
Java Generics
Parametric Polymorphism

UNIVERSAL REFERENCE TYPE - OBJECT

DR. ERIC CHOU IEE E SENIOR MEMBER

Generic Programming Using Universal
Reference Type
Object

•Java’s Object class type provides a possibility for writing one code and using it for all types.

•Java’s Object class is on top of the class hierarchy so all classes are its sub-classes.

•Java’s primitive data types can all be converted to its related wrapper class for object-oriented
processing.

•Object Reference type can be used to refer to any object types. To convert back, just need to
(cast) back to the original class.

String s = new String(“Java Programming”);

Object obj = s;

S = (String) obj;

To convert back Issues:
1. Depends on run-time dynamic binding
2. Not all types are compatible with the operator (function)
3. Hard to identify the reference type if program is huge.

Generic Object Container using Object
Reference Type
• Really collection of references to objects.

• Class ArrayBag
• Object is a bag of objects of any type

• Implemented on an array of Object type

• Object[] data;

• A collection of objects is actually a collection of references to
objects

• Each element of the data array is a reference to an object

• Some of them may refer to the same object.

Object Operators
Equality check: == and != tests for objects
•Only test if two references refer to the same object

•Not if they have the same content

• Two distinct objects can have the same content.

• Provide test of equality of contents, write an equals method in
which object contents are compared.

•Hard to implement interfaces such as Comparable, Iterable
because Object is the top level class. Need to convert back to some
concrete class type or interface type reference to perform sorting.

Object Method Versus Generic Method
Object Method:
static Object middle(Object[] data){

if (data.length== 0){
return null;

}
else{

return data[data.length/2];
}

}

Generic Method:
static <T> T middle(T[] data){

if (data.length== 0){
return null;

}
else{

return data[data.length/2];
}

} // This is in Generic Method Format

Object Container Versus Generic
Container

Figure A.

Figure B.

