
Elements of Programming

1.3 Conditionals and Loops

IN THE PROGRAMS THAT WE HAVE examined to this point, each of the statements in the
program is executed once, in the order given. Most programs are more complicated
because the sequence of statements and the number of times each is executed can
vary. We use the term control flow to refer to statement sequencing in a program. In
this section, we introduce statements that
allow us to change the control flow, using
logic about the values of program vari-
ables. This feature is an essential compo-
nent of programming.

Specifically, we consider Java state-
ments that implement conditionals, where
some other statements may or may not
be executed depending on certain condi-
tions, and loops, where some other state-
ments may be executed multiple times,
again depending on certain conditions. As you will see in numerous examples in
this section, conditionals and loops truly harness the power of the computer and
will equip you to write programs to accomplish a broad variety of tasks that you
could not contemplate attempting without a computer.

If statements Most computations require different actions for different inputs.
One way to express these differences in Java is the if statement:

if (<boolean expression>) { <statements> }

This description introduces a formal notation known as a template that we will
use to specify the format of Java constructs. We put within angle brackets (< >) a
construct that we have already defined, to indicate that we can use any instance of
that construct where specified. In this case, <boolean expression> represents an
expression that has a boolean value, such as one involving a comparison operation,
and <statements> represents a statement block (a sequence of Java statements,
each terminated by a semicolon). This latter construct is familiar to you: the body
of main() is such a sequence. If the sequence is a single statement, the curly braces
are optional. It is possible to make formal definitions of <boolean expression>
and <statements>, but we refrain from going into that level of detail. The meaning

1.3.1 Flipping a fair coin 49
1.3.2 Your first while loop 51
1.3.3 Computing powers of two 53
1.3.4 Your first nested loops 59
1.3.5 Harmonic numbers 61
1.3.6 Newton’s method 62
1.3.7 Converting to binary 64
1.3.8 Gambler’s ruin simulation 66
1.3.9 Factoring integers 69

Programs in this section

!"#$%&'(')!"*+,,,-8 ./01/23,,,0425,67

471.3 Conditionals and Loops

of an if statement is self-explanatory: the statement(s) in the sequence are to be
executed if and only if the expression is true.

As a simple example, suppose that you want to compute the absolute value of
an int value x. This statement does the job:

if (x < 0) x = -x;

As a second simple example, consider the following statement:

if (x > y)
{
 int t = x;
 x = y;
 y = t;
}

This code puts x and y in ascending order by exchanging them if
necessary.

You can also add an else clause to an if statement, to express the concept of
executing either one statement (or sequence of statements) or another, depending
on whether the boolean expression is true or false, as in the following template:

if (<boolean expression>) <statements T>
else <statements F>

As a simple example of the need for an else clause, consider the following code,
which assigns the maximum of two int values to the variable max:

if (x > y) max = x;
else max = y;

One way to understand control flow is to visualize it with a diagram called a flow-
chart. Paths through the flowchart correspond to flow-of-control paths in the pro-

x > y ?

max = x;

if (x > y) max = x;
else max = y;

Flowchart examples (if statements)

noyes

max = y;

x < 0 ?

if (x < 0) x = -x;

noyes

x = -x;

boolean
expression

Anatomy of an if statement

if (x > y)

sequence
of

statements

{
 int t = x;
 x = y;
 y = t;
}

!"#$%&'(')!"*+,,,-1 ./01/23,,,0425,67

48 Elements of Programming

gram. In the early days of computing, when programmers used low-level languages
and difficult-to-understand flows of control, flowcharts were an essential part of
programming. With modern languages, we use flowcharts just to understand basic
building blocks like the if statement.

The accompanying table contains some examples of the use of if and if-
else statements. These examples are typical of simple calculations you might need
in programs that you write. Conditional statements are an essential part of pro-
gramming. Since the semantics (meaning) of statements like these is similar to their
meanings as natural-language phrases, you will quickly grow used to them.

PROGRAM 1.3.1 is another example of the use of the if-else statement, in
this case for the task of simulating a coin flip. The body of the program is a single
statement, like the ones in the table above, but it is worth special attention because
it introduces an interesting philosophical issue that is worth contemplating: can a
computer program produce random values? Certainly not, but a program can pro-
duce numbers that have many of the properties of random numbers.

absolute value if (x < 0) x = -x;

put x and y
into

sorted order

if (x > y)
{
 int t = x;
 y = x;
 x = t;
}

maximum of
x and y

if (x > y) max = x;
else max = y;

error check
for division
operation

if (den == 0) System.out.println("Division by zero");
else System.out.println("Quotient = " + num/den);

error check
for quadratic

formula

double discriminant = b*b - 4.0*c;
if (discriminant < 0.0)
{
 System.out.println("No real roots");
}
else
{
 System.out.println((-b + Math.sqrt(discriminant))/2.0);
 System.out.println((-b - Math.sqrt(discriminant))/2.0);
}

Typical examples of using if statements

!"#$%&'(')!"*+,,,-9 ./01/23,,,0425,67

491.3 Conditionals and Loops

% java Flip
Heads
% java Flip
Tails
% java Flip
Tails

While loops Many computations are inherently repetitive. The basic Java con-
struct for handling such computations has the following format:

while (<boolean expression>) { <statements> }

The while statement has the same form as the if statement (the only difference be-
ing the use of the keyword while instead of if), but the meaning is quite different.
It is an instruction to the computer to behave as follows: if the expression is false,
do nothing; if the expression is true, execute the sequence of statements (just as
with if) but then check the expression again, execute the sequence of statements
again if the expression is true, and continue as long as the expression is true. We
often refer to the statement block in a loop as the body of the loop. As with the if
statement, the braces are optional if a while loop body has just one statement.
The while statement is equivalent to a sequence of identical if statements:

Program 1.3.1 Flipping a fair coin

public class Flip
{
 public static void main(String[] args)
 { // Simulate a coin flip.
 if (Math.random() < 0.5) System.out.println("Heads");
 else System.out.println("Tails");
 }
}

This program uses Math.random() to simulate a coin flip. Each time you run it, it prints either
heads or tails. A sequence of flips will have many of the same properties as a sequence that you
would get by flipping a fair coin, but it is not a truly random sequence.

!"#$%&'(')!"*+,,,-3 ./01/23,,,0425,67

