A lock is used to serialize routing configuration changes. Figure 36-1 does not
show any locking associated with the two inet_rtm_xxx routines, because the
lock is acquired by the routing Netlink socket code before invoking them (see
rtnetlink_rcv for details).

Figure 36-1. ioctl- based versus Netlink-based routing table manipulation

Command

Get/create table tb
(fib_new_table)

Convert config data structure
to Netlink model

(fib_convert_rtentry)

Get lock
(rtnl_lock)

Get table tb
(fib_get_table)

SIOCDELRT SIOCADDRT

Insert route
tb -> tb_insert

(fib_new_insert)

Delete route
tb -> tb_delete

(fn_hash_delete)

Release lock
(rtnl_unlock)

ip_rt_ioctl

ioctl

SIOCDELRT
SIOCADDRT

net-tools

Parse config data structure
(inet_check_attr)

inet_rtm_delroute

Netlink

RTM_NEWROUTE

IPROUTE2

inet_rtm_newroute

RTM_DELROUTE

Parse config data structure
(inet_check_attr)

Get table fb
(fib_get_table)

Get/create table tb
(fib_new_table)

Delete route
tb -> tb_delete

(fn_hash_delete)

Insert route
tb -> tb_insert

(fn_hash_insert)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

954 | Chapter 36: Routing: Miscellaneous Topics

Configuring Routing with IPROUTE2
The IPROUTE2 package comes with different tools. In this chapter, we are inter-
ested in the ip command, and in particular in its two subcommands ip route and ip
rule, used respectively to manipulate routes and policy routing rules.

IPROUTE2 allows you not only to add and remove a route, but also to modify,
append, and prepend routes. These do not represent extra features, but just manage-
ment operations that can make life easier when dealing with big routing tables.

Correspondence between IPROUTE2 user commands and kernel functions

Tables 36-1 and 36-2 show the operation codes and flags set by IPROUTE2 for the
main ip route and ip rule commands. Knowing these will make it easier to browse the
routines shown in Figure 36-1 and listed in the “Kernel handler” columns of the
tables. The “CLI keyword” column contains the word in the command line that trig-
gers the proper operation.

One keyword in Table 36-1 requires an explanation: flush. The ip route flush com-
mand allows the administrator to define what kinds of routes to remove. Usually one
would flush everything, but the command allows the administrator to restrict the
routes flushed through criteria such as device and destination network.

The kernel does not have a handler for the flush operation. Instead, IPROUTE2
issues a list command to get a copy of the routing table, filters out routes that do not
match the flush criteria, and then issues an RTM_DELROUTE command for each route
left. This works fine in small setups, but can introduce significant overhead when
dealing with big routing tables. It would have been easier and faster to send the ker-
nel the flushing criteria and let it take care of the filtering.

Table 36-1. Parameters set by do_iproute in IPROUTE2’s iproute.c file

CLI keyword Operation Flags Kernel handler

add RTM_NEWROUTE NLM_F_EXCL NLM_F_CREATE inet_rtm_newroute

change RTM_NEWROUTE NLM_F_REPLACE inet_rtm_newroute

replace RTM_NEWROUTE NLM_F_CREATE

NLM_F_REPLACE

inet_rtm_newroute

prepend RTM_NEWROUTE NLM_F_CREATE inet_rtm_newroute

append RTM_NEWROUTE NLM_F_CREATE

NLM_F_APPEND

inet_rtm_newroute

test RTM_NEWROUTE NLM_F_EXCL inet_rtm_newroute

delete RTM_DELROUTE None inet_rtm_delroute

list/lst/show RTM_GETROUTE None inet_dump_fib

get RTM_GETROUTE NLM_F_REQUEST inet_rtm_getroute

flush RTM_GETROUTE None None

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

User-Space Configuration Tools | 955

Note that some kernel handlers take care of more than one user command type from
the “CLI keyword” column. The kernel can distinguish the different commands
thanks to the combination of the operation and flags parameters.

As shown in Figure 36-1, the kernel handlers that manipulate routes are inet_rtm_
newroute and inet_rtm_delroute, described in the next subsection. I’ll leave it as an
exercise to see how the handlers in Table 36-2 are implemented (use the section
“Policy Routing” in Chapter 35 as a reference).

For readers who are curious about investigating the IPROUTE2 utility code itself,
Figure 36-2 shows the files and routines in this package that take care of parsing and
sending the requests of the various ip route and ip rule commands to the kernel. For
example, if you type the command ip route add …, the routine main in ip.c would
process the command with do_iproute defined in iproute.c. Because the operation is
add, do_iproute would process the command with iproute_modify.

inet_rtm_newroute and inet_rtm_delroute functions

These two routines take care of adding and removing a route, respectively, when the
kernel receives a user request from the IPROUTE2 tools, as shown in Figure 36-1
and Table 36-1.

Table 36-2. Parameters set by do_iprule in IPROUTE2’s iprule.c file

CLI keyword Operation Flag Kernel handler

add RTM_NEWRULE None inet_rtm_newrule

delete RTM_DELRULE None inet_rtm_delrule

list/lst/show RTM_GETRULE None inet_dump_rules

Figure 36-2. IPROUTE2 files and functions for routing

do_iproute
(iproute.c)

iprule_listiprule_modify

main
(ip.c)

do_iprule
(iprule.c)

ruleroute

iproute_getiproute_modify

iproute_list_or_flush

list
add

deletegetadd
change
replace

prepend
append

test
delete

list
flush

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

956 | Chapter 36: Routing: Miscellaneous Topics

Both routines use inet_check_attr to fill in a kern_rta structure, which stores the
results from parsing the input from the user command. All the fields of kern_rta are
pointers: they point directly to fields inside the data structure received from user
space. A NULL pointer means that the associated field has not been configured.

In this section, we’ll examine inet_rtm_newroute. The operation of inet_rtm_
delroute is symmetrical.

int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
{
 struct fib_table * tb;
 struct rtattr **rta = arg;
 struct rtmsg *r = NLMSG_DATA(nlh);

 if (inet_check_attr(r, rta))
 return -EINVAL;

 tb = fib_new_table(r->rtm_table);

 if (tb)
 return tb->tb_insert(tb, r, (struct kern_rta*)rta, nlh, &NETLINK_CB(skb));
 return -ENOBUFS;
}

First the function parses the input message nlh with inet_check_attr and stores the
result in rta. When adding a route, the user can specify which routing table it should
go in. The concept of multiple routing tables is described in higher detail in the sec-
tion “Concepts Behind Policy Routing” in Chapter 31. If the specified table does not
already exist, it is created and initialized with fib_new_table. Having the reference to
the routing table now, the function calls the virtual function tb_insert to do the
insertion. We saw in the section “Adding and Removing Routes” in Chapter 34 that
tb_insert invokes fh_hash_insert, whose internals are described in the section
“Adding a Route” in the same chapter.

Configuring Routing with net-tools
The route command in the net-tools package is available in most Unix systems, and is
the most common way to configure and dump the content of the routing table and
its cache.

The route add and route del commands send the ioctl commands SIOCADDRT and
SIOCDELRT, respectively, to the kernel to add and remove a route. The dump of the
routing table and routing cache, however, is done in a different way: route simply
dumps the contents of the /proc/net/route and /proc/net/rt_cache files.*

* See the file lib/inet_gr.c in the net-tools package.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

User-Space Configuration Tools | 957

The kernel handler that takes care of the two ioctl commands is ip_rt_ioctl,
defined in net/ipv4/fib_frontend.c. Figure 36-1 showed part of its internals.

Only users with network administration privileges (CAP_NET_ADMIN) can use the route
command. The call to capable is used to enforce this rule.* Then, because the data
structure that carries the information about the route to delete or add is in user
space, it has to be copied into an address in kernel space with copy_from_user.

 if (!capable(CAP_NET_ADMIN))
 return -EPERM;
 if (copy_from_user(&r, arg, sizeof(struct rtentry)))
 return -EFAULT;

Change Notifications
We saw in Chapter 3 that Netlink defines multicast groups for the purpose of send-
ing out notifications about particular kinds of events, and user programs can register
to be part of those groups. Among those groups is the RTMGRP_IPV4_ROUTE group,
which is used for notifications regarding changes to the IPv4 routing tables. These
changes are sent to the multicast group RTGRM_IPV4_ROUTE with the rtmsg_fib routine.

Examples of interested listeners for these events are routing daemons, which need to
know such things as when routes are added or deleted by other daemons or by man-
ual user configuration. Users can also use IPROUTE2’s ip monitor route command to
test the feature. Figure 36-3 shows an example: every time a change is applied to a
routing table on one terminal, a notification is printed on the other terminal where
the ip monitor route command is executing.† The terminal and the kernel communi-
cate via a Netlink socket.

* For more details on user privileges and process capabilities, refer to Understanding the Linux Kernel
(O’Reilly).

† Not all changes currently generate notifications. For example, when a device goes down, removal of the asso-
ciated IPv4 routes is not communicated to the IPv4 protocol. This behavior could change, however. For
example, IPv6 is already notified.

Figure 36-3. Example of use of the ip monitor route command

Listen to
RTMGRP_IPV4_ROUTE

Group's notifications

Terminal 1

ip route monitor

10.0.0.0/24 via 192.168.1.2 dev eth1

Deleted 10.0.0.0/24 via 192.168.1.2 dev eth1

Terminal 2

ip route add 10.0.0.0/24 via 192.168.1.2

ip route del 10.0.0.0/24 via 192.168.1.2

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

958 | Chapter 36: Routing: Miscellaneous Topics

Routes Inserted by the Kernel: The fib_magic Function
We saw in Figure 36-1 that the Netlink socket can be used to exchange messages
between the kernel and user space. There are cases, however, where different parts of
the kernel use Netlink messages to communicate with each other. This makes it easy,
for instance, to react to kernel-generated events with the same code that is normally
used to react to user-generated events.

For instance, we saw in the section “Adding an IP address” in Chapter 32 that when
a new address is configured on an interface, a set of routing entries may be gener-
ated. An easy way to install those routes is to simulate the reception of a user-space
command that requests the insertion of new routes. This is accomplished with the
fib_magic routine, which creates the same message that would have been generated if
the route was entered explicitly with the route add or ip route add command.

fib_add_ifaddr and fib_del_ifaddr are two good examples of the use of fib_magic.
See the section “Changes in IP Configuration” in Chapter 32 for more details on
those two functions.

Statistics
The routing code keeps statistics about different aspects of the routing code, such as
lookups and garbage collection. Statistics are maintained on a per-processor basis.
ip_rt_init, described in the section “Routing Subsystem Initialization” in
Chapter 32, allocates for each CPU a copy of the rt_cache_stat data structure, where
the CPU keeps its own statistics. The rt_cache_stat fields are incremented with the
RT_CACHE_STAT_INC macro, which transparently updates the counter for the right
CPU. The section “rt_cache_stat Structure” describes the fields of rt_cache_stat in
detail.

The content of these statistics can be read by dumping the content of the /proc/net/
stat/rt_cache file (see the section “The /proc/net and /proc/net/stat Directories”).
The output you would get, however, is not formatted for easy reading. To get for-
matted output, you can use the lnstat tool that comes with the IPROUTE2 package.

Tuning via /proc Filesystem
The IPv4 routing subsystem uses the /proc filesystem to export some internal data
structures in read-only mode (e.g., the cache), and other structures in read-write
mode so that they can be used for tuning.

Figure 36-4 shows where these files are located and the routines that register them.
The files shown without a reference to a creating routine are statically defined by
sysctl_init at boot time.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 959

/proc/sys/net/ipv4/
/proc/sys/net/ipv4/conf
/proc/sys/net/ipv4/route

These directories are used to export internal data structures used for tuning. The
files in these directories are therefore writable. Later sections list their files, the
associated kernel variables, and the variables’ default values when applicable.*

/proc/net/
/proc/net/stat

Files in these directories are not used for tuning, but rather, to execute kernel rou-
tines to get some kind of information. See the section “The /proc/net and /proc/
net/stat Directories.”

* Take into account that the default value set by the kernel may be different from the default value you get
when you boot a Linux system. The reason is that each Linux distribution is free to change the default value
of each sysctl variable at boot time by means of the initialization files and scripts. See, for instance, /etc/
sysctl.conf. Also, different kernel versions could use different default values.

Figure 36-4. /proc files used by the IPv4 routing subsystem

/

proc

sys

net

ipv4

route conf

net

statroute
rt_acct
rt_cache
ip_mr_cache
ip_mr_vif

rt_cache

ip_forward
icmp_echo_ignore_broadcasts

inet_init
(ip_rt_init
ip_mr_init

fib_proc_init)

all default eth0 lo

error_burst
error_cost
flush
gc_elasticity
gc_interval
gc_min_interval_ms
gc_thresh
gc_timeout
min_delay
max_delay
max_size
min_adv_mss
min_pmtu
mtu_expires
redirect_load
redirect_number
redirect_silence
secret_interval

accept_redirects
accept_source_route
forwarding
mc_forwarding
rp_filter
secure_redirects
send_redirects
log_martians

devinet_init
inetdev_init

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

960 | Chapter 36: Routing: Miscellaneous Topics

The /proc/sys/net/ipv4 Directory
This directory contains a lot of files, but the only ones used by routing subsystems
are:

ip_forward
Contains a Boolean flag that can be used to globally enable and disable IP for-
warding. Its value can be overwritten on a per-device basis (see the section
“Enabling and Disabling Forwarding”).

icmp_echo_ignore_broadcasts
An ICMP tuning parameter. It was introduced in the section “Directed Broad-
casts” in Chapter 30, which explained that the routing code uses it to decide
how to handle directed broadcasts. Broadcast filtering can be enabled and dis-
abled only here, and only globally (not on a per-device basis).

See Table 36-3 for a summary of these files.

The /proc/sys/net/ipv4/route Directory
The IPv4 routing subsystem uses all the files in this directory. Here is a description of
the files, grouped by functionality:

error_burst
error_cost

Used to implement rate limiting for ICMP_UNREACHABLE messages. See the section
“Routing Failure” in Chapter 35.

max_size
gc_thresh
gc_min_interval
gc_timeout
gc_elasticity
gc_interval

Used by the routing cache garbage collection algorithm, described in
Chapter 33.

Table 36-3. /proc/sys/net/ipv4/ files usable for tuning the routing subsystem

Kernel variable name Filename Default value

ipv4_devconf.forwardinga

a See Chapter 19 for a description of the ipv4_devconf data structure.

ip_forward 0

sysctl_icmp_echo_ignore_broadcasts icmp_echo_ignore_broadcasts 0

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 961

flush
min_delay
max_delay

Used to control the flushing of the routing cache.

Unlike the other files in this directory, flush is only writable* and triggers an
action; it is not a simple tuning parameter. When the user writes n into this file,
the function ipv4_sysctl_rtcache_flush is invoked to schedule a flush of the
routing table cache after n seconds. When a negative value is written to flush, the
kernel schedules a flush after the default delay min_delay. max_delay is the maxi-
mum time that can pass between when the user schedules a flush and when the
kernel actually flushes the cache. See the section “Flushing the Routing Cache”
in Chapter 33.

min_adv_mss
This value is associated with the TCP Maximum Segment Size (MSS) parameter.
Each route has an associated MSS value. When the next hop of a dst_entry is
initialized (with rt_set_nexthop), before it is added to the routing table cache
with rt_intern_hash, the MSS is initialized to either the outgoing device’s MTU
or min_adv_mss, whichever is greater. See the comment in tcp_advertise_mss and
its initialization in rt_set_nexthop.

min_pmtu
mtu_expires

When the PMTU associated with a routing cache entry is changed, the routing
cache is scheduled to expire after mtu_expires seconds. See the section “Exam-
ples of events that can expire cache entries” in Chapter 30.

min_pmtu is the minimum PMTU value that the path MTU discovery protocol
can set for a route.

redirect_load
redirect_number
redirect_silence

Used to implement rate limiting for ICMP_REDIRECT messages. See the section
“Egress ICMP REDIRECT Rate Limiting” in Chapter 33.

secret_interval
The routing cache is flushed regularly every secret_interval/HZ seconds. See the
section “Flushing the Routing Cache” in Chapter 33.

Table 36-4 lists the kernel variables and default values.†

* The file actually has read permissions, but if you try reading its contents, the kernel complains.

† Most of the parameters that represent periods of time are configured in seconds, but stored in jiffies (the
number of seconds * HZ). When you read these values by dumping the contents of the associated files, you
may get the value in seconds or jiffies depending on what routine the kernel uses to dump them (e.g., proc_
handler routine). For example, proc_dointvec prints the kernel value as is (with the assumption that it is an
integer value), whereas proc_dointvec_jiffies converts a value assumed to be expressed in jiffies (i.e.,
ticks) to seconds for display.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

962 | Chapter 36: Routing: Miscellaneous Topics

The /proc/sys/net/ipv4/conf Directory
This directory includes files that can be used to tune the IPv4, IPsec, and ARP proto-
cols, as well as to control routing on a per-device basis. The protocol-related parame-
ters are covered in the associated chapters, so in this chapter, we will cover only the
ones used to tune routing.

The /proc/sys/net/ipv4/conf directory includes subdirectories for each registered net-
work device, including the loopback device, which in turn contain files for each tun-
ing parameter. This allows you to configure the routing parameters on a per-device
basis for the previously mentioned protocols. Each directory contains the same set of
files. All the parameters are grouped by the kernel in a data structure of type ipv4_
devconf, defined in include/linux/inetdevice.c and shown in Table 36-5. The default

Table 36-4. /proc/sys/net/ipv4/route files usable for tuning the routing subsystem

Kernel variable name Filename Default value

ip_rt_error_burst error_burst 5 * HZ

ip_rt_error_cost error_cost HZ

flush_delay flush N/Aa

a See the description of flush earlier in this section.

ip_rt_gc_elasticity gc_elasticity 8

ip_rt_gc_interval gc_interval 60 * HZ

ip_rt_gc_min_interval gc_min_interval_msb

b There is another file, gc_min_interval, associated with the same kernel variable. That file is deprecated
and will be removed.

HZ / 2

ipv4_dst_ops.gc_thresh gc_thresh Depends on RAMc

c Initialized at boot time based on the hash table size, whose value depends on the amount of RAM
installed.

ip_rt_gc_timeout gc_timeout RT_GC_TIMEOUT (300 * HZ)

ip_rt_min_delay min_delay 2 * HZ

ip_rt_max_delay max_delay 10 * HZ

ip_rt_max_size max_size Depends on RAM

ip_rt_min_advmss min_adv_mss 256

ip_rt_min_pmtu min_pmtu 512+20+20d

d 512 is the default MSS used by TCP according to RFCs 793 and 1112; the additional 20+20 is the size
of the IP and TCP headers, when they are both without options.

ip_rt_mtu_expires mtu_expires 10 * 60 * HZ

ip_rt_redirect_load redirect_load HZ / 50

ip_rt_redirect_number redirect_number 9

ip_rt_redirect_silence redirect_silence ((HZ/50)<<(9+1))

ip_rt_secret_interval secret_interval 10 * 60 * HZ

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 963

value is the value exported to the corresponding file in the /proc/sys/net/ipv4/conf/
default directory.

Special subdirectories

In addition to a directory for every device, the /proc/sys/net/ipv4/conf directory
includes two special directories:

default
All the parameters not explicitly configured by the user are initialized to the
default values exported in this directory. These values are maintained by the ker-
nel in a separate ipv4_devconf instance, ipv4_devconf_dflt (see Table 36-5).

all
This directory is used for global configurations (i.e., what the user writes here
applies to all devices). These values are also maintained by the kernel in a sepa-
rate data structure whose name is the same as the structure type itself, ipv4_
devconf.

Both the default and per-device directories are created by calling devinet_sysctl_
register. The all directory is statically defined (see the definition of devinet_sysctl_
table in net/ipv4/devinet.c).

devinet_sysctl_register is called by devinet_init when the routing code gets initial-
ized at boot time (see the section “Routing Subsystem Initialization” in Chapter 32)
to register the default directory. Because the function is called by inetdev_init, it is
called once for each device (when the first IPv4 address is configured on the device).

Table 36-5. /proc/sys/net/ipv4/conf subdirectory files usable for tuning the routing subsystem

Kernel variable name (field of ipv4_devconf) Filename Default value

accept_redirects accept_redirects 1

accept_source_route accept_source_route 1

forwarding forwarding 0

mc_forwarding mc_forwarding 0

rp_filter rp_filter 0

secure_redirects secure_redirects 1

shared_media shared_media 1

send_redirects send_redirects 1

log_martians log_martians 0

tag (not used) tag 0

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

964 | Chapter 36: Routing: Miscellaneous Topics

Use of the special subdirectories

Different features behave differently when combining the per-device and global con-
figuration values, as well as when propagating the changes to the variables exported
in the all directory. For example:

• For some of the fields, the per-device and global values are ANDed. In this case,
the feature is enabled only if both the global and per-device configurations are
enabled.

• For some of the fields, the values are ORed. In this case, enabling the value in
either file is sufficient.

• For some of the fields, the global values are not taken into consideration.

How the files are consulted for a given feature depends on what makes sense for that
feature.

For each parameter, there is a macro, IN_DEV_XXX, defined in include/linux/inetdevice.h,
that can be used to derive the current operative state for a given device. The macros
take as their input parameter the IPv4 configuration block of the device, which is an
instance of in_device. You can look at those macros to figure out what criteria (AND,
OR, or NONE) each parameter uses to combine the per-device and global configura-
tion. Here is an example for each of the three cases:

#define IN_DEV_RPFILTER(in_dev) \
(ipv4_devconf.rp_filter && (in_dev)->cnf.rp_filter)

#define IN_DEV_PROXY_ARP(in_dev) \
(ipv4_devconf.proxy_arp || (in_dev)->cnf.proxy_arp)

#define IN_DEV_MEDIUM_ID(in_dev) ((in_dev)->cnf.medium_id)

The logic used by the preceding examples is not the only one implemented by the IN_
DEV_XXX macros. For example, IN_DEV_RX_REDIRECTS is more complex and is defined
as a wrapper around several parameters, not just as an AND or OR condition
between two values.

There is one more case to consider. For some parameters, changes to the files in the
all directory are propagated to the per-device directories right away (instead of being
consulted by the IN_DEV_XXX macros). In that case, the associated IN_DEV_XXX macro
does not need to check the global value. See the section “Enabling and Disabling
Forwarding” for an example.

File descriptions

Here is a brief description of the files listed in Table 36-5:

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning via /proc Filesystem | 965

accept_redirects
send_redirects

ICMP redirects, described in Chapter 31, are sent by routers to hosts to inform
them about suboptimal routing. accept_redirects is a Boolean flag that can be
used to enable or disable ICMP redirect processing for an interface.* send_
redirects is used for the other side of the coin: when it is true, the system is
allowed to generate ICMP redirects when the required conditions of suboptimal
routing are detected.

accept_source_route
The IP Source Routing option can be enabled and disabled with this flag. When
it is disabled, ip_rcv_finish drops all the IP packets carrying such an option. IP
options are discussed in Chapter 18.

forwarding
mc_forwarding

These are Boolean flags used to enable and disable unicast and multicast for-
warding, respectively. For mc_forwarding to be used, the kernel must be com-
piled with the necessary multicast options.

rp_filter
When this flag is true, an ingress packet is dropped if the source of the packet is
reachable through an asymmetric route (according to the routing table of the
local host). See the section “Reverse Path Filtering” in Chapter 31.

secure_redirects
shared media

When secure_redirects is set, ICMP_REDIRECT messages are accepted only when
the suggested gateway is already known locally as a gateway.

Normally, ICMP_REDIRECT messages that suggest the use of a new next hop whose
IP address is not in the same subnet as the current next hop are rejected, as spec-
ified in RFC 1122. However, there are cases where accepting them would make
sense. When shared_media is true, those ICMP_REDIRECT messages will be
accepted. RFC 1620 explains quite nicely why this option makes sense in some
cases.

See the section “ICMP_REDIRECT Messages” in Chapter 31 for more informa-
tion on this feature.

log_martians
When this flag is set, the kernel generates log messages when it receives packets
with illegal IP addresses. See the section “Verbose Monitoring” in Chapter 31.

* See also the section “Enabling and Disabling Forwarding.”

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

966 | Chapter 36: Routing: Miscellaneous Topics

The /proc/net and /proc/net/stat Directories
The /proc/net directory offers a few files that execute kernel handlers when you try to
dump their contents. The following is the file-by-file description:

route
rt_cache

You can read those two files to get a dump of the routing table (if_fib_main_
table) and the routing cache, respectively. They do not display the contents of
user-defined routing tables, which can be created when the kernel has support
for Policy Routing. IP addresses are printed in hexadecimal format.

stat/rt_cache
Collection of statistics. See the sections “Statistics” and “rt_cache_stat Structure.”

rt_acct
Accounting information collected by the routing table based classifier intro-
duced in Chapter 31. For better-formatted output, use IPROUTE2’s rtacct com-
mand.

ip_mr_cache
ip_mr_vif

Used by multicast routing (not covered in this book).

Table 36-6 summarizes the association between files and kernel handlers.

As shown in Figure 36-4, the files in the two directories /proc/net and /proc/net/stat
are created indirectly by inet_init, with the help of routines such as ipv4_proc_init
and ip_init. inet_init is marked with the module_init macro and therefore is exe-
cuted at boot time (see Chapter 7).

Enabling and Disabling Forwarding
As mentioned earlier in this chapter, the kernel exports parameters via /proc that can
be used to enable and disable IP forwarding, both globally and on a per-device basis.
In this chapter, we will address only IPv4 forwarding.

Table 36-6. Kernel handlers for the files in /proc/net used by the routing subsystem

Filename Kernel file where it is defined

route net/ipv4/fib_hash.c (fib_proc_init)

rt_cache net/ipv4/route.c (ip_rt_init)

rt_acct net/ipv4/route.c (ip_rt_init)

ip_mr_cache net/ipv4/ipmr.c (ip_mr_init)

ip_mr_vif net/ipv4/ipmr.c (ip_mr_init)

stat/rt_cache net/ipv4/route.c (ip_rt_init)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Enabling and Disabling Forwarding | 967

Even though an administrator can change the forwarding state globally, there really
is no global forwarding state. The routing code uses only the per-device forwarding
states: global configuration changes are just a convenient way to apply the same
change to all devices in one shot. In particular, when the kernel receives an IP packet
whose destination address does not belong to the local system, it either forwards the
packet or drops it based on the forwarding state of the receiving interface. This is not
a decision made on a global basis or on the forwarding state of the device that would
be used to transmit the packet out toward its destination.

It is important to understand the relationship between per-device and global configu-
rations, to know how the system is going to behave when you change their values.
Here are the relevant /proc files:

/proc/sys/net/ipv4/conf/device_name/forwarding
Enable and disable forwarding on the device device_name. A value of zero means
disabled; any other value means enabled.

/proc/sys/net/ipv4/conf/all/forwarding
Changes to this file are applied to all network devices (including the ones not in
the UP state) but do not affect the forwarding state of devices registered in the
future.

/proc/sys/net/ipv4/conf/default/forwarding
This is the default forwarding state of those devices that do not have an explicit
configuration. Unlike the previous file, its value affects only the forwarding state
of those devices registered in the future (not the ones already present).

/proc/sys/net/ipv4/ip_forward
Changes to this file have the same effect as changes to /proc/sys/net/ipv4/conf/all/
forwarding. You can look at the former as an alias to the latter.

Changes to the forwarding files are processed by devinet_sysctl_forward, which dis-
tinguishes between the three cases internally. Changes to the ip_forward file are pro-
cessed by ipv4_sysctl_forward. Every time there is a change of forwarding state for at
least one device, the routing cache is flushed with rt_cache_flush.

Changes to either /proc/sys/net/ipv4/conf/all/forwarding or /proc/sys/net/ipv4/ip_
forward will trigger the execution of inet_forward_change, which:

1. Updates the ipv4_devconf.accept_redirect configuration parameter.

This is done to enforce the rule by which only hosts are supposed to accept
ICMP redirects, not routers. If global forwarding gets enabled, it means the sys-
tem is now to be considered a router and therefore the default configuration for
honoring ICMP redirects must be disabled. (The administrator can, of course,
re-enable it if needed).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

968 | Chapter 36: Routing: Miscellaneous Topics

2. Updates the default forwarding state.

Note that changing the global forwarding configuration forces the default to
change, but not vice versa.

3. Updates the forwarding state of all devices.

Data Structures Featured in This Part of the Book
The section “Main Data Structures” in Chapter 32 gave a brief overview of the main
data structures, and Figure 34-1 in Chapter 34 can help you understand the relation-
ships between them. This section provides a detailed description of each data struc-
ture type. Figure 36-5 shows the file that defines each data structure.

fib_table Structure
A fib_table structure is created for each routing table instance. The structure con-
sists mainly of a routing table identifier and a set of function pointers used to man-
age the table:

unsigned char tb_id
Routing table identifier. In include/linux/rtnetlink.h, you can find the rt_class_t
list of predefined values, such as RT_TABLE_LOCAL.

Figure 36-5. Distribution of data structures in kernel files

Root
(usually /usr/src/linux)

include

net
dst.h
 struct dst_entry
 struct dst_ops

linux

net

fib_rules.c
 struct fib_rule

ipv4

route.h
 struct rtable
 struct ip_rt_acct
 struct rt_cache_stat

route.h
 struct rtentry

fib_hash.c
 struct fib_node
 struct fn_zone
 struct fn_hash
fib_lookup.h
 struct fib_alias
inetpeer.h
 struct inet_peer
flow.h
 struct flowi
multipath_drr.c
 multipath_device
multipath_wrandom.c
 multipath_candidate
 multipath_dest
 multipath_bucket
 multipath_route

ip_fib.h
 struct fib_info
 struct fib_result
 struct fib_table
 struct fib_nh
interpeer.h
 struct inet_peer
flow.h
 struct flowi
ip_mp_alg.h
 ip_mp_alg_ops

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 969

unsigned tb_stamp
Not used.

int (*tb_lookup)(struct fib_table *tb, const struct flowi *flp, struct fib_
result *res)

The function called by the fib_lookup routine described in Chapter 35.

int (*tb_insert)(struct fib_table *table, struct rtmsg *r,struct kern_rta
*rta, struct nlmsghdr *n, struct netlink_skb_parms *req)
int (*tb_delete)(struct fib_table *table, struct rtmsg *r, struct kern_rta
*rta, struct nlmsghdr *n, struct netlink_skb_parms *req);

tb_insert is called by inet_rtm_newroute and ip_rt_ioctl to process the ip route
add/change/replace/prepend/append/test and route add user-space commands.
Similarly, tb_delete is called by inet_rtm_delroute (in answer to ip route del …
commands) and by ip_rt_ioctl (in answer to route del ... commands) to delete a
route from a table. Both are also called by fib_magic (see the section “Routes
Inserted by the Kernel: The fib_magic Function”).

int (*tb_dump)(struct fib_table *table, struct sk_buff *skb,

 struct netlink_callback *cb)
Dumps the content of a routing table. It is invoked to handle user commands
such as “ip route get …”.

int (*tb_flush)(struct fib_table *table)
Removes the fib_info structures that have the RTNH_F_DEAD flag set. See the sec-
tion “Garbage Collection” in Chapter 33.

void (*tb_select_default)(struct fib_table *table, const struct flowi *flp,
struct fib_result *res)

Selects a default route. See the section “Default Gateway Selection” in
Chapter 35.

unsigned char tb_data[0]
Pointer to the end of the structure. It is useful when the structure is allocated as
part of a bigger one, because it allows code to point to the part of the outer data
structure that immediately follows this one. See Figure 34-1 in Chapter 34.

fn_zone Structure
A zone is the collection of routes that have the same netmask length. The routes of a
routing table are organized into zones, as described in Chapter 32. Zones are defined
with fn_zone structures, which contain the following fields:

struct fn_zone *fz_next
Pointer used to link together the active zones (i.e., the ones with at least one
route). The head of the list is kept in fn_zone_list, which is a field of the fn_hash
data structure.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

970 | Chapter 36: Routing: Miscellaneous Topics

struct hlist_head *fz_hash
Pointer to the hash table that stores the routes that fall into this zone.

int fz_nent
Number of routes in the zone (i.e., number of fib_node instances that are in the
zone’s hash table). Its value is used, for instance, to detect the need to resize the
hash table (see the section “Dynamic resizing of per-netmask hash tables” in
Chapter 34).

int fz_divisor
Size (number of buckets) of the hash table fz_hash. See the section “Dynamic
resizing of per-netmask hash tables” in Chapter 34.

u32 fz_hashmask
This is simply fz_divisor-1, and is provided so that cheap binary AND opera-
tions can be used instead of expensive modulo operations to compute a value
modulo fz_divisor. n%fz_divisor is the same as n&fz_hashmask (for instance,
100%16 = 100&15), and the latter takes less CPU time.

int fz_order
The number of bits (all consecutive) that are set in the netmask fz_hashmask, also
seen in the code as prefixlen. For instance, given the netmask 255.255.255.0,
fz_order would be 24.

u32 fz_mask
The netmask built using fz_order. For example, an fz_order of 3 produces a
binary fz_mask of 11100000.00000000.00000000.00000000, or decimal 224.0.0.0.

Along with the structure are two macros used to access the fz_hashmask and fz_mask
fields:

#define FZ_HASHMASK(fz) ((fz)->fz_hashmask)
#define FZ_MASK(fz) ((fz)->fz_mask)

fib_node Structure
There is a fib_node instance for each unique destination network for which the ker-
nel has a route. Different routes that lead to the same destination network but that
differ with regard to other configuration parameters share the same fib_node
instance. Here is the field-by-field description:

struct hlist_node fn_hash
fib_node elements are organized into hash tables. This pointer is used to link the
elements that collide in a single bucket of a hash table.

struct list_head fn_alias
Each fib_node structure is associated with a list of one or more fib_alias struc-
tures. This is the pointer to the head of that list.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 971

su32 fn_key
This is the prefix of the route (the network address, indicated by the route’s net-
mask). It is used as a search key. See the section “Basic Structures for Hash Table
Organization” in Chapter 34.

fib_alias Structure
fib_alias instances are used to distinguish between different routes to the same des-
tination network that differ with regard to other configuration parameters (besides
the destination address). Here is the field-by-field description:

struct list_head fa_list
Used to link the fib_alias instances associated with the same fib_node struc-
ture.

struct fib_info *fa_info
Pointer to the fib_info instance that stores the information about how to pro-
cess packets matching this route.

u8 fa_tos
Route’s Type of Service (TOS) bitfield. When the value is zero, it means the TOS
has not been configured and therefore any value can match on a routing lookup.
Do not confuse fa_tos with the r_tos field of fib_rule. The fa_tos field allows
the user to specify conditions on the TOS for individual routing entries. In con-
trast, the r_tos field of fib_rule specifies conditions on the TOS for policy rules.

u8 fa_type
See the description of the rt_type field in the section “rtable Structure.”

u8 fa_scope
Scope of the route. See the section “Scope” in Chapter 30.

u8 fa_state
Bitmap of flags. The only flag defined so far is the following:

FA_S_ACCESSED
Whenever the fib_alias instance is accessed with a lookup, it is marked
with this flag. The flag is useful when a change is applied to a fib_node data
structure: it is used to decide whether the routing cache should be flushed. If
fib_node has been accessed, it probably means entries in the routing cache
need to be cleared if the route changes; thus, a flush is triggered.

fib_info Structure
The parameters that define a route are contained in the combination of fib_node and
fib_alias structures, described in the previous sections. Important routing

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

972 | Chapter 36: Routing: Miscellaneous Topics

information such as the next hop gateway is stored in a fib_info structure. Here is
the field-by-field description:

struct hlist_node fib_hash
struct hlist_node fib_lhash

Used to insert the data structure into the two hash tables described in the sec-
tion “Organization of fib_info Structures” in Chapter 34.

int fib_treeref
atomic_t fib_clntref

Reference counts. fib_treeref is the number of fib_node data structures holding
a reference on this fib_info instance, and fib_clntref is the number of refer-
ences being held as a result of successful routing lookups.

int fib_dead
A flag that tags routes being removed. When set to 1, it warns that the structure
is not to be used because it is about to be removed. See the section “Deleting a
Route” in Chapter 34.

unsigned fib_flags
Set of RTNH_F_XXX flags, listed in Table 36-7. The only flag currently used is RTNH_
F_DEAD, which is set for a multipath route when all the associated fib_nh struc-
tures have their RTNH_F_DEAD flags set (see the section “Generic Helper Routines
and Macros” in Chapter 32).

int fib_protocol
Protocol that installed the route. The possible values for this field, RTPROT_XXX,
are defined in include/linux/rtnetlink.h and are listed in Tables 36-8 and 36-9
(ROUTED is missing from these tables because it does not use Netlink to inter-
face with the kernel). See the section “Routing Protocol Daemons” in Chapter 31
for a brief overview of these protocols.

Values of fib_protocol greater than RTPROT_STATIC are used only by routes not
generated by the kernel (i.e., those generated by user-space routing daemons).

One example of a use for this field is to allow routing daemons to restrict opera-
tions to their own routes when dealing with the kernel. See the section “Interac-
tion between daemons and kernel” in Chapter 31 for more details.

Table 36-7. Values for the nh_flags field of fib_nh

Flag Description

RTNH_F_DEAD This flag is used mainly by the multipath code to keep track of dead next hops. See the descrip-
tion of fib_sync_down in the section “Generic Helper Routines and Macros” in Chapter 32.

RTNH_F_PERVASIVE This flag is supposed to mark entries that require recursive lookups but is currently not used.
The latest IPROUTE2 releases do not accept the pervasive keyword anymore.

RTNH_F_ONLINK When this flag is set, the kernel is asked not to check for consistency on the next hop address (i.e.,
not to check whether the next hop address is reachable on the outgoing device). It is set with
the onlink keyword and is used, for instance, when defining routes on tunnel virtual devices.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 973

u32 fib_prefsrc
Preferred source IP address. See the section “Selecting the Source IP Address” in
Chapter 35.

u32 fib_priority
Priority of the route. The smaller the value, the higher the priority. Its value can
be configured with IPROUTE2 using the metric/priority/preference keywords.
When not explicitly set, it has the default value 0 to which it is initialized by the
kernel.

u32 fib_metrics[RTAX_MAX]
When you configure a route, the ip route command allows you to also specify a
set of metrics. fib_metrics is a vector used to store them. Metrics not explicitly
configured are initialized to zero. See the section “Essential Elements of Rout-
ing” in Chapter 30 for a list of the available metrics. Table 36-10 shows the rela-
tionships between the metrics listed in that section and the associated kernel
symbols RTAX_XXX defined in include/linux/rtnetlink.h.

Table 36-8. Values of fib_protocol used by the kernel

Value Description

RTPROT_UNSPEC Field is invalid.

RTPROT_REDIRECT Route installed by ICMP redirects; not used by current IPv4.

RTPROT_KERNEL Route installed by kernel. See the section “Routes Inserted by the Kernel: The fib_magic Function.”

RTPROT_BOOT Route installed by user-space commands such as ip route and route.

RTPROT_STATIC Route installed by administrator. Not used.

Table 36-9. Values of fib_protocol used by user space

Value Description

RTPROT_GATED The route was added by GateD.

RTPROT_RA The route was added by RDISC (IPv4) and ND (IPv6) router advertisements. There is a mecha-
nism, the ICMP Router Discovery Protocol defined in RFC 1256, that lets hosts find neighboring
routers. rdisc, which is part of the iputils package, is the user-space tool that implements
ICMP Router Discovery Messages.

RTPROT_MRT The route was added by the Multi-Threaded Routing Toolkit (MRT).

RTPROT_ZEBRA The route was added by Zebra.

RTPROT_BIRD The route was added by BIRD.

RTPROT_DNROUTED The route was added by the DECnet routing daemon.

RTPROT_XORP The route was added by the XORP routing daemon.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

974 | Chapter 36: Routing: Miscellaneous Topics

int fib_power
This field is part of the data structure only when the kernel is compiled with sup-
port for multipath. See the section “Concepts Behind Multipath Routing” in
Chapter 31.

struct fib_nh fib_nh[0]
int fib_nhs

fib_nh is a variable-length vector of fib_nh structures, and fib_nhs is its size.
fib_nhs can be greater than 1 only when the kernel supports the Multipath fea-
ture. See the section “Concepts Behind Multipath Routing” in Chapter 31, and
see Figure 34-1 in Chapter 34.

u32 fib_mp_alg
Multipath caching algorithm. The IP_MP_ALG_XXX IDs of the algorithms intro-
duced in the section “Cache Support for Multipath” in Chapter 31 are listed in
include/linux/ip_mp_alg.h. This field is part of the data structure only when the
kernel is compiled with support for multipath caching.

#define fib_dev fib_nh[0].nh_dev
Macro used to access the nh_dev field of the first fib_nh instance of the fib_nh
vector. See Figure 34-1 in Chapter 34.

#define fib_mtu fib_metrics[RTAX_MTU-1]
#define fib_window fib_metrics[RTAX_WINDOW-1]
#define fib_rtt fib_metrics[RTAX_RTT-1]
#define fib_advmss fib_metrics[RTAX_ADVMSS-1]

Macros used to access specific elements of the fib_metrics vector.

Table 36-10. Routing metrics

Metric Kernel symbol

Not a metric RTAX_LOCK

Path MTU RTAX_MTU

Maximum Advertised Window RTAX_WINDOW

Round Trip Time RTAX_RTT

RTT Variance RTAX_RTTVAR

Slow Start threshold RTAX_SSTHRESH

Congestion Window RTAX_CWND

Maximum Segment Size RTAX_ADVMSS

Maximal Reordering RTAX_REORDERING

Default Time To Live (TTL) RTAX_HOPLIMIT

Initial Congestion Window RTAX_INITCWND

Not a metric RTAX_FEATURES

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 975

fib_nh Structure
For each next hop, the kernel needs to keep more than just the IP address. The fib_
nh structure stores that extra information in the following fields.

struct net_device *nh_dev
This is the net_device data structure associated with the device ID nh_oif
(described later). Since both the ID and the pointer to the net_device structure
are needed (in different contexts), both of them are kept in the fib_nh structure,
even though either one could be used to retrieve the other.

struct hlist_node nh_hash
Used to insert the structure into the hash table described in the section “Organi-
zation of Next-Hop Router Structures” in Chapter 34.

struct fib_info *nh_parent
Pointer to the fib_info structure that contains this fib_nh instance. See
Figure 34-1 in Chapter 34.

unsigned nh_flags
A set of RTNH_F_XXX flags defined in include/linux/rtnetlink.h and listed in
Table 36-7 earlier in this chapter.

unsigned char nh_scope
Scope of the route used to get to the next hop. It is RT_SCOPE_LINK in most cases.
This field is initialized by fib_check_nh.

int nh_weight
int nh_power

These two fields are part of the fib_nh data structure only when the kernel is
compiled with support for multipath, and are described in detail in the section
“Concepts Behind Multipath Routing” in Chapter 31. nh_power is initialized by
the kernel; nh_weight is set by the user with the keyword weight.

_ _u32 nh_tclassid
This field is part of the fib_nh data structure only when the kernel is compiled
with support for the routing table based classifier. Its value is set with the realms
keyword. See the section “Policy Routing and Routing Table Based Classifier” in
Chapter 35.

int nh_oif
ID of the egress device. It is set with the keywords oif and dev.

u32 nh_gw
IP address of the next hop gateway provided with the keyword via. Note that in
the case of NAT, this represents the address that the NAT router advertises to
the world, and to which replies are sent before the router sends them on to the
host on the internal network. For example, the command ip route add nat 10.1.
1.253/32 via 151.41.196.1 would set nh_gw to 151.41.196.1. Note that NAT sup-
port in the routing code, known as FastNAT, has been dropped in 2.6 kernels.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

976 | Chapter 36: Routing: Miscellaneous Topics

fib_rule Structure
Policy routing rules (also called policies) are configured with the ip rule command. If
the IPROUTE2 package is installed on your Linux system, you can type ip rule help
to see the syntax of the command. Policies are stored in fib_rule structures, whose
fields are described here:

struct fib_rule *r_next
Links these structures within a global list that contains all fib_rule structures
(see Figure 35-8 in Chapter 35).

atomic_t r_clntref
Reference count. It is incremented by fib_lookup (in the Policy Routing version
only), which explains why fib_res_put (which decrements it) is always called
after a successful lookup.

u32 r_preference
Priority of the rule. This can be configured using the keywords priority,
preference and order when the administrator adds a policy with IPROUTE2.
When not explicitly configured, the kernel assigns a priority that is one unit
smaller than the priority of the last user-added rule (see inet_rtm_newrule). Pri-
orities 0, 0x7FFE, and 0x7FFF are reserved for special rules installed by the ker-
nel (see the section “fib_lookup with Policy Routing” in Chapter 35, and the
definitions of the three default rules local_rule, main_rule, and default_rule in
net/ipv4/fib_rules.c).

unsigned char r_table
Routing table identifier. Ranges from 0 to 255. When it is not specified by the
user, IPROUTE2 uses the following defaults: RT_TABLE_MAIN when the user com-
mand adds a rule, and RT_TABLE_UNSPEC in other cases (e.g., when deleting a
rule).

unsigned char r_action
The values allowed for this field are the rtm_type enum listed in include/linux/
rtnetlink.h (RTN_UNICAST, etc.). The meanings of these values are described in the
section “rtable Structure.”

This field can be explicitly set by the user using the type keyword when configur-
ing a rule. When it is not explicitly configured by the user, IPROUTE2 sets it to
RTN_UNICAST when adding rules, and RTN_UNSPEC otherwise (e.g., when deleting
rules).

unsigned char r_dst_len
unsigned char r_src_len

Length of the destination and source IP addresses, expressed in bits. They are
used to compute r_srcmask and r_dstmask. When not initialized, they are set to
zero.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 977

u32 r_src
u32 r_srcmask

IP address and netmask, respectively, of the source network from which packets
must come.

u32 r_dst
u32 r_dstmask

IP address and netmask, respectively, of the destination network to which pack-
ets must be directed.

u32 r_srcmap
Field that used to be set with the user-space keywords nat and map-to and was
used by the Routing NAT implementation. Routing NAT support has been
removed, so this field is not used anymore. See the section “Recently Dropped
Options” in Chapter 32.

u8 r_flags
Set of flags. Currently not used.

u8 r_tos
IP header’s TOS field. Included because the definition of a rule can include a
condition placed on the IP header TOS field.

u32 r_fwmark
When the kernel is compiled with support for the “Use Netfilter MARK value as
routing key” feature, it is possible to define rules in terms of firewall tags. This is
the tag specified by the fwmark keyword when the administrator defines a policy
rule.

int r_ifindex
char r_ifname[IFNAMSIZ]

r_ifname is the name of the device the policy applies to. Given r_ifname, the ker-
nel finds the associated net_device instance and copies the value of its ifindex
field into r_ifindex. The value -1 for r_ifindex is used to disable the rule (see the
section “Impacts on the policy database” in Chapter 32.

_ _u32 r_tclassid;
This field is included in the data structure only when the kernel is compiled with
support for the routing table based classifier. Its meaning is described in the sec-
tion “Policy Routing and Routing Table Based Classifier” in Chapter 35.

int r_dead
When a rule is available for use, this field is 0. When the rule is removed with
inet_rtm_delrule, this field is set to 1. Every time a reference to the fib_rule
data structure is removed with fib_rule_put, the reference count is decre-
mented, and when it gets to zero the structure is supposed to be freed. At that
point, however, if r_dead is not set, it means that something wrong happened
(for instance, code has set the reference count incorrectly).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

978 | Chapter 36: Routing: Miscellaneous Topics

fib_result Structure
The fib_result structure is initialized by fib_semantic_match to the result of a rout-
ing lookup. See Chapters 33 and 35 (in particular, the section “Semantic Matching
on Subsidiary Criteria”) for more details. The fields in the structure are:

unsigned char prefixlen
Prefix length of the matching route. See the description of fz_order in the sec-
tion “fn_zone Structure.”

unsigned char nh_sel
Multipath routes are defined with multiple next hops. This field identifies the
next hop that has been selected.

unsigned char type
unsigned char scope

These two fields are initialized to the values of the fa_type and fa_scope fields of
the matching fib_alias instance.

_ _u32 network
_ _u32 netmask

These two fields are included in the data structure definition only when the ker-
nel is compiled with support for multipath caching. See the section “Weighted
Random Algorithm” in Chapter 33 for how they are used by the weighted ran-
dom multipath caching algorithm.

struct fib_info *fi
The fib_info instance associated with the matching fib_alias instance.

struct fib_rule *r
Unlike the previous fields, this one is initialized by fib_lookup. This field is
included in the data structure definition only when the kernel is compiled with
support for Policy Routing.

rtable Structure
IPv4 uses rtable data structures to store routing table entries in the cache.* To dump
the contents of the routing cache, you can view /proc/net/rt_cache (see the section
“Tuning via /proc Filesystem”), or issue the ip route list cache or route –C com-
mands. Here is a field-by-field description of the data structure:

union {...} u
This union is used to embed a dst_entry structure into the rtable structure (see
the section “Hash Table Organization” in Chapter 33). One of its fields, rt_next,
is used to link the rtable instances that collide into the same hash table’s bucket.

* IPv6 uses rt6_info, and DECnet (not covered in this book) uses dn_route.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 979

struct in_device *idev
Pointer to the IP configuration block of the egress device. Note that when the
route is used for ingress packets that are to be delivered locally, the egress device
is the loopback device.

unsigned rt_flags
The flags you can set in this bitmap are the RTCF_XXX values defined in include/
linux/in_route.h and listed in Table 36-11.

unsigned rt_type
Type of route. It indirectly defines the action to take when the route matches on
a routing lookup. The possible values for this field are the RTN_XXX macros
defined in include/linux/rtnetlink.h and listed in Table 36-12.

Table 36-11. Possible values for rt_flags

Flag Description

RTCF_NOTIFY Interested user-space applications are notified of any change to the routing entry via Netlink.
This option is not yet completely implemented. The flag is set with commands such as ip route
get 10.0.1.0/24 notify.

RTCF_REDIRECTED The entry has been added in response to a received ICMP_REDIRECT message (see ip_rt_
redirect and its caller).

RTCF_DOREDIRECT This flag is set by ip_route_input_slow when an ICMP_REDIRECT message must be
sent back to the source. ip_forward, described in detail in Chapter 20, decides whether to
actually send the ICMP redirect based on this flag and other information. For instance, if the
packet was source routed, no ICMP redirect would be generated.

RTCF_DIRECTSRC This flag is used mostly to tell the ICMP code that it should not reply to Address Mask Request
Messages. The flag is set every time a call to fib_validate_source says that the source of
the received packet is reachable with a next hop that has a local scope (RT_SCOPE_HOST). See
Chapters 25 and 35 for more detail.

RTCF_SNAT

RTCF_DNAT

RTCF_NAT

These flags are not used anymore by IPv4. They were used by the FastNAT feature that has been
removed from the 2.6 kernels (see the section “Recently Dropped Options” in Chapter 32).

RTCF_BROADCAST The destination address of the route is a broadcast address.

RTCF_MULTICAST The destination address of the route is a multicast address.

RTCF_LOCAL The destination address of the route is local (i.e., configured on one of the local interfaces). This
flag is also set for local broadcast and multicast addresses (see ip_route_input_mc).

RTCF_REJECT Not used. According to the syntax of IPROUTE2’s ip rule command, there is a reject keyword,
but it is not accepted.

RTCF_TPROXY Not used.

RTCF_DIRECTDST Not used.

RTCF_FAST Not used. This flag is obsolete; it used to be set to mark a route as eligible for Fast Switching, a
feature that has been dropped in the 2.6 kernels.

RTCF_MASQ Not used anymore by IPv4. The flag was supposed to mark packets coming from masqueraded
source addresses.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

980 | Chapter 36: Routing: Miscellaneous Topics

_ _u16 rt_multipath_alg
Multipath caching algorithm. It is initialized based on the algorithm configured
on the associated route (see fib_mp_alg in the section “fib_info Structure”).

_ _u32 rt_dst
_ _u32 rt_src

Destination and source IP addresses.

int rt_iif
ID of the ingress device. Its value is extracted from the net_device data structure
of the ingress device. For traffic generated locally (and hence not received on any
interface), the field is set to the ifindex field of the outgoing device. Do not con-
fuse this field with the iif field of the flowi data structure fl described later in
this chapter. The latter field is set to zero (loopback_dev) for locally generated
traffic.

_ _u32 rt_gateway
When the destination host is directly connected (it is on-link), rt_gateway
matches the destination address. When a gateway is needed to reach the destina-
tion, rt_gateway is set to the next hop gateway identified by the route.

struct flowi fl
Search key used for the cache lookups, described in the section “flowi Structure.”

Table 36-12. Possible values for rt_type

Route type Description

RTN_UNSPEC Defines a noninitialized value. This value is used, for instance, when removing an entry from
the routing table, because that operation does not require the type of entry to be specified.

RTN_LOCAL The destination address is configured on a local interface.

RTN_UNICAST The route is a direct or indirect (via a gateway) route to a unicast address. This is the default
value set by the ip route command when no other type is specified by the user.

RTN_MULTICAST The destination address is a multicast address.

RTN_BROADCAST The destination address is a broadcast address. Matching ingress packets are delivered locally
as broadcasts, and matching egress packets are sent as broadcasts.

RTN_ANYCAST Matching ingress packets are delivered locally as broadcasts, and matching egress packets are
sent as unicast. Not used by IPv4.

RTN_BLACKHOLE

RTN_UNREACHABLE

RTN_PROHIBIT

RTN_THROW

These values are associated with specific administrative configurations rather than destination
address types. See the section “Route Types and Actions” in Chapter 30.

RTN_NAT The source and/or destination IP address must be translated. Not used because the associated
feature, FastNAT, has been dropped in the 2.6 kernels.

RTN_XRESOLVE An external resolver will take care of this route. This functionality is currently not implemented.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 981

_ _u32 rt_spec_dst
RFC 1122-specific destination, explained in the section “Preferred Source
Address Selection” in Chapter 35.

struct inet_peer *peer
The inet_peer structure, introduced in Chapter 19, stores long-living informa-
tion about the IP peer, which is the host with the destination IP address of this
cached route. There is an inet_peer structure for each remote IP address to
which the local host has been talking in the recent past.

dst_entry Structure
The data structure dst_entry is used to store the protocol-independent information
concerning cached routes. L3 protocols keep their own, additional private informa-
tion in separate structures. (For example, IPv4 uses rtable structures.)

Here is the field-by-field description:

struct dst_entry *next
Used to link the dst_entry instances that collide into the same hash table’s
bucket. See Figure 33-1 in Chapter 33.

struct dst_entry *child
unsigned short header_len
unsigned short trailer_len
struct dst_entry *path
struct xfrm_state *xfrm

These fields are used by IPsec code.

atomic_t _ _refcnt
Reference count. See the section “Deleting DST Entries” in Chapter 33.

int _ _use
Number of times this entry has been used (i.e., number of times that a cache
lookup has returned it). Do not confuse this value with rt_cache_stat[smp_
processor_id()].in_hit: the latter (described in the section “Statistics”) repre-
sents the global number of cache hits for the device.

struct net_device *dev
Egress device (i.e., where to transmit to reach the destination).

short obsolete
Used to define the usability status of this dst_entry instance: 0 (the default
value) means the structure is valid and can be used, 2 means the structure is
being removed and therefore cannot be used, and -1 is used by IPsec and IPv6
but not by IPv4.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

982 | Chapter 36: Routing: Miscellaneous Topics

int flags
Set of flags. DST_HOST is used by TCP and means the route leads to a host (i.e., it
is not a route to a network or a broadcast/multicast address). DST_NOXFRM, DST_
NOPOLICY, and DST_NOHASH are used only by IPsec.

unsigned long lastuse
Timestamp used to remember the last time this entry was used. It is updated
when there is a successful cache lookup and it is used by the garbage collection
routines to select the best structures to free.

unsigned long expires
Timestamp that indicates when the entry will expire. See the section “Expira-
tion Criteria” in Chapter 33.

u32 metrics[RTAX_MAX]
Vector of metrics, used mostly by TCP. This vector is initialized with a copy of
the fib_info->fib_metrics vector (if it is defined), and default values are used
where needed. See the function rt_set_nexthop and Chapter 35. See Table 36-10
for a description of the vector’s possible values.

The RTAX_LOCK value needs a little explanation. RTAX_LOCK is not a metric but a
bitmap: when the bit in position n is set, it means that the metric with enum
value n has been configured with the lock option/keyword. In other words, a
command like ip route add … advmss lock … sets the 1<<RTAX_ADVMSS bit. When
a metric is locked, it cannot be changed by protocol events.

unsigned long rate_last
unsigned long rate_tokens

These two fields are used to rate limit two types of ICMP messages. See the sec-
tion “Egress ICMP REDIRECT Rate Limiting” in Chapter 33 and the section
“Routing Failure” in Chapter 35.

short error
When the fib_lookup API (used only by IPv4) fails, the error is saved into error
(with a positive sign) and used later by ip_error to decide how to handle the fail-
ure (i.e., to decide which ICMP to generate).

struct neighbour *neighbour
struct hh_cache *hh

neighbour is the data structure that contains the L3-to-L2 address mapping for
the next hop. hh is the cached L2 header. See the chapters in Part VI for details.

int (*input)(struct sk_buff*)
int (*output)(struct sk_buff**)

Functions used to process ingress and egress packets, respectively. See the sec-
tion “Cache Lookup” in Chapter 33.

_ _u32 tclassid
Routing table based classifier’s tag. See the section “Policy Routing and Routing
Table Based Classifier” in Chapter 35.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 983

struct dst_ops *ops
VFT whose functions are used to manipulate dst_entry structures.

struct rcu_head rcu_head
 Takes care of mutual exclusion.

char info[0]
This field can be useful as a pointer to the end of the data structure. It is only a
placeholder.

dst_ops Structure
The dst_ops structure is the interface between the protocol-independent cache and
L3 protocols that use a routing cache. See the section “Interface Between the DST
and Calling Protocols” in Chapter 33. Here is the field-by-field description:

unsigned short family
Address family. See AF_XXX values in include/linux/socket.h.

unsigned short protocol
Protocol ID. See ETH_P_XXX values in include/linux/if_ether.h.

unsigned gc_thresh
This field, used by the garbage collection algorithm, specifies the size (number of
buckets) of the routing cache. The initialization is done in ip_rt_init (the IPv4
routing subsystem initialization function).

int (*gc)(void)
atomic_t entries

gc is the garbage collection function invoked by dst_alloc when the number of
dst_entry instances (entries) already allocated by the protocol is greater than or
equal to the threshold gc_thresh.

struct dst_entry * (*check)(struct dst_entry *, _ _u32 cookie)
void (*destroy)(struct dst_entry *)
void (*ifdown)(struct dst_entry *, struct net_device *dev, int how)
struct dst_entry * (*negative_advice)(struct dst_entry *)
void (*link_failure)(struct sk_buff *)
void (*update_pmtu)(struct dst_entry *dst, u32 mtu)
int (*get_mss)(struct dst_entry *dst, u32 mtu)

See the section “Interface Between the DST and Calling Protocols” in
Chapter 33.

int entry_size
Size of the outer L3 routing cache structure (e.g., rtable for IPv4).

kmem_cache_t *kmem_cachep
Memory pool used to allocate routing cache elements.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

984 | Chapter 36: Routing: Miscellaneous Topics

flowi Structure
With the flowi data structure, it is possible to define classes of traffic based on the
combination of fields such as ingress and egress devices, parameters from the L3 and
L4 protocol headers, etc. It is commonly used as a search key for lookups, as a traffic
selector for IPsec policies, and other advanced uses. Here is a brief description of its
fields:

int oif
int iif

Egress and ingress device IDs.

union {...} nl_u
Union whose fields are structures that can be used to specify the values of L3
parameters. The protocols currently supported are IPv4, IPv6, and DECnet.

_ _u8 proto
L4 protocol.

_ _u8 flags
The only flag defined in this variable, FLOWI_FLAG_MULTIPATHOLDROUTE, originally
was used by the multipath code, but it is not used anymore.

union {...} uli_u
Union whose fields are mainly structures that can be used to specify the values of
L4 parameters. The protocols currently supported are TCP, UDP, ICMP, DEC-
net, and the IPsec suite.

Because the data structure is not flat, but contains unions and structs, the kernel pro-
vides a set of macros that can be used to access some of its fields.

rt_cache_stat Structure
rt_cache_stat stores the counters used for the statistics introduced in the section
“Statistics.” Here are its counters:

in_hit
out_hit

Number of received and locally generated packets, respectively, that have been
routed with a successful lookup on the routing cache (see ip_route_input and
ip_route_output_key).

in_slow_tot
in_slow_mc

in_slow_tot is the number of packets that required a lookup on the routing table
because the cache lookup failed (see ip_route_input_slow). Only successful rout-
ing table lookups are counted. The counter is called slow because a lookup on
the routing tables can be much slower than a lookup on the routing cache. This

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Featured in This Part of the Book | 985

counter includes broadcasts, but it does not include multicast traffic, which is
counted in in_slow_mc.

out_slow_tot
out_slow_mc

out_slow_tot and out_slow_mc play the same role as in_slow_tot and in_slow_mc
for the egress traffic

in_no_route
Number of ingress packets that could not be forwarded because the routing
table did not know how to reach the destination IP address (which is possible
only if no default gateway is configured or usable). See ip_route_input_slow.
There is no counter to keep track of the locally generated packets that could not
be sent for lack of a route.

in_brd
Number of broadcast packets received correctly (no sanity check failed). There is
no counter for the number of transmitted broadcasts.

in_martian_dst
in_martian_src

These two counters represent the number of packets that were dropped because
the sanity check failed on the destination or source IP addresses, respectively.
Examples of sanity checks are that the source IP address cannot be multicast or
broadcast and that the destination address cannot belong to the so-called zero-
network—that is, it cannot look like 0.n.n.n.

gc_total
gc_ignored
gc_goal_miss
gc_dst_overflow

These four fields are updated by rt_garbage_collect, described in the section
“rt_garbage_collect Function” in Chapter 33.

gc_total keeps track of the number of times rt_garbage_collect is invoked.

gc_ignored is the number of times rt_garbage_collect returns immediately
because it was called too recently.

gc_goal_miss is the number of times the cache has been scanned by rt_garbage_
collect without meeting the goal set at the beginning of the function.

gc_dst_overflow is the number of times gc_garbage_collect fails by not reduc-
ing the number of cache entries below the ip_rt_max_size threshold.

in_hlist_search
out_hlist_search

These are updated by the routines used for the cache lookups, ip_route_input
and _ _ip_route_output_key, respectively. They represent the number of cache
elements that have been tested and did not match (not just the number of cache
misses).

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

986 | Chapter 36: Routing: Miscellaneous Topics

ip_mp_alg_ops Structure
ip_mp_alg_ops represents the interface between the routing cache and the Multipath
caching feature. It consists of the following function pointers:

void (*mp_alg_select_route) (const struct flowi *flp, struct rtable *rth,
struct rtable **rp)
void (*mp_alg_flush) (void)
void (*mp_alg_set_nhinfo) (_ _u32 network, _ _u32 netmask, unsigned char
prefixlen, const struct fib_nh *nh)
void (*mp_alg_remove) (struct rtable *rth)

These functions are invoked by the algorithm-independent wrappers described
in the section “Interface Between the Routing Cache and Multipath” in
Chapter 33.

Functions and Variables Featured in This Part
of the Book
Table 36-13 summarizes the main functions, variables, and data structures intro-
duced or referenced in the chapters of this book covering the routing subsystem. You
can find more in the section “Generic Helper Routines and Macros” and “Helper
Routines” in Chapter 32, and the two “Helper Routines”, in Chapter 35.

Table 36-13. Functions, variables, and data structures in the routing subsystem

Functions

for_ifa, endfor_ifa

for_primary_ifa, endfor_ifa

Macros used to browse the IPv4 addresses configured on a network device. See
the section “Primary and Secondary IP Addresses” in Chapter 32.

FIB_RES_XXX Set of macros used to access the fields of the fib_result structure. See the
section “Generic Helper Routines and Macros” in Chapter 32.

LOOPBACK

ZERONET

MULTICAST

LOCAL_MCAST/BADCLASS

Macros used to recognize special IP addresses. See the section “Generic Helper
Routines and Macros” in Chapter 32.

fib_hash_lock

fib_info_lock

fib_rules_lock

rt_flush_lock

fib_multipath_lock

alg_table_lock

Locks used to protect various pieces of data. See the section “Global Locks” in
Chapter 32.

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Functions and Variables Featured in This Part of the Book | 987

ip_rt_init

ip_fib_init

devinet_init

fib_rules_init

fib_hash_init

dst_init

Initialization routines. See the section “Routing Subsystem Initialization” in
Chapter 32.

dst_alloc Allocate an entry for the routing cache. See the section “Cache Entry Allocation
and Reference Counts” in Chapter 33.

rt_periodic_timer

rt_secret_timer

Timers. See the sections “Garbage Collection” and “Flushing the Routing Cache”
in Chapter 33.

fib_netdev_event

fib_inetaddr_event

Handlers for the netdev_chain and inetaddr_chain notification chains.
See the section “External Events” in Chapter 32.

fib_add_ifaddr

fib_del_ifaddr

Used to update the routing table upon the addition or removal of an IP address
from the configuration of a local network device. See the sections “Adding an IP
address” and “Removing an IP address” in Chapter 32.

fib_magic Used by the kernel to insert routes under specific conditions. See the section
“Routes Inserted by the Kernel: The fib_magic Function.”

fib_rules_detach

fib_rules_attach

Enables and disables routing policies when network devices are registered and
unregistered, respectively. See the section “Impacts on the policy database” in
Chapter 32.

rtmsg_fib Used to send notification on a specific Netlink multicast group when routes are
added or removed. See the section “Netlink Notifications” in Chapter 32.

ip_route_input

_ _ip_route_output_key ip_
route_output_flow

ip_route_output_key

ip_route_connect

ip_route_newports

The first two functions are routing cache lookup routines, and the others are
wrappers around them. See the section “Cache Lookup” in Chapter 33.

ip_route_input_slow

ip_route_output_slow

Routing table lookup routines. See Chapter 35.

ip_route_input_mc Lookup routines used for multicast destinations.

ip_mkroute_input

ip_mkroute_input_def

ip_mkroute_output

ip_mkroute_output_def

fib_select_default

fib_select_multipath

Various support routines used by ip_route_input_slow and ip_route_
output_slow. See Chapter 35.

fib_lookup

fn_hash_lookup

fib_semantic_match

Routines called at different stages during a routing table lookup. See the section
“High-Level View of Lookup Functions” in Chapter 35.

Table 36-13. Functions, variables, and data structures in the routing subsystem (continued)

Functions

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

988 | Chapter 36: Routing: Miscellaneous Topics

fn_hash_insert Add a new route to a routing table. See the section “Adding a Route” in Chapter 34.

fn_hash_delete Remove a route from a routing table. See the section “Deleting a Route” in
Chapter 34.

rt_intern_hash Add an entry to the routing cache. See the section “Adding Elements to the
Cache” in Chapter 33.

multipath_alg_register

multipath_alg_unregister

Register and unregister a multipath caching algorithm. See the section “Register-
ing a Caching Algorithm” in Chapter 33.

multipath_select_route

multipath_flush

multipath_set_nhinfo

multipath_remove

Various routines used to manage cache entries associated with multipath routes.
See the section “Interface Between the Routing Cache and Multipath” in
Chapter 33. More routines are listed in the section “Helper Routines” in the same
chapter.

rt_free

dst_free

Free an rtable and a dst_entry structure, respectively.

rt_garbage_collect

rt_may_expire

Garbage collection routines used for the routing cache. See the section “rt_
garbage_collect Function” in Chapter 33.

dst_input

dst_output

Complete the reception and transmission of a packet, respectively. See the sec-
tion “Cache Lookup” in Chapter 33. See also the section “Setting Functions for
Reception and Transmission” in Chapter 35.

rt_garbage_collect

dst_destroy

dst_ifdown

dst_negative_advice

dst_link_failure

dst_set_expires

Routines used for the initialization of the dst_ops instance associated with the
IPv4 protocol. See the section “Interface Between the DST and Calling Protocols”
in Chapter 33.

dst_dev_event Handler used by the DST subsystem to process notifications from the netdev_
chain notification chain. See the section “External Events” in Chapter 32.

RT_CACHE_STAT_INC Update per-CPU statistics. See the section “Statistics.”

Variables

ip_fib_local_table

ip_fib_main_table

Routing tables. See the section “The Two Default Routing Tables: ip_fib_main_
table and ip_fib_local_table” in Chapter 34.

rt_hash_table Routing cache. See Chapter 33.

rt_hash_mask Size of the routing cache (i.e., number of buckets of the hash table).

dst_garbage_list List of dst_entry instances that cannot be removed because they are still ref-
erenced. See Chapter 33.

fib_tables List of fib_table instances. See Figure 34-1 in Chapter 34.

fib_rules List of routing policies. See the section “fib_lookup with Policy Routing” in
Chapter 35.

fib_info_cnt Number of outstanding fib_info instances. See the section “Dynamic resizing
of global hash tables” in Chapter 34.

fib_info_hash

fib_info_laddrhash

Hash tables used to search fib_info instances. See the section “Organization
of fib_info Structures” in Chapter 34.

Table 36-13. Functions, variables, and data structures in the routing subsystem (continued)

Functions

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Files and Directories Featured in This Part of the Book | 989

Files and Directories Featured in This Part of the Book
Figure 36-6 lists the files and directories referred to in the chapters in Part VII.

fib_info_devhash Hash table used to search fib_nh instances. See the section “Organization of
Next-Hop Router Structures” in Chapter 34.

fib_props Vector whose elements are used by the lookup routine fib_semantic_
match to map route types to return values. See the section “Return value from
fib_semantic_match” in Chapter 35.

Data structures

fib_table structure

fn_zone structure

fib_node structure

fib_alias structure

fib_info structure

fib_nh structure

fib_rule structure

rtable structure

dst_entry structure

dst_ops structure

flowi structure

rt_cache_stat structure

ip_mp_alg_ops structure

Key data structures used by the routing code. They are described in detail in the
section “Data Structures Featured in This Part of the Book.”

Figure 36-6. Files and directories featured in this part of the book

Table 36-13. Functions, variables, and data structures in the routing subsystem (continued)

Functions

Root
(usually /usr/src/linux)

include

net
ip_fib.h
route.h
dst.h
ip_mp_alg.h

linux

net

fib_frontend.c
fib_hash.c
fib_rules.c
fib_semantics.c
route.c
ipmr.c
ip_input.c
ip_forward.c
ip_output.c
multipath.c
multipath_drr.c
multipath_random.c
multipath_rr.c
multipath_wrandom.c

ipv4
in_route.h
route.h
mroute.h
ip_mp_alg.h

dst.c
core

www.ebooksworld.in

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

991

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers
802.1d device (see bridge)
802.1D-1998 standard, 309
802.1D-2004 standard, 309
802.1Q device, 101, 102
802.1Q-2002 standard, 309
802.1s standard, 309
802.1w standard, 309
802.3 standard, compared to Ethernet

protocols, 281–287
802.4 device (see Token Bus device)
802.5 device (see Token Ring 4 MB/s device)

A
aarp_rcv function, 291
accept_fastpath function pointer, net_device

structure, 56
accept_redirects file, 963, 965
accept_redirects variable, 963
accept_source_route file, 963, 965
accept_source_route variable, 963
access bridges, 312
addbr command, brctl utility, 392, 395
addif command, brctl utility, 395
addifr command, brctl utility, 392
addr field

bridge_id structure, 399
cork structure, 565
net_bridge_fdb_entry structure, 399

addrconf.c file, 44
address class, 783
address learning by bridge, 302–305
Address Resolution Protocol (see ARP)

addr_len field, net_device structure, 47, 142
AF_PACKET sockets, 268
af_packet_priv field, packet_type

structure, 280
ageing_time field, net_bridge structure, 401
ageing_timer field, net_bridge_fdb_entry

structure, 399
age_list field, net_bridge structure, 401
age_list structure, 360
aging

of addresses, by bridge, 304, 336, 341
of BPDUs, 326

Aging timer, STP, 336, 341
AH (IP Authentication Header

Protocol), 570
alg_table_lock lock, 844, 986
aliasing interfaces, 101, 792
allmulti field, net_device structure, 51
alloc_etherdev function, 139
alloc_fcdev function, 139
alloc_fddidev function, 139
alloc_hippi_dev function, 139
alloc_irdadev function, 139
alloc_netdev function, 138, 140, 145, 172
allocs field, neigh_statistics structure, 771
alloc_skb function, 33–35
alloc_trdev function, 139
alloc_xxxdev functions, 172
anycast_delay field, neigh_parms

structure, 767
anycast_delay file, 755
anycast_delay variable, 755
AppleTalk Address Resolution Protocol, 291
AppleTalk Datagram Delivery Protocol, 291

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

992 | Index

AppleTalk protocol, xxi
application layer

communication choices made by, 271
data units for (messages), 267

app_probes field, neigh_parms
structure, 767

app_probes variable, 755
app_solicit file, 755
arch_initcall macro, 126
Arkin, Ofir (“ICMP Usage in

Scanning”), 585
ARP (Address Resolution Protocol)

compared to ND, 748
compile-time options, 708
configuration, 708–714
destination address types, 701
devices needing, 720
devices not needing, 720
events generated, 743
events received, 742
examples, 740–742
flux problem, 707
gratuitous ARP, 702–707
initialization, 714–716
LVS (Linux Virtual Servers) and, 709
packet format, 700–702
proxying, 735–740
receiving packets, 722, 726–734
responding from multiple interfaces, 707
routing and, 800
RTO_ONLINK flag and, 873
solicitation requests, 724
transaction, example of, 702
transmitting packets, 722–726
Wake-on-LAN (WOL) events, 743

ARP cache
arpd daemon implementing, 746
binding routing cache to, 868
updated with gratuitous ARP, 704
viewing contents of, 714

arp command, 749, 750, 752
arp file, 714, 753
ARP over IP protocol, 687
ARP protocol, 635

direct calls to, 634
initialization and cleanup, 687
instance of neigh_ops structure for, 657
proxying for, 637–640

arp_announce file, 757
ARP_ANNOUNCE option, 709, 725
arp_bind_neighbour function, 868
arp_broken_ops structure, 718

arp_cache file, 753
arp_constructor function, 719, 720
arpd daemon, 665, 744–746
ARPD option, 708
arp_direct_ops structure, 718
arp_error_report function, 743
arp_filter file, 757
ARP_FILTER option, 711
arp_find function, 773
arp_fwd_proxy function, 714
arp_generic_ops structure, 718
arphdr structure, 700
arp_hh_ops structure, 718
arp_ignore file, 757
ARP_IGNORE option, 707, 709
arping command, 18, 704
arp_init function, 687, 714–716
ARPOP_REPLY packets, 701, 727, 733–734
ARPOP_REQUEST message type, 702
ARPOP_REQUEST packets, 701, 727,

729–732, 734
arp_parms field, in_device structure, 562
arp_process function, 711, 727–734, 735
arp_queue field, neighbour structure, 696,

761
arp_rcv function, 281, 722, 726, 773
arp_req_delete function, 752
arp_req_set function, 752
arp_send function, 722
arp_solicit function, 709, 724
arp_tbl structure, 715, 761, 773
ARP_UNSOLICITED option, 708
arrays (vectors), 3
asymmetric routes, 783, 828
asynchronous garbage collection, 8

neighboring infrastructure, 675, 677
routing cache, 796, 891

atalk_ptr field, net_device structure, 50
atalk_rcv function, 276, 291
atm_clip_exit function, 687
atm_clip_init function, 687
attribution for code examples, xxii
autoconfig field, ipv4_config structure, 564
avg_blog field, softnet_data structure, 207,

208, 226, 227
AVL data structure, 536
avl_height field, inet_peer structure, 561
avl_left field, inet_peer structure, 561
avl_right field, inet_peer structure, 561
AX25 device, tx_queue_len value for, 52
ax25_kiss_rcv function, 276
ax25_ptr field, net_device structure, 50

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 993

B
backlog queue, 223, 231–235
backlog_dev field, softnet_data

structure, 207
BADCLASS macro, 843, 986
base_addr field, net_device structure, 44,

142
base_reachable_time field, neigh_parms

structure, 766
base_reachable_time file, 755
base_reachable_time variable, 755
bf_fdb_change_addr function, 404
BH (see bottom half)
Big Endian format, 15
big_endian.h file, 16
BIRD routing protocol daemon, 820, 860
black hole route, 794
bonding device, 43, 101

notifications on, 170
processing of ingress frames, 237
tx_queue_len value for, 53

books (see publications)
BOOTP protocol, IP configuration

using, 545
boot-time initialization routines, 128–130
boot-time kernel options, 85, 93, 116–122
boot-time PCI device activities, 112
bottom half (BH), 4
bottom half handlers, 184–186

implementations of, 186
old style, concurrency and, 187
requirements for, 190
software interrupts for (version 2.4 and

higher), 193–196
tasklets for, 196–198
version 2.2 and earlier, 190–193

BPDUs (Bridge Protocol Data Units), 316,
323–328

aging of, 326
compared to data frames, 376
configuration BPDUs, 323, 324–326
encapsulation of, 344
ingress BPDUs, handling, 347, 383
processing of, 371–372
TCN BPDU, 323
transmitting, 385

bpq_rcv function, 282
br field, net_bridge_port structure, 399
br_add_bridge function, 361, 392, 403
br_add_if function, 361, 364, 374, 392, 403
br_become_designated_port function, 381
br_become_root_bridge function, 381, 389

br.c file, 360
br_change_mtu function, 363
br_config_bpdu structure, 360, 404
br_configuration_update function, 381, 386
brctl utility, 391

commands, list of, 391
configuring bridge devices and ports, 395
creating bridge devices and ports, 395

br_deinit function, 361, 403
br_del_bridge function, 361, 364, 392, 403
br_del_if function, 361, 392, 403
br_deliver function, 372
br_designated_port_selection function, 381
br_dev_close function, 363
br_dev_ioctl function, 363
br_dev_open function, 363, 367
br_dev_setup function, 363
br_dev_stop function, 368
br_dev_xmit function, 363, 380
br_fdb_cache variable, 404
br_fdb_change_addr function, 374
br_fdb_cleanup function, 375, 404
br_fdb_delete_by_port function, 375
_ _br_fdb_get function, 373, 404
br_fdb_get function, 373, 374, 404
br_fdb_init function, 373, 403
br_fdb_insert function, 366, 374, 404
br_fdb_put function, 374
br_fdb_update function, 375, 404
br_features_recompute function, 367
br_flood function, 372, 404
br_forward function, 372, 404
br_forward_delay_timer_expired

function, 388, 389
br_get_port function, 382
br_get_tick function, 386, 404
br_handle_bridge function, 375
br_handle_frame function, 376, 404
br_handle_frame_finish function, 376, 378,

404
br_handle_frame_hook function

pointer, 360
br_handle_frame_hook variable, 404
br_hello_timer_expired function, 388
br_hold_timer_expired function, 388
bridge, 101, 297–299

access bridges, 312
adding ports to, 364
address learning by, 302–305
aging mechanism for addresses, 304, 336,

341

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

994 | Index

bridge (continued)
between LANs of different

technologies, 302
binding real device to, 355
broadcast address, handling, 304
compared to switch, 299
creating, 361, 362, 395
cut-through bridge, 298
deleting, 364
deleting ports from, 367
disabling, 363, 367
enabling, 363, 367
enabling STP on, 383
flooding by, 304
forwarding database for, 373–375
frames addressed to, 299
garbage collection timer for, 375
host for, 300
loop topology not working with, 307
merging LANs using, 300
multicast address, handling, 304
multiple, advantages of, 314
multiple bridge scenarios, 305–309
naming, 362
net_device field for, 53
notifying of topology change, 342
passive learning by, 302
setup routine for, 362
store and forward bridge, 298
transparency of, 305, 307
tx_queue_len value for, 53

bridge ID, STP, 321, 322, 359, 382
bridge MAC address, 382
bridge ports, 311

adding to bridge, 364
changing state of, 340, 370
creating, 361, 395
deleting, 367
disabling, 368–369
enabling, 368–369
RSTP, 351
STP, 318–320

bridge priority, STP, 321, 322, 323
Bridge Protocol Data Units (see BPDUs)
bridge timers, STP, 336, 388
bridged network, 311
bridge_fdb_entry structure, 404
bridge_forward_delay field, net_bridge

structure, 402
bridge_hello_time field, net_bridge

structure, 402
bridge_id field, net_bridge structure, 401

bridge_id structure, 359, 398, 404
bridge_max_age field, net_bridge

structure, 402
bridging

abstraction of bridge device, 355–357
configuration, 396
configuring, user-space tools

for, 391–396
data structures for, 359–360, 398–402,

404
data structures for, list of, 404
files and directories for, list of, 405
frame processing by, 371–372
functions for, list of, 403
ingress traffic, handling, 375–380
initialization of code for, 360
performance of, 355
solicitation request processing and, 641
statistics on, 398
transmission using, 380
variables for, list of, 404

Bridging-Firewalling, 360
br_init function, 360, 403
br_initial_port_cost function, 366
br_ioctl_hook function pointer, 360
br_is_designated_for_some_port

function, 381
br_is_designated_port function, 381
br_is_root_bridge function, 381
br_make_blocking function, 370, 388, 404
br_make_forwarding function, 370, 404
br_make_port_id function, 366
BR_MAX_PORTS variable, 404
br_message_age_timer_expired

function, 386, 388
br_min_mtu function, 403
br_netfilter_init function, 360, 403
broadcast address, 284

bridge handling of, 304
static translation of, 633

broadcast field, net_device structure, 47, 142
broadcasts

ARP handling, 702
directed broadcasts, 788
ICMP, 607
ignoring, 621
limited broadcasts, 930
local delivery of, 929
packet, testing for, 464
packet type for, 284
subnet broadcasts, 930

Brooks, Frederick P. (quote about data), 22

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 995

br_pass_frame_up function, 378, 379, 404
br_pass_frame_up_finish function, 379, 404
br_port field, net_device structure, 53, 376
br_port_state_selection function, 369, 382
br_private.h file, 360
br_private_stp.h file, 360
br_received_config_bpdu function, 385,

386, 404
br_received_tcn function, 389
br_received_tcn_bpdu function, 385, 404
br_record_config_information function, 382
br_record_config_timeout_values

function, 382
br_reply function, 385, 404
br_root_selection function, 381
br_send_bpdu function, 404
br_set_tick function, 386, 404
br_should_become_designated_port

function, 381
br_should_become_root_port function, 381
BR_STATE_BLOCKING state, 370
BR_STATE_DISABLED state, 366
BR_STATE_FORWARDING state, 369,

370, 376, 389
BR_STATE_LEARNING state, 370, 389
BR_STATE_LISTENING state, 370
BR_STATE_XXX enumeration list, 399
br_stp_change_bridge_id function, 386, 387
br_stp_disable_bridge function, 403
br_stp_disable_port function, 368, 386, 387,

403
br_stp_enable_bridge function, 367, 403
br_stp_enable_port function, 368, 403
br_stp_handle_bpdu function, 376, 383,

386, 404
br_stp_port_timer_init function, 388, 403
br_stp_recalculate_bridge function, 403
br_stp_recalculate_bridge_id function, 363,

366, 382
br_stp_set_bridge_priority function, 386,

387, 392
br_stp_set_path_cost function, 386, 392
br_stp_set_port_priority function, 392
br_stp_timer_init function, 375, 388, 403
br_supersedes_port_info function, 381
br_sysfs_addbr function, 403
br_sysfs_addif function, 366, 403
br_sysfs_delbr function, 403
br_sysfs_removeif function, 403
br_tcn_timer_expired function, 388
br_topology_change_acknowledge

function, 382

br_topology_change_acknowledged
function, 382

br_topology_change_detection function, 382
br_topology_change_timer_expired

function, 388
br_transmit_config function, 385, 386, 404
br_transmit_tcn function, 385, 404
br_uninit function, 360
buffers (see sk_buff structure)
bug catching, 17
BUG_ON macro, 17
BUG_TRAP macro, 17
byteorder.h file, 16
byte-ordering conversions, 15
bytes, 3

C
caching

hash tables implementing, 6
in neighboring subsystem, 666–668
L2 headers, 683–687
memory caches, 5
multipath caching, 836, 873–878, 943
multipath routing, 811–812
(see also ARP cache; DST; routing cache)

call_usermodehelper function, 96, 104
Carrier Sense Multiple Access with Collision

Detection protocol
(CSMA/CD), 630–631

cb field, sk_buff structure, 29
change_mtu function pointer, net_device

structure, 56, 142
change_nexthops macro, 842, 942
channeling, 779
check virtual function, dst_ops

structure, 880, 983
checksum field, ICMP header, 587
CHECKSUM_HW flag, 442, 443
CHECKSUM_NONE flag, 441, 443
checksums, 432–438

algorithms for, 432
for frame transmission, 250
functions for, 434–436
L3 checksum, 473
L4 checksum, 437–438, 473, 502, 533
net_device structure fields for, 441
reliability of, 432
sk_buff structure fields for, 441–443
status values for, 441
updating, when required, 433

CHECKSUM_UNNECESSARY flag, 442,
443

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

996 | Index

child field, dst_entry structure, 981
class A addresses, 784
class B addresses, 784
class C addresses, 784
class D addresses, 784
class E addresses, 784
class_dev field, net_device structure, 54
cleanup_module function, 122, 135
cleanup_once function, 540
Click router, xxi
clip_tbl structure, 761, 773
cloned field, sk_buff structure, 30, 40
cnf field, in_device structure, 562
cng_level field, softnet_data structure, 207,

208, 226, 227
code examples, use of, xxii
code field, ICMP header, 586
coding patterns, 4–18

bug catching, 17
byte-ordering conversions, 15
condition checks, compile-time

optimization for, 13
conditional directives, 11–13
function pointers, 8–10
garbage collection, 8
goto statement, 10
hash tables, 6
measuring time, 17
memory caches, 5
mutual exclusion, 14–15
reference counts, 6
statistics, 17
vector definitions, 11
VFT (virtual function table), 10

collisions, 630
compile options, finding symbols associated

with, 24
compiler directives, conditional, 11–13
completion_queue field, softnet_data

structure, 207
components (see subsystems)
concurrency, interrupts and, 186
condition checks, compile-time optimization

for, 13
conditional directives, 11–13
CONFIG_ARPD option, 708
CONFIG_HOTPLUG symbol, 133
CONFIG_IP_ACCEPT_UNSOLICITED_

ARP option, 708
CONFIG_IP_MROUTE symbol, 831
CONFIG_IP_MULTIPLE_TABLES

symbol, 832

CONFIG_IP_MULTIPLE_TABLES
variable, 911

CONFIG_IP_PIMSM_V1 symbol, 831
CONFIG_IP_PIMSM_V2 symbol, 831
CONFIG_IP_ROUTE_FWMARK

symbol, 832
CONFIG_IP_ROUTE_MULTIPATH

symbol, 832
CONFIG_IP_ROUTE_MULTIPATH_

CACHED symbol, 832
CONFIG_IP_ROUTE_NAT symbol, 833
CONFIG_IP_ROUTE_VERBOSE

symbol, 833
CONFIG_MODULE symbol, 132
CONFIG_NET_CLS_ACT symbol, 24
CONFIG_NET_FASTROUTE symbol, 833
CONFIG_NET_HW_FLOWCONTROL

symbol, 833
CONFIG_NET_SCHED symbol, 24
config_pending field, net_bridge_port

structure, 400
configuration

bridging, 396
changes to, serialization used for, 71
device initialization, 103
Ethernet, 293
frame reception, 262
ICMPv4, 620
initialization options for, 85, 93
IPv4, 553–555
neighboring subsystem, 752–757
PCI layer, 114
routing, 958–966
Token Ring, 293
virtual devices, 102

configuration BPDUs, 323, 324–326
ingress, handling, 347
ingress, processing, 385
priority vector, 325
transmitting, 346, 386
when to transmit, 326

configuration updates, STP, 386
CONFIG_WAN_ROUTER symbol, 832
confirmed field, neighbour structure, 759
congestion control algorithms, fragmentation

incompatible with, 424
congestion management for reception of

frames, 225–228
connected_output function, neigh_ops

structure, 770
constructor function, neigh_table

structure, 672, 763

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 997

contact information for this book, xxiii
conventions used in this book, xxii
core_initcall macro, 126
cork structure, 440, 508, 564
cpu_collision field, netif_rx_stats

structure, 262
CPU_DEAD notification, 204
CPU_ONLINE notification, 203
CPU_PREPARE_UP notification, 204
CPU_UP_CANCELLED notification, 204
CPU_UP_PREPARE notification, 203
cscope tool, 19
CSMA/CD (Carrier Sense Multiple Access

with Collision Detection
protocol), 630–631

csum field, sk_buff structure, 30, 441–443
csum_add function, 533
csum_block_add function, 436
csum_block_sub function, 436
csum_fold function, 435
csum_partial function, 436
csum_tcpudp_magic function, 436
ctl_data structure, 62
ctl_table structure, 62

initializing, 64
instances of, location of, 67

cut-through bridge, 298

D
daddr field, ipq structure, 559
_data field, ip_options structure, 557
data field, sk_buff structure, 26
data structures, 22

(see also specific data structures)
data units, terminology for, 4, 267
data_len field, icmp_bxm structure, 602
data_len field, sk_buff structure, 26
datalink_proto structure, 291, 293
dataref field, sk_buff structure, 40
dead code, 19
dead field

in_device structure, 562
neighbour structure, 760
neigh_parms structure, 767

debugging, bug catching macros for, 17
DECnet protocol, xxi, 687
default gateway, 788

selection of, 939, 940
selection of, with policy routing, 946

default route, 779

defragmentation of packets (see
fragmentation/defragmentation of
packets)

delay_first_probe_time file, 755
delay_probe_time field, neigh_parms

structure, 766
delay_probe_time variable, 755
delbr command, brctl utility, 395
del_br function, 364
delbrr command, brctl utility, 392
delif command, brctl utility, 395
delifr command, brctl utility, 392
Denial of Service (DoS) attacks

directed broadcasts used for, 788
fragmentation timer for, 424, 512
randomization of hash table for, 6, 666
randomization of timer delays and, 95

dequeue function, 246
designated bridges, STP, 318
designated port, STP, 320, 330
designated_bridge field, net_bridge_port

structure, 400
designated_cost field, net_bridge_port

structure, 400
designated_port field, net_bridge_port

structure, 400
designated_root field

net_bridge structure, 401
net_bridge_port structure, 400

Destination Address field, IP header, 414
destination cache (see DST)
Destination NAT (DNAT), 736
Destination Service Access Point

(DSAP), 268, 287, 290
destination-based proxying, 639
destroy virtual function, dst_ops

structure, 880, 983
destroys field, neigh_statistics structure, 771
destructor function pointer

neigh_ops structure, 769
net_device structure, 55, 156, 169
sk_buff structure, 27

dev field
dst_entry structure, 981
in_device structure, 562
neighbour structure, 759
net_bridge structure, 401
net_bridge_port structure, 399
packet_type structure, 279
sk_buff structure, 27

dev file, 103
dev_activate function, 160

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

998 | Index

dev_add_pack function, 279, 280, 293, 444
dev_addr field, net_device structure, 47, 363
dev_alloc_name function, 139, 172
dev_alloc_skb function, 33–35
dev_base variable, 43, 145, 146, 172
dev_base_lock variable, 172
dev_boot_phase variable, 96, 104
dev_boot_setup variable, 135
dev_close function, 160
dev_cpu_callback function, 95
dev_deactivate function, 161
dev_ethtool function, 168, 172
_ _devexit macro, 127, 132, 134
_ _devexitdata macro, 127, 134
_ _devexit_p macro, 127, 134
dev_get_by_index function, 147
dev_get_by_name function, 147
dev_hold function, 158, 172
device driver

disabling transmissions, 89
initializations by, 143
loading, causing registration of

device, 137
notifying kernel of frame

reception, 178–183
unloading, causing unregistration of

device, 138
device round-robin algorithm, multipath

routing, 811, 812, 878
device status changes, handling, 856–858
device-based proxying, 639
device_initcall macro, 126
devices (see network devices; virtual devices)
dev_id field

irqaction structure, 92
net_device structure, 44

dev_index_head hash table, 146, 172
devinet_init function, 845, 987
devinet_sysctl_forward function, 967
_ _devinit macro, 127, 132, 134
_ _devinitdata macro, 124, 127, 132, 134
dev_ioctl function, 362
dev_kfree_skb function, 35, 264
dev_kfree_skb_any function, 264
dev_kfree_skb_irq function, 255, 257, 264
dev_mcast file, 103
dev_mcast_init function, 95, 103
dev_name_head hash table, 146, 172
dev_new_index function, 155
dev_open function, 159
dev_proc_init function, 95, 103
dev_put function, 158, 172

dev_queue_xmit function, 239, 243,
249–255, 264

bridging code using, 372
connected to L3 protocols via neighboring

layer, 655
neighboring subsystem and, 635, 660,

693, 772
dev_remove_pack function, 281, 293
dev_set_mtu function, 366
dev_set_promiscuity function, 366
dev_shutdown function, 157
dev_watchdog function, 259
dev_weight file, 263
DF (Don’t Fragment) field, IP header, 413,

423, 507
DHCP protocol

duplicate addresses and, 703
IP configuration using, 545, 632

DiffServ Code Point (see DSCP)
directed broadcasts, 788
directives, conditional, 11–13
directories

bridging, list of, 405
component initialization, list of, 135
device registration and initialization, list

of, 173
ICMP, list of, 622
IPv4, list of, 568
L4 protocols, list of, 583
neighboring subsystem, list of, 774
network device initialization, list of, 105
networking, list of, 66
notification chains, list of, 83
PCI layer, list of, 115
protocol handlers, list of, 294
routing, list of, 989
transmission and reception, list of, 265

disabling network devices, 137
divert field, net_device structure, 53
Diverter

allocating configuration block for, 155
net_device fields for, 53
processing ingress frames, 238

dma field, net_device structure, 44
DMA, Scatter/Gather, 155
DMA transmission, 89
dma.c file, 44
DNAT (Destination NAT), 736
dn_dev_create function, 768
dn_neigh_cleanup function, 687
dn_neigh_init function, 687

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 999

dn_neigh_table structure, 761, 773
dn_ptr field, net_device structure, 50
dn_route_rcv function, 282
do_basic_setup function, 85
do_bottom_half function, 192
do_initcalls macro, 85, 128, 134
do_ioctl function pointer, net_device

structure, 56, 142, 168
do_IRQ function, 192, 195, 264
Don’t Fragment (DF) field, IP header, 413,

423, 507
DOS attacks (see Denial of Service attacks)
_ _do_softirq function, 200
do_softirq function, 199, 202, 264
dropped field, netif_rx_stats structure, 262
drr_select_route function, 878
DSAP (Destination Service Access

Point), 268, 287, 290
DSCP (DiffServ Code Point), 412, 803
DST, 836, 861

external events, handling, 883
initialization, 95
interface to calling protocols, 879–885
interface to IPsec, 882

dst field
net_bridge_fdb_entry structure, 399
sk_buff structure, 29, 445, 450

dst_alloc function, 865, 880, 987
DST_BALANCED flag, 875
dst.c file, 879
dst_confirm function, 649
dst_destroy function, 880, 893, 988
dst_dev_event function, 988
dst_discard_in function, 921, 923
dst_discard_out function, 921, 923
dst_entry structure, 836, 981–983

garbage collection for, 886
interface to higher layers, 879
neighboring subsystem and, 652
routing cache and, 862, 864

dst_free function, 893, 988
dst_garbage_list variable, 894, 988
dst_gc_timer timer, 894
dst_gc_timer_expires variable, 894
dst_gc_timer_inc variable, 894
dst.h file, 879
dst_ifdown function, 881, 988
dst_init function, 95, 987
dst_input function, 453, 988
dst_link_failure function, 881, 988
dst_negative_advice function, 881, 988
dst_ops structure, 836, 879–881, 983

dst_output function, 471, 474, 507, 566, 988
dst_pmtu function, 445
dst_release function, 893
dst_set_expires function, 892, 988
dtime field, inet_peer structure, 561
dynamic macro definition, 132–134
dynamic probing for device driver, 109
dynids field, pci_driver structure, 108

E
early_param macro, 118
ebtables framework, 376
econet_rcv function, 276
ec_ptr field, net_device structure, 50
editors, 19
egress (output), 4

(see also transmission)
egress queues, 212, 241–243
Emacs editor, 19
embedded devices, Linux used for, xv
enable_wake function, pci_driver

structure, 108
Encapsulating Security Payload Protocol

(ESP), 570
end field, sk_buff structure, 26
End of Options List, IP option type

field, 415, 416
endfor_ifa macro, 841, 986
endfor_nexthops macro, 842
endianness, 15
enqueue function, 246
entries field

dst_ops structure, 983
neigh_parms structure, 766
neigh_table structure, 763

entry_size field
dst_ops structure, 983
neigh_table structure, 762

EQL device, tx_queue_len value for, 52
equalization algorithm, per packet

distribution, 814
equalizer load balancer (EQL device), 52
err_handler function pointer

inet6_protocol structure, 582
inet_protocol structure, 616, 619
net_protocol structure, 571

error field
dst_entry structure, 982
icmp_control structure, 601

error messages, ICMP, 587, 605
(see also ICMP messages)

error_burst file, 960, 962

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1000 | Index

error_cost file, 960, 962
error_report function, neigh_ops

structure, 689, 743, 769
ESP (IP Encapsulating Security Payload

Protocol), 570
ether= keyword, 117, 120
EtherChannel device, 43

MTU value for, 46
tx_queue_len value for, 52

Ethernet device
alloc_netdev wrapper for, 139
MTU value for, 46
transmission failure by, 89
tx_queue_len value for, 52

Ethernet protocols
choice of, 268
compared to 802.3 standard, 281–287
configuration, 293
CSMA/CD support, 631
header for, 282
list of, 281
LLC protocol, 287–290
packet type, setting, 284
setting protocol and length, 286
SNAP protocol, 290–292
(see also L2)

Ethernet: The Definitive Guide
(O’Reilly), 630

ethhdr structure, 282
ETH_P_8021Q protocol, 282
ETH_P_802_2 protocol, 276
ETH_P_802_3 protocol, 276
ETH_P_ALL protocol, 276, 279
ETH_P_ARP protocol, 281
ETH_P_AX25 protocol, 276
ETH_P_BPQ protocol, 282
ETH_P_DNA_RT protocol, 282
ETH_P_ECONET protocol, 276
ETH_P_HDLC protocol, 276
ETH_P_IP protocol, 281
ETH_P_IPV6 protocol, 282
ETH_P_IPX protocol, 282
ETH_P_IRDA protocol, 276
ETH_P_LOCALTALK protocol, 276
ETH_P_PPP_DISC protocol, 282
ETH_P_PPP_SES protocol, 282
ETH_P_PPPTALK protocol, 276
ETH_P_RARP protocol, 282
ETH_P_TR_802_2 protocol, 276
ETH_P_WAN_PPP protocol, 276
ETH_P_X25 protocol, 281
ethtool tool, 166–168

ethtool_ops function pointer, net_device
structure, 55, 142, 166

eth_type_trans function, 283, 293
packet type, setting, 284
setting protocol and length, 286

examples (see code examples)
_ _exit macro, 124, 126, 131, 133, 134
_ _exitcall macro, 126, 129, 131, 134
_ _exitdata macro, 126, 134
expires field, dst_entry structure, 982

F
faddr field, ip_options structure, 557
failover system, gratuitous ARP used for, 704
fa_info field, fib_alias structure, 971
fa_list field, fib_alias structure, 971
family field

dst_ops structure, 983
neigh_ops structure, 769
neigh_table structure, 762

fa_scope field, fib_alias structure, 838, 971
fast network translation, 833
fast switching, 56, 833
fa_state field, fib_alias structure, 971
fastroute_defer field, netif_rx_stats

structure, 262
fastroute_deferred_out field, netif_rx_stats

structure, 262
fastroute_hit field, netif_rx_stats

structure, 262
fastroute_latency_reduction field, netif_rx_

stats structure, 262
fastroute_success field, netif_rx_stats

structure, 262
fa_tos field, fib_alias structure, 971
fa_type field, fib_alias structure, 971
fdb_create function, 373, 404
fdb_delete function, 375
fdb_find function, 373
FDDI device

alloc_netdev wrapper for, 139
MTU value for, 46
tx_queue_len value for, 52

feature initialization, 86
features field, net_device structure, 45, 142,

441
fi field, fib_result structure, 978
FIB (Forwarding Information Base) (see

routing table)
fib_add_ifaddr function, 850–854, 987
fib_advmss macro, 974
fib_alias structure, 835, 899, 906, 916, 971

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1001

fib_clntref field, fib_info structure, 972
fib_combine_itag function, 949
fib_create_info function, 839, 902
fib_dead field, fib_info structure, 972
fib_del_ifaddr function, 854, 987
fib_dev macro, 974
fib_disable_ip function, 849
Fiber Distributed Data Interface (see FDDI

device)
fib_flags field, fib_info structure, 972
fib_flush function, 848, 910
fib_get_table function, 842, 911
fib_hash field, fib_info structure, 972
fib_hash_init function, 904, 987
fib_hash_lock lock, 843, 909, 986
fib_inetaddr_event function, 846–849,

849–856, 987
fib_info structure, 835, 899, 902, 971–974
fib_info_cnt variable, 902, 988
fib_info_devhash hash table, 904, 989
fib_info_hash hash table, 902, 988
fib_info_laddrhash hash table, 902, 988
fib_info_lock lock, 843, 986
fib_iter_state structure, 836
fib_lhash field, fib_info structure, 972
fib_lookup function, 919, 987

double definition of, 911, 912
input routing and, 927
policy routing and, 944

fib_magic function, 958, 987
fib_metrics field, fib_info structure, 973
fib_mp_alg field, fib_info structure, 974
fib_mtu macro, 974
fib_multipath_lock lock, 844, 986
fib_netdev_event function, 846–849, 856,

987
fib_new_table function, 843, 911
fib_nh field, fib_info structure, 942, 974
fib_nh structure, 835, 903, 975
fib_nhs field, fib_info structure, 942, 974
fib_node structure, 835, 899, 970
fib_power field, fib_info structure, 942, 943,

974
fib_prefsrc field, fib_info structure, 973
fib_priority field, fib_info structure, 973
fib_props array, 919, 989
fib_protocol field, fib_info structure, 972
Fibre Channel device

alloc_netdev wrapper for, 139
tx_queue_len value for, 52

fib_result structure, 834, 978

FIB_RES_XXX macros, 842, 986
fib_rtt macro, 974
fib_rule structure, 835, 944, 976
fib_rules variable, 988
fib_rules_attach function, 857, 987
fib_rules.c file, 912
fib_rules_detach function, 857, 987
fib_rules_event function, 845, 856
fib_rules_init function, 845, 987
fib_rules_lock lock, 843, 986
fib_rules_tclass function, 949
fib_scope field, fib_nh structure, 839
fib_select_default function, 911, 938, 939,

940, 987
fib_select_multipath function, 938, 939,

941–944, 987
fib_semantic_match function, 916, 916–919,

987
fib_semantics.c file, 919
fib_sync_down function, 846, 910
fib_sync_up function, 848
fib_table structure, 835, 899, 905, 968
fib_tables variable, 988
fib_treeref field, fib_info structure, 972
fib_validate_source function, 913, 928
fib_window macro, 974
files

bridging, list of, 405
component initialization, list of, 135
data structures, list of, 57
device registration and initialization, list

of, 173
ICMP, list of, 622
IPv4, list of, 568
L4 protocols, list of, 583
neighboring subsystem, list of, 774
network device initialization, list of, 105
networking, list of, 66
notification chains, list of, 83
PCI layer, list of, 115
protocol handlers, list of, 294
routing, list of, 989
transmission and reception, list of, 265

filesystems, network, xxi
find_portno function, 382
firewall-based classifier, 808, 818, 832, 859
firewalling (see Netfilter)
fl field

cork structure, 565
rtable structure, 980

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1002 | Index

flags field
cork structure, 564
dst_entry structure, 982
flowi structure, 984
irqaction structure, 92
neighbour structure, 759
net_device structure, 45, 142, 147, 154

flooding, by bridge, 304
flowi structure, 835, 984
FLOWI_FLAG_MULTIPATHOLDROUTE

flag, 984
flush file, 961, 962
flush_delay variable, 962
flux problem, ARP, 707
fn_alias field, fb_node structure, 970
fn_hash field, fb_node structure, 970
fn_hash structure, 835
fn_hash_delete function, 858, 905, 906, 988
fn_hash_dump function, 905
fn_hash_flush function, 905
fn_hash_insert function, 839, 858, 905, 988
fn_hash_kmem memory pool, 904
fn_hash_lookup function, 905, 912,

914–919, 987
fn_hash_select_default function, 905, 941
fn_key field, fb_node structure, 971
fn_key variable, 899
fn_new_zone function, 902
fn_rehash_zone function, 906
fn_zone structure, 835, 899, 969
fonts used in this book, xxii
forced_gc_runs field, neigh_statistics

structure, 771
for_ifa macro, 548, 567, 841, 986
for_nexthops macro, 842
for_primary_ifa macro, 548, 567, 841, 986
Forward Delay timer, STP, 336, 338, 388
forward_delay field, net_bridge

structure, 402
forward_delay_timer field, net_bridge_port

structure, 400
forwarding database, 373–375

adding entries to, 374
aging of, 375
lookups in, 373
reference counts for, 374
removing entries from, 375
updating entries in, 374

forwarding, enabling and disabling, 966
forwarding file, 963, 965, 967
Forwarding Information Base (FIB) (see

routing table)

forwarding packets, 411, 455, 466–471
forwarding variable, 963
Fragment Offset field, IP header, 413, 423
fragmentation/defragmentation of

packets, 411, 420–422, 512
associating fragments with packets, 426
checksum updates triggered by, 433
defragmentation, 521–526
effect on higher layers, 422
example of, 485
fast fragmentation, 513, 519–520
functions for, 474, 514, 524
garbage collection for, 533
handling fragmented buffers, 491–496
hash table for, 521, 534
initialization of, 512
IP header fields for, 423
IP ID generation for, 427
ip_append_data creating

fragments, 496–501
ip_append_data function creating

fragments, 481, 484–490
NAT and, problems with, 427
path MTU discovery and, 429–432
problems with, 424–428
resources used by, 422
retransmissions, 424
slow fragmentation, 513, 516–519
statistics about, 544

fragments field, ipq structure, 559
frags vector, 487, 488, 492
fragsize field, cork structure, 565
frame diverter, xxi
frames, 4, 267

bridging code processing of, 371–372
compared to BPDUs, 376
multiple, processing during interrupt, 180
paths taken by, 178
reception of (see reception of frames)
transmission of (see transmission of

frames)
free_fib_info function, 902
free_init_mem function, 85
free_irq function, 88, 104
free_netdev function, 141, 172
fs_initcall macro, 126
func field, packet_type structure, 280
function pointers, 8–10

(see also specific functions)
fz_divisor field, fn_zone structure, 901, 970
fz_hash field, fn_zone structure, 901, 970
fz_hashmask field, fn_zone structure, 970

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1003

FZ_HASHMASK macro, 970
fz_mask field, fn_zone structure, 970
FZ_MASK macro, 970
fz_nent field, fn_zone structure, 970
fz_next field, fn_zone structure, 969
fz_order field, fn_zone structure, 970

G
garbage collection, 8

inet_peer structure, 538
IP fragmentation, 533
neighboring subsystem, 669, 675–679
routing cache, 796–798, 886–896
routing table, 910

garbage collection timer, 375
GateD routing protocol daemon, 820, 860
gateway, 297
gc field, dst_ops structure, 983
gc virtual function, dst_ops structure, 880,

887
gc_dst_overflow field, rt_cache_stat

structure, 985
gc_elasticity file, 960, 962
gc_goal_miss field, rt_cache_stat

structure, 985
gc_ignored field, rt_cache_stat

structure, 985
gc_interval field, neigh_table structure, 764
gc_interval file, 755, 892, 960, 962
gc_interval variable, 755
gc_min_interval file, 960
gc_min_interval_ms file, 962
gc_staletime field, neigh_parms

structure, 766
gc_stale_time file, 755
gc_staletime variable, 755
gc_thresh field, dst_ops structure, 983
gc_thresh file, 960, 962
gc_thresh1 field, neigh_table structure, 764
gc_thresh1 file, 755
gc_thresh1 variable, 755
gc_thresh2 field, neigh_table structure, 764
gc_thresh2 file, 755
gc_thresh2 variable, 755
gc_thresh3 field, neigh_table structure, 764
gc_thresh3 file, 755
gc_thresh3 variable, 755
gc_timeout file, 960, 962
gc_timer field

neigh_table structure, 669, 764
net_bridge structure, 375, 402

gc_total field, rt_cache_stat structure, 985
Generalized Routing Encapsulation

(GRE), 101, 570
generic.h file, 16
getfrag function, 497, 566
get_mss virtual function

dst_entry structure, 983
dst_ops structure, 881

get_page function, 504
get_random_bytes function, 535
get_sample_stats function, 226, 227
get_stats function pointer, net_device

structure, 48, 55, 142
get_wireless_stats function pointer, net_

device structure, 48, 55, 142
gflags field, net_device structure, 45
goto statement, 10
granularity of timer-driven interrupt, 181
gratuitous ARP, 702–707
GRE (Generalized Routing

Encapsulation), 101, 570

H
h field, sk_buff structure, 28
ha field, neighbour structure, 717, 760
handle_bridge function, 372, 375, 404
handle_diverter function, 238
handler function pointer

icmp_control structure, 601
inet6_protocol structure, 582
irqaction structure, 91
net_protocol structure, 571

hard_header function pointer, net_device
structure, 55, 142, 685

hard_header_cache function pointer, net_
device structure, 55, 142, 685

hard_header_len field, net_device
structure, 46, 142

hard_header_parse function pointer, net_
device structure, 55, 142, 686

hard_start_xmit function pointer, net_device
structure, 55, 142, 243, 249

HARD_TX_LOCK macro, 255
HARD_TX_UNLOCK macro, 255
hardware address (see L2 address)
hardware initialization, 86
hardware interrupts, 88–92
Hardware size field, arphdr structure, 700
Hardware type field, arphdr structure, 700
hash field, net_bridge structure, 401
hash function, neigh_table structure, 763

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1004 | Index

hash tables, 6
IP fragmentation, 521, 534
neighboring subsystem, 666
net_device structure, 146

hash_buckets field, neigh_table
structure, 653, 763

hash_chain_gc field, neigh_table
structure, 764

hash_grows field, neigh_statistics
structure, 771

hash_lock field, net_bridge structure, 401
hash_mask field, neigh_table structure, 763
hash_rnd field, neigh_table structure, 764
hdlc_rcv function, 276
head field, sk_buff structure, 26
Header Checksum field, IP header, 414
Header Length (IHL) field, IP header, 412
header_cache_update function pointer, net_

device structure, 55, 142, 685
header_len field, dst_entry structure, 981
header_length field, datalink_proto

structure, 291
head_len field, icmp_bxm structure, 602
heartbeat timer, 704
Hello timer, 336, 352, 383, 388
hello_time field, net_bridge structure, 402
hello_timer field, net_bridge structure, 402
hh field

dst_entry structure, 982
neighbour structure, 760

hh_cache structure, 652, 655, 683, 770
hh_data field, hh_cache structure, 771
hh_len field, hh_cache structure, 770
hh_lock field, hh_cache structure, 770
hh_next field, hh_cache structure, 770
hh_output function

hh_cache structure, 770
neigh_ops structure, 770

hh_refcnt field, hh_cache structure, 770
hh_type field, hh_cache structure, 770
hierarchical switched L2 topology, 311–314
High Performance Parallel Interface (see

HIPPI device)
HIPPI device

alloc_netdev wrapper for, 139
sk_buff field for, 32
tx_queue_len value for, 52

HI_SOFTIRQ type, 193, 196, 198
hits field, neigh_statistics structure, 771
hlist_head structure, 837
hlist_node structure, 837
Hold timer, 338, 347, 388

hold_timer field, net_bridge_port
structure, 400

host byte order, converting, 15
host scope for IP addresses, 785
host scope for routes, 786, 838
hosts, 300

configured with multiple addresses, 787
nonrouting multihomed hosts, 779

hotplug helper, 96, 98–100, 103
hot-pluggable devices, 84, 96, 98–100

inserting, causing registration of
device, 137

name changes of, 139
removing, causing unregistration of

device, 138
htonl macro, 16
htons macro, 16
HTTP proxying, 637
Hyperchannel device, MTU value for, 46

I
ic_bootp_recv function, 281
ICMP header, 586, 600
ICMP messages

categories of, 587
ingress, replying to, 607
pinging and, 578
rate limiting, 608–610
receiving, 611–617
sending to multicast IP address, 611
transmitting, 602–610
types, list of, 588–590
Verbose Monitoring generating, 822

ICMP payload, 587
ICMP protocol, 569

(see also L4)
“ICMP Usage in Scanning” (Arkin), 585
icmp_address function, 611
ICMP_ADDRESS message type, 594, 611
icmp_address_reply function, 611
ICMP_ADDRESSREPLY message type, 594,

611, 617
icmp_bxm structure, 600, 602, 622
icmp_control structure, 600, 601, 611, 622
ICMP_DEST_UNREACH message

type, 590, 597, 604, 611, 614, 620
icmp_echo function, 611
ICMP_ECHO message type, 590, 595, 608,

611, 613
icmp_echo_ignore_all flag, 620
icmp_echo_ignore_broadcasts file, 960
icmp_echo_ignore_broadcasts flag, 621

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1005

ICMP_ECHOREPLY message type, 590,
595, 596, 604, 607, 613

ICMP_ECHO_REQUEST message type, 928
icmp_err_convert function, 620, 622
icmp_errors_use_inbound_ifaddr flag, 621
ICMP_EXC_FRAGTIME message type, 593,

604
ICMP_EXC_TTL message type, 593, 595,

604
ICMP_FRAGMENTATION_NEEDED

message type, 797, 892
ICMP_FRAG_NEEDED message type, 590,

604, 614, 620
icmp_glue_bits function, 497
icmph field, icmp_bxm structure, 602
icmp.h file, 588
icmphdr structure, 600, 622
ICMP_HOST_ANO message type, 591, 604,

620
ICMP_HOST_ISOLATED message

type, 590, 620
ICMP_HOST_UNKNOWN message

type, 590, 620
ICMP_HOST_UNREACH message

type, 590, 604, 620
ICMP_HOST_UNR_TOS message

type, 591, 620
icmp_ignore_bogus_error_responses

flag, 621
ICMP_INC_STATS macro, 618, 622
ICMP_INC_STATS_BH macro, 618, 622
ICMP_INC_STATS_USER macro, 618, 622
ICMP_INFO_REPLY message type, 594
ICMP_INFO_REQUEST message type, 594
icmp_init function, 599, 622
icmp_mib structure, 617, 622
ICMP_MIB_INERRORS field, 618
ICMP_MIB_INMSG field, 618
ICMP_MIB_INXXX field, 619
ICMP_MIB_OUTERRORS field, 619
ICMP_MIB_OUTMSG field, 619
ICMP_MIB_OUTXXX field, 619
ICMP_NET_ANO message type, 591, 604,

620
ICMP_NET_UNKNOWN message

type, 590, 620
ICMP_NET_UNREACH message type, 590,

604, 620
ICMP_NET_UNR_TOS message type, 591,

620
icmp_out_count function, 622

ICMP_PARAMETERPROB message
type, 593, 604, 611, 614

ICMP_PKT_FILTERED message type, 591,
604, 620

icmp_pointers vector, 611
ICMP_PORT_UNREACH message

type, 590, 597, 604, 620
ICMP_PREC_CUTOFF message type, 591,

620
ICMP_PREC_VIOLATION message

type, 591, 620
ICMP_PROT_UNREACH message

type, 590, 604, 620
icmp_ratelimit flag, 621
icmp_ratemask flag, 621
icmp_rcv function, 611, 619, 622
icmp_redirect function, 611, 616
ICMP_REDIRECT message type, 467, 470,

591, 604, 611, 616, 798
adding routing cache entries when

received, 865
next-hop router structures and, 904
processing, 827
rate limiting for, 896
routing and, 822–828
transmitting, 825
Verbose Monitoring and, 822

ICMP_REDIR_HOST message type, 592
ICMP_REDIR_HOSTTOS message

type, 592
ICMP_REDIR_NET message type, 592
ICMP_REDIR_NETTOS message type, 592
icmp_reply function, 599, 602, 622
icmp_send function, 599, 602, 605, 622
icmp_socket macro, 600
ICMP_SOURCE_QUENCH message

type, 591, 611, 614
ICMP_SR_FAILED message type, 590, 604,

614, 620
icmp_statistics variable, 622
ICMP_TIME_EXCEEDED message

type, 593, 595, 604, 611
icmp_timestamp function, 611
ICMP_TIMESTAMP message type, 593,

611, 616
ICMP_TIMESTAMPREPLY message

type, 593, 604, 616
icmp_unreach function, 611, 614
ICMP_UNREACHABLE message type, 797,

892, 927, 931

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1006 | Index

ICMPv4 (Internet Control Message Protocol
Version 4), 585

configuration, 620
data structures for, 600–602, 622
files and directories for, list of, 622
functions for, list of, 622
initialization, 599
ping command using, 595
RFCs about, 585
security and, 585
statistics for, 617–619
subsystems interacting with, 598–599
traceroute command using, 595
variables for, list of, 622

icmpv4_xrlim_allow function, 622
icmp_xmit_lock function, 603, 622
icmp_xmit_unlock function, 603, 622
icons used in this book, xxii, xxiii
ic_rarp_recv function, 282
id field

ipq structure, 559
neigh_table structure, 762

ID field, IP header, 424
Identification field, IP header, 412
idev field, rtable structure, 979
id_table field, pci_driver structure, 107
IEEE 802.1d device (see bridge)
IEEE 802.1D-1998 standard, 309
IEEE 802.1D-2004 standard, 309
IEEE 802.1Q device, 101, 102
IEEE 802.1Q-2002 standard, 309
IEEE 802.1s standard, 309
IEEE 802.1w standard, 309
IEEE 802.4 device (see Token Bus device)
IEEE 802.5 device (see Token Ring 4 MB/s

device)
ifa_address field, in_ifaddr structure, 563
ifa_anycast field, in_ifaddr structure, 563
ifa_broadcast field, in_ifaddr structure, 563
ifa_dev field, in_ifaddr structure, 563
ifa_flags field, in_ifaddr structure, 563
IFA_F_SECONDARY flag, 841
ifa_label field, in_ifaddr structure, 563
ifa_list field, in_device structure, 562
ifa_local field, in_ifaddr structure, 563
ifa_mask field, in_ifaddr structure, 563
ifa_next field, in_ifaddr structure, 563
ifa_prefixlen field, in_ifaddr structure, 563
if_arp.h file, 46, 701
ifa_scope field, in_ifaddr structure, 563, 839
ifconfig command, 67, 166, 550

address configuration using, 792
IP configuration using, 545

#ifdef directive, 11
ifdown virtual function, dst_ops

structure, 881, 983
if_ether.h file, 31, 46
IFF_EBRIDGE flag, 363
IFF_PROMISC flag, 285
IFF_UP flag, 147, 160, 161
if.h file, 45
ifindex field, net_device structure, 44
iflink field, net_device structure, 44
ifmap structure, 135
#ifndef directive, 12
ifobj field, net_bridge structure, 401
if_packet.h file, 30
if_port field, net_device structure, 44, 142
IGMP (Internet Group Management

Protocol), 570
IHL (Header Length) field, IP header, 412
iif field

flowi structure, 984
ipq structure, 560

in_brd field, rt_cache_stat structure, 985
IN_DEV_ARP_ANNOUNCE macro, 708
IN_DEV_ARPFILTER macro, 708
IN_DEV_ARP_IGNORE macro, 708
_ _in_dev_get function, 440
in_dev_get function, 440, 566
in_device structure, 440, 561, 653
IN_DEV_PROXY_ARP macro, 735
in_dev_put function, 440
IN_DEV_XXX macros, 964
index_hlist field, net_device structure, 50
inet6_add_protocol function, 582
inet6addr_chain, 78, 81
inet6_del_protocol function, 582
inet6_dev structure, 653
inet6_protos table, 582
inet_add_protocol function, 571–574, 583
inetaddr_chain, 78, 81
inetaddr_chain notification chain, 548
inet_addr_onlink function, 725
inet_addr_type function, 701, 725
inet_alloc_ifa function, 546, 567
inet_del_ifa function, 546, 567
inet_del_protocol function, 571–574, 583
inetdev_destroy function, 546
inetdev_event function, 858
inetdevice.h file, 757
inetdev_init function, 546, 768
inet_dump_fib function, 954
inet_dump_ifaddr function, 567

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1007

inet_dumpifaddr function, 550
inet_dump_rules function, 955
inet_fill_ifaddr function, 548
inet_forward_change function, 967
inet_free_ifa function, 546, 567
inet_getpeer function, 537, 540, 567
inet_ifa_byprefix function, 842
inet_ifa_match function, 548, 567
inet_init function, 583
inet_initpeers function, 537, 567
inet_insert_ifa function, 546, 567
inet_make_mask function, 547, 567
inet_mask_len function, 547, 567
inet_peer structure, 439, 536, 560, 834

fields used in, 538
garbage collection for, 538
initialization for, 537
lookups for, 537
setting packet ID using, 541

inet_peer_gc_maxtime file, 554, 555
inet_peer_gc_maxtime variable, 538, 554
inet_peer_gc_mintime file, 554, 555
inet_peer_gc_mintime variable, 538, 554
inet_peer_maxttl file, 554, 555
inet_peer_maxttl variable, 538, 554
inet_peer_minttl file, 554, 555
inet_peer_minttl variable, 538, 554
inet_peer_threshold file, 554, 555
inet_peer_threshold variable, 537, 538, 554,

568
inet_peer_unused_head variable, 538
inet_peer_unused_lock variable, 539, 568
inet_peer_unused_tailp variable, 538
inet_protocol structure, 619
inet_proto_lock lock, 572
inet_protos table, 571, 581, 583
inet_rtm_deladdr function, 550, 567
inet_rtm_delroute function, 954, 955
inet_rtm_delrule function, 955
inet_rtm_getroute function, 954
inet_rtm_newaddr function, 550, 567
inet_rtm_newroute function, 954, 955
inet_rtm_newrule function, 955
inet_select_addr function, 547, 567, 725, 913
inet_set_ifa function, 547, 567
inet_skb_parm structure, 451
inet_sock structure, 476
info field, dst_entry structure, 983
Infrared Data Association device, alloc_

netdev wrapper for, 139
ingress (input), 4

(see also reception)

ingress queues, 212, 223–225
ingress_lock field, net_device structure, 52,

171
in.h file, 571
in_hit counter, 870
in_hit field, rt_cache_stat structure, 984
in_hlist_search field, rt_cache_stat

structure, 985
in_ifaddr structure, 440, 562
in_interrupt function, 187
in_irq function, 188
init function pointer, net_device

structure, 55, 142, 149, 169
_ _init macro, 124, 126, 131, 133, 134
init program, 85
init_bh function, 191
_ _initcall macro, 126, 129, 130, 134
xxx_initcall macros, 128
_ _initdata macro, 126, 134
initialization, 84

boot-time initialization routines, 128–130
boot-time kernel options, 85, 93,

116–122
configuration parameters for, 103
data structures for, list of, 134
device handling layer, 94–96
files and directories for, list of, 135
functions for, list of, 134
interrupts, 85
IPv4, 443
memory optimization, 130–134
module options, 93
modules, 122–125
net_device structure fields, 141–145
network devices, 86, 141–145
NICs, 86
options, 85, 93, 116–122
PCI devices and, 112
subsystems, 116
timers, 85
user-space tools for, 96–100
variables for, list of, 134
virtual devices, 101

init_ipv4_mibs function, 542, 617
init_module function, 122, 135
in_martian_dst field, rt_cache_stat

structure, 985
in_martian_src field, rt_cache_stat

structure, 985
in_no_route field, rt_cache_stat

structure, 985

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1008 | Index

input virtual function, dst_entry
structure, 920–922, 923, 982

input_dev field, sk_buff structure, 28
input_entry field, icmp_control

structure, 601
input_pkt_queue field, softnet_data

structure, 207
in_slow_mc field, rt_cache_stat

structure, 984
in_slow_tot field, rt_cache_stat

structure, 984
in_softirq function, 187
interface, 311
Internet Control Message Protocol Version 4

(see ICMPv4)
Internet Group Management Protocol

(IGMP), 570
Internet Protocol Version 4 (see IPv4)
Internet Protocol Version 6 (see IPv6)
Internet Service Provider (ISP), 783
interrupt context, 184
interrupt handlers, 88

bottom half handlers, 184–186
implementations of, 186
old style, concurrency and, 187
requirements for, 190
software interrupts for (version 2.4 and

higher), 193–196
tasklets for, 196–198
version 2.2 and earlier, 190–193

events started by, 210
interrupts (IRQ), 4

concurrency and, 186
devices communicating with kernel

using, 87, 180
enabling and disabling, 187–188
events started by, 184, 185
hardware interrupts, 88–92
initialization of, 85
locking and, 186
mapping to handlers, 90
mixing with polling (see NAPI)
multiple frames processed during, 180
sharing, 90
software interrupts, 193–196

concurrency and, 187
initialization of, 198
kernel threads for, 202–204
networking code’s use of, 206
pending, handling of, 199–201
per-architecture processing of, 202

timer-driven interrupts, 181
types of, 88

invoke_softirq function, 264
I/O ports for NICs, 87
ioctl command, 59, 67

bridging configuration using, 392–393
IP configuration using, 545
serialization used by, 71

ip addr add command, 852
ip addr commands, 567
ip address command, 792
IP addresses

adding, 850–854
address classes for, 783
configuration changes,

handling, 849–856
configuring, 792
dynamic configuration of, 632
functions for manipulation and

configuration of, 546–548
multiple, configured on one

NIC, 789–793, 841
netmask for, 789
nonroutable, 784
preferred source IP address, 928
primary addresses, 789–793, 841
removing, 854
routable, 784
scope of, 785–788, 839, 936
secondary addresses, 789–793, 841

IP Authentication Header Protocol
(AH), 570

ip command
ip addr add command, 852
ip addr commands, 567
ip address command, 792
IP configuration using, 545, 549
ip link command, 166
ip link set command, 852
ip monitor route command, 957
ip route command, 811, 817, 859, 954
ip rule command, 816, 954, 976
neighbor administration, 749, 750–752
routing configuration, 952, 954–956

IP configuration, 545–550
changes, handling, 849–856
device status changes affecting, 858

IP Encapsulating Security Payload Protocol
(ESP), 570

IP header, 411–414
building for transmission, 480
ID for, selecting, 540
pseudoheader from, 437

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1009

IP ID field
defragmentation and, 426
generation of, 427

ip link command, 166
ip link set command, 852
ip monitor route command, 957
IP multicast (see multicast)
IP Payload Compression Protocol

(IPcomp), 570
ip route command, 811, 817, 859, 954
ip rule command, 816, 954, 976
IP Security protocol (see IPsec)
IP tunneling (see IPIP)
IP virtual server, xxi
ip6_output_finish function, 773
ip6_ptr field, net_device structure, 50
ip_append_data function, 475, 481–503,

566
memory allocation for, 484–486
memory allocation with Scatter/Gather

I/O, 487–490
using with ip_push_pending_frames

function, 508
ip_append_page function, 503
ip_autoconfig file, 553, 554
ip_build_and_send_pkt function, 475
ip_build_xmit_slow function, 513
ip_call_ra_chain function, 467, 567
ip_check_mc function, 871
ipcm_cookie structure, 439, 558
IPcomp (IP Payload Compression

Protocol), 570
ip_compute_csum function, 435
ip-cref.ps file, 815
ip_decrease_ttl function, 435, 566
ip_default_ttl file, 553, 554
ip_defrag function, 472, 511, 524, 526, 566
ip_dont_fragment function, 514, 566
ip_dynaddr file, 554, 555
ip_error function, 921, 931
ip_evictor function, 524, 526, 533, 566
ip_expire function, 534, 566
ip_fallback_id variable, 541
ip_fast_csum function, 434, 435, 448, 566
ip_fib_check_default function, 904
ip_fib.h file, 912, 919
ip_fib_init function, 845, 904, 987
ip_fib_local_table routing table, 904, 910
ip_fib_local_table variable, 988
ip_fib_main_table routing table, 904, 910
ip_fib_main_table variable, 988
ip_find function, 525, 526, 566

ip_finish_output function, 471, 510, 566
ip_finish_output2 function, 566, 692, 773
ip_forward file, 553, 554, 960, 967
ip_forward function, 455, 466, 467–470,

566, 921
ip_forward_finish function, 455, 466, 470,

566
ip_forward_options function, 454, 470, 566
ip_frag_destroy function, 525, 566
ipfrag_hash_rnd variable, 535
ipfrag_high_thresh file, 554, 555
ipfrag_init function, 512, 535, 566
ipfrag_lock variable, 560, 567
ipfrag_low_thresh file, 554, 555
ip_frag_mem variable, 533, 567
ip_fragment fragment, 511
ip_fragment function, 512, 514, 566
ip_frag_queue function, 525, 526, 527–533,

566
ip_frag_reasm function, 525, 527, 533, 566
ipfrag_secret_interval file, 554, 555
ipfrag_secret_rebuild function, 535
ipfrag_time file, 554, 555
ip_generic_getfrag function, 497
ip.h file, 545
iphdr structure, 439, 556
ip_id_count field, inet_peer structure, 538,

561
IP_INC_STATS macro, 544, 567
IP_INC_STATS_BH macro, 544, 567
IP_INC_STATS_USER macro, 544, 567
ip_init function, 443, 565
IPIP (IP-over-IP tunneling), 101, 550, 570,

800
ip_local_deliver function, 472, 566, 921, 922
ip_local_deliver_finish function, 472, 566,

574–582, 583, 599
ip_local_port_range file, 67, 554, 555
ip_mc_output function, 921, 923
ip_mkroute_input function, 923, 931, 987
ip_mkroute_input_def function, 923, 987
ip_mkroute_output function, 923, 987
ip_mkroute_output_def function, 923, 987
ip_mp_alg_ops structure, 836, 874, 986
ip_mr_cache file, 966
ip_mr_input function, 921
ip_mr_vif file, 966
ip_netdev_event function, 856
ip_nonlocal_bind file, 553, 554
ip_no_pmtu_disc file, 553, 554
ip_option_compile function, 451
ip_options structure, 439, 457, 556

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1010 | Index

ip_options_build function, 454, 481, 506,
566

ip_options_compile function, 453, 455, 457,
566

ip_options_echo function, 455
ip_options_fragment function, 454, 514
ip_options_get function, 454
ip_options_parse function, 566
ip_options_rcv_srr function, 452, 946
ip_output function, 455, 921, 922
IP-over-IP (see IPIP)
IPPROTO_XXX symbols, 571
ip_ptr field, net_device structure, 50, 440
ip_push_pending_frames function, 474, 481,

504–509, 566
ipq structure, 439, 522, 558–560

adding fragment to, 527
functions for, 524
garbage collection and, 534
new instance initialization, 526

ipq_hash table, 522, 534, 560
ipq_kill function, 525, 534
ipq_put function, 525
ip_queue_xmit function, 474, 477–481, 566
ipq_unlink function, 534
ip_rcv function, 281, 446, 565, 922
ip_rcv_finish function, 450–453, 922
ip_reply_glue_bits function, 497
IPROUTE2 package, 18

aliasing devices and, 793
configuring routes, 821
ip addr add command, 852
ip addr commands, 567
ip address command, 792
IP configuration using, 545, 549
ip link command, 166
ip link set command, 852
ip monitor route command, 957
ip route command, 811, 817, 859, 954
ip rule command, 816, 954, 976
neighbor administration, 749, 750–752
routing configuration, 952, 954–956
tc command, 689

ip_route_connect function, 987
ip_route_input function, 445, 868, 870–872,

922, 987
ip_route_input_mc function, 987
ip_route_input_slow function, 869, 872,

922, 923–933, 987
ip_route_newports function, 987
ip_route_output_flow function, 445, 473,

478, 479, 987

_ _ip_route_output_key function, 869,
872–873, 922, 987

ip_route_output_key function, 599, 868,
987

ip_route_output_slow function, 869, 872,
922, 923, 933–941, 987

ip_rt_acct structure, 834
ip_rt_bug function, 921
ip_rt_error_burst variable, 962
ip_rt_error_cost variable, 962
ip_rt_frag_needed function, 599
ip_rt_gc_elasticity variable, 865, 868, 962
ip_rt_gc_interval variable, 892, 962
ip_rt_gc_min_interval variable, 868, 887,

962
ip_rt_gc_timeout variable, 962
ip_rt_init function, 844, 861, 987
ip_rt_max_delay variable, 962
ip_rt_max_size variable, 888, 962
ip_rt_min_advmss variable, 962
ip_rt_min_delay variable, 962
ip_rt_min_pmtu variable, 962
ip_rt_mtu_expires variable, 962
ip_rt_redirect function, 599, 616
ip_rt_redirect_load variable, 897, 962
ip_rt_redirect_number variable, 897, 962
ip_rt_redirect_silence variable, 897, 962
ip_rt_secret_interval variable, 886, 962
ip_run_ipprot function, 572
IPsec, xx, 570

dst_entry structure used by, 882
forwarding packets and, 467
interaction with neighboring

subsystem, 689
L4 packet delivery and, 582
sk_buff field for, 32
transformation bundles, 882

ip_select_fb_ident function, 541
_ _ip_select_ident function, 540
ip_select_ident function, 540, 567
ip_select_ident_more function, 481, 540,

567
ip_send_check function, 435, 566
ip_send_reply function, 475, 497
ip_statistics structure, 542
ip_statistics variable, 544, 568
ipstats_mib structure, 440, 542, 561
IPSTATS_MIB_FRAGCREATES field, 544
IPSTATS_MIB_FRAGFAILS field, 544
IPSTATS_MIB_FRAGOKS field, 544
IPSTATS_MIB_INADDRERRORS field, 543
IPSTATS_MIB_INDELIVERS field, 543
IPSTATS_MIB_INDISCARDS field, 543

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1011

IPSTATS_MIB_INHDRERRORS field, 542
IPSTATS_MIB_INMCASTPKTS field, 543
IPSTATS_MIB_INNOROUTES field, 542
IPSTATS_MIB_INRECEIVES field, 542
IPSTATS_MIB_INTOOBIGERRORS

field, 542
IPSTATS_MIB_INTRUNCATEDPKTS

field, 543
IPSTATS_MIB_INUNKNOWNPROTOS

field, 543
IPSTATS_MIB_OUTDISCARDS field, 543
IPSTATS_MIB_OUTFORWDATAGRAMS

field, 543
IPSTATS_MIB_OUTMCASTPKTS field, 543
IPSTATS_MIB_OUTNOROUTES field, 543
IPSTATS_MIB_OUTREQUESTS field, 543
IPSTATS_MIB_REASMFAILS field, 544
IPSTATS_MIB_REASMOKS field, 544
IPSTATS_MIB_REASMREQDS field, 544
IPSTATS_MIB_REASMTIMEOUT field, 544
IPSTATS_MIB_XXX enumeration list, 542
ip_summed field, sk_buff structure, 30,

441–443
iputils tool, 18
IPv4 (Internet Protocol Version 4), 409–411

ARP protocol and, 635
checksums, 432–438, 440–443, 473, 502
configuration, 545–550, 553–555
data structures for, 439–443, 555–565,

568
files and directories for, list of, 568
forwarding packets, 466–471
functions for, list of, 565–567
ICMP interactions with, 599
initialization, 443
input packets, handling, 446–453
interface to neighboring subsystem, 510
IP header, 411–414
L3 to L4 protocol interface and, 582
local delivery of packets, 472
long-living peer information kept

by, 536–540
Netfilter and, 444
options, 411, 414, 414–420, 453–465
problems with, 551–553
routing subsystem and, 445
security and, 552
statistics for, 541–545
transmission of packets, 473–476,

504–509
variables for, list of, 567
(see also fragmentation/defragmentation

of packets; L3)

ipv4_config structure, 440, 564
ipv4_config.autoconfig variable, 553
ipv4_config.no_pmtu_disc variable, 553
ipv4_devconf structure, 440, 564, 567, 757
ipv4_devconf.arp_announce variable, 757
ipv4_devconf.arp_filter variable, 757
ipv4_devconf.arp_ignore variable, 757
ipv4_devconf_dflt variable, 567
ipv4_devconf.forwarding variable, 553, 960
ipv4_devconf.medium_id variable, 757
ipv4_devconf.proxy_arp variable, 757
ipv4_dst_ops.gc_thresh variable, 962
IPv4-over-IPv4 (see IPIP)
ipv4_sysctl_forward function, 967
IPv6 (Internet Protocol Version 6), xx

fragmentation, 428
improvements over IPv4, 551
L3 to L4 protocol interface and, 582
ND protocol and, 635
(see also L3)

ipv6_add_dev function, 768
IPv6-over-IPv4 (Simple Internet Transition,

SIT), 570
IPv6-over-IPv6, 570
ipv6_rcv function, 282
IPX protocol, xxi, 288, 291
ipx_rcv function, 276, 282, 288, 291
irlap_driver_rcv function, 276
irq field, net_device structure, 44, 142
IRQ lines for NICs, 87
IRQ (see interrupts)
irq_action structure, 105
irqaction structure, 91–92
irq.c file, 88
irq_desc variable, 91, 104
irq_exit function, 195
is_changed field, ip_options structure, 556
is_data field, ip_options structure, 557
ISDN device

MTU value for, 46
tx_queue_len value for, 52

is_local field, net_bridge_fdb_entry
structure, 399

ISP (Internet Service Provider), 783
is_setbyuser field, ip_options structure, 557
is_static field, net_bridge_fdb_entry

structure, 399
is_strictroute field, ip_options structure, 557
iw_statistics field, 48

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1012 | Index

J
jiffies global variable, 17

K
kconfig files, 24
kernel component, 5

(see also subsystems)
kernel (see Linux kernel)
kernel_param structure, 119, 135
kern_rta structure, 836
key_len field, neigh_table structure, 763
keywords, registering, 117
kfree function, 5
kfree_skb function, 35
kmalloc function, 5
kmem_cache_alloc function, 5, 6
kmem_cache_create function, 5
kmem_cache_destroy function, 5
kmem_cache_free function, 5
kmem_cachep field

dst_ops structure, 983
neigh_table structure, 763

kmod kernel module loader, 98
kobj field, net_bridge_port structure, 400
kobject_hotplug function, 99
ksoftirqd function, 202
ksoftirqd kernel threads, 202–204

L
L2 address

change of, gratuitous ARP used for, 702
configuring, 632
static translation of L3 address to, 633
translating L3 address to, 628–634

L2 bridged topology, 311–314
L2 headers, caching, 683–687
L2 (link layer), 3, 4

communication choices made by, 272,
273

data units for (frames), 267
protocol choices for, 268, 274

L2 network, 311
L3 address

changing, situations for, 632
duplicate, gratuitous ARP used

for, 703–704
static translation to L2 address, 633
translating to L2 address, 628–634
(see also IP addresses)

L3 (network layer), 3, 4

communication choices made by, 271,
273

data units for (packets), 267
L3 to L4 packet delivery, 574–582
VFT interface with neighboring

subsystem, 655–665
L4 checksum, 437–438
L4 (transport layer), 3, 4

communication choices made by, 271
data structures for, list of, 583
data units for (segments), 267
files and directories for, list of, 583
functions for, list of, 583
L3 to L4 packet delivery, 574–582
passing error notifications to, 619
protocol registration, 571–574
protocols, xx
protocols for, list of, 569–570
raw IP and, 577–581
raw sockets and, 577–581
variables for, list of, 583

LANs, 311
loop topology, 307
loop-free topology, 308
merging with bridges, 300
of different technologies, bridging, 302

last_flush field, neigh_table structure, 764
last_in field, ipq structure, 559
last_rand field, neigh_table structure, 763
last_rx field, net_device structure, 50
lastuse field, dst_entry structure, 875, 982
late_initcall macro, 126
Layer two address (see L2 address)
layers of TCP/IP network stack, terminology

for, 3
len field

ipq structure, 560
sk_buff structure, 25

length field, cork structure, 565
likely macro, 13
limited broadcasts, 930
link between bridges, 311
link layer address (see L2 address)
link layer multicast, net_device fields for, 51
link layer (see L2)
link scope for IP addresses, 786
link scope for routes, 786, 838
link state change detection, 163–165
link_failure virtual function, dst_ops

structure, 881, 983
_ _LINK_STATE_LINKWATCH_EVENT

flag, 148

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1013

_ _LINK_STATE_LINKWATCH_PENDING
flag, 164, 165

_ _LINK_STATE_NOCARRIER flag, 148,
163

_ _LINK_STATE_PRESENT flag, 148, 155,
162

_ _LINK_STATE_RX_SCHED flag, 148
_ _LINK_STATE_SCHED flag, 239, 244
_ _LINK_STATE_SHED flag, 148
_ _LINK_STATE_START flag, 148, 159,

161, 211
_ _LINK_STATE_XOFF flag, 148, 241
linkwatch_event function, 165
linkwatch_fire_event function, 163
linkwatch_run_queue function, 165
Linux

embedded devices using, xv
performance of, xv
university projects using, xv

Linux Device Drivers (O’Reilly), xvi
Linux kernel

books about, xvi
browsing source code, 19
dead code in, 19
interaction with devices, 87–92
new features of, learning, xviii
notification of frame reception

for, 212–219
patches for, 20
preemption of, 188

Linux Network Development List
Archives, 19

Linux Virtual Servers (see LVS)
list field

net_bridge_fdb_entry structure, 399
net_bridge_port structure, 399
packet_type structure, 280
sk_buff structure, 25

Little Endian format, 15
little_endian.h file, 16
LLC (Logical Link Control), 268, 287–290

Linux implementation of, 289
reception of frames, 290

llc_rcv function, 276
llc_sap_close function, 293
llc_sap_open function, 293
local delivery of packets, 472
local_bh_disable function, 188
_ _local_bh_enable function, 188
local_bh_enable function, 188, 196
local_irq_disable function, 188
local_irq_enable function, 188

local_irq_restore function, 188
local_irq_save function, 188
LOCAL_MCAST macro, 843, 986
local_softirq_pending function, 188
lock field

ipq structure, 560
neighbour structure, 760
neigh_table structure, 762
net_bridge structure, 401

locking
for creating bridge devices and bridge

ports, 361
for frame transmission, 247, 256
for frame transmission on queueless

devices, 255
for ICMP transmissions, 603
for net_device structure changes, 171
for routing, 843
for routing cache, 864
interrupts and, 186
mutual exclusion mechanisms, 14–15
RCU (Read-Copy-Update), 14, 864
(see also spin locks)

locktime field, neigh_parms structure, 767
locktime file, 755
locktime variable, 755
lo_cong file, 263
lo_cong variable, 263, 264
Logical Link Control (see LLC)
log_martians field, ipv4_config

structure, 564
log_martians file, 963, 965
log_martians variable, 963
Longest Prefix Match (LPM) algorithm, 798,

914
lookup macro, 537
lookups field, neigh_statistics structure, 771
loop topology, bridges not working

with, 307
loopback device

frame transmission for, 254
queues not used by, 212
tx_queue_len value for, 53

LOOPBACK macro, 843, 986
loop-free topology, 308
Loose Source and Record Route, IP option

type field, 415, 416, 460
LPM (Longest Prefix Match) algorithm, 798,

914
lru_list field, ipq structure, 559
lspci command, 114
ltalk_rcv function, 276

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1014 | Index

LVS (Linux Virtual Servers), ARP and, 709
lw_event structure, 164, 172
lweventlist variable, 172
lweventlist_lock variable, 172
LW_RUNNING flag, 165
LW_SE_USED flag, 165

M
MAC address (see L2 address)
mac field, sk_buff structure, 28
mac_addr structure, 359, 404
mac_len field, sk_buff structure, 26
macro-based tagging, 124, 125–127
macros, dynamic definition of, 132–134
"Magic Packets", 109
make config options (see compile options)
manage.c file, 88
Management Information Base (see MIB)
mark_bh function, 191
master field, net_device structure, 50
Max Age timer, 388
max_age field, net_bridge structure, 402
max_delay file, 961, 962
Maximum Transmission Unit (see MTU)
max_size file, 960, 962
mcast_probes field, neigh_parms

structure, 767
mcast_probes variable, 755
mcast_solicit file, 755
mc_count field, net_device structure, 51
mc_forwarding file, 963, 965
mc_forwarding variable, 963
McKenney, Paul (article about RCU), 15
mc_list field, net_device structure, 51
meat field, ipq structure, 560
Media Independent Interface (MII), 168
medium ID feature, ARP, 712–714
medium_id file, 757
mem_end field, net_device structure, 44
memory

allocating, 33–35
device, registration of, 87
freeing, 35
optimization of, in initialization

code, 130–134
memory caches, 5
mem_start field, net_device structure, 44
Message Age timer, 336, 386
message_age_timer field, net_bridge_port

structure, 400
messages, 4, 267

messages, ICMP (see ICMP messages)
methods (function pointers), 8–10
metrics field, dst_entry structure, 982
metrics, for routes, 783

(see also statistics)
MF (More Fragments) field, IP header, 413,

423
MIB (Management Information Base), IP

layer statistics using, 440
MII (Media Independent Interface), 168
mii-tool tool, 168
min_adv_mss file, 961, 962
min_delay file, 67, 961, 962
min_pmtu file, 961, 962
_ _mkroute_input function, 923
_ _mkroute_output function, 923
mod_cong file, 263
mod_cong variable, 263, 264
mod_devicetable.h file, 106
modprobe helper, 96, 98, 103
module options, 93
MODULE symbol, 132
module_exit macro, 122, 129, 130, 133, 135
module_init macro, 122, 129, 135

dependency with net_dev_init
function, 130

memory optimization and, 130, 133
module_param macro, 93, 104, 119, 135
modules

initialization, 122–125
loading, 98

More Fragments (MF) field, IP header, 413,
423

mp_alg_flush function, ip_mp_alg_ops
structure, 986

mp_alg_remove function, ip_mp_alg_ops
structure, 986

mp_alg_select_route function pointer, ip_
mp_alg_ops structure, 874, 875,
986

mp_alg_set_nhinfo function, ip_mp_alg_ops
structure, 986

MRT routing daemon, 860
MSG_DONTROUTE flag, 873
MSTP (Multiple Spanning Tree

Protocol), 309, 351, 352
mtu field, net_device structure, 45, 142, 145
MTU (Maximum Transmission Unit), 45,

429–432, 449
mtu_expires file, 961, 962
multibyte options, IPv4, 414

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1015

multicast, xx
ARP handling, 702
disabling for device, 858
enabling for device, 858
link layer multicast, 51
packet, testing for, 464
packet type for, 284
transmission of packets and, 476

multicast address
as route destination, 871
bridge handling of, 304
class of, 784
sending ICMP messages to, 611
static translation for, 633

MULTICAST macro, 843, 986
multicast routing, xx, 831
multihomed hosts, 779
multipath caching, 836, 873–878, 943
multipath routing, 808–815

cache for, 811–812
enabling, 832
for default route, 939
next hop selection for, 810, 941–944
per connection distribution, 814
per flow distribution, 814
per packet distribution, 814
selection of, 939

multipath_alg_register function, 874, 988
multipath_alg_unregister function, 874, 988
multipath_bucket structure, 837
multipath_candidate structure, 837
multipath_comparekeys function, 875, 876
multipath_dest structure, 837
multipath_device structure, 836
multipath_drr.c file, 878
multipath_flush function, 874, 988
_ _multipath_lookup_weight function, 878
multipath_random.c file, 876, 878
multipath_remove function, 874, 988
multipath_route structure, 837
multipath_rr.c file, 878
multipath_select_route function, 874, 988
multipath_set_nhinfo function, 874, 944, 988
Multiple Spanning Tree Protocol

(MSTP), 309, 351, 352
mutual exclusion, 14–15

N
name field

irqaction structure, 92
net_device structure, 44
pci_driver structure, 107

name_hlist field, net_device structure, 50
nameif tool, 139
NAPI

advantages of, 214
net_device fields for, 54, 215
net_rx_action function and, 216
notifying kernel of frame reception, 212,

214–219
NAT (Network Address Translation)

checksum updates triggered by, 433
fragmentation and, problems with, 427
limitations of, 552
stateless, 21

ND (Neighbor Discovery) protocol, 635
compared to ARP, 748
initialization and cleanup, 687

ndisc_cache file, 753
ndisc_cleanup function, 687
ndisc_init function, 687
ndisc_rcv function, 773
nd_tbl structure, 761, 773
negative_advice virtual function, dst_ops

structure, 881, 983
neigh_add function, 751, 772
neigh_alloc function, 672, 772
neigh_app_notify function, 745
neigh_apps_ns function, 745
neigh_blackhole function, 661, 772
neighbor advertisement (see solication

replies)
Neighbor Discovery protocol (see ND

protocol)
neighbor solicitation (see solication requests)
neighboring subsystem, 625–628, 634–636

ARP protocol and (see ARP (Address
Resolution Protocol))

arpd notifications, 665
caching used by, 666–668
cases where not required, 633
configuration, 752–757
creating a neighbor, 671–673
data structures for, 651–655, 757–772,

773
deleting a neighbor, 673–679
events generated by, 689
events received by, 690–692
files and directories for, list of, 774
functions for, list of, 772
garbage collection, 669, 675–679
initialization, 657–661
interaction with IPsec, 689

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1016 | Index

neighboring subsystem (continued)
interaction with L3 transmission

functions, 692–693
interaction with Netfilter, 689
interaction with routing, 689
interaction with TEQL, 689
interface to L3 transmission function, 510
L2 header caching, 683–687
link layer address, changing, 665
NUD (network unreachability

detection), 644–647
packet transmission, 634, 642
protocol initializatin and cleanup, 687
protocol mappings for, 5
protocols for, 635–636
proxying, 637–640, 679–683
queuing, 696–698
reachability of neighbors, 643, 647–650
reasons for, 628–634
reference counts, 670
solicitation replies, 634
solicitation requests, 634
states of neighbors, 642, 644–647
statistics about, 771
system administration for, 749–752
timers, 669
updating neighbor information, 661–665
variables for, list of, 773
VFT interface with L3

protocols, 655–665
neighbour field, dst_entry structure, 982
neighbour structure, 651, 655, 758–761

caching, 666
creating, 671–673
deleting, 673–679
initialization, 716–721
reference counts on, 670

neighbour.h file, 651
NEIGH_CACHE_STAT_INC macro, 772
neigh_changeaddr function, 690, 692
neigh_compat_output function, 660, 772
neigh_confirm function, 649, 772
neigh_connect function, 659, 772
neigh_connected_output function, 660, 772
neigh_create function, 666, 671, 772
neigh_delete function, 751, 772
neigh_destroy function, 674, 772
neigh_dump_info function, 751
neigh_forced_gc function, 676, 772
neigh_hash_alloc function, 666
neigh_hash_free function, 666
neigh_hash_grow function, 667

neigh_hh_init function, 773
neigh_hold function, 670, 773
neigh_ifdown function, 690, 690–691, 772
_ _neigh_lookup function, 668, 773
neigh_lookup function, 668, 773
_ _neigh_lookup_errno function, 668, 773
neigh_ops structure, 652, 769–770

functions assigned to virtual functions
of, 660

instances for each protocol, 657
VFT implemented as, 655

neigh_parms structure, 652, 653, 753,
765–769

neigh_parms_alloc function, 768
neigh_parms_clone function, 768
neigh_parms_destroy function, 768
_ _neigh_parms_put function, 768
neigh_parms_put function, 768
neigh_parms_release function, 768
neigh_periodic_timer function, 649, 673,

677, 772
neigh_proxy_process function, 772
neigh_rcu_free_parms function, 769
neigh_recv_ns function, 679
neigh_release function, 670, 674, 773
neigh_resolve_output function, 660, 686,

772
neigh_setup function, neigh_parms

structure, 765
neigh_setup function pointer, net_device

structure, 55, 672
neigh_statistics structure, 652, 771
neigh_suspect function, 659, 772
neigh_sync function, 772
neigh_sysctl_register function, 715, 755–757
neigh_table structure, 652, 653, 761–765
neigh_table_clear function, 688
neigh_table_init function, 688, 714, 772
neigh_tables variable, 773
neigh_timer_handler function, 690, 772
neigh_update function, 658, 661–665, 750,

772
NEIGH_UPDATE_F_ADMIN flag, 661
NEIGH_UPDATE_F_OVERRIDE flag, 661
NEIGH_UPDATE_F_OVERRIDE_

ISROUTER flag, 662
NEIGH_UPDATE_F_WEAK_OVERRIDE

flag, 662
neigh_update_hhs function, 687, 772
NEIGH_UPDATE_ISROUTER flag, 662
net.agent agent, 100
NET_BH type, 191

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1017

net_bridge structure, 360, 373, 401, 404
net_bridge_fdb_entry structure, 360, 399
net_bridge_port structure, 360, 399, 404
netdev= keyword, 117, 120
netdev_boot function, 135
netdev_boot_setup function, 117, 120
netdev_boot_setup structure, 135
netdev_boot_setup_add function, 135
netdev_boot_setup_check function, 140
NETDEV_BOOT_SETUP_MAX

variable, 135
netdev_chain notification chain, 81, 152

registration and unregistration to, 78
virtual devices using, 170

NETDEV_CHANGE event, 153, 165, 389,
856

NETDEV_CHANGEADDR event, 153, 389,
692, 742

NETDEV_CHANGEMTU event, 389, 856,
858

NETDEV_CHANGENAME event, 153, 858
NETDEV_DOWN event, 152, 390

disabling device, 161, 856, 883
disabling multicast configuration, 858
DST handling of, 884
removing of IP address, 549, 850

NETDEV_FEATCHANGE event, 389
NETDEV_GOING_DOWN event, 152, 160
netdevice notification chain, 389
net_device structure, 22, 43, 105, 653

allocating, 138, 140
bridge, field for, 53
checksum fields, 441
configuration fields, 44–48
deallocating, 141
device status, 49
Diverter, field for, 53
fields defining state of device, 147–148
fields, initializing, 141–145, 154
freeing, 156, 157, 158
function pointers, 55
function pointers, initializing, 86, 142
generic fields, 54
global list of, 146
hash tables for, 146
identifiers, 44
interface types and ports, 47
link layer multicast fields, 51
list management, 50
locking for, 171
lookups on, 146, 147
NAPI fields, 54, 215

Netpoll fields, 54
organization of, 145
promiscuous mode, 47
reference counts for, 158
statistics, 48
Traffic Control fields, 52
VLAN function pointers, 54
watchdog timer fields, 258
wireless device fields, 54

netdevice.h file, 43, 48, 49
net_device_stats structure, 48, 398
net_dev_init function, 94–96, 104

dependency with module_init
functions, 130

files created by, 103
netdev_max_backlog file, 67, 263
netdev_max_backlog variable, 223, 263, 264
netdev_nit variable, 279, 293
NETDEV_REBOOT event, 153
NETDEV_REGISTER event, 153
netdev_run_todo function, 150, 150–152,

154
netdev_state_change function, 165
netdev_sysfs_init function, 95
NETDEV_UNREGISTER event, 153, 390,

884
DST handling of, 883
IP configuration and, 858
reference counts and, 158
routing table and, 856
unregister_netdevice generating, 157

NETDEV_UP event, 152, 160, 390
adding of IP address, 549, 850
enabling device, 856
enabling multicast configuration, 858

netdev_wait_allrefs function, 150, 158, 159
Netfilter, xxi, 444

interaction with neighboring
subsystem, 689

IPv4 using, 411
masquerading feature, 549
sk_buff fields for, 32
transmission of packets and, 481

netif_carrier_off function, 163, 172
netif_carrier_ok function, 172
netif_carrier_on function, 163, 172
netif_device_attach function, 162, 172
netif_device_detach function, 162, 172
NETIF_F_HW_CSUM flag, 441
NETIF_F_IP_CSUM flag, 441
NETIF_F_LLTX, 255
NETIF_F_LLTX flag, 247

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1018 | Index

NETIF_F_NO_CSUM flag, 441
netif_poll_disable function, 218
netif_poll_enable function, 218
netif_queue_stopped function, 172, 241, 263
netif_receive_skb function, 235–238, 264,

276, 375, 446, 447
bridging code using, 371
function handler called by, 280

netif_running function, 211
netif_rx function, 212, 213, 227, 263
_ _netif_rx_complete function, 218
netif_rx_complete function, 218, 263
_ _netif_rx_schedule function, 218, 263
netif_rx_schedule function, 218, 263
netif_rx_stats structure, 261
_ _netif_schedule function, 243
netif_schedule function, 244, 264
netif_start_queue function, 172, 241, 242,

263
netif_stop_queue function, 172, 241, 263

interrupts and, 90
memory availability and, 242
suspending a device, 162

netif_wake_queue function, 244, 264
re-enabling egress queue, 243
triggering net_tx_action function, 255

Netlink, 60, 70
notifications to routing subsystem, 858
serialization used by, 71

NETLINK_FIREWALL protocol, 70
NETLINK_ROUTE protocol, 70
net_local structure, 49
netmask, 789
netmask field, fib_result structure, 978
netplugd daemon, 154
Netpoll, 211

net_device fields for, 54
processing ingress frames, 237

netpoll_rx field, net_device structure, 54
net_protocol structure, 571, 583
net_random_init function, 95
NETREG_REGISTERED flag, 149
NETREG_REGISTERING flag, 149
NETREG_RELEASED flag, 149
NETREG_UNINITIALIZED flag, 149
NETREG_UNREGISTERED flag, 149
NETREG_UNREGISTERING flag, 149
net_rx function, 219–225
net_rx_action function, 216, 228–238, 264
NET_RX_SOFTIRQ type

initialization of, 199
processing of, 228–238

registration of, 206
scheduling of, 225

net_set_todo function, 150, 154
net_todo_list array, 150
net-tools package, 749, 752, 952, 956
net-tools suite, 18
net_tx_action function, 239, 255–260, 264
NET_TX_SOFTIRQ type, 239

initialization of, 199
processing of, 255–260
registration of, 206
scheduling of, 244

Network Address Translation (see NAT)
network byte order, converting, 15
network cards (see NICs)
network devices

configuring from user space, 166–169
configuring with boot options, 120
data structures for, list of, 172
disabling, 137, 159, 211
enabling, 137, 159, 211
files and directories for, list of, 105
functions for, list of, 104, 172
hot-pluggable, 84, 96, 98–100
initialization of, 86, 93, 127, 141–145
initializing device handling layer, 94–96
interaction with kernel, 87–92
link state change detection, 163–165
loading as components, 93
loading as modules, 93, 96, 98
name of, 138
notification of registration

status, 152–154
queuing discipline, 148, 155
registering, 86, 136, 137, 140, 149–154,

154–155
registration state, 148, 149
resuming after suspending, 162
state of, 147–149
suspending, 162
transmission

enabling and disabling, 241–243
scheduling, 243–245

unique identifyer for, 155
unregistering, 136, 138, 141, 149–154,

156–159
variables for, list of, 104, 172
(see also net_device structure; NICs;

virtual devices)
network field, fib_result structure, 978
network filesystems, xxi
network layer (see L3)

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1019

Network Safari Bookshelf, xxiii
network stack, 266

communication points of,
handling, 269–274

going down (egress traffic), 268, 271
going up (ingress traffic), 267, 272

network unreachability detection
(NUD), 644–647, 657–661

New API (see NAPI)
new_bridge_dev function, 362
new_nbp function, 366
next field

dst_entry structure, 981
ipq structure, 558
irqaction structure, 92
neighbour structure, 758
neigh_parms structure, 765
neigh_table structure, 762
net_device structure, 50, 145
sk_buff structure, 24

next hop selection for multipath
routing, 941–944

next_header field, IPv6 header, 582
next-hop router structures, 903–904
next-hop scope, 839
next_sched field, net_device structure, 52
nf_bridge field, sk_buff structure, 32
nfcache field, sk_buff structure, 32
nfct field, sk_buff structure, 32
nfctinfo field, sk_buff structure, 32
nfdebug field, sk_buff structure, 32
NF_HOOK function, 444
nfmark field, sk_buff structure, 32
nh field, sk_buff structure, 28
nh_dev field, fib_nh structure, 975
nh_flags field, fib_nh structure, 975
nh_gw field, fib_nh structure, 839, 975
nh_hash field, fib_nh structure, 975
nh_oif field, fib_nh structure, 975
nh_parent field, fib_nh structure, 975
nh_power field, fib_nh structure, 942, 975
nh_scope field, fib_nh structure, 975
nh_sel field, fib_result structure, 978
nh_tclassid field, fib_nh structure, 949, 975
nh_weight field, fib_nh structure, 942, 975
NICs

controlling packet transmission, 833
initialization of, 86
interaction with kernel, 87–92
I/O ports for, 87
IRQ line for, 87
memory registration for, 87

multiple
implementing bridge using, 300
in nonrouting multihomed hosts, 779
in router, 778

multiple IP addresses configured
on, 789–793, 841

PCI NICs
device driver registration, 108,

110–112
multiport, 300

registering, 140
unregistering, 141
(see also network devices)

nl_u field, flowi structure, 984
No Operation, IP option type field, 415, 416
no_cong file, 263
no_cong variable, 263, 264
no_cong_thresh file, 263
no_cong_thresh variable, 263, 264
nonroutable addresses, 784
nonrouting multihomed hosts, 779
no_pmtu_disc field, ipv4_config

structure, 564
no_policy field, net_protocol structure, 571
notification chains, 75–78

components registering with, 78
data structures for, list of, 83
defining, 78
files and directories for, list of, 83
functions for, list of, 83
list of, 81
netdevice notificatin chain, 389
notifying events on, 79
registering, 82
wrappers for, 78, 81
(see also netdev_chain notification chain)

notifier_block structure, 78, 83
notifier_call_chain function, 79, 83
notifier_chain_register function, 78, 83
notifier_chain_unregister function, 79, 83
nowhere scope for routes, 838
ntohl macro, 16
ntohs macro, 16
NUD (network unreachability

detection), 644–647, 657–661
NUD_CONNECTED state, 646
NUD_DELAY state, 646, 647, 648, 650, 659
NUD_FAILED state, 645, 673
NUD_INCOMPLETE state, 645, 647, 650,

665
NUD_IN_TIMER state, 647
NUD_NOARP state, 646, 665

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1020 | Index

NUD_NONE state, 644, 647, 650, 665
NUD_PERMANENT state, 646, 665
NUD_PROBE state, 646, 647, 648, 650, 659
NUD_REACHABLE state, 645, 646, 649,

650, 659
NUD_STALE state, 646, 648, 650, 659
nud_state field, neighbour

structure, 657–661, 717, 759
NUD_VALID state, 646, 665

O
obs_kernel_param structure, 118, 120, 135
obsolete field, dst_entry structure, 981
_ _obsolete_setup macro, 118
octets, 3
OFFLINE_SAMPLE symbol, 95, 227
offset field, icmp_bxm structure, 602
oif field, flowi structure, 984
open function pointer, net_device

structure, 55, 142, 159
Open Shortest Path First IGP (OSPFIGP)

protocol, 574
open_softirq function, 194, 264
Oper field, arphdr structure, 701
ops field

dst_entry structure, 983
neighbour structure, 655, 656, 657,

717–719, 761
opt field, cork structure, 565
optbuf field, icmp_bxm structure, 602
Options field, IP header, 414
options, IPv4, 411, 414, 414–420

functions for, 453–455
parsing, 457
processing, 455–465

optlen field, ip_options structure, 556
O’Reilly contact information, xxiii
OSI model, 266
OSPFIGP (Open Shortest Path First IGP)

protocol, 574
out_hit counter, 870
out_hit field, rt_cache_stat structure, 984
out_hlist_search field, rt_cache_stat

structure, 985
output function

dst_entry structure, 982
initialization of, 920–923

neighbour structure, 655, 657–661, 717
neigh_ops structure, 769

output_entry field, icmp_control
structure, 601

output_queue field, softnet_data
structure, 207, 239, 244

out_slow_mc field, rt_cache_stat
structure, 985

out_slow_tot field, rt_cache_stat
structure, 985

P
Packet Action, 211
packet ID, selecting, 540
packet type, setting, 284
packets, 4, 267

ARP packets, 700–702, 722–734
forwarding, 272, 411, 455, 466–471
paths taken by, 178
reception of (see reception of packets)
transmission of (see transmission of

packets)
(see also fragmentation/defragmentation

of packets)
packet_type structure, 278, 279, 293
_ _pad1 field, ip_options structure, 558
_ _pad2 field, ip_options structure, 558
padded field, net_device structure, 145
page field, skb_frag_t structure, 565
page_offset field, skb_frag_t structure, 565
parms field

neighbour structure, 758
neigh_table structure, 763

parms_list field, neigh_table structure, 763
parse_args function, 85, 116, 117
parse_early_param function, 85
parse_early_params function, 118
passive learning by bridge, 302
patches, 20
path field, dst_entry structure, 981
Path MTU (PMTU), 429–432, 881
path_cost field, net_bridge_port

structure, 400
patterns (see coding patterns)
PCI devices

boot time activities for, 112
power management, 109
WOL (Wake-on-LAN), 109

PCI layer, 106–108
configuration, 114
data structures for, list of, 114
files and directories for, list of, 115
functions for, list of, 114

PCI NICs
device driver registration, 108, 110–112
multiport, 300

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1021

pci_dev structure, 107, 114
pci_device_id structure, 106, 108, 112, 114
pci_driver structure, 107, 108, 112, 114
pci.h file, 106
pci_module_init function, 108, 112, 114
pci_register_driver function, 108, 112, 114
pci_unregister_driver function, 108, 114
pconstructor function, neigh_table

structure, 764
pde field, neigh_table structure, 762
pdestructor function, neigh_table

structure, 764
peer field, rtable structure, 981
peer information kept at IP layer, 536–540
peer_check_expire function, 538, 540
peer_periodic_timer timer, 538
peer_pool_lock variable, 537, 568
peer_total variable, 537, 538, 568
per connection distribution, multipath

routing, 814
per flow distribution, multipath routing, 814
per packet distribution, multipath

routing, 814
per-destination proxying, 682
per-device proxying, 682
performance

compile-time optimization for condition
checks, 13

of Linux, xv
“Performance Evaluation of Linux Bridge”

(Yu), 355
periodic_gc_runs field, neigh_statistics

structure, 771
Peripheral Component Interconnect (PCI)

NICs (see PCI NICs)
per-netmask tables, routing tables, 898–902
PF_INET protocol family, 268
PF_KEY protocol family, 268
PF_LLC protocol family, 268
PF_NETLINK protocol family, 70, 268
PF_PACKET protocol family, 268
phash_buckets field, neigh_table

structure, 653, 683, 764
PIM (Protocol Independent Multicast)

protocol, 832
PIMv1 (Protocol Independent Multicast,

version 1), 570
PIMv2 (Protocol Independent Multicast,

version 2), 570
ping command, 18, 595
pkt_type field, sk_buff structure, 30, 284,

447

PLIP device
MTU value for, 46
tx_queue_len value for, 52

Plug and Play (PnP), 98
PMTU (Path MTU), 429–432, 881
pneigh_enqueue function, 682, 773
pneigh_entry structure, 652, 653
pneigh_lookup function, 683, 773
pneigh_update function, 750
PnP (Plug and Play), 98
point-to-point medium

neighboring subsystem not needed
for, 630

only one host on, 633
policy realms, 816, 948
policy routing, 802–808

configuring, 803–806
default gateway selection and, 946
device status changes affecting, 857
enabling, 832
firewall-based classifier, 808, 818, 859
initialization, 845
lookups, 806, 944–946
routing table based classifier, 948–951
routing table definitions affected by, 910
selecting routing table for, 806–808
TOS affecting, 808

poll field, net_device structure, 54
poll virtual function, net_device

structure, 142, 215, 216
poll_controller field, net_device structure, 54
polling of device by kernel, 87, 179

mixing with interrupts (see NAPI)
Netpoll framework for, 211

poll_list field, net_device structure, 54, 215
manipulating, 218
queuing input device to, 217

poll_list field, softnet_data structure, 207,
239

port cost, STP, 321, 323
port ID, STP, 321, 382
port priority, STP, 321, 322, 323
port timers, STP, 336, 388
port_id field, net_bridge_port structure, 400
port_list field, net_bridge structure, 401
port_no field, net_bridge_port structure, 400
ports (see bridge ports)
postcore_initcall macro, 126
power management

PCI devices, 109
queuing discipline state and, 161–162

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1022 | Index

PPP device
MTU value for, 46
tx_queue_len value for, 53

pppoe_disc_rcv function, 282
pppoe_rcv function, 282
pprev field, ipq structure, 559
preempt_check_resched function, 189
preempt_count counter, 189
preempt_disable function, 189
preempt_enable function, 189
preempt_enable_no_resched function, 189
preemption, 188
preferred source IP address, 928
prefixlen field, fib_result structure, 978
prev field, sk_buff structure, 24
primary addresses, 789–793, 841, 854
primary_key field, neighbour structure, 761
prio field, bridge_id structure, 398
priority field

net_bridge_port structure, 400
sk_buff structure, 31

priority vector, configuration BPDUs, 325
priv field

neigh_parms structure, 766
net_device structure, 48, 142

private field, sk_buff structure, 32
priv_flags field, net_device structure, 45
probe function, pci_driver structure, 107
probes field, neighbour structure, 760
probing mechanism for device driver, 109
/proc filesystem (procfs), 58, 60

ARP protocol, 708–714
bridging information in, 396
Ethernet and Token Ring information

in, 293
frame reception information in, 262
ICMP information in, 620
IP configuration using, 545, 553–555
neighboring subsystem, 752–757
network device information in, 103
PCI device information in, 114
routing, 958–966

proc_dointvec function, 63
proc_dointvec_jiffies function, 63
proc_dointvec_minmax function, 63
proc_dointvec_ms_jiffies function, 63
proc_dostring function, 63
proc_doulongvec_minmax function, 63
proc_doulongvec_ms_jiffies_minmax

function, 63
process_backlog function, 264

process_backlog virtual function, 231–235
procfs (see /proc filesystem)
proc_handler function, 62, 63
/proc/net directory, 959, 966
/proc/net/stat directory, 959, 966
/proc/sys directory (see sysctl command)
/proc/sys/net/ipv4 directory, 959, 960
/proc/sys/net/ipv4/conf directory, 752, 757,

959, 962–965
/proc/sys/net/ipv4/neigh directory, 752,

753–757
/proc/sys/net/ipv4/route directory, 959,

960–961
/proc/sys/net/ipv6/conf directory, 752
/proc/sys/net/ipv6/neigh directory, 752
prohibit route, 794
promiscuity field, net_device structure, 47
promiscuous mode, 277, 285, 366
proto field, flowi structure, 984
protocol field

dst_ops structure, 983
IP header, 413, 574
ipq structure, 559
sk_buff structure, 31, 274, 276

protocol handlers, 266
data structures for, list of, 293
execution of, 274–278
files and directories for, list of, 294
functions for, list of, 293
organization of, 278
registration, 279–281
variables for, list of, 293

Protocol Independent Destination Cache (see
DST)

Protocol Independent Multicast (PIM)
protocol, 832

Protocol Independent Multicast, version 1
(PIMv1), 570

Protocol Independent Multicast, version 2
(PIMv2), 570

Protocol size field, arphdr structure, 701
Protocol type field, arphdr structure, 700
protocols

OSI model for, 266
TCP/IP model for, 266
(see also specific protocols)

proxy_arp file, 757
proxy_delay field, neigh_parms

structure, 681, 767
proxy_delay file, 755
proxy_delay variable, 755

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1023

proxying
ARP, 735–740
destination-based, 639
device-based, 639
for neighboring protocol, 637–640
neighboring subsystem, 679–683

proxy_qlen field, neigh_parms
structure, 681, 766

proxy_qlen file, 755
proxy_qlen variable, 755
proxy_queue field, neigh_table

structure, 680, 682, 764
proxy_redo function, neigh_table

structure, 680, 765
proxy_timer field, neigh_table

structure, 670, 680, 765
pseudoheader, from IP header, 437
pskb_copy function, 40
pskb_may_pull function, 447
_ _pskb_trim function, 449
pskb_trim_rcsum function, 449
ptype_all variable, 279, 293
ptype_base variable, 95, 278, 293
publications

article about RCU (McKenney), 15
Ethernet: The Definitive Guide

(O’Reilly), 630
“ICMP Usage in Scanning” (Arkin), 585
Linux Device Drivers (O’Reilly), xvi
“Performance Evaluation of Linux Bridge”

(Yu), 355
RFCs about ICMP protocol, 585
Understanding Multiple Spanning Tree

Protocol (802.1s), 351
Understanding Rapid Spanning Tree

Protocol (802.1w), 351
Understanding the Linux Kernel

(O’Reilly), xvi

Q
qdisc field, net_device structure, 52
qdisc_ingress field, net_device structure, 52
qdisc_list field, net_device structure, 52
qdisc_restart function, 246, 246–249
qdisc_run function, 246, 264
qdisc_sleeping field, net_device structure, 52
QoS (Quality of Service), xx

networking options for, 24
policy routing based on, 803
queuing discipline implementing, 155
sk_buff priority field for, 31

TOS field and, 412
(see also Traffic Control)

Quagga routing protocol daemon, 820, 860
Quality of Service (see QoS)
query messages, ICMP, 587

(see also ICMP messages)
queue_len field, neigh_parms structure, 766
queue_len variable, 755
queue_lock field, net_device structure, 52,

171, 247
queues

egress queues, 212, 241–243
ingress queues, 212, 223–225
neighboring system, 696–698

queue_xmit function, neigh_ops
structure, 657, 770

queuing discipline, 155, 245–249
disabling, 161
frame transmission and, 252
initializing, 160
link state change detection and, 163–165
power management and, 161–162
state of, 148

quota field, net_device structure, 54, 215

R
r field, fib_result structure, 978
race conditions, locks protecting against, 843
r_action field, fib_rule structure, 976
raise_softirq function, 188, 194, 264
_ _raise_softirq_irqoff function, 188, 194
raise_softirq_irqoff function, 188, 194, 264
random algorithm, multipath routing, 811,

876
random number generation, 95
Rapid Spanning Tree Protocol (RSTP), 309,

351
RARP (Reverse Address Resolution

Protocol), 545, 746
rate limiting, 608–610

ICMP_REDIRECT messages, 896
ICMP_UNREACHABLE

messages, 931–933
rate_last field, dst_entry structure, 897, 982
rate_tokens field, dst_entry structure, 897,

982
raw IP, 577–581, 873
raw sockets, 510, 577–581
raw_rcv function, 581
raw_v4_htable table, 581, 583
raw_v4_input function, 581, 583

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1024 | Index

r_clntref field, fib_rule structure, 976
rcu field

net_bridge_fdb_entry structure, 399
net_bridge_port structure, 400

RCU (Read-Copy-Update), 14, 864
rcu_head field

dst_entry structure, 983
in_device structure, 562
in_ifaddr structure, 564
neigh_parms structure, 767

rcu_read_lock lock, 573
rcu_read_unlock lock, 573
rcvfunc function, datalink_proto

structure, 292
rcv_probes_mcast field, neigh_statistics

structure, 771
rcv_probes_ucast field, neigh_statistics

structure, 771
r_dead field, fib_rule structure, 977
rdisc command, 18
r_dst field, fib_rule structure, 977
r_dst_len field, fib_rule structure, 976
r_dstmask field, fib_rule structure, 977
reachability of neighbors, 643, 647–650
reachable_time field, neigh_parms

structure, 766
Read-Copy-Update (RCU), 14, 864
real_dev field, sk_buff structure, 28
realms for routing table based classifier, 783,

815–818
rebuild_header function pointer, net_device

structure, 55, 142, 686
receive-livelock condition, 180
reception of frames

backlog queue for, 231–235
configuration, 262
congestion management for, 225–228
data structures for, list of, 264
disabling, 211
drivers notifying kernel of, 178–183
files and directories for, list of, 265
functions for, list of, 263
ingress queues for, 212
notifying kernel of, 212–219
processing multiple frames during

interrupt, 180
processing of, 228–238
queue for incoming frames, 206–209
receive-livelock condition, 180
scheduling software interrupts

for, 219–225
statistics about, 261

STP bridge handling, 347
variables for, list of, 264
with LLC, 290

reception of ICMP messages, 611–617
reception of messages, 267
reception of packets, 411, 446–453

routing table and, 800
statistics about, 542

reception (RX), 4
Record Route, IP option type field, 415, 417,

462
redirect_load file, 961, 962
redirect_number file, 961, 962
redirect_silence file, 961, 962
refcnt field

in_device structure, 562
inet_peer structure, 561
ipq structure, 560
neighbour structure, 670, 760
neigh_parms structure, 767
net_device structure, 54, 158

_ _refcnt field, dst_entry structure, 981
reference counts, 6, 374

neighbour structure, 670
net_device structure, 158

register_8022_client function, 293
register_inet6addr_notifier function, 78
register_inetaddr_notifier function, 78, 548
register_netdev function, 149, 172
register_netdevice function, 96, 149, 154,

169, 172
register_netdevice_notifier function, 78, 152,

715
register_snap_client function, 291, 293
register_sysctl_table function, 62, 64–66
registration of network devices, 136, 137,

140, 149–154, 154–155
virtual devices, 169

reg_state field, net_device structure, 49, 147,
148

release_region function, 87, 104
remove function, pci_driver structure, 107
remove_bh function, 191
repeater, 297
replyopts field, icmp_bxm structure, 602
request function, datalink_proto

structure, 292
request_irq function, 88, 91, 104
request_module function, 98
request_region function, 87, 104
requeue function, 246

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1025

res_failed field, neigh_statistics
structure, 771

resources (see publications; web site
resources)

resume function, pci_driver structure, 107,
162

retrans_time field, neigh_parms
structure, 766

retrans_time file, 755
retrans_time variable, 755
Reverse Address Resolution Protocol

(RARP), 545, 746
reverse path filtering, 828
r_flags field, fib_rule structure, 977
r_fwmark field, fib_rule structure, 977
r_ifindex field, fib_rule structure, 977
r_ifname field, fib_rule structure, 977
RJ-45 wire, 630
r_next field, fib_rule structure, 976
roles

RSTP ports, 351
STP ports, 319

root bridge, STP, 317, 328, 387
changing ID of, 341
notified of topology change, 342

root node, STP, 315
root port, STP, 319, 329
root_path_cost field, net_bridge

structure, 402
root_port field, net_bridge structure, 402
round-robin algorithm, multipath

routing, 811, 878
routable addresses, 784
route command, 859, 956
route file, 966
Route NAT, 736
route realms, 817
Routed routing protocol daemon, 820, 860
router, 297, 778

forwarding packets, process for, 272
proxy ARP server as, 737–740

Router Alert, IP option type field, 415, 419,
465, 467

router_alert field, ip_options structure, 558
routes, 779

adding, 859
asymmetric, 783
default gateway for, 788
default route, 779
inserted by kernel, 958
inserting in routing tables, 819–821
metrics for, 783

scope of, 785–788, 838, 839
symmetric, 783
types of, 794

routing, 777, 781–785
change notifications for, 957
configuration, 830–833, 952–958,

958–966
configurations of, 780
data structures for, 834–837, 968–986,

989
device status changes, handling, 856–858
directed broadcasts and, 788
external events affecting, 845–858
files and directories for, list of, 989
forwarding, enabling and disabling, 966
functions for, list of, 986–988
global locks for, 843
helper routines and macros for, 842
ICMP messages and, 599
ICMP_REDIRECT messages

and, 822–828
initialization, 844
interaction with neighboring

subsystem, 689
interaction with Traffic Control

subsystem, 815–818
IP configuration changes,

handling, 849–856
IP layer and, 445
multipath routing, 808–815
Netlink notifications, handling, 858
packet reception, 800
packet transmission, 800
policy routing, 802–808
primary and secondary addresses

for, 789–793, 841
rate limiting for ICMP_REDIRECT

messages, 896
reverse path filtering, 828
shared media and, 823–825, 828
source routing, 946
statistics, 834, 958
user-space tools for, 952–958
variables for, list of, 988
Verbose Monitoring, 821
on WAN devices, 832

routing cache, 795, 836, 861
adding entries to, 864, 865
allocating entries, 865
binding to ARP cache, 868
compared to routing table, 795
creating entries in, 927

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1026 | Index

routing cache (continued)
data structures for, 862
deleting entries in, 864, 893–894
enabling, 832
expiration of entries in, 892
external events, handling, 883
flushing, 885
garbage collection for, 796–798, 886–896
initialization, 861
interface to calling protocols, 879–885
interface to IPsec, 882
locking for, 864
lookups, 798, 864, 868–873
multipath caching, 873–878
preferred source IP address in, 928
size of, 862

routing protocol daemons, 819–821, 859
routing protocols, 778
routing table, 778, 793–798

actions taken by, 794
adding routes to, 905
compared to routing cache, 795
configuring for policy routing, 805
default routing tables, 904
device status changes affecting, 856
garbage collection for, 910
initialization, 904
local and non-local addresses in, 794
lookups, 798–800, 912, 914–920

delivery to other hosts, 938
egress traffic, 920–923, 933–941
forwarding, 931
helper routines for, 913
ingress traffic, 920–922, 923, 923–933
local delivery, 929, 937
policy routing and, 944–946
routing failure, 931–933
search key initialization, 935
source IP address selection, 936

memory cache for, 5
next-hop router structures for, 903–904
number of, 794
number of, with policy routing, 802
organization of, 898–904
per-netmask tables, 898–902
policy routing affecting, 910
removing routes from, 905, 906
selecting, for policy routing, 806–808

routing table based classifier, 815–818, 834,
948–951

routing tag, 817, 950
rp_filter file, 963, 965

rp_filter variable, 963
r_preference field, fib_rule structure, 976
rr field, ip_options structure, 557
rr_needaddr field, ip_options structure, 557
r_src field, fib_rule structure, 977
r_src_len field, fib_rule structure, 976
r_srcmap field, fib_rule structure, 977
r_srcmask field, fib_rule structure, 977
RSTP (Rapid Spanning Tree Protocol), 309,

351
rt field, cork structure, 565
rt structure, 469, 477
r_table field, fib_rule structure, 976
rtable structure, 652, 836, 862, 978–981
rt_acct file, 966
RTAX_ADVMSS metric, 974
RTAX_CWND metric, 974
RTAX_FEATURES metric, 974
RTAX_HOPLIMIT metric, 974
RTAX_INITCWND metric, 974
RTAX_LOCK metric, 974
RTAX_MTU metric, 974
RTAX_REORDERING metric, 974
RTAX_RTT metric, 974
RTAX_RTTVAR metric, 974
RTAX_SSTHRESH metric, 974
RTAX_WINDOW metric, 974
rt_cache file, 958, 966
rt_cache_flush function, 743, 846, 885
rt_cache_stat structure, 834, 958, 984
RT_CACHE_STAT_INC function, 988
RT_CACHE_STAT_INC macro, 870
RTCF_BROADCAST flag, 979
RTCF_DIRECTDST flag, 979
RTCF_DIRECTSRC flag, 979
RTCF_DNAT flag, 737, 979
RTCF_DOREDIRECT flag, 979
RTCF_FAST flag, 979
RTCF_LOCAL flag, 979
RTCF_MASQ flag, 979
RTCF_MULTICAST flag, 979
RTCF_NAT flag, 979
RTCF_NOTIFY flag, 979
RTCF_REDIRECTED flag, 979
RTCF_REJECT flag, 979
RTCF_SNAT flag, 979
RTCF_TPROXY flag, 979
rt_check_expire function, 891
r_tclassid field, fib_rule structure, 948, 977
rt_drop function, 893
rt_dst field, rtable structure, 980
rtentry structure, 836

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1027

rt_flags field, rtable structure, 979
rt_flush_lock lock, 843, 986
rt_free function, 891, 893, 988
rt_garbage_collect function, 868, 880,

887–891, 988
rt_gateway field, rtable structure, 980
rt_hash_bucket structure, 862
rt_hash_log variable, 862
rt_hash_mask variable, 862, 988
rt_hash_rnd variable, 862
rt_hash_table hash table, 862
rt_hash_table variable, 988
rt_iif field, rtable structure, 980
rt_intern_hash function, 865, 868, 923, 988
rt_may_expire function, 886, 890, 988
RTM_DELADDR event, 548
RTMGRP_IPV4_ROUTE group, 858, 957
RTMGRP_LINK multicast group, 152, 154
RTM_NEWADDR event, 548
RTM_NEWLINK event, 165
rtmsg_fib function, 858, 987
rtmsg_ifa function, 548, 567
rtmsg_ifinfo function, 154
rt_multipath_alg field, rtable structure, 980
RTN_ANYCAST route type, 919, 980
RTN_BLACKHOLE route type, 919, 980
RTN_BROADCAST route type, 919, 980
RTnetlink RTMGRP_LINK multicast

group, 152, 154
RTNH_F_DEAD flag, 918, 972
RTNH_F_ONLINK flag, 972
RTNH_F_PERVASIVE flag, 972
rtnl_lock function, 150, 171, 361
RTN_LOCAL route type, 919, 980
rtnl_sem function, 71
rtnl_unlock function, 150, 171, 361
RTN_MULTICAST route type, 919, 980
RTN_NAT route type, 919, 980
RTN_PROHIBIT route type, 919, 980
RTN_THROW route type, 919, 980
RTN_UNICAST route type, 919, 980
RTN_UNREACHABLE route type, 919, 980
RTN_UNSPEC route type, 919, 980
RTN_XRESOLVE route type, 919, 980
RTO_ONLINK flag, 873
r_tos field, fib_rule structure, 977
rt_periodic_timer timer, 891, 987
RTPROT_BIRD protocol, 973
RTPROT_BOOT protocol, 973
RTPROT_DNROUTED protocol, 973
RTPROT_GATED protocol, 973
RTPROT_KERNEL protocol, 973

RTPROT_MRT protocol, 973
RTPROT_RA protocol, 973
RTPROT_REDIRECT protocol, 973
RTPROT_STATIC protocol, 973
RTPROT_UNSPEC protocol, 973
RTPROT_XORP protocol, 973
RTPROT_ZEBRA protocol, 973
rt_remove_balanced_route function, 891
rt_remove_balanced_routes function, 875
rt_run_flush function, 885
RT_SCOPE_HOST scope, 838
RT_SCOPE_LINK scope, 838
RT_SCOPE_NOWHERE scope, 838
RT_SCOPE_UNIVERSE scope, 838
rt_score function, 865
rt_secret_rebuild function, 886
rt_secret_timer timer, 886, 987
rt_set_nexthop function, 914
rt_spec_dst field, 928
rt_spec_dst field, rtable structure, 981
rt_src field, rtable structure, 980
rt_type field, rtable structure, 979
run_bottom_half function, 192
run_init_process function, 85
RX (see reception)
rx_bytes field, net_device_stats

structure, 398
rx_packets field, net_device_stats

structure, 398

S
saddr field, ipq structure, 559
Safari Enabled icon, xxiii
SA_INTERRUPT flag, irqaction

structure, 92
sanity checks, IPv4, 410
SAPs (Service Access Points), 288

(see also DSAP; SSAP)
SA_SAMPLE_RANDOM flag, irqaction

structure, 92
SA_SHIRQ flag, irqaction structure, 92
Scatter/Gather DMA, 155
Scatter/Gather I/O, 487–490, 503
schedule function, 192
scope field, fib_result structure, 978
scope of IP addresses, 785–788, 839, 936
scope of next hop, 839
scope of routes, 785–788, 838, 839
SCTP (Stream Control Transmission

Protocol), 570
secondary addresses, 789–793, 841, 854
secret_interval file, 961, 962

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1028 | Index

secure_ip_id function, 541, 567
secure_redirects file, 963, 965
secure_redirects variable, 963
security

ICMPv4 and, 585
(see also Denial of Service (DOS) attacks;

IPsec; Netfilter)
security field, sk_buff structure, 31
Security, IP option type field, 415
segments, 4, 267
semaphores, 15
Sender Hardware Address (SHA) field,

arphdr structure, 701
Sender Protocol Address (SPA) field, arphdr

structure, 701
sendfile interface, 503
sendmsg system call, 497
send_redirects file, 963, 965
send_redirects variable, 963
serialization of configuration changes, 71
Service Access Points (see SAPs)
setageing command, brctl utility, 395
setageingr command, brctl utility, 392
setbridgeprio command, brctl utility, 395
setbridgeprior command, brctl utility, 392
set_class_tag function, 949
set_config function pointer, net_device

structure, 56
setfd command, brctl utility, 395
setfdr command, brctl utility, 392
sethello command, brctl utility, 395
sethellor command, brctl utility, 392
set_mac_address function pointer, net_

device structure, 56, 142
setmaxage command, brctl utility, 395
setmaxager command, brctl utility, 392
set_multicast_list function pointer, net_

device structure, 56, 142
setpathcost command, brctl utility, 395
setpathcostr command, brctl utility, 392
setportprio command, brctl utility, 395
setportprior command, brctl utility, 392
SetTxThreshold command, 242
_ _setup macro, 93, 117, 120
setup_check function, 135
setup_irq function, 91
_ _setup_param function, 118
SHA (Sender Hardware Address) field,

arphdr structure, 701
shared media

neighboring subsystem for, 630–631
routing and, 823–825, 828

shared_media file, 963, 965
shared_media variable, 963
show command, brctl utility, 395
"Show me your data" (Brooks), 22
showmacs command, brctl utility, 395
showmacsr command, brctl utility, 392
showr command, brctl utility, 392
showstp command, brctl utility, 395
showstpr command, brctl utility, 392
Simple Internet Transition (SIT,

IPv6-over-IPv4 tunnel), 570
Simple Network Management Protocol (see

SNMP)
SIP (Source IP address) field, arphdr

structure, 701
SIT (Simple Internet Transition,

IPv6-over-IPv4 tunnel), 570
size field, skb_frag_t structure, 565
sk field, sk_buff structure, 25
skb field, icmp_bxm structure, 602
skb function, neighbour structure, 760
skb_bond function, 237
skb_can_coalesce function, 504
skb_checksum_help function, 436
skb_checkum function, 435
skb_clone function, 39
skb_copy function, 41
skb_cow function, 451, 470
skb_dequeue function, 42
skb_dequeue_tail function, 42
skb_fill_page_desc function, 504
skb_frag_t structure, 565
skb_headlen function, 491
skb_init function, 5
skb_is_nonlinear function, 491
skb_pagelen function, 491
skb_pull function, 35–38
skb_push function, 35–38
skb_push function, sk_buff structure, 480
skb_put function, 35–38
skb_queue_head function, 42
skb_queue_head_init function, 42
skb_queue_purge function, 42
skb_queue_tail function, 42
skb_queue_walk function, 42
skb_reserve function, 23, 35–38
skb_set_owner_w function, 477
skb_share_check function, 40, 447, 727
skb_shared_info structure, 38
skb_shinfo block, 505
skb_shinfo function, 38

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1029

sk_buff structure, 22
allocating, 5
checksum fields, 441–443
cloning and copying, 39–42
created by ip_append_data function, 484
data reservation and alignment, 35–38
functions, 32–42
general fields, 27–31
HIPPI field, 32
IPsec protocol field, 32
layout fields, 24–27
list (queue) management, 42
memory

allocating, 33–35
freeing, 35

Netfilter fields, 32
networking options, 23
skb_shared_info structure, accessing, 38
Traffic Control fields, 32

skbuff.c file, 32, 42
skbuff.h file, 22, 32, 42
sk_buff_head structure, 24
_ _sk_dst_check function, 477, 478
sk_dst_check function, 477
_ _sk_dst_set function, 477, 479
sk_dst_set function, 477
sk_write_queue structure, 505
SLIP device

MTU value for, 46
tx_queue_len value for, 52

SMP (symmetric multiprocessing), 177
SNAP (Subnetwork Access Protocol), 268,

288, 290–292
snap_list variable, 293
snap_rcv function, 288
snmp file, 544
SNMP (Simple Network Management

Protocol), xxi
snmp.h file, 542, 545
SNMP_INC_XXX macros, 545
sock structure, 22, 476
sock_alloc_send_skb function, 477
socket buffer descriptors, 5
socket buffer (see sk_buff structure)
socket call, 70, 578–580
socket CORK option, 440
socket layer, ICMP interactions with, 599
socket structure, 476
sock_wmalloc function, 477
softirq_init function, 198
softirq_pending function, 188
softirqs (see software interrupts)

softnet_data structure, 206–209, 264
softnet_stat file, 103
software initialization, 86
software interrupts, 193–196

concurrency and, 187
initialization of, 198
kernel threads for, 202–204
networking code’s use of, 206
pending, handling of, 199–201
per-architecture processing of, 202

solicit function, neigh_ops structure, 769
solicitation replies, 634
solicitation requests, 634

ARP, 724
delayed processing of, 680
proxy server replying to, 638–640
when processed, 640–642

Source Address field, IP header, 414
source code, browsing, 19
Source IP address (SIP) field, arphdr

structure, 701
source routing, 416, 460, 946
Source Service Access Point (SSAP), 268
sp field, sk_buff structure, 32
SPA (Sender Protocol Address) field, arphdr

structure, 701
Spanning Tree Ports (see STP, ports)
Spanning Tree Protocol (see STP)
special media encapsulation, 277
spin locks, 14, 188

ICMP transmissions using, 603
list management functions using, 42
ptype_base structures using, 280
read-write spin locks, 14
routing using, 843, 864

spin_lock_bh function, 188
spin_unlock_bh function, 188
sppp_rcv function, 276
srr field, ip_options structure, 557
srr_is_hit field, ip_options structure, 557
SSAP (Source Service Access Point), 268,

287, 290
stable network, 311
stamp field, sk_buff structure, 27
start_kernel function, 85
state field

net_bridge_port structure, 399
net_device structure, 49, 148, 161

state field, net_device structure, 148
stateless Network Address Translation

(NAT), 21
static probing for device driver, 109

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1030 | Index

statistics, 17
bridging, 398
frame reception, 261
ICMPv4, 617–619
IP layer, 440, 541–545
neighboring subsystem, 771
routing, 834, 958

statistics field, net_bridge structure, 401
stats field, neigh_table structure, 763
stop function pointer, net_device

structure, 55, 142, 156, 161
store-and-forward bridge, 298
stp command, brctl utility, 395
STP ports, 318–320
STP (Spanning Tree Protocol), 309, 310,

314–320
best spanning tree criteria, 315
bridge IDs, 321, 322, 382
bridge priority, 321, 322, 323
configuration update of

topology, 328–334, 386
convergence time required by, 349
designated bridges, 318
designated port, 330
enabling on bridge device, 383
example of, 331–334
frame processing affected by, 372, 376
functions for, list of, 381
ingress frames, handling, 347
port cost, 321, 323
port IDs, 321, 382
port priority, 321, 322, 323
ports, 318–320
processing ingress BPDUs, 383
root bridge, 317, 328, 387
root node, 315
root port, 329
temporary loops, avoiding, 338–340
timers, 321, 335, 388
topology changes, handling, 340–344,

388
transmitting BPDUs, 385

stp_enabled field, net_bridge structure, 383,
401

stpr command, brctl utility, 392
strategy function, 63
Stream Control Transmission Protocol

(SCTP), 570
Stream ID, IP option type field, 415
Strict Source and Record Route, IP option

type field, 415, 416, 460
subnet broadcasts, 930

Subnetwork Access Protocol (SNAP), 268,
290–292

subsys_initcall macro, 126
subsys_initcall macros, 96
subsystems, 4

boot-time initialization routines, 128–130
boot-time kernel options for, 116–120
initialization of, 84, 116
loading as modules, initialization

for, 122–125
memory optimizations for

initialization, 130–134
(see also specific subsystems)

summed field, sk_buff structure, 441
suspend function, pci_driver structure, 107
switched network (see bridged network)
switches

compared to bridges, 299
neighboring subsystems and, 631

sw_write_queue list, 493
symbols, finding compile options associated

with, 24
symmetric multiprocessing (see SMP)
symmetric routes, 783
sync mechanism, RSTP, 351
synchronize_net function, 573
synchronous garbage collection, 8

neighboring infrastructure, 675, 676
routing cache, 796, 887–891

/sys filesystem (sysfs), 7, 59
bridging information in, 396–398
net class registered with, 95

sysctl command, 59, 60, 61–67
sysctl_icmp_echo_ignore_all variable, 621
sysctl_icmp_echo_ignore_broadcasts

variable, 621, 960
sysctl_icmp_errors_use_inbound_ifaddr

variable, 621
sysctl_icmp_ignore_bogus_error_messages

variable, 614
sysctl_icmp_ignore_bogus_error_responses

variable, 621
sysctl_icmp_ratelimit variable, 621
sysctl_icmp_ratemask variable, 621
sysctl_intvec function, 63
sysctl_ip_default_ttl variable, 553
sysctl_ip_dynaddr variable, 554
sysctl_ipfrag_high_thresh variable, 533, 554
sysctl_ipfrag_low_thresh variable, 554
sysctl_ipfrag_secret_interval variable, 554
sysctl_ipfrag_time variable, 554
sysctl_ip_local_port_range variable, 554

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1031

sysctl_ip_nonlocal_bind variable, 553
sysctl_jiffies function, 63
sysctl_ms_jiffies function, 63
sysctl_string function, 63
sysctl_table field, neigh_parms

structure, 766
sysfs (see /sys filesystem)
system entropy, 95

T
tag file, 963
tag variable, 963
tail field, sk_buff structure, 26
Target Hardware Address (THA) field,

arphdr structure, 701
Target IP address (TIP) field, arphdr

structure, 701
Target Protocol Address (TPA) field, arphdr

structure, 701
tasklet_action function, 198, 204, 264
tasklet_disable function, 198, 264
tasklet_disable_nosync function, 198, 264
tasklet_enable function, 198, 264
tasklet_hi_action function, 198, 264
tasklet_hi_enable function, 198, 264
tasklet_hi_schedule function, 198, 264
tasklet_init function, 198, 264
tasklets, 196–198

concurrency and, 187
processing of, 204

tasklet_schedule function, 198, 264
TASKLET_SOFTIRQ type, 196, 198
tasklet_struct structure, 197, 264
tb_data field, fib_table structure, 969
tb_delete virtual function, fib_table

structure, 905, 969
tb_dump virtual function, fib_table

structure, 905, 969
tb_flush virtual function, fib_table

structure, 905, 969
tb_id field, fib_table structure, 968
tb_insert virtual function, fib_table

structure, 905, 969
tbl field

neighbour structure, 758
neigh_parms structure, 766

tb_lookup virtual function, fib_table
structure, 905

tb_lookup virtual function, fib_table
structure, 914, 969

tb_select_default virtual function, fib_table
structure, 905, 969

tb_stamp field, fib_table structure, 969
tc command, 689
TC flag, 342, 344, 347
TCA flag, 344, 347
tc_classid field, sk_buff structure, 32
tc_index field, sk_buff structure, 32
tclassid field, dst_entry structure, 982
TCN timer, STP, 336, 344, 388
TCN (Topology Change Notification)

BPDUs, 323, 342, 385
tcn_timer field, net_bridge structure, 402
TCP protocol, 569

(see also L4)
TCP Segmentation Offload (TSO), 155
tcp.h file, 29
TCP/IP network stack, layers of, 3, 266
tcp_output.c file, 30
tcp_ts field, inet_peer structure, 561
tcp_v4_setup_caps function, 479
tc_verd field, sk_buff structure, 32
TEQL (Traffic equalizer), interaction with

neighboring subsystem, 689
TEQL (true equalizer) device, 52, 101
THA (Target Hardware Address) field,

arphdr structure, 701
thread_info structure, preempt_count

in, 189
throttle field, softnet_data structure, 207,

208
throttle state, 224
throttled field, netif_rx_stats structure, 262
throttling, 242
throw route, 794
ticks, 17
time, measuring, 17
Time To Live field (see TTL field)
timer field

ipq structure, 560
neighbour structure, 669, 761

timer-driven interrupts, 181
timers

fragmentation timer, 424, 512
garbage collection, bridge, 375
heartbeat timer, 704
in neighboring subsystem, 669
initialization of, 85
STP, 321, 335, 388
watchdog timer, 258

times field, icmp_bxm structure, 602
time_squeeze field, netif_rx_stats

structure, 262

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1032 | Index

Timestamp, IP option type field, 415, 418,
463

timeval field, ipq structure, 560
TIP (Target IP address) field, arphdr

structure, 701
todo_list field, net_device structure, 54
Token Bus device, MTU value for, 46
Token Ring 16 MB/s device, MTU value

for, 46
Token Ring 4 MB/s device, MTU value

for, 46
Token Ring device

alloc_netdev wrapper for, 139
configuration, 293
tx_queue_len value for, 52

Topology Change Notification BPDU (see
TCN BPDUs)

Topology Change Notification timer (see
TCN timer, STP)

Topology Change timer, STP, 336, 344, 347,
388

topology_change field, net_bridge
structure, 402

topology_change_ack field, net_bridge_port
structure, 400

topology_change_detected field, net_bridge
structure, 402

topology_change_timer field, net_bridge
structure, 402

TOS (Type of Service) field, 412
initialization, 936
policy routing based on, 808
priority set by, 470

total field, netif_rx_stats structure, 261
Total Length field, IP header, 412
TPA (Target Protocol Address) field, arphdr

structure, 701
traceroute command, 595
Traffic Control, xx

egress queues, 212, 241
frame transmission, 249
ingress frame processing, 237
net_device fields for, 52
packet transmission, 635
routing and, 815–818
sk_buff fields for, 32
(see also QoS; queuing discipline)

trailer_len field, dst_entry structure, 981
transformation bundles, IPsec, 882
transmission of frames, 239–241

data structures for, list of, 264
egress queues for, 212

enabling and disabling, 241–243
failure of, reasons for, 249
files and directories for, list of, 265
for queueless devices, 254
fragments, handling of, 250
functions for, list of, 263
locks for, 247
processing, 255–260
scheduling device for, 243–245
transfering frame to queue, 249–255
variables for, list of, 264

transmission of ICMP messages, 602–610
transmission of messages, 268
transmission of packets, 411, 473–476,

504–509
buffering data for, 481–503
functions for, 474–476
L3 to L4 packet delivery, 574–582
local delivery, 472
multicast and, 476
neighboring subsystem and, 634, 642
Netfilter and, 481
NICs controlling, 833
raw sockets and, 510
routing table and, 800
socket data structures for, 476
statistics about, 543
Traffic Control and, 635

transmission (TX), 4
transparent proxy, 637
transport layer (see L4)
trans_start field, net_device structure, 49,

258
true link equalizer (see TEQL device)
truesize field, sk_buff structure, 26
trunking, 43
ts field, ip_options structure, 557
ts_needaddr field, ip_options structure, 558
ts_needtime field, ip_options structure, 558
TSO (TCP Segmentation Offload), 155
TTL (Time To Live) field, IP header, 413

decrementing, 469, 470
decrementing, checksum updates

triggered by, 433
Tulip cards, 833
tulip driver, 182
tunnel interfaces, 101
tunneling protocols, 570
TX (see transmission)
tx_bytes field, net_device_stats

structure, 398

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1033

tx_dropped field, net_device_stats
structure, 398

tx_packets field, net_device_stats
structure, 398

tx_queue_len field, net_device structure, 52,
142, 363

tx_timeout field, net_device structure, 259
tx_timeout function pointer, net_device

structure, 56, 142
type field

datalink_proto structure, 292
fib_result structure, 978
ICMP header, 586
neighbour structure, 701, 760
net_device structure, 46, 142
packet_type structure, 279

Type of Service field (see TOS field)
typographical conventions used in this

book, xxii

U
u field, rtable structure, 978
ucast_probes field, neigh_parms

structure, 767
ucast_probes variable, 755
UDP protocol, 569

MSG_DONTROUTE flag and, 873
(see also L4)

udp_flush_pending_frames function, 508
udp_push_pending_frames function, 508
uli_u field, flowi structure, 984
Understanding Multiple Spanning Tree

Protocol (802.1s), 351
Understanding Rapid Spanning Tree Protocol

(802.1w), 351
Understanding the Linux Kernel

(O’Reilly), xvi
uninit function pointer, net_device

structure, 55, 142, 149, 156, 169
universe scope for IP addresses, 786
universe scope for routes, 786, 838
university projects, Linux used by, xv
unlikely macro, 13
unreachable route, 794
unregister_8022_client function, 293
unregister_inet6addr_notifier function, 79
unregister_inetaddr_notifier function, 79,

548
unregister_netdev function, 149, 172

unregister_netdevice function, 141, 149,
157, 169, 172

unregister_netdevice_notifier function, 79,
152

unregister_snap_client function, 291, 293
unregister_sysctl_table function, 62, 64
unregistration of network devices, 149–154,

156–159
compared to disabling devices, 136
conditions for, 138
NICs, 141
virtual devices, 169

unres_qlen file, 755
unshielded twisted pair (UTP) wire, 630
unused_next field, inet_peer structure, 561
unused_prevp field, inet_peer structure, 561
updated field, neighbour structure, 759
update_pmtu virtual function, dst_ops

structure, 881, 983
_ _use field, dst_entry structure, 981
use_count field, net_bridge_fdb_entry

structure, 399
used field, neighbour structure, 759
user field, ipq structure, 559
users field, sk_buff structure, 26, 40
user-space tools

brctl utility, 391, 395
bridge configuration using, 391–396
device-related information,

configuring, 166–169
ethtool tool, 166–168
hotplug helper, 96, 98–100, 103
ifconfig command, 67, 166, 550
initialization events handled by, 96–100
ioctl commands, 59, 67, 71, 392–393,

545
kmod kernel module loader, 98
list of, 18, 58
mii-tool tool, 168
modprobe helper, 96, 98, 103
neighbor system administration, 749–752
Netlink, 60, 70, 71, 858
net-tools package, 749, 752, 952, 956
procfs (/proc filesystem), 58, 60
routing, 952–958
sysctl command, 59, 60, 61–67
sysfs (/sys filesystem), 7, 59
(see also IPROUTE2 package; routing

protocol daemons)
UTP (unshielded twisted pair) wire, 630

www.ebooksworld.in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1034 | Index

V
v4addr field, inet_peer structure, 538
v4daddr field, inet_peer structure, 561
vector definitions, 11
vectors (arrays), 3
Verbose Monitoring, 821, 833
Version field, IP header, 411
VFT interface for neighboring

subsystem, 655–665
VFT (virtual function table), 10
vi editor, 19
virtual devices, xxi, 100–103

configuration of, 102
external interface for, 102
initialization of, 101
paths taken by frames through, 178
reception on, 278
registering, 169
special media encapsulation by, 277
transmission on, 277
unregistering, 169

virtual function table (VFT), 10
virtual IP, gratuitous ARP used for, 704
VLAN device

net_device function pointers for, 54
notifications on, 170
tx_queue_len value for, 53

VLAN (Virtual LAN), 43
vlan.c file, 54
vlan_rx_add_vid field, net_device

structure, 54
vlan_rx_kill_vid field, net_device

structure, 54
vlan_rx_register field, net_device

structure, 54
vlan_skb_rcv function, 282
vortex_interrupt function, 182

W
WAKE_ARP keyword, 744
Wake-on-LAN (WOL), 109, 743
WAN router, 832
watchdog timer, 258

starting, 160
stopping, 161
waking egress queue for, 245

watchdog_timeo field, net_device
structure, 54, 258, 259

watchdog_timeo function pointer, net_device
structure, 142

watchdog_timer field, net_device
structure, 54, 258

Wavelan device, MTU value for, 46
web proxying, 637
web site resources

BIRD routing protocol daemon, 820
brctl utility, 391
Click router, xxi
cscope tool, 19
ebtables framework, 378
frame diverter, xxi
GateD routing protocol daemon, 820
IP virtual server, xxi
IPROUTE2 tool, 18
Linux Network Development List

Archives, 19
Netfilter, xxi
O’Reilly, xxiii
Quagga routing protocol daemon, 820
RFCs about ICMP protocol, 586
RSTP, user-space simulator for, 352
Safari Bookshelf, xxiii
traffic control, xx
user-space tools, 18
XORP routing protocol daemon, 820
Zebra routing protocol daemon, 820

weight field, net_device structure, 54, 215
weighted random algorithm, multipath

routing, 811, 812, 876
weight_p variable, 263
wireless devices, net_device fields for, 54
wireless file, 103
wireless_data field, net_device structure, 54
wireless_handlers field, net_device

structure, 54
WOL (Wake-on-LAN), 109, 743
work queues, 186

X
X25_lap_receive_frame function, 281
xfrm field, dst_entry structure, 981
xfrm4_policy_check function, 577, 582
xmit_lock field, net_device structure, 171,

247
xmit_lock_owner field, net_device

structure, 50, 171
XORP routing protocol daemon, 820, 860
xrlim_allow function, 622
xxx_hold functions, 7
xxx_initcall macro, 131, 134

www.ebooksworld.in

V413HAV
V413HAV

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 1035

xxx_probe functions, 143
net_device fields initialized by, 142
net_device function pointers initialized

by, 142
xxx_put functions, 7
xxx_release functions, 7
xxx_setup functions, 143, 172

net_device fields initialized by, 142
net_device function pointers initialized

by, 142

Y
Yu, James T. (“Performance Evaluation of

Linux Bridge”), 355

Z
Zebra routing protocol daemon, 820, 860
“zero-copy” TCP/UDP, 503
ZERONET macro, 843, 986
zone, 899

www.ebooksworld.in

www.ebooksworld.in

About the Author
Christian Benvenuti received his masters degree in computer science at the Univer-
sity of Bologna in Italy. He collaborated for a few years with the International Center
for Theoretical Physics (ICTP) in Trieste, where he developed ad-hoc software based
on the Linux kernel, was a scientific consultant for a project on remote collabora-
tion, and served as an instructor for several training sessions on networking. The
trainings, held mainly in Europe, Africa, and South America were all based on Linux
systems and addressed to scientists from developing countries, where the ICTP has
been promoting Linux for many years. He occasionally collaborates with a nonprofit
organization founded by ICTP members, Collaborium.org, to continue promoting
Linux on developing countries.

In the past few years he worked as a software engineer for Cisco Systems in the
Silicon Valley, where he focused on Layer 2 switching, high availability, and network
security.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

Philip Dangler was the production editor, and Audrey Doyle was the copyeditor for
Understanding Linux Network Internals . Sada Preisch proofread the book. Mary
Brady and Colleen Gorman provided quality control. Rachel Monaghan, Lydia
Onofrei, and Laurel Ruma provided production assistance. Angela Howard wrote
the index.

Karen Montgomery designed the cover of this book, based on a series design by
Hanna Dyer and Edie Freedman. The cover image is a 19th-century engraving from
Men: A Pictorial Archive from 19th Century Sources). Karen Montgomery produced
the cover layout with Adobe InDesign CS using Adobe’s ITC Garamond font.

David Futato designed the interior layout. The chapter opening images are from
Men: A Pictorial Archive from 19th Century Sources. This book was converted by
Keith Fahlgren to FrameMaker 5.5.6 with a format conversion tool created by Erik
Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technolo-
gies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano, Jessamyn Read, and Lesley
Borash using Macromedia FreeHand MX and Adobe Photoshop CS. The tip and
warning icons were drawn by Christopher Bing.

www.ebooksworld.in

www.ebooksworld.in

	Table of Contents
	Preface
	The Audience for This Book
	Background Information
	Organization of the Material
	What Is Not Covered

	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari Enabled
	Acknowledgments

	Part I
	Introduction
	Basic Terminology
	Common Coding Patterns
	Memory Caches
	Caching and Hash Tables
	Reference Counts
	Garbage Collection
	Function Pointers and Virtual Function Tables (VFTs)
	goto Statements
	Vector Definitions
	Conditional Directives (#ifdef and family)
	Compile-Time Optimization for Condition Checks
	Mutual Exclusion
	Conversions Between Host and Network Order
	Catching Bugs
	Statistics
	Measuring Time

	User-Space Tools
	Browsing the Source Code
	Dead Code

	When a Feature Is Offered as a Patch

	Critical Data Structures
	The Socket Buffer: sk_buff Structure
	Networking Options and Kernel Structures
	Layout Fields
	General Fields
	Feature-Specific Fields
	Management Functions
	Allocating memory: alloc_skb and dev_alloc_skb
	Freeing memory: kfree_skb and dev_kfree_skb
	Data reservation and alignment: skb_reserve, skb_put, skb_push, and skb_pull
	The skb_shared_info structure and the skb_shinfo function
	Cloning and copying buffers
	List management functions

	net_device Structure
	Identifiers
	Configuration
	Interface types and ports
	Promiscuous mode

	Statistics
	Device Status
	List Management
	Link Layer Multicast
	Traffic Management
	Feature Specific
	Generic
	Function Pointers

	Files Mentioned in This Chapter

	User-Space-to-Kernel Interface
	Overview
	procfs Versus sysctl
	procfs
	sysctl: Directory /proc/sys
	Examples of ctl_table initialization
	Registering a file in /proc/sys
	Core networking files and directories

	ioctl
	Netlink
	Serializing Configuration Changes

	Part II
	Notification Chains
	Reasons for Notification Chains
	Overview
	Defining a Chain
	Registering with a Chain
	Notifying Events on a Chain
	Notification Chains for the Networking Subsystems
	Wrappers
	Examples

	Tuning via /proc Filesystem
	Functions and Variables Featured in This Chapter
	Files and Directories Featured in This Chapter

	Network Device Initialization
	System Initialization Overview
	Device Registration and Initialization
	Basic Goals of NIC Initialization
	Interaction Between Devices and Kernel
	Hardware Interrupts
	Interrupt types
	Interrupt sharing
	Organization of IRQs to handler mappings

	Initialization Options
	Module Options
	Initializing the Device Handling Layer: net_dev_init
	Legacy Code

	User-Space Helpers
	kmod
	Hotplug
	/sbin/hotplug

	Virtual Devices
	Examples of Virtual Devices
	Interaction with the Kernel Network Stack

	Tuning via /proc Filesystem
	Functions and Variables Featured in This Chapter
	Files and Directories Featured in This Chapter

	The PCI Layer and Network Interface Cards
	Data Structures Featured in This Chapter
	Registering a PCI NIC Device Driver
	Power Management and Wake-on-LAN
	Example of PCI NIC Driver Registration
	The Big Picture
	Tuning via /proc Filesystem
	Functions and Variables Featured in This Chapter
	Files and Directories Featured in This Chapter

	Kernel Infrastructure for Component Initialization
	Boot-Time Kernel Options
	Registering a Keyword
	Two-Pass Parsing
	.init.setup Memory Section
	Use of Boot Options to Configure Network Devices

	Module Initialization Code
	Old Model: Conditional Code
	New Model: Macro-Based Tagging

	Optimized Macro-Based Tagging
	Initialization Macros for Device Initialization Routines

	Boot-Time Initialization Routines
	xxx_initcall Macros
	Example of _��_initcall and _��_exitcall routines: modules
	Example of dependency between initialization routines
	Legacy code

	Memory Optimizations
	_��_init and _��_exit Macros
	xxx_initcall and _��_exitcall Sections
	Other Optimizations
	Dynamic Macros’ Definition

	Tuning via /proc Filesystem
	Functions and Variables Featured in This Chapter
	Files and Directories Featured in This Chapter

	Device Registration and Initialization
	When a Device Is Registered
	When a Device Is Unregistered
	Allocating net_device Structures
	Skeleton of NIC Registration and Unregistration
	Device Initialization
	Device Driver Initializations
	Device Type Initialization: xxx_setup Functions
	Optional Initializations and Special Cases

	Organization of net_device Structures
	Lookups

	Device State
	Queuing Discipline State
	Registration State

	Registering and Unregistering Devices
	Split Operations: netdev_run_todo
	Device Registration Status Notification
	netdev_chain notification chain
	RTnetlink link notifications

	Device Registration
	register_netdevice Function

	Device Unregistration
	unregister_netdevice Function
	Reference Counts
	Function netdev_wait_allrefs

	Enabling and Disabling a Network Device
	Updating the Device Queuing Discipline State
	Interactions with Power Management
	Suspending a device
	Resuming a device

	Link State Change Detection
	Scheduling and processing link state change events
	Linkwatch flags

	Configuring Device-Related Information from�User�Space
	Ethtool
	Drivers that do not support ethtool

	Media Independent Interface (MII)

	Virtual Devices
	Locking
	Tuning via /proc Filesystem
	Functions and Variables Featured in This Chapter
	Files and Directories Featured in This Chapter

	Part III
	Interrupts and Network Drivers
	Decisions and Traffic Direction
	Notifying Drivers When Frames Are Received
	Polling
	Interrupts
	Processing Multiple Frames During an Interrupt
	Timer-Driven Interrupts
	Combinations
	Example

	Interrupt Handlers
	Reasons for Bottom Half Handlers
	Bottom Halves Solutions
	Concurrency and Locking
	Preemption
	Bottom-Half Handlers
	Bottom-half handlers in kernel 2.2
	Bottom-half handlers in kernel 2.4 and above: the introduction of the softirq

	Tasklets
	Softirq Initialization
	Pending softirq Handling
	_��_do_softirq function

	Per-Architecture Processing of softirq
	ksoftirqd Kernel Threads
	Starting the threads

	Tasklet Processing
	How the Networking Code Uses softirqs

	softnet_data Structure
	Fields of softnet_data
	Initialization of softnet_data

	Frame Reception
	Interactions with Other Features
	Enabling and Disabling a Device
	Queues
	Notifying the Kernel of Frame Reception: NAPI and netif_rx
	Introduction to the New API (NAPI)
	net_device Fields Used by NAPI
	net_rx_action and NAPI
	Old Versus New Driver Interfaces
	Manipulating poll_list

	Old Interface Between Device Drivers and Kernel: First Part of netif_rx
	Initial Tasks of netif_rx
	Managing Queues and Scheduling the Bottom Half

	Congestion Management
	Congestion Management in netif_rx
	Average Queue Length and Congestion-Level Computation

	Processing the NET_RX_SOFTIRQ: net_rx_action
	Backlog Processing: The process_backlog Poll Virtual Function
	Ingress Frame Processing
	Handling special features

	Frame Transmission
	Enabling and Disabling Transmissions
	Scheduling a Device for Transmission
	Queuing Discipline Interface
	qdisc_restart function

	dev_queue_xmit Function
	Queueful devices
	Queueless devices

	Processing the NET_TX_SOFTIRQ: net_tx_action
	Watchdog timer

	General and Reference Material About Interrupts
	Statistics
	Tuning via /proc and sysfs Filesystems
	Functions and Variables Featured in This Part of the Book
	Files and Directories Featured in This Part of the Book

	Protocol Handlers
	Overview of Network Stack
	The Big Picture
	Link Layer Choices for Ethernet (LLC and SNAP)
	How the Network Stack Operates

	Executing the Right Protocol Handler
	Special Media Encapsulation

	Protocol Handler Organization
	Protocol Handler Registration
	Ethernet Versus IEEE 802.3 Frames
	Setting the Packet Type
	Setting the Ethernet Protocol and Length
	Logical Link Control (LLC)
	The IPX case
	Linux’s LLC implementation
	Processing ingress LLC frames

	Subnetwork Access Protocol (SNAP)

	Tuning via /proc Filesystem
	Functions and Variables Featured in This Chapter
	Files and Directories Featured in This Chapter

	Part IV
	Bridging: Concepts
	Repeaters, Bridges, and Routers
	Bridges Versus Switches
	Hosts
	Merging LANs with Bridges
	Bridging Different LAN Technologies
	Address Learning
	Broadcast and Multicast Addresses
	Aging

	Multiple Bridges
	Bridging Loops
	Loop-Free Topologies
	Defining a Loop-Free Topology

	Bridging: The Spanning Tree Protocol
	Basic Terminology
	Example of Hierarchical Switched L2 Topology
	Basic Elements of the Spanning Tree Protocol
	Root Bridge
	Designated Bridges
	Spanning Tree Ports
	Port states
	Port roles

	Bridge and Port IDs
	Bridge Protocol Data Units (BPDUs)
	Configuration BPDU
	Priority Vector
	When to Transmit Configuration BPDUs
	BPDU Aging

	Defining the Active Topology
	Root Bridge Selection
	Root Port Selection
	Designated Port Selection
	Examples of STP in Action

	Timers
	Avoiding Temporary Loops

	Topology Changes
	Short Aging Timer
	Letting All Bridges Know About a Topology Change
	Example of a Topology Change

	BPDU Encapsulation
	Transmitting Configuration BPDUs
	Processing Ingress Frames
	Ingress BPDUs
	Ingress Configuration BPDUs

	Convergence Time
	Overview of Newer Spanning Tree Protocols
	Rapid Spanning Tree Protocol (RSTP)
	Multiple Spanning Tree Protocol (MSTP)

	Bridging: Linux Implementation
	Bridge Device Abstraction
	Important Data Structures
	Initialization of Bridging Code
	Creating Bridge Devices and Bridge Ports
	Creating a New Bridge Device
	Bridge Device Setup Routine
	Deleting a Bridge
	Adding Ports to a Bridge
	Deleting a Bridge Port

	Enabling and Disabling a Bridge Device
	Enabling and Disabling a Bridge Port
	Changing State on a Bridge Port
	The Big Picture
	Forwarding Database
	Lookups
	Reference Counts
	Adding, Updating, and Removing Entries
	Aging

	Handling Ingress Traffic
	Data Frames Versus BPDUs
	Processing Data Frames

	Transmitting on a Bridge Device
	Spanning Tree Protocol (STP)
	Key Spanning Tree Routines
	Bridge IDs and Port IDs
	Enabling the Spanning Tree Protocol on a Bridge Device
	Processing Ingress BPDUs
	Transmitting BPDUs
	Configuration Updates
	Root Bridge Selection
	Becoming the root bridge
	Giving up the root bridge role

	Timers
	Handling Topology Changes

	netdevice Notification Chain

	Bridging: Miscellaneous Topics
	User-Space Configuration Tools
	Handling Configuration Changes
	Old Interface Versus New Interface
	Creating Bridge Devices and Bridge Ports
	Configuring Bridge Devices and Ports

	Tuning via /proc Filesystem
	Tuning via /sys Filesystem
	Statistics
	Data Structures Featured in This Part of the Book
	bridge_id Structure
	net_bridge_fdb_entry Structure
	net_bridge_port Structure
	net_bridge Structure

	Functions and Variables Featured in This Part of the Book
	Files and Directories Featured in This Part of the Book

	Part V
	Internet Protocol Version 4 (IPv4): Concepts
	IP Protocol: The Big Picture
	IP Header
	IP Options
	“End of Option List? and “No Operation? Options
	Source Route Option
	Record Route Option
	Timestamp Option
	Router Alert Option

	Packet Fragmentation/Defragmentation
	Effect of Fragmentation on Higher Layers
	IP Header Fields Used by Fragmentation/Defragmentation
	Examples of Problems with Fragmentation/Defragmentation
	Retransmissions
	Associating fragments with their IP packets
	Example of IP ID generation
	Example of unsolvable defragmentation problem: NAT

	Path MTU Discovery

	Checksums
	APIs for Checksum Computation
	Changes to the L4 Checksum

	Internet Protocol Version 4 (IPv4): Linux Foundations and Features
	Main IPv4 Data Structures
	Checksum-Related Fields from sk_buff and net_device Structures
	net_device structure
	sk_buff structure

	General Packet Handling
	Protocol Initialization
	Interaction with Netfilter
	Interaction with the Routing Subsystem
	Processing Input IP Packets
	The ip_rcv_finish Function

	IP Options
	Option Processing
	Option Parsing
	Option: strict and loose Source Routing
	Option: Record Route
	Option: Timestamp
	Option: Router Alert
	Handling parsing errors

	Internet Protocol Version 4 (IPv4): Forwarding and Local Delivery
	Forwarding
	ICMP Redirect
	ip_forward Function
	ip_forward_finish Function
	dst_output Function

	Local Delivery

	Internet Protocol Version 4 (IPv4): Transmission
	Key Functions That Perform Transmission
	Multicast Traffic
	Relevant Socket Data Structures for Local Traffic
	The ip_queue_xmit Function
	Setting the route
	Building the IP header

	The ip_append_data Function
	Basic memory allocation and buffer organization for ip_append_data
	Memory allocation and buffer organization for ip_append_data with�Scatter�Gather I/O
	Key routines for handling fragmented buffers
	Further handling of the buffers
	Setting the context
	Getting ready for fragment generation
	Copying data into the fragments: getfrag
	Buffer allocation
	Main loop
	L4 checksum

	The ip_append_page Function
	The ip_push_pending_frames Function
	Putting Together the Transmission Functions
	Raw Sockets

	Interface to the Neighboring Subsystem

	Internet Protocol Version 4 (IPv4): Handling Fragmentation
	IP Fragmentation
	Functions Involved with IP Fragmentation
	The ip_fragment Function
	Slow Fragmentation
	Fast Fragmentation

	IP Defragmentation
	Organization of the IP Fragments Hash Table
	Key Issues in Defragmentation
	Functions Involved with Defragmentation
	New ipq Instance Initialization
	The ip_defrag Function
	The ip_frag_queue Function
	Handling overlaps
	L4 checksum

	Garbage Collection
	Hash Table Reorganization

	Internet Protocol Version 4 (IPv4): Miscellaneous Topics
	Long-Living IP Peer Information
	Initialization
	Lookups
	How the IP Layer Uses inet_peer Structures
	Garbage Collection

	Selecting the IP Header’s ID Field
	IP Statistics
	IP Configuration
	Main Functions That Manipulate IP Addresses and Configuration
	Change Notification: rtmsg_ifa
	inetaddr_chain Notification Chain
	IP Configuration via ip
	IP Configuration via ifconfig

	IP-over-IP
	IPv4: What’s Wrong with It?
	Tuning via /proc Filesystem
	Data Structures Featured in This Part of the Book
	iphdr Structure
	ip_options Structure
	ipcm_cookie Structure
	ipq Structure
	inet_peer Structure
	ipstats_mib Structure
	in_device Structure
	in_ifaddr Structure
	ipv4_devconf Structure
	ipv4_config Structure
	cork Structure
	skb_frag_t Structure

	Functions and Variables Featured in This Part of�the�Book
	Files and Directories Featured in This Part of the Book

	Layer Four Protocol and Raw IP Handling
	Available L4 Protocols
	L4 Protocol Registration
	Registration: inet_add_protocol and inet_del_protocol

	L3 to L4 Delivery: ip_local_deliver_finish
	Raw Sockets and Raw IP
	Delivering Raw Input Datagrams to the Recipient Application
	IPsec

	IPv4 Versus IPv6
	Tuning via /proc Filesystem
	Functions and Variables Featured in This Chapter
	Files and Directories Featured in This Chapter

	Internet Control Message Protocol (ICMPv4)
	ICMP Header
	ICMP Payload
	ICMP Types
	ICMP_ECHO and ICMP_ECHOREPLY
	ICMP_DEST_UNREACH
	ICMP_SOURCE_QUENCH
	ICMP_REDIRECT
	ICMP_TIME_EXCEEDED
	ICMP_PARAMETERPROB
	ICMP_TIMESTAMP and ICMP_TIMESTAMPREPLY
	ICMP_INFO_REQUEST and ICMP_INFO_REPLY
	ICMP_ADDRESS and ICMP_ADDRESSREPLY

	Applications of the ICMP Protocol
	ping
	traceroute

	The Big Picture
	Protocol Initialization
	Data Structures Featured in This Chapter
	icmphdr Structure
	icmp_control Structure
	icmp_bxm Structure

	Transmitting ICMP Messages
	Transmitting ICMP Error Messages
	Replying to Ingress ICMP Messages
	Rate Limiting
	Implementation of Rate Limiting

	Receiving ICMP Messages
	Processing ICMP_ECHO and ICMP_ECHOREPLY Messages
	Processing the Common ICMP Messages
	Processing ICMP_REDIRECT Messages
	Processing ICMP_TIMESTAMP and ICMP_TIMESTAMPREPLY Messages
	Processing ICMP_ADDRESS and ICMP_ADDRESSREPLY Messages

	ICMP Statistics
	Passing Error Notifications to the Transport Layer
	Tuning via /proc Filesystem
	Functions and Variables Featured in This Chapter
	Files and Directories Featured in This Chapter

	Part VI
	Neighboring Subsystem: Concepts
	What Is a Neighbor?
	Reasons That Neighboring Protocols Are Needed
	When L3 Addresses Need to Be Translated to L2 Addresses
	Shared Medium
	Why Static Assignment of Addresses Is Not Sufficient
	Special Cases
	Solicitation Requests and Replies

	Linux Implementation
	Neighboring Protocols

	Proxying the Neighboring Protocol
	Conditions Required by the Proxy

	When Solicitation Requests Are Transmitted and Processed
	Neighbor States and Network Unreachability Detection (NUD)
	Reachability
	Transitions Between NUD States
	Basic states
	Derived states
	Initial state

	Reachability Confirmation

	Neighboring Subsystem: Infrastructure
	Main Data Structures
	Common Interface Between L3 Protocols and�Neighboring Protocols
	Initialization of neigh->ops
	Initialization of neigh->output and neigh->nud_state
	Common state changes: neigh_connect and neigh_suspect
	Routines used for neigh->output

	Updating a Neighbor’s Information: neigh_update
	neigh_update optimization
	Initial neigh_update operations
	Changes of link layer address
	Notifications to arpd

	General Tasks of the Neighboring Infrastructure
	Caching
	Timers

	Reference Counts on neighbour Structures
	Creating a neighbour Entry
	The neigh_create Function’s Parameters
	Neighbor Initialization

	Neighbor Deletion
	Garbage Collection
	Synchronous cleanup: the neigh_forced_gc function
	Asynchronous cleanup: the neigh_periodic_timer function

	Acting As a Proxy
	Delayed Processing of Solicitation Requests
	Per-Device Proxying and Per-Destination Proxying

	L2 Header Caching
	Methods Provided by the Device Driver
	Link Between Routing and L2 Header Caching
	Cache Invalidation and Updating

	Protocol Initialization and Cleanup
	Interaction with Other Subsystems
	Events Generated by the Neighboring Layer
	Events Received by the Neighboring Layer
	Updates via neigh_ifdown
	Updates via neigh_changeaddr (netdevice notification chain)

	Interaction Between Neighboring Protocols and L3 Transmission Functions
	Queuing
	Ingress Queuing
	Egress Queuing

	Neighboring Subsystem: Address Resolution Protocol (ARP)
	ARP Packet Format
	Destination Address Types for ARP Packets

	Example of an ARP Transaction
	Gratuitous ARP
	Change of L2 Address
	Duplicate Address Detection
	Virtual IP

	Responding from Multiple Interfaces
	Tunable ARP Options
	Compile-Time Options
	/proc Options
	ARP_ANNOUNCE
	ARP_IGNORE
	ARP_FILTER
	Medium ID

	ARP Protocol Initialization
	The arp_tbl Table

	Initialization of a neighbour Structure
	Basic Initialization Sequence
	Virtual Functions in the ops Field
	Start of the arp_constructor Function
	Devices That Do Not Need ARP
	Devices That Need ARP

	Transmitting and Receiving ARP Packets
	Transmitting ARP Packets: Introduction to arp_send
	Solicitations
	ARP_ANNOUNCE and selection of source IP address

	Processing Ingress ARP Packets
	Initial Common Processing
	Processing ARPOP_REQUEST Packets
	Passive learning and ARP optimization
	Requests with zero addresses

	Processing ARPOP_REPLY Packets
	Final Common Processing

	Proxy ARP
	Destination NAT (DNAT)
	Proxy ARP Server as Router

	Examples
	External Events
	Received Events
	Generated Events
	Wake-on-LAN Events

	ARPD
	Kernel Side
	User-Space Side

	Reverse Address Resolution Protocol (RARP)
	Improvements in ND (IPv6) over ARP (IPv4)

	Neighboring Subsystem: Miscellaneous Topics
	System Administration of Neighbors
	Common Routines
	New-Generation Tool: IPROUTE2’s ip Command
	Old-Generation Tool: net-tools’s arp Command

	Tuning via /proc Filesystem
	The /proc/sys/net/ipv4/neigh Directory
	Initialization of global and per-device directories
	Directory creation

	The /proc/sys/net/ipv4/conf Directory

	Data Structures Featured in This Part of the Book
	neighbour Structure
	neigh_table Structure
	neigh_parms Structure
	neigh_ops Structure
	hh_cache Structure
	neigh_statistics Structure
	Data Structures Featured in This Part of the Book

	Files and Directories Featured in This Part of the Book

	Part VII
	Routing: Concepts
	Routers, Routes, and Routing Tables
	Nonrouting Multihomed Hosts
	Varieties of Routing Configurations
	Questions Answered in This Part of the Book

	Essential Elements of Routing
	Scope
	Use of the scope

	Default Gateway
	Directed Broadcasts
	Primary and Secondary Addresses
	Old-generation configuration: aliasing interfaces
	Relationship between aliasing devices and primary/secondary status

	Routing Table
	Special Routes
	Route Types and Actions
	Routing Cache
	Routing Table Versus Routing Cache
	Routing Cache Garbage Collection
	Examples of events that can expire cache entries
	Examples of eligible cache victims

	Lookups
	Longest Prefix Match

	Packet Reception Versus Packet Transmission

	Routing: Advanced
	Concepts Behind Policy Routing
	Lookup with Policy Routing
	Routing Table Selection

	Concepts Behind Multipath Routing
	Next Hop Selection
	Cache Support for Multipath
	Weighted random algorithm
	Device round-robin algorithm

	Per-Flow, Per-Connection, and Per-Packet Distribution
	Equalizer algorithm

	Interactions with Other Kernel Subsystems
	Routing Table Based Classifier
	Configuring policy realms
	Configuring route realms
	Computing the routing tag

	Policy Routing and Firewall-Based Classifier

	Routing Protocol Daemons
	Verbose Monitoring
	ICMP_REDIRECT Messages
	Shared Media
	Transmitting ICMP_REDIRECT Messages
	Processing Ingress ICMP_REDIRECT Messages

	Reverse Path Filtering

	Routing: Linux Implementation
	Kernel Options
	Basic Options
	Advanced Options
	Recently Dropped Options

	Main Data Structures
	Lists and Hash Tables

	Route and Address Scopes
	Route Scopes
	Address Scopes
	Relationship Between Route and Next-Hop Scopes

	Primary and Secondary IP Addresses
	Generic Helper Routines and Macros
	Global Locks
	Routing Subsystem Initialization
	External Events
	Helper Routines
	Changes in IP Configuration
	Adding an IP address
	Removing an IP address

	Changes in Device Status
	Impacts on the routing tables
	Impacts on the policy database
	Impacts on the IP configuration

	Interactions with Other Subsystems
	Netlink Notifications
	Policy Routing and Firewall-Based Classifier
	Routing Protocol Daemons

	Routing: The Routing Cache
	Routing Cache Initialization
	Hash Table Organization
	Major Cache Operations
	Cache Locking
	Cache Entry Allocation and Reference Counts
	Adding Elements to the Cache
	Binding the Route Cache to the ARP Cache
	Cache Lookup
	Ingress lookup
	Egress lookup

	Multipath Caching
	Registering a Caching Algorithm
	Interface Between the Routing Cache and Multipath
	Helper Routines
	Common Elements Between Algorithms
	Random Algorithm
	Weighted Random Algorithm
	Round-Robin Algorithm
	Device Round-Robin Algorithm

	Interface Between the DST and Calling Protocols
	IPsec Transformations and the Use of dst_entry
	External Events

	Flushing the Routing Cache
	Garbage Collection
	Synchronous Cleanup
	rt_garbage_collect Function
	Asynchronous Cleanup
	Expiration Criteria
	Deleting DST Entries
	Variables That Tune and Control Garbage Collection

	Egress ICMP REDIRECT Rate Limiting

	Routing: Routing Tables
	Organization of Routing Hash Tables
	Organization of Per-Netmask Tables
	Basic structures for hash table organization
	Dynamic resizing of per-netmask hash tables

	Organization of fib_info Structures
	Dynamic resizing of global hash tables

	Organization of Next-Hop Router Structures
	The Two Default Routing Tables: ip_fib_main_table and�ip_fib_local_table

	Routing Table Initialization
	Adding and Removing Routes
	Adding a Route
	Deleting a Route
	Garbage Collection

	Policy Routing and Its Effects on Routing Table Definitions
	Variable and Structure Definitions
	Double Definitions for Functions

	Routing: Lookups
	High-Level View of Lookup Functions
	Helper Routines
	The Table Lookup: fn_hash_lookup
	Semantic Matching on Subsidiary Criteria
	Criteria for rejecting routes
	Return value from fib_semantic_match

	fib_lookup Function
	Setting Functions for Reception and Transmission
	Initialization of Function Pointers for Ingress Traffic
	Initialization of Function Pointers for Egress Traffic
	Special Cases

	General Structure of the Input and Output Routing Routines
	Input Routing
	Creation of a Cache Entry
	Preferred Source Address Selection
	Local Delivery
	Forwarding
	Routing Failure

	Output Routing
	Search Key Initialization
	Selecting the Source IP Address
	Local Delivery
	Transmission to Other Hosts
	Interaction Between Multipath and Default Gateway Selection
	Default Gateway Selection
	fn_hash_select_default Function

	Effects of Multipath on Next Hop Selection
	Multipath Caching

	Policy Routing
	fib_lookup with Policy Routing
	Default Gateway Selection with Policy Routing

	Source Routing
	Policy Routing and Routing Table Based Classifier
	Storing the Realms
	Helper Routines
	Computing the Routing Tag

	Routing: Miscellaneous Topics
	User-Space Configuration Tools
	Configuring Routing with IPROUTE2
	Correspondence between IPROUTE2 user commands and kernel functions
	inet_rtm_newroute and inet_rtm_delroute functions

	Configuring Routing with net-tools
	Change Notifications
	Routes Inserted by the Kernel: The fib_magic Function

	Statistics
	Tuning via /proc Filesystem
	The /proc/sys/net/ipv4 Directory
	The /proc/sys/net/ipv4/route Directory
	The /proc/sys/net/ipv4/conf Directory
	Special subdirectories
	Use of the special subdirectories
	File descriptions

	The /proc/net and /proc/net/stat Directories

	Enabling and Disabling Forwarding
	Data Structures Featured in This Part of the Book
	fib_table Structure
	fn_zone Structure
	fib_node Structure
	fib_alias Structure
	fib_info Structure
	fib_nh Structure
	fib_rule Structure
	fib_result Structure
	rtable Structure
	dst_entry Structure
	dst_ops Structure
	flowi Structure
	rt_cache_stat Structure
	ip_mp_alg_ops Structure

	Functions and Variables Featured in This Part of�the�Book
	Files and Directories Featured in This Part of the Book

	Index

