Exercises — Debugging

1 Debugging expression graphs

1. Create a Function mapping the following x to z:

x = SX.sym('x")
y = sin(x)
z = y/x+y

Verify that £(0.01) yields 1.00998

2. Use printme to print out the value of y during function evaluation. Verify that you get
9.9998333341666645e-03.

3. The following Function only makes sense when z >= 0:

x = MX.sym('x")
y = sqrt(x)
f = Function('f',{x},{y})

Add an attachAssert in here such that computing f(-3) results in the error message
That's not allowed.

4. What happens if you make f output jacobian(y,x) instead?

5. Create a Function mapping x to y:

x = MX.sym('x")
y = if_else(x<=1,x*x,-0.5%x*x+3%x-1.5)
Make a plot using a linspace from x = —4 to z = 5.

6. Apply a printme on both the true-clause (x*x) and the false-clause. Evaluate at z = 3.
Which clause is evaluated?

7. Read the help-string of if_else. Repeat the above exercise with short-circuiting activated.
What difference do you see?

Exercises Page 1 Matlab



2 Debugging options for Functions

The experiments of the first section are rather straightforward. In reality, you'll often run into a
need to debug when you are solving a complex problem, e.g. nonlinear optimization using the Opti
wrapper. Let's try some experiments closer to that case.

1. Run the following snippet:

opti = OptiQ);

x = opti.variable();
opti.subject_to(sqrt(x)==0.3);
opti.set_initial(x, 3);

opts = struct;
opti.solver('ipopt',opts);
opti.solve();

You get WARNING("solver:nlp_g failed: NaN detected for output g, at (row O, col 0)."
Let's say you have a hunch that the square root is causing issues.

Use the monitor option to make print the inputs and outputs of the internally generated
constraint Function nlp_g.

Verify that you get negative x'es.

Why does the solver still converge?

2. Repeat the same after using DM.set_precision(digits) to get higher precision readings
on the screen.

3. The output of the above exercise contains a time-stamped CasADi warning. From https://
github.com/casadi/casadi/blob/3.5.1/casadi/core/oracle_function.cpp#L44-163
find the option to disable this warning.

4. Start again from the following optimization problem:

opti = Opti(Q);

X = opti.variable(2, 2);
opti.subject_to(sqrt(x-1)==0.3);

opti.set_initial(x, 3);
opti.solver('ipopt',struct('show_eval_warnings',true));
opti.solve();

Compare the effect of putting printme and monitor directly under the square root.

5. With specific_options, we can apply options to specific helper functions automatically
generated by CasADi on demand of the concrete nonlinear programming interface. Activate
print_in and print_out for the Langrange Hessian of the following problem:

Exercises Page 2 Matlab


https://github.com/casadi/casadi/blob/3.5.1/casadi/core/oracle_function.cpp#L44-L63
https://github.com/casadi/casadi/blob/3.5.1/casadi/core/oracle_function.cpp#L44-L63

opti = OptiQ);

x = opti.variable();
y = opti.variable();
z = opti.variable();

opti.minimize(x"2 + 100%z72);
opti.subject_to(z ==y- (1-x)72);

opti.set_initial(x, 2.5);
opti.set_initial(y, 3.0);
opti.set_initial(z, 0.75);

From inspection, you can deduce that the solution is given by z =0,y =1,z = 0.

What Lagrange Hessian do you expect at the solution? Why is it not visible in the output?
As a hint, divide the reported scaled objective to the unscaled objective. Does the result look
familiar?

6. Use get_function on opti.debug.solver to get access to the nlp_hess_1 Function.

Evaluate it at the solution and for lam_f= 1.

7. (extra) Create SX symbols for all inputs of nlp_hess_1 using *_in methods. Calling
nlp_hess_1 symbolically with these, can you interpret the result?
Compare its simplicity with nlp_hess_1.disp(true).

8. Change the solver to sqpmethod with qrqp as QP solver. Instead of applying print_in/print_out
on just the Hessian, apply it on the QP solver as a whole via gpsol_options.

Can you find the meaning of all inputs/outputs in https://web.casadi.org/python-api/
#qp’?

9. The QP solver has another option available as shown in the slides. Verify that you get the
same numbers.

10. Printing on the console is one thing, but suppose that you want to log and analyze a bunch of
QPs produced by an model predictive control scheme. A save-to-disk feature would be handy,
right? Find an option in the slides to do this.

Your current directory will suddenly grow with a bunch of files. Open the one related to the
Hessian with DM.from_file.

11. Specify a txt format for saving to the disk. Compare the two formats. Which is easier to
read by a human? Which scales better for large systems?

12. Activate the dump option and inspect Function.load('qpsol.casadi'). What object is
returned? Call it with some saved numeric inputs.
You may use gpsol.generate_in('qpsol.000000.in.txt"') to slurp in all at once.

Exercises Page 3 Matlab


https://web.casadi.org/python-api/#qp
https://web.casadi.org/python-api/#qp

	Debugging expression graphs
	Debugging options for Functions

