1. Solve the following differential equations.

(a)
$$\frac{dy}{dx} + y = e^{x}$$

(b) $\frac{dy}{dx} - y = e^{3x}$
(c) $(x + 1)\frac{dy}{dx} - 3y = (x + 1)^{4}$

2. Determine the particular solution for each of the following differential equations under the given conditions.

(a)
$$\frac{dy}{dx} + 2y = x; y = 1$$
 at $x = 0$

(b)
$$\frac{dy}{dx} + \frac{xy}{1+x^2} = x; y = 1$$
 when $x = 0$

(c)
$$\frac{dy}{dx} + \frac{y}{x} = \sin 2x; y = \frac{2}{\pi}$$
 when $x = \frac{\pi}{4}$

(d)
$$\frac{dy}{dx} + y \tan x = \cos^3 x$$
; $y = 2$ when $x = \pi$

3. (a) Show that $\tan x$ is an integrating factor for the differential equation

$$\frac{dy}{dx} + \frac{\sec^2 x}{\tan x}y = \tan x$$

- (b) Hence solve this differential equation, given that y = 3 when $x = \frac{\pi}{4}$.
- 4. By using an integrating factor, find the solution of the differential equation

$$\frac{dy}{dx} + \frac{4x}{x^2 + 1}y = x$$

given that y = 1 when x = 0. Give your answer in the form y = f(x).

5. (a) By using an integrating factor, find the general solution of the differential equation

$$\frac{dy}{dx} + \frac{2}{x}y = \ln x$$

(b) Hence, given that $y \to 0$ as $x \to 0$, find the value of y when x = 1.

ANSWERS

1. (a)
$$y = \frac{1}{2}e^{x} + \frac{c}{e^{x}}$$
 (b) $y = \frac{1}{2}e^{3x} + ce^{x}$ (c) $y = (c + x)(x + 1)^{3}$
2. (a) $y = \frac{1}{2}x - \frac{1}{4} + \frac{5}{4}e^{-2x}$ (b) $y = \frac{1}{3}(1 + x^{2}) + \frac{2}{3\sqrt{1 + x^{2}}}$ (c) $y = -\frac{1}{2}\cos 2x + \frac{\sin 2x}{4x} + \frac{1}{4x}$
(d) $y = \frac{1}{4}\cos x \sin 2x + \frac{x \cos x}{2} - \frac{(\pi + 4)\cos x}{2}$
3. (a) (b) $y = 1 + (2 - x + \frac{\pi}{4})\cot x$
4. $y = \frac{1}{6}(x^{2} + 1) + \frac{5}{6(x^{2} + 1)^{2}}$
5. (a) $y = \frac{x}{3}\ln x - \frac{x}{9} + Ax^{-2}$ (b) $-\frac{1}{9}$