Integration Practice – 2

No calculator allowed on these 12 exercises.

<u>content includes</u>: definite & indefinite integrals, integration by substitution, area under a curve, and anti-differentiation with a boundary condition to determine the constant of integration (Q #10)

- **1.** Find an expression for y given that $\frac{dy}{dx} = \frac{2}{3x-5}$.
- 2. Find $\int \frac{x^4 + 3x^2 6}{x^2} dx$.
- **3.** Evaluate $\int_{\pi/2}^{2\pi} \sin\left(\frac{x}{2}\right) dx$.
- 4. Find $\int \frac{e^{2x}}{1+e^{2x}} dx$.
- 5. (a) Using an appropriate substitution, show that $\int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x + C$
 - (b) Apply the trigonometric identity $\sin 2x = 2 \sin x \cos x$ to use an alternative substitution to find a different result for $\int \sin x \cos x \, dx$.
 - (c) Explain why the results for $\int \sin x \cos x \, dx$ in (a) and (b) are equivalent.
- 6. Find the exact area of the region bounded by the curve $y = 6 e^x$, the *x*-axis and the *y*-axis, as shown in the diagram.
- **7.** Evaluate $\int_0^1 x \sqrt{4-3x^2} dx$.
- 8. Without performing any computation or integration, explain why $\int_{-c}^{c} \sin x \, dx = 0$ for any real number *c*.
- 9. For real constants *a* and *b*, show that $\int x(ax^2+b)^4 dx = \frac{(ax^2+b)^5}{10a} + C$
- **10.** The graph of the function f passes through the point (2, 4). Given that $\frac{dy}{dx} = \frac{x}{x^2 3}$, find a specific expression for f(x).
- **11.** Using the substitution u = 3x 5, find $\int \frac{x}{3x 5} dx$.
- 12. Find the exact value of k > 0 such that the area under the graph of $y = e^{3x}$ from x = 0 to x = k is 5 square units.

