

Linux Kernel Programming Part
2 - Char Device Drivers and
Kernel Synchronization

Create user-kernel interfaces, work with peripheral I/O, and
handle hardware interrupts

Kaiwan N Billimoria

BIRMINGHAM - MUMBAI

Linux Kernel Programming Part 2 - Char
Device Drivers and Kernel Synchronization
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Vijin Boricha
Content Development Editor: Romy Dias
Senior Editor: Rahul D'souza
Technical Editor: Shruthi Shetty
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shankar Kalbhor

First published: March 2021

Production reference: 1190321

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-951-8

www.packt.com

http://www.packt.com

First, to my dear parents, Diana and Nadir "Nads", for showing me how to live a happy and
productive life. To my dear wife, Dilshad (an accomplished financial advisor herself), and our

amazing kids, Sheroy and Danesh – thanks for all your love and patience.

– Kaiwan N Billimoria

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Kaiwan N Billimoria taught himself BASIC programming on his dad's IBM PC back in
1983. He was programming in C and Assembly on DOS until he discovered the joys of
Unix, and by around 1997, Linux!

Kaiwan has worked on many aspects of the Linux system programming stack, including
Bash scripting, system programming in C, kernel internals, device drivers, and embedded
Linux work. He has actively worked on several commercial/FOSS projects. His
contributions include drivers to the mainline Linux OS and many smaller projects hosted
on GitHub. His Linux passion feeds well into his passion for teaching these topics to
engineers, which he has done for well over two decades now. He's also the author of Hands-
On System Programming with Linux. It doesn't hurt that he is a recreational ultrarunner too.

Writing this book took a long while; I'd like to thank the team from Packt for their patience
and skill! Carlton Borges, Romy Dias, Vijin Boricha, Rohit Rajkumar, Vivek
Anantharaman, Nithin Varghese, Hemangi Lotlikar, and all the others. It was indeed a
pleasure working with you.

I owe a debt of gratitude to the very able technical reviewers – Donald "Donnie" Tevault
and Anil Kumar. They caught a lot of my mistakes and omissions and greatly helped make
this book better.

About the reviewers
Donald A. Tevault, but you can call him Donnie, got involved with Linux way back in 2006
and has been working with it ever since. He holds the Linux Professional Institute Level 3
Security certification, and the GIAC Incident Handler certification. Donnie is a professional
Linux trainer, and thanks to the magic of the internet, teaches Linux classes literally the
world over from the comfort of his living room. He's also a Linux security researcher for an
IoT security company.

Anil Kumar is a Linux BSP and firmware developer at Intel. He has over 12 years of
software development experience across many verticals, including IoT, mobile chipsets,
laptops/Chromebooks, media encoders, and transcoders. He has a master's degree in
electronics design from the Indian Institute of Science and a bachelor's degree in electronics
and communication from BMS College of Engineering, India. He is an electronics
enthusiast and blogger and loves tinkering to create fun DIY projects.

Table of Contents
Preface 1

Section 1: Character Device Driver Basics
Chapter 1: Writing a Simple misc Character Device Driver 11

Technical requirements 12
Getting started with writing a simple misc character device driver 13

Understanding the device basics 13
A quick note on the Linux Device Model 17
Writing the misc driver code – part 1 21

Understanding the connection between the process, the driver, and the kernel 22
Handling unsupported methods 24

Writing the misc driver code – part 2 26
Writing the misc driver code – part 3 28
Testing our simple misc driver 30

Copying data from kernel to user space and vice versa 33
Leveraging kernel APIs to perform the data transfer 33

A misc driver with a secret 36
Writing the 'secret' misc device driver's code 37

Our secret driver – the init code 37
Our secret driver – the read method 38
Our secret driver – the write method 39
Our secret driver – cleanup 41
Our secret driver – the user space test app 42

Issues and security concerns 44
Hacking the secret driver 44

Bad driver – buggy read() 45
Bad driver – buggy write() – a privesc! 47

User space test app modifications 47
Device driver modifications 48
Let's get root now 50

Summary 52
Questions 52
Further reading 53

Chapter 2: User-Kernel Communication Pathways 55
Technical requirements 56
Approaches to communicating/interfacing a kernel driver with a user
space C app 56
Interfacing via the proc filesystem (procfs) 57

Understanding the proc filesystem 58

Table of Contents

[ii]

Directories under /proc 58
The purpose behind the proc filesystem 59
procfs is off-bounds to driver authors 60

Using procfs to interface with the user space 61
Basic procfs APIs 61
The four procfs files we will create 63
Trying out the dynamic debug_level procfs control 64
Dynamically controlling debug_level via procfs 66

A few misc procfs APIs 71
Interfacing via the sys filesystem (sysfs) 72

Creating a sysfs (pseudo) file in code 74
Creating a simple platform device 74

Platform devices 75
Tying it all together – setting up the device attributes and creating the sysfs
file 77

The code for implementing our sysfs file and its callbacks 79
The "one value per sysfs file" rule 83

Interfacing via the debug filesystem (debugfs) 84
Checking for the presence of debugfs 85
Looking up the debugfs API documentation 86
An interfacing example with debugfs 87

Creating and using the first debugfs file 87
Creating and using the second debugfs file 90

Helper debugfs APIs for working on numeric globals 91
Removing the debugfs pseudo file(s) 93

Seeing a kernel bug – an Oops! 94
Debugfs – actual users 97

Interfacing via netlink sockets 99
Advantages using sockets 99
Understanding what a netlink socket is 100
Writing the user space netlink socket application 100
Writing the kernel-space netlink socket code as a kernel module 104
Trying out our netlink interfacing project 107

Interfacing via the ioctl system call 109
Using ioctl in the user and kernel space 110

User space – using the ioctl system call 112
Kernel space – using the ioctl system call 114

ioctl as a debug interface 116
Comparing the interfacing methods – a table 117
Summary 119
Questions 120
Further reading 121

Chapter 3: Working with Hardware I/O Memory 122
Technical requirements 122
Accessing hardware I/O memory from the kernel 123

Understanding the issue with direct access 123

Table of Contents

[iii]

The solution – mapping via I/O memory or I/O port 124
Asking the kernel's permission 125

Understanding and using memory-mapped I/O 126
Using the ioremap*() APIs 128
The newer breed – the devm_* managed APIs 131

Obtaining the device resources 132
All in one with the devm_ioremap_resource() API 134

Looking up the new mapping via /proc/iomem 135
MMIO – performing the actual I/O 137

Performing 1- to 8-byte reads and writes on MMIO memory regions 138
Performing repeating I/O on MMIO memory regions 139
Setting and copying on MMIO memory regions 140

Understanding and using port-mapped I/O 142
PMIO – performing the actual I/O 143

A PIO example – the i8042 144
Looking up the port(s) via /proc/ioports 145
Port I/O – a few remaining points to note 146

Summary 147
Questions 148
Further reading 148

Chapter 4: Handling Hardware Interrupts 150
Technical requirements 151
Hardware interrupts and how the kernel handles them 151
Allocating the hardware IRQ 153

Allocating your interrupt handler with request_irq() 154
Freeing the IRQ line 158

Setting interrupt flags 159
Understanding level- and edge-triggered interrupts – a brief note 160
Code view 1 – the IXGB network driver 162

Implementing the interrupt handler routine 164
Interrupt context guidelines – what to do and what not to do 165

Don't block – spotting possibly blocking code paths 166
Interrupt masking – the defaults and controlling it 169
Keep it fast 170

Writing the interrupt handler routine itself 170
Code view 2 – the i8042 driver's interrupt handler 172
Code view 3 – the IXGB network driver's interrupt handler 173

IRQ allocation – the modern way – the managed interrupt facility 174
Working with the threaded interrupts model 176

Employing the threaded interrupt model – the API 177
Employing the managed threaded interrupt model – the recommended way 178

Code view 4 – the STM32 F7 microcontroller's threaded interrupt handler 180
Internally implementing the threaded interrupt 182
Why use threaded interrupts? 183

Threaded interrupts – to really make it real time 184
Constraints when using a threaded handler 189

Table of Contents

[iv]

Working with either hardirq or threaded handlers 190
Enabling and disabling IRQs 191

The NMI 192
Viewing all allocated interrupt (IRQ) lines 195
Understanding and using top and bottom halves 199

Specifying and using a tasklet 202
Initializing the tasklet 202
Running the tasklet 203

Understanding the kernel softirq mechanism 206
Available softirqs and what they are for 207
Understanding how the kernel runs softirqs 210

Running tasklets 210
Employing the ksoftirqd kernel threads 211

Softirqs and concurrency 212
Hardirqs, tasklets, and threaded handlers – what to use when 212
Fully figuring out the context 215

Viewing the context – examples 218
How Linux prioritizes activities 219

A few remaining FAQs answered 221
Load balancing interrupts and IRQ affinity 221
Does the kernel maintain separate IRQ stacks? 222
Measuring metrics and latency 223

Measuring interrupts with [e]BPF 224
Measuring time servicing individual hardirqs 224
Measuring time servicing individual softirqs 225

Using Ftrace to get a handle on system latencies 228
Finding the interrupts disabled worst-case time latency with Ftrace 229

Other tools 231
Summary 232
Questions 232
Further reading 234

Chapter 5: Working with Kernel Timers, Threads, and Workqueues 236
Technical requirements 237
Delaying for a given time in the kernel 237

Understanding how to use the *delay() atomic APIs 239
Understanding how to use the *sleep() blocking APIs 241
Taking timestamps within kernel code 243
Let's try it – how long do delays and sleeps really take? 244
The "sed" drivers – to demo kernel timers, kthreads, and workqueues 248

Setting up and using kernel timers 249
Using kernel timers 250

Our simple kernel timer module – code view 1 252
Our simple kernel timer module – code view 2 254
Our simple kernel timer module – running it 255

sed1 – implementing timeouts with our demo sed1 driver 256
Deliberately missing the bus 261

Table of Contents

[v]

Creating and working with kernel threads 263
A simple demo – creating a kernel thread 266
Running the kthread_simple kernel thread demo 269
The sed2 driver – design and implementation 270

sed2 – the design 270
sed2 driver – code implementation 272
sed2 – trying it out 277

Querying and setting the scheduling policy/priority of a kernel thread 279
Using kernel workqueues 280

The bare minimum workqueue internals 282
Using the kernel-global workqueue 286

Initializing the kernel-global workqueue for your task – INIT_WORK() 286
Having your work task execute – schedule_work() 287

Variations of scheduling your work task 287
Cleaning up – canceling or flushing your work task 288
A quick summary of the workflow 289

Our simple work queue kernel module – code view 290
Our simple work queue kernel module – running it 293
The sed3 mini project – a very brief look 295

Summary 296
Questions 297
Further reading 298

Section 2: Delving Deeper
Chapter 6: Kernel Synchronization - Part 1 301

Critical sections, exclusive execution, and atomicity 302
What is a critical section? 302
A classic case – the global i ++ 305
Concepts – the lock 308

A summary of key points 311
Concurrency concerns within the Linux kernel 312

Multicore SMP systems and data races 313
Preemptible kernels, blocking I/O, and data races 314
Hardware interrupts and data races 315
Locking guidelines and deadlocks 316

Mutex or spinlock? Which to use when 318
Determining which lock to use – in theory 320
Determining which lock to use – in practice 321

Using the mutex lock 322
Initializing the mutex lock 323
Correctly using the mutex lock 324
Mutex lock and unlock APIs and their usage 325

Mutex lock – via [un]interruptible sleep? 327
Mutex locking – an example driver 328
The mutex lock – a few remaining points 332

Table of Contents

[vi]

Mutex lock API variants 332
The mutex trylock variant 332
The mutex interruptible and killable variants 334
The mutex io variant 335

The semaphore and the mutex 335
Priority inversion and the RT-mutex 336
Internal design 337

Using the spinlock 338
Spinlock – simple usage 338
Spinlock – an example driver 340
Test – sleep in an atomic context 342

Testing on a 5.4 debug kernel 343
Testing on a 5.4 non-debug distro kernel 348

Locking and interrupts 351
Using spinlocks – a quick summary 357

Summary 359
Questions 359
Further reading 359

Chapter 7: Kernel Synchronization - Part 2 360
Using the atomic_t and refcount_t interfaces 361

The newer refcount_t versus older atomic_t interfaces 361
The simpler atomic_t and refcount_t interfaces 363

Examples of using refcount_t within the kernel code base 365
64-bit atomic integer operators 368

Using the RMW atomic operators 370
RMW atomic operations – operating on device registers 370

Using the RMW bitwise operators 373
Using bitwise atomic operators – an example 374

Efficiently searching a bitmask 378
Using the reader-writer spinlock 378

Reader-writer spinlock interfaces 379
A word of caution 381
The reader-writer semaphore 382

Cache effects and false sharing 383
Lock-free programming with per-CPU variables 385

Per-CPU variables 386
Working with per-CPU 387

Allocating, initialization, and freeing per-CPU variables 387
Performing I/O (reads and writes) on per-CPU variables 388

Per-CPU – an example kernel module 390
Per-CPU usage within the kernel 394

Lock debugging within the kernel 396
Configuring a debug kernel for lock debugging 397
The lock validator lockdep – catching locking issues early 399
Examples – catching deadlock bugs with lockdep 402

Example 1 – catching a self deadlock bug with lockdep 402

Table of Contents

[vii]

Fixing it 406
Example 2 – catching an AB-BA deadlock with lockdep 407

lockdep – annotations and issues 411
lockdep annotations 411
lockdep issues 412

Lock statistics 413
Viewing lock stats 413

Memory barriers – an introduction 415
An example of using memory barriers in a device driver 416

Summary 418
Questions 419
Further reading 419

Other Books You May Enjoy 420

Index 423

Preface
This book has been written with a view to helping you learn the fundamentals of Linux
character device driver development in a practical, hands-on fashion, along with the
necessary theoretical background to give you a well-rounded view of this vast and
interesting topic area. To do the topics justice, that book's scope is deliberately kept limited
to (mostly) learning how to write misc class character device drivers on the Linux OS. This
way, you will be able to deeply imbibe the fundamental and necessary driver author skills
to then be able to tackle different kinds of Linux driver projects with relative ease.

The focus is on hands-on driver development via the powerful Loadable Kernel
Module (LKM) framework; the majority of kernel driver development is done in this
manner. The focus is kept on working hands-on with driver code, understanding at a
sufficiently deep level the internals wherever required, and keeping security in mind.

A recommendation we can't make strongly enough: to really learn and understand the
details well, it's really best that you first read and understand this book's
companion, Linux Kernel Programming. It covers various key areas – building the kernel
from source, writing kernel modules via the LKM framework, kernel internals including
kernel architecture, the memory system, memory alloc/dealloc APIs, CPU scheduling, and
more. The combination of the two books will give you a sure and deep edge.

This book wastes no time – the first chapter has you learning the details of the Linux driver
framework and how to write a simple yet complete misc class character device driver. Next,
you learn how to do something very necessary: efficiently interfacing your driver with user
space processes using various technologies (some of which help as debug/diagnostic aids as
well!). Understanding, and working with, hardware (peripheral chip) I/O memory is then
covered. Detailed coverage of handling hardware interrupts follows. This includes learning
and using several modern driver techniques – using threaded IRQs, leveraging resource-
managed APIs for drivers, I/O resource allocation, and so on. It covers what top/bottom
halves are, working with tasklets and softirqs, and measuring interrupt latencies. Kernel
mechanisms you will typically work with – using kernel timers, setting up delays, creating
and managing kernel threads and workqueues – are covered next.

The remaining two chapters of this book delve into a relatively complex yet critical-to-
understand topic for the modern pro-level driver or kernel developer: understanding and
working with kernel synchronization.

Preface

[2]

The book uses the latest, at the time of writing, 5.4 Long Term Support (LTS) Linux kernel.
It's a kernel that will be maintained (both bug and security fixes) from November 2019 right
through December 2025! This is a key point, ensuring that this book's content remains
current and valid for years to come!

We very much believe in a hands-on empirical approach: over 20 kernel modules (besides a
few user apps and shell scripts) on this book's GitHub repository make the learning come
alive, making it fun, interesting, and useful.

We really hope you learn from and enjoy this book. Happy reading!

Who this book is for
This book is primarily for Linux programmers beginning to find their way with device
driver development. Linux device driver developers looking to overcome frequent and
common kernel/driver development issues, as well as understanding and learning to
perform common driver tasks – the modern Linux Device Model (LDM) framework, user-
kernel interfaces, performing peripheral I/O, handling hardware interrupts, dealing with
concurrency, and more – will benefit from this book. A basic understanding of Linux kernel
internals (and common APIs), kernel module development, and C programming is
required.

What this book covers
Chapter 1, Writing a Simple misc Character Device Driver, first goes through the very basics –
what a driver is supposed to do, the device namespace, the sysfs, and basic tenets of
the LDM. We then delve into the details of writing a simple character device driver; along
the way, you will learn about the framework – in effect, the internal implementation of the
"if it's not a process, it's a file" philosophy/architecture! You'll learn how to implement a
misc class character device driver with various methods; several code examples help
harden the concepts. Basic copying of data between the user-kernel space and vice versa is
covered. Also covered are key security concerns and how to address them (in this context);
a "bad" driver giving rise to a privilege escalation issue is actually demonstrated!

Chapter 2, User-Kernel Communication Pathways, covers how to communicate between the
kernel and the user space, which is critical to you, as a kernel module/driver author. Here,
you'll learn about various communication interfaces, or pathways. This is an important
aspect of writing kernel/driver code. Several techniques are employed: communication via
traditional procfs, the better way for drivers via sysfs, and several others, via debugfs,
netlink sockets, and the ioctl(2) system call.

Preface

[3]

Chapter 3, Working with Hardware I/O Memory, covers a key aspect of driver writing – the
issue with (and the solution to) accessing hardware memory (mapped memory I/O) from a
peripheral device or chip. We cover using the common memory-mapped I/O (MMIO)
technique as well as the (typically on x86) port I/O (PIO) techniques for hardware I/O
memory access and manipulation. Several examples from existing kernel drivers are shown
as well.

Chapter 4, Handling Hardware Interrupts, shows how to handle and work with hardware
interrupts in great detail. We start with a brief on how the kernel works with hardware
interrupts, then move on to how you're expected to "allocate" an IRQ line (covering modern
resource-managed APIs), and how to correctly implement the interrupt handler routine.
The modern approach of using threaded handlers (and the why of it), the Non-Maskable
Interrupt (NMI), and more, are then covered. The reasons for and using both "top half" and
"bottom half" interrupt mechanisms (hardirq, tasklet, and softirqs) in code, as well as key
information regarding the dos and don'ts of hardware interrupt handling are covered.
Measuring interrupt latencies with the modern [e]BPF toolset, as well as with Ftrace,
concludes this key chapter.

Chapter 5, Working with Kernel Timers, Threads, and Workqueues, covers how to use some
useful (and often employed by drivers) kernel mechanisms – delays, timers, kernel threads,
and workqueues. They come in handy in many real-world situations. How to perform both
blocking and non-blocking delays (as the situation warrants), setting up and using kernel
timers, creating and working with kernel threads, and understanding and using kernel
workqueues are all covered here. Several example modules, including three versions of
a simple encrypt decrypt (sed) example driver, serve to illustrate the concepts learned in
code.

Chapter 6, Kernel Synchronization – Part 1, first covers the key concepts regarding critical
sections, atomicity, what a lock conceptually achieves, and, very importantly, the why of all
this. We then cover concurrency concerns when working within the Linux kernel; this
moves us naturally on to important locking guidelines, what deadlock means, and key
approaches to preventing deadlock. Two of the most popular kernel locking technologies –
the mutex lock and the spinlock – are then discussed in depth, along with several (driver)
code examples.

Preface

[4]

Chapter 7, Kernel Synchronization – Part 2, continues the journey on kernel synchronization.
Here, you'll learn about key locking optimizations – using lightweight atomic and (the
more recent) refcount operators to safely operate on integers, using RMW bit operators to
safely perform bit ops, and using the reader-writer spinlock over the regular one. Inherent
risks, such as cache "false sharing," are discussed as well. An overview of lock-free
programming techniques (with an emphasis on per-CPU variables and their usage, along
with examples) is then covered. A critical topic, lock debugging techniques, including the
usage of the kernel's powerful lockdep lock validator, is then covered. The chapter is
rounded off with a brief look at memory barriers (along with an existing kernel network
driver's usage of memory barriers).

We again stress that this book is for kernel programmers who are new to writing device
drivers; several Linux driver topics are beyond this book's scope and are not covered. This
includes other types of device drivers (besides character), working with the device tree, and
so on. Packt offers other valuable guides to help you gain traction on these topic areas. This
book would be an excellent start.

To get the most out of this book
To get the most out of this book, we expect you to have knowledge and experience of the
following:

Know your way around a Linux system, on the command line (the shell).
The C programming language.
Know how to write simple kernel modules via the Loadable Kernel Module
(LKM) framework
Understand (at least the basics) of key Linux kernel internals concepts: kernel
architecture, memory management (plus common dynamic memory alloc/de-
alloc APIs), and CPU scheduling.
It's not mandatory, but experience with Linux kernel programming concepts and
technologies will help greatly.

Ideally, we highly recommend reading this book's companion, Linux Kernel
Programming, first.

Preface

[5]

The details on hardware and software requirements for this book, as well as their
installation, are shown here:

Chapter
number

Software required
(with version)

Free /
proprietary

Download links to
the software

Hardware
specifications

OS
required

All
chapters

A recent Linux
distribution; we use
Ubuntu 18.04 LTS (as
well as Fedora 31 /
Ubuntu 20.04 LTS);
any of these will be
suitable. Recommend
you install the Linux
OS as a virtual
machine (VM), using
Oracle VirtualBox 6.x
(or later) as the
hypervisor

Free (open
source)

Ubuntu
(desktop): https:/​/
ubuntu.​com/
download/​desktop
Oracle
VirtualBox: https:/
/​www.​virtualbox.
org/​wiki/
Downloads

Required: a modern
relatively powerful
PC or laptop
equipped with 4 GB
RAM (minimally; the
more the better), 25
GB free disk space,
and a good internet
connection.
Optional: we also use
the Raspberry Pi 3B+
as a test bed.

Linux VM
on a
Windows
host
-OR-
Linux as a
stand-alone
OS

Detailed installation steps (software-wise):

Install Linux as a VM on a host Windows system; follow one of these tutorials:1.
Install Linux Inside Windows Using VirtualBox, Abhishek Prakash (It's
FOSS!, August 2019): https:/ ​/ ​itsfoss. ​com/ ​install- ​linux- ​in-
virtualbox/ ​

Alternately, here's another tutorial to help you do the same: Install
Ubuntu on Oracle VirtualBox : https:/ ​/ ​brb.​nci. ​nih. ​gov/ ​seqtools/
installUbuntu. ​html

https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html

Preface

[6]

Install the required software packages on the Linux VM:2.
Log in to your Linux guest VM and first run the following1.
commands within a Terminal window (on a shell):

sudo apt update
sudo apt install gcc make perl

Install the Oracle VirtualBox Guest Additions now. Reference: How to2.
Install VirtualBox Guest Additions in Ubuntu: https:/ ​/​www. ​tecmint.
com/ ​install- ​virtualbox- ​guest- ​additions- ​in- ​ubuntu/ ​
(This step only applies if you are running Ubuntu as a VM using
Oracle VirtualBox as the hypervisor app.)
To install the packages, take the following steps:3.

Within the Ubuntu VM, first run the sudo apt update1.
command
Now, run the sudo apt install git fakeroot build-2.
essential tar ncurses-dev tar xz-utils libssl-
dev bc stress python3-distutils libelf-dev
linux-headers-$(uname -r) bison flex
libncurses5-dev util-linux net-tools linux-
tools-$(uname -r) exuberant-ctags cscope
sysfsutils curl perf-tools-unstable gnuplot rt-
tests indent tree pstree smem hwloc bpfcc-tools
sparse flawfinder cppcheck tuna hexdump trace-

cmd virt-what command in a single line.

Useful resources:3.
The Linux kernel official online documentation: https:/ ​/​www. ​kernel.
org/ ​doc/ ​html/ ​latest/ ​.
The Linux Driver Verification (LDV) project, particularly the Online
Linux Driver Verification Service page: http:/ ​/​linuxtesting. ​org/ ​ldv/
online? ​action= ​rules.
SEALS - Simple Embedded ARM Linux System: https:/ ​/​github. ​com/
kaiwan/ ​seals/ ​.
Every chapter of this book has a very useful Further reading section as
well, detailing more resources.

Detailed instructions, as well as additional useful projects, installing a cross-4.
toolchain for ARM, and more, are described in Chapter 1, Kernel Workspace
Setup, of this book's companion guide, Linux Kernel Programming, Kaiwan N
Billimoria, Packt Publishing.

https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/

Preface

[7]

We have tested all the code in this book (it has its own GitHub repository as well) on these
platforms:

x86_64 Ubuntu 18.04 LTS guest OS (running on Oracle VirtualBox 6.1)
x86_64 Ubuntu 20.04.1 LTS guest OS (running on Oracle VirtualBox 6.1)
x86_64 Ubuntu 20.04.1 LTS native OS
ARM Raspberry Pi 3B+ (running both its distro kernel as well as our custom 5.4
kernel); lightly tested.

If you are using the digital version of this book, we advise you to type the code yourself
or, better, access the code via the GitHub repository (link available in the next section).
Doing so will help you avoid any potential errors related to the copying and pasting of
code.

For this book, we'll log in as the user named llkd. I strongly recommend that you follow
the empirical approach: not taking anyone's word on anything at all, but trying it out and
experiencing it for yourself. Hence, this book gives you many hands-on experiments and
kernel driver code examples that you can and must try out yourself; this will greatly aid
you in making real progress and deeply learning and understanding various aspects of
Linux driver/kernel development.

Download the example code files
You can download the example code files for this book from GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Linux- ​Kernel- ​Programming- ​Part- ​2. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​9781801079518_ ​ColorImages. ​pdf.

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079518_ColorImages.pdf

Preface

[8]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The ioremap() API returns a KVA of the void * type (since it's an address
location)."

A block of code is set as follows:

static int __init miscdrv_init(void)
{
 int ret;
 struct device *dev;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

#define pr_fmt(fmt) "%s:%s(): " fmt, KBUILD_MODNAME, __func__
[...]
#include <linux/miscdevice.h>
#include <linux/fs.h>
[...]

Any command-line input or output is written as follows:

pi@raspberrypi:~ $ sudo cat /proc/iomem

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[9]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Character Device

Driver Basics
Here, we'll cover what a device driver is, namespaces, Linux Device Model (LDM) basics,
and the character device driver framework. We'll implement simple misc drivers
(leveraging the kernel's misc framework). We'll set up communication between the user
and kernel spaces (via various interfaces, such as debugfs, sysfs, netlink sockets, and
ioctl). You will learn how to work with hardware I/O memory on a peripheral chip, as
well as understanding and working with hardware interrupts. You'll also learn how to use
kernel features such as kernel-level timers, create kernel threads, and use workqueues.

This section comprises the following chapters:

Chapter 1, Writing a Simple misc Character Device Driver
Chapter 2, User-Kernel Communication Pathways
Chapter 3, Working with Hardware I/O Memory
Chapter 4, Handling Hardware Interrupts
Chapter 5, Working with Kernel Timers, Threads, and Workqueues

1
Writing a Simple misc

Character Device Driver
No doubt, device drivers are a vast and interesting topic. Not only that, they are perhaps
the most common use of the Loadable Kernel Module (LKM) framework that we have
been using. Here, we shall introduce you to writing a few simple yet complete Linux
character device drivers, within a class called misc; yes, that's short for miscellaneous. We
wish to emphasize that this chapter is limited in its scope and coverage - here, we do not
attempt to delve into the deep details regarding the Linux driver model and its many
frameworks; instead, we refer you to several excellent books and tutorials on this topic via
the Further reading section for this chapter. Our aim here is to quickly get you familiar with
the overall concepts behind writing a simple character device driver.

Having said that, this book indeed has several chapters that are dedicated to what a driver
author needs to know. Besides this introductory chapter, we cover (in detail) how a driver
author works with hardware I/O memory, hardware interrupt handling (and its many sub-
topics), and kernel mechanisms such as delays, timers, kernel threads, and work queues.
Use of various user-kernel communication pathways or interfaces is covered in detail as
well. The final two chapters of this book then focus on something very important for any
kernel development, including drivers – kernel synchronization.

Writing a Simple misc Character Device Driver Chapter 1

[12]

The other reasons we'd prefer to write a simple Linux character device driver and not just our
"usual" kernel module are as follows:

Until now, our kernel modules have been quite simplistic, having
only init and cleanup functions, nothing more. A device driver
provides several entry points into the kernel; these are the file-related system
calls, known as the driver's methods. So, we can have an open() method,
a read() method, a write() method, an llseek() method,
an [unlocked|compat]_ioctl() method, a release() method, and so on.

FYI, all possible "methods" (functions) the driver author can hook into are
in this key kernel data
structure: include/linux/fs.h:file_operations (more on this in the
Understanding the connection between the process, the driver, and the
kernel section).

This situation is simply more realistic, and more interesting.

In this chapter, we will cover the following topics:

Getting started with writing a simple misc character device driver
Copying data from kernel to user space and vice versa
A misc driver with a secret
Issues and security concerns

Technical requirements
I assume that you have gone through the Preface section To get the most out of this book, and
have appropriately prepared a guest VM running Ubuntu 18.04 LTS (or a later stable
release) and installed all the required packages. If not, I highly recommend you do this
first. To get the most out of this book, I strongly recommend you first set up the
workspace environment, including cloning this book's GitHub repository for the code, and
work on it in a hands-on fashion. The repository can be found
here: https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2.

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch1

Writing a Simple misc Character Device Driver Chapter 1

[13]

Getting started with writing a simple misc
character device driver
In this section, you will first learn the required background material – understanding the
basics of the device file (or node) and its hierarchy. After that, you will learn – by actually
writing the code of a very simple misc character driver – the kernel framework behind the
raw character device driver. Along the way, we shall cover how to create the device node(s)
and test the driver via a user space app. Let's get started!

Understanding the device basics
Some quick background is in order.

A device driver is the interface between the OS and a peripheral hardware device. It can be
written inline – that is, compiled within the kernel image file – or, more commonly, written
outside of the kernel source tree as a kernel module (we covered the LKM framework in
detail in the companion guide Linux Kernel Programming, Chapter 4, Writing Your First Kernel
Module – LKMs Part 1, and Chapter 5, Writing Your First Kernel Module – LKMs Part 2). Either
way, the driver code certainly runs at OS privilege, in kernel space (user space device
drivers do exist, but can suffer performance issues; while useful in many circumstances, we
don't cover them here. Take a look at the Further reading section).

In order for a user space application to gain access to the underlying device driver within
the kernel, some I/O mechanism is required. The Unix (and thus Linux) design is to have
the process open a special type of file – a device file, or device node. These files typically
live in the /dev directory, and on modern systems are dynamic and auto-populated. The
device node serves as an entry point into the device driver.

In order for the kernel to distinguish between device files, it uses two attributes within their
inode data structure:

The type of file – either character (char) or block
The major and minor number

Writing a Simple misc Character Device Driver Chapter 1

[14]

You will see that the namespace – the device type and the {major#, minor#} pair – form
a hierarchy. Devices (and thus their drivers) are organized within a tree-like hierarchy
within the kernel (the driver core code within the kernel takes care of this). The hierarchy is
first divided based on device type – block or char. Within that, we have some n major
numbers for each type, and each major number is further classified via some m minor
numbers; Figure 1.1 shows this hierarchy.

Now, the key difference between block and character devices is that block devices have the
(kernel-level) capability to be mounted and thus become part of the user-accessible
filesystem. Character devices cannot be mounted; thus, storage devices tend to be block-
based. Think of it this way (a bit simplistic but useful): if the (hardware) device is not
storage, nor a network device, then it's a character device. A huge number of devices fall
into the 'character' class, including your typical I2C/SPI (Inter Integrated Circuit / Serial
Peripheral Interface) sensor chips (temperature, pressure, humidity, and so on),
touchscreens, Real-Time Clock (RTC), media (video, camera, audio), keyboards, mice, and
so on. USB forms a class within the kernel for infrastructure support. USB devices can be
block devices (pen drives, USB disks), character devices (mice, keyboard, camera) or
network (USB dongles) devices.

From 2.6 Linux onward, the {major:minor} pair is a single unsigned 32-bit quantity
within the inode, a bitmask (it's the dev_t i_rdev member). Of these 32 bits, the MSB 12
bits represent the major number and the remaining LSB 20 bits represent the minor
number. A quick calculation shows that there can therefore be up to 212 = 4,096 major
numbers and 220, which is one million, minor numbers per major number. So, glance at
Figure 1.1; within the block hierarchy, there are a possible 4,096 majors, each of which can
have up to 1 million minors. Similarly, within the character hierarchy, there are a possible
4,096 majors, each of which can have up to 1 million minors:

Figure 1.1 – The device namespace or hierarchy

Writing a Simple misc Character Device Driver Chapter 1

[15]

You may be wondering: what exactly does this major:minor number pair really mean? Think
of the major number as representing the class of the device (is it a SCSI disk, a keyboard, a
teletype terminal (tty) or pseudo-terminal (pty) device, a loopback device (yes, these are
pseudo-hardware devices), a joystick, a tape device, a framebuffer, a sensor chip, a
touchscreen, and so on?). There's indeed an enormous range of devices; to get a sense of
just how many, we urge you to check out the kernel documentation here: https:/ ​/​www.
kernel.​org/​doc/​Documentation/ ​admin- ​guide/ ​devices. ​txt (it's literally the official
registry of all available devices for the Linux OS. It's formally called the LANANA – the
Linux Assigned Names And Numbers Authority! Only these folks can officially assign the
device node – the type and major:minor numbers – to devices).

The minor number's meaning (interpretation) is left completely to the driver author; the
kernel does not interfere. Typically, the driver interprets the device's minor number to
represent either a physical or logical instance of the device, or to represent a certain
functionality. (For example, the Small Computer System Interface (SCSI) driver – of
type block, major #8 – uses minor numbers to represent logical disk partitions for up to 16
disks. On the other hand, character major #119 is used by VMware's virtual network
control driver. Here, the minors are interpreted as the first virtual network, second virtual
network, and so on.) Similarly, all drivers themselves assign meaning to their minor
numbers. But every good rule has an exception. Here, the exception to the rule - that the
kernel doesn't interpret the minor number – is the misc class (type character, major #10). It
uses the minor numbers as second-level majors. This will be covered in the following
section.

A common problem is that of the namespace getting exhausted. A decision taken years
back "collects" various miscellaneous character devices - a lot of mice (no, not of the animal
kingdom variety), sensors, touchscreens, and so on - into one class called the misc or
'miscellaneous' class, which is assigned character major number 10. Within the misc class
live a lot of devices and their corresponding drivers. In effect, they share the same major
number and rely on a unique minor number to identify themselves. We shall write a few
drivers using precisely this class and leveraging the kernel's 'misc' framework.

https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt

Writing a Simple misc Character Device Driver Chapter 1

[16]

Many devices have already been assigned via the LANANA (Linux Assigned Names And
Numbers Authority) into the misc character device class. Figure 1.2 shows a partial
screenshot from https:/ ​/​www. ​kernel. ​org/​doc/ ​Documentation/ ​admin- ​guide/ ​devices. ​txt
showing the first few misc devices, their assigned minor numbers, and a brief description.
Do see the reference link for the full list:

Figure 1.2 – Partial screenshot of misc devices: char type, major # 10

In Figure 1.2, the leftmost column has 10 char, specifying that it's assigned major # 10
under the character type of the device hierarchy (Figure 1.1). The columns to the right are in
the form minor# = /dev/<foo> <description>; quite obviously, this is the minor
number assigned followed by (after the = sign) the device node and a one-line description.

https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt

Writing a Simple misc Character Device Driver Chapter 1

[17]

A quick note on the Linux Device Model
Without going into great detail, a quick overview of the modern unified Linux Device
Model (LDM) is important. Modern Linux, from the 2.6 kernel onward, has a fantastic
feature, the LDM, which achieves many goals to do with the system and the devices on it in
one broad and bold stroke. Among its many features, it creates a complex hierarchical tree
unifying system components, all peripheral devices, and their drivers. This very tree is
exposed to user space via the sysfs pseudo-filesystem (analogous to how procfs exposes
some kernel and process/thread internal details to user space) and is typically mounted
under /sys. Within /sys, you will find several directories – you can consider them to be
"viewports" into the LDM. On our x86_64 Ubuntu VM, we show the sysfs filesystem
mounted under /sys:

$ mount | grep -w sysfs
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)

Furthermore, take a peek inside:

$ ls -F /sys/
block/ bus/ class/ dev/ devices/ firmware/ fs/ hypervisor/ kernel/ module/
power/

Think of these directories as viewports into the LDM – different ways of viewing the
devices on the system. Of course, as things evolve, more tends to get in than get out (the
bloat aspect!). Several non-obvious directories have now made their way in here. Though
(as with procfs) sysfs is officially documented as an Application Binary Interface (ABI)
interface, that's subject to change/deprecation at any time; the reality is that this system is
there to stay – and evolve, of course – over time.

The LDM, a bit simplistically, can be thought of as having – and tying together – these
major components:

The buses on the system.
The devices on them.
The device drivers that drive the devices (also often referred to as client drivers).

Writing a Simple misc Character Device Driver Chapter 1

[18]

A fundamental LDM tenet is that every single device must reside on a bus. This might seem
obvious: USB devices will be on the USB bus, PCI devices on the PCI bus, I2C devices on
the I2C bus, and so on. Thus, under the /sys/bus hierarchy, you will be able to literally
"see" all the devices via the buses that they reside on:

Figure 1.3 – The different buses or bus driver infrastructure on modern Linux (on an x86_64)

The kernel's driver core provides bus drivers (that are (typically) either part of the kernel
image itself or auto-loaded at boot as required), which, of course, makes the buses do their
job. What is their job? Critically, they organize and recognize the devices on them. If a new
device surfaces (perhaps you plugged in a pen drive), the USB bus driver will recognize the
fact and bind it to its (USB mass storage) device driver! Once successfully bound (many
terms are used to describe this: bound, enumerated, discovered), the kernel driver
framework invokes the registered probe() method (function) of the driver. This probe
method now sets up the device, allocating resources, IRQs, memory setup, registering it as
required, and so on.

Another key aspect to understand regarding the LDM is that the modern LDM-based
driver should typically do the following:

Register itself to a (specialized) kernel framework.
Register itself to a bus.

The kernel framework it registers itself to depends on the type of device you are working
with; for example, a driver for an RTC chip that resides on the I2C bus will register itself to
the kernel's RTC framework (via the rtc_register_device() API) and to the I2C bus
(internally via the i2c_register_driver() API). On the other hand, a driver for a
network adapter (a NIC) on the PCI bus will typically register itself to the kernel's network
infrastructure (via the register_netdev() API) and the PCI bus (via
the pci_register_driver() API). Registering with a specialized kernel framework
makes your job as a driver author a lot easier – the kernel will often provide helper routines
(and even data structures) to take care of I/O details, and so on. For example, take the
previously mentioned RTC chip driver.

Writing a Simple misc Character Device Driver Chapter 1

[19]

You needn't know the details of how to communicate with the chip over the I2C bus, bit
banging out data on the Serial Clock (SCL)/Serial Data (SDA) lines as the I2C protocol
demands. The kernel I2C bus framework provides you with convenience routines (such as
the typically used i2c_smbus_*() APIs) that let you quite effortlessly communicate over
the bus to the chip in question!

If you're wondering how to get more information on these driver APIs,
here's the good news: the official kernel documentation has plenty to
offer. Do look up The Linux driver implementer’s API guide here: https:/ ​/
www.​kernel. ​org/ ​doc/ ​html/ ​latest/ ​driver- ​api/ ​index. ​html.

(We do show some examples of the probe() method of a driver in the following two
chapters; until then, patience, please.) Conversely, when the device is detached from the
bus or the kernel module is unloaded (or the system is shutting down), the detach causes
the driver's remove() (or disconnect()) method to be invoked. Between these, the work
of the device via its drivers (both bus and client) is carried out!

Please note that we are glossing over a lot of the inner details here, as they are beyond the
scope of this book. The point is to give you a conceptual understanding of the LDM. Do
refer to the articles and links in the Further reading section for more detailed information.

Here, we wish to keep our driver coverage very simple and minimal, focusing more on the
underlying basics. Hence we have chosen to write a driver that uses perhaps the simplest
kernel framework – the misc or miscellaneous kernel framework. In this case, the driver
doesn't even need to explicitly register with any bus (driver). In fact, it's more like this: our
driver works directly on the hardware without the need for any particular bus infrastructure
support.

https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html
https://www.kernel.org/doc/html/latest/driver-api/index.html

Writing a Simple misc Character Device Driver Chapter 1

[20]

In our particular example using the misc kernel framework, since we
don't explicitly register with any bus (driver), we don't even require
the probe()/remove() methods. This keeps things simple. On the other
hand, once you have understood this simplest of drivers, I encourage you
to go further and look at writing device drivers with the typical kernel
framework registration plus bus driver registration, thus employing
the probe()/remove() methods. A good way to get started is to learn
how to write a simple platform driver, registering it with the
kernel's misc framework and the platform bus, a pseudo-bus
infrastructure that supports devices that do not physically reside on any
physical bus (this is more common than you might at first imagine;
several peripherals built into a modern System on Chip (SoC) are not on
any physical bus, and thus their drivers are typically platform drivers). To
get started, look under the kernel source tree in drivers/ for code
invoking the platform_driver_register() API. The official kernel
documentation here covers platform devices and drivers: https:/ ​/​www.
kernel. ​org/ ​doc/ ​html/ ​latest/ ​driver- ​api/ ​driver- ​model/ ​platform.
html#platform- ​devices- ​and- ​drivers.

As additional help, note the following:
- Do refer to Chapter 2, User-Kernel Communication Pathways, particularly
the Creating a simple platform device and Platform devices sections.
- An exercise (see the Questions section) for this chapter is to write such a
driver. I have provided a sample (and very simple) implementation
here: solutions_to_assgn/ch12/misc_plat/.

We do, however, require the kernel's misc framework support, and thus we register
ourselves with it. Next, it's also key to understand this: our driver is a logical one, in the
sense that there's no actual physical device or chip that it's driving. This is quite often the
case (of course, you could say that here, the hardware being worked upon is RAM).

So, if we are to write a Linux character device driver belonging to this misc class, we will
first need to register ourselves to it. Next, we will be in need of a unique (unused) minor
number. Again, there is a way to have the kernel dynamically assign a free minor number
to us. The following section covers these aspects and more.

https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html#platform-devices-and-drivers

Writing a Simple misc Character Device Driver Chapter 1

[21]

Writing the misc driver code – part 1
Without further ado, let's look at the code to write a simple skeleton character misc device
driver! (Well, snippets of the actual code; as always, I strongly advise you to git
clone the book's GitHub repository, view it in detail, and try out the code yourself.)

Let's go through it step by step: in the init code of our first device driver (using the LKM
framework), we must first register our driver with the appropriate Linux kernel's
framework; in this case, with the misc framework. This is done via
the misc_register() API. It takes one parameter, a pointer to a data structure of
type miscdevice, which describes the miscellaneous device we are setting up:

// ch1/miscdrv/miscdrv.c
#define pr_fmt(fmt) "%s:%s(): " fmt, KBUILD_MODNAME, __func__
[...]
#include <linux/miscdevice.h>
#include <linux/fs.h> /* the fops, file data structures */
[...]

static struct miscdevice llkd_miscdev = {
 .minor = MISC_DYNAMIC_MINOR, /* kernel dynamically assigns a free
minor# */
 .name = "llkd_miscdrv", /* when misc_register() is invoked, the
kernel
 * will auto-create a device file as /dev/llkd_miscdrv ;
 * also populated within /sys/class/misc/ and
/sys/devices/virtual/misc/ */
 .mode = 0666, /* ... dev node perms set as specified here */
 .fops = &llkd_misc_fops, /* connect to this driver's 'functionality' */
};

static int __init miscdrv_init(void)
{
 int ret;
 struct device *dev;

 ret = misc_register(&llkd_miscdev);
 if (ret != 0) {
 pr_notice("misc device registration failed, aborting\n");
 return ret;
 }
 [...]

Writing a Simple misc Character Device Driver Chapter 1

[22]

In the miscdevice structure instance, we do the following:

We set the minor field to MISC_DYNAMIC_MINOR. This has the effect of1.
requesting the kernel to dynamically assign us an available minor number (once
registration is successful, this minor field gets populated with the actual minor
number assigned).
We initialize the name field. On successful registration, this has the kernel2.
framework automatically create a device node (of the form /dev/<name>) on our
behalf! As expected, the type will be character, the major number will be 10, and
the minor number will be a dynamically assigned value. This is (part of) the
advantage of using a kernel framework; else, we might have had to devise a way
to create the device node ourselves; by the way, the mknod(1) utility can create a
device file when invoked with root privilege (or you have the CAP_MKNOD
capability); it works by invoking the mknod(2) system call!
The permissions of the device node will be set to whatever you initialize the3.
mode field to (here, we've deliberately kept it permissive and readable-writeable
by all via the 0666 octal value).
We shall postpone the discussion of the file operations (fops) structure member4.
to the section following this one.

All misc drivers are of the character type and use the same major number (10), but of
course require unique minor numbers.

Understanding the connection between the process,
the driver, and the kernel
Here, we will delve into just a bit of the kernel internals surrounding the successful
registration of a character device driver on Linux. In effect, you will come to understand the
workings of the underlying raw character driver framework.

The file_operations structure, or the fops (pronounced eff-opps), as it's commonly
referred to, is of critical importance to driver authors; the majority of the members of
the fops structure are function pointers – think of them as virtual methods. They represent
all possible file-related system calls that could be issued on a (device) file. So, it
has open, read, write, poll, mmap, release, and several more members (most of which
are function pointers). A few of the members of this critical data structure are shown here:

// include/linux/fs.h
struct file_operations {
 struct module *owner;

Writing a Simple misc Character Device Driver Chapter 1

[23]

 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t
*);
[...]
 __poll_t (*poll) (struct file *, struct poll_table_struct *);
 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
 int (*mmap) (struct file *, struct vm_area_struct *);
 unsigned long mmap_supported_flags;
 int (*open) (struct inode *, struct file *);
 int (*flush) (struct file *, fl_owner_t id);
 int (*release) (struct inode *, struct file *);
[...]
 int (*fadvise)(struct file *, loff_t, loff_t, int);
} __randomize_layout;

A key job of the driver author (or the underlying kernel framework) is to populate these
function pointers, thus linking them to actual code within the driver. You needn't
implement every single function, of course; please refer to the Handling unsupported
methods section for details.

Now, let's assume you have written your driver to set up functions for some of the f_op
methods. Once your driver is registered with the kernel, typically via a kernel
framework, when any user space process (or thread) opens a device file registered to this
driver, the kernel Virtual Filesystem Switch (VFS) layer will take over. Without going into
deep detail, suffice it to say that the VFS allocates and initializes that process's open
file data structure (struct file) for the device file. Now, recall the last line in our struct
miscdevice initialization; it's this:

 .fops = &llkd_misc_fops, /* connect to this driver's 'functionality' */

This line of code has a key effect: it ties the process's file operations pointer (which is within
the process' open file structure) to the device driver's file operations structure.
The functionality – what the driver will do – is now set up for this device file!

Writing a Simple misc Character Device Driver Chapter 1

[24]

Let's flesh this out. Now (after your driver has initialized itself), a user-mode process opens
your driver's device file, by issuing the open(2) system call on it. Assuming all goes well
(and it should), the process is now connected to your driver via the file_operations
structure pointers deep inside the kernel. Here's a critical point: after the open(2) system
call returns successfully, and the process issues any file-related system call foo() on that
(device) file, the kernel VFS layer will, be having in an object-oriented fashion (we have
pointed this out before in this book!), blindly and trustingly invoke the
registered fops->foo() method! The file opened by the user space process, typically a
device file in /dev, is internally represented by the struct file metadata structure (a
pointer to this, struct file *filp, is passed along to the driver). So, in terms of pseudo-
code, when user space issues a file-related system call foo(), this is what the kernel VFS
layer effectively does:

/* pseudocode: kernel VFS layer (not the driver) */
if (filp->f_op->foo)
 filp->f_op->foo(); /* invoke the 'registered' driver method
corresponding to 'foo()' */

Thus, if the user space process that opened a device file invokes the read(2) system call
upon it, the kernel VFS will invoke filp->f_op->read(...), in effect, redirecting control
to the device driver. Your job as the device driver author is to provide the functionality of
read(2)! The same goes for all other file-related system calls. This, essentially, is how Unix
and Linux implement the well-known if it's not a process, it's a file design principle.

Handling unsupported methods
You don't have to populate every member of the f_ops structure, only those that your
driver supports. If that's the case, and you have populated a few methods but left out, say,
the poll method, and a user space process invokes poll(2) on your device (perhaps
you've documented the fact that it's not supposed to, but what if it does?), then what will
happen? In cases like this, the kernel VFS, detecting that the foo pointer (in this example,
poll) is NULL, returns an appropriate negative integer (in effect, following the same 0/-
E protocol). The glibc code will multiply this by -1 and set the calling
process's errno variable to that value, signaling that the system call failed.

Writing a Simple misc Character Device Driver Chapter 1

[25]

Two points to be aware of:

Quite often, the negative errno value returned by the VFS isn't very intuitive.
(For example, if you've set the read() function pointer of f_op to NULL, the VFS
causes the EINVAL value to be sent back. This has the user space process think
that read(2) failed because of an "Invalid argument" error, which simply
isn't the case at all!)
The lseek(2) system call has the driver seek to a prescribed location in the file –
here, of course, we mean in the device. The kernel deliberately names the f_op
function pointer as llseek (notice the two 'l's). This is simply to remind you
that the return value from lseek can be a 64-bit (long long) quantity. Now, for
the majority of hardware devices, the lseek value is not meaningful, thus most
drivers do not need to implement it (unlike filesystems). Now, the issue is this:
even if you do not support lseek (you've set the llseek member of f_op to
NULL), it still returns a random positive value, thus causing the user-mode app to
incorrectly conclude that it succeeded. Hence, if you aren't implementing lseek,
you are to do the following:

Explicitly set llseek to the special no_llseek value, which will cause1.
a failure value (-ESPIPE; illegal seek) to be returned.
In such cases, you are to also invoke the nonseekable_open()2.
function in your driver's open() method, specifying that the file is
non-seekable (this is often called like this in the open()
method: return nonseekable_open(struct inode *inode,
struct file *filp);. The details, and more, are covered in the
LWN articles here: https:/ ​/​lwn. ​net/ ​Articles/ ​97154/ ​. You can see
the changes this wrought to many drivers here: https:/ ​/​lwn. ​net/
Articles/ ​97180/ ​).

An appropriate value to return if you aren't supporting a function is -ENOSYS, which will
have the user-mode process see the error Function not implemented (when it invokes
the perror(3) or strerror(3) library APIs). This is clear, unambiguous; the user space
developer will now understand that your driver does not support this function. Thus, one
way to implement your driver is to set up pointers to all the file operation methods, and
write a routine for all file-related system calls (the f_op methods) in your driver. For the
ones you do support, write the code; for the ones you do not implement, just return
the value -ENOSYS. Though a bit painstaking to do, it will result in unambiguous return
values to user space.

https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97154/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/
https://lwn.net/Articles/97180/

Writing a Simple misc Character Device Driver Chapter 1

[26]

Writing the misc driver code – part 2
Armed with this knowledge, look again at the init code of ch1/miscdrv/miscdrv.c.
You will see that, just as described in the previous section, we have initialized the fops
member of the miscdev struct to a file_operations structure, thus setting up the
functionality of the driver. The relevant code snippet (from our driver) is as follows:

static const struct file_operations llkd_misc_fops = {
 .open = open_miscdrv,
 .read = read_miscdrv,
 .write = write_miscdrv,
 .release = close_miscdrv,
};

static struct miscdevice llkd_miscdev = {
 [...]
 .fops = &llkd_misc_fops, /* connect to this driver's
'functionality' */
};

So, now you can see it: when a user space process (or thread) that has opened our device
file invokes, say, a read(2) system call, the kernel VFS layer will follow the pointers
(generically, filp->f_op->foo()) and invoke the function, read_miscdrv(), in effect
handing over control to the device driver! How exactly the read method is written is
covered in the next section.

Continuing with the init code of our simple misc driver:

 [...]
 /* Retrieve the device pointer for this device */
 dev = llkd_miscdev.this_device;
 pr_info("LLKD misc driver (major # 10) registered, minor# = %d,"
 " dev node is /dev/%s\n", llkd_miscdev.minor,
llkd_miscdev.name);
 dev_info(dev, "sample dev_info(): minor# = %d\n", llkd_miscdev.minor);
 return 0; /* success */
}

Our driver retrieves a pointer to the device structure – it's something required by every
driver. Within the misc kernel framework, it's available within the this_device member
of our miscdevice structure.

Writing a Simple misc Character Device Driver Chapter 1

[27]

Next, pr_info() shows the minor number dynamically obtained. The dev_info() helper
routine is more interesting: as a driver author, you are expected to use these dev_xxx()
helpers when emitting printk; it will also prefix useful information about the device. The
only difference in syntax between the dev_xxx() and pr_xxx() helpers is that the first
parameter to the former is the pointer to the device structure.

Okay, let's get our hands dirty! We build the driver and insmod it into kernel space (we use
our lkm helper script to do so):

Figure 1.4 – Screenshot of building and loading our miscdrv.ko skeleton misc driver on an x86_64 Ubuntu VM

Writing a Simple misc Character Device Driver Chapter 1

[28]

(By the way, as you can see in Figure 1.4, I tried out this misc driver on a more recent
distro: Ubuntu 20.04.1 LTS running the 5.4.0-58-generic kernel.) Notice the two prints
toward the bottom of Figure 1.4; the first is emitted via the pr_info() (prefixed with the
pr_fmt() macro content, as explained in the companion guide Linux Kernel Programming -
 Chapter 4, Writing Your First Kernel Module - LKMs Part 1 section Standardizing printk output
via the pr_fmt macro). The second print is emitted via the dev_info() helper routine – it's
prefixed with the words misc llkd_miscdrv, indicating that it originated from the
kernel's misc framework, and specifically from the llkd_miscdrv device!
(The dev_xxx() routines are versatile; depending on the bus they're on, they will display
various details. This is useful for debugging and logging purposes. We repeat: you're
recommended to use the dev_*() routines when writing drivers.) You can also see that
the /dev/llkd_miscdrv device node is indeed created, with the expected type (character)
and major and minor pair (10 and 56 here).

Writing the misc driver code – part 3
Now, the init code is done, the driver functionality has been set up via the file operations
structure, and the driver is registered to the kernel misc framework. So, what happens
next? Well, nothing really, until a process opens the device file (associated with your
driver) and performs I/O (Input/Output, i.e., reads/writes) of some sort.

So, let's assume that a user-mode process (or thread) issues the open(2) system call on
your driver's device node (recall, the device node has been auto-created when the driver
registered itself to the kernel's misc framework). Most important, as you learned in
the Understanding the connection between the process, the driver, and the kernel section, for any
file-related system calls issued upon your device node, the VFS will essentially invoke the
driver's (f_op) registered method. So, here, the VFS will do this: filp->f-op->open(),
thus invoking our driver's open method within our file_operations structure, which is
the open_miscdrv() function!

But how should you, the driver author, implement this code of the open method of your
driver? The key point is this: the signature of your open function should be identical to
that of the file_operation structure open; in fact, this is true of any function. Thus, we
implement the open_miscdrv() function like this:

/*
 * open_miscdrv()
 * The driver's open 'method'; this 'hook' will get invoked by the kernel
VFS
 * when the device file is opened. Here, we simply print out some relevant
info.

Writing a Simple misc Character Device Driver Chapter 1

[29]

 * The POSIX standard requires open() to return the file descriptor on
success;
 * note, though, that this is done within the kernel VFS (when we return).
So,
 * all we do here is return 0 indicating success.
 * (The nonseekable_open(), in conjunction with the fop's llseek pointer
set to
 * no_llseek, tells the kernel that our device is not seek-able).
 */
static int open_miscdrv(struct inode *inode, struct file *filp)
{
 char *buf = kzalloc(PATH_MAX, GFP_KERNEL);

 if (unlikely(!buf))
 return -ENOMEM;
 PRINT_CTX(); // displays process (or atomic) context info
 pr_info(" opening \"%s\" now; wrt open file: f_flags = 0x%x\n",
 file_path(filp, buf, PATH_MAX), filp->f_flags);
 kfree(buf);
 return nonseekable_open(inode, filp);
}

Notice how the signature of our open routine, the open_miscdrv() function, precisely
matches that of the f_op structure's open function pointer (you can always lookup the
file_operations structure for 5.4 Linux here at https:/ ​/​elixir. ​bootlin. ​com/ ​linux/
v5.​4/​source/​include/ ​linux/ ​fs. ​h#L1814).

In this simple driver, in our open method, we don't really have much to do. We allocate
some memory for a buffer (to hold the pathname of our device) via kzalloc(), issue our
PRINT_CTX() macro (it's in the convenient.h header) to show the current context – the
process that is currently opening the device. We then emit a printk (via pr_info())
showing a few VFS layer details (the pathname and open flags value); you can get the path
name of a file by using the convenience API file_path(), as we do here (to do so, we
need to allocate and, after usage, free a kernel memory buffer). Then, as we don't support
seeking in this driver, we invoke the nonseekable_open() API (as discussed in
the Handling unsupported methods section).

https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814
https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814

Writing a Simple misc Character Device Driver Chapter 1

[30]

The open(2) system call on the device file should succeed. The user-mode process will
now have a valid file descriptor – a handle to the open file (which, here, is actually a device
node). Now, let's say the user-mode process wants to read data from the hardware; it
therefore issues the read(2) system call. As explained already, the kernel VFS will now
auto-invoke our driver's read method, read_miscdrv(). Again, its signature exactly
imitates the read function signature from the file_operations data structure. Here's the
simple code of our driver's read method:

/*
 * read_miscdrv()
 * The driver's read 'method'; it has effectively 'taken over' the read
syscall
 * functionality! Here, we simply print out some info.
 * The POSIX standard requires that the read() and write() system calls
return
 * the number of bytes read or written on success, 0 on EOF (for read) and
-1 (-ve errno)
 * on failure; we simply return 'count', pretending that we 'always
succeed'.
 */
static ssize_t read_miscdrv(struct file *filp, char __user *ubuf, size_t
count, loff_t *off)
{
 pr_info("to read %zd bytes\n", count);
 return count;
}

The preceding comment is self-explanatory. Within it, we emit pr_info(), showing the
number of bytes the user space process wants to read. Then, we simply return the number
of bytes read, implying success! In reality, we have done (essentially) nothing. The
remaining driver methods are quite similar.

Testing our simple misc driver
Let's test our really simple skeleton misc character driver (in the ch1/miscdrv directory;
we assume you have built and inserted it as shown in Figure 1.4). We test it by issuing
open(2), read(2), write(2), and close(2) system calls upon it; how exactly can we do
so? We can always write a small C program to do precisely this, but an easier way is to use
the useful dd(1) "disk duplicator" utility. We use it like this:

dd if=/dev/llkd_miscdrv of=readtest bs=4k count=1

Writing a Simple misc Character Device Driver Chapter 1

[31]

Internally dd opens the file we pass it as a parameter (/dev/llkd_miscdrv) via if= (here,
it's the first parameter to dd; if= specifies the input file), it will read from it (via the
read(2) system call, of course). The output is to be written to the file specified by the
parameter of= (the second parameter to dd, and is a regular file named readtest); the bs
specifies the block size to perform I/O in and count is the number of times to perform I/O).
After performing the required I/O, the dd process will close(2) the files. This sequence is
reflected in the kernel log (Figure 1.5):

Figure 1.5 – Screenshot showing us minimally testing our miscdrv driver's read method via dd(1)

After verifying that our driver (LKM) is inserted, we issue the dd(1) command, having it
read 4,096 bytes from our device (as the block size (bs) is set to 4k and count to 1). We
have it write the output (via the of= option switch) to a file named readtest. Looking up
the kernel log, you can see (Figure 1.5) that the dd process has indeed opened our device
(our PRINT_CTX() macro's output shows that it's the process context currently running the
code of our driver!). Next, we can see (via the output from pr_fmt()) that control goes to
our driver's read method, within which we emit a simple printk and return the value 4096
signifying success (though we really didn't read anything!). The device is then closed by dd.
Furthermore, a quick check with the hexdump(1) utility reveals that we did indeed receive
0x1000 (4,096) nulls (as expected) from the driver (in the file readtest; do realize that this
is the case because dd initialized it's read buffer to NULLs).

Writing a Simple misc Character Device Driver Chapter 1

[32]

The PRINT_CTX() macro we have used within the code lives within
our convenient.h header. Do take a look; it's quite instructive (we try
and emulate the kernel Ftrace infrastructure's latency output format,
which reveals a lot of detail in a small space, a single line of output). This
is explained in detail in Chapter 4, Handling Hardware Interrupts, in
the Fully figuring out the context section. Don't worry about all the details
for now...

Figure 1.6 shows how we (minimally) test writing to our driver, again via dd(1). This time
we read 4k of random data (by leveraging the kernel's built-in mem driver's /dev/urandom
facility), and write the random data to our device node; in effect, to our 'device':

Figure 1.6 – Screenshot showing us minimally testing our miscdrv driver's write method via dd(1)

(By the way, I have also included a simple user space test app for the driver; it can be found
here: ch1/miscdrv/rdwr_test.c. I will leave it to you to read its code and try out.)

You might be thinking: we did apparently succeed in reading and writing data to and from
user space to our driver, but, hang on, we never actually saw any data transfer taking place
within the driver code. Yes, this is the topic of the next section: how you will actually copy
the data from the user space process buffer into your kernel driver's buffer, and vice versa.
Read on!

Writing a Simple misc Character Device Driver Chapter 1

[33]

Copying data from kernel to user space and
vice versa
A primary job of the device driver is to enable user space applications to transparently both
read and write data to the peripheral hardware device (typically a chip of some sort; it may
not be hardware at all though), treating the device as though it were simply a regular file.
Thus, to read data from the device, the application opens the device file corresponding to
that device, thus obtaining a file descriptor, and then simply issues a read(2) system call
using that fd (step 1 in Figure 1.7)! The kernel VFS intercepts the read, and, as we have seen,
has control flow to the underlying device driver's read method (which is a C function, of
course). The driver code now "talks" to the hardware device, actually performing the I/O,
the read operation. (The specifics of how exactly the hardware read (or write) is performed
depends very much on the type of hardware – is it a memory-mapped device, a port, a
network chip, and so on? We will not delve further into this here; the next chapter does.)
The driver, having read data from the device, now places this data into a kernel
buffer, kbuf (step 2 in the following diagram. Of course, we assume the driver author
allocated memory for it via [k|v]malloc() or another suitable kernel API).

We now have the hardware device data in a kernel space buffer. How should we transfer it
to the user space process's memory buffer? We shall exploit kernel APIs that make it easy to
do so; this is covered next.

Leveraging kernel APIs to perform the data
transfer
Now, as mentioned previously, let's assume your driver has read in the hardware data, and
that it's now present in a kernel memory buffer. How do we transfer it to user space? A
naive approach would be to simply try and perform this via memcpy(), but no, that does
not work (why? one, it's insecure and two, it's very arch-dependent; it works on some
architectures and not on others). So, a key point: the kernel provides a couple of inline
functions to transfer data from kernel to user space and vice versa. They are
copy_to_user() and copy_from_user(), respectively, and are indeed very commonly
used.

Writing a Simple misc Character Device Driver Chapter 1

[34]

Using them is simple. Both take three parameters: the to pointer (destination buffer),
the from pointer (source buffer), and n, the number of bytes to copy (think of it as you
would for a memcpy operation):

include <linux/uaccess.h> /* Note! used to be <asm/uaccess.h> upto 4.11
*/

unsigned long copy_to_user(void __user *to, const void *from, unsigned long
n);
unsigned long copy_from_user(void *to, const void __user *from, unsigned
long n);

The return value is the number of uncopied bytes; in other words, a return value of 0
indicates success and a non-zero return value indicates that the given number of bytes were
not copied. If a non-zero return occurs, you should (following the usual 0/-E return
convention) return an error indicating an I/O fault by returning -EIO or -EFAULT (which
thus sets errno in user space to the positive counterpart). The following (pseudo) code
illustrates how a device driver can use the copy_to_user() function to copy some data
from kernel to user space:

static ssize_t read_method(struct file *filp, char __user *ubuf, size_t
count, loff_t *off)
{
 char *kbuf = kzalloc(...);
 [...]
 /* ... do what's required to get data from the hardware device into
kbuf ... */
 if (copy_to_user(buf, kbuf, count)) {
 dev_warn(dev, "copy_to_user() failed\n");
 goto out_rd_fail;
 }
 [...]
 return count; /* success */
out_rd_fail:
 kfree(kbuf);
 return -EIO; /* or -EFAULT */
}

Here, of course, we assume you have a valid allocated kernel memory buffer, kbuf, and a
valid device pointer (struct device *dev). Figure 1.7 illustrates what the preceding
(pseudo) code is trying to achieve:

Writing a Simple misc Character Device Driver Chapter 1

[35]

Figure 1.7 – Read: copy_to_user(): copying data from the hardware to a kernel buffer and from there to a user space buffer

The same semantics apply to using the copy_from_user() inline function. It is typically
used in the context of the driver's write method, pulling in the data written by the user
space process context to a kernel space buffer. We will leave it to you to visualize this.

It is also important to realize that both routines (copy_[from|to]_user()) might, during
their run, cause the process context to (page) fault and thus sleep; in other words, to invoke
the scheduler. Hence, they can only be used in a process context where it's safe to sleep
and never in any kind of atomic or interrupt context (we explain more on the
might_sleep() helper – a debug aid – in Chapter 4, Handling Hardware Interrupts, in
the Don't block – spotting possibly blocking code paths section).

Writing a Simple misc Character Device Driver Chapter 1

[36]

For the curious reader (I hope you are one!), here are some links with a bit more of a
detailed explanation on why you cannot just use a simple memcpy() but must use the
copy_[from|to]_user() inline functions to copy data from and to the kernel and user
spaces:

https:/ ​/ ​stackoverflow. ​com/ ​questions/ ​14970698/ ​copy- ​to- ​user- ​vs-​memcpy

https://www.quora.com/Why-we-need-copy_from_user-as-the-kernel-can-acc
ess-all-the-memory-If-we-see-the-copy_from_user-implementation-again-
we-are-copying-data-to-the-kernel-memory-using-memcpy-Doesnt-it-an-

extra-overhead.

In the following section, we shall write a more complete misc framework character device
driver, which will actually perform some I/O, reading and writing data.

A misc driver with a secret
Now that you understand how to copy data between user and kernel space (and the
reverse), let's write another device driver (ch1/miscdrv_rdwr) based on our previous
skeleton (ch1/miscdrv/) miscellaneous driver. The key difference is that we use a few
global data items (within a structure) throughout, and actually perform some I/O in the
form of reads and writes. Here, let's introduce the notion of a driver context or
private driver data structure; the idea is to have a conveniently accessible data structure
that contains all relevant information in one place. Here, we name this structure struct
drv_ctx (see it in the code listing that follows). On driver initialization, we
allocate memory to and initialize it.

Okay, there's no real secret here, it just makes it sound interesting. One of the members
within this driver context data structure of ours is a so-called secret message (it's
the drv_ctx.oursecret member, along with some (fake) statistics and config words).
This is the simple "driver context" or private data structure we propose using:

// ch1/miscdrv_rdwr/miscdrv_rdwr.c
[...]
/* The driver 'context' (or private) data structure;
 * all relevant 'state info' reg the driver is here. */
struct drv_ctx {
 struct device *dev;
 int tx, rx, err, myword;
 u32 config1, config2;
 u64 config3;
#define MAXBYTES 128 /* Must match the userspace app; we should actually
 * use a common header file for things like this */

https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://stackoverflow.com/questions/14970698/copy-to-user-vs-memcpy
https://www.quora.com/Why-we-need-copy_from_user-as-the-kernel-can-access-all-the-memory-If-we-see-the-copy_from_user-implementation-again-we-are-copying-data-to-the-kernel-memory-using-memcpy-Doesnt-it-an-extra-overhead
https://www.quora.com/Why-we-need-copy_from_user-as-the-kernel-can-access-all-the-memory-If-we-see-the-copy_from_user-implementation-again-we-are-copying-data-to-the-kernel-memory-using-memcpy-Doesnt-it-an-extra-overhead
https://www.quora.com/Why-we-need-copy_from_user-as-the-kernel-can-access-all-the-memory-If-we-see-the-copy_from_user-implementation-again-we-are-copying-data-to-the-kernel-memory-using-memcpy-Doesnt-it-an-extra-overhead
https://www.quora.com/Why-we-need-copy_from_user-as-the-kernel-can-access-all-the-memory-If-we-see-the-copy_from_user-implementation-again-we-are-copying-data-to-the-kernel-memory-using-memcpy-Doesnt-it-an-extra-overhead
https://www.quora.com/Why-we-need-copy_from_user-as-the-kernel-can-access-all-the-memory-If-we-see-the-copy_from_user-implementation-again-we-are-copying-data-to-the-kernel-memory-using-memcpy-Doesnt-it-an-extra-overhead

Writing a Simple misc Character Device Driver Chapter 1

[37]

 char oursecret[MAXBYTES];
};
static struct drv_ctx *ctx;

Great; now let's move on to seeing and understanding the code.

Writing the 'secret' misc device driver's code
We've divided this discussion on the implementation details of our secret misc character
device driver into five parts: driver initialization, the read method, the write method
functionality implementation, the driver cleanup, and finally, the userspace application that
will use our device driver.

Our secret driver – the init code
In the init code of our secret device driver (a kernel module, of course, thus invoked upon
insmod(8)), we first register the driver as a misc character driver with the kernel (via the
misc_register() API, as seen in the Writing the misc driver code – part 1 section earlier; we
won't repeat this code here).

Next, we allocate kernel memory for our driver's "context" structure – via the useful
managed allocation devm_kzalloc() API (as you learned in the companion guide Linux
Kernel Programming, Chapter 8, Kernel Memory Allocation for Module Authors – Part 1, in
the Using the kernel's resource-managed memory allocation APIs section) – and initialize it.
Notice that you must ensure you first get the device pointer dev before you can use this
API; we retrieve it from our miscdevice structure's this_device member (as seen):

// ch1/miscdrv_rdwr/ ​miscdrv_rdwr.c
[...]
static int __init miscdrv_rdwr_init(void)
{
 int ret;
 struct device *dev;

 ret = misc_register(&llkd_miscdev);
 [...]
 dev = llkd_miscdev.this_device;
 [...]
 ctx = devm_kzalloc(dev, sizeof(struct drv_ctx), GFP_KERNEL);
 if (unlikely(!ctx))
 return -ENOMEM;

 ctx->dev = dev;

Writing a Simple misc Character Device Driver Chapter 1

[38]

 strscpy(ctx->oursecret, "initmsg", 8);
 [...]
 return 0; /* success */
}

Okay, clearly, we have initialized the dev member of our ctx private structure instance as
well as the 'secret' string to the 'initmsg' string (not a very convincing secret, but let's
leave it at that). The idea here is that when a user space process (or thread) opens our
device file and issues read(2) upon it, we pass back (copy) the secret to it; we do so by
invoking the copy_to_user() helper function! Similarly, when the user-mode app writes
data to us (yes, via the write(2) system call), we consider that data written to be the new
secret. So, we fetch it from its user space buffer – via the copy_from_user() helper
function – and update it in driver memory.

Why not simply use the strcpy() (or strncpy()) API to initialize
the ctx->oursecret member? This is very important: they aren't safe
enough security-wise. Also, the strlcpy() API has been marked
as deprecated by the kernel community (https:/ ​/​www. ​kernel. ​org/​doc/
html/ ​latest/ ​process/ ​deprecated. ​html#strlcpy). In general, always
avoid using deprecated stuff, as documented in the kernel documentation
here: https:/ ​/​www. ​kernel. ​org/​doc/ ​html/ ​latest/ ​process/ ​deprecated.
html#deprecated- ​interfaces- ​language- ​features- ​attributes- ​and-
conventions.

Quite clearly, the interesting parts of this new driver are the I/O functionality – the read and
write methods; on with it!

Our secret driver – the read method
We will first show the relevant code for the read method – this is how a user space process
(or thread) can read in the secret information housed within our driver (in its context
structure):

static ssize_t
read_miscdrv_rdwr(struct file *filp, char __user *ubuf, size_t count,
loff_t *off)
{
 int ret = count, secret_len = strlen(ctx->oursecret);
 struct device *dev = ctx->dev;
 char tasknm[TASK_COMM_LEN];

 PRINT_CTX();
 dev_info(dev, "%s wants to read (upto) %zd bytes\n",

https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions

Writing a Simple misc Character Device Driver Chapter 1

[39]

get_task_comm(tasknm, current), count);

 ret = -EINVAL;
 if (count < MAXBYTES) {
 [...] << we don't display some validity checks here >>

 /* In a 'real' driver, we would now actually read the content of
the
 * [...]
 * Returns 0 on success, i.e., non-zero return implies an I/O
fault).
 * Here, we simply copy the content of our context structure's
 * 'secret' member to userspace. */
 ret = -EFAULT;
 if (copy_to_user(ubuf, ctx->oursecret, secret_len)) {
 dev_warn(dev, "copy_to_user() failed\n");
 goto out_notok;
 }
 ret = secret_len;

 // Update stats
 ctx->tx += secret_len; // our 'transmit' is wrt this driver
 dev_info(dev, " %d bytes read, returning... (stats: tx=%d,
rx=%d)\n",
 secret_len, ctx->tx, ctx->rx);
out_notok:
 return ret;
}

The copy_to_user() routine does its job – it copies the ctx->oursecret source buffer to
the destination pointer, the ubuf user space buffer, for secret_len bytes, thus transferring
the secret to the user space app. Now, let's check out the driver's write method.

Our secret driver – the write method
The end user can change the secret by writing a new secret into the driver, via
a write(2) system call to the driver's device node. The kernel redirects the write (via the
VFS layer) to our driver's write method (as you learned in the Understanding the connection
between the process, the driver, and the kernel section):

static ssize_t
write_miscdrv_rdwr(struct file *filp, const char __user *ubuf, size_t
count, loff_t *off)
{
 int ret = count;
 void *kbuf = NULL;

Writing a Simple misc Character Device Driver Chapter 1

[40]

 struct device *dev = ctx->dev;
 char tasknm[TASK_COMM_LEN];

 PRINT_CTX();
 if (unlikely(count > MAXBYTES)) { /* paranoia */
 dev_warn(dev, "count %zu exceeds max # of bytes allowed, "
 "aborting write\n", count);
 goto out_nomem;
 }
 dev_info(dev, "%s wants to write %zd bytes\n", get_task_comm(tasknm,
current), count);

 ret = -ENOMEM;
 kbuf = kvmalloc(count, GFP_KERNEL);
 if (unlikely(!kbuf))
 goto out_nomem;
 memset(kbuf, 0, count);

 /* Copy in the user supplied buffer 'ubuf' - the data content
 * to write ... */
 ret = -EFAULT;
 if (copy_from_user(kbuf, ubuf, count)) {
 dev_warn(dev, "copy_from_user() failed\n");
 goto out_cfu;
 }

 /* In a 'real' driver, we would now actually write (for 'count' bytes)
 * the content of the 'ubuf' buffer to the device hardware (or
 * whatever), and then return.
 * Here, we do nothing, we just pretend we've done everything :-)
 */
 strscpy(ctx->oursecret, kbuf, (count > MAXBYTES ? MAXBYTES : count));
 [...]
 // Update stats
 ctx->rx += count; // our 'receive' is wrt this driver

 ret = count;
 dev_info(dev, " %zd bytes written, returning... (stats: tx=%d,
rx=%d)\n",
 count, ctx->tx, ctx->rx);
out_cfu:
 kvfree(kbuf);
out_nomem:
 return ret;
}

Writing a Simple misc Character Device Driver Chapter 1

[41]

We employ the kvmalloc() API to allocate memory for a buffer to hold the user data that
we will copy in. The actual copying is done via the copy_from_user() routine, of course.
Here, we use it to copy the data passed by the user space app to our kernel buffer, kbuf.
We then (via the strscpy() routine) update our driver's context structure's oursecret
member to this value, thus updating the secret! (A subsequent read on the driver will now
reveal the new secret.) Also, do notice the following:

How we now consistently use the dev_xxx() helpers in place of the
usual printk routines. This is recommended for device drivers.
The (now typical) usage of goto to perform optimal error handling.

This covers the meat of the driver.

Our secret driver – cleanup
It's important to realize that we must free any buffers we have allocated. Here, however, as
we performed a managed allocation in the init code (devm_kzalloc()), we have the
benefit of not needing to worry about cleanup; the kernel handles it. Of course, in the
driver's cleanup code path (invoked upon rmmod(8)), we deregister the misc driver with
the kernel:

static void __exit miscdrv_rdwr_exit(void)
{
 misc_deregister(&llkd_miscdev);
 pr_info("LLKD misc (rdwr) driver deregistered, bye\n");
}

You will notice that we also, seemingly uselessly, use two global integers, ga and gb, in
places in this version of the driver. Indeed, they have no real meaning here; the reason we
have them at all becomes clear only in the last two chapters of this book, on kernel
synchronization. Please ignore them for now.

On this note, you'll perhaps realize that the way we have arbitrarily
accessed global data in this driver can cause concurrency issue
(data races!); yes indeed; we shall set aside the deep and crucial coverage
of kernel concurrency and synchronization to the book's last two chapters.

Writing a Simple misc Character Device Driver Chapter 1

[42]

Our secret driver – the user space test app
Writing just the kernel component, the device driver, isn't quite enough; you also have to
write a user space application that will actually make use of the driver. We will do so here.
(Again, you could simply use dd(1) as well.)

In order to use the device driver, the user space app must first, of course, open the device
file corresponding to it. (Here, to save space, we don't show the app code in its entirety, just
the most relevant portions of it. We expect you to have cloned the book's Git repository and
to work on the code.) The code to open the device file is as follows:

// ch1/miscdrv_rdwr/rdwr_test_secret.c
int main(int argc, char **argv)
{
 char opt = 'r';
 int fd, flags = O_RDONLY;
 ssize_t n;
 char *buf = NULL;
 size_t num = 0;
[...]
 if ('w' == opt)
 flags = O_WRONLY;
 fd = open(argv[2], flags, 0);
 if (fd == -1) {
 [...]

The second argument to this app is the device file to open. In order to read or write, the
process will require memory:

 if ('w' == opt)
 num = strlen(argv[3])+1; // IMP! +1 to include the NULL byte!
 else
 num = MAXBYTES;
 buf = malloc(num);
 if (!buf) {
 [...]

Moving along, let's see the block of code to have the app invoke a read or write (depending
on the first parameter being r or w) on the (pseudo)device (for conciseness, we don't show
the error handling code):

 if ('r' == opt) {
 n = read(fd, buf, num);
 if(n < 0) [...]
 printf("%s: read %zd bytes from %s\n", argv[0], n, argv[2]);
 printf("The 'secret' is:\n \"%.*s\"\n", (int)n, buf);
 } else {

Writing a Simple misc Character Device Driver Chapter 1

[43]

 strncpy(buf, argv[3], num);
 n = write(fd, buf, num);
 if(n < 0) [...]
 printf("%s: wrote %zd bytes to %s\n", argv[0], n, argv[2]);
 }
 [...]
 free(buf);
 close(fd);
 exit(EXIT_SUCCESS);
}

(Before you try out this driver, do ensure the previous miscdrv driver's kernel module is
unloaded.) Now, ensure that this driver is built and inserted, of course, else it will result in
the open(2) system call failing. We have shown a couple of trial runs. First, let's build the
user-mode app, insert the driver (not shown in Figure 1.8), and read from our just-created
device node:

Figure 1.8 – miscdrv_rdwr: (minimally) testing the read; the original secret is revealed

The user-mode app successfully receives 7 bytes from the driver; it's the (initial) secret
value, which it displays. The kernel log reflects the driver initialization, and a few seconds
later, you can see (via the dev_xxx() instances of printk we emitted) that the
rdwr_test_secret app runs the drivers' code in process context. The opening of the
device, the running of the subsequent read, and the close methods are clearly seen. (Notice
how the process name is truncated to rdwr_test_secre; this is as the task structure's
comm member is the process name truncated to 16 characters.)

Writing a Simple misc Character Device Driver Chapter 1

[44]

In Figure 1.9, we show the complementary act of writing to our device node, changing the
secret value; a subsequent read indeed reveals that it has worked:

Figure 1.9 – miscdrv_rdwr: (minimally) testing the write; a new, excellent secret is written

The portion of the kernel log where the write takes place is highlighted in Figure 1.9. It
works; I definitely encourage you to try this out yourself, looking up the kernel log as you
go along.

Now, it's time to dig a little deeper. The reality is that as a driver author, you have to learn
to be really careful regarding security, else all kinds of nasty surprises lie in wait. The next
section gives you an understanding of this key area.

Issues and security concerns
An important consideration, for the budding driver author, is security. The trouble is, naive
usage of even the very common copy_[from|to]_user() functions within your driver
can let a malicious user quite easily – and illegally – overwrite memory to their advantage
in both user and kernel spaces. How? The following section explains this in some detail;
then, we will even show you a (bit contrived, but nevertheless, working) hack.

Hacking the secret driver
Think about this: we have the copy_to_user() helper routine; the first parameter is the
destination to address, which should be a user space virtual address (a UVA), of course.
Regular usage will comply with this and provide a legal and valid user space virtual
address as the destination address, and all will be well.

Writing a Simple misc Character Device Driver Chapter 1

[45]

But what if we don't? What if we pass another user space address, or, check this out –
a kernel virtual address (a KVA) – in its place? The copy_to_user() code will now,
running with kernel privileges, overwrite the destination with whatever data is in the
source address (the second parameter) for the number of bytes in the third
parameter! Indeed, hackers often attempt techniques such as this, to insert code posing as
data into a user space buffer and execute it with kernel privilege, leading to a quite
deadly privilege escalation (privesc) scenario.

To clearly demonstrate the adverse effects of not carefully designing and implementing a
driver, we deliberately introduce errors (bugs, really!) into both the read and write methods
of a 'bad' version of our previous driver (although here, we only consider the scenario with
respect to the very common copy_[from|to]_user() routines and nothing else).

To get a more hands-on feel for this, we will write a "bad" version of
our ch1/miscdrv_rdwr driver. We'll call it (ever so cleverly) ch1/bad_miscdrv. In this
version, we deliberately have two buggy code paths built into it:

One within the driver's read method
The other, the more exciting one, as you shall soon see, within the write method.

Let's check both out. We'll begin with the buggy read.

Bad driver – buggy read()
To help you see what's changed in the code, we first perform a diff(1) of this
(deliberately) bad driver code with our previous (good) version, yielding the differences, of
course (in the following snippet, we curtail the output to only what's most relevant):

// in ch1/bad_miscdrv
$ diff -u ../miscdrv_rdwr/miscdrv_rdwr.c bad_miscdrv.c
[...]
+#include <linux/cred.h> ​// access to struct cred
#include "../../convenient.h"
[...]
static ssize_t read_miscdrv_rdwr(struct file *filp, char __user *ubuf,
[...]
+ void *kbuf = NULL;
+ void *new_dest = NULL;
[...]
+#define READ_BUG
+//#undef READ_BUG
+#ifdef READ_BUG
[...]
+ new_dest = ubuf+(512*1024);

Writing a Simple misc Character Device Driver Chapter 1

[46]

+#else
+ new_dest = ubuf;
+#endif
[...]
+ if (copy_to_user(new_dest, ctx->oursecret, secret_len)) {
[...]

So, it should be quite clear: in our 'bad' driver's read method, if the READ_BUG macro is
defined, we alter the user space destination pointer to point to an illegal location (512 KB
beyond the location we should actually copy the data to!). This demonstrates the point here:
we can do arbitrary stuff like this because we are running with kernel privileges. That it
will cause issues and bugs is a separate matter.

Let's try it: first, do ensure that you've built and loaded the bad_miscdrv kernel module
(you can use our lkm convenience script to do so). Our trial run, issuing a read(2) system
call via our ch1/bad_miscdrv/rdwr_test_hackit user-mode app, results in failure (see
the following screenshot):

Figure 1.10 – Screenshot showing our bad_miscdrv misc driver performing a "bad" read

Ah, this is interesting; our test application's (rdwr_test_hackit) read(2) system call
does indeed fail, with the perror(3) routine indicating the cause of failure as Bad
address. But why? Why didn't the driver, running with kernel privileges, actually write to
the destination address (here, 0x5597245d46b0 , the wrong one; as we know, it's
attempting to write 512 KB ahead of the correct destination address. We deliberately wrote
the driver's read method code to do so).

Writing a Simple misc Character Device Driver Chapter 1

[47]

This is because kernel ensures that the copy_[from|to]_user() routines will (ideally)
fail when attempting to read or write illegal addresses! Internally, several checks are done:
access_ok() is a simple one merely ensuring that I/O is performed within the expected
segment (user or kernel). Modern Linux kernels have superior checking; besides the simple
access_ok() check, the kernel then wades through – if enabled – the KASAN (Kernel
Address Sanitizer, a compiler instrumentation feature; KASAN is indeed very useful, a
must-do during development and test!), checks on object sizes (including overflow checks),
and only then does it invoke the worker routine that performs the actual copy,
raw_copy_[from|to]_user().

Okay, that's good; now, let's move on to the more interesting case, the buggy write, which
we shall arrange (in a contrived manner though) to make into an attack! Read on...

Bad driver – buggy write() – a privesc!
What does the malicious hacker really want, their holy grail? A root shell on the system, of
course (got root?). With a good deal of contrived code within our driver's write method
(thus making this hack not a really good one; it's quite academic), let's go get it! To do so,
we modify both the user-mode app as well as the device driver. Let's look at the user-mode
app's changes first.

User space test app modifications
We slightly modify the user space application – our process context, in effect. This
particular version of the user-mode test app differs from the earlier one in one regard: we
now have a macro called HACKIT. If it's defined (it is by default), this process will
deliberately write only zeroes into the user space buffer and send that to our bad driver's
write method. If the driver has the DANGER_GETROOT_BUG macro defined (it is by default),
then it will write the zeroes into the process's UID member, thus making the user-mode
process obtain root privileges!

In the traditional Unix/Linux paradigm, if the Real User ID (RUID)
and/or Effective User ID (EUID) (they're within the task structure, in
struct cred) are set to the special value zero (0), it implies that the
process has superuser (root) powers. Nowadays, the POSIX Capabilities
model is considered a superior way to work with privileges, as it allows
assigning fine-grained permissions – capabilities – on a thread, as opposed
to giving a process or thread complete control over the system as root.

Writing a Simple misc Character Device Driver Chapter 1

[48]

Here's a quick diff of the user space test app from the previous version, allowing you to
see the changes made to the code (again, we curtail the output to only what's most
relevant):

// in ch1/bad_miscdrv
$ diff -u ../miscdrv/rdwr_test.c rdwr_test_hackit.c
[...]
+#define HACKIT
[...]
+#ifndef HACKIT
+ strncpy(buf, argv[3], num);
+#else
+ printf("%s: attempting to get root ...\n", argv[0]);
+ /*
+ * Write only 0's ... our 'bad' driver will write this into
+ * this process's current->cred->uid member, thus making us
+ * root !
+ */
+ memset(buf, 0, num);
 #endif
- } else { // test writing ..
 n = write(fd, buf, num);
[...]
+ printf("%s: wrote %zd bytes to %s\n", argv[0], n, argv[2]);
+#ifdef HACKIT
+ if (getuid() == 0) {
+ printf(" !Pwned! uid==%d\n", getuid());
+ /* the hacker's holy grail: spawn a root shell */
+ execl("/bin/sh", "sh", (char *)NULL);
+ }
+#endif
[...]

This does imply that the (so-called) secret never gets written; that's okay. Now, let's look at
the modifications made to the driver.

Device driver modifications
To see how our bad misc driver's write method changes, we will continue looking at the
same diff (of our bad versus good drivers) that we did in the Bad driver – buggy
read() section. The comments in the code from the following diff operation are quite self-
explanatory. Check it out:

// in ch1/bad_miscdrv
$ diff -u ../miscdrv_rdwr/miscdrv_rdwr.c bad_miscdrv.c
[...]

Writing a Simple misc Character Device Driver Chapter 1

[49]

 // << this is within the driver's write method >>
 static ssize_t write_miscdrv_rdwr(struct file *filp, const char __user
*ubuf,
 size_t count, loff_t *off)
 {
 int ret = count;
 struct device *dev = ctx->dev;
+ void *new_dest = NULL;
[...]
+#define DANGER_GETROOT_BUG
+//#undef DANGER_GETROOT_BUG
+#ifdef DANGER_GETROOT_BUG
+ /* Make the destination of the copy_from_user() point to the current
+ * process context's (real) UID; this way, we redirect the driver to
+ * write zero's here. Why? Simple: traditionally, a UID == 0 is what
+ * defines root capability!
+ */
+ new_dest = ¤t->cred->uid;
+ count = 4; /* change count as we're only updating a 32-bit quantity
*/
+ pr_info(" [current->cred=%px]\n", (TYPECST)current->cred);
+#else
+ new_dest = kbuf;
+#endif

The key point from the preceding code is that when the DANGER_GETROOT_BUG macro is
defined (it is by default), we set the new_dest pointer to the address of the (real) UID
member within the credential structure, which is itself within the task structure (referenced
by current) for this process context! (If all of this sounds foreign, please read the
companion guide Linux Kernel Programming, Chapter 6, Kernel Internals Essentials – Processes
and Threads). This way, when we invoke the copy_to_user() routine to perform the write
to user space, it's going to actually write zeroes to the process UID member within
current->cred. A UID of zero is what (traditionally) defines root. Also, notice how we
restrict the write to 4 bytes (as we're just writing a 32-bit quantity).

(By the way, the build on our "bad" driver does issue a warning; here, with it being
intentional, we merely ignore it):

Linux-Kernel-Programming-Part-2/ch1/bad_miscdrv/bad_miscdrv.c:229:11:
warning: assignment discards ‘const’ qualifier from pointer target type [-
Wdiscarded-qualifiers]
 229 | new_dest = ¤t->cred->uid;
 | ^

Writing a Simple misc Character Device Driver Chapter 1

[50]

Here's the copy_from_user() code invocation:

[...]
+ dev_info(dev, "dest addr = " ADDRFMT "\n", (TYPECST)new_dest);
 ret = -EFAULT;
- if (copy_from_user(kbuf, ubuf, count)) {
+ if (copy_from_user(new_dest, ubuf, count)) {
 dev_warn(dev, "copy_from_user() failed\n");
 goto out_cfu;
 }
[...]

Clearly, the preceding copy_to_user() routine will write the user-supplied buffer, ubuf,
into the new_dest destination buffer – which, crucially, we have made point to
current->cred->uid – for count bytes.

Let's get root now
Of course, the proof of the pudding is in the eating, yes? So, let's give our hack a spin; here,
we assume that you've first unloaded any previous version of our 'misc' drivers, and built
and loaded the bad_miscdrv kernel module into memory:

Figure 1.11 – Screenshot showing our bad_miscdrv misc driver performing a "bad" write, resulting in root – a privesc!

Writing a Simple misc Character Device Driver Chapter 1

[51]

Check it out; we indeed got root! Our rdwr_test_hackit app, detecting that we do have
root (via a simple getuid(2)system call), then does the logical thing: it execs a root shell
(via an execl(3) API), and voilà, we land up in a root shell. We show the kernel log:

$ dmesg
[63.847549] bad_miscdrv:bad_miscdrv_init(): LLKD 'bad' misc driver (major
10) registered, minor# = 56
[63.848452] misc bad_miscdrv: A sample print via the dev_dbg(): (bad)
driver initialized
[84.186882] bad_miscdrv:open_miscdrv_rdwr(): 000) rdwr_test_hacki :2765 |
...0 /* open_miscdrv_rdwr() */
[84.190521] misc bad_miscdrv: opening "bad_miscdrv" now; wrt open file:
f_flags = 0x8001
[84.191557] bad_miscdrv:write_miscdrv_rdwr(): 000) rdwr_test_hacki :2765 |
...0 /* write_miscdrv_rdwr() */
[84.192358] misc bad_miscdrv: rdwr_test_hacki wants to write 4 bytes to
(original) ubuf = 0x55648b8f36b0
[84.192971] misc bad_miscdrv: [current->cred=ffff9f67765c3b40]
[84.193392] misc bad_miscdrv: dest addr = ffff9f67765c3b44 count=4
[84.193803] misc bad_miscdrv: 4 bytes written, returning... (stats: tx=0,
rx=4)
[89.002675] bad_miscdrv:close_miscdrv_rdwr(): 000) [sh]:2765 | ...0 /*
close_miscdrv_rdwr() */
[89.005992] misc bad_miscdrv: filename: "bad_miscdrv"
$

You can see how it's worked: the original user-mode buffer ubuf kernel virtual address is
0x55648b8f36b0. In the hack, we modify it to the new destination address (kernel virtual
address), 0xffff9f67765c3b44, which is (in this case) the kernel virtual address of the
UID member of struct cred (within the process's task structure). Not only that, but our
driver also modifies the number of bytes to write (count) to 4 (bytes), as we're updating a
32-bit quantity.

Do note: these hacks are just that – hacks. They could certainly cause your system to
become unstable (when run on our "debug" kernel, KASAN, in fact, detected a null pointer
dereference!).

These demos prove nothing but the fact that you as a kernel and/or driver author must be
alert to programming issues, security, and more at all times. With this, we complete this
section and indeed the chapter.

Writing a Simple misc Character Device Driver Chapter 1

[52]

Summary
This concludes this chapter on writing a simple misc class character device driver on the
Linux OS; so, awesome, you now know the basics of writing a device driver on Linux!

The chapter began with an introduction to device basics, and importantly, the very brief
essentials of the modern LDM. You then learned how to write a simple first character
device driver, registering with the kernel's misc framework. Along the way, you also
understood the connection between the process, the driver, and the kernel VFS. Copying
data between user and kernel address spaces is essential; we saw how to do so. A more
comprehensive demo misc driver (our 'secret' driver) showed you how to perform I/O –
reads and writes – ferrying data between user and kernel space. A key part of this chapter
is the last section, where you learned (well, made a start at least) about security and the
driver; a "hack" even demonstrated a privesc attack!

As mentioned before, there's much more to this vast topic of writing drivers on Linux;
indeed, whole books are devoted to it! Do check out the Further reading section for this
chapter to find relevant books and online references.

In the following chapter you will learn a key task for a driver author - how exactly can you
efficiently interface your device driver with user space processes; several useful approaches
are covered in detail and contrasted. Do ensure you're clear on this chapter's material, work
on the exercises given, review the Further reading resources and then dive into the next one.

Questions
Load up the first miscdrv skeleton misc driver kernel module and1.
issue lseek(2) on it; what happens? (Does it succeed? What's the return value
from lseek?) If not, okay, how will you fix this?
Write a misc class character driver that behaves as a simple converter2.
program (assume its path name is /dev/convert). For example, writing the
temperature in Fahrenheit units, it should return (write to the kernel log) the
temperature in Celsius. Thus, doing echo 98.6 > /dev/convert should result
in the value 37 C being written to the kernel log. Additionally, do the following:

Validate that the data passed to your driver is a numeric value.1.
How will you handle floating-point values? (Tip: refer to the2.
section Floating point not allowed in the kernel in Linux Kernel
Programming, Chapter 5, Writing Your First Kernel Module LKMs – Part
2.)

Writing a Simple misc Character Device Driver Chapter 1

[53]

Write a "task display" driver; here, we'd like a user space process to write a3.
thread (or process) PID to it. When you now read from the driver's device node
(assume its path name is /dev/task_display), you should receive details
regarding the task (which is pulled from its task structure, of course). For
example, doing echo 1 > /dev/task_display followed by cat
/dev/task_display should have the driver emit task details of PID 1 to the
kernel log. Don't forget to add validity checks (check the PID is valid, and so on).
(A bit more advanced:) Write a "proper" LDM-based driver; the misc drivers4.
covered here did register with the kernel's misc framework, but simply,
implicitly, used the raw character interface as the bus. The LDM prefers that a
driver must register with a kernel framework and a bus driver. Hence, write a
"demo" driver that registers itself with the kernel's misc framework and the
platform bus. This will involve creating a fake platform device as well.
(Note the following tips:
a) Do refer to Chapter 2, User-Kernel Communication Pathways, particularly
the Creating a simple platform device and Platform devices sections.
b) A possible solution to this driver can be found
here: solutions_to_assgn/ch12/misc_plat/.)

You will find some of the questions answered in the book's GitHub repo:
https:/ ​/​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming-
Part- ​2/ ​tree/ ​main/ ​solutions_ ​to_​assgn.

Further reading
Linux device drivers books:

Linux Device Drivers Development, John Madieu, Packt, Oct
2017: https:/ ​/ ​www. ​amazon. ​in/ ​Linux- ​Device- ​Drivers-
Development- ​Madieu/ ​dp/ ​1785280007/ ​ref= ​sr_​1_ ​2?​keywords=
linux+device+driver ​qid= ​1555486515 ​s=​books ​sr= ​1-​2 ; excellent
coverage, as well as very recent (as of this writing; it covers the
4.13 kernel)

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2
https://www.amazon.in/Linux-Device-Drivers-Development-Madieu/dp/1785280007/ref=sr_1_2?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-2

Writing a Simple misc Character Device Driver Chapter 1

[54]

Linux Driver Development for Embedded Processors - Second Edition:
Learn to develop embedded Linux drivers with kernel 4.9 LTS, Alberto
Liberal de los Rios: https:/ ​/​www. ​amazon. ​in/​Linux- ​Driver-
Development- ​Embedded- ​Processors- ​ebook/ ​dp/​B07L512BHG/ ​ref=
sr_ ​1_​6? ​crid= ​3RLFFZQXGAMF4 ​keywords=
linux+driver+development+embedded ​qid= ​1555486342 ​s=​books
sprefix= ​linux+driver+%2Cstripbooks%2C270 ​sr= ​1-​6- ​catcorr ;
very good, as well as recent (4.9 kernel)
Essential Linux Device Drivers, Sreekrishnan Venkateswaran,
Pearson: https:/ ​/​www. ​amazon. ​in/ ​Essential- ​Drivers- ​Prentice-
Software- ​Development/ ​dp/ ​0132396556/ ​ref= ​tmm_ ​hrd_ ​swatch_ ​0?​_
encoding= ​UTF8 ​qid= ​​sr=​ ; simply excellent, wide coverage
Linux Device Drivers, Rubini, Hartmann, Corbet, 3rd Edition:
https:/ ​/ ​www. ​amazon. ​in/ ​Linux- ​Device- ​Drivers- ​Kernel-
Hardware/ ​dp/ ​8173668493/ ​ref= ​sr_​1_ ​1?​keywords=
linux+device+driver ​qid= ​1555486515 ​s=​books ​sr= ​1-​1 ; venerable
(but) old – the famous LDD3 book

Official kernel documentation:
The Linux Kernel Device Model: https:/ ​/​www. ​kernel. ​org/​doc/
html/ ​latest/ ​driver- ​api/ ​driver- ​model/ ​overview. ​html#the-
linux- ​kernel- ​device- ​model.
The kernel driver API manual; this is one of the PDF documents
generated by doing make pdfdocs within a recent Linux kernel
source tree.

Deprecated Interfaces, Language Features, Attributes, and
Conventions: https:/ ​/​www. ​kernel. ​org/ ​doc/ ​html/ ​latest/
process/ ​deprecated. ​html#deprecated- ​interfaces- ​language-
features- ​attributes- ​and- ​conventions.

Practical tutorials:
Device Drivers, Part 8: Accessing x86-Specific I/O-Mapped Hardware,
Anil K Pugalia, OpenSourceForU, July 2011: https:/ ​/
opensourceforu. ​com/ ​2011/ ​07/ ​accessing- ​x86-​specific- ​io-
mapped- ​hardware- ​in- ​linux/ ​

User space device drivers; check out this interesting video
presentation by Chris Simmonds: How to Avoid Writing Device
Drivers for Embedded Linux: https:/ ​/ ​www.​youtube. ​com/ ​watch? ​v=
QIO2pJqMxjE ​t= ​909s

https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Linux-Driver-Development-Embedded-Processors-ebook/dp/B07L512BHG/ref=sr_1_6?crid=3RLFFZQXGAMF4&keywords=linux+driver+development+embedded&qid=1555486342&s=books&sprefix=linux+driver+%2Cstripbooks%2C270&sr=1-6-catcorr
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Essential-Drivers-Prentice-Software-Development/dp/0132396556/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.amazon.in/Linux-Device-Drivers-Kernel-Hardware/dp/8173668493/ref=sr_1_1?keywords=linux+device+driver&qid=1555486515&s=books&sr=1-1
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html#the-linux-kernel-device-model
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://opensourceforu.com/2011/07/accessing-x86-specific-io-mapped-hardware-in-linux/
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s
https://www.youtube.com/watch?v=QIO2pJqMxjE&t=909s

2
User-Kernel Communication

Pathways
Consider this scenario: you've successfully developed a device driver for, say, a pressure
sensor device (perhaps by using the kernel's I2C APIs to fetch the pressure from the chip
via the I2C protocol). So, you have the current pressure value in a variable within the
driver, which of course implies that it's within kernel memory space. The issue at hand is,
how exactly do you now have a user space application retrieve this value? Well, as we learned
in the previous chapter, you can always include a .read method in the driver's
fops structure. When the user space app issues a read(2) system call, control will be
diverted (via the virtual file system (VFS)) to your driver's read method. In there, you
perform copy_to_user() (or equivalent), resulting in the user mode app receiving the
value. However, but there are other, sometimes superior, ways to do this.

In this chapter, you'll understand the various communication interfaces or pathways that
are available – as a means to communicate or interface between user and kernel address
spaces. This is an important aspect of writing driver code, for without this knowledge, how
will you be able to achieve a key thing – efficiently transfer information between a kernel-
space component (often, this is a device driver, but it could be anything, really) and a user
space process or thread? Not only that, some of the techniques that we shall learn about are
often used for debugging (and/or diagnostics) purposes as well. In this chapter, we will
cover several techniques to effect communication between the kernel and user (virtual)
address spaces: communication via the traditional proc filesystem, procfs, the better way for
drivers via the sys filesystem, sysfs, via a debug filesystem, debugfs, via netlink sockets, and
via the ioctl(2) system call.

User-Kernel Communication Pathways Chapter 2

[56]

The following topics will be covered in this chapter:

Approaches to communicating/interfacing a kernel driver with a user space C
app
Interfacing via the proc filesystem (procfs)
Interfacing via the sys filesystem (sysfs)
Interfacing via the debug filesystem (debugfs)
Interfacing via netlink sockets
Interfacing via the ioctl system call
Comparing the interfacing methods – a table

Let's get started!

Technical requirements
I assume you have gone through the Preface, the relevant section being To get the most out of
this book, and have appropriately prepared a guest virtual machine (VM) running Ubuntu
18.04 LTS (or a later stable release) and installed all the required packages. If not, I
recommend you do this first.

To get the maximum out of this book, I strongly recommend you first set up the workspace
environment, including cloning this book's GitHub repository (https:/ ​/​github. ​com/
PacktPublishing/​Linux- ​Kernel- ​Programming- ​Part- ​2) for the relevant code, and work on
it in a hands-on fashion.

Approaches to communicating/interfacing a
kernel driver with a user space C app
As we mentioned in the introduction, in this chapter, we wish to learn how to efficiently
transfer information between a kernel-space component (often, this is a device driver, but it
could be anything, really), and a user space process or thread. To begin, let's simply
enumerate various techniques available to the kernel or driver author to communicate or
interface with a user space C application. Well, the user space component could be a C app,
a shell script (both of which we typically show in this book), or even other apps such as
C++/Java apps, Python/Perl scripts, and more.

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch2

User-Kernel Communication Pathways Chapter 2

[57]

As we saw in the companion guide, Linux Kernel Programming, in Chapter 4, Writing Your
First Kernel Module – LKMs Part 1, in the Library and System Call APIs subsection, the
essential interface between user space applications and the kernel that includes the device
drivers are the system call APIs. Now, in the previous chapter, you learned the basics of
writing a character device driver for Linux. Within that, you also learned how to transfer
data between user and kernel address spaces by having a user mode application open the
device file and issue read(2) and write(2) system calls. This resulted in the driver's
read/write method being invoked by the VFS and your driver performing the data transfer
via the copy_{from|to}_user() APIs. So, the question here is: if we have already
covered that, then what else is there to learn about in this regard?

Ah, quite a bit! The reality is that there are several other techniques of interfacing between a
user mode app and the kernel. Certainly, they all very much depend upon using system
calls; after all, there is no other (synchronous, programmatic) way to enter the kernel from
the user space! Nevertheless, the techniques differ. The aim of this chapter is to show you
various communication interfaces that are available, as of course, depending on the project,
one might be more suitable than others to use. Let's look at the various techniques that will
be used in this chapter to interface between the user and kernel address spaces:

Via the traditional procfs interface
Via sysfs
Via debugfs
Via netlink sockets
Via the ioctl(2) system call

Throughout this chapter, we will discuss these interfacing techniques in detail by providing
driver code examples. In addition, we will also briefly explore how conducive they are to
the purpose of debugging. So, let's begin with using the procfs interface.

Interfacing via the proc filesystem (procfs)
In this section, we shall cover what the proc filesystem is and how you can leverage it as an
interface between user and kernel address spaces. The proc filesystem is a powerful and
easy-to-program interface, often used for status reporting and debugging core kernel
systems.

Note that from version 2.6 Linux onward and for upstream contribution,
this interface is not to be used by driver authors (it's strictly meant for
kernel-internal usage only). Nevertheless, for completeness, we will cover
it here.

User-Kernel Communication Pathways Chapter 2

[58]

Understanding the proc filesystem
Linux has a virtual filesystem named proc; the default mount point for it is /proc. The first
thing to realize regarding the proc filesystem is that its content is not on a non-volatile disk.
Its content is in RAM, and is thus volatile. The files and directories you can see under
/proc are pseudo files that have been set up by the kernel code for proc; the kernel hints at
this fact by (almost) always showing the file's size as zero:

$ mount | grep -w proc
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
$ ls -l /proc/
total 0
dr-xr-xr-x 8 root root 0 Jan 27 11:13 1/
dr-xr-xr-x 8 root root 0 Jan 29 08:22 10/
dr-xr-xr-x 8 root root 0 Jan 29 08:22 11/
dr-xr-xr-x 8 root root 0 Jan 29 08:22 11550/
[...]
-r--r--r-- 1 root root 0 Jan 29 08:22 consoles
-r--r--r-- 1 root root 0 Jan 29 08:19 cpuinfo
-r--r--r-- 1 root root 0 Jan 29 08:22 crypto
-r--r--r-- 1 root root 0 Jan 29 08:20 devices
-r--r--r-- 1 root root 0 Jan 29 08:22 diskstats
[...]
-r--r--r-- 1 root root 0 Jan 29 08:22 vmstat
-r--r--r-- 1 root root 0 Jan 29 08:22 zoneinfo
$

Let's summarize a few critical points regarding Linux's powerful proc filesystem.

The objects under /proc (files, directories, soft links, and so on) are all
pseudo objects; they live in RAM!

Directories under /proc
The directories under /proc whose names are integer values represent processes currently
alive on the system. The name of the directory is the PID of the process (technically, it's the
TGID of the process. We covered TGID/PID in the companion guide Linux Kernel
Programming in Chapter 6, Kernel and Memory Management Internals Essentials).

User-Kernel Communication Pathways Chapter 2

[59]

This folder – /proc/PID/ – contains information regarding this process. So, for example,
for the init or systemd process (always PID 1), you can examine detailed information about
this process (its attributes, open files, memory layout, children, and so on) under the
/proc/1/ folder.

As an example, here, we will gain a root shell and do ls /proc/1:

Figure 2.1 – Screenshot of performing ls /proc/1 on an x86_64 guest system

The complete details regarding the pseudo files and folders under /proc/<PID>/... can
be found on the man page of proc(5) (by doing man 5 proc); do try it out and refer to it!

Note that the precise content under /proc varies from both the kernel
version and the (CPU) architecture; x86_64 tends to have the richest
content.

The purpose behind the proc filesystem
The purpose behind the proc filesystem is two-fold:

One, it is a simple interface for developers, system administrators, and anyone
really to look deep inside the kernel so that they can gain information regarding
the internals of processes, the kernel, and even hardware. Using this interface
only requires you to know basic shell commands such as cd, cat, echo, ls, and
so on.
Two, as the root user and, at times, the owner, you can write into certain pseudo
files under /proc/sys, thus tuning various kernel parameters. This feature is
called sysctl. As an example, you can tune various IPv4 networking parameters
in /proc/sys/net/ipv4/. They are all documented here: https:/ ​/ ​www.​kernel.
org/​doc/ ​Documentation/ ​networking/ ​ip-​sysctl. ​txt.

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

User-Kernel Communication Pathways Chapter 2

[60]

Changing the value of a proc-based tunable is easy; for example, let's change the maximum
number of threads allowed at any given point in time on the box. Run the following
commands as root:

cat /proc/sys/kernel/threads-max
15741
echo 10000 > /proc/sys/kernel/threads-max
cat /proc/sys/kernel/threads-max
10000
#

With that, we're done. However, it should be clear that the preceding operation is volatile –
the change only applies to this session; a power cycle or reboot will result in it reverting
back to the default value of course. How, then, do we make the change permanent? The
short answer: use the sysctl(8) utility; refer to its man page for more details.

Are you ready to write some procfs-interfacing code now? Not so fast – the next section
informs you as to why this may not be a great idea after all.

procfs is off-bounds to driver authors
Even though we could use the proc filesystem to interface with a user mode app, there is an
important point to note here! You must realize that procfs is, like many similar facilities
within the kernel, an Application Binary Interface (ABI). The kernel community makes no
promises that it remains stable and exactly the way it is today, just as is the case with the
kernel APIs and their internal data structures as well. In fact, ever since the 2.6 kernel, the
kernel folks have made this very clear – device driver authors (and the like) are not supposed to
use procfs for their own purposes or their interfaces, debug or otherwise. Earlier, with 2.6
Linux, it was quite common to use proc for said purposes (abused, as per the kernel
community, as proc is meant for kernel internal use only!).

So, if procfs is considered off-bounds, or deprecated, to us as driver authors, then what
facility do we use to communicate with user space processes? Driver authors are to use
the sysfs facility to export their interfaces. In reality, it's not just sysfs; there are several
choices available to you such as sysfs, debugfs, netlink sockets, and the ioctl system call. We
will cover these in detail later in this chapter.

User-Kernel Communication Pathways Chapter 2

[61]

Hang on, though; again, the reality is that this "rule" regarding the non-usage of procfs for
driver authors are for the community. What this means is that if you intend to upstream
your driver or kernel module to the mainline kernel, thus contributing your code under the
GPLv2 license, then all the community rules definitely apply. If not, it's really up to you to
decide. Of course, following the kernel community's guidelines and rules can only be a
good thing; we definitely recommend that you do so. In terms of discouraging the use of
proc by non-core stuff such as drivers, unfortunately, there is no recent kernel
documentation available for the proc API/ABI.

On the 5.4.0 kernel, there are around 70-odd callers of the
proc_create() kernel API, several of which being (typically older)
drivers and filesystems.

Nevertheless (you have been warned!), let's learn how to interact a user space process with
kernel code via procfs.

Using procfs to interface with the user space
As a kernel module or device driver developer, we can actually create our own entries
under /proc, leveraging this as a simple interface to the user space. How can we do this?
The kernel provides APIs that create directories and files under procfs. We will learn how
to use them in this section.

Basic procfs APIs
Here, we do not intend to delve into the gory details of the procfs API set; rather, we shall
cover just enough to have you be able to understand and use them. For deeper detail, do
refer to the ultimate resource: the kernel code base. The routines we will cover here have
been exported, thus making them available to driver authors like you. Also, as we
mentioned earlier, all the procfs file objects are really pseudo objects, in the sense that they
exist only in RAM.

Here, we are assuming you understand how to design and implement a
simple LKM; you'll find more details in the companion guide to this book,
Linux Kernel Programming, in the fourth and fifth chapters.

User-Kernel Communication Pathways Chapter 2

[62]

Let's begin by exploring a few simple procfs APIs that allow you to perform a few key tasks
– creating a directory under the proc filesystem, creating (pseudo) files under there, and
deleting them, respectively. For all of these tasks, ensure you include the relevant header
file; that is, #include <linux/proc_fs.h>:

Create a directory named name under /proc:1.

struct proc_dir_entry *proc_mkdir(const char *name,
 struct proc_dir_entry *parent);

The first parameter is the name of the directory, while the second parameter is the
pointer to the parent directory to create it under. Passing NULL here creates the
directory under the root; that is, under /proc. Save the return value, as you will
typically use it as a parameter in subsequent APIs.

The proc_mkdir_data() routine allows you to pass along a data item (a
void *) as well; note that it's exported via EXPORT_SYMBOL_GPL.

Create a procfs (pseudo) file called /proc/parent/name:2.

struct proc_dir_entry *proc_create(const char *name, umode_t mode,
 struct proc_dir_entry *parent,
 const struct file_operations *proc_fops);

The key parameter here is struct file_operations, which we introduced in
the previous chapter. You are expected to populate it with the "methods" to be
implemented (more on this follows). Think about it: this is really powerful stuff;
using the fops structure, you can set up "callback" functions within your driver
(or kernel module) that the kernel's proc filesystem layer will honor: when a user
space process reads from your proc file, it (the VFS) will invoke the
driver's .read method or callback function. If a user space app writes, it will
invoke the driver's .write callback!

Remove a procfs entry:3.

void remove_proc_entry(const char *name, struct proc_dir_entry
*parent)

This API removes the specified /proc/name entry and frees it (if not in use);
similarly (and often much more convenient), use the remove_proc_subtree()
API to remove an entire sub-tree within /proc (typically on cleanup or if an error
occurs).

User-Kernel Communication Pathways Chapter 2

[63]

Now that we know the basics, the empirical approach demands that we put these APIs to
practice! To do so, let's figure out what directories/files to create under /proc.

The four procfs files we will create
To help clearly illustrate the usage of procfs as an interfacing technology, we will have our
kernel module create a directory under /proc. Within that directory, it will create four
procfs (pseudo) files. Note that, by default, all procfs files have their owner:group attributes
as root:root. Now, create a directory called /proc/proc_simple_intf and, under it, create
four (pseudo) files. The names and attributes of the four procfs (pseudo) files under the
/proc/proc_simple_intf directory, are shown in the following table:

Name of procfs 'file' R: action on read callback,
invoked via user space read

W: action on write callback,
invoked via user space write

Procfs 'file'
permissions

llkdproc_dbg_level

Retrieves (to the user space)
the current value of the global
variable; that is,
debug_level

Updates
the debug_level global
variable to the value written by
the user space

0644

llkdproc_show_pgoff
Retrieves (to the user space)
the kernel's PAGE_OFFSET
value

– no write callback – 0444

llkdproc_show_drvctx

Retrieves (to the user space)
the current values within the
driver's "context" structure;
that is, drv_ctx

– no write callback – 0440

llkdproc_config1 (also
treated as dbg_level)

Retrieves (to user space) the
current value of the context
variable; that is,
drvctx->config1

Updates the driver context
member, drvctx->config1,
to the value written by the user
space

0644

We'll look at the APIs and actual code to create the proc_simple_intf directory under
/proc and the four files mentioned previously under it shortly. (Due to a lack of space, we
won't actually show all the code; just the code with respect to the "debug level" get-and-set;
this is not an issue, the remainder of the code is conceptually very similar).

User-Kernel Communication Pathways Chapter 2

[64]

Trying out the dynamic debug_level procfs control
First, let's check out the "driver context" data structure that we shall use throughout this
chapter (in fact, we first used it in the previous chapter):

// ch2/procfs_simple_intf/procfs_simple_intf.c
[...]
/* Borrowed from ch1; the 'driver context' data structure;
 * all relevant 'state info' reg the driver and (fictional) 'device'
 * is maintained here.
 */
struct drv_ctx {
 int tx, rx, err, myword, power;
 u32 config1; /* treated as equivalent to 'debug level' of our driver */
 u32 config2;
 u64 config3;
#define MAXBYTES 128
 char oursecret[MAXBYTES];
};
static struct drv_ctx *gdrvctx;
static int debug_level; /* 'off' (0) by default ... */

Here, we can also see that we have a global integer named debug_level; this will provide
dynamic control over the debug verbosity of the "project". The debug level is assigned a
range of [0-2], where we have the following:

0 implies no debug messages (the default).
1 is medium debug verbosity.
2 implies high debug verbosity.

The beauty of the whole schema – and indeed the whole point here – is that we shall be able
to query and set this debug_level variable from the user space via a procfs interface that
we've created! This will allow the end user (who, for security reasons, requires root access)
to dynamically vary the debug level at runtime (a fairly common feature found in many
products).

Before diving into the code-level details, let's try it out so that we know what to expect:

Here, using our lkm convenience wrapper script, we must build and insmod(8)1.
the kernel module (ch2/proc_simple_intf in this book's source tree):

$ cd <booksrc>/ch2/proc_simple_intf
$../../lkm procfs_simple_intf <-- builds the kernel
module
Version info:

User-Kernel Communication Pathways Chapter 2

[65]

[...]
[24826.234323] procfs_simple_intf:procfs_simple_intf_init():321:
proc dir (/proc/procfs_simple_intf) created
[24826.240592] procfs_simple_intf:procfs_simple_intf_init():333:
proc file 1 (/proc/procfs_simple_intf/llkdproc_debug_level) created
[24826.245072] procfs_simple_intf:procfs_simple_intf_init():348:
proc file 2 (/proc/procfs_simple_intf/llkdproc_show_pgoff) created
[24826.248628] procfs_simple_intf:alloc_init_drvctx():218:
allocated and init the driver context structure
[24826.251784] procfs_simple_intf:procfs_simple_intf_init():368:
proc file 3 (/proc/procfs_simple_intf/llkdproc_show_drvctx) created
[24826.255145] procfs_simple_intf:procfs_simple_intf_init():378:
proc file 4 (/proc/procfs_simple_intf/llkdproc_config1) created
[24826.259203] procfs_simple_intf initialized
$

Here, we built and inserted the kernel module; dmesg(1) displays the kernel
printks showing that one of the procfs files we created is the one pertaining to the
dynamic debug facility (highlighted in bold here; since these are pseudo files, the
file size will appear as 0 bytes).

Now, let's test it by querying the current value of debug_level:2.

$ cat /proc/procfs_simple_intf/llkdproc_debug_level
debug_level:0
$

Great, it's zero – the default – as expected. Now, let's change the debug level to 2:3.

$ sudo sh -c "echo 2 >
/proc/procfs_simple_intf/llkdproc_debug_level"
$ cat /proc/procfs_simple_intf/llkdproc_debug_level
debug_level:2
$

Notice how we had to issue echo as root. As we can see, the debug level has
indeed changed (to a value of 2)! Attempting to set the value out of range is
caught as well (and the debug_level variable's value is reset to its last valid
value), as shown here:

$ sudo sh -c "echo 5 >
/proc/procfs_simple_intf/llkdproc_debug_level"
sh: echo: I/O error
$ dmesg
[...]
[6756.415727] procfs_simple_intf: trying to set invalid value for
debug_level [allowed range: 0-2]; resetting to previous (2)

User-Kernel Communication Pathways Chapter 2

[66]

Right; it worked as expected. However, the question is, how did all this work at the code
level? Read on to find out!

Dynamically controlling debug_level via procfs
Let's answer the aforementioned question – how is it done in code? It's quite straightforward,
really:

First off, within the init code of the kernel module, we must create our procfs1.
directory, naming it after the name of our kernel module:

static struct proc_dir_entry *gprocdir;
[...]
gprocdir = proc_mkdir(OURMODNAME, NULL);

Again, within the init code of the kernel module, we must create the procfs2.
file that controls the project's "debug level":

// ch2/procfs_simple_intf/procfs_simple_intf.c
[...]
#define PROC_FILE1 "llkdproc_debug_level"
#define PROC_FILE1_PERMS 0644
[...]
static int __init procfs_simple_intf_init(void)
{
 int stat = 0;
 [...]
 /* 1. Create the PROC_FILE1 proc entry under the parent dir
OURMODNAME;
 * this will serve as the 'dynamically view/modify debug_level'
 * (pseudo) file */
 if (!proc_create(PROC_FILE1, PROC_FILE1_PERMS, gprocdir,
 &fops_rdwr_dbg_level)) {
 [...]
 pr_debug("proc file 1 (/proc/%s/%s) created\n", OURMODNAME,
PROC_FILE1);
 [...]

Here, we used the proc_create() API to create the procfs file and "linked" it to
the supplied file_operations structure.

User-Kernel Communication Pathways Chapter 2

[67]

The fops structure (technically, struct file_operations) is the key data3.
structure here. As we learned in Chapter 1, Writing a Simple misc Character Device
Driver, it's where we assign functionality to the various file operations on the
device, or, as in this case, the procfs file. Here's the code initializing our fops:

static const struct file_operations fops_rdwr_dbg_level = {
 .owner = THIS_MODULE,
 .open = myproc_open_dbg_level,
 .read = seq_read,
 .write = myproc_write_debug_level,
 .llseek = seq_lseek,
 .release = single_release,
};

The open method of fops points to a function we must define:4.

static int myproc_open_dbg_level(struct inode *inode, struct file
*file)
{
 return single_open(file, proc_show_debug_level, NULL);
}

Using the kernel's single_open() API, we register the fact that, whenever this
file is read – which is ultimately done via the read(2) system call from the user
space – the proc filesystem will "call back" our
proc_show_debug_level() routine (the second parameter to single_open()).

We won't bother with the internal implementation of the
single_open() API here; if you're curious, you can always look it up
here: fs/seq_file.c:single_open().

So, to summarize, to register a "read" method with procfs, we do the following:

Initialize the fops.open pointer to a foo() function.
In the foo() function, call single_open(), providing the read callback function
as the second parameter.

User-Kernel Communication Pathways Chapter 2

[68]

There's some history here; without getting too deep into it, suffice it to say
that the older working of procfs had issues. Notably, you couldn't transfer
more than a single page of data (with read or write) without manually
iterating over the content. The sequence iterator functionality that was
introduced with 2.6.12 fixed these issues. Nowadays, using
single_open() and its ilk (the seq_read, seq_lseek,
and seq_release built-in kernel functions) is the simpler and correct
approach to using procfs.

So, what about when user space writes (via the write(2) system call) into a proc5.
file? Simple: in the preceding code, you can see that we have registered the
fops_rdwr_dbg_level.write method as
the myproc_write_debug_level() function, implying that this function will be
called back whenever this (pseudo) file is written to (it's explained in Step 6,
following the read callback).

The code of the read callback function that we registered via single_open is as
follows:

/* Our proc file 1: displays the current value of debug_level */
static int proc_show_debug_level(struct seq_file *seq, void *v)
{
 if (mutex_lock_interruptible(&mtx))
 return -ERESTARTSYS;
 seq_printf(seq, "debug_level:%d\n", debug_level);
 mutex_unlock(&mtx);
 return 0;
}

seq_printf() is conceptually similar to the familiar sprintf() API. It correctly
prints – to the seq_file object – the data supplied to it. When we say "prints"
here, what we really mean is that it effectively passes the data buffer to the user
space process or thread that issued the read system call that got us here in the first
place, in effect transferring the data to the user space.

Oh yes, what's with the mutex_{un}lock*() APIs? They are for
something critical – locking. We will provide a detailed discussion on
locking in Chapter 6, Kernel Synchronization – Part 1, and Chapter 7,
Kernel Synchronization – Part 2; for now, just understand that these are
required synchronization primitives.

User-Kernel Communication Pathways Chapter 2

[69]

The write callback function we registered via fops_rdwr_dbg_level.write is6.
as follows:

#define DEBUG_LEVEL_MIN 0
#define DEBUG_LEVEL_MAX 2
[...]
/* proc file 1 : modify the driver's debug_level global variable as
per what user space writes */
static ssize_t myproc_write_debug_level(struct file *filp,
 const char __user *ubuf, size_t count, loff_t *off)
{
 char buf[12];
 int ret = count, prev_dbglevel;
 [...]
 prev_dbglevel = debug_level;
 // < ... validity checks (not shown here) ... >
 /* Get the user mode buffer content into the kernel (into 'buf')
*/
 if (copy_from_user(buf, ubuf, count)) {
 ret = -EFAULT;
 goto out;
 }
 [...]
 ret = kstrtoint(buf, 0, &debug_level); /* update it! */
 if (ret)
 goto out;
 if (debug_level < DEBUG_LEVEL_MIN || debug_level >
DEBUG_LEVEL_MAX) {
 [...]
 debug_level = prev_dbglevel;
 ret = -EFAULT; goto out;
 }
 /* just for fun, let's say that our drv ctx 'config1'
 represents the debug level */
 gdrvctx->config1 = debug_level;
 ret = count;
out:
 mutex_unlock(&mtx);
 return ret;
}

User-Kernel Communication Pathways Chapter 2

[70]

In our write method's implementation (notice how similar it is in structure to a
character device driver's write method), we performed some validity checking
and then copied in the data the user space process wrote to us (recall how we
used the echo command to write to the procfs file) via the usual
copy_from_user() function. We then used the kernel's built-in kstrtoint()
API (there are several in a similar vein) to convert the string buffer into an integer,
storing the result in our global variable; that is, debug_level! Again, we validate
it, and if all's well, we also set (just as an example) our driver context's config1
member to the same value and then return a success message.

The remainder of the kernel module's code is very similar – we set up the7.
functionality for the remaining three procfs files. I leave it to you to browse
through the code in detail and try it out.
One more quick demo: let's set debug_level to 1 and then dump the driver8.
context structure (via the third procfs file we created):

$ cat /proc/procfs_simple_intf/llkdproc_debug_level
debug_level:0
$ sudo sh -c "echo 1 >
/proc/procfs_simple_intf/llkdproc_debug_level"

Okay, the debug_level variable will now have a value of 1; now, let's dump the9.
driver context structure:

$ cat /proc/procfs_simple_intf/llkdproc_show_drvctx
cat: /proc/procfs_simple_intf/llkdproc_show_drvctx: Permission
denied
$ sudo cat /proc/procfs_simple_intf/llkdproc_show_drvctx
prodname:procfs_simple_intf
tx:0,rx:0,err:0,myword:0,power:1
config1:0x1,config2:0x48524a5f,config3:0x424c0a52
oursecret:AhA xxx
$

We need root access to do this. Once done, we can clearly see all the members of
our drv_ctx data structure. Not only that, but we verified that the
config1 member, highlighted in bold, now has a value of 1, thus reflecting the
"debug level" as designed.

Also, notice how the output is deliberately generated to the user space in a highly
parseable format, almost JSON-like. Of course, as a small exercise, you could
arrange to do precisely that!

User-Kernel Communication Pathways Chapter 2

[71]

A large number of recent Internet of Things (IoT) products use RESTful
APIs to communicate; the format that's parsed is typically JSON. Getting
in the habit of designing and implementing your kernel-to-user (and vice
versa) communication in easily parsable formats (such as JSON) is only
going to help.

With that, you have learned how exactly to create a procfs directory, a file within it, and,
most importantly, how to create and use the read and write callback functions so that when
a user mode process reads or writes your proc file, you can respond appropriately from
deep within the kernel. As we mentioned earlier, due to a lack of space, we will not
describe the code driving the remaining three procfs files we have created and used. This is
very similar conceptually to what we have just covered. We expect you to read through and
try it out!

A few misc procfs APIs
Let's conclude this section by looking at a few remaining miscellaneous procfs APIs. You
can create a symbolic or soft link within /proc by using the proc_symlink() function.

Next, the proc_create_single_data() API can be very useful; it's used as a "shortcut",
where you require just a "read" method to be attached to a procfs file:

struct proc_dir_entry *proc_create_single_data(const char *name, umode_t
mode, struct
 proc_dir_entry *parent, int (*show)(struct seq_file *, void *),
void *data);

Using this API thus eliminates the need for a separate fops data structure. We can use this
function to create and work with our second procfs file – the llkdproc_show_pgoff file:

... proc_create_single_data(PROC_FILE2, PROC_FILE2_PERMS, gprocdir,
proc_show_pgoff, 0) ...

When read from the user space, the kernel's VFS and proc layer code paths will invoke the
registered method – the proc_show_pgoff() function of our module – within which we
trivially invoke seq_printf() to send the value of PAGE_OFFSET to the user space:

seq_printf(seq, "%s:PAGE_OFFSET:0x%px\n", OURMODNAME, PAGE_OFFSET);

User-Kernel Communication Pathways Chapter 2

[72]

Furthermore, note the following regarding the proc_create_single_data API:

You can make use of the fifth parameter to proc_create_single_data() to
pass any data item to the read callback (retrieved there as a seq_file member
called private, very similar to how we used filp->private_data in the
previous chapter).
Several typically older drivers within the kernel mainline do make use of this
function to create their procfs interfaces. Among them is the RTC driver (which
sets up an entry at /proc/driver/rtc). The SCSI megaraid driver
(drivers/scsi/megaraid) uses this routine no fewer than 10 times to set up its
proc interfaces (when a config option is enabled; it is by default).

Be careful! I find that on an Ubuntu 18.04 LTS system running the distro
(default) kernel, this API – proc_create_single_data() – isn't even
available, so the build fails. On our custom "vanilla" 5.4 LTS kernel, it
works just fine.
In addition, there is some documentation on the procfs API we've set here,
though this tends to be for internal usage and not for modules: https:/ ​/
www.​kernel. ​org/ ​doc/ ​html/ ​latest/ ​filesystems/ ​api- ​summary. ​html#the-
proc- ​filesystem.

So, as we mentioned previously, with the procfs APIs it's a case of Your
Mileage May Vary (YMMV)! Carefully test your code before release. It's
probably best to follow the kernel community guidelines and simply say
No to procfs as a driver interfacing technique. Worry not – we'll look at
better ones throughout this chapter!

This completes our coverage on using procfs as a useful communication interface. Now,
let's learn how to use a more appropriate one for drivers – the sysfs interface.

Interfacing via the sys filesystem (sysfs)
A critical feature of the 2.6 Linux kernel release was the advent of what is called the modern
device model. Essentially, a series of complex tree-like hierarchical data structures model all
devices present on the system. Actually, it goes well beyond this; the sysfs tree
encompasses the following (among other things):

Every bus present on the system (it can be a virtual or pseudo bus as well)

https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-proc-filesystem

User-Kernel Communication Pathways Chapter 2

[73]

Every device present on every bus
Every device driver bound to a device on a bus

Thus, it's not just peripheral devices but also the underlying system buses, the devices on
each bus and the device driver bound or that will bind to a device, that are created at
runtime and maintained by the device model. The inner workings of this model are
invisible to you, as a typical driver author; you don't really have to worry about it. On
system boot, and whenever a new device becomes visible, the driver core (part of the built-in
kernel machinery) generates the required virtual files under the sysfs tree. (Conversely,
when a device is removed or detached, its entry disappears from the tree.)

Recall, though, from the Interfacing with the proc filesystem section, that using procfs for a
device driver's interfacing purposes is not really the right approach, at least for code that
wants to move upstream. So, what is the right approach? Ah, creating sysfs (pseudo) files is
considered the "correct way" for device drivers to interface with the user space.

So, now we see it! sysfs is a virtual filesystem typically mounted on the /sys directory. In
effect, sysfs, very similarly to procfs, is a kernel-exported tree of information (device and
other) that's sent to the user space. You can think of sysfs as having different viewports into
the modern device model. Via sysfs, you can view the system in several different ways or
via different "viewports"; for example, you can view the system via the various buses it
supports (the bus view – PCI, USB, platform, I2C, SPI, among several others), via various
"classes" of devices (the class view), via the devices themselves, via the block devices
viewport, and so on. The following screenshot showing the content of /sys on my Ubuntu
18.04 LTS VM shows this to be the case:

Figure 2.2 – Screenshot showing the content of sysfs (/sys) on an x86_64 Ubuntu VM

As we can see, with sysfs, there are several other viewports via that you can use to look into
the system as well. Of course, in this section, we wish to understand how to interface a
device driver to the user space via sysfs, how to write the code to create our driver (pseudo)
files under sysfs, and how to register the read/write callbacks from them. Let's begin by
looking at the basic sysfs APIs.

User-Kernel Communication Pathways Chapter 2

[74]

Creating a sysfs (pseudo) file in code
One way to create a pseudo (or virtual) file under sysfs is via the device_create_file()
API. Its signature is as follows:

drivers/base/core.c:int device_create_file(struct device *dev,
 const struct device_attribute *attr);

Let's consider its two parameters one by one; first, there is a pointer to struct device.
The second parameter is a pointer to a device attribute structure; we shall explain and work
on it a bit later (in the Setting up the device attributes and creating the sysfs file section). For
now, let's focus on the first parameter only – the device structure. It seems quite intuitive –
a device is represented by a metadata structure called device (it is part of the driver core;
you can look up its full definition in the include/linux/device.h header).

Note that when you write (or work on) a "real" device driver, chances are high that a
generic device structure will exist or come into being. This often happens upon registering the
device; an underlying device structure is usually made available as a member of a
specialized structure for that device. For example, all structures, such
as platform_device, pci_device, net_device, usb_device,
i2c_client, serial_port and so on, have a struct device member embedded within
them. Thus, you can use that device structure pointer as a parameter to the API for the
purpose of creating files under sysfs. Rest assured, you shall soon see this being done in
code! So, let's get going by getting ourselves a device structure by creating a simple
"platform device". You'll learn how to do this in the next section!

Creating a simple platform device
Clearly, in order to create a (pseudo) file under sysfs, we somehow require, as the first
parameter to device_create_file(), a pointer to a struct device. However, for our
demo sysfs driver here and now, we don't actually have any real device, and therefore no
struct device, to work on!

So, can't we create an artificial or pseudo device and simply use it? Yes, but how, and more
crucially, why exactly should we have to do this? It's critical to understand that the modern
Linux Device Model (LDM) is built on three key components: an underlying bus must
exist that devices live on, and devices are "bound to" and driven by device drivers. (We
already mentioned this in Chapter 1, Writing a Simple misc Character Device Driver, in the A
quick note on the Linux Device Model section).

User-Kernel Communication Pathways Chapter 2

[75]

All of these must be registered to the driver core. Now, don't worry about the buses and the
bus drivers that drive them; they will be registered and handled internally by the kernel's
driver core subsystem. When there is no real device, however, we will have to create a
pseudo one in order to work with the model. Again, there are several ways to do such
things, but we shall create a platform device. This device will "live" on a pseudo bus (that is,
it exists only in software) known as the platform bus.

Platform devices
A quick but important aside: platform devices are often used to represent the variety of
devices on a System on Chip (SoC) within an embedded board. The SoC is typically a very
sophisticated chip that integrates various components into its silicon. Besides processing
units (CPUs/GPUs), it might house several peripherals too, including Ethernet MAC, USB,
multimedia, serial UART, clock, I2C, SPI, flash chip controllers, and so on. A reason we
need these components to be enumerated as a platform device is that there is no physical
bus within the SoC; thus, the platform bus is used.

Traditionally, the code that was used to instantiate these SoC platform
devices was kept in a "board" file (or files) within the kernel source
(arch/<arch>/...). Due to it becoming overloaded, it's been moved
outside the pure kernel source into a useful hardware description format
called the Device Tree (within Device Tree Source (DTS) files that are
themselves with the kernel source tree).

On our Ubuntu 18.04 LTS guest VM, let's look at the platform devices under sysfs:

$ ls /sys/devices/platform/
alarmtimer 'Fixed MDIO bus.0' intel_pmc_core.0 platform-framebuffer.0
reg-dummy
serial8250 eisa.0 i8042 pcspkr power rtc_cmos uevent
$

The Bootlin website (previously called Free Electrons) offers superb
materials on embedded Linux, drivers, and so on. This link on their site
leads to excellent material on the LDM: https:/ ​/​bootlin. ​com/ ​pub/
conferences/ ​2019/ ​elce/ ​opdenacker- ​kernel- ​programming- ​device-
model/ ​.

https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/
https://bootlin.com/pub/conferences/2019/elce/opdenacker-kernel-programming-device-model/

User-Kernel Communication Pathways Chapter 2

[76]

Back to the driver: we bring our (artificial) platform device into existence by registering it to
the (already existing) platform bus driver via
the platform_device_register_simple() API. The moment we do so, the driver core
will generate the required sysfs directories and a few boilerplate sysfs entries (or files). Here,
in the init code of our sysfs demo driver, we will set up a (simplest possible) platform device
by registering it to the driver core:

// ch2/sysfs_simple_intf/sysfs_simple_intf.c
include <linux/platform_device.h>
static struct platform_device *sysfs_demo_platdev;
[...]
#define PLAT_NAME "llkd_sysfs_simple_intf_device"
sysfs_demo_platdev =
 platform_device_register_simple(PLAT_NAME, -1, NULL, 0);
[...]

The platform_device_register_simple() API returns a pointer to struct
platform_device. One of this structure's members is struct device dev. We now
have what we've been after: a device structure. Also, it's key to note that when this
registration API runs, the effect is visible within sysfs. You can easily see the new platform
device, plus a few boilerplate sysfs objects, being created by the driver core here (made
visible to us via sysfs); let's build and insmod our kernel module to see this:

$ cd <...>/ch2/sysfs_simple_intf
$ make && sudo insmod ./sysfs_simple_intf.ko
[...]
$ ls -l /sys/devices/platform/llkd_sysfs_simple_intf_device/
total 0
-rw-r--r-- 1 root root 4.0K Feb 15 20:22 driver_override
-rw-r--r-- 1 root root 4.0K Feb 15 20:22 llkdsysfs_debug_level
-r--r--r-- 1 root root 4.0K Feb 15 20:22 llkdsysfs_pgoff
-r--r--r-- 1 root root 4.0K Feb 15 20:22 llkdsysfs_pressure
-r--r--r-- 1 root root 4.0K Feb 15 20:22 modalias
drwxr-xr-x 2 root root 0 Feb 15 20:22 power/
lrwxrwxrwx 1 root root 0 Feb 15 20:22 subsystem -> ../../../bus/platform/
-rw-r--r-- 1 root root 4.0K Feb 15 20:21 uevent
$

We can create a struct device in different ways; the generic way is to set up and issue
the device_create() API. An alternate means to creating a sysfs file, while bypassing the
need for a device structure, is to create a "object" and invoke the sysfs_create_file()
API. (Links to tutorials that use both these approaches can be found in the Further reading
section). Here, we prefer to use a "platform device" as it's the closer approach to writing a
(platform) driver.

User-Kernel Communication Pathways Chapter 2

[77]

There's yet another valid approach. As we saw in Chapter 1, Writing a simple misc Character
Device Driver, we built a simple character driver conforming to the kernel's misc
framework. There, we instantiated a struct miscdevice; once registered (via the
misc_register() API), this structure will contain a member called struct device
*this_device;, thus allowing us to use it as a valid device pointer! Thus, we could have
simply extended our earlier misc device driver and used it here. However, in order to learn
a bit about platform drivers, we've chosen that approach. (We leave the approach of
extending our earlier misc device driver so that it can use sysfs APIs and create/use sysfs
files as an exercise to you).

Back to our driver, compared to the init code, in the cleanup code, we must un-register our
platform device:

platform_device_unregister(sysfs_demo_platdev);

Now, let's tie all this knowledge together and actually see the code that generates the sysfs
files, along with their read and write callback functions!

Tying it all together – setting up the device
attributes and creating the sysfs file
As we mentioned at the beginning of this section, the device_create_file() API is the
one we'll use to create our sysfs file:

int device_create_file(struct device *dev, const struct device_attribute
*attr);

In the previous section, you learned how we obtain a device structure (the first parameter
for our API). Now, let's figure out how to initialize and use the second parameter; that is,
the device_attribute structure. The structure itself is defined as follows:

// include/linux/device.h
struct device_attribute {
 struct attribute attr;
 ssize_t (*show)(struct device *dev, struct device_attribute *attr,
 char *buf);
 ssize_t (*store)(struct device *dev, struct device_attribute *attr,
 const char *buf, size_t count);
};

User-Kernel Communication Pathways Chapter 2

[78]

The first member, attr, essentially consists of the name of the sysfs file and its mode
(permission bitmask). The other two members are function pointers ("virtual functions",
analogous to those in the file operations or fops structure):

show: Represents the read callback function
store: Represents the write callback function

Our job is to initialize this device_attribute structure, thus setting up the sysfs file.
While you can always manually initialize it, there's an easier approach: the kernel provides
(several) macros for initializing struct device_attribute; among them is the
DEVICE_ATTR() macro:

// include/linux/device.h
define DEVICE_ATTR(_name, _mode, _show, _store) \
 struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show,
_store)

Notice the "stringification" that's performed by dev_attr_##_name, ensuring that the
structure's name is suffixed with the name that's passed as the first parameter to
DEVICE_ATTR. Furthermore, the actual "worker" macro, named __ATTR(), actually
instantiates a device_attribute structure in code at preprocessing time, with (via
stringification) the name of the structure becoming dev_attr_<name>:

// include/linux/sysfs.h
#define __ATTR(_name, _mode, _show, _store) { \
 .attr = {.name = __stringify(_name), \
 .mode = VERIFY_OCTAL_PERMISSIONS(_mode) }, \
 .show = _show, \
 .store = _store, \
}

Furthermore, the kernel defines additional simple wrapper macros over these macros in
order to specify the mode (permissions for the sysfs file), thus making it even simpler for
you, the driver author. Among them is DEVICE_ATTR_RW(_name),
DEVICE_ATTR_RO(_name), and DEVICE_ATTR_WO(_name):

#define DEVICE_ATTR_RW(_name) \
 struct device_attribute dev_attr_##_name = __ATTR_RW(_name)
#define __ATTR_RW(_name) __ATTR(_name, 0644, _name##_show, _name##_store)

With this code, we can create a read-write (RW), read-only (RO), or write-only (WO) sysfs
file. Now, we wish to set up a sysfs file that can be read and written to. Internally, this is a
"hook" or callback for us to query or set a debug_level global variable just as we did in the
sample kernel module on procfs earlier!

User-Kernel Communication Pathways Chapter 2

[79]

Now that we have sufficient background, let's delve into the code!

The code for implementing our sysfs file and its
callbacks
Let's look at the relevant parts of the code for our simple sysfs interfacing driver and try
things out, step by step:

Set up the device attribute structure (via the DEVICE_ATTR_RW macro; see the1.
preceding section for more information) and create our first sysfs (pseudo) file:

// ch2/sysfs_simple_intf/sysfs_simple_intf.c

#define SYSFS_FILE1 llkdsysfs_debug_level
// [... <we show the actual read/write callback functions just a
bit further down> ...]
static DEVICE_ATTR_RW(SYSFS_FILE1);

int __init sysfs_simple_intf_init(void)
{
 [...]
/* << 0. The platform device is created via the
platform_device_register_simple() API; code already shown above ...
>> */

 // 1. Create our first sysfile file : llkdsysfs_debug_level
 /* The device_create_file() API creates a sysfs attribute file for
 * given device (1st parameter); the second parameter is the
pointer
 * to it's struct device_attribute structure dev_attr_<name> which
was
 * instantiated by our DEV_ATTR{_RW|RO} macros above ... */
 stat = device_create_file(&sysfs_demo_platdev->dev,
&dev_attr_SYSFS_FILE1);
[...]

From the definition of the macros shown here, we can infer that static
DEVICE_ATTR_RW(SYSFS_FILE1); instantiates an initialized
device_attribute structure with the name llkdsysfs_debug_level (as
that's what the SYSFS_FILE1 macro evaluates to) and a mode of 0644; the read
callback name will be llkdsysfs_debug_level_show() and the write callback
name will be llkdsysfs_debug_level_store()!

User-Kernel Communication Pathways Chapter 2

[80]

Here's the relevant code for the read and write callbacks (again, we won't show2.
the entire code here). First, let's look at the read callback:

/* debug_level: sysfs entry point for the 'show' (read) callback */
static ssize_t llkdsysfs_debug_level_show(struct device *dev,
 struct device_attribute
*attr,
 char *buf)
{
 int n;
 if (mutex_lock_interruptible(&mtx))
 return -ERESTARTSYS;
 pr_debug("In the 'show' method: name: %s,
debug_level=%d\n",
 dev->kobj.name, debug_level);
 n = snprintf(buf, 25, "%d\n", debug_level);
 mutex_unlock(&mtx);
 return n;
}

How does this work? On reading our sysfs file, the preceding callback function is
invoked. Within it, simply writing into the user-supplied buffer pointer, buf (its
third parameter; we used the kernel snprintf() API to do so), has the effect of
transferring the value provided (here, debug_level) to the user space!

Let's build and insmod(8) the kernel module (for convenience, we will use our3.
lkm wrapper script to do so):

$../../lkm sysfs_simple_intf // <-- build and insmod it
[...]
[83907.192247] sysfs_simple_intf:sysfs_simple_intf_init():237:
sysfs file [1]
(/sys/devices/platform/llkd_sysfs_simple_intf_device/llkdsysfs_debu
g_level) created
[83907.197279] sysfs_simple_intf:sysfs_simple_intf_init():250:
sysfs file [2]
(/sys/devices/platform/llkd_sysfs_simple_intf_device/llkdsysfs_pgof
f) created
[83907.201959] sysfs_simple_intf:sysfs_simple_intf_init():264:
sysfs file [3]
(/sys/devices/platform/llkd_sysfs_simple_intf_device/llkdsysfs_pres
sure) created
[83907.205888] sysfs_simple_intf initialized
$

User-Kernel Communication Pathways Chapter 2

[81]

Now, let's list and read the sysfs file pertaining to the debug-level:4.

$ ls -l
/sys/devices/platform/llkd_sysfs_simple_intf_device/llkdsysfs_debug
_level
-rw-r--r-- 1 root root 4096 Feb 4 17:41
/sys/devices/platform/llkd_sysfs_simple_intf_device/llkdsysfs_debug
_level
$ cat
/sys/devices/platform/llkd_sysfs_simple_intf_device/llkdsysfs_debug
_level
0

This reflects the fact that debug-level is currently 0.

Now, let's peek at the code of our write callback for the debug-level sysfs file:5.

#define DEBUG_LEVEL_MIN 0
#define DEBUG_LEVEL_MAX 2

static ssize_t llkdsysfs_debug_level_store(struct device *dev,
 struct device_attribute
*attr,
 const char *buf, size_t
count)
{
 int ret = (int)count, prev_dbglevel;
 if (mutex_lock_interruptible(&mtx))
 return -ERESTARTSYS;

 prev_dbglevel = debug_level;
 pr_debug("In the 'store' method:\ncount=%zu, buf=0x%px
count=%zu\n"
 "Buffer contents: \"%.*s\"\n", count, buf, count,
(int)count, buf);
 if (count == 0 || count > 12) {
 ret = -EINVAL;
 goto out;
 }

 ret = kstrtoint(buf, 0, &debug_level); /* update it! */
 // < ... validity checks ... >
 ret = count;
 out:
 mutex_unlock(&mtx);
 return ret;
}

User-Kernel Communication Pathways Chapter 2

[82]

Again, it should be clear that the kstrtoint() kernel API is used to convert the
user space buf string into an integer value, which we then validate. Also, the
third parameter to kstrtoint is the integer to write to, thus updating it!

Now, let's try updating the value of debug_level from its sysfs file:6.

$ sudo sh -c "echo 2 >
/sys/devices/platform/llkd_sysfs_simple_intf_device/llkdsysfs_debug
_level"
$ cat
/sys/devices/platform/llkd_sysfs_simple_intf_device/llkdsysfs_debug
_level
2
$

Voila – it works!

As we did when we interfaced with procfs, we have provided more code in the 7.
sysfs code example. Here, we have another (read-only) sysfs interface to display
the value of PAGE_OFFSET, plus a new one. Imagine that this driver's job is to
retrieve a "pressure" value (perhaps via an I2C-driven pressure sensor chip). Let's
imagine we have done so, and stored this pressure value in an integer global
variable named gpressure. To "show" the user space the current pressure value,
we must use a sysfs file. Here it is:

Internally, for the purpose of this demo, we have randomly set
the gpressure global variable to a value of 25.

$ cat
/sys/devices/platform/llkd_sysfs_simple_intf_device/llkdsysfs_press
ure
25$

Look carefully at the output; why does the prompt appear immediately after 25? Because
we just printed the value as-is – no newline, nothing; that's what is expected. The code that
displays the "pressure" value is simple indeed:

/* show 'pressure' value: sysfs entry point for the 'show' (read) callback
*/
static ssize_t llkdsysfs_pressure_show(struct device *dev,
 struct device_attribute *attr, char *buf)
{
 int n;

User-Kernel Communication Pathways Chapter 2

[83]

 if (mutex_lock_interruptible(&mtx))
 return -ERESTARTSYS;
 pr_debug("In the 'show' method: pressure=%u\n", gpressure);
 n = snprintf(buf, 25, "%u", gpressure);
 mutex_unlock(&mtx);
 return n;
}
/* The DEVICE_ATTR{_RW|RO|WO}() macro instantiates a struct
device_attribute dev_attr_<name> here... */
static DEVICE_ATTR_RO(llkdsysfs_pressure);

With that, you've learned how to interface with the user space via sysfs! As usual, I urge
you to actually write the code and try out these skills yourself; take a look at the Questions
section at the end of this chapter and try out the (relevant) assignments yourself. Now, let's
continue with sysfs, understanding an important rule regarding its ABI.

The "one value per sysfs file" rule
So far, you have understood how to create and make use of sysfs for user space kernel
interfacing purposes, but there is a key point that we have been ignoring. There is a "rule"
regarding using sysfs files, which states that you must only read or write exactly one value!
Think of this as the one-value-per-file rule.

So, as in the example where we used the "pressure" value, we merely return the current
value of the pressure, nothing more. Thus, sysfs, unlike the other interfacing technologies,
is not quite suited to those cases where you might want to return arbitrary long-winded
information packets (say, the contents of the driver context structure) to the user space; in
other words, it's not suited to pure "debugging" purposes.

The kernel documents and "rules" regarding the usage of sysfs can be
found here: https:/ ​/​www. ​kernel. ​org/ ​doc/ ​html/ ​latest/ ​admin- ​guide/
sysfs- ​rules. ​html#rules- ​on- ​how-​to- ​access- ​information- ​in-​sysfs.
In addition, there is documentation on the sysfs API here: https:/ ​/​www.
kernel. ​org/ ​doc/ ​html/ ​latest/ ​filesystems/ ​api- ​summary. ​html#the-
filesystem- ​for- ​exporting- ​kernel- ​objects.

The kernel typically provides several different means of creating sysfs
objects; for example, with the sysfs_create_files() API, you can
create multiple sysfs files in one go: int __must_check
sysfs_create_files(struct kobject *kobj, const struct

attribute * const *attr);. Here, you are expected to supply a
pointer to a kobject and a pointer to a list of attribute structures.

https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/admin-guide/sysfs-rules.html#rules-on-how-to-access-information-in-sysfs
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html#the-filesystem-for-exporting-kernel-objects

User-Kernel Communication Pathways Chapter 2

[84]

This concludes our discussion of sysfs as an interfacing technology; in summary, sysfs is
indeed considered the right way for driver authors to display and/or set a particular driver
value to and from the user space. Due to the "one value per sysfs file" convention, sysfs is
really not ideally suited to debugging information dispensation. This neatly brings us to
our next topic – debugfs!

Interfacing via the debug filesystem
(debugfs)
Imagine for a moment, the quandary faced by you, a driver developer, on Linux: you want
to implement an easy yet elegant way to provide debug "hooks" from your driver to the
user space. For example, the user simply performing a cat(1) on a (pseudo) file should
result in your driver's "debug callback" function being invoked. It will then proceed to
dump some status information (perhaps a "driver context" structure) to the user mode
process, which will faithfully dump it to stdout.

Okay, no problem: in the days before the 2.6 release, we could (as you learned in the
Interfacing via the proc filesystem (procfs) section) happily use the procfs layer to interface our
driver with the user space. Then, from 2.6 Linux onward, the kernel community vetoed this
approach. We were told to strictly stop using procfs and instead use the sysfs layer as the
means to interface our drivers with the user space. However, as we saw in the Interfacing via
the sys filesystem (sysfs) section, it has a strict one-value-per-file rule. This is actually great for
reporting or sending single values from and to the driver (typically, environment sensor
values and similar), but quickly rules out all but the most trivial debug interfaces to the
user space. We could use the ioctl approach (as we shall see) to set up a debug interface but
it's quite a bit harder to do so.

So, what can you do? Luckily, there is an elegant solution in place from around 2.6.12 Linux
onward called debugfs. The "debug filesystem" is very easy to use and quite explicit in
communicating the fact that driver authors (anyone, in fact) can use it for whatever
purpose they choose! There is no one-value-per-file rule – forget that, there are no rules.

Of course, just as with the other filesystem-based approaches we have dealt with – procfs,
sysfs, and now debugfs – the kernel community clearly claims that all these interfaces are
an ABI, and thus, that their stability and lifespan is something that is not guaranteed. While
that is the formal stance that's adopted, the reality is that these interfaces have become de
facto ones in the real world; stripping them out without preamble one fine day wouldn't
really serve anybody.

User-Kernel Communication Pathways Chapter 2

[85]

The following screenshot shows the content of debugfs on our x86-64 Ubuntu 18.04.3 LTS
guest (running the "custom" 5.4.0 kernel we built back in our companion book Linux Kernel
Programming, Chapter 3, Building the 5.0 Linux kernel from Source, Part 2!):

Figure 2.3 – Screenshot revealing the content of the debugfs filesystem on an x86_64 Linux VM

As with procfs and sysfs, due to debugfs being a kernel feature (it's a virtual filesystem,
after all!), the precise content within it is highly dependent on the kernel version and CPU
architecture. As we mentioned previously, by looking at this screenshot, it should now be
obvious that there are plenty of real-world "users" of debugfs.

Checking for the presence of debugfs
First off, in order to make use of the powerful debugfs interface, it must be enabled within
the kernel config. The relevant Kconfig macro is CONFIG_DEBUG_FS. Let's check whether
it's enabled on our 5.4 custom kernel:

Here, we are assuming you have the CONFIG_IKCONFIG and
CONFIG_IKCONFIG_PROC options set to y, thus allowing us to use the
/proc/config.gz pseudo file to access the current kernel's
configuration.

$ zcat /proc/config.gz | grep -w CONFIG_DEBUG_FS
CONFIG_DEBUG_FS=y

Indeed it is; it's typically enabled by default in distributions.

User-Kernel Communication Pathways Chapter 2

[86]

Next, the default mount point of debugfs is /sys/kernel/debug. Thus, we can see that it
is internally dependent on the sysfs kernel feature being present and mounted, which it is
by default. Let's check where debugfs is mounted on our Ubuntu 18.04 x86_64 VM:

$ mount | grep -w debugfs
debugfs on /sys/kernel/debug type debugfs (rw,relatime)

It is available and mounted at the expected location; that is, /sys/kernel/debug.

Of course, it's always a best practice to never assume that this will always
be the location where it's mounted; in your script or user mode C
program, take the trouble to check and verify it. In fact, allow me to
rephrase this: it's always a good practice to never assume anything; making
assumptions is a really good source of bugs.

By the way, an interesting Linux feature is that filesystems can be mounted in different,
even multiple, locations; also, some folks prefer to create a symbolic link to
/sys/kernel/debug as /debug; it's up to you, really.

As usual, our intention here is to create our (pseudo) files under the debugfs umbrella, and
then register and make use of the read/write callbacks from them, for the purpose of
interfacing our driver with the user space. To do so, we need to understand the basic usage
of the debugfs API. We will point you to the documentation for this in the next section.

Looking up the debugfs API documentation
The kernel supplies succinct and superb documentation on using the debugfs API (courtesy
of Jonathan Corbet, LWN) here: https:/ ​/ ​www. ​kernel. ​org/ ​doc/ ​Documentation/
filesystems/​debugfs. ​txt (of course, you can also look it up directly within the kernel
codebase).

I urge you to refer to this document to learn how to use the debugfs APIs, since it's easy to
read and understand; this way, you can avoid unnecessarily repeating the same
information here. In addition to the aforementioned document, the modern kernel
documentation system (the "Sphinx"-based one) also provides quite detailed debugfs API
pages: https:/​/​www. ​kernel. ​org/ ​doc/ ​html/​latest/ ​filesystems/ ​api- ​summary. ​html?
highlight=​debugfs#the- ​debugfs- ​filesystem.

Note that all debugfs APIs are exported as GPL-only to kernel modules
(thus necessitating the module being released under the "GPL" license
(this can be dual licensed, but one must be "GPL")).

https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem
https://www.kernel.org/doc/html/latest/filesystems/api-summary.html?highlight=debugfs#the-debugfs-filesystem

User-Kernel Communication Pathways Chapter 2

[87]

An interfacing example with debugfs
Debugfs, being deliberately designed with a "no particular rules" mindset, makes it the
ideal interface to use for debug purposes. Why? It allows you to construct any arbitrary byte
stream and send it off to the user space, including a binary "blob" with the
debugfs_create_blob() API.

Our previous example kernel modules with procfs and sysfs constructed and used three to
four (pseudo) files. For a quick demo with debugfs, we shall just stick to two "files":

llkd_dbgfs_show_drvctx: As you'll have no doubt guessed, when read, it will
cause the current content of our (by now familiar) "driver context" data structure
to be dumped to the console; we shall ensure the pseudo file's mode is read-only
(by root).
llkd_dbgfs_debug_level: This file's mode shall be read-write (by root only);
when read, it will display the current value of debug_level; when an integer is
written to it, we shall update the value of debug_level within the kernel
module to the value passed.

Here, in the init code of our kernel module, we will first create a directory under debugfs:

// ch2/debugfs_simple_intf/debugfs_simple_intf.c

static struct dentry *gparent;
[...]
static int debugfs_simple_intf_init(void)
{
 int stat = 0;
 struct dentry *file1, *file2;
 [...]
 gparent = debugfs_create_dir(OURMODNAME, NULL);

Now that we have a starting point – a directory – let's move on and create the debugfs
(pseudo) files under it.

Creating and using the first debugfs file
For readability and to save space, we won't show the error handling code
sections here.

User-Kernel Communication Pathways Chapter 2

[88]

Just as in the example with procfs, we must allocate and initialize an instance of our "driver
context" data structure (we haven't shown the code here as it's repetitive, so please refer to
the GitHub source).

Then, via the generic debugfs_create_file() API, we must create a debugfs file,
associating it with a file_operations structure. This, in effects, gets just a read callback
registered:

static const struct file_operations dbgfs_drvctx_fops = {
 .read = dbgfs_show_drvctx,
};
[...]
// < ... init function ... >
 /* Generic debugfs file + passing a pointer to a data structure as a
 * demo.. the 4th param is a generic void * ptr; it's contents will be
 * stored into the i_private field of the file's inode.
 */
#define DBGFS_FILE1 "llkd_dbgfs_show_drvctx"
 file1 = debugfs_create_file(DBGFS_FILE1, 0440, gparent,
 (void *)gdrvctx, &dbgfs_drvctx_fops);
 [...]

From 5.8 Linux onward (recall that we're working with the 5.4 LTS
kernel), the return value of several of the debugfs creation APIs have been
removed (they will return void); Greg Kroah-Hartman's patch mentions
that this was done as no one was using them. This is quite typical of Linux
– unneeded features are stripped off, and kernel evolution continues...

Clearly, the "read" callback is our dbgfs_show_drvctx() function. As a reminder, this
function gets auto-invoked by the debugfs layer whenever the debugfs file
(llkd_dbgfs_show_drvctx) is read; here's the code for our debugfs read callback
function:

static ssize_t dbgfs_show_drvctx(struct file *filp, char __user * ubuf,
 size_t count, loff_t * fpos)
{
 struct drv_ctx *data = (struct drv_ctx *)filp->f_inode->i_private;
 // retrieve the "data" from the inode
#define MAXUPASS 256 // careful- the kernel stack is small!
 char locbuf[MAXUPASS];

 if (mutex_lock_interruptible(&mtx))
 return -ERESTARTSYS;

 /* As an experiment, we set our 'config3' member of the drv ctx stucture
 * to the current 'jiffies' value (# of timer interrupts since boot);

User-Kernel Communication Pathways Chapter 2

[89]

 * so, every time we 'cat' this file, the 'config3' value should change!
 */
 data->config3 = jiffies;
 snprintf(locbuf, MAXUPASS - 1,
 "prodname:%s\n"
 "tx:%d,rx:%d,err:%d,myword:%d,power:%d\n"
 "config1:0x%x,config2:0x%x,config3:0x%llx (%llu)\n"
 "oursecret:%s\n",
 OURMODNAME,
 data->tx, data->rx, data->err, data->myword, data->power,
 data->config1, data->config2, data->config3, data->config3,
 data->oursecret);

 mutex_unlock(&mtx);
 return simple_read_from_buffer(ubuf, MAXUPASS, fpos, locbuf,
 strlen(locbuf));
}

Notice how we retrieve the "data" pointer (our driver context structure) by dereferencing
the debugfs files' inode member, which is called i_private.

As we mentioned in Chapter 1, Writing a Simple misc Character Device
Driver, using the data pointer to dereference the driver context structure
from the file's inode is one of a number of similar, common techniques
employed by driver authors to avoid the use of globals. Here, gdrvctx is
a global, so it's a moot point; we are simply using it to demonstrate the
typical use case.

Using the snprintf() API, we can populate a local buffer with the current content of our
driver's "context" structure, and then, via the simple_read_from_buffer() API, pass it
up to the user space app that issued the read, which typically causes it to be displayed on
the Terminal/console window. This simple_read_from_buffer() API is a wrapper over
copy_to_user().

Let's give it a spin:

$../../lkm debugfs_simple_intf
[...]
[200221.725752] dbgfs_simple_intf: allocated and init the driver context
structure
[200221.728158] dbgfs_simple_intf: debugfs file 1
<debugfs_mountpt>/dbgfs_simple_intf/llkd_dbgfs_show_drvctx created
[200221.732167] dbgfs_simple_intf: debugfs file 2
<debugfs_mountpt>/dbgfs_simple_intf/llkd_dbgfs_debug_level created
[200221.735723] dbgfs_simple_intf initialized

User-Kernel Communication Pathways Chapter 2

[90]

As we can see, the two debugfs files are created as expected; let's verify this (be careful
here; you can only look into debugfs as root):

$ ls -l /sys/kernel/debug/dbgfs_simple_intf
ls: cannot access '/sys/kernel/debug/dbgfs_simple_intf': Permission denied
$ sudo ls -l /sys/kernel/debug/dbgfs_simple_intf
total 0
-rw-r--r-- 1 root root 0 Feb 7 15:58 llkd_dbgfs_debug_level
-r--r----- 1 root root 0 Feb 7 15:58 llkd_dbgfs_show_drvctx
$

The pseudo files have been created and have the correct permissions. Now, let's read (as
root user) from the llkd_dbgfs_show_drvctx file:

$ sudo cat /sys/kernel/debug/dbgfs_simple_intf/llkd_dbgfs_show_drvctx
prodname:dbgfs_simple_intf
tx:0,rx:0,err:0,myword:0,power:1
config1:0x0,config2:0x48524a5f,config3:0x102fbcbc2 (4345023426)
oursecret:AhA yyy
$

It works; performing the read again a few seconds later. Notice how the value of config3
has changed. Why? Recall that we set it to the jiffies value – the number of timer
"ticks"/interrupts – that have occurred since system boot:

$ sudo cat /sys/kernel/debug/dbgfs_simple_intf/llkd_dbgfs_show_drvctx |
grep config3
config1:0x0,config2:0x48524a5f,config3:0x102fbe828 (4345030696)
$

Having created and used our first debugfs file, let's understand the second debugfs file.

Creating and using the second debugfs file
Let's move on to the second debugfs file. We will create it using an interesting shortcut
helper debugfs API named debugfs_create_u32(). This API automatically sets up
internal callbacks, allowing you to read/write upon the specified unsigned 32-bit global
variable within the driver. The main advantage of this "helper" routine is that you don't
need to explicitly provide a file_operations structure or even any callback routines. The
debugfs layer "understands" and internally sets things up so that reading or writing the
numeric (global) variable will always just work! Take a look at the following code in the init
codepath, which creates and sets up our second debugfs file:

static int debug_level; /* 'off' (0) by default ... */
[...]

User-Kernel Communication Pathways Chapter 2

[91]

 /* 3. Create the debugfs file for the debug_level global; we use the
 * helper routine to make it simple! There is a downside: we have no
 * chance to perform a validity check on the value being written.. */
#define DBGFS_FILE2 "llkd_dbgfs_debug_level"
 file2 = debugfs_create_u32(DBGFS_FILE2, 0644, gparent, &debug_level);
 [...]
 pr_debug("%s: debugfs file 2 <debugfs_mountpt>/%s/%s created\n",
 OURMODNAME, OURMODNAME, DBGFS_FILE2);

It's as simple as that! Now, reading this file will produce the current value of debug_level;
writing to it will set it to the value written. Let's do this:

$ sudo cat /sys/kernel/debug/dbgfs_simple_intf/llkd_dbgfs_debug_level
0
$ sudo sh -c "echo 5 >
/sys/kernel/debug/dbgfs_simple_intf/llkd_dbgfs_debug_level"
$ sudo cat /sys/kernel/debug/dbgfs_simple_intf/llkd_dbgfs_debug_level
5
$

This works, but there is a downside to this "shortcut" approach: since this is all done
internally, there is no way for us to validate the value being written. Thus, here, we wrote
the value 5 to debug_level; it worked, but it's an invalid value (at least let's assume that's
the case)! So, how can this be corrected? Simple: do not use this helper method; instead, do
it the "usual" way via the generic debugfs_create_file() API (as we did for the first
debugfs file). The advantage here is that as we set up explicit callback routines for read and
write, by specifying them within a fops structure, we have control over the value being
written (I leave doing this to you, as an exercise). Like life, it's a trade-off; you win some,
you lose some.

Helper debugfs APIs for working on numeric
globals
You have just learned how to use the debugfs_create_u32() helper API to set up a
debugfs file to read/write an unsigned 32-bit integer global. The fact is, the debugfs layer
provides a bunch of similar "helper" APIs to implicitly read/write on numeric (integer)
global variables within your module.

User-Kernel Communication Pathways Chapter 2

[92]

The helper routines for creating debugfs entries that can read/write different bit size
unsigned integer (8-, 16-, 32-, and 64-bit) globals follow. The last parameter is the key one –
the address of the global integer within the kernel/module:

// include/linux/debugfs.h
struct dentry *debugfs_create_u8(const char *name, umode_t mode,
 struct dentry *parent, u8 *value);
struct dentry *debugfs_create_u16(const char *name, umode_t mode,
 struct dentry *parent, u16 *value);
struct dentry *debugfs_create_u32(const char *name, umode_t mode,
 struct dentry *parent, u32 *value);
struct dentry *debugfs_create_u64(const char *name, umode_t mode,
 struct dentry *parent, u64 *value);

The preceding APIs work with decimal base; to make using hexadecimal base easy, we have
the following helpers:

struct dentry *debugfs_create_x8(const char *name, umode_t mode,
 struct dentry *parent, u8 *value);
struct dentry *debugfs_create_x16(const char *name, umode_t mode,
 struct dentry *parent, u16 *value);
struct dentry *debugfs_create_x32(const char *name, umode_t mode,
 struct dentry *parent, u32 *value);
struct dentry *debugfs_create_x64(const char *name, umode_t mode,
 struct dentry *parent, u64 *value);

As an aside, the kernel also provides a helper API for those cases where
the precise size of the variable varies; hence, using the
debugfs_create_size_t() helper creates a debugfs file appropriate for
a variable of size size_t.

For drivers that merely need to peek at a numeric global, or update it without any worry
about invalid values, these debugfs helper APIs are very useful and are indeed commonly
used by several drivers in the mainline kernel (we will look at an example within the MMC
driver shortly). To evade the "validity check" issue, often, we can arrange for the user space
application (or script) to perform validity checking; in fact, this is typically the "right way"
to do things.

The UNIX paradigm has a saying: provide mechanism, not policy.

User-Kernel Communication Pathways Chapter 2

[93]

When working with globals that are of the boolean type, debugfs provides the following
helper API:

struct dentry *debugfs_create_bool(const char *name, umode_t mode,
 struct dentry *parent, bool *value);

Reading from the "file" will result in only Y or N (suffixed with a newline) being returned;
obviously, Y if the current value of the fourth value parameter is non-zero,
and N otherwise. When writing, you can write Y or N or 1 or 0; other values will not be
accepted.

Think about it: you can control your "robot" device via your robot device
driver by writing 1 to a boolean variable called, say, power to turn it on,
and use 0 to turn it off! The possibilities are endless.

The kernel documentation on debugfs provides a few more miscellaneous APIs; I leave it to
you to have a look. Now that we've covered how to create and use our demo debugfs
pseudo files, let's learn how to remove them.

Removing the debugfs pseudo file(s)
When a module is removed (via, say, rmmod(8)), we must delete our debugfs files. The
older way to do this was via the debugfs_remove() API, where each debugfs file had to
be individually removed with it (painful, to say the least). The modern approach makes this
really simple:

void debugfs_remove_recursive(struct dentry *dentry);

Pass the pointer to the overall "parent" directory (the one we created first), and the entire
branch is recursively removed; perfect.

Not deleting your debugfs files at this point, thus leaving them there on the filesystem in an
orphaned state, is asking for trouble! Just think about this: what will happen when someone
(attempts to) reads or writes to any of them later? A kernel bug, or an Oops, that's what.

User-Kernel Communication Pathways Chapter 2

[94]

Seeing a kernel bug – an Oops!
Let's make it happen – a kernel bug! Exciting, yes!?

Okay, to create a kernel bug, we must ensure that when we remove (unload) the kernel
module, the API that cleans up (deletes) all the debugfs
files, debugfs_remove_recursive(), is not invoked. Thus, after each module is removed,
our debugfs directory and files seem to be present! However, if you try and operate on –
read/write – any of them, they'll be in an orphaned state and, hence, upon trying to
dereference its metadata, the internal debugfs code paths will perform an invalid memory
reference, resulting in a (kernel-level) bug.

In the kernel space, a bug is a very serious thing indeed; in theory, it should never, ever
happen! This is called an Oops; as part of handling this, an internal kernel function is called,
which dumps useful diagnostic information via printk to the in-memory kernel log buffer,
as well as to the console device (on production systems, it might also be directed elsewhere
so that it can be retrieved and investigated at a later date; for example, via the kernel's
kdump mechanism).

Let's introduce a module parameter that controls whether we (quite deliberately) cause an
Oops to occur or not:

// ch2/debugfs_simple_intf/debugfs_simple_intf.c
[...]
/* Module parameters */
static int cause_an_oops;
module_param(cause_an_oops, int, 0644);
MODULE_PARM_DESC(cause_an_oops,
"Setting this to 1 can cause a kernel bug, an Oops; if 1, we do NOT perform
required cleanup! so, after removal, any op on the debugfs files will cause
an Oops! (default is 0, no bug)");

User-Kernel Communication Pathways Chapter 2

[95]

In the cleanup code path of our driver, we check if the cause_an_oops variable is non-zero
and deliberately do not (recursively) delete our debugfs file(s), hence setting up the bug:

static void debugfs_simple_intf_cleanup(void)
{
 kfree(gdrvctx);
 if (!cause_an_oops)
 debugfs_remove_recursive(gparent);
 pr_info("%s removed\n", OURMODNAME);
}

When we "normally" use insmod(8), the scary cause_an_oops module parameter is 0 by
default, thus ensuring that everything works well. But let's get adventurous! We are
building the kernel module and when we insert it, we must pass the parameter while
setting it to 1 (notice that here, we're running as root on our x86_64 Ubuntu 18.04 LTS guest
system on our custom 5.4.0-llkd01 kernel):

id
uid=0(root) gid=0(root) groups=0(root)
insmod ./debugfs_simple_intf.ko cause_an_oops=1
cat /sys/kernel/debug/dbgfs_simple_intf/llkd_dbgfs_debug_level
0
dmesg
[2061.048140] dbgfs_simple_intf: allocated and init the driver context
structure
[2061.050690] dbgfs_simple_intf: debugfs file 1
<debugfs_mountpt>/dbgfs_simple_intf/llkd_dbgfs_show_drvctx created
[2061.053638] dbgfs_simple_intf: debugfs file 2
<debugfs_mountpt>/dbgfs_simple_intf/llkd_dbgfs_debug_level created
[2061.057089] dbgfs_simple_intf initialized (fyi, our 'cause an Oops'
setting is currently On)
#

Now, let's remove the kernel module – internally, the code that's used to clean up
(recursively delete) our debugfs file would not have run. Here, we are actually triggering
the kernel bug, the Oops, by attempting to read one of our debugfs files:

rmmod debugfs_simple_intf
cat /sys/kernel/debug/dbgfs_simple_intf/llkd_dbgfs_debug_level
Killed

User-Kernel Communication Pathways Chapter 2

[96]

The Killed message on the console is ominous! This is a clue that something has gone
(dramatically) wrong. Viewing the kernel log confirms that we indeed got an Oops! The
following (partially cropped) screenshot shows this:

Figure 2.4 – A partial screenshot of a kernel Oops, a kernel-level bug

Since provided kernel debugging details is beyond the scope of this book, we will not delve
into the details here. Nevertheless, figuring out a little bit is quite intuitive. Look carefully
at the preceding screenshot: in the BUG: statement, you can see the kernel virtual address
(kva) whose lookup caused the bug, known as the Oops (we covered the kva space in the
companion guide, Linux Kernel Programming – Chapter 7, Memory Management Internals
Essentials; this is really key information for driver authors):

CPU: 1 PID: 4673 Comm: cat Tainted: G OE 5.4.0-llkd01 #2

This shows the CPU (1) that the process context (cat) was running on, the tainted flags,
and the kernel version. One of the really key pieces of output is as follows:

RIP: 0010:debugfs_u32_get+0x5/0x20

User-Kernel Communication Pathways Chapter 2

[97]

This tells you that the CPU instruction pointer (the register named RIP on the x86_64) was
in the debugfs_u32_get() function at an offset of 0x5 bytes from the start of the machine
code of the function (furthermore, the kernel figures out that the length of the function is
0x20 bytes)!

Combining this information with powerful tools such as objdump(1) and
addr2line(1) can help to literally pinpoint the location of the bug in
code!

The CPU registers are dumped; even better, the call trace or the call stack – the content of the
kernel mode stack of the process context (please refer to Linux Kernel Programming, in Chapter
6, Kernel Internals Essentials, Processes and Threads, for details on the kernel stack) – shows
you the code that led up to this point; that is, the crash (read the stack trace bottom-up).
Another quick tip: if a kernel function in the call trace's output is preceded by a ? symbol,
just ignore it (it's perhaps a previous "blip" that was left behind).

Realistically, a kernel bug on a production system must cause the entire
system to panic (halt). On non-production systems (like what we're
running on), a kernel panic may or may not occur; here, it doesn't.
Nevertheless, a kernel bug must be treated with the highest level of
severity, it's indeed a show-stopper and must be fixed. The procfs
file, /proc/sys/kernel/panic_on_oops, is set to 0 by most distros, but
on production systems, it will typically be set to the value 1.

The moral here is clear: there is no auto cleanup being performed by debugfs; we have to
do it. Right, let's wrap up this discussion on debugfs by looking up some actual real-world
usage within the kernel.

Debugfs – actual users
As we mentioned previously, there are several "real-world" users of the debugfs API; can
we spot some of them? Well, here's one way: simply search under the kernel source tree's
drivers/ directory for files named *debugfs*.c; you might be surprised (I found 114
such files in the 5.4.0 kernel tree!). Let's take a look at a few:

$ cd <kernel-source-tree> ; find drivers/ -iname "*debugfs*.c"
drivers/block/drbd/drbd_debugfs.c
drivers/mmc/core/debugfs.c
drivers/platform/x86/intel_telemetry_debugfs.c
[...]
drivers/infiniband/hw/qib/qib_debugfs.c

User-Kernel Communication Pathways Chapter 2

[98]

drivers/infiniband/hw/hfi1/debugfs.c
[...]
drivers/media/usb/uvc/uvc_debugfs.c
drivers/acpi/debugfs.c
drivers/net/wireless/mediatek/mt76/debugfs.c
[...]
drivers/net/wireless/intel/iwlwifi/mvm/debugfs-vif.c
drivers/net/wimax/i2400m/debugfs.c
drivers/net/ethernet/broadcom/bnxt/bnxt_debugfs.c
drivers/net/ethernet/marvell/mvpp2/mvpp2_debugfs.c
drivers/net/ethernet/mellanox/mlx5/core/debugfs.c
[...]
drivers/misc/genwqe/card_debugfs.c
drivers/misc/mei/debugfs.c
drivers/misc/cxl/debugfs.c
[...]
drivers/usb/mtu3/mtu3_debugfs.c
drivers/sh/intc/virq-debugfs.c
drivers/soundwire/debugfs.c
[...]
drivers/crypto/ccree/cc_debugfs.c

Have a look at (some of) them; their code exposes debugfs interfaces. This is not always
done for mere debug purposes; many of the debugfs files are for actual production usage!
As an example, the MMC driver contains the following line of code, which makes use of the
debugfs "helper" API to get an x32 global:

drivers/mmc/core/debugfs.c:mmc_add_card_debugfs():
debugfs_create_x32("state", S_IRUSR, root, &card->state);

This creates a debugfs file called state that, when read, displays the "state" of the card.

Okay, this completes our coverage of how to interface with the user space via the powerful
debugfs framework. Our demo debugfs driver created a debugfs directory and two debugfs
pseudo files within it; you then learned how to set up and use both read and write callback
handlers for them. The "shortcut" APIs (such as debugfs_create_u32() and friends) are
powerful too. Not only that, but we even managed to generate a kernel bug – an Oops!
Now, let's learn how to communicate over a special type of socket, known as a netlink
socket.

User-Kernel Communication Pathways Chapter 2

[99]

Interfacing via netlink sockets
Here, you'll learn to interface kernel and user spaces with a familiar and indeed ubiquitous
network abstraction – sockets! Programmers familiar with network application
programming swear by its advantages.

Familiarity with network programming in C/C++ with socket APIs helps
here. Do see the Further reading section for a couple of good tutorials on
this topic.

Advantages using sockets
Among others, socket technology provides us with several advantages (over other typical
user mode IPC mechanisms such as pipes, SysV IPC/POSIX IPC mechanisms (message
queues, shared memory, semaphores, and so on)), as follows:

Bidirectional simultaneous data transfer (full duplex).
Lossless on the internet, with at least with some transport layer protocols, such as
TCP, and of course, on the localhost, which is the case here.
High-speed data transfer, especially on localhost!
Flow control semantics are always in effect.
Asynchronous communication; messages can be queued, so the sender does not
have to wait for the receiver.
Especially with respect to our topic, in other user<->kernel communication paths
(such as procfs, sysfs, debugfs, and ioctl), the user space app must initiate the
transfer to the kernel space; with netlink sockets, the kernel can initiate a transfer.
Also, with all the other mechanisms we have seen so far (procfs, sysfs, and
debugfs), the various interface files being strewn all over the filesystem(s) can
cause kernel namespace pollution; with netlink sockets (and, incidentally, with
ioctl), this isn't the case as there are no files.

These advantages can be helpful, depending on the type of product you're working on.
Now, let's understand what a netlink socket is.

User-Kernel Communication Pathways Chapter 2

[100]

Understanding what a netlink socket is
So, what is a netlink socket? We shall keep it simple – a netlink socket is a "special" socket
family that exists only on the Linux OS since version 2.2. Using it, you can set up Inter-
Process Communication (IPC) between a user mode process (or thread) and a component
within the kernel; in our case, a kernel module, which is typically a driver.

It is similar to a UNIX domain datagram socket in many ways; it's meant for
communication on the localhost only and not across systems. While UNIX domain sockets
use a pathname as their namespace (a special "socket" file), netlink sockets use a PID.
Pedantically, this is a port ID and not a process ID, although realistically, process IDs are
very often used as the namespace. The modern kernel core (besides drivers) uses netlink
sockets in many cases – as one example, the iproute2 networking utilities use it to configure
wireless drivers. As another interesting example, the udev feature uses netlink sockets to
effect communication between the kernel udev implementation and the user space daemon
process (udevd or systemd-udevd, for things such as device discovery, device node
provisioning, and so on).

Here, we will design and implement a simple user<->kernel messaging demonstration
using netlink sockets. To do so, we shall have to write two programs (at a minimum) – one
as the user space application that issues socket-based system calls, and another for the
kernel-space component (here, a kernel module). We shall have the user space process send
a "message" to the kernel module; the kernel module should receive it and print it (into the
kernel log buffer). The kernel module will then reply to the user space process, which is
blocking on this very event.

So, without further ado, let's dive into writing some code using netlink sockets; we shall
begin with the user space application. Read on!

Writing the user space netlink socket application
Follow these steps get the user space application running:

The first thing we must do is get ourselves a socket. Traditionally, a socket is1.
defined as an endpoint of communication; thus, a pair of sockets forms a
connection. We will use the socket(2) system call to do this. Its signature is
int socket(int domain, int type, int protocol);.

User-Kernel Communication Pathways Chapter 2

[101]

Without going into too much detail, here's what we do:

We specify domain as part of the special PF_NETLINK family, thus
requesting a netlink socket.
Set type to SOCK_RAW using a raw socket (effectively skipping the
transport layer).
protocol is the protocol to use. Since we're using a raw socket,
the protocol is left to be implemented either by us or by the kernel;
having the kernel netlink code do this is the right approach. Here,
we use an unused protocol number; that is, 31.

The next step is to bind the socket via the usual bind(2) system call semantics.2.
First, we must initialize a netlink source socketaddr structure for this purpose
(where we specify the family as a netlink and the PID value as the calling
process' PID (for unicast only)). The following code is for the first two steps
mentioned here (for clarity, we won't be displaying the error checking code here):

// ch2/netlink_simple_intf/userapp_netlink/netlink_userapp.c
#define NETLINK_MY_UNIT_PROTO 31
 // kernel netlink protocol # (registered by our kernel module)
#define NLSPACE 1024

[...]
 /* 1. Get ourselves an endpoint - a netlink socket! */
sd = socket(PF_NETLINK, SOCK_RAW, NETLINK_MY_UNIT_PROTO);
printf("%s:PID %d: netlink socket created\n", argv[0], getpid());

/* 2. Setup the netlink source addr structure and bind it */
memset(&src_nl, 0, sizeof(src_nl));
src_nl.nl_family = AF_NETLINK;
/* Note carefully: nl_pid is NOT necessarily the PID of the sender
process; it's actually 'port id' and can be any unique number */
src_nl.nl_pid = getpid();
src_nl.nl_groups = 0x0; // no multicast
bind(sd, (struct sockaddr *)&src_nl, sizeof(src_nl))

Next, we must initialize a netlink "destination address" structure. Here, we set3.
the PID member to 0, a special value indicating that the destination is the kernel:

/* 3. Setup the netlink destination addr structure */
memset(&dest_nl, 0, sizeof(dest_nl));
dest_nl.nl_family = AF_NETLINK;
dest_nl.nl_groups = 0x0; // no multicast
dest_nl.nl_pid = 0; // destined for the kernel

User-Kernel Communication Pathways Chapter 2

[102]

Next, we must allocate and initialize a netlink "header" data structure. Among4.
other things, it specifies the source PID and, importantly, the data "payload" that
we shall deliver to our kernel component. Here, we are making use of helper
macros such as NLMSG_DATA() to specify the correct data location within the
netlink header structure:

/* 4. Allocate and setup the netlink header (including the payload)
*/
nlhdr = (struct nlmsghdr *)malloc(NLMSG_SPACE(NLSPACE));
memset(nlhdr, 0, NLMSG_SPACE(NLSPACE));
nlhdr->nlmsg_len = NLMSG_SPACE(NLSPACE);
nlhdr->nlmsg_pid = getpid();
/* Setup the payload to transmit */
strncpy(NLMSG_DATA(nlhdr), thedata, strlen(thedata)+1);

Next, an iovec structure must be initialized to reference the netlink header, and5.
a msghdr data structure must be initialized to point to the destination address
and iovec:

/* 5. Setup the iovec and ... */
memset(&iov, 0, sizeof(struct iovec));
iov.iov_base = (void *)nlhdr;
iov.iov_len = nlhdr->nlmsg_len;
[...]
/* ... now setup the message header structure */
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_name = (void *)&dest_nl; // dest addr
msg.msg_namelen = sizeof(dest_nl); // size of dest addr
msg.msg_iov = &iov;
msg.msg_iovlen = 1; // # elements in msg_iov

Finally, the message is sent (transmitted) via the sendmsg(2) system call (which6.
takes the socket descriptor and the aforementioned msghdr structure as a
parameter):

/* 6. Actually (finally!) send the message via sendmsg(2) */
nsent = sendmsg(sd, &msg, 0);

User-Kernel Communication Pathways Chapter 2

[103]

The kernel component – a kernel module, which we shall discuss shortly –7.
should now receive the message via its netlink socket and display the message's
content; we arrange for it to then politely reply. To grab the reply, our user space
app must now perform a blocking read on the socket:

/* 7. Block on incoming msg from the kernel-space netlink component
*/
printf("%s: now blocking on kernel netlink msg via recvmsg()
...\n", argv[0]);
nrecv = recvmsg(sd, &msg, 0);

We must employ the recvmsg(2) system call to do this. When it gets unblocked,
it states that the message has been received.

Why so much abstraction and wrapping for data structures? Well, it's how
things often evolve – the msghdr structure was created so that the
sendmsg(2) API can use fewer parameters. But that implies the
parameters have to go somewhere; they go deep inside msghdr, which
points to the destination address and iovec, whose base member points
to the netlink header structure, which contains the payload! Whew.

As an experiment, what if we build and run the user mode netlink application
prematurely – without the kernel-side code in place? It will fail, of course... But how exactly?
Well, use the empirical approach. By trying this out via the venerable strace(1) utility,
we can see that the socket(2) system call returns a failure, the cause being Protocol not
supported:

$ strace -e trace=network ./netlink_userapp
socket(AF_NETLINK, SOCK_RAW, 0x1f /* NETLINK_??? */) = -1 EPROTONOSUPPORT
(Protocol not supported)
netlink_u: netlink socket creation failed: Protocol not supported
+++ exited with 1 +++
$

This is correct; there is no such protocol # 31 (31 = 0x1f, the protocol number we're
using) in place yet within the kernel! We're yet to do this. So, that's the user space side of
things. Now, let's complete the puzzle and have it actually work! We'll do this by seeing
how the kernel component (module/driver) is written.

User-Kernel Communication Pathways Chapter 2

[104]

Writing the kernel-space netlink socket code as a
kernel module
The kernel provides the base infrastructure for netlink, including APIs and data structures;
all the required ones are exported and thus available to you as a module author. We use
several of them; the steps to program our kernel netlink component – our kernel module
– are outlined here:

Just as with the user space app, the first thing we must do is get ourselves a1.
netlink socket. The kernel API is netlink_kernel_create(), and its signature
is as follows:

struct sock * netlink_kernel_create(struct net *, int , struct
netlink_kernel_cfg *);

The first parameter is a generic network structure; we pass the kernel's existing
and valid init_net structure here. The second parameter is the protocol number
(unit) to use; we shall specify the same number (31) as we did for the user space
app. The third parameter is a pointer to an (optional) netlink configuration
structure; here, we only set the input member to a function of ours nullifying the
rest. This function is called back when a user space process (or thread) provides
any input (that is, transmits something) to the kernel netlink component. So,
within our kernel module's init routine, we have the following:

//
ch2/netlink_simple_intf/kernelspace_netlink/netlink_simple_intf.c
#define OURMODNAME "netlink_simple_intf"
#define NETLINK_MY_UNIT_PROTO 31
 // kernel netlink protocol # that we're registering
static struct sock *nlsock;
[...]
static struct netlink_kernel_cfg nl_kernel_cfg = {
 .input = netlink_recv_and_reply,
};
[...]
nlsock = netlink_kernel_create(&init_net, NETLINK_MY_UNIT_PROTO,
 &nl_kernel_cfg);

User-Kernel Communication Pathways Chapter 2

[105]

As we mentioned previously, when a user space process (or thread) provides any2.
input (that is, transmits something) to our kernel (netlink) module or driver, the
callback function is invoked. It's important to understand that it runs in the
process context and not any kind of interrupt context; we use our
convenient.h:PRINT_CTX() macro to verify this (we will cover this in Chapter
4, Handling Hardware Interrupts, in the Fully figuring out the context section). Here,
we simply display the received message and then reply by sending a sample
message to our user space peer process. The data payload that's transmitted from
our user space peer process can be retrieved from the socket buffer structure that
is passed along to our callback function as a parameter, from a netlink header
structure within it. You can see how the data and sender PID are retrieved here:

static void netlink_recv_and_reply(struct sk_buff *skb)
{
 struct nlmsghdr *nlh;
 struct sk_buff *skb_tx;
 char *reply = "Reply from kernel netlink";
 int pid, msgsz, stat;

 /* Find that this code runs in process context, the process
 * (or thread) being the one that issued the sendmsg(2) */
 PRINT_CTX();

 nlh = (struct nlmsghdr *)skb->data;
 pid = nlh->nlmsg_pid; /*pid of sending process */
 pr_info("%s: received from PID %d:\n"
 "\"%s\"\n", OURMODNAME, pid, (char *)NLMSG_DATA(nlh));

The socket buffer data structure – struct sk_buff – is considered the
critical data structure within the Linux kernel's network protocol stack. It
holds all metadata concerning the network packet, including dynamic
pointers to it. It has to be quickly allocated and freed (especially when
network code runs in interrupt contexts); this is indeed possible because
it's on the kernel's slab (SLUB) cache (see details on the kernel slab
allocator in the companion guide Linux Kernel Programming, Chapters 7,
Memory Management Internals - Essentials, Chapter 8, Kernel Memory
Allocation for Module Authors – Part 1, and Chapter 9, Kernel Memory
Allocation for Module Authors – Part 2).

Now, we need to understand that we can retrieve the payload from the network
packet by first dereferencing the data member of the socket buffer (skb)
structure that's passed to our callback routine! Next, this data member is actually
the pointer to the netlink message header structure that's set up by our user space
peer. We then dereference it to get the actual payload.

User-Kernel Communication Pathways Chapter 2

[106]

We would now like to "reply" to our user space peer process; doing so involves3.
performing a few actions. First, we must allocate a new netlink message with the
nlmsg_new() API, which is really a thin wrapper over alloc_skb(), add a
netlink message to the just allocated socket buffer via the nlmsg_put() API, and
then copy in the data (the payload) into the netlink header using an appropriate
macro (nlmsg_data()):

 //--- Let's be polite and reply
 msgsz = strlen(reply);
 skb_tx = nlmsg_new(msgsz, 0);
 [...]
 // Setup the payload
 nlh = nlmsg_put(skb_tx, 0, 0, NLMSG_DONE, msgsz, 0);
 NETLINK_CB(skb_tx).dst_group = 0; /* unicast only (cb is the
 * skb's control buffer), dest group 0 => unicast */
 strncpy(nlmsg_data(nlh), reply, msgsz);

We send the reply to our user space peer process via the nlmsg_unicast() API4.
(even multicasting netlink messages are possible):

 // Send it
 stat = nlmsg_unicast(nlsock, skb_tx, pid);

That only leaves the cleanup (which is invoked when the kernel module is5.
removed); the netlink_kernel_release() API is effectively the inverse
of netlink_kernel_create() as it cleans up the netlink socket, shutting it
down:

static void __exit netlink_simple_intf_exit(void)
{
 netlink_kernel_release(nlsock);
 pr_info("%s: removed\n", OURMODNAME);
}

Now that we have written both the user space app and the kernel module to interface via a
netlink socket, let's actually try it out!

User-Kernel Communication Pathways Chapter 2

[107]

Trying out our netlink interfacing project
It's time to verify it all works as advertised. Let's get started:

First, build and insert the kernel module into kernel memory:1.

Our lkm convenience script makes short work of this; this session was
carried out on our familiar x86_64 guest VM running Ubuntu 18.04 LTS
and a custom 5.4.0 Linux kernel.

$ cd <booksrc>/ch2/netlink_simple_intf/kernelspace_netlink
$../../../lkm netlink_simple_intf
Version info:
Distro: Ubuntu 18.04.4 LTS
Kernel: 5.4.0-llkd01
[...]
make || exit 1
[...] Building for: KREL=5.4.0-llkd01 ARCH=x86 CROSS_COMPILE=
EXTRA_CFLAGS= -DDEBUG
 CC [M]
/home/llkd/booksrc/ch13/netlink_simple_intf/kernelspace_netlink/net
link_simple_intf.o
[...]
sudo insmod ./netlink_simple_intf.ko && lsmod|grep
netlink_simple_intf

netlink_simple_intf 16384 0
[...]
[58155.082713] netlink_simple_intf: creating kernel netlink socket
[58155.084445] netlink_simple_intf: inserted
$

With that, it's loaded up and ready. Next, we will build and try out our user2.
space application:

$ cd ../userapp_netlink/
$ make netlink_userapp
[...]

User-Kernel Communication Pathways Chapter 2

[108]

This results in the following output:

Figure 2.5 – Screenshot showing user<->kernel communication via our sample netlink socket code

It works; the kernel netlink module receives and displays the message that was sent to it
from the user space process (PID 7813). The kernel module then replies with its own
message to its user space peer, which successfully receives and displays it (via a
printf()). Give it a try yourself. When you're done, don't forget to remove the kernel
module with sudo rmmod netlink_simple_intf.

An aside: a connector driver exists within the kernel. Its purpose is to ease
the development of netlink-based communication, making it simpler for
both kernel and user space developers set up and use a netlink-based
communication interface. We will not delve into this here; please refer
to the documentation within the kernel (https:/ ​/​elixir. ​bootlin. ​com/
linux/ ​v5. ​4/ ​source/ ​Documentation/ ​driver- ​api/ ​connector. ​rst). Some
sample code is also provided within the kernel source tree (at
samples/connector).

With that, you have learned how to interface between a user mode app and a kernel
component via the powerful netlink socket mechanism. As we mentioned earlier, it has
several actual use cases within the kernel tree. Now, let's move on and cover one more
user-kernel interfacing method, via the popular ioctl(2) system call.

https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst
https://elixir.bootlin.com/linux/v5.4/source/Documentation/driver-api/connector.rst

User-Kernel Communication Pathways Chapter 2

[109]

Interfacing via the ioctl system call
ioctl is a system call; why the funny name ioctl? It's an abbreviation for input-output
control. While the read and write system calls (among others) are used to effectively
transfer data from and to a device (or file; remember the UNIX paradigm if it's not a process,
it's a file!), the ioctl system call is used to issue commands to the device (via its driver). For
example, changing a console device's terminal characteristics, writing a track to a disk
when formatting it, sending a control command to a stepper motor, controlling a camera or
audio device, and so on, are all instances of commands being sent to a device.

Let's consider a fictitious example. We have a device and are developing a (character)
device driver for it. The device has various registers, small – typically 8-, 16-, or 32-bit pieces
of hardware memory on the device – some of which are control registers. By appropriately
performing I/O (reads and writes) on them, we control the device (well, that's really the
whole point, isn't it; the actual subject matter regarding the details of working with
hardware memory including device registers will be covered in the next chapter). So, how
will you, the driver author, communicate or interface with a user space program that wants
to perform various control operations on this device? We often architect the user space C
(or C++) program to open the device typically by performing an open(2) on its device file,
and subsequently issue the read and write system calls.

But, as we just mentioned, the read(2) and write(2) system call APIs are appropriate
when transferring data while here, instead, we intend to perform control operations. So, we
need another system call to do so... Do we then need to create and encode a new system call
(or calls)? No, it's much simpler than that: we multiplex via the ioctl system call, leveraging it
to perform any required control operations upon our device! How? Ah, recall from the
previous chapter the all-important file_operations (fops) data structure; we will now
initialize another member, the .ioctl one, to our ioctl method function, thus allowing our
device driver to hook into this system call:

static struct file_operations ioct_intf_fops = {
 .llseek = no_llseek,
 .ioctl = ioct_intf_ioctl,
 [...]
};

Realistically, we shall have to figure out whether we should use ioctl or the
unlocked_ioctl member of the file_operations structure, depending on whether the
module is running on Linux kernel version 2.6.36 or later; more on this follows.

User-Kernel Communication Pathways Chapter 2

[110]

In fact, adding new system calls to the kernel is not something you should
do lightly! The kernel chaps are not open to arbitrarily adding syscalls –
it's a security-sensitive interface, after all. More on this is documented
here: https:/ ​/​www. ​kernel. ​org/​doc/ ​html/ ​latest/ ​kernel- ​hacking/
hacking. ​html#ioctls- ​not- ​writing- ​a-​new- ​system- ​call.

More on using ioctl for interfacing follows.

Using ioctl in the user and kernel space
The ioctl(2) system call's signature is as follows:

#include <sys/ioctl.h>
int ioctl(int fd, unsigned long request, ...);

The parameter list is a varargs – variable arguments – one. Realistically and typically, we pass
either two or three parameters:

The first parameter is obvious – the file descriptor of the (in our case) device file
that was opened.
The second parameter, called request, is the interesting one: it's the command
to be passed to the driver. In reality, it's an encoding, encapsulating a so-called
ioctl magic number: a number and a type (read/write).
The (optional) third parameter, often called arg, is also an unsigned long
quantity; we use it to either pass some data in the usual fashion to the underlying
driver or, often, to return data to the user space by passing its (virtual) address
and having the kernel write into it, utilizing C's so-called value-result or in-out
parameter style.

Now, using ioctl correctly is not as trivial as it is with many other APIs. Think about this for
a moment: you can easily have a scenario where several user space apps are issuing
ioctl(2) system calls (with various commands being issued) to their underlying device
drivers. A problem becomes apparent: how will the kernel VFS layer direct the ioctl request
to the correct driver? ioctl is typically performed on a char device file that has a unique
(major, minor) number; hence, how can another driver receive your ioctl command (unless
you intentionally, perhaps maliciously, set up the device file(s) in such a manner)?

https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call
https://www.kernel.org/doc/html/latest/kernel-hacking/hacking.html#ioctls-not-writing-a-new-system-call

User-Kernel Communication Pathways Chapter 2

[111]

Nevertheless, a protocol exists to achieve safe and correct usage of ioctl; every application
and driver defines a magic number that will be encoded into all its ioctl requests. First, the
driver will verify that every ioctl request it receives contains its magic number; only then
will it proceed to process it; otherwise, it will simply drop it. This, of course, brings up the
need for an ABI – we need to allocate unique magic numbers (it could be a range) to each
"registered" driver. Since this creates an ABI, the kernel document will be the same; you can
find details on who is using which magic number (or code) here: https:/ ​/​www. ​kernel. ​org/
doc/​Documentation/ ​ioctl/ ​ioctl- ​number. ​txt.

Next, an ioctl request to the underlying driver can be one of essentially four things: a
command to "write" to the device, a command to "read" from (or query) the device, a
command to do both read/write transfers, or neither. This information is (again) encoded
into a request by defining certain bits to convey the meaning: to make this job easier, we
have four helper macros that allows us to construct ioctl commands:

_IO(type,nr): Encodes an ioctl command with no argument
_IOR(type,nr,datatype): Encodes an ioctl command for reading data from
the kernel/driver
_IOW(type,nr,datatype): Encodes an ioctl command for writing data to the
kernel/driver
_IOWR(type,nr,datatype): Encodes an ioctl command for read/write transfers

These macros are defined within the user space <sys/ioctl.h> header and in the kernel
at include/uapi/asm-generic/ioctl.h. The typical (and quite obvious) best practice is
to create a common header file that defines the ioctl commands for an app/driver and
includes that file in both the user mode app, as well as the device driver.

Here, as a demonstration, we shall design and implement a user space app and a kernel
space device driver to drive a fictional device that communicates via the ioctl(2) system
call. Thus, we must define some commands to issue via the ioctl interface. We will do this in
a common header file, as shown here:

// ch2/ioctl_intf/ioctl_llkd.h

/* The 'magic' number for our driver; see Documentation/ioctl/ioctl-
number.rst
 * Of course, we don't know for _sure_ if the magic # we choose here this
 * will remain free; it really doesn't matter, this is just for demo
purposes;
 * don't try and upstream this without further investigation :-)
 */
#define IOCTL_LLKD_MAGIC 0xA8

https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt

User-Kernel Communication Pathways Chapter 2

[112]

#define IOCTL_LLKD_MAXIOCTL 3
/* our dummy ioctl (IOC) RESET command */
#define IOCTL_LLKD_IOCRESET _IO(IOCTL_LLKD_MAGIC, 0)
/* our dummy ioctl (IOC) Query POWER command */
#define IOCTL_LLKD_IOCQPOWER _IOR(IOCTL_LLKD_MAGIC, 1, int)
/* our dummy ioctl (IOC) Set POWER command */
#define IOCTL_LLKD_IOCSPOWER _IOW(IOCTL_LLKD_MAGIC, 2, int)

We must try and make the names we use in our macros meaningful. Our three commands
(highlighted in bold) are all prefixed with IOCTL_LLKD_, indicating that they are all ioctl
commands for our fictitious LLKD project; next, they are suffixed with IOC{Q|S}, with IOC
implying that it's an ioctl command, Q implying it's a query operation, and S implying it's a
set operation.

Now, let's learn how we set things up at the code level from both the user space as well as
the kernel space (driver).

User space – using the ioctl system call
The user space signature of the ioctl(2) system call is as follows:

#include <sys/ioctl.h>
int ioctl(int fd, unsigned long request, ...);

Here, we can see that it takes a variable argument list; the arguments to ioctl are as follows:

First parameter: The file descriptor of the file or device (as it will be in our case)
to perform the ioctl operation on (we get fd by performing an open on the device
file).
Second parameter: The request or command being issued to the underlying
device driver (or filesystem or whatever fd represents).
An optional third (or more) parameter(s): Often, the third parameter is an
integer (or a pointer to an integer or data structure); we use this method to either
pass some additional information to the driver, when issuing a set kind of
command, or to retrieve some information from the driver via the well-
understood pass-by-reference C paradigm, where we pass the pointer and have the
driver "poke" it, thus treating the parameter as, in effect, a return value.

User-Kernel Communication Pathways Chapter 2

[113]

In effect, ioctl is often used as a generic system call. The use of ioctl to
perform command operations on both hardware and software is almost
embarrassingly large! Please refer to the kernel documentation
(Documentation/ioctl/<...>) to see many actual real-world
examples. For example, you will find details on who is using which magic
number (or code) within ioctl here: https:/ ​/ ​www.​kernel. ​org/ ​doc/
Documentation/ ​ioctl/ ​ioctl- ​number. ​txt.
(Similarly, the ioctl_list(2) man page reveals the complete list of ioctl
calls in the x86 kernel; these documentation files seem to be pretty old,
though. The docs now seem to be here: https:/ ​/​github. ​com/ ​torvalds/
linux/ ​tree/ ​master/ ​Documentation/ ​userspace- ​api/ ​ioctl.)

Let's look at some snippets of the user space C application, particularly when it comes to
issuing the ioctl(2) system calls (for brevity and readability, we have left out the error
checking code; the full code is available in this book's GitHub repository):

// ch2/ioctl_intf/user space_ioctl/ioctl_llkd_userspace.c
#include "../ioctl_llkd.h"
[...]
ioctl(fd, IOCTL_LLKD_IOCRESET, 0); // 1. reset the device
ioctl(fd, IOCTL_LLKD_IOCQPOWER, &power); // 2. query the 'power status'

// 3. Toggle it's power status
if (0 == power) {
 printf("%s: Device OFF, powering it On now ...\n", argv[0]);
 if (ioctl(fd, IOCTL_LLKD_IOCSPOWER, 1) == -1) { [...]
 printf("%s: power is ON now.\n", argv[0]);
 } else if (1 == power) {
 printf("%s: Device ON, powering it OFF in 3s ...\n", argv[0]);
 sleep(3); /* yes, careful here of sleep & signals! */
 if (ioctl(fd, IOCTL_LLKD_IOCSPOWER, 0) == -1) { [...]
 printf("%s: power OFF ok, exiting..\n", argv[0]);
 }
[...]

How does our driver handle these user space-issued ioctls? Let's find out.

https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://www.kernel.org/doc/Documentation/ioctl/ioctl-number.txt
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl
https://github.com/torvalds/linux/tree/master/Documentation/userspace-api/ioctl

User-Kernel Communication Pathways Chapter 2

[114]

Kernel space – using the ioctl system call
In the previous section, we saw that the kernel driver will have to initialize its
file_operations structure to include the ioctl method. There is more to this, though:
the Linux kernel keeps evolving; in early kernel versions, the developers used a very coarse
granularity lock that, though it worked, quite severely hurt its performance (we will
discuss locking in detail in Chapter 6, Kernel Synchronization - Part 1, and Chapter 7, Kernel
Synchronization - Part 2). It was so bad that it was nicknamed the Big Kernel Lock
(BKL)! The good news is that by kernel release 2.6.36, the developers got rid of this
infamous lock. Doing so had some side effects, though: one of them was that the number of
parameters that get sent to the ioctl method within the kernel and thus within our
file_operations data structure changed from four to three with the newer method –
christened unlocked_ioctl. Thus, for our demo driver, we will initialize the ioctl method
with the following when initializing our driver's file_operations structure:

// ch2/ioctl_intf/kerneldrv_ioctl/ioctl_llkd_kdrv.c
#include "../ioctl_llkd.h"
#include <linux/version.h>
[...]
static struct file_operations ioctl_intf_fops = {
 .llseek = no_llseek,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)
 .unlocked_ioctl = ioctl_intf_ioctl, // use the 'unlocked' version
#else
 .ioctl = ioctl_intf_ioctl, // 'old' way
#endif
};

Clearly, as it's defined within the fops driver, ioctl is considered a private driver interface
(driver-private). Also, this same fact regarding the newer "unlocked" version has to be
taken into account in the function definition within the driver code; our driver does so:

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)
static long ioctl_intf_ioctl(struct file *filp, unsigned int cmd, unsigned
long arg)
#else
static int ioctl_intf_ioctl(struct inode *ino, struct file *filp, unsigned
int cmd, unsigned long arg)
#endif
{
[...]

User-Kernel Communication Pathways Chapter 2

[115]

The key code here is the driver's ioctl method. Think about it: once basic validity checks
have been done, all the driver really does is perform a switch-case on all possible valid ioctl
commands issued by the user space app. Let's take a look at the following code (for
readability, we will skip the #if LINUX_VERSION_CODE >= ... macro directive and just
show the modern ioctl function signature, as well as some validity checks; you can view the
full code in this book's GitHub repository):

static long ioctl_intf_ioctl(struct file *filp, unsigned int cmd, unsigned
long arg)
{
 int retval = 0;
 pr_debug("In ioctl method, cmd=%d\n", _IOC_NR(cmd));

 /* Verify stuff: is the ioctl's for us? etc.. */
 [...]

 switch (cmd) {
 case IOCTL_LLKD_IOCRESET:
 pr_debug("In ioctl cmd option: IOCTL_LLKD_IOCRESET\n");
 /* ... Insert the code here to write to a control register to reset
 the device ... */
 break;
 case IOCTL_LLKD_IOCQPOWER: /* Get: arg is pointer to result */
 pr_debug("In ioctl cmd option: IOCTL_LLKD_IOCQPOWER\n"
 "arg=0x%x (drv) power=%d\n", (unsigned int)arg, power);
 if (!capable(CAP_SYS_ADMIN))
 return -EPERM;
 /* ... Insert the code here to read a status register to query the
 * power state of the device ... * here, imagine we've done that
 * and placed it into a variable 'power'
 */
 retval = __put_user(power, (int __user *)arg);
 break;
 case IOCTL_LLKD_IOCSPOWER: /* Set: arg is the value to set */
 if (!capable(CAP_SYS_ADMIN))
 return -EPERM;
 power = arg;
 /* ... Insert the code here to write a control register to set the
 * power state of the device ... */
 pr_debug("In ioctl cmd option: IOCTL_LLKD_IOCSPOWER\n"
 "power=%d now.\n", power);
 break;
 default:
 return -ENOTTY;
 }
[...]

User-Kernel Communication Pathways Chapter 2

[116]

The _IOC_NR macro is used to extract the command number from the cmd parameter. Here,
we can see that the driver "reacts" to three valid cases of the ioctl issued via the user space
process:

On receiving the IOCTL_LLKD_IOCRESET command, it performs a device reset.
On receiving the IOCTL_LLKD_IOCQPOWER command, it queries (Q for query)
and returns the current power status (by poking its value into the third
parameter, arg, using the value-result C programming approach).
On receiving the IOCTL_LLKD_IOCSPOWER command, it sets (S for set) the power
status (to the value passed in the third parameter, arg).

Of course, since we're working with a purely fictional device, our driver does not actually
perform any register (or other hardware) work. This driver is simply a template that you
can make use of.

What if a hacker attempts to issue a command unknown to our driver in a (rather clumsy)
hack? Well, the initial validity checks will catch it; even if they don't, we shall hit the
default case in our ioctl method, resulting in the driver returning -ENOTTY to the user
space. This will, via glibc "glue" code, set the user space process (or thread's) errno value
to ENOTTY, informing it that the ioctl method cannot be serviced. Our user
space perror(3) API will display the Inappropriate ioctl for device error
message. In fact, this is precisely what occurs if a driver has no ioctl method (that is, if the
ioctl member within the file_operations structure is set to NULL) and a user space app
issues an ioctl method against it.

I leave it to you to try out this user space/driver project example; for convenience, once the
driver has been loaded (via insmod), you can use the
ch2/userspace_ioctl/cr8devnode.sh convenience script to generate the device file.
Once it's set up, run the user space app; you will find that running it in succession has the
"power state" of our fictional device get repeatedly toggled.

ioctl as a debug interface
As we mentioned at the beginning of this chapter, what about using the ioctl interface for
debug purposes? It can be used for this purpose. You can always insert a "debug"
command into the switch-case block; it can be used to provide useful information to the user
space application on the driver status, the values of key variables (health monitoring too),
and more.

User-Kernel Communication Pathways Chapter 2

[117]

Not only that, but unless it's explicitly documented to the end user or customer, the precise
commands that are used via the ioctl interface are unknown; thus, you are expected to
document the interface while providing sufficient detail for other teams or the customer to
make good use of them. This leads to an interesting point: you might choose to deliberately
leave a certain ioctl command undocumented; it's now a "hidden" command that can be
used by, say, field engineers to examine the device. (I leave doing this as an assignment to
you.)

The kernel documentation on ioctl includes this file: https:/ ​/​www. ​kernel.
org/​doc/ ​Documentation/ ​ioctl/ ​botching- ​up-​ioctls. ​txt. Though biased
toward kernel graphics stack devs, it describes typical design mistakes,
trade-offs, and more.

Fantastic – you're almost done! You have learned how to interface a kernel module or
driver with a user mode process or thread (within a user space application) via various
technologies. We began with procfs, then moved on to using sysfs and debugfs. The netlink
socket and the ioctl system call completed our look at these interfacing methods.

But with all this choice, which one should you actually use on a project? The next section
will help you make this decision by providing a quick comparison between these various
interfacing methods.

Comparing the interfacing methods – a table
In this section, we have created a quick comparison table of the various user-kernel
interfacing methods that were described in this chapter, based on a few parameters:

Parameter
/Interfacing

method
procfs sysfs

debugfs
netlink
socket ioctl

Ease of
development

Easy to
learn and
use.

(Relatively)
easy to
learn and
use.

(Very) easy
to learn and
use.

Harder;
have to
write user
space C +
driver code
+
understand
socket
APIs.

Fair/harder; have to
write user space C +
driver code.

https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt
https://www.kernel.org/doc/Documentation/ioctl/botching-up-ioctls.txt

User-Kernel Communication Pathways Chapter 2

[118]

Appropriate for
what use

Core kernel
only (a few
older
drivers
may still
use it); best
avoided by
drivers.

Device
driver
interfacing.

Driver (and
other)
interfacing
for
production
and debug
purposes.

Various
interfacing:
users
include
device
drivers,
core
networking
code, the
udev
system,
and more.

Device driver
interfacing mostly
(includes many).

Interface visibility

Visible to
all; use
permissions
to control
access.

Visible to
all; use
permissions
to control
access.

Visible to
all; use
permissions
to control
access.

Hidden
from the
filesystem;
doesn't
pollute the
kernel
namespace.

Hidden from
the filesystem;
doesn't pollute the
kernel namespace.

Upstream kernel
ABI for
driver/module
authors*

Usage in
drivers is
deprecated
for
mainline.

The "right
way"; the
formally
accepted
approach to
interface
drivers
with user
space.

Well
supported
and heavily
used in
mainline by
drivers and
other
products.

Well
supported
(since 2.2).

Well supported.

Useful for (driver)
debugging
purposes

Yes
(although
not
supposed
to in
mainline).

No/not
ideal.

Yes, very
useful! "No
rules" by
design.

No/not
ideal.

Yes; (even) via
hidden commands.

User-Kernel Communication Pathways Chapter 2

[119]

* As we mentioned earlier, the kernel community documents that procfs, sysfs, and debugfs
are all ABIs; their stability and lifespan isn't guaranteed. While that is the formal stance
adopted by the community, the reality is that plenty of actual interfaces that use these
filesystems have become de facto ones used by products in the real world. Nevertheless, we
should follow the kernel community's "rules" and guidelines regarding their usage.

Summary
In this chapter, we covered an important aspect of device driver authors – how exactly you
can interface between user and kernel (driver) space. We walked you through several
interfacing methods; we began with an older one, which is interfacing via the venerable
proc filesystem (and then mentioned why it's not the preferred method for driver authors).
We then moved on to interfacing via the newer 2.6-based sysfs. This turns out to be the
preferred interface for the user space, at least for a device driver. Sysfs has limitations,
though (recall the one-value-per-sysfs-file rule). Thus, using the completely free-format
debugfs interfacing technique makes writing debug (and other) interfaces very simple and
powerful indeed. The netlink socket is a powerful interfacing technology and is used by the
network subsystem, udev, and a few drivers; it does require some knowledge on socket
programming and the kernel socket buffer, though. To perform generic command
operations on device drivers, the ioctl system call turns out to be a tremendous multiplexer
and is often used by device driver authors (and other components) to interface with the
user space.

Armed with this knowledge, you are now in a position to practically integrate your driver-
level code with user space applications (or scripts); often, a user mode graphical user
interface (GUI) will want to display some values that have been received from the kernel
or device driver. You now know how to pass these values from the kernel space device
driver!

In the next chapter, you will learn about a typical task driver authors must perform:
working with hardware chip memory! Do ensure you're clear on this chapter's material,
work on the exercises provided, review the Further reading resources, and then dive into the
next chapter. See you there!

User-Kernel Communication Pathways Chapter 2

[120]

Questions
sysfs_on_misc: sysfs assignment #1: Extend one of the misc device drivers we1.
wrote in Chapter 1, Writing a Simple misc Character Device Driver; set up two sysfs
files and their read/write callbacks; test them from user space.

sysfs_addrxlate: sysfs assignment #2 (a bit more advanced): Address translation:2.
Exploiting the knowledge gained from this chapter and from the Linux Kernel
Programming book, Chapter 7, Memory Management Internals - Essentials, the Direct-
mapped RAM and address translation section, write a simple platform driver that
provides two sysfs interface files called addrxlate_kva2pa and
addrxlate_pa2kva. Writing a kva into the sysfs file, addrxlate_kva2pa,
should have the driver read and translate the kva into its corresponding physical
address (pa); then, reading from the same file should cause the pa to be
displayed. Do the same with the addrxlate_pa2kva sysfs file.
dbgfs_disp_pgoff: debugfs assignment #1: Write a kernel module that sets up a3.
debugfs file here: <debugfs_mount_point>/dbgfs_disp_pgoff. When read,
it should display (to user space) the current value of the PAGE_OFFSET kernel
macro.
dbgfs_showall_threads: debugfs assignment #2 : Write a kernel module that4.
sets up a debugfs file
here: <debugfs_mount_point>/dbgfs_showall_threads/dbgfs_showall_
threads. When read, it should display some attributes of every thread that's
alive. (This is similar to our code from the Linux Kernel
Programming book here: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel-
Programming/ ​tree/ ​master/ ​ch6/ ​foreach/ ​thrd_ ​showall. Note that the threads
are displayed only at insmod time; with a debugfs file, you can display
information on all the threads at any time you choose to)!
Suggested output is CSV format: TGID,PID,current,stack-
start,name,#threads. The [name] field in square brackets => kernel thread;
 #threads field should only display a positive integer; no output here implies a
single-threaded process; for
example: 130,130,0xffff9f8b3cd38000,0xffffc13280420000,[watchdog
d])

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch6/foreach/thrd_showall

User-Kernel Communication Pathways Chapter 2

[121]

ioctl assignment #1: Using the provided ch2/ioctl_intf/ code as a template,5.
write a user space C application and a kernel space (char) device driver
implementing the ioctl method. Add an ioctl command
called IOCTL_LLKD_IOCQPGOFF to return the value of PAGE_OFFSET (within the
kernel) to the user space.
ioctl_undoc: ioctl assignment #2: Using the provided ch2/ioctl_intf/ code6.
as a template, write a user space C application and a kernel space (char) device
driver implementing the ioctl method. Add a driver context data structure (we
used these in several examples), and then allocate and initialize it. Now, in
addition to the three previous ioctl commands we used, set up a fourth
undocumented command (you can call it IOCTL_LLKD_IOCQDRVSTAT). When
queried from the user space via ioctl(2), it must return the contents of the
driver context data structure to the user space; the user space C app must print
out the current content of every member of that structure.

You will find some of the questions answered in the book's GitHub
repo: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel-
Programming- ​Part- ​2/​tree/ ​main/ ​solutions_ ​to_ ​assgn.

Further reading
You can refer to the following links for more information on the topics covered in this
chapter. Some more information on using the very common I2C protocol within a Linux
device driver can be found here:

An article on the I2C protocol basics: How to use I2C in STM32F103C8T6? STM32
I2C Tutorial, March 2020: https:/ ​/ ​www.​electronicshub. ​org/ ​how- ​to- ​use-​i2c-
in-​stm32f103c8t6/ ​

Kernel documentation: Implementing I2C device drivers: https:/ ​/​www. ​kernel.
org/​doc/ ​html/ ​latest/ ​i2c/ ​writing- ​clients. ​html

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.electronicshub.org/how-to-use-i2c-in-stm32f103c8t6/
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html

3
Working with Hardware I/O

Memory
In this chapter, we will focus on an important hardware-related aspect of writing a device
driver: how exactly to access and perform I/O (input/output, reads and writes) to hardware
(or peripheral) I/O memory – the peripheral hardware chip that you are writing the driver
for.

The motivation behind the knowledge you will gain in this chapter is straightforward:
without this, how will you actually control the device? Most devices are driven by carefully
calibrated writes and reads to their hardware registers and/or peripheral memory, also
called hardware I/O memory. Linux, being a virtual memory-based OS, requires some
abstraction in the way it works with peripheral I/O memory.

In this chapter, we will cover the following topics:

Accessing hardware I/O memory from the kernel
Understanding and using memory-mapped I/O
Understanding and using port-mapped I/O

Let's get started!

Technical requirements
I assume that you have gone through the Preface section To get the most out of this book and
have appropriately prepared a guest VM running Ubuntu 18.04 LTS (or a later stable
release) and installed all the required packages. If not, I highly recommend you do this first.
To get the most out of this book, I strongly recommend you first set up the workspace
environment, including cloning this book's GitHub repository for the code, and work on it
in a hands-on fashion. The repository can be found here: https:/ ​/​github. ​com/
PacktPublishing/​Linux- ​Kernel- ​Programming- ​Part- ​2.

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2

Working with Hardware I/O Memory Chapter 3

[123]

Accessing hardware I/O memory from the
kernel
An interesting issue that you, as a device driver author, will likely face is this: you need to
be able to access and work on the I/O memory, the hardware registers, and/or hardware
memory of a peripheral chip. This is, in fact, typically the way in which the driver
programs the hardware at the level of the "metal": by issuing commands to it via its
registers and/or peripheral memory. However, there is an issue to be faced with directly
accessing hardware I/O memory on Linux. In this first section, we'll take a look at this issue
and provide a solution for it.

Understanding the issue with direct access
Now, of course, this hardware memory on the chip, the so-called I/O memory, is not RAM.
The Linux kernel refuses the module or driver author direct access to such hardware I/O
memory locations. We already know why: on a modern VM-based OS, all memory access
has to be via the Memory Management Unit (MMU) and paging tables.

Let's quickly summarize the key aspect of what was seen in the companion guide Linux
Kernel Programming in Chapter 7, Memory Management Internals – Essentials: by default,
memory is virtualized, which means that all addresses are virtual and not physical (this
includes the addresses within the kernel segment or VAS). Think of it this way: once a
virtual address is accessed by a process (or the kernel) for reading or writing or execution,
the system has to fetch the memory content at the corresponding physical address. This
involves translating the virtual address to the physical address at runtime; hardware
optimizations (the CPU caches, Translation Lookaside Buffers (TLBs), and so on) can
speed this up. The process that is carried out is as follows:

First, the CPU caches (L1-D/L1-I, L2, and so on) are checked to see whether the1.
memory referred to by this virtual address is already onboard the CPU
cache(s) silicon.
If the memory is already onboard, we have a cache hit and the work is done. If2.
not (it's a Last Level Cache—LLC miss - expensive!), the virtual address is fed to
the microprocessor MMU.
The MMU now looks for the corresponding physical address within the3.
processor TLB(s). If it's there, we have a TLB hit and the work is done; if not, we
have a TLB miss (this is expensive!).

Working with Hardware I/O Memory Chapter 3

[124]

The MMU now walks the paging tables of the user space process that made the4.
access; or, if the kernel made the access, it walks the kernel paging tables,
translating the virtual address into the corresponding physical one. At this point,
the physical address is placed on the bus and the work is done.

Please refer to TI's Technical Reference Manual for the OMAP35x at https:/
/​www. ​ti. ​com/ ​lit/ ​ug/ ​spruf98y/ ​spruf98y. ​pdf? ​ts=​1594376085647 for
more information on this; the MMU Functional Description topic (page 946)
is illustrated with excellent diagrams (for our purpose, see Figures 8.4, 8.6,
and 8.7 – the latter is a flowchart depicting the preceding procedures).

Also, we mention the fact that the actual address translation procedure is
of course very arch-dependent. On some systems, the order is as shown
here; on others (often on ARM), the MMU (including TLB lookups) is
performed first, and then the CPU caches are checked.

So, think about this: even normal RAM locations aren't really directly accessed by software
running on a modern OS; this is because its memory is virtualized. In such cases, the
paging tables (of every process, as well as the kernel itself) enable the OS to be able to
runtime translate the virtual address to its physical counterpart. (We have covered these
areas in some detail in our companion book, Linux Kernel Programming, in Chapter
7, Memory Management Internals – Essentials, in the Virtual addressing and address
translation section; do glance back at it to refresh these key points if you need to.)

Now, if we have a hardware peripheral or chip containing I/O memory, the issue seems
even more complicated if we consider the fact that this memory isn't RAM. So, is this
memory not being mapped by paging tables? Or is it? In the next section, we'll look at two
common solutions to this issue, so read on!

The solution – mapping via I/O memory or I/O
port
In order to solve this issue, we must understand that modern processors provide two broad
ways by which they can access and work with hardware I/O (peripheral chip) memory:

By reserving some region(s) of the processor's address space for these peripheral
devices; that is, by using memory-mapped I/O (MMIO) as a mapping type for
I/O.

https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647
https://www.ti.com/lit/ug/spruf98y/spruf98y.pdf?ts=1594376085647

Working with Hardware I/O Memory Chapter 3

[125]

By providing distinct assembly (and the corresponding machine) CPU
instructions to directly access the I/O memory. Using such a mapping type for
I/O is called port-mapped I/O (PMIO or simply PIO).

We shall consider both of these techniques in the Understanding and using memory-mapped
I/O and Understanding and using port-mapped I/O sections, respectively. Before we do that,
though, we need to learn how to politely ask the kernel for permission to use these I/O
resources!

Asking the kernel's permission
Think about this for a moment: even if you know which API(s) to use to map or work upon
I/O memory in some manner, first, you need to request permission from the OS. After all,
the OS is the system's overall resource manager and you must ask it nicely before using its
resources. Well, there's more to this, of course – when you ask it, what you're really doing is
asking it to set up some internal data structures that allow the kernel to understand which
driver or subsystem is using what I/O memory region or port.

Before performing any peripheral I/O, you are expected to ask the kernel for permission to
do so, and assuming you get it, you perform the I/O. After this, you are expected to release
the I/O region back to the kernel. The following steps are involved in this process:

Before I/O: Request access to the memory or port region.1.
Having received the green light from the kernel core, perform the actual I/O:2.
You use either MMIO or PMIO to do this (details are provided in the following
table).
After I/O: Release the memory or port region back to the OS.3.

So, how do you perform these request, I/O, and release operations? There are APIs that can
do this, and the ones you should use depend on whether you are using MMIO or PMIO.
The following table summarizes the APIs you should use before performing I/O and then
releasing the region after this work has been done (the actual APIs that perform I/O will be
covered later):

Method of access to I/O
memory MMIO PMIO

Before performing any I/O,
request access to the I/O
memory/port region.

 request_mem_region() request_region()

Perform the I/O operation. (See the MMIO – performing the
actual I/O section)

(See the PMIO – performing the actual
I/O section)

Working with Hardware I/O Memory Chapter 3

[126]

After performing the I/O
operation, release the region. release_mem_region() release_region()

The functions shown in the preceding table are defined as macros in
the linux/ioport.h header; their signatures are as follows:

request_mem_region(start, n, name); [...] ; release_mem_region(start, n);
request_region(start, n, name); [...] ; release_region(start, n);

All these macros are essentially wrappers over
the __request_region() and __release_region() internal APIs. The parameters for
these macros are as follows:

start is the beginning of the I/O memory region or port; for MMIO, it's a
physical (or bus) address, while for PMIO, it's a port number.
n is the length of the region that's being requested.
name is any name you'd like to associate the mapped region or port range with.
It's usually the name of the driver that performs the I/O operation (you can see it
within the proc filesystem; we'll look at this in more detail when we cover how to
use MMIO and PMIO).

The return value from the request_[mem_]region() APIs/macros is a pointer to a
struct resource (again, more on this in the Obtaining the device resources section). If NULL
is returned, this implies that the resource failed to be reserved; the driver typically returns -
EBUSY, signaling that the resource is now busy or unavailable (possibly because another
component/driver has already requested and is currently using it).

We will provide some actual examples of using these APIs/macros in the coming sections.
Now, let's learn how to actually map and work with I/O memory. We will begin with the
common approach that pretty much all modern processors support; that is, MMIO.

Understanding and using memory-mapped
I/O
In the MMIO approach, the CPU understands that a certain region (or several) of its
address space is reserved for I/O peripheral memory. You can actually look up the region(s)
by referring to the physical memory map of a given processor's (or SoC's) datasheet.

Working with Hardware I/O Memory Chapter 3

[127]

To help make this clearer, let's take a look at a real example: the Raspberry Pi. As you'll be
aware, this popular board uses a Broadcom BCM2835 (or later) SoC. The BCM2835 ARM
Peripherals document at https:/ ​/​github. ​com/ ​raspberrypi/ ​documentation/ ​blob/ ​master/
hardware/​raspberrypi/ ​bcm2835/ ​BCM2835- ​ARM-​Peripherals. ​pdf, on page 90, provides a
screenshot of a small portion of its physical memory map. The mapping of the SoC's
General Purpose Input/Output (GPIO) registers shows a portion of the hardware I/O
memory in the processor's address space:

Figure 3.1 – Physical memory map on the BCM2835 showing the GPIO register bank

Well, the reality is more complex; the BCM2835 SoC has multiple MMUs:
one – the VC/ARM MMU (VC stands for VideoCore here) – translates the
ARM bus address into the ARM physical address, after which the regular
ARM MMU translates the physical address into a virtual address. Take a
look at the diagram on page 5 of the aforementioned BCM2835 ARM
Peripherals document to see this.

https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf

Working with Hardware I/O Memory Chapter 3

[128]

As we can see, this is a register block (or bank), a collection of 32-bit registers serving a
similar purpose (here, GPIO). In the preceding figure, the crucial column for our current
purpose is the first one, which is the Address column: this is the physical or bus address
and is the location in the ARM processor's physical address space where it sees the GPIO
registers. It begins at 0x7e20 0000 (as that's the very first address in the preceding
screenshot) and has a finite length (here, it's documented as having 41 registers of 32 bits
each, so we'll take the length of the region as 41 * 4 bytes).

Using the ioremap*() APIs
Now, as we saw in the Understanding the issue with direct access section, attempting to
perform I/O directly on these physical or bus addresses simply won't work. The way we
should do this is by telling Linux to map these bus addresses into the kernel's VAS so that
we can access it through kernel virtual addresses (KVAs)! How do we do this? The kernel
provides APIs for this express purpose; a very common one that driver authors use is the
ioremap() API. Its signature is as follows:

#include <asm/io.h>
void __iomem *ioremap(phys_addr_t offset, size_t size)

The asm/io.h header becomes an arch-specific header file as required. Notice how the first
parameter to ioremap() is a physical (or bus) address (it's data type is phys_addr_t). This
is one of the rare cases in Linux where you, as a driver author, have to supply a physical
– not a virtual – address (the other typical case being when performing Direct Memory
Access (DMA) operations). The second parameter is obvious; this is the size or length of the
memory I/O region we must map. When invoked, the ioremap() routine will map the I/O
chip or peripheral memory starting from offset for a length of size bytes into the kernel's
VAS! This is necessary - running with kernel privilege, your driver can now access this I/O
memory region via the return pointer and thus perform I/O on the memory region.

Think about it! Just like the mmap() system call allows you to memory
map a region of KVA space to a user space process, the
[devm_]ioremap*() (and friends) APIs allow you to map a region of
peripheral I/O memory to the KVA space.

The ioremap() API returns a KVA of the void * type (since it's an address location). So,
what's the peculiar-looking __iomem directive here (void __iomem *)? It's simply a
compiler attribute that is wiped away at build time; it's merely there to remind us humans
(as well as to perform sanity checking or look at static analysis code) that this is an I/O
address and not your regular RAM address!

Working with Hardware I/O Memory Chapter 3

[129]

So, for the preceding example, on a Raspberry Pi device, you can map the GPIO register
bank to a KVA by doing the following (this isn't the actual code, but an example to show
you how ioremap() API can be invoked):

#define GPIO_REG_BASE 0x7e200000
#define GPIO_REG_LEN 164 // 41 * 4
static void __iomem *iobase;
[...]
if (!request_mem_region(GPIO_REG_BASE, GPIO_REG_LEN, "mydriver")) {
 dev_warn(dev, "couldn't get region for MMIO, aborting\n");
 return -EBUSY; // or -EINVAL, as appropriate
}
iobase = ioremap(GPIO_REG_BASE, GPIO_REG_LEN);
if (!iobase) // handle any error
 [... perform the required IO ...]
iounmap(iobase);
release_mem_region(GPIO_REG_BASE, GPIO_REG_LEN);

The iobase variable now holds the return value from ioremap(); it's a KVA, a kernel
virtual address. You can now use it, as long as it's non-NULL (you are expected to verify
this!). So, in this example, the return value from the ioremap() is the place in kernel VAS
where the GPIO registers (the peripheral I/O memory) of the Raspberry Pi is now mapped
and available.

Once done, you're expected to unmap the mapping (as can be seen in the preceding code
fragment) using the iounmap() API; the parameter to the iounmap() API is obvious - the
start of the I/O mapping (the value returned by the ioremap()):

void iounmap(volatile void __iomem *io_addr);

So, when we map the (GPIO registers) I/O memory into kernel VAS, we get a KVA so that
we can work with it. Interestingly, the return value from the ioremap() API is typically an
address within the vmalloc region of the kernel VAS (refer back to the companion guide
Linux Kernel Programming - Chapter 7, Memory Management Internals – Essentials, for these
details). This is because ioremap usually allocates and uses the required virtual memory
for mapping from the kernel's vmalloc region (this is not always the case though; variants
such as ioremap_cache() can use a region outside the vmalloc one). Here, let's say the
return value – our iobase address – is 0xbbed 8000 (refer to Figure 3.2: with a 2:2 GB VM
split here, you can see that the iobase return address is indeed a KVA within the kernel's
vmalloc region).

The following is a conceptual diagram showing this:

Working with Hardware I/O Memory Chapter 3

[130]

Figure 3.2 – The physical-to-virtual mapping of I/O peripheral memory

Comparing the preceding diagram (Figure 3.2) with our detailed diagram of kernel VAS on
the Raspberry Pi, which we covered in the companion guide Linux Kernel Programming
in Chapter 7, Memory Management Internals - Essentials (Figure 7.12), is something interesting
to do.

(It's also educative to see a similar diagram showing the physical/virtual mapping of the
memory on the Aarch64 or ARM64 processor; you can look it up in the official ARM
documentation; that is, ARM Cortex-A Series Programmer's Guide for ARMv8-A, under
the The Memory Management Unit section – check out Figure 12.2: https:/ ​/​developer. ​arm.
com/​documentation/ ​den0024/ ​a/ ​The- ​Memory- ​Management- ​Unit.)

https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit

Working with Hardware I/O Memory Chapter 3

[131]

The newer breed – the devm_* managed APIs
Now that you understand how to use the request_mem_region() and the just-seen
ioremap*() APIs, guess what? The reality is that both these APIs are now considered
deprecated; as a modern driver author, you're expected to use the better resource-managed
devm_* APIs. (We covered the older ones for a few reasons, including the fact that many
older drivers still very much use them, for understanding the basics of using the
ioremap() resource management APIs, and for completeness.)

First, let's check out the new resource-managed ioremap, known as devm_ioremap(),
in lib/devres.c:

/**
 * devm_ioremap - Managed ioremap()
 * @dev: Generic device to remap IO address for
 * @offset: Resource address to map
 * @size: Size of map
 *
 * Managed ioremap(). Map is automatically unmapped on driver detach.
 */
void __iomem *devm_ioremap(struct device *dev, resource_size_t offset,
 resource_size_t size)

Just as we learned with regard to the very common kmalloc/kzalloc APIs (refer to the
companion guide Linux Kernel Programming, Chapter 8, Kernel Memory Allocation for Module
Authors – Part 1), the devm_kmalloc() and the devm_kzalloc() APIs simplify life for us
as they guarantee that they'll free the memory that's been allocated on device detach
or driver removal. In a similar fashion, using devm_ioremap() implies that you don't need
to explicitly invoke the iounmap() API since the kernel's devres framework will handle it
upon driver detach!

Again, since this book is not primarily focused on writing device drivers,
we shall mention bit not delve into deep details of using the modern
Linux Device Model (LDM) with the probe() and
remove()/disconnect() hooks. Other literature dedicated to this subject
can be found in the Further reading section, at the end of this chapter.

Note that the first parameter of any devm_*() API is the pointer to struct device (we
showed you how to obtain this in Chapter 1, Writing a Simple misc Character Device Driver,
when we covered how to write a simple misc driver).

Working with Hardware I/O Memory Chapter 3

[132]

Obtaining the device resources
The second parameter of the devm_ioremap() API (see its signature in the preceding
section) is resource_size_t offset. The formal parameter name offset is a bit
misleading – it's really the physical or bus address of the peripheral I/O memory region
that's used to remap to kernel VAS (in fact, the resource_size_t data type is nothing but
a typedef for phys_addr_t, a physical address).

This and the following section's coverage is important for Linux device
driver authors since it introduces some key ideas (the Device Tree (DT),
the platform and devres APIs, and so on) and encompasses some very
common strategies that are employed.

But how will you obtain this first parameter to the devm_ioremap() API - the bus or
physical address? An FAQ indeed! Well, of course, this is very device-specific. Having said
that, the starting bus or physical address is just one of several I/O resources that the driver
author can – and at times, must – specify. The Linux kernel provides a powerful
framework – the I/O resource management framework – for exactly this purpose in that it
allows you to get/set hardware resources.

There are several kinds of resources available; it includes device MMIO
ranges, I/O port ranges, interrupt request (IRQ) lines, register offsets,
DMAs, and bus values.

Now, in order for all this to work, the I/O resources have to be specified on a per-device
basis. There are two broad ways in which this is done:

The traditional approach: By hard-coding them (the I/O resources) into the
kernel source tree in what's often called board-specific files. (For example, for the
popular ARM CPU, these are typically found at arch/arm/mach->foo/...,
where foo is the machine (mach) or platform/board name. As a further example,
the number of platform devices defined within these board-specific files was
1,670 with Linux 3.10.6; migrating to the modern DT approach has had this
number reduce to 885 for the 5.4.0 kernel source tree.)

Working with Hardware I/O Memory Chapter 3

[133]

The modern approach: By placing them (the I/O resources) in a way that they
can be discovered at boot by the OS; this is usually done for embedded systems,
such as ARM-32, AArch64, and PPC, by describing the hardware topology of a
board or platform (all the hardware stuff on it, such as the SoC, CPUs,
peripherals, disks, flash chips, sensor chips, and so on) via a hardware-specific
language called the DT (analogous to VHDL). The Device Tree Source
(DTS) files live under the kernel source tree (for ARM,
in arch/arm/boot/dts/) and are compiled at kernel build time (via the DT
compiler; that is, dtc) into a binary format called the Device Tree Blob (DTB).
The DTB is typically passed along at boot by the bootloader to the kernel. During
early boot, the kernel reads in, flattens, and interprets the DTB, creating platform
(and other) devices as required, and then binds them to their appropriate drivers.

The DT isn't present for x86[_64] systems. The closest equivalent is
perhaps the ACPI tables. Also, note that the DT isn't a Linux-specific
technology; it was designed to be OS-agnostic, and the generic org is
called Open Firmware (OF).

As we mentioned previously, with this modern model, the kernel and/or the device driver
must obtain the resource information (which is populated inside
a include/linux/ioport.h:struct resource) from the DTB. How? One common way
in which a platform driver usually does this is via the platform_get_*() APIs.

We hope to make this clear with an example from a Video For Linux (V4L) media
controller driver within the kernel source. This driver is for the SP5 TV mixer on the
Samsung Exynos 4 SoC (used in some Galaxy S2 models). There's even some kernel
documentation on this, under the V4L driver-specific documentation section: https:/ ​/​www.
kernel.​org/​doc/​html/ ​v5. ​4/​media/ ​v4l- ​drivers/ ​fimc. ​html#the- ​samsung- ​s5p- ​exynos4-
fimc-​driver.

The following code can be found at drivers/gpu/drm/exynos/exynos_mixer.c. Here,
the driver exploits the platform_get_resource() API to obtain the value of the I/O
memory resource; that is, the start physical address of the I/O memory for that peripheral
chip:

 struct resource *res;
 [...]
 res = platform_get_resource(mixer_ctx-pdev, IORESOURCE_MEM, 0);
 if (res == NULL) {
 dev_err(dev, "get memory resource failed.\n");
 return -ENXIO;
 }

https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/fimc.html#the-samsung-s5p-exynos4-fimc-driver

Working with Hardware I/O Memory Chapter 3

[134]

 mixer_ctx->mixer_regs = devm_ioremap(dev, res-start,
 resource_size(res));
 if (mixer_ctx->mixer_regs == NULL) {
 dev_err(dev, "register mapping failed.\n");
 return -ENXIO;
 }
 [...]

In the preceding code snippet, the driver issues the platform_get_resource() API to
fetch the pointer to the resource structure for the IORESOURCE_MEM type resource (MMIO
memory!). It then issues the devm_ioremap() API to map this MMIO region into kernel
VAS (as explained in some detail in the previous section). Using the devm version alleviates
the need for manually unmapping the I/O memory when this is done (or due to an error),
thus reducing the chance of leaks!

All in one with the devm_ioremap_resource() API
As a driver author, you should become aware of and employ this useful routine: the
devm_ioremap_resource() managed API performs the job of (validity) checking the
requested I/O memory region, requesting it from the kernel (internally via
the devm_request_mem_region() API), and remapping it (internally via
devm_ioremap())! This makes it a useful wrapper for driver authors like you, and its
usage is pretty common (in the 5.4.0 kernel code base, it's employed over 1,400 times). Its
signature is as follows:

void __iomem *devm_ioremap_resource(struct device *dev, const struct
resource *res);

Here's a usage example from drivers/char/hw_random/bcm2835-rng.c:

static int bcm2835_rng_probe(struct platform_device *pdev)
{
 [...]
 struct resource *r;
 [...]
 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 /* map peripheral */
 priv->base = devm_ioremap_resource(dev, r);
 if (IS_ERR(priv->base))
 return PTR_ERR(priv->base);
 [...]

Working with Hardware I/O Memory Chapter 3

[135]

Again, as is typical with the modern LDM, this code is executed as part of the probe routine
of the driver. Also (again, this is very common), the platform_get_resource() API is
employed first in order to fetch and place the value of the physical (or bus) address in a
resource structure, whose address is passed as the second parameter to
devm_ioremap_resource(). The I/O memory, using MMIO, is now checked, requested,
and remapped to kernel VAS, ready for the driver to use!

You may have come across the devm_request_and_ioremap() API
which was commonly used for similar purposes; back in 2013, it was
replaced with the devm_ioremap_resource() API.

Finally, there are several variants of ioremap(). The [devm_]ioremap_nocache()
and ioremap_cache() APIs are such examples and affect the CPU's caching modes.

Driver authors would do well to carefully read the (arch-specific)
comments in the kernel source where these routines are; for example, on
the x86 at arch/x86/mm/ioremap.c:ioremap_nocache().

Now, having covered this important section on how to get resource information and use
the modern devm_*() managed APIs, let's learn how to interpret the output from /proc
with regard to MMIO.

Looking up the new mapping via /proc/iomem
Once you have performed a mapping (via one of the just-
covered [devm_]ioremap*()APIs), it can actually be seen via the read-only pseudo-file;
that is, /proc/iomem. The reality is that a new entry under /proc/iomem is generated
when you successfully call request_mem_region(). Viewing it requires root access (more
correctly, you can view it as non-root but will only see all the addresses as 0; this is for
security purposes). So, let's take a look at this on our trusty x86_64 Ubuntu guest VM. In the
following output, due to lack of space and for clarity, we'll show it partially truncated:

$ sudo cat /proc/iomem
[sudo] password for llkd:
00000000-00000fff : Reserved
00001000-0009fbff : System RAM
0009fc00-0009ffff : Reserved
000a0000-000bffff : PCI Bus 0000:00
000c0000-000c7fff : Video ROM
000e2000-000ef3ff : Adapter ROM

Working with Hardware I/O Memory Chapter 3

[136]

000f0000-000fffff : Reserved
000f0000-000fffff : System ROM
00100000-3ffeffff : System RAM
18800000-194031d0 : Kernel code
194031d1-19e6a1ff : Kernel data
1a0e2000-1a33dfff : Kernel bss
3fff0000-3fffffff : ACPI Tables
40000000-fdffffff : PCI Bus 0000:00
[...]
fee00000-fee00fff : Local APIC
fee00000-fee00fff : Reserved
fffc0000-ffffffff : Reserved
$

The really important thing to realize is that the address ranges shown in the left hand-side
column are not virtual – they are physical (or bus) addresses. You can see where the
system (or platform) RAM is mapped. Also, within it, you can see where exactly the kernel
code, data, and bss sections are (in terms of physical addresses). In fact, my procmap utility
(https:/​/​github.​com/ ​kaiwan/ ​procmap) uses precisely this information (converting the
physical addresses to virtual).

For some contrast, let's run the same command on our Raspberry Pi 3 device (the B+ model
sports a Broadcom BCM2837 SoC with a quad-core ARM Cortex A53). Again, due to space
restrictions and for clarity, we'll show a partially truncated part of the output:

pi@raspberrypi:~ $ sudo cat /proc/iomem
00000000-3b3fffff : System RAM
00008000-00bfffff : Kernel code
00d00000-00e74147 : Kernel data
3f006000-3f006fff : dwc_otg
3f007000-3f007eff : dma@7e007000
[...]
3f200000-3f2000b3 : gpio@7e200000
3f201000-3f2011ff : serial@7e201000
3f201000-3f2011ff : serial@7e201000
3f202000-3f2020ff : mmc@7e202000
[...]
pi@raspberrypi:~ $

https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap

Working with Hardware I/O Memory Chapter 3

[137]

Notice how the GPIO register bank shows up as gpio@7e200000, which, as we saw
in Figure 3.1, is the physical address. You may be wondering why the format on ARM looks
different from that of the x86_64. What does the left column now mean? Here, the kernel
allows the BSP/platform team to decide on how exactly they construct and set up (via
/proc/iomem) the I/O memory regions for display, which makes sense! They know the
hardware platform best. We mentioned this previously, but the fact is that the BCM2835
SoC (which the Raspberry Pi uses) has multiple MMUs. One such MMU is the coarse
granularity VC/ARM MMU, which translates the ARM bus address into an ARM physical
address, after which the regular ARM MMU translates the physical address into a virtual
address. Hence, here, the ARM bus address start-end values show up in the left column
and the ARM physical address shows as suffixed to the @ symbol (gpio@xxx). So, for the
preceding GPIO registers being mapped, the ARM bus addresses
are 3f200000-3f2000b3 and the ARM physical address is 0x7e200000.

Let's finish this section by mentioning a few more points regarding the /proc/iomem
pseudo-file:

/proc/iomem displays the physical (and/or bus) addresses currently being
mapped by the kernel and/or various device drivers. However, the exact display
format is very arch- and device-dependent.
An entry is generated for /proc/iomem whenever the request_mem_region()
API runs.
The entry is removed when the corresponding release_mem_region() API
runs.
You can find the relevant kernel code
at kernel/resource.c:ioresources_init().

So, now that you have the I/O memory region successfully mapped to kernel VAS, how will
you actually read/write this I/O memory? What are the APIs for MMIO? The next section
delves into this topic.

MMIO – performing the actual I/O
When working with the MMIO approach, the peripheral I/O memory is mapped to the
kernel VAS, and thus appears to you – the driver author – as plain old memory, just like
RAM. We need to be careful here: there are caveats and cautions to be observed. You
are not expected to treat the region as plain old RAM and access it directly via the usual C
routines!

Working with Hardware I/O Memory Chapter 3

[138]

In the upcoming sections, we'll show you how to perform I/O (reads and writes) for any
peripheral I/O region that's been remapped via the MMIO approach. We'll begin with the
very common case of performing small (1- to 8-byte) I/O, then move on to repeating I/O,
before looking at how to memset and memcpy an MMIO region.

Performing 1- to 8-byte reads and writes on MMIO
memory regions
So, how exactly can you access and perform I/O (reads and writes) on peripheral I/O
memory via the MMIO approach? The kernel provides APIs allowing you to both read and
write chip memory. By using these APIs (or macros/inline functions), you can perform I/O,
such as reads and writes, in four possible bit-widths; that is, 8-bit, 16-bit, 32-bit, and, on 64-
bit systems, 64-bit:

MMIO reads: ioread8(), ioread16(), ioread32(), and ioread64()
MMIO writes: iowrite8(), iowrite16(), iowrite32(), and iowrite64()

The signatures of the I/O read routines are as follows:

#include <linux/io.h>
u8 ioread8(const volatile void __iomem *addr);
u16 ioread16(const volatile void __iomem *addr);
u32 ioread32(const volatile void __iomem *addr);
#ifdef CONFIG_64BIT
u64 ioread64(const volatile void __iomem *addr);
#endif

The single parameter for the ioreadN() APIs is the address of the I/O memory location
that must be read from. Typically, it's the return value that's obtained from one of the
ioremap() APIs we have seen, plus an offset (the offset could be 0). Adding an offset to
the base (__iomem) address is a very common thing since hardware designers deliberately
lay out registers in such a way that they can be easily sequentially accessed, as an array (or
register bank), by software! Driver authors take advantage of this. Of course, there's no
shortcut for this as you cannot assume anything – you have to carefully study the datasheet
for the particular I/O peripheral you're writing the driver for; the devil lies in the details!

The u8 return type is a typedef specifying an unsigned 8-bit data type (conversely, the s
prefix denotes a signed data type). The same goes for the other data types (there's s8, u8,
s16, u16, s32, u32, s64, and u64, all very useful and unambiguous).

Working with Hardware I/O Memory Chapter 3

[139]

The signatures of the I/O write routines are as follows:

#include <linux/io.h>
void iowrite8(u8 value, volatile void __iomem *addr);
void iowrite16(u16 value, volatile void __iomem *addr);
void iowrite32(u32 value, volatile void __iomem *addr);
#ifdef CONFIG_64BIT
void u64 iowrite64(u64 value, const volatile void __iomem *addr);
#endif

The first parameter for the iowriteN() APIs is the value to write (of the appropriate bit-
width), while the second parameter specifies the location to write it to; that is, the MMIO
address (again, this is obtained via one of the *ioremap*() APIs). Notice that there's no
return value. This is because these I/O routines literally work on the hardware, so there's no
question of them failing: they always succeed! Now, of course, your driver may still not
work, but this could be due to any number of reasons (resource unavailable, wrongly
mapped, using the wrong offset, timing or synchronization issues, and so on). However,
the I/O routines will still work.

A common test that driver authors use to fundamentally test the
driver's/hardware's sanity is that they write a value, n, into a register and
read it back; you should get the same value (n). (Of course, this only holds
true if the register/hardware won't immediately change or consume it.)

Performing repeating I/O on MMIO memory regions
The ioread[8|16|32|64]() and iowrite[8|16|32|64]() APIs can work upon small
data quantums ranging from 1 to 8 bytes only. But what if we'd like to read or write a few
dozen or a few hundred bytes? You can always encode these APIs in a loop. However, the
kernel, anticipating exactly this, provides helper routines that are more efficient, that
internally use a tight assembly loop. These are the so-called repeating versions of the
MMIO APIs:

For reading, we have the ioread[8|16|32|64]_rep() set of APIs.
For writing, we have the iowrite[8|16|32|64]_rep() set of APIs.

Let's look at the signature for one of them; that is, an 8-bit repeating read. The remaining
reads are completely analogous:

#include <linux/io.h>

void ioread8_rep(const volatile void __iomem *addr, void *buffer, unsigned
int count);

Working with Hardware I/O Memory Chapter 3

[140]

This will read count bytes from the source address, addr (an MMIO location), into the
(kernel-space) destination buffer specified by buffer. Similarly, the following is the
signature for the repeating 8-bit write:

void iowrite8_rep(volatile void __iomem *addr, const void *buffer, unsigned
int count);

This will write count bytes from the source (kernel-space) buffer (buffer) into the
destination address, addr (an MMIO location).

Besides these APIs, the kernel does have a few helpers that are variations of this; for
example, for endianness, it provides ioread32be(), where be is big-endian.

Setting and copying on MMIO memory regions
The kernel also provides helper routines for the memset() and memcpy() operations when
using MMIO. Note that you must use the following helpers:

#include linux/io.h

void memset_io(volatile void __iomem *addr, int value, size_t size);

This will set the I/O memory from the start address, addr (an MMIO location), to the value
specified by the value parameter for size bytes.

For the purpose of copying memory, two helper routines are available, depending on
the direction of the memory transfer:

void memcpy_fromio(void *buffer, const volatile void __iomem *addr, size_t
size);
void memcpy_toio(volatile void __iomem *addr, const void *buffer, size_t
size);

The first copies memory from the MMIO location addr to the (kernel-space) destination
buffer (buffer) for size bytes; the second routine copies memory from the (kernel-space)
source buffer (buffer) to the destination MMIO location addr for size bytes. Again, for
all these helpers, notice that there is no return value; they always succeed. Also, for all the
preceding routines, ensure you include the linux/io.h header.

Originally, the asm/io.h header was typically included. However, now,
the linux/io.h header is an abstraction layer above it and internally
includes the asm/io.h file.

Working with Hardware I/O Memory Chapter 3

[141]

Something to be aware of is that the kernel has older helper routines for performing MMIO;
these are the read[b|w|l|q]() and write[b|w|l|q]() API helpers. Here, the letter
that's suffixed to the read/write specifies the bit width; it's really very simple:

b: Byte-wide (8 bits)
w: Word-wide (16 bits)
l: Long-wide (32 bits)
q: Quad-word-wide (64 bits); only available on 64-bit machines

Note that with modern kernels, you are not expected to use these routines, but rather the
aforementioned ioread/iowrite[8|16|32|64]() API helpers. The only reason we're
mentioning them here is that there are still several drivers using these older helper routines.
The syntax and semantics are completely analogous to the newer helpers, so I'll leave it to
you to look them up if required.

Let's end this section by summarizing (without paying too much attention to all the details
we've covered so far) the typical sequence that drivers follow when performing MMIO:

Request the memory region from the kernel1.
via request_mem_region() (generates an entry in /proc/iomem).
Remap the peripheral I/O memory to kernel VAS2.
via [devm_]ioremap[_resource|[no]cache(); modern drivers typically use
the managed devm_ioremap() (or the devm_ioremap_resource() API) to do
so
Perform the actual I/O via one or more of the modern helper routines:3.

ioread[8|16|32|64]()

iowrite[8|16|32|64]()

memset_io() / memcpy_fromio() / memcpy_toio()

(Older helper routines: read[b|w|l|q]() and write[b|w|l|q]())

When done, unmap the MMIO region; that is, iounmap(). This is only done if4.
required (when using the managed devm_ioremap*() APIs, this is
unnecessary).
Release the MMIO region back to the kernel via release_mem_region() (clears5.
the entry in /proc/iomem).

Working with Hardware I/O Memory Chapter 3

[142]

With MMIO being a powerful means to communicate with peripheral chips, you might
imagine that all drivers (including the so-called bus drivers) are designed and written to
use it (and/or port I/O) but this isn't true. This is due to performance issues. After all is said
and done, performing MMIO (or PMIO) on a peripheral requires the processor's continuous
interaction and attention. This, on many classes of devices (think about streaming high-
definition media content on your smartphone or tablet!), is just far too slow. So, what's the
high-performance way of communicating with a peripheral device? The answer is DMA, a
topic that's unfortunately beyond the scope of this book (do look at the Further
reading section for suggestions on useful driver books and resources on DMA). So, where is
MMIO used? Realistically, it's used for plenty of lower speed peripherals, including for
status and control operations.

While MMIO is the most common way of performing I/O on peripherals, port I/O is
another. So, let's learn how to work with it.

Understanding and using port-mapped I/O
As we mentioned earlier in the The solution – mapping via I/O memory or I/O port section,
besides MMIO, there is another way to perform I/O on peripheral device memory called
PMIO, or often simply PIO. It works quite differently from MMIO. Here, the CPU has
distinct assembly (and corresponding machine) instructions to enable it to directly read and
write I/O memory locations. Not only that, but this I/O memory range is a separate address
space altogether, distinct from RAM. These memory locations are called ports. Don't
confuse the term port that's being used here with the same term that's used in networking
technology; think of this port as an hardware register in that it closely approximates the
meaning. (While it's usually 8-bit, peripheral chip registers can actually be of three bit
widths: 8, 16, or 32 bits.)

The reality is that most modern processors, even if they do support PMIO with a separate
I/O port address space, tend to mostly use the MMIO approach for peripheral I/O mapping.
The mainstream processor family that does support PMIO and employs it often – in
addition to MMIO – is the x86. On these processors, as documented in their physical
memory map, is a range of address locations reserved for this purpose. This is called
the port address range and typically - on the x86 - spans from physical address 0x0 to
0xffff; that is, 64 kilobytes in length. What registers does this region contain? Typically,
on the x86, there are registers (usually data/status/control) for various I/O peripherals.
Some common ones include the i8042 keyboard/mouse controller chip, DMA controller
(DMAC), timers, RTC, and so on. We'll look at these in more detail in the Looking up the
ports via /proc/ioports section.

Working with Hardware I/O Memory Chapter 3

[143]

PMIO – performing the actual I/O
Port I/O is pretty simple compared to all the hoopla we saw with MMIO. This is because
the processor provides machine instructions to directly perform the work. Of course, just
like MMIO, you are expected to politely ask the kernel for permission to access a PIO
region (we covered this in the Asking the kernel's permission section). The APIs for doing this
are request_region() and release_region() (their parameters are identical to their
MMIO counterpart APIs).

So, how can you access and perform I/O (reads and writes) upon the I/O port(s)? Again, the
kernel provides API wrappers over the underlying assembly/machine instructions to do so
for both reading and writing. Using them, you can perform I/O reads and writes in three
possible bit-widths; that is, 8-bit, 16-bit, and 32-bit:

PMIO reads: inb(), inw(), and inl()
PMIO writes: outb(), outw(), and outl()

Quite intuitively, b implies byte-wide (8 bits), w implies word-wide (16 bits), and l implies
long-wide (32 bits).

The signatures of the port I/O read routines are as follows:

#include <linux/io.h>
u8 inb(unsigned long addr);
u16 inw(unsigned long addr);
u32 inl(unsigned long addr);

The single parameter for the in[b|w|l]() wrappers is the port address of the port I/O
memory location that will be read from. We covered this in the Obtaining the device resources
section (a really key section for driver developers like you!). A port is also a resource, which
means it can be obtained in the usual manner: on modern embedded systems, this is done
by parsing the device tree (or ACPI tables); the older way was to hard-code the values within
board-specific source files. Actually, for many common peripherals, the port number or
port address range is a well-known one, which means it can be hard-coded into the driver
(this often occurs in the driver's header files). Again, it's best to not simply assume
anything, ensure you refer to the datasheet for the peripheral in question.

Now, let's get back to the APIs. The return value is an unsigned integer (with the bit-width
varying, depending on the helper routine being used). It's the current value on that port
(register) at the instant the read was issued.

Working with Hardware I/O Memory Chapter 3

[144]

The signatures of the port I/O write routines are as follows:

#include <linux/io.h>
void outb(u8 value, unsigned long addr);
void outw(u16 value, unsigned long addr);
void outl(u32 value, unsigned long addr);

The first parameter is the value to be written to the hardware (port), while the second
parameter is the port address of the port I/O memory to write to. Again, as with MMIO,
there's no question of failure since these helper I/O routines always succeed. On the x86 at
least, a write to an I/O port is guaranteed to be completed before the next instruction is
executed.

A PIO example – the i8042
To help make things clearer, let's look at a few code snippets from the device driver for the
i8042 keyboard and mouse controller, which, though nowadays considered quite old, is still
very common on x86 systems.

You can find a basic schematic of the 8042 controller here: https:/ ​/​wiki.
osdev. ​org/ ​File:Ps2- ​kbc. ​png.

The interesting bits (for us, at least) are in the driver's header file:

// drivers/input/serio/i8042-io.h
/*
 * Register numbers.
 */
#define I8042_COMMAND_REG 0x64
#define I8042_STATUS_REG 0x64
#define I8042_DATA_REG 0x60

In the preceding code snippet, we can see the I/O ports or hardware registers that this
driver works with. How come the status and data registers resolve to the same I/O port
(0x64) address? The direction matters: reading it has I/O port 0x64 behave as the status
register, while writing to it has it behave as the command register! Furthermore, the
datasheet will show you that these are 8-bit registers; so, here, the actual I/O is performed
via the inb() and outb() helpers. The driver abstracts these further in small inline
routines:

[...]
static inline int i8042_read_data(void)

https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png
https://wiki.osdev.org/File:Ps2-kbc.png

Working with Hardware I/O Memory Chapter 3

[145]

{
 return inb(I8042_DATA_REG);
}
static inline int i8042_read_status(void)
{
 return inb(I8042_STATUS_REG);
}
static inline void i8042_write_data(int val)
{
 outb(val, I8042_DATA_REG);
}
static inline void i8042_write_command(int val)
{
 outb(val, I8042_COMMAND_REG);
}

Of course, the reality is that there's far more that this driver does (than what we've shown
here), including handling hardware interrupts, initializing and working with multiple
ports, blocking reads and writes, flushing buffers, blinking the keyboard LEDs on kernel
panic, and more. We won't look into this any further here.

Looking up the port(s) via /proc/ioports
The kernel provides a viewport into the port address space via
the /proc/ioports pseudo-file. Let's check it out on our x86_64 guest VM (again, we're
only showing part of the output):

$ sudo cat /proc/ioports
[sudo] password for llkd:
0000-0cf7 : PCI Bus 0000:00
 0000-001f : dma1
 0020-0021 : pic1
 0040-0043 : timer0
 0050-0053 : timer1
 0060-0060 : keyboard
 0064-0064 : keyboard
 0070-0071 : rtc_cmos
 0070-0071 : rtc0
[...]
 d270-d27f : 0000:00:0d.0
 d270-d27f : ahci
$

Working with Hardware I/O Memory Chapter 3

[146]

We've highlighted the keyboard ports in bold. Notice how the port numbers match what
the i8042 driver code we saw previously specifies. Interestingly, running the same
command on the Raspberry Pi yields nothing; this is because no driver or subsystem is
using any I/O ports. Analogous with MMIO, an entry in /proc/ioports is generated
when the request_region() API runs, and, conversely, is removed when the
corresponding release_region() API runs.

Now, let's quickly mention a few things with respect to port I/O.

Port I/O – a few remaining points to note
A few more or less miscellaneous points remain on PIO that you as a driver author should
take note of:

Just like MMIO provides the repeating I/O routines (recall
the ioread|iowrite[8|16|32|64]_rep() helpers), PMIO (or PIO) provides
somewhat similar repeating functionality for those cases where you'd like to read
or write the same I/O port multiple times. These are the so-called string versions
of the regular port helper routines; they have an s in their name to remind you of
this. The kernel source contains a comment that neatly sums this up:

// include/asm-generic/io.h
/*
 * {in,out}s{b,w,l}{,_p}() are variants of the above that
repeatedly access a
 * single I/O port multiple times.
 */
we don't show the complete code below, just the 'signature' as such
void insb(unsigned long addr, void *buffer, unsigned int count);
void insw(unsigned long addr, void *buffer, unsigned int count);
void insl(unsigned long addr, void *buffer, unsigned int count);

void outsb(unsigned long addr, const void *buffer, unsigned int
count);
void outsw(unsigned long addr, const void *buffer, unsigned int
count);
void outsl(unsigned long addr, const void *buffer, unsigned int
count);

Working with Hardware I/O Memory Chapter 3

[147]

So, for example, the insw() helper routine will read a total of count times (that
is, count*2 bytes since it's 2-byte or 16-bit reads each) from the starting addr,
which is an I/O port address, into the successive locations of the destination
buffer at buffer (the readsw() inline function is the internal implementation).

Similarly, the outsw() helper routine writes a total of count times (that
is, count*2 bytes since it's 2-byte or 16-bit reads each), data from the source buffer
at buffer to the I/O port at address (the writesw() inline function is the
internal implementation).

Next, the kernel seems to provide helper APIs equivalent to the
in|out[b|w|l]() ones; that is, in|out[b|w|l]_p(). Here, the _p suffix
implies that a pause or delay was introduced into the I/O. Originally, this was
meant for slow peripherals; nowadays, though, this seems to have become a
backward-compatible moot point: the "delayed I/O" routines are nothing but
simple wrappers over the regular routines (in effect there is no delaying).
There are also user space equivalents of the PIO APIs (you can use one these to,
for example, write a user space driver). Of course, successfully issuing the
in|out[b|w|l]() APIs in user mode requires the issuing process to
successfully invoke the iopl(2)/ioperm(2) system calls, which, in turn,
requires root access (or you require to have the CAP_SYS_RAWIO capability bit
set; this can also be done for security purposes.)

With that, we have concluded our discussion of port I/O, as well as this chapter.

Summary
In this chapter, you learned why we can't just work directly with peripheral I/O memory.
Next, we covered how, within the Linux device driver framework, to access and perform
I/O (reads and writes) on hardware (or peripheral) I/O memory. You learned that there are
two broad ways to do this: via MMIO (the common approach) and P(M)IO.

We learned that systems such as the x86 often employ both approaches as that's how the
peripherals are designed. MMIO and/or PMIO access is a key task for any driver – after all,
this is how we talk to and control hardware! Not only that, but many of the underlying bus
drivers (for various buses on Linux, such as I2C, USB, SPI, PCI, and more) internally use
MMIO/PMIO for performing peripheral I/O. So, good job on completing this chapter!

In the next chapter, we'll look at another critical hardware-related area of importance:
understanding, dealing with, and working with hardware interrupts.

Working with Hardware I/O Memory Chapter 3

[148]

Questions
Imagine that you have mapped an 8-bit register bank to a peripheral chip (via
the devm_ioremap_resource() API in your driver's xxx_probe() method; assume it
succeeds). Now, you want to read the current content in the third 8-bit register. The
following is some (pseudo)code that you can use to do this. Study it and spot the bug inside
it:

char val;
void __iomem *base = devm_ioremap_resource(dev, r);
[...]
val = ioread8(base+3);

Can you suggest a fix?

Possible solution to this exercise can be found at https:/ ​/​github. ​com/
PacktPublishing/ ​Linux- ​Kernel- ​Programming- ​Part- ​2/​tree/ ​main/
solutions_ ​to_ ​assgn.

Further reading
Modern (and older) Linux device drivers books: Working with the LDM:

Linux Device Drivers Development, Madieu, Packt, October 2017 –
This is an excellent resource that provides modern and wide
coverage.
Linux Driver Development for Embedded Processors, Alberto Liberal
de los Ríos, second edition, 2018.
Essential Linux Device Drivers, Sreekrishnan Venkateswaran,
Pearson, March 2008 – This is an older book but provides superb
coverage on literally all types of Linux drivers!
Linux Device Drivers, Rubini, Corbet, GK-Hartman, O'Reilly,
February 2005 – This is the old Linux drivers bible; how can it
possibly be left out?

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn

Working with Hardware I/O Memory Chapter 3

[149]

Device tree:
Device tree specification: https:/ ​/​www. ​devicetree. ​org/ ​.
Device Tree Reference, eLinux: https:/ ​/​elinux. ​org/ ​Device_ ​Tree_
Reference.
Generate and compile the device tree to config the hardware setup of
your Arietta G25 board: http:/ ​/​linux. ​tanzilli. ​com/ ​ – This
provides a very interesting and interactive configuration that can
be performed for a device tree!

DMA:
Article: Introduction to direct memory access, October 2003: https:/ ​/
www. ​embedded. ​com/ ​introduction- ​to- ​direct- ​memory- ​access/ ​

LWN kernel index: articles on DMA: https:/ ​/​lwn. ​net/ ​Kernel/
Index/ ​#Direct_ ​memory_ ​access

Linux kernel documentation: DMAEngine documentation: https:/ ​/
www. ​kernel. ​org/ ​doc/ ​html/ ​latest/ ​driver- ​api/ ​dmaengine/
index. ​html

Linux kernel has a "DMA test" kernel module;
documentation: https:/ ​/​www. ​kernel. ​org/​doc/ ​html/ ​latest/
driver- ​api/ ​dmaengine/ ​dmatest. ​html

Stack Overflow: From the kernel to the user space (DMA): https:/ ​/
stackoverflow. ​com/ ​questions/ ​11137058/ ​from- ​the-​kernel- ​to-
the- ​user- ​space- ​dma

Laurent Pinchart – mastering the dma and iommu apis | ELC
2014: https:/ ​/ ​www. ​youtube. ​com/ ​watch? ​v= ​n07zPcbdX_ ​w

Hardware/CPU:
Intel x86 architecture, Min: https:/ ​/​www. ​slideshare. ​net/
multics69/ ​intel- ​x86- ​architecture

https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
http://www.acmesystems.it/arietta
http://linux.tanzilli.com/
http://linux.tanzilli.com/
http://linux.tanzilli.com/
http://linux.tanzilli.com/
http://linux.tanzilli.com/
http://linux.tanzilli.com/
http://linux.tanzilli.com/
http://linux.tanzilli.com/
http://linux.tanzilli.com/
http://linux.tanzilli.com/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://www.embedded.com/introduction-to-direct-memory-access/
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://lwn.net/Kernel/Index/#Direct_memory_access
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/dmatest.html
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://stackoverflow.com/questions/11137058/from-the-kernel-to-the-user-space-dma
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.youtube.com/watch?v=n07zPcbdX_w
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture
https://www.slideshare.net/multics69/intel-x86-architecture

4
Handling Hardware Interrupts

In this chapter, we'll focus on a really key aspect of writing a device driver: what hardware
interrupts are and, more importantly, how exactly you, as a driver author, handle them.
The fact is, a large percentage of peripherals (that you're interested in writing a device
driver for) indicate their need for immediate action via the OS or driver by asserting a
hardware interrupt. This is, in effect, an electrical signal that ultimately alerts the
processor's control unit (typically, this alert must redirect control to the affected
peripheral's interrupt handler routine as it requires immediate attention).

To handle these kinds of interrupts, you need to understand some of the fundamentals of
how they work; that is, how the OS handles them and, most importantly, how you as a
driver author are expected to work with them. An additional layer of complexity is added
by the fact that Linux, being a VM-based rich OS, requires and uses some abstraction in the
way it works with interrupts. So, you will begin by learning about the (very) basic
workflow regarding how to handle a hardware interrupt. Then, we will look at the topics
that a driver author like yourself will be primarily interested in: how exactly to allocate an
IRQ and write the code of the handler routine itself – there are some very specific dos and
don'ts! We will then cover the motivation behind and the usage of the newer threaded
interrupt model, enabling/disabling specific IRQs, viewing information about IRQ lines via
proc, and what top and bottom halves are for and how to use them. We'll finish this chapter
by answering a few FAQs on interrupt handling.

In this chapter, we will cover the following topics:

Hardware interrupts and how the kernel handles them
Allocating the hardware IRQ
Implementing the interrupt handler routine
Working with the threaded interrupts model
Enabling and disabling IRQs

Handling Hardware Interrupts Chapter 4

[151]

Viewing all allocated interrupt (IRQ) lines
Understanding and using top and bottom halves
A few remaining FAQs answered

Let's get started!

Technical requirements
This chapter assumes that you've gone through the Preface section To get the most out of this
book and have appropriately prepared a guest VM running Ubuntu 18.04 LTS (or a later
stable release) and installed all the required packages. If not, I highly recommend you do
this first. To get the most out of this book, I strongly recommend you first set up the
workspace environment, including cloning this book's GitHub repository for the code, and
work on it in a hands-on fashion. The repository can be found here: https:/ ​/​github. ​com/
PacktPublishing/​Linux- ​Kernel- ​Programming- ​Part- ​2.

Hardware interrupts and how the kernel
handles them
Many, if not most, peripheral controllers use a hardware interrupt to inform the OS or
device driver that some (usually urgent) action is required. Typical examples include
network adapters (NICs), block devices (disks), USB devices, AV devices, human interface
devices (HIDs) such as keyboards, mice, touchscreens, and video screens, clocks/timer
chips, DMA controllers, and so on. The primary idea behind hardware interrupts is
efficiency. Instead of continually polling the chip (on a battery-backed device, this can
result in rapidly draining the battery!), the interrupt is a means to have the low-level
software run only as and when required.

Here's a quick hardware-level overview (without getting into too much detail): modern
system motherboards will have an interrupt controller chip of some sort, which is often
called the [IO][A]PIC, short for IO-[Advanced] Programmable Interrupt Controller, on
x86 (the kernel documents for the x86 IO-APIC can be found at https:/ ​/​www. ​kernel. ​org/
doc/​html/​latest/ ​x86/ ​i386/ ​IO- ​APIC. ​html#io- ​apic) or a generic interrupt controller
(GIC) on ARM. The PIC (to keep it simple, we'll just use the generic term PIC) has one line
to the CPU's interrupt pin. Onboard peripherals capable of asserting interrupts will have an
IRQ line to the PIC.

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch4
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic
https://www.kernel.org/doc/html/latest/x86/i386/IO-APIC.html#io-apic

Handling Hardware Interrupts Chapter 4

[152]

IRQ is the common abbreviated term for Interrupt ReQuest; it denotes
the interrupt line (or lines) that's allocated to a peripheral device.

Let's say that the peripheral device in question is a network adapter (a NIC) and a network
packet is received. The (highly simplified) flow is as follows:

The peripheral device (the NIC) now needs to emit (assert) a hardware interrupt;1.
thus, it asserts its line on the PIC (low or high logic as required; all this is internal
to the hardware).
The PIC, on seeing that a peripheral line has been asserted, saves the asserted line2.
value in a register.
The PIC then asserts the CPU's interrupt pin.3.
The control unit on the processor checks for the presence of hardware interrupts4.
on every CPU after every single machine instruction runs. Thus, if a hardware
interrupt occurs, it will certainly come to know about it almost immediately. The
CPU will then raise a hardware interrupt (of course interrupts can be masked;
we'll discuss this in more detail later in the Enabling and disabling IRQs section).
The low-level (BSP/platform) code on the OS will be hooked into this and will5.
react (this is often code that's at the assembly level); for example, on the ARM-32,
the low-level C entry point for a hardware interrupt is
arch/arm/kernel/irq.c:asm_do_IRQ().
From here, the OS executes code paths that ultimately invoke the registered6.
interrupt handler routine(s) of the driver(s) this interrupt is to be serviced by.
(Again, it's not our intention to focus on the hardware layer and even the arch-
specific platform-level details of hardware interrupts in this chapter. I'd like to
focus on what's of relevance to you as the driver author – how to handle them!).

The hardware interrupt is literally the top priority on the Linux OS: it preempts whatever's
currently running – be it user or kernel-space code paths – in order to run. Having said that,
later, we will see that on modern Linux kernels, it's possible to employ a threaded
interrupt model that changes things; a little patience please – we'll get there!

Handling Hardware Interrupts Chapter 4

[153]

Now, let's digress. We mentioned an example of a typical peripheral device, a network
controller (or NIC), and have essentially said that it services packet transmission and
reception (Tx/Rx) via hardware interrupts. This used to be true, but this isn't always the
case with modern high-speed NICs (typically 10 Gbps and higher). Why? The answer is
interesting: the extreme speed at which interrupts will literally interrupt the processor can
cause the system to land in a problematic situation called livelock; a situation where it
cannot cope with the extremely high interrupt demand! As with deadlocks (covered in
Chapter 6, Kernel Synchronization – Part 1), the system effectively tends to freeze or hang.
So, what do we do regarding livelock? Most high-end modern NICs support a polled-mode
of operation; modern OSes such as Linux have a network receive path infrastructure
called NAPI (it's nothing to do with babies, mind you – it's short for New API) that allows
the driver to switch between interrupt and polled mode based on demand and hence
process network packets (on the receive path) more efficiently.

Now that we've introduced hardware interrupts, let's learn how you, as a driver author,
can work with them. Most of the remaining sections in this chapter will deal with this. Let's
start by learning how to allocate or register an IRQ line.

Allocating the hardware IRQ
Often, a key part of writing a device driver is really the work of trapping into and handling
the hardware interrupt that the chip you're writing the driver for emits. How do you do
this? The trouble is that the way that hardware interrupts are routed from the interrupt
controller chip(s) to the CPU(s) varies widely; it is very platform-specific. The good news is
that the Linux kernel provides an abstraction layer to abstract away all the hardware-level
differences; it's referred to as the generic interrupt (or IRQ) handling layer. Essentially, it
performs the required work under the hood and exposes APIs and data structures that are
completely generic. Thus, at least theoretically, your code will work on any platform.
This generic IRQ layer is what we, primarily as driver authors, shall be using, of course; all
the APIs and helper routines we use fall into this category.

Handling Hardware Interrupts Chapter 4

[154]

Recall that it's really the core kernel that, at least initially, handles the interrupt (as we
learned in the previous section). It then refers to an array of linked lists (a very common
data structure on Linux; here, the index to the array is the IRQ number) to figure out the
driver-level function(s) to invoke. (Without going into too much detail, the node on the lists
is the IRQ descriptor structure; that is, include/linux/interrupt.h:struct
irqaction.) But how do you get your driver's interrupt handler function onto this list so
that the kernel can invoke it when an interrupt from your device occurs? Ah, that's the
key: you register it with the kernel. Modern Linux provides at least four ways (APIs) via
which you can register interest in an interrupt line, as follows:

request_irq()

devm_request_irq()

request_threaded_irq()

devm_request_threaded_irq() (recommended!)

Let's tackle them one by one (there are additional routines that are slight variations of
them). Along the way, we'll look at some code from a few drivers and learn how to work
with threaded interrupts. There's a lot to learn and do; let's get on with it!

Allocating your interrupt handler with
request_irq()
Just as we saw with I/O memory and I/O ports, the IRQ line(s) is considered a resource that
the kernel is in charge of. The request_irq() kernel API can be thought of as the
traditional means by which driver authors register their interest in an IRQ and allocate this
resource to themselves, thus allowing the kernel to invoke their handler when the interrupt
asynchronously arrives.

Handling Hardware Interrupts Chapter 4

[155]

It might strike you that this discussion seems very analogous to user space
signal handling. There, we call the sigaction(2) system call to register
interest in a signal. When the signal (asynchronously) arrives, the kernel
invokes the registered signal handler (user mode) routine!
There are some key differences here. First, a user space signal handler
is not an interrupt; second, the user space signal handler runs purely in
non-privileged user mode; in contrast, the kernel space interrupt handler
of your driver runs (asynchronously) with kernel privileges and in an
interrupted context!

Furthermore, some signals are really the software side effect of a
processor exception being raised; broadly speaking, the processor will
raise a fault, trap, or abort when something illegal occurs and it has to
"trap" (switch) to kernel space to handle it. A process or thread attempting
to access an invalid page (or without sufficient permissions) causes the
MMU to raise a fault or an abort; this leads to the OS fault handling code
raising the SIGSEGV signal upon the process context (i.e. upon current)!
However, raising an exception of some sort does not always imply there's
a problem – a system call is nothing but a trap to the OS; that is, a
programmed exception (via syscall / SWI on x86/ARM).

The following comment (which has been partially reproduced in the following snippet)
from the kernel source tells us more about what the request[_threaded]_irq() API
does:

// kernel/irq/manage.c:request_threaded_irq()
[...]
 * This call allocates interrupt resources and enables the
 * interrupt line and IRQ handling. From the point this
 * call is made your handler function may be invoked.

Actually, request_irq() is merely a thin wrapper over
the request_threaded_irq() API; we will discuss this API later. The signature of
the request_irq() API is as follows:

#include <linux/interrupt.h>

​int __must_check
request_irq(unsigned int irq, irq_handler_t (*handler_func)(int, void *),
unsigned long flags, const char *name, void *dev);

Handling Hardware Interrupts Chapter 4

[156]

Always include the linux/interrupt.h header file. Let's examine each of the parameters
to request_irq() one by one:

int irq: This is the IRQ line that you're attempting to register or trap/hook into.
This means that when this particular interrupt fires, your interrupt handler
function (the second parameter, handler_func) is invoked. The question
regarding irq is: how do I find out what the IRQ number is? We addressed this
generic issue in Chapter 3, Working with Hardware I/O Memory, in the (really
key) Obtaining the device resources section. To quickly reiterate, an IRQ line is a
resource, which means it is obtained in the usual manner – on modern
embedded systems, it's obtained by parsing the Device Tree (DT); the older way
was to hard code the values within board-specific source files (relax, you will see
an example of querying the IRQ line via the DT in the IRQ allocation – the modern
way – the managed interrupt facility section). On PC-type systems, you might have
to resort to interrogating the bus that the device lives on (for cold devices). Here,
the PCI bus (and friends) is very common. The kernel even provides PCI helper
routines you can use to query resources from it, and thus find out the assigned
IRQ line.
irq_handler_t (*handler_func)(int, void *): This parameter is a
pointer to the interrupt handler function (in C, just providing the function's name
is sufficient). This, of course, is the code that will be asynchronously invoked
when the hardware interrupt fires. Its job is to service the interrupt (more on this
later). How does the kernel know where it is? Recall struct irqaction, which
is the structure that's populated by the request_irq() routine. One of its
members is handler, and is set to this second parameter.
unsigned long flags: This, the third parameter to request_irq(), is a flag
bitmask. When it's set to zero, it implements its default behavior (we'll discuss
some key interrupt flags in the Setting interrupt flags section).
const char *name: This is the name of the code/driver that owns the interrupt.
Typically, this is set to the name of the device driver (this
way, /proc/interrupts can show you the name of the driver that is using the
interrupt; it's the right-most column; details follow in the Viewing all allocated
interrupt (IRQ) lines section.)

Handling Hardware Interrupts Chapter 4

[157]

void *dev: This, the fifth and last parameter to request_irq(), allows you to
pass any data item you wish to (often called a cookie) to the interrupt handler
routine, which is a common software technique. In the second parameter, you
can see that the interrupt handler routine is of the void * type. This is where
this parameter gets passed.
Most real-world drivers will have some kind of context or private data structure
where they store all required information. Furthermore, this context structure is
often embedded into the driver's device (often specialized by the subsystem or
driver framework) structure. In fact, the kernel typically helps you do so; for
example, network drivers use alloc_etherdev() to embed their data
into struct net_device, platform drivers embed their data into
the platform_device.device.platform_data member of struct
platform_device, I2C client drivers employ
the i2c_set_clientdata() helper to "set" their private/context data into
the i2c_client structure, and so on.

Note that when you're using a shared interrupt (we'll explain this shortly),
you must initialize this parameter to a non-NULL value (otherwise, how
will free_irq() know which handler to free?). If you do not have a
context structure or anything specific to pass along, passing
the THIS_MODULE macro here will do the trick (assuming you're writing
the driver using the loadable kernel module framework; it's the pointer to
your kernel module's metadata structure; that is, struct module).

The return value from request_irq() is an integer, as per the usual 0/-E kernel
convention (see the companion guide Linux Kernel Programming - Chapter 4, Writing Your
First Kernel Module – LKMs Part 1, the section The 0/-E return convention), it's 0 on success,
and a negative errno value on failure. As the __must_check compiler attribute clearly
specifies, you are certainly expected to check for the failure case (this is good programming
practice in any case).

Handling Hardware Interrupts Chapter 4

[158]

Linux Driver Verification (LDV) project: In the companion guide Linux
Kernel Programming, Chapter 1 - Kernel Workspace Setup, in the section The
LDV - Linux Driver Verification - project, we mentioned that this project has
useful "rules" with respect to various programming aspects of Linux
modules (drivers, mostly) as well as the core kernel.

With regard to our current topic, here's one of the rules, a negative one,
implying that you cannot do this: "Making no delay when probing for
IRQs" (http:/ ​/​linuxtesting. ​org/ ​ldv/​online? ​action= ​show_ ​rule ​rule_
id=​0037). This discussion really applies to x86[_64] systems. Here, in some
circumstances, you might need to physically probe for the correct IRQ line
number. For this purpose, the kernel provides an "autoprobe" facility via
the probe_irq_{on|off}() APIs (probe_irq_on() returns a bitmask
of potential IRQ lines that can be used). The thing is, a delay is required
between the probe_irq_on() and probe_irq_off() APIs; not invoking
this delay can cause issues. The LDV page mentioned previously covers
this in some detail, so do take a look. The actual API used to perform the
delay is typically udelay(). Worry not, we cover it (and several others) in
detail in Chapter 5, Working with Kernel Timers, Threads, and Workqueues in
the section Delaying for a given time in the kernel.

Where in the driver's code should you call the request_irq() API (or its equivalent)? For
pretty much all modern drivers that adhere to the modern Linux Device Model (LDM), the
modern kernel framework for devices and drivers, the probe() method (this is a function,
really) is the right place.

Freeing the IRQ line
Conversely, when the driver is being unloaded or the device is being detached,
the remove() (or disconnect()) method is the right place where you should call the
converse routine – free_irq() – to free the IRQ line back to the kernel:

void *free_irq(unsigned int, void *);

The first parameter to free_irq() is the IRQ line to free back to the kernel. The second
parameter is, again, the same value that's passed to the interrupt handler (via the last
parameter to request_irq()), so you must typically populate it with either the device
structure pointer (which embeds your driver's context or private data structure) or the
THIS_MODULE macro.

http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0037

Handling Hardware Interrupts Chapter 4

[159]

The return value is the device name argument that you passed as the fourth parameter of
the request_irq() routine (yes, it's a string) on success and NULL on failure.

It's important that you, as the driver author, take care to do the following:

Disable the interrupt on the board before calling free_irq() when the IRQ line
is being shared
Call it from process context only

Also, free_irq() will only return when any and all the executing interrupts for this IRQ
line have completed.

Before we look at some code, we need to briefly cover two additional areas: interrupt flags
and the notion of level/edge-triggered interrupts.

Setting interrupt flags
When allocating an interrupt (IRQ line) with
the {devm_}request{_threaded}_irq() APIs (we'll cover the variants
of request_irq() shortly), you can specify certain interrupt flags that will affect the
interrupt line's configuration and/or behavior. The parameter that's responsible for this is
unsigned long flags (as we mentioned in the Allocating your interrupt handler with
request_irq() section). It's important to realize it's a bitmask; you can bitwise-OR several
flags to get their combined effect. The flag values fall broadly into a few classes: flags to do
with IRQ line sharing, interrupt threading, and suspend/resume behavior. They're all in the
linux/interrupt.h header in IRQF_foo format. The following are some of the most
common ones:

IRQF_SHARED: This allows you to share the IRQ line between several devices
(required for devices on the PCI bus).
IRQF_ONESHOT: The IRQ is not enabled after the hardirq handler finishes
executing. This flag is typically used by threaded interrupts (covered in
the Working with the threaded interrupts model section) to ensure that the IRQ
remains disabled until the threaded handler completes.

Handling Hardware Interrupts Chapter 4

[160]

The __IRQF_TIMER flag is a special case. It's used to mark the interrupt as
a timer interrupt. As seen in the companion guide Linux Kernel
Programming, Chapter 10, The CPU Scheduler - Part 1, and Chapter 11, The
CPU Scheduler - Part 2, when we looked at CPU scheduling, that the timer
interrupt fires at periodic intervals and is responsible for implementing
the kernel's timer/timeout mechanisms, scheduler-related housekeeping,
and so on.

The timer interrupt flags are specified by this macro:

#define IRQF_TIMER(__IRQF_TIMER | IRQF_NO_SUSPEND | IRQF_NO_THREAD)

In addition to specifying that it's marked as the timer interrupt (__IRQF_TIMER),
the IRQF_NO_SUSPEND flag specifies that the interrupt remains enabled even when the
system goes into a suspend state. Furthermore, the IRQF_NO_THREAD flag specifies that this
interrupt cannot use the threaded model (we'll cover this in the Working with the threaded
interrupts model section).

There are several other interrupt flags we can use,
including IRQF_PROBE_SHARED, IRQF_PERCPU, IRQF_NOBALANCING, IRQF_IRQPOLL,
IRQF_FORCE_RESUME, IRQF_EARLY_RESUME, and IRQF_COND_SUSPEND. We won't cover
them explicitly here (take a look at the comment header briefly describing them in
the linux/interrupt.h header file).

Now, let's gain a brief understanding of what level- and edge-triggered interrupts are.

Understanding level- and edge-triggered interrupts – a
brief note
When a peripheral asserts an interrupt, the interrupt controller is triggered to latch this
event. The electrical characteristics that it uses to trigger the hardware interrupt in the CPU
fall into two broad categories:

Level-triggered: The interrupt is triggered when the level changes (from inactive
to active or asserted); until it's deasserted, the line remains in the asserted state.
This happens even after your handler returns; if the line is still asserted, you will
get the interrupt again.
Edge-triggered: The interrupt triggers only once when the level changes from
inactive to active.

Handling Hardware Interrupts Chapter 4

[161]

Additionally, the interrupt could be high or low triggered, on the rising or falling (clock)
edge. The kernel allows this to be configured and specified via additional flags such as
IRQF_TRIGGER_NONE, IRQF_TRIGGER_RISING, IRQF_TRIGGER_FALLING,
IRQF_TRIGGER_HIGH, IRQF_TRIGGER_LOW, and so on. These low-level electrical
characteristics of the peripheral chip are typically pre-configured within the BSP-level code
or specified in the DT.

Level-triggered interrupts force you to understand the interrupt source so that you can
correctly deassert (or ack) it (in the case of a shared IRQ, after checking that it's for you).
Typically, this is the first thing you must do when you're servicing it; otherwise, it will keep
firing. For example, if the interrupt is triggered when a certain device register hits the
value 0xff, for example, then the driver must set the register to, say, 0x0 before
deasserting it! This is easy to see but can be difficult to handle correctly.

On the other hand, edge-triggered interrupts are easy to work with since no knowledge of
the interrupt source is required, but they can also be easy to miss! In general, firmware
designers use edge-triggered interrupts (though this isn't a rule). Again, these
characteristics are really at the hardware/firmware boundary. You should study the
datasheet and any allied documentation (such as Application Notes from the OEM)
provided for the peripheral you're writing the driver for.

You might by now realize that writing a device driver (well!) requires two
distinct knowledge domains. First, you'll need to have a deep
understanding of the hardware/firmware and how it works - it's theory of
operation (TOO), its control/data planes, register banks, I/O memory, and
so on. Second, you'll need to have a deep (enough) understanding of the
OS (Linux) and its kernel/driver framework, how Linux works, memory
management, scheduling, interrupt models, and so on. Also, you need to
understand the modern LDM and kernel driver frameworks and how to
go about debugging and profiling them. The better you get at these things,
the better you'll be at writing the driver!

We'll learn how to find out what kind of triggering is being used in the Viewing all allocated
(IRQ) lines section. Check out the Further reading section for more links concerning IRQ
edge/level triggering.

Now, let's move on and look at something interesting. To help assimilate what you've
learned so far, we'll look at some small snippets of code from a Linux network driver!

Handling Hardware Interrupts Chapter 4

[162]

Code view 1 – the IXGB network driver
It's time to look at some code. Let's take a look at some small portions of code for the Intel
IXGB network adapter driver (which drives several Intel network adapters in the 82597EX
series). Among the many available on the market, Intel has a product line called the IXGB
network adapter. The controller is the Intel 82597EX; these are typically 10-gigabit ethernet
adapters meant for servers (Intel's product brief on this controller can be found at https:/ ​/
www.​intel.​com/​Assets/ ​PDF/ ​prodbrief/ ​pro10GbE_ ​LR_ ​SA-​DS. ​pdf):

Figure 4.1 – The Intel PRO/10GbE LR server adapter (IXGB, 82597EX) network adapter

First, let's take a look at it invoking request_irq() to allocate the IRQ line:

// drivers/net/ethernet/intel/ixgb/ixgb_main.c
[...]
int
ixgb_up(struct ixgb_adapter *adapter)
{
 struct net_device *netdev = adapter->netdev;
 int err, irq_flags = IRQF_SHARED;
 [...]
 err = request_irq(adapter->pdev->irq, ixgb_intr, irq_flags,
 netdev->name, netdev);
 [...]

https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf
https://www.intel.com/Assets/PDF/prodbrief/pro10GbE_LR_SA-DS.pdf

Handling Hardware Interrupts Chapter 4

[163]

In the preceding code snippet, you can see the driver invoking the request_irq() API to
allocate this interrupt within the network driver's ixgb_up() method. This method is
invoked when the network interface is brought up (by networking utilities such
as ip(8) or (older) ifconfig(8)). Let's look at the parameters passed to request_irq()
here, in turn:

Here, the IRQ number – the first parameter – is queried from the irq member of
the pci_dev structure (as this device lives on the PCI bus). The pdev structure
pointer is within this driver's context (or private) metadata structure
named ixgb_adapter. Its member is called irq.
The second parameter is the pointer to the interrupt handler routine (it's often
referred to as the hardirq handler; we'll look at all this in a lot more detail
later); here, it's the function named ixgb_intr().
The third parameter is the flags bitmask. You can see that here the driver
specifies that this interrupt is shared (via the IRQF_SHARED flag). It's part of the
PCI specification for devices on this bus to share their interrupt lines. This
implies that the driver will need to verify that the interrupt is really meant for it.
It does this in the interrupt handler (it's usually very hardware-specific code,
typically checking a given register for some expected value).
The fourth parameter is the name of the driver handling this interrupt. It's
obtained via the specialized net_device structure's name member (which has
been registered to the kernel's net framework by this driver
calling register_netdev() in its probe method, ixgb_probe()).
The fifth parameter is the value to pass along to the interrupt handler routine. As
we mentioned previously, it's (again) the specialized net_device structure
(which internally has the driver's context structure (struct ixgb_adapter)
embedded within it!).

Conversely, when the network interface goes down, the ixgb_down() method is invoked
by the kernel. When this happens, it disables NAPI and frees up the IRQ line with
free_irq():

void
ixgb_down(struct ixgb_adapter *adapter, bool kill_watchdog)
{
 struct net_device *netdev = adapter->netdev;
 [...]
 napi_disable(&adapter->napi);
 /* waiting for NAPI to complete can re-enable interrupts */
 ixgb_irq_disable(adapter);
 free_irq(adapter-pdev->irq, netdev);
 [...]

Handling Hardware Interrupts Chapter 4

[164]

Now that you've learned how to trap into a hardware interrupt via request_irq(), we
need to understand some key points about writing the code of the interrupt handler routine
itself, which is where the actual work of handling the interrupt is performed.

Implementing the interrupt handler routine
Often, the interrupt is the hardware peripheral's way of informing the system – the driver,
really – that data is available and that it should pick it up. This is what typical drivers do:
they grab the incoming data from the device buffers (or port, or whatever). Not just that, it's
also possible that there are user mode processes (or threads) that want this data. Thus, they
have quite possibly opened the device file and have issued the read(2) (or equivalent)
system call. This has them currently blocking (sleeping) upon this very event; that is, data
arriving from the device.

On detecting that data currently isn't available, the driver's read method
typically puts the process context to sleep using one of the
wait_event*() APIs.

So, once your driver's interrupt handler has fetched the data into some kernel buffer, it
typically awakens the sleeping readers. They now run through the driver's read method (in
process context), pick up the data, and transfer it to the user space buffer as required.

This section has been split into two broad parts. First, we'll learn what we can and cannot
do in our interrupt handler. Then, we'll cover the mechanics of writing the code.

Handling Hardware Interrupts Chapter 4

[165]

Interrupt context guidelines – what to do and
what not to do
The interrupt handler routine is your typical C code, with some caveats. A few key points
regarding the design and implementation of your hardware interrupt handler are as
follows:

The handler runs in an interrupt context, so do not block: First and foremost,
this code always runs in an interrupt context; that is, an atomic context. On a
preemptible kernel, preemption is disabled, so there are some limitations
regarding what it can and cannot do. In particular, it cannot do anything that
directly or indirectly invokes the scheduler (schedule())!
In effect, you cannot do the following:

Transfer data to and from kernel to user space as it might cause a
page fault, which isn't allowed in an atomic context.
Use the GFP_KERNEL flag in memory allocation. You must use the
GFP_ATOMIC flag so that the allocation is non-blocking – it either
succeeds or fails immediately.
Invoke any API that's blocking (that, down the line, calls
schedule()). In other words, it has to be purely non-blocking
code paths. (We covered why in some detail in As seen in the
companion guide Linux Kernel Programming - Chapter 8, Kernel
Memory Allocation for Module Authors – Part 1, in the Never sleep in
interrupt or atomic contexts section).

Interrupt masking: By default, while your interrupt handler is running, all
interrupts on the local CPU core where your handler is executing are masked
(disabled), and the particular interrupt you're handling is masked across all
cores. Thus, your code is inherently reentrant-safe.
Keep it fast!: You are writing code that will literally interrupt other processes –
other "business" that the system was running before you rudely interrupted it;
thus, you must do what's required, as fast as is possible, and return, allowing the
interrupted code path to continue. Important system software metrics include the
worst-case interrupt length and the worst-case interrupt's disabled time (we'll
cover some more on this in the Measuring metrics and latency section at the end of
this chapter).

These points are important enough to merit more detail, so we'll cover them more
thoroughly in the following subsections.

Handling Hardware Interrupts Chapter 4

[166]

Don't block – spotting possibly blocking code paths
This really boils down to the fact that when you're in an interrupt or atomic context, don't
do anything that will call schedule(). Now, let's look at what happens if our interrupt
handler's pseudocode looks like this:

my_interrupt()
{
 struct mys *sp;
 ack_intr();
 x = read_regX();
 sp = kzalloc(SIZE_HWBUF, GFP_KERNEL);
 if (!sp)
 return -ENOMEM;
 sp = fetch_data_from_hw();
 copy_to_user(ubuf, sp, count);
 kfree(sp);
}

Did you spot the big fat potential (though perhaps still subtle) bugs here? (Take a moment
to spot them before moving on.)

First, the invocation of kzalloc() with the GFP_KERNEL flag might cause its kernel code to
invoke schedule()! If it does, this will result in an "Oops," which is a kernel bug. In
typical production environments, this causes the kernel to panic (as the sysctl
named panic_on_oops is typically set to 1 in production; doing sysctl
kernel.panic_on_oops will show you the current setting). Next,
the copy_to_user() invocation might result in a page fault and therefore necessitate a
context switch, which will, of course, invoke schedule(); this is just not possible -again, a
serious bug - in an atomic or interrupt context!

So, more generically, let's your interrupt handler calls a function, a(), with the call chain
for a() being as follows:

 a() -- b() -- c() -- [...] -- g() -- schedule() -- [...]

Handling Hardware Interrupts Chapter 4

[167]

Here, you can see that calling a() ultimately results in schedule() being called, which, as
we just pointed out, will result in an "Oops", which is a kernel bug. So, the question here is,
how do you, the driver developer, know that when you call a(), it results
in schedule() being called? There are a few points you need to understand and leverage
regarding this:

(As mentioned in the companion guide Linux Kernel Programming - Chapter 8,
Kernel Memory Allocation for Module Authors – Part 1) One way you can find out in
advance if your kernel code will ever enter an atomic or interrupt context is by
looking at the kernel directly. When you're configuring the kernel (again, as seen
in the companion guide Linux Kernel Programming, recall make
menuconfig from Linux Kernel Programming - Chapter 2, Building the 5.x Linux
Kernel from Source – Part 1), you can turn on a kernel config option that will help
you spot exactly this circumstance. Take a look under the Kernel Hacking /
Lock Debugging menu. There, you will find a Boolean tunable called Sleep
inside atomic section checking. Turn it ON!

The config option is named CONFIG_DEBUG_ATOMIC_SLEEP; you can
always grep your kernel's config file for it. As seen in the companion
guide Linux Kernel Programming - Chapter 5, Writing Your First Kernel
Module - LKMs Part 2, in the Configuring a debug kernel section, we specified
that this option should be turned ON!

Next (this is a bit pedantic, but it will help you!), make it a habit to look up the
kernel documentation on the function in question (even better, briefly look up its
code). The fact that it's a blocking call will usually be documented or specified in
the comment header.
The kernel has a helper macro called might_sleep(); it's a useful debugging aid
for just these situations! The following screenshot (from the kernel
source, include/linux/kernel.h) explains it clearly:

Handling Hardware Interrupts Chapter 4

[168]

Figure 4.2 – The comment for might_sleep() is helpful

Along the same lines, the kernel provides helper macros such
as might_resched(), cant_sleep(), non_block_start(), non_block_end(
), and so on.

Just to remind you, we mentioned pretty much the same thing - regarding not
blocking within an atomic context - in the companion guide Linux Kernel
Programming, Chapter 8, Kernel Memory Allocation for Module Authors Part 1 in the
Dealing with the GFP flags section (and elsewhere). Furthermore, we also showed
you how the useful LDV project (mentioned back in companion guide Linux
Kernel Programming, Chapter 1, Kernel Workspace Setup, in the section The LDV -
Linux Driver Verification - project) has caught and fixed several such violations
within kernel and driver module code.

At the beginning of this section, we mentioned that, often, sleeping user space readers block
upon the arrival of data. Its arrival is typically signaled by the hardware interrupt. Then,
your interrupt handler routine fetches the data into a kernel VAS buffer and wakes up the
sleepers. Hey, isn't that disallowed? No – the wake_up*() APIs are non-blocking in nature.
The thing you need to understand is that they only switch the process' (or thread's) state
from asleep (TASK_{UN}INTERRUPTIBLE) to awake, ready to run (TASK_RUNNING). This
does not invoke the scheduler; the kernel will do that at the next opportunity point (we
discussed CPU scheduling in the companion guide Linux Kernel Programming, Chapter 10,
The CPU Scheduler – Part 1, and Chapter 11, The CPU Scheduler – Part 2).

Handling Hardware Interrupts Chapter 4

[169]

Interrupt masking – the defaults and controlling it
Recall that the interrupt controller chip (the PIC/GIC) will have a mask register. The OS can
program it to mask or block hardware interrupts as required (of course, some interrupts
may be unmaskable; the non-maskable interrupt (NMI) is a typical case that we discuss
later in this chapter).

It's important to realize, though, that keeping interrupts enabled (unmasked) as much as
possible is a critical measure of OS quality! Why? If an interrupt(s) is blocked, the
peripheral cannot be responded to and the system's performance lags or suffers as a result
(merely pressing and releasing a keyboard key results in two hardware interrupts). You
must keep interrupts enabled for as long as possible. Locking with the spinlock will cause
interrupts and preemption to be disabled! Keep the critical section short (we'll cover
locking in depth in the last two chapters of this book).

Next, when it comes to the default behavior on the Linux OS, when a hardware interrupt
occurs and that interrupt isn't masked (always the default), let's say it's IRQn (where n is
the IRQ number), the kernel ensures that while its interrupt (hardirq) handler executes,
all interrupts on the local CPU core where the handler is executing are disabled and
IRQn is disabled across all CPUs. Thus, your handler code is inherently reentrant-safe.
This is good as it means you never have to worry about the following:

Masking interrupts yourself
When to run atomically, to completion and without interruption, on that CPU
core

As we'll see later, a bottom-half can still be interrupted by a top-half, thus
necessitating locking.

While IRQn executes on, say, CPU core 1, other interrupts remain enabled (unmasked) on
all CPU cores but core 1. Thus, on multicore system hardware, interrupts can run in parallel
on different CPU cores. This is fine as long as they don't step on each other's toes, with
respect to global data! If they do, you'll have to employ locking, something we'll cover in
detail in this book's last two chapters.

Handling Hardware Interrupts Chapter 4

[170]

Furthermore, on Linux, all interrupts are peers, so there is no priority among them; in
other words, they all run at the same priority. Provided it's unmasked, any hardware
interrupt can interrupt the system at any point in time; an interrupt can even interrupt
interrupts! However, they typically don't do the latter. This is because, as we have just
learned, while an interrupt IRQn is running on a CPU core, all the interrupts on that core
are disabled (masked) and IRQn is disabled globally (across all cores) until it completes; the
exception is an NMI.

Keep it fast
An interrupt is what is suggests: it interrupts normal work on the machine; it's a bit of an
annoyance that has to be tolerated. Context has to be saved, the handler has to be executed
(along with bottom halves, which we will cover in the Understanding and using top and
bottom halves section), and then context must be restored to whatever got interrupted. So,
you get the idea: it's a critical code path, so don't plod along – be fast and non-blocking!

It also brings up the question, how fast is fast? While the answer is, of course, platform-
dependent, a heuristic is this: keep your interrupt processing as fast as is possible, within
tens of microseconds. If it consistently exceeds 100 microseconds, then the need for
alternate strategies does come up. We'll cover what you can do when this occurs later in the
chapter.

With regard to our simple my_interrupt() pseudocode snippet (shown in the Don't block
– spotting possibly blocking code paths section), first, ask yourself, must I really allocate
memory in a critical non-blocking needs-to-execute-fast code path such as an interrupt
handler? Can you design the module/driver to allocate the memory earlier (and just use the
pointer)?

Again, the reality is that, at times, quite a lot of work has to be done to correctly service the
interrupt (network/block drivers are good examples). We shall cover some typical strategies
we can use to deal with this shortly.

Writing the interrupt handler routine itself
Now, let's quickly learn the mechanical part of it. The signature of the hardware interrupt
handler routine (often referred to as the hardirq routine) is as follows:

static irqreturn_t interrupt_handler(int irq, void *data);

Handling Hardware Interrupts Chapter 4

[171]

The interrupt handler routine is invoked by the kernel's generic IRQ layer when a hardware
IRQ that your driver has registered interest in (via the request_irq() or friends APIs) is
triggered. It receives two parameters:

The first parameter is the IRQ line (an integer). Triggering this causes this
handler to be invoked.
The second parameter is the value that was passed via the last parameter
to request_irq(). As we mentioned previously, it's typically the driver's
specialized device structure that embeds the driver context or private data.
Because of this, its data type is the generic void *, allowing request_irq() to
pass any type along, typecasting it appropriately in the handler routine and
using it.

The handler is regular C code, but with all the caveats we mentioned in the preceding
section! Take care to follow those guidelines. Though the details are hardware-
specific, typically, your interrupt handler's first responsibility is to clear the interrupt on the
board, in effect, acknowledging it and telling the PIC as much. This is usually achieved by
writing some specific bits into a specified hardware register on the board or controller; read
the datasheet for your particular chip, chipset or hardware device to figure this out. Here,
the in_irq() macro will return true, informing you that your code is currently in
a hardirq context.

The rest of the work that's done by the handler is obviously very device-specific. For
example, an input driver will want to scan the key code (or touchscreen coordinates or
mouse key/movement or whatever) that was just pressed or released from some register or
peripheral memory location and perhaps save it in some memory buffer. Alternatively, it
might immediately pass it up the stack to a generic input layer above it. We won't try and
delve into those details here. Again, the driver framework is what you need to understand
for your driver type; this is beyond the scope of this book.

What about the value to return from your hardirq handler? The irqreturn_t return value
is an enum and looks as follows:

// include/linux/irqreturn.h

/**
 * enum irqreturn
 * @IRQ_NONE interrupt was not from this device or was not handled
 * @IRQ_HANDLED interrupt was handled by this device
 * @IRQ_WAKE_THREAD handler requests to wake the handler thread
 */
enum irqreturn {
 IRQ_NONE = (0 0),
 IRQ_HANDLED = (1 0),

Handling Hardware Interrupts Chapter 4

[172]

 IRQ_WAKE_THREAD = (1 1),
};

The preceding comment header clearly points out its meaning. Essentially, the generic IRQ
framework insists that you return the IRQ_HANDLED value if your driver handled the
interrupt. If the interrupt was not yours or you couldn't handle it, you should return the
IRQ_NONE value. (This helps the kernel detect spurious interrupts as well. If you cannot
figure out whether it's your interrupt, simply return IRQ_HANDLED.) We'll see
how IRQ_WAKE_THREAD is used shortly.

Now, let's look at some more code! In the next section, we'll check out the hardware
interrupt handler code for two drivers (we came across these earlier in this and the
previous chapter).

Code view 2 – the i8042 driver's interrupt handler
In the previous chapter, Chapter 3, Working with Hardware I/O Memory, in the A PIO
example – the i8042 section, we learned how the i8042 device driver uses some very simple
helper routines to perform I/O (read/write) on the I/O ports of the i8042 chip (this is often
the keyboard/mouse controller on x86 systems). The following code snippet shows some of
the code for its hardware interrupt handler routine; you can clearly see it reading both the
status and data registers:

// drivers/input/serio/i8042.c
/*
 * i8042_interrupt() is the most important function in this driver -
 * it handles the interrupts from the i8042, and sends incoming bytes
 * to the upper layers.
 */
static irqreturn_t i8042_interrupt(int irq, void *dev_id)
{
 unsigned char str, data;
 [...]
 str = i8042_read_status();
 [...]
 data = i8042_read_data();
 [...]
 if (likely(serio && !filtered))
 serio_interrupt(serio, data, dfl);
 out:
 return IRQ_RETVAL(ret);
}

Handling Hardware Interrupts Chapter 4

[173]

Here, the serio_interrupt() call is how this driver passes on the data it read from the
hardware to the upper "input" layer, which will process it further and ultimately have it
ready for the user space process to consume. (Take a look at the Questions section at the end
of this chapter; one of the exercises for you to try is writing a simple "key logger" device
driver.)

Code view 3 – the IXGB network driver's interrupt
handler
Let's take a look at another example. Here, we're looking at the hardware interrupt handler
of the Intel IXGB ethernet adapter's device driver, which we mentioned earlier:

// drivers/net/ethernet/intel/ixgb/ixgb_main.c
static irqreturn_t
ixgb_intr(int irq, void *data)
{
 struct net_device *netdev = data;
 struct ixgb_adapter *adapter = netdev_priv(netdev);
 struct ixgb_hw *hw = &adapter-hw;
 u32 icr = IXGB_READ_REG(hw, ICR);

 if (unlikely(!icr))
 return IRQ_NONE; /* Not our interrupt */
 [...]
 if (napi_schedule_prep(&adapter-napi)) {
 [...]
 IXGB_WRITE_REG(&adapter-hw, IMC, ~0);
 __napi_schedule(&adapter-napi);
 }
 return IRQ_HANDLED;
}

In the preceding code snippet, notice how the driver gains access to its private (or context)
metadata structure (struct ixgb_adapter) from the net_device structure (the
specialized structure for network devices) it receives as the second parameter; this is very
typical. (Here, the netdev_priv() helper used to extract the driver's private structure
from the generic net_device structure is somewhat analogous to the well-
known container_of() helper macro. In fact, this helper is also often employed in similar
situations.)

Handling Hardware Interrupts Chapter 4

[174]

Next, it performs a peripheral I/O memory read via the IXGB_READ_REG() macro (it's
using the MMIO approach – see the previous chapter for details on MMIO;
IXGB_READ_REG() is a macro that invokes the readl() API we covered in the previous
chapter – the older style routine for performing a 32-bit MMIO read). Don't miss the key
point here: this is how the driver determines whether the interrupt is meant for it, as, recall,
it's a shared interrupt! If it is meant for it (the likely case), it proceeds with its job; since this
adapter supports NAPI, the driver now schedules polled NAPI reads to suck up network
packets as they come in and sends them up the network protocol stack for further
processing (well, it's really not that simple; the actual memory transfer work will be
performed over DMA).

Now, a diversion but an important one: you need to learn how to allocate the IRQ line the
modern way – via the devm_* APIs. This is known as the managed approach.

IRQ allocation – the modern way – the managed
interrupt facility
Many modern drivers employ the kernel's devres or managed APIs framework for various
purposes. The managed APIs in modern Linux kernels give you the advantage of not
having to worry about freeing up resources that you've allocated (we have covered a few of
them already, including devm_k{m,z}alloc() and devm_ioremap{_resource}()). Of
course, you must use them appropriately, typically in the probe method (or init code) of
the driver.

It is recommended that, when writing drivers, you use this newer API style. Here, we'll
show how you to employ the devm_request_irq() API in order to allocate (register) your
hardware interrupt. Its signature is as follows:

#include <linux/interrupt.h>

int __must_check
devm_request_irq(struct device *dev, unsigned int irq, irq_handler_t
handler,
 unsigned long irqflags, const char *devname, void
*dev_id);

Handling Hardware Interrupts Chapter 4

[175]

The first parameter is the pointer to the device structure of the device (which, as we saw in
Chapter 1, Writing a Simple misc Character Device Driver, has to be obtained by registering to
the appropriate kernel framework). The five remaining parameters are identical to
request_irq(); we won't repeat them here. The whole point is that, once registered, you
are freed from calling free_irq(); the kernel will automatically invoke it as required (on
driver removal or device detachment). This greatly helps us developers avoid common and
infamous leakage type bugs.

To help clarify its use, let's quickly look at an example. The following is a bit of the code
from the V4L TV tuner driver:

// drivers/gpu/drm/exynos/exynos_mixer.c
[...]
 res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_IRQ, 0);
 if (res == NULL) {
 dev_err(dev, "get interrupt resource failed.\n");
 return -ENXIO;
 }

 ret = devm_request_irq(dev, res->start, mixer_irq_handler,
 0, "drm_mixer", mixer_ctx);
 if (ret) {
 dev_err(dev, "request interrupt failed.\n");
 return ret;
 }
 mixer_ctx-irq = res->start;
[...]

As we saw in regard to getting the physical address for MMIO in Chapter 3, Working with
Hardware I/O Memory, in the Obtaining the device resources section, here, the same driver
employs the platform_get_resource() API to extract the IRQ number (specifying the
type of resource as an IRQ line with IORESOURCE_IRQ). Once it has it, it issues
the devm_request_irq() API to allocate or register the interrupt! As is therefore
expected, a search for free_irq() in this driver yields no results.

Next, we'll learn what a threaded interrupt is, how to work with one, and, more
importantly, the why of it.

Handling Hardware Interrupts Chapter 4

[176]

Working with the threaded interrupts model
As seen in the companion guide Linux Kernel Programming - Chapter 11, The CPU
Scheduler – Part 2, in the Converting mainline Linux into an RTOS section, we covered the
real-time patch for Linux (RTL), which allows you to patch, configure, build, and run Linux
as an RTOS! If you're hazy on this, please refer back to this. We won't repeat the same
information here.

The Real-Time Linux (RTL) project's work has been steadily back-ported into the mainline
Linux kernel. One of the key changes wrought by RTL was merging the threaded
interrupts feature into the mainline kernel. This occurred in kernel version 2.6.30 (June
2009). This technology does something that, at first glance, seems very weird: it "converts"
the hardware interrupt handler into, essentially, a kernel thread.

As you will learn in the next chapter, a kernel thread is really very similar to a user mode
thread – it runs independently, in the process context and has its own task structure (and
thus its own PID, TGID, and so on), which means it can be scheduled; that is, when in the
runnable state, it fights with other contender threads to run on a CPU core. The key
difference is that a user mode thread always has two address spaces – the process VAS that
it belongs to (user space) and the kernel VAS, which it switches to when it issues a system
call. A kernel thread, on the other hand, runs purely in kernel space and has no view of the
user space; it only sees the kernel VAS that it always executes in (technically, its current-
mm value is always NULL!).

So, how do you decide if you should use a threaded interrupt? We need to cover a few
more topics before this becomes completely clear (for those of you who are impatient,
here's the short answer: use a threaded interrupt handler when (as a quick heuristic) the
interrupt work takes over 100 microseconds; skip ahead to the Hardirqs, tasklets, threaded
handlers – what to use when section and see the table there for a quick look).

Now, let's learn how to employ the threaded interrupt model by checking out the available
APIs – both the regular and managed ones. Then, we'll learn how to use the managed
version and how to employ it within a driver. After that, we'll look at its internal
implementation and delve more into the why of it.

Handling Hardware Interrupts Chapter 4

[177]

Employing the threaded interrupt model – the API
In order to understand the threaded interrupt model's inner workings, let's take a look at
the relevant APIs. We've already covered using the request_irq() API. Let's look at its
implementation:

// include/linux/interrupt.h
static inline int __must_check
request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
const char *name, void *dev)
{
 return request_threaded_irq(irq, handler, NULL, flags, name, dev);
}

This API is merely a thin wrapper over the request_threaded_irq() API! Its signature
is as follows:

int __must_check
request_threaded_irq(unsigned int irq, irq_handler_t handler,
 irq_handler_t thread_fn,
 unsigned long flags, const char *name, void *dev);

The parameters, except for the third one, are identical to request_irq(). The following
are a few key points to note:

irq_handler_t handler: The second parameter is a pointer to the usual
interrupt handler function. We now refer to it as the primary handler. If it's null
and thread_fn (the third parameter) is non-null, a default primary handler (of
the kernel's) is auto-installed (if you're wondering about this default primary
handler, we'll cover it in more detail in the Internally implementing the threaded
interrupt section).
irq_handler_t thread_fn: The third parameter is a pointer to the threaded
interrupt function; the API behavior depends on whether you pass this
parameter as null or not:

If it's non-null, then the actual servicing of the interrupt is
performed by this function. It runs within the context (process) of a
dedicated kernel thread – it's a threaded interrupt!
If it's null, which is the default when you
call request_irq(), only the primary handler runs, and no kernel
thread is created.

Handling Hardware Interrupts Chapter 4

[178]

The primary handler if specified (second parameter), is run in what's referred to as
the hardirq or hard interrupt context (as was the case with request_irq()). If the primary
handler is non-null, then you are expected to write it's code and (minimally) do the
following in it:

Verify the interrupt is for you; if it's not, return IRQ_NONE.
If it is for you, then you can clear and/or disable the interrupt on the
board/device.
Return IRQ_WAKE_THREAD; this will cause the kernel to wake up the kernel
thread representing your threaded interrupt handler. The name of the kernel
thread will be in the format irq/irq#-name. This kernel thread will now
internally invoke the thread_fn() function, where you perform the actual
interrupt handling work.

On the other hand, if the primary handler is null, then just your threaded handler – the
function specified by the third parameter – will be automatically run as a kernel thread by
the OS when the interrupt fires.

As with request_irq(), the return value from request_threaded_irq() is an integer,
following the usual 0/-E kernel convention: 0 on success and a negative errno value on
failure. You are expected to check it.

Employing the managed threaded interrupt model
– the recommended way
Again, using the managed API for allocating a threaded interrupt would be the
recommended approach for a modern driver. The kernel provides
the devm_request_threaded_irq() API for this very purpose:

#include linux/interrupt.h

int __must_check
 devm_request_threaded_irq(struct device *dev, unsigned int irq,
 irq_handler_t handler, irq_handler_t thread_fn,
 unsigned long irqflags, const char *devname,
 void *dev_id);

Handling Hardware Interrupts Chapter 4

[179]

All the parameters besides the first one, which is the pointer to the device structure, are the
same as those for request_threaded_irq(). The key advantage of this is that you don't
need to worry about freeing up the IRQ line. The kernel will auto-free it on device detach or
driver removal, as we learned with devm_request_irq(). As
with request_threaded_irq(), the return value
from devm_request_threaded_irq() is an integer, following the usual 0/-E kernel
convention: 0 on success and a negative errno value on failure; you are expected to check it.

Don't forget! Using the managed devm_request_threaded_irq() API
is the modern recommended approach for allocating a threaded interrupt.
However, note that it won't always be the right approach; see the
Constraints when using a threaded handler section for more information.

The signature of the threaded interrupt handler function is identical to that for the hardirq
interrupt handler:

static irqreturn_t threaded_handler(int irq, void *data);

The parameters have the same meaning as well.

Threaded interrupts often use the IRQF_ONESHOT interrupt flag; the kernel comment
in include/linux/interrupt.h describes it best:

 * IRQF_ONESHOT - Interrupt is not reenabled after the hardirq handler
finished.
 * Used by threaded interrupts which need to keep the
 * irq line disabled until the threaded handler has been run.

As a matter of fact, the kernel insists that you use the IRQF_ONESHOT flag when your
driver is incorporating a threaded handler and the primary handler is the kernel default.
Not using the IRQF_ONESHOT flag would be deadly when level-triggered interrupts are in
play. To be safe, the kernel throws an error - when this flag isn't present in the irqflags
bitmask parameter - even for edge-triggering. If you're curious, the code at
kernel/irq/manage.c:__setup_irq() checks for just this (link: https:/ ​/ ​elixir.
bootlin.​com/​linux/ ​v5. ​4/ ​source/ ​kernel/ ​irq/​manage. ​c#L1486).

A kernel parameter called threadirqs exists that you can pass to the
kernel command line (via the bootloader). This force threads all the
interrupt handlers except those marked explicitly as IRQF_NO_THREAD. To
find out more about this kernel parameter, go to https:/ ​/​www. ​kernel.
org/​doc/ ​html/ ​latest/ ​admin- ​guide/ ​kernel- ​parameters. ​html.

https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/manage.c#L1486
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Handling Hardware Interrupts Chapter 4

[180]

In the following subsection, we'll take a look at one of the Linux driver's STM32
microcontrollers. Here, we will focus on how interrupt allocation is done via the "managed"
API that we just covered.

Code view 4 – the STM32 F7 microcontroller's threaded
interrupt handler
The STM32 F7 is part of a series of microcontrollers that have been manufactured by
STMicroelectronics, based on the ARM-Cortex M7F core:

Figure 4.3 – The STM32F103 microcontroller pinout with some I2C pins highlighted (see the lower left)

Handling Hardware Interrupts Chapter 4

[181]

Image Credit: The preceding image, which has been slightly added to by
myself, has been taken from https:/ ​/​www. ​electronicshub. ​org/ ​wp-
content/ ​uploads/ ​2020/ ​02/ ​STM32F103C8T6- ​Blue- ​Pill- ​Pin- ​Layout. ​gif.
Image by Rasmus Friis Kjekisen. This image falls under Creative
Commons CC BY-SA 1.0 (https:/ ​/​creativecommons. ​org/ ​licenses/ ​by-
sa/​1. ​0/ ​).

The Linux kernel supports the STM32 F7 via various drivers and DTS files. Here, we'll take
a look at a tiny bit of the code for the I2C bus driver (drivers/i2c/busses/i2c-
stm32f7.c) for this microcontroller. It allocates two hardware interrupts:

The event IRQ line, via the devm_request_threaded_irq() API
The error IRQ line, via the request_irq() API

The code that allocates the IRQ lines is, as expected, within its probe method:

// drivers/i2c/busses/i2c-stm32f7.c
static int stm32f7_i2c_probe(struct platform_device *pdev)
{
 struct stm32f7_i2c_dev *i2c_dev;
 const struct stm32f7_i2c_setup *setup;
 struct resource *res;
 int irq_error, irq_event, ret;

 [...]
 irq_event = platform_get_irq(pdev, 0);
 [...]
 irq_error = platform_get_irq(pdev, 1);
 [...]
 ret = devm_request_threaded_irq(&pdev->dev, irq_event,
 stm32f7_i2c_isr_event,
 stm32f7_i2c_isr_event_thread,
 IRQF_ONESHOT,
 pdev->name, i2c_dev);
 [...]
 ret = devm_request_irq(&pdev->dev, irq_error, stm32f7_i2c_isr_error, 0,
 pdev->name, i2c_dev);

Let's focus on the call to devm_request_threaded_irq(). The first parameter is the
pointer to the device structure. Since this is a platform driver (registered via
the module_platform_driver wrapper macro), its probe method receives the struct
platform_device *pdev parameter; the device structure is extracted from it. The
second parameter is the IRQ line to allocate. Again, as we've already seen, it's extracted via
a helper routine. Here, this is the platform_get_irq() API.

https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://www.electronicshub.org/wp-content/uploads/2020/02/STM32F103C8T6-Blue-Pill-Pin-Layout.gif
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/

Handling Hardware Interrupts Chapter 4

[182]

The third parameter specifies the primary handler; that is the hardirq. Since it's non-null,
this routine will be invoked when the IRQ is triggered. It performs hardware-specific
verification on the device and the I2C transfer, and if all is okay, it returns the
IRQ_WAKE_THREAD value. This awakens the threaded interrupt routine, the fourth
parameter, and the function stm32f7_i2c_isr_event_thread() runs as a kernel thread
in process context! The irqflags parameter, which is set to IRQF_ONESHOT, is typical with
threaded handlers; it specifies that the IRQ line remains disabled until the threaded handler
completes (not just the hardirq). The threaded handler routine does its work and
returns IRQ_HANDLED when it's finished.

Since the error IRQ line is allocated via the devm_request_irq() API, and because we
have already covered how to use this API (refer to the IRQ allocation – the modern way – the
managed interrupt facility section), we won't repeat any information regarding it here.

Now, let's look at how the kernel internally implements the threaded interrupt model.

Internally implementing the threaded interrupt
As we mentioned previously, if the primary handler is null and the thread function is non-
null, the kernel uses a default primary handler. The function is
called irq_default_primary_handler() and all it does is return the
IRQ_WAKE_THREAD value, thus waking up (and making schedulable) the kernel thread.

Furthermore, the actual kernel thread that runs your thread_fn routine is created within
the code of the request_threaded_irq() API. The call graph (as of version 5.4.0 of the
Linux kernel) is as follows:

 kernel/irq/manage.c:request_threaded_irq() -- __setup_irq() --
 setup_irq_thread() -- kernel/kthread.c:kthread_create()

The invocation of the kthread_create() API is as follows. Here, you can clearly see how
the format of the new kernel thread's name will be in irq/irq#-name format:

t = kthread_create(irq_thread, new, "irq/%d-%s", irq, new->name);

Here (we don't show the code), the new kernel thread is programmed to be set to
the SCHED_FIFO scheduling policy and the MAX_USER_RT_PRIO/2 real-time scheduling
priority, which typically has a value of 50 (the SCHED_FIFO range is from 1 to 99, and
MAX_USER_RT_PRIO is 100). We'll cover why this is important in the Why use threaded
interrupts? section. If you're unsure about the thread scheduling policy and its priority,
please refer to the companion guide Linux Kernel Programming - Chapter 10, The CPU
Scheduler – Part 1, the The POSIX scheduling policies section.

Handling Hardware Interrupts Chapter 4

[183]

The kernel manages this kernel thread representing the threaded interrupt handler in its
entirety. As we've already seen, it creates it on IRQ allocation via
the [devm_]request_threaded_irq() API; then, the kernel thread simply sleeps. It is
awoken on demand by the kernel, whenever the allocated IRQ is triggered; the kernel will
destroy it when free_irq() is invoked. Don't worry about the details at the moment; we'll
cover kernel threads and other interesting topics in the next chapter.

So far, although you have learned how to use the threaded interrupt model, it's not been
clearly explained why (and when) you should. The next section will cover this in detail.

Why use threaded interrupts?
A key question that's usually asked is, why should I use threaded interrupts at all when the
regular hardirq-type interrupt exists? The complete answer is a bit elaborate; the following
are the primary reasons why:

To really make it real time.
It eliminates/reduces softirq bottlenecks. Since the threaded handler actually runs
its code in process context, it's not considered to be as critical a code path as a
hardirq handler; hence, you can take a little longer with interrupt handling.

While a hardirq executes IRQn, that IRQ line is disabled on all the
cores across the system. If it takes a while to execute to completion
(of course, you should design it so that it doesn't), then the
system's response can significantly drop; on the other hand, while
a threaded handler executes, the hardware IRQ line is enabled by
default. This is good for performance and responsiveness. (Note
that there will be many cases where the driver will not want this
behavior; that is, it will want IRQ to be disabled while it processes
it. To do that, specify the IRQF_ONSEHOT flag.)

Handling Hardware Interrupts Chapter 4

[184]

In a nutshell, as a quick rule of thumb, when the interrupt handling
consistently takes over 100 microseconds, use the threaded interrupt
model (see the table in Hardirqs, tasklets, threaded handlers – what to use
when section).

In the following subsections, we will expand on these points.

Threaded interrupts – to really make it real time
This is a key point and requires some explanation.

Prioritization on the standard Linux OS goes from highest to lowest priority as follows
(we'll suffix each bullet point with the context it runs in; it will be either process or interrupt.
If you're unclear on this point, it's very important you understand this; do refer to the
companion guide Linux Kernel Programming - Chapter 6, Kernel Internals Essentials – Processes
and Threads, the Understanding Process and Interrupt Contexts section, for more information):

Hardware interrupts: These preempt anything and everything. The
hardirq handler runs atomically (to completion, without interruption) on the
CPU; context:interrupt.

Real-time threads (the SCHED_FIFO or SCHED_RR scheduling policy), both kernel
and user space, with positive real-time priority (rtprio); context:process:

A kernel thread at the same realtime priority (current-rtprio)
gets a slight priority bump over a user space thread at the
same realtime priority.

Processor exceptions: This includes system calls (they're really synchronous
exceptions; for example, syscall on the x86, SWI on ARM), page faults,
protection faults, and so on; context:process.
User mode threads: They use the SCHED_OTHER scheduling policy by default
with an rtprio of 0; context:process.

Handling Hardware Interrupts Chapter 4

[185]

The following diagram shows relative prioritization on Linux (this diagram is a bit
simplistic; a more refined diagram is seen later via Figure 4.10 and Figure 4.11):

Figure 4.4 – Relative prioritization on the standard Linux OS

Let's say you are working on a real-time multithreaded application. Of the dozens of
threads that are alive within the process, three of them (let's call them threads A, B, and C
for simplicity) are considered to be critical "real-time" threads. Accordingly, you have the
app grant them a scheduling policy of SCHED_FIFO and real-time priorities of 30, 45, and 60
to threads A, B, and C, respectively (if you're unclear on these points, please refer to the
companion guide Linux Kernel Programming - Chapter 10, The CPU Scheduler - Part 1, and
Chapter 11, The CPU Scheduler - Part 2, on CPU scheduling). Since it's a real-time app, the
maximum time that it can take these threads to complete their work is curtailed. In other
words, a deadline exists; for our example scenario, let's say that the worst-case deadline for
thread B to complete its work is 12 milliseconds.

Now, in terms of relative priorities, how will this work? For simplicity, let's say that the
system has a single CPU core. Now, another thread, X (running with the scheduling
policy SCHED_OTHER and with a real-time priority of 0, which is the default scheduling
policy/priority value), is currently executing code on the CPU. However, if the "event" that
any of your real-time threads is waiting upon occurs, it will preempt the currently
executing thread and run. This is what's expected; recall that the fundamental rule for real-
time scheduling is very simple: the highest priority runnable thread must be the thread that's
running. Okay; that's good. Now, we need to consider hardware interrupts. A hardware
interrupt, as we've seen, has the highest priority. This means it will preempt anything and
everything, including your (so-called) real-time thread (see the preceding diagram)!

Handling Hardware Interrupts Chapter 4

[186]

Let's say that interrupt processing takes 200 microseconds; on a rich OS such as Linux, this
isn't considered too bad. However, in this situation, five hardware interrupts will consume
1 millisecond; what if the device becomes busy (many incoming data packets, for example)
and emits, say, 20 hardware interrupts in a continuous stream? This will certainly be given
priority and will consume (at least) 4 milliseconds! Your real-time thread(s) will definitely
be preempted while interrupt processing runs and will be unable to gain the CPU it needs
until it's far too late! The (12 ms) deadline will have long expired and the system will fail (if
yours is a true real-time app, this could be catastrophic).

The following diagram represents this scenario conceptually (for conciseness and clarity,
we have only shown one of our user space SCHED_FIFO real-time threads; that is, thread B
at rtprio 45):

Figure 4.5: The hardirq model – a user mode RT SCHED_FIFO thread interrupted by a hardware interrupt flood; deadline missed

Real-time thread B is depicted as running from time t0 (on the x-axis; the y-axis represents
the real-time priority; thread B's rtprio is 45); it has 12 ms (a hard deadline) to complete its
work. However, let's say that after 6 ms have elapsed (at time t1), a hardware interrupt
fires.

Handling Hardware Interrupts Chapter 4

[187]

In Figure 4.5, we haven't shown the low-level interrupt setup code that executes. Now a
hardware interrupt firing at time t1 results in the interrupt handler being invoked; that is,
the hardirq (shown as the big black vertical double-arrow in the preceding diagram).
Obviously, the hardware interrupt preempts thread B. Now, let's say it takes 200
microseconds to execute; that's not much, but what if a flood of interrupts (say 20 of them,
thus eating up 4 ms) arrives! This is depicted in the preceding diagram: the interrupts
continue at a rapid rate until time t2; only after they all complete will context be restored.
Thus, the scheduling code runs and (let's say) context switches back to thread B, giving it
the processor (we take, on a modern Intel CPU, a conservative context switching time of 50
microseconds: https:/ ​/ ​blog. ​tsunanet. ​net/​2010/ ​11/ ​how- ​long- ​does- ​it-​take- ​to- ​make-
context.​html). However, soon after, at time t3, the hardware interrupt fires once more,
preempting B again. This can go on indefinitely; the RT thread will eventually run (when
the interrupt storm is complete) but may or may not meet its deadline! This is the main
issue.

The problem that was described in the preceding paragraph doesn't go
away by simply raising the real-time priority of your user mode threads;
the hardirq hardware interrupts will still always preempt them, regardless
of their priority.

By backporting the threaded interrupt from the RTL project to mainline Linux, we
can solve this problem. How? Think about it: with the threaded interrupt model, the majority
of the interrupt handling work is now performed by a SCHED_FIFO kernel thread running
with a real-time priority of 50. So, simply design your user space applications to have,
where essential, SCHED_FIFO RT threads with real-time priorities higher than 50. This will
ensure that they run in preference to the hardware interrupt handler!

The key idea here is that a user mode thread under
the SCHED_FIFO policy and a real-time priority 50, can, in effect, preempt
the (threaded) hardware interrupt! Quite a thing indeed.

So, for our example scenario, let's now assume we're using threaded interrupts. Next,
tweak the user space multithreaded app's design: assign our three real-time threads a
policy of SCHED_FIFO and real-time priorities of 60, 65, and 70. The following diagram
conceptually depicts this scenario (for clarity, we have only shown one of our user
space SCHED_FIFO threads, thread B, this time at rtprio of 65):

https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

Handling Hardware Interrupts Chapter 4

[188]

Figure 4.6 – Threaded interrupt model – a user mode RT SCHED_FIFO rtprio 50 thread can preempt the threaded interrupt; deadline achieved

In the preceding diagram, RT thread B is now at the SCHED_FIFO scheduling policy with an
rtprio of 65. It has up to 12 ms to complete (reach its deadline). Again, say it executes for
6 ms (t0 to t1); at time t1, a hardware interrupt fires. Here, the low-level setup code and
the (kernel default or driver's) hardirq handler will execute immediately, preempting
anything on the processor. However, the hardirq or primary handler takes a very short time
to execute (a few microseconds at the most). This is, as we have already discussed,
the primary handler that is now executing; it will do the bare minimum work required
before returning the IRQ_WAKE_THREAD value, which will have the kernel wake up the
kernel thread representing the threaded handler. However – and this is the key – the
threaded interrupt, which is SCHED_FIFO with a priority of 50, is now competing with
other runnable threads for the CPU resource. Since thread B is a SCHED_FIFO real-time
thread with an rtprio of 65, it will beat the threaded handler to the CPU and will run
instead!

Handling Hardware Interrupts Chapter 4

[189]

To summarize, in the preceding diagram, the following is happening:

Time t0 to t1: the user mode RT thread (SCHED_FIFO, rtprio 65) is executing
its code (for 6 ms)
At time t1, the thin gray bar represents the hardirq low-level setup/BSP code.
The thin black double-arrow vertical line represents the primary hardirq handler
(both the above take just a few microseconds to complete).
The blue color bar is the scheduling code.
The purple bar (at t3 + 50 us) represents the threaded interrupt handler running
at rtprio 50.

The upshot of all this is that thread B completes its work well within its deadline (here, as
an example, it's met its deadline in just over 10 ms).

Unless time constraints are extremely critical, using the threaded interrupt model to handle
your device's interrupts works very well for most devices and drivers. At the time of
writing, the devices that tend to remain within the traditional top/bottom half approach
(covered in detail in the Understanding and using top and bottom halves section) are typically
high-performance network, block, and (some) multimedia devices.

Constraints when using a threaded handler
One last thing regarding threaded handlers: the kernel won't blindly allow you to use a
threaded handler for any IRQ; it honors some constraints. At the time of registering your
thread handler (via the [devm_]request_threaded_irq() APIs), it performs several
validity checks, one of which we've mentioned already: IRQF_ONESHOT must be present for
a threaded handler.

It also depends on the actual IRQ line; for example, I once tried using a threaded handler
for IRQ 1 on x86 (it's typically the i8042 keyboard/mouse controller chip's interrupt line). It
failed, with the kernel showing the following:

genirq: Flags mismatch irq 1. 00002080 (driver-name) vs. 00000080 (i8042)

So, from the preceding output, we can see that the i8042 will only accept the 0x80 bitmask
for the IRQ flags, whereas I passed a value of 0x2080; a little checking will show that the
0x2000 flag is indeed the IRQF_ONESHOT flag; apparently, this causes a mismatch and isn't
allowed. Not only that, but notice who flagged the error – it was the kernel's generic IRQ
layer (genirq) checking things under the hood. (Note that this kind of error checking isn't
restricted to threaded interrupts.)

Handling Hardware Interrupts Chapter 4

[190]

Also, certain critical devices will find that using threaded handlers will actually slow them
down; this is pretty typical for modern NICs, block devices, and some multimedia devices.
They typically use the hardirq top half and tasklet/softirq bottom half mechanisms (this will
be explained in the Understanding and using top and bottom halves section).

Working with either hardirq or threaded handlers
Before we conclude this section, there's one more interesting point to take into
consideration: the kernel provides an IRQ allocation API that, based on certain
circumstances, will either set up your interrupt handler as a traditional hardirq handler or
as a threaded handler. This API is called request_any_context_irq(); note that it's
exported as GPL-only though. Its signature is as follows:

int __must_check
request_any_context_irq(unsigned int irq, irq_handler_t handler,
 unsigned long flags, const char *name, void *dev_id);

The parameters are identical to that of request_irq(). When invoked, this routine will
decide whether the interrupt handler function – the handler parameter – will run in an
atomic hardirq context or in a sleep-capable process context, that of a kernel thread – in
other words, as a threaded handler. How will you know which context handler() will run
in? The return value let's you know based on the context that handler() will run in:

If it's going to run in a hardirq context, it returns a value of IRQC_IS_HARDIRQ.
If it's going to run in a process/threaded context, it returns a value
of IRQC_IS_NESTED.
A negative errno will be returned on failure (you're expected to check this).

What does this really imply, though? Essentially, there are controllers that are on slow
buses (I2C is a great example); they spawn off handlers that use so-called "nested"
interrupts, which really means that the handler isn't atomic in nature. It might invoke
functions that sleep (again, I2C functions are a good example of this), and thus are required
to be preemptible. Using the request_any_context_irq() API ensures that if this is the
case, the underlying generic IRQ code detects it and gives you an appropriate handling
interface. The GPIO-driven matrix keypad driver is another example that makes use of this
API (drivers/input/keyboard/matrix_keypad.c).

With this coverage, you now understand what threaded interrupts are and why they can be
very useful. Now, let's take a look at a shorter topic: how you, as the driver author, can
selectively enable/disable IRQ lines.

Handling Hardware Interrupts Chapter 4

[191]

Enabling and disabling IRQs
Typically, it's the core kernel (and/or arch-specific) code that handles low-level interrupt
management. This includes doing things such as masking them as and when
required. Nevertheless, some drivers, as well as the OS, require fine-grained control when
enabling/disabling hardware interrupts. As your driver or module code runs with kernel
privileges, the kernel provides (exported) helper routines that allow you to do exactly this:

Brief comment API or helper routine
Disable/enable all interrupts on the local processor
Unconditionally disables all interrupts on the local
(current) processor core. local_irq_disable()

Unconditionally enables all interrupts on the local (current)
processor core. local_irq_enable()

Saves the state (interrupt mask) of, and then disables all
interrupts on the local (current) processor core. The state is
saved in the flags parameter that's passed.

local_irq_save(unsigned long
flags);

Restores the state (interrupt mask) that's passed, thus
enabling interrupts on the local (current) processor core as
per the flags parameter.

local_irq_restore(unsigned
long flags);

Disable/enable a specific IRQ line
Disables IRQ line irq; will wait for – and synchronize –
any pending interrupts (on that IRQ line) to complete
before returning.

​void disable_irq(unsigned int
irq);

Disables IRQ line irq; won't wait for any pending
interrupts (on that IRQ line) to complete (nosync).

void
disable_irq_nosync(unsigned
int irq);

Disables IRQ line irq and waits for the active hardirq
handler to complete before returning. It returns false if
any threaded handlers pertaining to this IRQ line are active
(requires GPL).

bool disable_hardirq(unsigned
int irq);

Enables IRQ line irq; undoes the effect of one call
to disable_irq().

​void enable_irq(unsigned int
irq);

Handling Hardware Interrupts Chapter 4

[192]

The local_irq_disable() / local_irq_enable() helpers are designed to
disable/enable all interrupts (except NMI) on the local or current processor core.

The implementation on x86[_64]
of local_irq_disable()/local_irq_enable() is done via the
(in)famous cli/sti pair of machine instructions; in the bad old days,
these used to disable/enable interrupts across the system, on all
CPUs. Now, they work on a per-CPU basis.

The disable_{hard}irq*()/enable_irq() helpers are designed to selectively
disable/enable a particular IRQ line and to be called as a pair. A few of the aforementioned
routines can be called from an interrupt context, though this should be done with care! it's
just safer to ensure you call them from process context. The "with care" statement is there
because several of these helpers work by internally invoking non-blocking routines, such
as cpu_relax(), that wait by repeatedly running some machine instructions on the
processor. (cpu_relax() is a good example of this "needs to be used with care" case as it
works by calling the nop machine instruction in an infinite loop; the loop is exited when
any hardware interrupt fires, which is exactly what we're waiting for! Now, waiting for a
while when in the interrupt context is considered a wrong thing to do; hence the "with care"
statement.) The kernel commit for disable_hardirq() (link: https:/ ​/​github. ​com/
torvalds/​linux/​commit/ ​02cea3958664723a5d2236f0f0058de97c7e4693) explains that it's
there to be used in situations where, like netpoll, there is a need to disable an interrupt from an
atomic context.

When disabling an interrupt, take care to ensure you're not holding (have locked) any
shared resource that the handler might use. This will result in a (self) deadlock! (Locking
and its many scenarios will be explained in a lot more detail in the last two chapters of this
book.)

The NMI
All the preceding APIs and helpers work on all hardware interrupts except for the non-
maskable interrupt (NMI). The NMI is an arch-specific interrupt and is used to implement
stuff such as hardware watchdogs and debug features (for example, an unconditional
kernel stack dump for all cores; we'll show an example of this very shortly). Also, NMI
interrupt lines cannot be shared.

https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693
https://github.com/torvalds/linux/commit/02cea3958664723a5d2236f0f0058de97c7e4693

Handling Hardware Interrupts Chapter 4

[193]

A quick example of exploiting the NMI can be shown with the kernel's so-called magic
SysRq facility. To see the keyboard hotkeys that are assigned for magic SysRq, you must
invoke or trigger it by typing in the [Alt][SysRq][letter] key combination.

magic SysRq triggering: Instead of getting your fingers all twisted
typing [Alt][SysRq][letter], there's an easier – and more importantly
non-interactive – way to do so: just echo the relevant letter to
a proc pseudofile (as root, of course): echo letter/proc/sysrq-
trigger.

But which letter do we need to type in? The following output shows a quick way you can
find out. This is a kind of quick-help for magic SysRq (I did this on my Raspberry Pi 3B+):

rpi # dmesg -C
rpi # echo ? /proc/sysrq-trigger
rpi # dmesg
[294.928223] sysrq: HELP : loglevel(0-9) reboot(b) crash(c) terminate-all-
tasks(e) memory-full-oom-kill(f) kill-all-tasks(i) thaw-filesystems(j)
sak(k) show-backtrace-all-active-cpus(l) show-memory-usage(m) nice-all-RT-
tasks(n) poweroff(o) show-registers(p) show-all-timers(q) unraw(r) sync(s)
show-task-states(t) unmount(u) show-blocked-tasks(w) dump-ftrace-buffer(z)
rpi #

The one we're currently interested in is shown in bold – the letter l (that's a lowercase L)
– show-backtrace-all-active-cpus(l). Once triggered, it literally does as promised –
it shows a stack backtrace of the kernel-mode stack on all active CPUs! (This can be a useful
debugging aid as you will see what each CPU core is running right now.) How? It does this
by sending an NMI to them; that is, to all CPU cores! This is one way we can see exactly
what the CPUs are up to at the very moment the command was triggered! This could be
very useful when something is hanging the system.

Here, echo l /proc/sysrq-trigger (as root) does the trick! The following partial
screenshot shows the output:

Handling Hardware Interrupts Chapter 4

[194]

Figure 4.7 – The output when the NMI is sent to all CPUs, showing the kernel stack backtrace on each of them

In the preceding screenshot, you can see that bash PID 633 is running on CPU 0 and that
the kernel thread, swapper/1, is running on CPU 1 (the kernel stack for each can be seen;
read it in a bottom-up fashion).

The magic SysRq facility's code can be found at drivers/tty/sysrq.c; it's interesting to
browse through. The following is the approximate call graph for what happens on the x86
when the magic SysRq l is triggered:

include/linux/nmi.h:trigger_all_cpu_backtrace()
arch_trigger_cpumask_backtrace()
 arch/x86/kernel/apic/hw_nmi.c:arch_trigger_cpumask_backtrace()
 nmi_trigger_cpumask_backtrace()

Handling Hardware Interrupts Chapter 4

[195]

The last function actually becomes the generic (not arch-specific) code
at lib/nmi_backtrace.c:nmi_trigger_cpumask_backtrace(). The code here triggers
the CPU backtrace by sending an NMI to each CPU. This is achieved via
the nmi_cpu_backtrace() function. This function, in turn, displays the information we
saw in the preceding screenshot by invoking the show_regs() or dump_stack() routines,
which ultimately become arch-specific code to dump the CPU registers, as well as the
kernel-mode stack. The code is also intelligent enough to not attempt to show a backtrace
on those CPU cores that are in a low power (idle) state.

Again, things are not always simple in the real world; see this article by
Steven Rostedt on the complex issues people have faced with the x86 NMI
and how they've been addressed: The x86 NMI iret problem, March
2012: https:/ ​/​lwn. ​net/ ​Articles/ ​484932/ ​.

So far, we haven't actually seen the kernel view of allocated IRQ lines; the interface is, quite
naturally, via the procfs filesystem; let's delve into it.

Viewing all allocated interrupt (IRQ) lines
Now that you have understood sufficient details about IRQs and interrupt handling, we
can (finally!) leverage the kernel's proc filesystem so that we can peek at the currently
allocated IRQs. We can do this by reading the content of
the /proc/interrupts pseudofile. We'll show a couple of screenshots: the first (Figure 4.8)
shows the IRQ status – the number of interrupts serviced per CPU per I/O device – on my
Raspberry Pi ZeroW, while the second (Figure 4.9) shows this on our "usual" x86_64 Ubuntu
18.04 VM:

Figure 4.8 – IRQ status on a Raspberry Pi ZeroW

https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/
https://lwn.net/Articles/484932/

Handling Hardware Interrupts Chapter 4

[196]

In the preceding /proc/interrupts output, one line (or record) is emitted for each IRQ
line on the system. Let's interpret each column of the output:

The first column is the IRQ number that's been allocated.
The second column (onward) shows the number of hardirqs that have been
serviced by each CPU core (from system startup until now). The number
represents the number of times the interrupt handler ran on that CPU core (the
number of columns varies, depending on the number of active cores that are
handling IRQs on the system). In the preceding screenshot, the Raspberry Pi Zero
has only one CPU core, whereas our x86_64 VM has two (virtualized) CPU cores
that interrupts are distributed over and handled (more on this in the Load
balancing interrupts and IRQ affinity section).
The third (or later) column shows the interrupt controller chip. On x86 (the
fourth column in Figure 4.9), the name IO-APIC means that the interrupt
controller is an enhanced one that's used on multicore systems to distribute
interrupts to various cores or CPU groups (on high-end systems, multiple IO-
APICs may be in play).
The column after that displays the type of interrupt triggering that's being used;
that is, level or edge triggering (we discussed this in the Understanding level- and
edge-triggered interrupts section). Here, Edge tells us that the IRQ is edge-
triggered. The number that's prefixed to it (for example, 35 Edge in the
preceding screenshot) is very system-dependent. It often represents the interrupt
source (that the kernel maps to an IRQ line; many embedded device drivers often
use GPIO pins to serve as interrupt sources). It's best not to attempt to interpret it
(unless you actually know how to) and just rely on the IRQ number instead (the
first column).

Handling Hardware Interrupts Chapter 4

[197]

The last column on the right states the current owner of the IRQ line. Typically,
this is the name of the device driver or kernel component (that allocated this IRQ
line via one of the *request_*irq() APIs).

Figure 4.9 – IRQ status on an x86_64 Ubuntu 18.04 VM (truncated screenshot)

From the 2.6.24 kernel, for x86 and AMD64 systems (or x86_64), even non-device (I/O)
interrupts (system interrupts) are displayed here, such as the NMI, local timer interrupt
(LOC), PMI, IWI, and so on. You can see in Figure 4.9, the last line displays IWI, which is
the Inter-Work Interrupt.

The kernel procfs code that displays the preceding output of /proc/interrupts – that is,
its show method – can be found at kernel/irq/proc.c:show_interrupts() (link:
https:/​/​elixir.​bootlin. ​com/ ​linux/ ​v5. ​4/​source/ ​kernel/ ​irq/​proc. ​c#L438). First, it
prints the header line, then emits a one-line "record" for each IRQ line. The statistics are
mainly obtained from within the metadata structure for each IRQ line – struct irq_desc;
within each IRQ, it loops over every processor core (via the for_each_online_cpu()
helper routine), printing the number of hardirqs that have been served for each of them.
Finally (last column), it prints the "owner" of the IRQ line via the name member of struct
irqaction. The arch-specific interrupts for the x86 (such as the NMI, LOC, PMI, and IWI
IRQs) are displayed via the code
at arch/x86/kernel/irq.c:arch_show_interrupts().

https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438
https://elixir.bootlin.com/linux/v5.4/source/kernel/irq/proc.c#L438

Handling Hardware Interrupts Chapter 4

[198]

On the x86, IRQ 0 is always the timer interrupt. In the companion guide
Linux Kernel Programming - Chapter 10, The CPU Scheduler - Part 1, we
learned that, in theory, the timer interrupt fires HZ times per second. In
practice, for efficiency, this has now been replaced with a per-CPU
periodic high-resolution timer (HRT); it shows up as the IRQ
named LOC (for LOCal) for timer interrupts in /proc/interrupts.
This actually explains why the number of hardware timer interrupts
under the timer row is very low; check this out (on an x86_64 guest with
four (virtual) CPUs):
$ egrep "timer|LOC" /proc/interrupts ; sleep 1 ; egrep
"timer|LOC" /proc/interrupts
 0: 33 0 0 0 IO-
APIC 2-edge timer
LOC: 11038 11809 10058 8848 Local
timer interrupts
 0: 33 0 0 0 IO-
APIC 2-edge timer
LOC: 11104 11844 10086 8889 Local
timer interrupts
$

Notice how IRQ 0 doesn't increment but the LOC IRQ does indeed (per
CPU core).

The /proc/stat pseudofile also provides some information on utilizing servicing
interrupts on a per-CPU basis and the number of interrupts that can be serviced (please
refer to the man page on proc(5) for more details).

Softirqs, as explained in detail in the Understanding and using top and
bottom halves section, can be viewed via /proc/softirqs; more on this
later.

With that, you've learned how to view the allocated IRQ lines. However, one major aspect
of interrupt handling remains: understanding the so-called top-half/bottom-half
dichotomies, why they exist, and how to work with them. We'll look at this in the next
section.

Handling Hardware Interrupts Chapter 4

[199]

Understanding and using top and bottom
halves
Much emphasis has been put on the fact that your interrupt handler must complete its
work quickly (as explained in the Keep it fast section and elsewhere). Having said that, a
practical issue does crop up. Let's consider this scenario: you have allocated IRQn and have
written the interrupt handler function to handle this interrupt when it arrives. As you may
recall, the function we're talking about here, commonly referred to as the hardirq or ISR
(Interrupt Service Routine) or primary handler, is the second parameter to
the request_{threaded}_irq() API, the third parameter to
the devm_request_irq() API, and the fourth parameter to
the devm_request_threaded_irq() API.

As we mentioned previously, there's a quick heuristic to follow: if your hardirq routine's
processing consistently exceeds 100 microseconds, then you will need to use alternate
strategies. Let's say that your handler finishes well within this time; in this case, there's no
issue at all! But what if it does require more time? Perhaps the low-level specification for
the peripheral entails that you do a number of things when the interrupt arrives (say there
are 10 items to complete). You correctly write the code to do so, but it pretty much always
exceeds the time limit (100 microseconds as a thumb rule)! So, what do you do? On the one
hand, there are these kernel folks yelling at you to finish fast; on the other, the low-level
spec for the peripheral demands that you follow several key steps in order to correctly
handle the interrupt! (Talk about being on the horns of a dilemma!)

As we hinted at earlier, there are two broad strategies that are followed in cases like these:

Employ a thread interrupt to handle the majority of the work; considered the
modern approach.
Use a "bottom half" routine to handle the majority of the work; the traditional
approach.

We covered the conceptual understanding, practical usage and the why of threaded
interrupts in detail in the Working with the threaded interrupts model section. In the top-
bottom-half model, this is the approach:

The so-called top half is the function that is initially invoked when the hardware
interrupt is triggered. This is thus familiar to you - it's nothing but the hardirq,
ISR, or primary handler routine that you registered via one of
the *request_*irq() APIs (just for clarity: via one of these
APIs: request_irq() / devm_request_irq() / request_threaded_irq() /
devm_request_threaded_irq().)

Handling Hardware Interrupts Chapter 4

[200]

We also register a so-called bottom half routine to perform the majority of the
interrupt handling work.

In other words, interrupt handling is split into two halves – top and bottom. However, this
isn't really a pleasing way to describe it (as the English word half makes you intuitively
think that the routines are of approximately the same size); the reality is more like this:

The top half performs the bare minimum work required (typically,
acknowledging the interrupt, perhaps turning it off on the board for the duration
of the top half, and then performing any (minimal) hardware-specific work
including receiving/sending some data as is required from/to the device).
The bottom half routine carries out the majority of the interrupt handling work.

So, what is the bottom half? It's just a C function that's appropriately registered with the
kernel. The actual registration API you should use depends on the type of bottom half you
intend to use. There are three types:

The old bottom-half mechanism, which is now deprecated; it's abbreviated
as BH (you can pretty much ignore it).
The modern recommended (if you're using this top-bottom-half technology in
the first place) mechanism: the tasklet.
The underlying kernel mechanism: the softirq.

You will come to see that the tasklet is actually built upon a kernel softirq.

Here's the thing: the top half – the hardirq handler that we've been working with until now
– does, as we mentioned previously, the bare minimum work; it then "schedules" its bottom
half and exits (returns). The word schedule here does not mean it calls schedule(), as that
would be ridiculous (we're in an interrupt context, after all!); it's just the word that's used to
describe the fact. The kernel will guarantee that the bottom half runs as soon as
possible once the top half completes; in particular, no user or kernel thread will ever
preempt it.

Handling Hardware Interrupts Chapter 4

[201]

Hang on a second, though: even if we do all this – splitting the handler into two halves and
have them collectively execute the work – then how have we saved any time? That was the
original intent, after all. Won't it take an even longer time to complete now with the
overhead of invoking two functions as opposed to one? Ah, this brings us to a really key
point: the top half (hardirq) always runs with all interrupts disabled (masked) on the
current CPU and the IRQ it's handling disabled (masked) across all CPUs, but the
bottom half handler runs with all interrupts enabled.

Note that the bottom half is still very much running in an atomic or interrupt context! So,
the same caveats that apply to the hardirq (top half) handler also apply to the bottom-half
handler:

You cannot transfer data (to or from user kernel spaces).
You can only allocate memory (if you really must) with the GFP_ATOMIC flag.
You cannot, ever, directly or indirectly, call schedule().

This bottom-half handling is a subset of what's known as the kernel's deferred
functionality prowess; the kernel has several of these deferred functionality mechanisms:

Workqueues (based on kernel threads); context:process
Bottom half/tasklet (based on softirqs); context:interrupt
Softirqs; context:interrupt
kernel timers; context:interrupt

We will cover kernel timers and workqueues in Chapter 5, Working with
Kernel Timers, Threads, and Workqueues.

All these mechanisms allows the kernel (or driver) to specify that some work must be
carried out later (it's deferred), when it is safe to do so.

At this point, you should be able to understand that the threaded interrupt mechanism
we've already discussed is somewhat akin to a deferred functionality mechanism. This is
considered the modern approach to use; again, though its performance is acceptable for
most peripherals, a few device classes – typically network/block/multimedia – might still
require the traditional top-bottom-half mechanisms to provide high enough performance.
Also, we emphasize yet again: both top and bottom halves always run in an atomic
(interrupt) context, whereas threaded handlers actually run in process context; you can
view this as an advantage or disadvantage. The fact is that although the threaded handler is
technically within the process context, it's really best to perform fast non-blocking
operations within it.

Handling Hardware Interrupts Chapter 4

[202]

Specifying and using a tasklet
A key difference between a tasklet and the kernel's softirq mechanism is that tasklets are
simply easier to work with, making them a good choice for your typical driver. Of course, if
you can use a threaded handler instead, just do that; later, we'll show a table that will help
you decide what to use and when. One of the key things that makes tasklets easier to use is
the fact that (on an SMP system) a particular tasklet will never run in parallel with itself; in
other words, a given tasklet will run on exactly one CPU at a time (making it non-
concurrent, or serialized, with respect to itself).

The header comment in linux/interrupt.h gives us some important properties of the
tasklet as well:

[...] Properties:
 * If tasklet_schedule() is called, then tasklet is guaranteed
 to be executed on some cpu at least once after this.
 * If the tasklet is already scheduled, but its execution is still not
 started, it will be executed only once.
 * If this tasklet is already running on another CPU (or schedule is
 called from tasklet itself), it is rescheduled for later.
 * Tasklet is strictly serialized wrt itself, but not
 wrt another tasklets. If client needs some intertask synchronization,
 he makes it with spinlocks. [...]

We'll show the tasklet_schedule() function shortly. The last point in the preceding
comment block will be covered in the last two chapters of this book.

So, how can we use a tasklet? First, we have to set it up with the tasklet_init() API;
then, we have to schedule it for execution. Let's learn how to do this.

Initializing the tasklet
The tasklet_init() function initializes a tasklet; its signature is as follows:

#include <linux/interrupt.h>
void tasklet_init(struct tasklet_struct *t, void (*func)(unsigned long),
unsigned long data);

Handling Hardware Interrupts Chapter 4

[203]

Let's check out its parameters:

struct tasklet_struct *t: This structure is the metadata representing the
tasklet. As you already know, a pointer, by itself, has no memory! Remember to
allocate memory to the data structure and then pass the pointer here.
void (*func)(unsigned long): This is the tasklet function itself – the
"bottom half" that runs once the hardirq completes; this bottom half function
performs the majority of the interrupt handling process.
unsigned long data: Any data item you wish to pass along to the tasklet
routine (a cookie).

Where should this initialization work be performed? Typically, this is done within the
driver's probe (or init) function. So, now that it's been initialized and is ready to go, how
do we invoke it? Let's find out.

Running the tasklet
The tasklet is the bottom half. Thus, in the top half, which is your hardirq handler routine,
the last thing you should do before returning is "schedule" your tasklet to execute:

void tasklet_schedule(struct tasklet_struct *t);

Simply pass the pointer to your (initialized) tasklet structure to the tasklet_schedule()
API; the kernel will handle the rest. What does the kernel do? It schedules this tasklet to
execute; practically speaking, your tasklet's function code is guaranteed to run before
control returns to the task that was interrupted in the first place (be it a user or kernel
thread). More details can be found in the Understanding how the kernel runs softirqs section.

Regarding the tasklet, there are a few things you need to be clear about:

The tasklet executes its code in an interrupt (atomic) context; it's actually a softirq
context. So, remember, all the restrictions that apply to top halves apply here too!
(Check out the Interrupt context guidelines – what to do and what not to do section for
detailed information on restrictions)
Synchronization (on an SMP box):

A given tasklet will never run in parallel with itself.
Different tasklets can run in parallel on different CPU cores.
Your tasklet can itself be interrupted by a hardirq, including your
own IRQ! This is because tasklets, by default, run with all
interrupts enabled on the local core, and, of course, hardirq's are
the very top priority on the system

Handling Hardware Interrupts Chapter 4

[204]

Locking implications really do matter – we'll cover these areas in
detail in the last two chapters of this book (particularly when we
cover spinlocks).

Some (generic driver) sample code is as follows (for clarity, we've avoided showing any
error paths):

#include <"convenient.h"> // has the PRINT_CTX() macro
static struct tasklet_struct *ts;
[...]
static int __init mydriver_init(void)
{
 struct device *dev;
 [...]
 /* Register the device with the kernel 'misc' driver framework */
 ret = misc_register(&keylog_miscdev);
 dev = keylog_miscdev.this_device;

 ts = devm_kzalloc(dev, sizeof(struct tasklet_struct), GFP_KERNEL);
 tasklet_init(ts, mydrv_tasklet, 0);

 ret = devm_request_irq(dev, MYDRV_IRQ, my_hardirq_handler,
 IRQF_SHARED, OURMODNAME, THIS_MODULE);
 [...]

In the preceding code snippet, we declared a global pointer, ts, to struct
tasklet_struct; in the init code of the driver, we registered the driver as belonging to
the misc kernel framework. Next, we allocated RAM to the tasklet structure (via the
useful devm_kzalloc() API). Next, we initialized the tasklet via
the tasklet_init() API. Notice that we specified the function name (second parameter)
and simply passed 0 as the third parameter, which is the cookie to pass along (many real
drivers pass their context/private data structure pointer here). We then allocated an IRQ
line (via the devm_request_irq() API).

Let's continue looking at the code of this generic driver:

/ * Our 'bottom half' tasklet routine */
static void mydrv_tasklet(unsigned long data)
{
 PRINT_CTX(); // from our convenient.h header
 process_it(); // majority of the interrupt work done here
}

/* Our 'hardirq' interrupt handler routine - our 'top half' */
static irqreturn_t my_hardirq_handler(int irq, void *data)

Handling Hardware Interrupts Chapter 4

[205]

{
 /* minimal work: ack/disable hardirq, fetch and/or queue data, etc ...
*/
 tasklet_schedule(ts);
 return IRQ_HANDLED;
}

In the preceding code, let's imagine we did whatever minimal work was required in our
top half (the my_hardirq_handler() function). We then primed our tasklet so that it can
run by invoking the tasklet_schedule() API. You'll find that the tasklet will run almost
immediately after the hardirq (in the preceding code, the tasklet function is
called mydrv_tasklet()). In the tasklet, you are expected to perform the majority of the
interrupt processing work. Within it, we called our macro PRINT_CTX(); as you will see in
the Fully figuring out the context section, it prints various details regarding our current
context, which is helpful for debugging/learning (you'll find it shows, among other things,
that we're currently running in interrupt context).

Instead of the tasklet_schedule() API, you can use an alternate routine, via
the tasklet_hi_schedule() API. This internally makes the tasklet become the highest
priority softirq (softirq priority 0)! (More information can be found in the Understanding the
kernel softirq mechanism section.) Note that this is almost never done; the default (softirq)
priority that a tasklet enjoys is usually more than sufficient. Setting it to the hi level is
really only meant for extreme cases; avoid it as far as is possible.

On version 5.4.0 Linux, there are 70-odd instances of the
tasklet_hi_schedule() function being used by drivers. The drivers
are typically high-performance network drivers – a few GPU, crypto, USB,
and mmc drivers, as well as a few other drivers.

When it comes to tasklets, the kernel keeps evolving. Recent (as the time of writing, July
2020) patches by Kees Cook and others are looking to modernize the tasklet routine
(callback). For more information regarding this, please go to https:/ ​/​www. ​openwall. ​com/
lists/​kernel-​hardening/ ​2020/ ​07/ ​16/ ​1.

https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1
https://www.openwall.com/lists/kernel-hardening/2020/07/16/1

Handling Hardware Interrupts Chapter 4

[206]

Understanding the kernel softirq mechanism
At this point, you understand that the bottom half, the tasklet, is a deferred functionality
mechanism that, while running, doesn't mask interrupts. They're designed to allow you to
get the best of both worlds: they allow the driver to do fairly lengthy interrupt processing if
the situation demands it and do it in a deferred safe manner while simultaneously allowing
the business of the system (via hardware interrupts) to continue.

You've already learned how to use the tasklet – it's a great example of a deferred
functionality mechanism. But how are they internally implemented? The kernel
implements tasklets via an underlying facility called the softirq (or software-interrupt)
mechanism. Though on the surface they're analogous to the threaded interrupt we saw
earlier, it's really very different in many important ways. The following characteristics of
softirqs will help you understand them:

Softirqs are a pure internal kernel deferred functionality mechanism in the sense
that they are statically assigned at kernel compile time (they're all hard-coded
into the kernel); you cannot dynamically create a new softirq.
The kernel (as of version 5.4) provides a total of 10 discrete softirqs:

Each softirq is designed to serve a particular need, usually
associated with a very particular hardware interrupt or kernel
activity. (The exceptions here are perhaps the soft IRQs reserved
for the generic tasklet: HI_SOFTIRQ and TASKLET_SOFTIRQ.)
These 10 softirqs have a priority ordering (and will be consumed in
that order).
The tasklet is, in fact, a thin abstraction on top of a particular
softirq (TASKLET_SOFTIRQ), one of the 10 available. The tasklet is
the only one that can be registered, run, and deregistered at will,
making it an ideal choice for many device drivers.

Softirqs run in interrupt – softirq – context; the in_softirq() macro returns
true here, implying you are in a softirq (or tasklet) context.
All softirq servicing is considered a high priority on the system. Next to the
hardware interrupt (the hardirq/ISR/primary handler), the softirq has the
highest priority on the system. Pending softirqs are consumed by the
kernel before the process context that was interrupted in the first place is restored.

Handling Hardware Interrupts Chapter 4

[207]

The following diagram is a superset of our earlier depiction of priorities on standard Linux;
this one includes softirqs (within which is the tasklet):

Figure 4.10 – Relative priorities on standard Linux, showing softirqs as well

So, yes, as you can see, softirqs are a very high-priority mechanism on Linux; there are 10
distinct ones at differing priorities. What they are, and what they're meant for, will be
covered in the next subsection.

Available softirqs and what they are for
The work that's carried out by a given softirq is statically compiled into the kernel image
(it's fixed). This coupling of the softirq and the action it takes (in effect, the code it runs, via
the action function pointer) is done via the following code:

// kernel/softirq.c
void open_softirq(int nr, void (*action)(struct softirq_action *))
{
 softirq_vec[nr].action = action;
}

The following diagram is a conceptual representation of the available softirqs and their
priority level on Linux (as of kernel version 5.4), with 0 being the highest and 9 the lowest
softirq priority level:

Handling Hardware Interrupts Chapter 4

[208]

Figure 4.11 – The 10 softirqs on Linux in order of priority (0:highest, 9:lowest)

The following table sums up the individual kernel's softirqs in order of their priority (0:
HI_SOFTIRQ being the highest priority one), along with the action or vector, its
functionality, and a comment mentioning what its use case is:

Softirq# Softirq Comment (what it's used for/does) "action" or "vector" function

0 HI_SOFTIRQ

Hi-tasklet: The highest priority
softirq; used when
tasklet_hi_schedule() is
invoked. It is not recommended
for the majority of use cases. Use
the regular tasklet instead (softirq
#6).

tasklet_hi_action()

1 TIMER_SOFTIRQ

Timer: The timer interrupt's bottom half
runs expired timers along with other
"housekeeping" tasks (including the
scheduler
CPU runqueue + vruntime updates,
increments of the well-
known jiffies_64 variable, and so
on).

run_timer_softirq()

2 NET_TX_SOFTIRQ
Net: Network stack transmit path
bottom half (qdisc). net_tx_action()

3 NET_RX_SOFTIRQ
Net: Network stack receive path bottom
half (NAPI polling). net_rx_action()

4 BLOCK_SOFTIRQ
Block: Block processing (complete the
I/O op; invokes the complete function of
block MQ, blk_mq_ops).

blk_done_softirq()

5 IRQ_POLL_SOFTIRQ
irqpoll: Implements the kernel's block
layer polled IRQ mode (equivalent to
the network layer's NAPI processing).

irq_poll_softirq()

Handling Hardware Interrupts Chapter 4

[209]

6 TASKLET_SOFTIRQ

Regular tasklet: Implements the tasklet
bottom-half mechanism, the only
dynamic (flexible) softirq: can be
registered, used, and deregistered by
drivers as required.

tasklet_action()

7 SCHED_SOFTIRQ
sched: Used for periodic load balancing
by the CFS scheduler on SMP; migrates
tasks to other runqueues if required.

run_rebalance_domains()

8 HRTIMER_SOFTIRQ

HRT: Used for high-resolution timers
(HRT). It was removed in version 4.2
and reentered the kernel in a better form
in version 4.16.

hrtimer_run_softirq()

9 RCU_SOFTIRQ
RCU: Performs read copy update (RCU)
processing, a form of lock-free
technology used within the core kernel.

rcu_core_si() /
rcu_process_callbacks()

It's interesting; the network and block stacks are very high priority code paths (as is the
timer interrupt), so their code must run as soon as possible. Thus, they have explicit softirqs
that service these critical code paths.

Can we see the softirqs that have been fired off so far? Of course, very much like how we
can view hardirqs (via its proc/interrupts pseudofile). We have the /proc/softirqs
pseudofile for tracking softirqs. Here's a sample screenshot from my native (four-core)
x86_64 Ubuntu system:

Figure 4.12 – Output of /proc/softirqs on a native x86_64 system with 4 CPU cores

Just like with /proc/interrupts, the numbers shown in the preceding screenshot depict
the number of times a particular softirq occurred on a particular CPU core from system
startup. In addition, FYI, the powerful crash tool has a useful command, irq, that shows
information regarding interrupts; irq -b displays the defined softirqs on that kernel.

Handling Hardware Interrupts Chapter 4

[210]

Understanding how the kernel runs softirqs
The following is the (approximate) call graph that's used on x86 when a hardware interrupt
is triggered:

do_IRQ() -> handle_irq() -> entering_irq() -> hardirq top-half runs ->
exiting_irq() -> irq_exit() -> invoke_softirq() -> do_softirq() -> ...
bottom half runs: tasklet/softirq ... -> restore context

Some of the preceding code paths are arch-dependent. Note that the "marking the context
as an interrupt" context is really an artifact. The kernel is marked as having entered this
context in the entering_irq() function and as having left it once exiting_irq() returns
(on x86). But hang on! The exiting_irq() inline function invokes
the kernel/softirq.c:irq_exit() function (https:/ ​/​elixir. ​bootlin. ​com/ ​linux/ ​v5.
4/​source/​kernel/ ​softirq. ​c#L403). It's within this routine that the kernel processes, and
consumes, all pending softirqs. The basic call graph (from do_softirq() onward) is as
follows:

 do_softirq() -- [assembly]do_softirq_own_stack -- __do_softirq()

The real work happens in the internal __do_softirq() routine (https:/ ​/ ​elixir.
bootlin.​com/​linux/ ​v5. ​4/ ​source/ ​kernel/ ​softirq. ​c#L249). It's here that any pending
softirqs are consumed in priority order. Notice that softirq processing is done before
context is restored to the interrupted task.

Now, let's briefly focus on some of the internal details of tasklet execution, followed by how
to use ksoftirqd kernel threads to offload softirq work.

Running tasklets
A word on the internals of tasklet invocation: we understand that the tasklet softirq runs
via tasklet_schedule(). This API ends up invoking the kernel's
internal __tasklet_schedule_common() function (https:/ ​/​elixir. ​bootlin. ​com/
linux/​v5.​4/​source/ ​kernel/ ​softirq. ​c#L471), which internally
calls raise_softirq_irqoff(softirq_nr) (https:/ ​/ ​elixir. ​bootlin. ​com/​linux/ ​v5.​4/
source/​kernel/​softirq. ​c#L423). This raises the softirq_nr softirq; for a regular tasklet,
this value is TASKLET_SOFTIRQ, whereas when the tasklet is scheduled via
the tasklet_hi_schedule() API, is value is HI_SOFTIRQ, the highest priority softirq!
Use it rarely, if ever.

https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L403
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L249
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L471
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L423

Handling Hardware Interrupts Chapter 4

[211]

We now know that the "schedule" functionality has set up the softirq; here, the actual
execution takes place when the softirqs at that priority level (0 or 6 here) actually run. The
function that runs softirqs is called do_softirq(); for the regular tasklet, it ends up calling
the tasklet_action() softirq vector (as shown in the preceding table); this
calls tasklet_action_common() (https:/ ​/ ​elixir. ​bootlin. ​com/​linux/ ​v5.​4/ ​source/
kernel/​softirq.​c#L501), which (after some list setup) enables hardware interrupts (via
a local_irq_enable()) and then loops over the per CPU tasklet list, consuming
(running) the tasklet function(s) on it. Did you notice that pretty much all the functions
mentioned here are arch-independent? - a good thing.

Employing the ksoftirqd kernel threads
Softirqs can impose an enormous load on the system when there is a flood of them waiting
to be processed. This has been repeatedly seen in the network (and to some extent, block)
layers, leading to the development of polled mode IRQ handling; it's called NAPI for the
network (receive) path and simply interrupt-poll handling for the block layer. But what if,
even with polled mode handling, the softirq flood persists? The kernel has one more trick
up its sleeve: if softirq processing exceeds 2 milliseconds, the kernel offloads the pending
softirq work onto per-CPU kernel threads named ksoftirqd/n (where n represents the
CPU number, starting from 0). A benefit of this approach is that because kernel threads
must compete with other threads for CPU resources, user space doesn't end up getting
completely starved of CPU (which could happen with pure hardirq/softirq load).

This sounds like a good solution, but the real world begs to differ. In February 2019, a series
of patches to set up softirq vector fine-grained masking looked promising but ultimately
seem to have fizzled out (do read the very interesting details provided in the Further
reading section). The following email from Linus Torvalds clarifies the real problem nicely
(https:/​/​lore.​kernel. ​org/ ​lkml/ ​CAHk- ​=​wgOZuGZaVOOiC= ​drG6ykVkOGk8RRXZ_
CrPBMXHKjTg0dg@mail. ​gmail. ​com/ ​#t):

... Note that this is all really fairly independent of the whole masking
logic. Yes, the masking logic comes into play too (allowing you to run
a subset of softirq's at a time), but on the whole the complaints I've
seen have not been "the networking softirq takes so long that it
delays USB tasklet handling", but they have been along the lines of
"the networking softirq gets invoked so often that it then floods the
system and triggers [k]softirqd, and _that_ then makes tasklet handling
latency go up insanely ..."

The last part of the statement hits the nail on the head.

https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://elixir.bootlin.com/linux/v5.4/source/kernel/softirq.c#L501
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t
https://lore.kernel.org/lkml/CAHk-=wgOZuGZaVOOiC=drG6ykVkOGk8RRXZ_CrPBMXHKjTg0dg@mail.gmail.com/#t

Handling Hardware Interrupts Chapter 4

[212]

So, this begs the question: can we measure hardirq/softirq instances and
latencies? We cover this in the section Measuring metrics and latency.

Softirqs and concurrency
As we learned with regard to tasklets, a number of points with regard to concurrency must
be understood with respect to softirqs:

As noted with tasklets (on SMP), a tasklet will never run in parallel with itself;
this is a feature that makes it easier to use. This isn't true of softirqs: the same
softirq vector can indeed run in parallel with itself on another CPU! Thus, the
softirq vector code has to be especially careful with the use of locking (and
deadlock avoidance).
A softirq can always be interrupted by a hardirq, including the IRQ that caused it
to be raised (this is because, as with tasklets, softirqs run with all interrupts
enabled on the local core).
A softirq cannot preempt another currently executing softirq, even though they
have priority levels; they are consumed in priority order.
The reality is that the kernel provides APIs such as spin_lock_bh(), which
allow you to disable softirq processing while the lock is held. This is required to
prevent deadlock when both the hardirq and the softirq handlers are working on
shared data. The locking implications really do matter. We'll cover this in detail
in the last two chapters of this book.

Hardirqs, tasklets, and threaded handlers – what
to use when
As you already know, the hardirq code is meant to do the bare minimum setup and
interrupt handling, leaving the majority of the interrupt processing to be performed in a
safe manner via the deferred functionality mechanisms we've been talking about, the
tasklet and/or softirq. This 'bottom half' as well as deferred functionality handling is carried
out in priority order – first, the softirq kernel timers, then tasklets (both of these are just
special cases of the underlying softirq mechanism), then threaded interrupts, and finally
workqueues (the latter two use underlying kernel threads).

Handling Hardware Interrupts Chapter 4

[213]

So, the big question is, when you're writing your driver, which one of these should you
use? Should you use a deferred mechanism at all? It really depends on the amount of
time your complete interrupt processing takes to complete. If your complete interrupt
processing can be consistently completed within a few microseconds, then just use the top-
half hardirq; nothing else is required.

But what if this isn't the case? Take a look at the following table; the first column specifies
the total time it takes for complete interrupt processing, while the other columns provide a
few suggestions regarding its use plus pros and cons:

Time: If hardware
interrupt handling
consistently requires

What to do Pros/cons

<= 10 microseconds Use only the hardirq (top half); nothing
else is required. Best case; not typical.

Between 10 and 100
microseconds

Either only hardirq or both hardirq and
a tasklet (softirq).

Run stress tests/workloads to see if a
tasklet is really required. Its usage is
mildly discouraged in favor of
threaded handlers or workqueues.

100 microseconds, non-
critical device

Use a primary handler (hardirq); that
is, either your own handler function (if
hardware-specific work is required) or
simply use the kernel default and
a threaded handler. Alternatively, if
acceptable, simply use
a workqueue (covered in the next
chapter).

This avoids softirq processing, which
helps reduce system latencies but can
result in slightly slower handling. This
is because the threaded handler
competes for CPU time with other
threads. Workqueues are also based
on kernel threads and have similar
characteristics.

100 microseconds,
critical device (typically
network, block, and
some multimedia
devices)

Use a primary handler (hardirq/top
half) and a tasklet (bottom half).

It prioritizes the device over
everything when a flood of interrupts
arrive. This is also a downside as this
can cause "livelock" issues and long
latencies with a softirq "flood"! Test
and ascertain.

100 microseconds,
extremely critical
work/device

Use a primary handler (hardirq/top
half) and a hi-tasklet or (possibly) your
own (new!) softirq.

This is a rather extreme, unlikely case;
to add your own softirq you will need
to change the internal (GPL-ed) kernel
code. This makes it high maintenance
(unless your core kernel changes +
driver is contributed upstream!).

The time in microseconds in the first column is, of course, debatable, arch-and-board-
dependent, and can (and will) change over time. The suggested value of 100 microseconds
as a baseline is merely a heuristic.

Handling Hardware Interrupts Chapter 4

[214]

As we've already mentioned, softirq processing itself should complete within a few
hundred microseconds; a flood of unprocessed softirqs can again lead to a livelock
situation. The kernel mitigates (or de-risks) this in two broad ways:

Threaded interrupts or workqueues (both based on kernel threads)
Invoking the ksoftirqd/n kernel threads to take over softirq processing

The preceding cases run in process context, thus alleviating the issue of starving genuine
(user space) threads that require the CPU via the scheduler (as the kernel threads
themselves have to compete for the CPU resources).

With regard to the last row of the preceding table, the only way to create a new softirq is to
actually dive into the kernel code and modify it. By this, we mean modifying the (GPL
licensed) kernel code base. In terms of embedded projects, modifying the kernel source is
not uncommon. However, adding softirqs is considered (very) uncommon and not a great
idea at all since latencies may already be high without more softirq processing to contend
with! This hasn't happened for many years now.

In terms of real time and determinism, in the companion guide Linux Kernel
Programming, Chapter 11, The CPU Scheduler – Part 2, in the Viewing the results section, we
mentioned that the jitter (the time variance) in interrupt processing on a microprocessor
running standard Linux is on the order of +/- 10 microseconds. With the RTL kernel, it's a
lot better, yet not a hundred percent deterministic. So, can you be completely deterministic
with interrupt handling on Linux? Well, one interesting approach is to use – if enabled and
possible – FIQs, the so-called fast interrupt mechanism that some processors, notably ARM,
provide. They work outside the Linux kernel's scope, which is precisely why writing an
FIQ interrupt handler would eliminate any kernel-induced jitter. Take a look at this article
for more information: https:/ ​/ ​bootlin. ​com/ ​blog/ ​fiq- ​handlers- ​in- ​the- ​arm- ​linux-
kernel/​.

Finally, it may be worth mentioning that (at the time of writing) a good amount of
rethinking is going on here: the opinion of some kernel developers is that the whole top-
half bottom-half mechanism isn't required anymore. However, the fact is that this
mechanism is deeply embedded into the kernel fabric, making it non-trivial to remove.

https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/
https://bootlin.com/blog/fiq-handlers-in-the-arm-linux-kernel/

Handling Hardware Interrupts Chapter 4

[215]

Fully figuring out the context
The Interrupt context guidelines – what to do and what not to do section made this clear: when
you're in any kind of interrupt (or atomic) context, do not invoke any possibly blocking
APIs (that end up calling schedule()); this really boils down to a few key points (as we
saw). One is that you should not make any kernel to user space (or vice versa) data
transfers; another, if you must allocate memory, do so with the GFP_ATOMIC flag.

This, of course, begs the question: how do I know if my driver (or module) code is
currently running in process or interrupt (atomic) context? Furthermore, if it's running in
interrupt context, is it in a top or bottom half? The short answer to all this is that the kernel
provides several macros that you can use to figure this out. These macros are defined in
the linux/preempt.h header. Instead of unnecessarily duplicating information, we'll
show the relevant kernel comment header here; it clearly names and describes these
macros:

// include/linux/preempt.h
[...]
/*
 * Are we doing bottom half or hardware interrupt processing?
 *
 * in_irq() - We're in (hard) IRQ context
 * in_softirq() - We have BH disabled, or are processing softirqs
 * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
 * in_serving_softirq() - We're in softirq context
 * in_nmi() - We're in NMI context
 * in_task() - We're in task context
 [...]

We covered a subset of this topic in the companion guide Linux Kernel
Programming, Chapter 6, Kernel Internals Essentials – Processes and Threads,
under the Determining the context section.

So, it's quite simple; in our convenient.h header (https:/ ​/​github. ​com/
PacktPublishing/​Linux- ​Kernel- ​Programming- ​Part- ​2/ ​blob/ ​main/ ​convenient. ​h), we
define a convenience macro called PRINT_CTX() that, when invoked, will print the current
context to the kernel log. The message is very deliberately formatted. The following is an
example of the typical output it emits when invoked:

001) rdwr_drv_secret :29141 | .N.0 /* read_miscdrv_rdwr() */

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/blob/main/convenient.h

Handling Hardware Interrupts Chapter 4

[216]

At first, the format might look strange to you. However, I have simply followed the
kernel's Ftrace (latency) output format to show the context (with the exception of
the DURATION column; we don't have it here). The Ftrace output format is well supported
and understood by developers and kernel users. The following output shows you how to
interpret it:

The Ftrace 'latency-format'
 _-----= irqs-off [d]
 / _----= need-resched [N]
 | / _---= hardirq/softirq [H|h|s] [1]
 || / _--= preempt-depth [#]
 ||| /
 CPU TASK PID |||| FUNCTION CALLS
 | | | |||| | | | |
001) rdwr_drv_secret :29141 | .N.0 /* read_miscdrv_rdwr() */

[1] 'h' = hard irq is running ; 'H' = hard irq occurred inside a softirq

This can be very useful as it can help you understand and thus debug difficult situations!
You get to see not only what was running (its name and PID, as well as on which CPU
core), but also four interesting columns (highlighted in bold (.N.0)). The preceding ASCII
art view of these four columns is in fact identical to what Ftrace itself generates. Let's
interpret these four columns (in our example here, it's the value .N.0):

Column 1: The IRQ state. It displays . if interrupts are enabled (usually the case)
and d if disabled.
Column 2: The TIF_NEED_RESCHED bit state. If 1, the kernel will
invoke schedule() at the next opportunity point (return from syscall or return
from interrupt, whichever comes first). It displays N if set and . if cleared.
Column 3: If we're in an interrupt context, we can employ more macros to check
whether we're in a hardirq (top half) or softirq (bottom half) context. It displays
this as follows:

.: Process (task) context
Interrupt / atomic context:

h: Hardirq is running
H: Hardirq occurred inside a softirq (that is, a
hardirq occurred while a softirq was executing,
interrupting it)
s: Softirq (or tasklet) context

Handling Hardware Interrupts Chapter 4

[217]

Column 4: An integer value (derived from a bitmask) called preempt_depth.
Essentially, it's incremented every time a lock is taken and decremented on every
unlock. So, if it's positive, it implies the code is within a critical or atomic section.

The following is (part of) our code implementation for
the convenient.h:PRINT_CTX() macro (carefully study the code and do use the macro in
your code to understand it):

// convenient.h
[...]
#define PRINT_CTX() do { \
 int PRINTCTX_SHOWHDR = 0; \
 char intr = '.'; \
 if (!in_task()) { \
 if (in_irq() && in_softirq()) \
 intr = 'H'; /* hardirq occurred inside a softirq */ \
 else if (in_irq()) \
 intr = 'h'; /* hardirq is running */ \
 else if (in_softirq()) \
 intr = 's'; \
 } \
 else \
 intr = '.'; \

It basically pivots on the if condition and checks whether the code is in a process (or task)
context or not via the in_task() macro, and thus in an interrupt (or atomic) context.

You might have come across the in_interrupt() macro being used in
situations like this. If it returns true, your code is within an interrupt
context, while if it returns false, it isn't. However, the recommendation
for modern code is to not rely on this macro (and in_softirq()) due to
the fact that bottom-half disabling can interfere with its correct working).
Hence, we use in_task() instead.

Let's continue looking at the code for the PRINT_CTX() macro:

[...]
if (PRINTCTX_SHOWHDR == 1) \
 pr_debug("CPU) task_name:PID | irqs,need-resched,hard/softirq,preempt-
depth /* func_name() */\n"); \
pr_debug(\
 "%03d) %c%s%c:%d | " \
 "%c%c%c%u " \
 "/* %s() */\n" \
 , smp_processor_id(), \
 (!current-mm?'[':' '), current-comm, (!current-mm?']':' '), current-

Handling Hardware Interrupts Chapter 4

[218]

pid, \
 (irqs_disabled()?'d':'.'), \
 (need_resched()?'N':'.'), \
 intr, \
 (preempt_count() && 0xff), __func__); \
} while (0)

If the PRINTCTX_SHOWHDR variable is set to 1, it prints a header line; it's 0 by default. This is
where the macro emits the (debug-level) printk (via pr_debug()), which shows the context
information in Ftrace (latency) format, as seen in the preceding snippet.

Viewing the context – examples
As an example, in our ch1/miscdrv_rdwr misc driver code (and several others, in fact),
we used this very macro (PRINT_CTX()) to display the context. Here's some sample output
from when our simple rdwr_drv_secret app read the "secret message" from the driver
(for clarity, I removed the dmesg timestamps):

CPU) task_name:PID | irqs,need-resched,hard/softirq,preempt-depth /*
func_name() */
001) rdwr_drv_secret :29141 | .N.0 /* read_miscdrv_rdwr() */

The header line shows how to interpret the output. (In fact, this header line is off by default.
I temporarily changed the value of the PRINTCTX_SHOWHDR variable to 1 to show it here.)

The following is another example from an (out of tree) driver while running the code of a
(bottom-half) tasklet (we covered tasklets in the Understanding and using top and bottom
halves section):

000) gnome-terminal- :3075 | .Ns1 /* mydrv_tasklet() */

Let's interpret the preceding output in more detail; from left to right:

000): The tasklet ran on CPU core 0.
The task that was interrupted by this is the gnome-terminal- process with PID
3075. Actually, it was probably interrupted by the hardirq that fired before this
tasklet ran, and will only resume execution – best case scenario – once the
tasklet's done.

Handling Hardware Interrupts Chapter 4

[219]

We can infer the following from the preceding four-column output (the .Ns1
part):

.: All interrupts (on the local core, core #0) are enabled.
N: The TIF_NEED_RESCHED bit is set (implying that the scheduler
code will run when the next scheduling "opportunity point" is hit;
realize that it will very likely be run (in process context) by the
gnome-terminal- thread).
s: The tasklet is an interrupt – more precisely, a softirq – context (to
be precise, it's the TASKLET_SOFTIRQ softirq); an atomic context;
this is expected - we're running a tasklet!
1: the value of preempt_depth is 1; this implies a (spin)lock is
currently being held (again, this implies that we're currently in an
atomic context).

The driver function running in the tasklet context was called mydrv_tasklet().

Often, when viewing a capture like this, in interrupt context, the
interrupted task shows up as the swapper/n kernel thread (where n is the
CPU core's number). This typically implies that the swapper/n kernel
thread was interrupted by the hardirq, further implying that the interrupt
triggered while that CPU was in an idle state (since
the swapper/n threads only run then), which is a pretty common
occurrence on a lightly loaded system.

How Linux prioritizes activities
Now that you have learned about so many areas across the gamut, we can zoom out and
see how the Linux kernel prioritizes things. The following (conceptual) diagram - a
superset of earlier similar diagrams - neatly sums this up:

Handling Hardware Interrupts Chapter 4

[220]

Figure 4.13 – Relative priorities across the full stack - user, kernel process context, and kernel interrupt contexts

This diagram is pretty self-explanatory, so please study it carefully.

In this lengthy section, you have learned about interrupt handling via both the top-half and
bottom-half mechanisms, the reasons for them in the first place, and how they are
organized and to be used by drivers. You now understand that all bottom-half mechanisms
are internally implemented via softirqs; the tasklet is the primary bottom-half mechanism
that you, as a driver author, have easy access to use. This, of course, does not imply you
must use them – if you can get away with simply using a top-half only, or, even better, just
a threaded handler, then that's great. The Hardirqs, tasklets, and threaded handlers – what to use
when section covered these considerations in detail.

With that, we're almost done! However, some miscellaneous areas still need to be
traversed. Let's take a look by jumping into it via the familiar FAQ format!

Handling Hardware Interrupts Chapter 4

[221]

A few remaining FAQs answered
Here are a few FAQs with regard to hardware interrupts and how they are handled. We
haven't touched on these areas yet:

On a multicore system, are all hardware interrupts routed to one CPU? If not,
how are they load balanced? Can I change this?
Does the kernel maintain a separate IRQ stack?
How can I obtain metrics on interrupts? Can I measure interrupt latency?

The idea here is to provide brief answers; we encourage you to dig deeper and try things
out for yourself! At the risk of repetition, remember, the empirical approach is best!

Load balancing interrupts and IRQ affinity
First off, on a multicore (SMP) system, the way that hardware interrupts are routed to CPU
cores tends to be very board and interrupt controller-specific. Having said that, the generic
IRQ layer on Linux provides a very useful abstraction: it allows for (and
implements) interrupt load balancing so that no CPUs (of set of CPUs) gets overloaded.
There's even frontend utilities, irqbalance(1) and irqbalance-ui(1), that allow the
admin (or root user) to perform IRQ balancing (irqbalance-ui is a ncurses frontend
to irqbalance).

Can you change the interrupts that have been sent to a processor core(s)? Yes, via
the /proc/irq/IRQ/smp_affinity pseudofile! It's a bitmask specifying the CPUs that
this IRQ is allowed to be routed to. The trouble is that the default setting is to always allow
all CPU cores to handle the interrupt by default. For example, on a system with eight cores,
the value of smp_affinity for IRQ lines will be 0xff (which is binary 1111 1111). Why
is this a problem? CPU caching. In a nutshell, if multiple cores handle the same interrupt,
the caches get trashed and hence many cache invalidations may occur (to keep memory
coherent with the CPU caches), leading to all kinds of performance headaches; this is
especially true on high-end systems with dozens of cores and multiple NICs.

Handling Hardware Interrupts Chapter 4

[222]

We cover more on CPU caching issues in Chapter 7, Kernel
Synchronization - Part 2 in the section Cache effects and false sharing.

It's recommended that you keep a single important IRQ line (such as the
Ethernet interrupt) affined to a particular CPU core (or at most, to a
physical core that is hyperthreaded). Not only that, but keeping the
related network application processes and threads affined to the same
core will (probably) result in better performance (we covered
process/thread CPU affinity in the companion guide Linux Kernel
Programming - Chapter 11, The CPU Scheduler - Part 2 , in the Understanding,
querying, and setting the CPU affinity mask section).

Let's go over a couple more points:

The output of /proc/interrupts will reflect the IRQ affinity (and IRQ
balancing) and allow you to see exactly how many interrupts have been routed
to which CPU core on the system. (We covered interpreting its output in detail in
the section Viewing all allocated interrupt (IRQ) lines.)
The irqbalance service can actually cause issues as it reverts the IRQ affinity
settings to defaults upon startup (https:/ ​/​unix. ​stackexchange. ​com/ ​questions/
68812/​making- ​a-​irq- ​smp- ​affinity- ​change- ​permanent); you might want to
disable it if you're carefully tweaking the settings (possibly at boot via
an rc.local or equivalent systemd script.) The newer versions
of irqbalance allow you to ban IRQ lines and won't (re)set them.

Does the kernel maintain separate IRQ stacks?
In the companion guide Linux Kernel Programming in Chapter 6, Kernel Internals and
Essentials – Processes and Threads, in the Organizing process, threads, and their stacks – user
and kernel space section, we covered some key points: every single user space thread has two
stacks: a user space stack and a kernel space stack. When the thread runs in non-privileged
user space, it makes use of the user mode stack, while when it switches to privileged kernel
space (via a system call or exception), it works with its kernel-mode stack (refer back to
Figure 6.3 in the companion guide Linux Kernel Programming). Next, the kernel-mode stack
is very limited and fixed in size – it's only 2 or 4 pages long (depending on whether your
arch is 32- or 64-bit, respectively)!

https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent
https://unix.stackexchange.com/questions/68812/making-a-irq-smp-affinity-change-permanent

Handling Hardware Interrupts Chapter 4

[223]

So, imagine your driver code's (let's say, the ioctl() method) is running within a deeply
nested code path. This implies that the kernel-mode stack for that process context is already
pretty loaded up with metadata – the stack frames for each of those functions it's been
invoking. Now, a hardware interrupt arrives! This, ultimately, is also code that must run
and thus requires a stack. We could have it simply use the existing kernel-mode stack that's
already in play, but this greatly increases the chances of stack overflow (given that we're
deeply nested and the stack is small). A stack overflow within the kernel is disastrous as the
system will simply hang/die with no real clues as to the root cause (well,
the CONFIG_VMAP_STACK kernel config was introduced for mitigating precisely this kind of
thing and is set by default on x86_64).

So, long story short, on pretty much all modern architectures, the kernel allocates a separate
kernel space stack per CPU for hardware interrupt handling. This is known as the IRQ
stack. When a hardware interrupt arrives, the stack location (via the appropriate CPU stack
pointer register) is switched to the IRQ stack of the CPU the interrupt is being processed on
(and it's restored on IRQ exit). Some arch's (PPC) have a kernel
config called CONFIG_IRQSTACKS to enable IRQ stacks. The size of the IRQ stack is fixed as
the value is arch-dependent. On the x86_64, it's 4 pages long (16 KB, with a typical 4K page
size).

Measuring metrics and latency
We have already discussed, to an extent, what latencies (delays) are and how to measure
scheduling latency in the companion guide Linux Kernel Programming - Chapter 11, The CPU
Scheduler – Part 2, under the Latency and its measurement section. Here, we'll look at more
aspects of system latencies and their measurement.

As you already know, procfs is a rich source of information; we've already seen that both
the number of hardirqs and softirqs that are generated per CPU core can be viewed via
the /proc/interrupts and /proc/softirqs (pseudo) files. Similar information is
available via /proc/stat.

Handling Hardware Interrupts Chapter 4

[224]

Measuring interrupts with [e]BPF
In the companion guide Linux Kernel Programming - Chapter 1, Kernel Workspace Setup, in
the Modern tracing and performance analysis with [e]BPF section, we pointed out how the
modern approach to tracing, performance measurement, and analysis on (recent 4.x) Linux
is [e]BPF, the enhanced Berkeley Packet Filter (just called BPF as well). Among the
plethora of tools it stocks (https:/ ​/​github. ​com/ ​iovisor/ ​bcc#tools), two suit our
immediate purpose of tracing, measuring, and analyzing interrupts (both hardirqs and
softirqs). (The tools are named toolname-bpfcc on Ubuntu, where toolname is the name
of the tool in question, such as hardirqs-bpfcc and softirqs-bpfcc). These tools
dynamically trace interrupts (at the time of writing, they're not based on kernel tracepoints
yet). You will require root access to run these [e]BPF tools.

Important: You can install the BCC tools for your regular host Linux
distro by reading the installation instructions here: https:/ ​/​github. ​com/
iovisor/ ​bcc/ ​blob/ ​master/ ​INSTALL. ​md. Why not do this on our guest
Linux VM? You can do this when you're running a distro kernel (such as
an Ubuntu- or Fedora-supplied kernel). The reason you can do this is
because the installation of the BCC toolset includes (and depends on) the
installation of the linux-headers-$(uname -r) package; this linux-
headers package exists only for distro kernels (and not for our custom 5.4
kernel, which you might be running on the guest).

Measuring time servicing individual hardirqs
The hardirqs[-bpfcc] tool displays the total time spent servicing hardirqs (hardware
interrupts). The following screenshot shows us running the hardirqs-bpfcc tool. Here,
you can see the total time that was spent servicing hardirqs every 1 second (first parameter)
for 3 seconds (second parameter):

Figure 4.14 – hardirqs-bpfcc showing the time that was spent servicing hardirqs every 1 second for 3 seconds

https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md

Handling Hardware Interrupts Chapter 4

[225]

The following screenshot shows us using the same tool to generate a histogram of hard IRQ
time distribution (via the -d switch):

Figure 14.15 – hardirqs-bpfcc -d showing a histogram

Notice how the majority of the network hardirqs (iwlwifi, 48 of them) take just between 4
to 7 microseconds to complete, though a few (three of them) take between 16 and 31 usecs.

You can find more examples of how to use the hardirqs[-bpfcc] tool at https:/ ​/
github.​com/​iovisor/ ​bcc/ ​blob/ ​master/ ​tools/ ​hardirqs_ ​example. ​txt. Looking up its man
page would also be beneficial.

Measuring time servicing individual softirqs
Similar to what we did previously with hardirqs, we will now employ the softirqs[-
bpfcc] tool. It displays the total time spent servicing softirqs (software interrupts).
Again, you will require root access to run these [e]BPF tools.

https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt
https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt

Handling Hardware Interrupts Chapter 4

[226]

First, let's place our system (native x86_64 running Ubuntu) under some stress (here, it's
performing network downloads, network uploads, and disk activity). The following
screenshot shows us running the softirqs-bpfcc tool, which provides information about
the total time spent servicing softirqs every 1 second (first parameter) forever (no second
parameter):

Figure 4.16 – softirqs-bpfcc displaying the time that was spent servicing softirqs every 1 second (under some I/O stress)

Notice how the tasklet softirq also comes into play.

Handling Hardware Interrupts Chapter 4

[227]

Let's look at another example of using the same tool to generate a histogram of soft IRQ
time distribution (via the -d switch, again with the system under some I/O – network and
disk – stress). The following screenshot shows the output we get after running the sudo
softirqs-bpfcc -d command:

Figure 4.17 – softirqs-bpfcc -d showing a histogram (under some I/O stress)

Again, within this small sample set, the majority of NET_RX_SOFTIRQ instances have taken
just between 4 and 7 microseconds, whereas the majority of BLOCK_SOFTIRQ instances have
taken between 16 and 31 microseconds to complete.

Handling Hardware Interrupts Chapter 4

[228]

These [e]BPF tools have man pages as well (again, with examples). I recommend that you
install these [e]BPF on a native Linux system (see the companion guide Linux Kernel
Programming - Chapter 1, Kernel Workspace Setup, the Modern tracing and performance analysis
with [e]BPF section). Take a look and try out the tools for yourself.

Using Ftrace to get a handle on system latencies
Linux has a very powerful tracing engine built into the kernel itself called Ftrace. Just as
you can trace system calls via the (oh so useful) strace(1) (and library APIs via
ltrace(1)) utility in user space, you can also trace pretty much every function running in
kernel space via Ftrace. Ftrace, though, is much more than simply a function tracer – it's a
framework, a linchpin of the kernel's underlying tracing infrastructure.

Steven Rostedt is the original author of Ftrace. His paper entitled Finding
Origins of Latencies Using Ftrace is a very good read. You can find it
here: https:/ ​/​static. ​lwn. ​net/​images/ ​conf/ ​rtlws11/ ​papers/ ​proc/ ​p02.
pdf.

In this section, we don't intend to cover how to use Ftrace in an in-depth
manner as it's really not part of the subject matter here. Learning to use
Ftrace isn't difficult, and is a valuable weapon in your kernel debug
armory! If you're unfamiliar with it, please go through the links we've
provided on Ftrace in the Further reading section at the end of this chapter.

Latency is the delay between the time when something is supposed to happen and when it
actually does happen (the tongue in cheek difference between theory and practice). System
latencies in an OS can be the underlying cause of performance issues. Among them are
interrupt and scheduling latencies. But what's the actual cause of these latencies?
Borrowing from Steve Rostedt's paper (mentioned previously), four events cause these
latencies:

Interrupts disabled: If IRQs are off, interrupts cannot be serviced until they're
turned on (here, we shall focus on measuring this one.)
Preemption disabled: If this is the case, a thread that has been woken up cannot
run until preemption is enabled.
Scheduling latency: The delay between a thread being scheduled to run and it
actually running on a core (we covered measuring this in the companion guide
Linux Kernel Programming - Chapter 11, The CPU Scheduler - Part 2 in the section
Latency and its measurement.)

https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf

Handling Hardware Interrupts Chapter 4

[229]

Interrupt inversion: When an interrupt runs in preference to a task that has
higher priority (similar to priority inversion, this can happen in hard real-time; of
course, as you learned, this is exactly why threaded handlers are key).

Ftrace can record all but the last one. Here, we shall focus on learning how to leverage
Ftrace to find (or sample, really) the worst-case time for which hardware interrupts are
disabled. This is referred to as irqsoff latency tracing. Let's go!

Finding the interrupts disabled worst-case time latency with Ftrace
Ftrace has a number of plugins (or tracers) that it works with. First, you need to ensure that
the irqsoff latency tracer (or plugin of Ftrace) is actually enabled within the kernel. You
can check this in two different ways:

Check the kernel config file (grep for CONFIG_IRQSOFF_TRACER within it).
Check the available tracers (or plugins) via Ftrace infrastructure.

We'll go with the latter option here:

$ sudo cat /sys/kernel/debug/tracing/available_tracers
hwlat blk mmiotrace function_graph wakeup_dl wakeup_rt wakeup
function nop

In the preceding output, the irqsoff tracer – the one we require – is missing! This is
usually the case and implies that you will have to configure the kernel (turning it on) and
(re)build your custom 5.4 kernel. (This will be provided as an exercise in
the Questions section at the end of this chapter.) We also recommend that you install a very
useful frontend to Ftrace known as the trace-cmd(1) utility (we mentioned this utility
in the companion guide Linux Kernel Programming - Chapter 1, Kernel Workspace Setup and
used it in Chapter 11, The CPU Scheduler - Part 2 in the section Visualizing with trace-cmd).

Lockdep can cause issues here: if enabled, it's really best to disable the
kernel's lockdep feature when you're performing latency tracing (it could
add too much overhead). We'll discuss lockdep in some detail in Chapter
7, Kernel Synchronization - Part 2.

Handling Hardware Interrupts Chapter 4

[230]

Once you have CONFIG_IRQSOFF_TRACER enabled (and trace-cmd installed), follow these
steps to let Ftrace's latency tracer figure out the worst-case interrupts-off latency. Needless
to say, these steps must be carried out as root:

Get yourself a root shell (you will need root privileges to do this):1.

sudo /bin/bash

Reset the Ftrace framework (this can be done with the trace-cmd(1) frontend2.
to Ftrace):

trace-cmd reset

Change directories to the one for ftrace:3.

cd /sys/kernel/debug/tracing

It's can usually be found here. If you have the debugfs pseudo filesystem
mounted under a different directory, then please cd there (and to
the tracing directory under it).

Turn off all tracing using echo 0 tracing_on (ensure you leave a space4.
between the 0 and the > symbol).
Set the irqsoff tracer as the current tracer:5.

echo irqsoff current_tracer

Now, turn tracing on:6.

echo 1 tracing_on
 ... it runs! ...

The following output shows the worst-case irqsoff latency (this is typically7.
shown in microseconds; worry not, we'll show a sample run shortly):

cat tracing_max_latency
[...]

Fetch and read the full report. All Ftrace output is held within8.
the trace pseudofile:

cp trace /tmp/mytrc.txt
cat /tmp/mytrc.txt

Handling Hardware Interrupts Chapter 4

[231]

Reset the Ftrace framework:9.

trace-cmd reset

The output we obtain will look like this:

cat /tmp/mytrc.txt
tracer: irqsoff
#
irqsoff latency trace v1.1.5 on 5.4.0-llkd01

latency: 234 us, #53/53, CPU#1 | (M:desktop VP:0, KP:0, SP:0 HP:0
#P:2)

| task: sshd-25311 (uid:1000 nice:0 policy:0 rt_prio:0)

= started at: schedule
= ended at: finish_task_switch
[...]

Here, the worst-case irqsoff latency turned out to be 234 microseconds (experienced
while the sshd task with PID 25311 was executing), implying that hardware interrupts
were off for this period of time. For your convenience, I have provided a simple wrapper
Bash script (ch4/irqsoff_latency_ftrc.sh) that does the same job.

Now, we will mention a few other useful tools you can use to measure system latencies.

Other tools
The following are a few tools worth mentioning with regard to capturing and analyzing
system latencies (and more):

You can learn how to set up and use the powerful Linux Tracing Toolkit – next
generation (LTTng) toolset to record traces of the system in action. I highly
recommend using the superb Trace Compass GUI to analyze it. In fact, in the
companion guide Linux Kernel Programming - Chapter 1, Kernel Workspace Setup, in
the Linux Tracing Toolkit next generation (LTTng) section, we showed an
interesting screenshot (Figure 1.9) of the Trace Compass GUI being used to
display and analyze IRQ lines 1 and 130 (the interrupt lines for the i8042 and Wi-
Fi chipset on my native x86_64 system, respectively).
You can also try using the latencytop tool to determine which kernel ops what
user space threads are blocking on. You will have to turn
on CONFIG_LATENCYTOP in the kernel config to do this.

Handling Hardware Interrupts Chapter 4

[232]

Besides latency metrics, you can use dstat(1), mpstat(1), watch(1), and so
on to gain a "top"-like view of interrupts (https:/ ​/​unix. ​stackexchange. ​com/
questions/ ​8699/ ​is- ​there- ​a- ​utility- ​that- ​interprets- ​proc- ​interrupts-
data-​in- ​time).

With that, we've completed this section and this chapter.

Summary
Congratulations! This chapter has been long but worthwhile. You will have learned a lot
regarding how to work with hardware interrupts. We started by briefly looking at how the
OS handles interrupts before learning how you, as a driver author, must work with them.
To do so you learned how to, via several methods, allocate IRQ lines (and free them) and
implement the hardware interrupt routine. Here, several limitations and caveats, essentially
boiling down to the fact that it's an atomic activity, were discussed. The hows and whys of
the "threaded interrupt" model were then covered; it's often regarded as the modern
recommended way to handle interrupts. After that, we understood and learned how to
work with hardirqs/softirqs and top/bottom halves. Finally, we covered, in typical FAQ
style, information which taught you about load balancing interrupts, IRQ stacks, and how
to employ some useful frameworks and tools that can measure interrupt metrics and
latencies.

All of this is essential knowledge when it comes to engineering a well-written driver that
must work with hardware interrupts!

The next chapter covers the areas of working with time: delays and timeouts within the
kernel space, creating and managing kernel threads, and using kernel workqueues. I
suggest that you diligently work on this chapter's exercises, browse the numerous resources
in the Further reading section, and then take a break (hey, all work and no play makes Jack a
dull boy, right!?) before diving back in! See you there!

Questions
On an x86 system (a VM is fine), show that while the number of timer interrupts1.
(IRQ 0) remains the same, another periodic system interrupt is actually
continually incrementing (hence keeping track of time on a per-CPU basis).
Hint: use a proc pseudo-file associated with interrupts.
keylogger_simple ; native x86 only [use only for ethical hacking; may not work2.
on a VM]

https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time
https://unix.stackexchange.com/questions/8699/is-there-a-utility-that-interprets-proc-interrupts-data-in-time

Handling Hardware Interrupts Chapter 4

[233]

(A bit more advanced) Write a simple keyboard logger driver using the "misc"
kernel framework. Trap it inside the i8042's IRQ 1 in order to "trap" it inside the
keyboard press/release and read the key scancode. Use a kfifo data structure to
hold the keyboard scancode in kernel space memory. Have a user mode process
(or thread) periodically read the data items from your driver's kfifo into a user
space buffer and write them into a log file. Write an app (or use another thread)
to interpret the keyboard keys.
Tips:

Can you ensure that it runs only on x86 (as it should)? Yes; use #ifdef1.
CONFIG_X86 at the very beginning of your code!
Can you ensure that it runs only on a native system and not within a2.
VM? Yes, you can use the virt-what script within a wrapper script to
load up the driver; only perform insmod (or modprobe) if you're not
on a VM.
Writing a driver is actually a difficult (and quite unnecessary!) way to3.
implement a key logger (here, you're just doing so as a learning
exercise so that you know how to work with hardware interrupts
within a device driver). It's really simpler and better to work at higher
level abstractions – basically, by querying the kernel's events layer for
keystrokes. A simple way you can do this is by using an event
monitoring and capture tool – evtest(1) is great! (run it as root;
https:/ ​/ ​www. ​kernel. ​org/ ​doc/ ​html/ ​latest/ ​input/ ​input_ ​uapi. ​html).

 References for this assignment:

Using the kernel kfifo: https:/ ​/ ​elixir. ​bootlin. ​com/ ​linux/ ​latest/ ​source/
samples/ ​kfifo/ ​bytestream- ​example. ​c
US keyboard map and interpretation: http:/ ​/​www. ​philipstorr. ​id. ​au/​pcbook/
book3/​scancode. ​htm; http:/ ​/​www. ​osdever. ​net/​bkerndev/ ​Docs/ ​keyboard. ​htm

The kernel provides "deferred functionality" mechanisms often called ______; 4.
they're deliberately designed to get the best of both worlds: (i) ____________ and
(ii) ______.

Top halves; run the hardirq as soon as possible; immediately restore1.
the interrupted context after that.
Bottom halves; to allow the driver author to do fairly lengthy interrupt2.
processing if the situation demands it. Do this in a deferred, safe
manner while allowing the business of the system to continue.
Better half; do more work in the interrupt context so that you don't3.
have to pay for it later.

https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://www.kernel.org/doc/html/latest/input/input_uapi.html
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
https://elixir.bootlin.com/linux/latest/source/samples/kfifo/bytestream-example.c
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm

Handling Hardware Interrupts Chapter 4

[234]

Bottom halves; run interrupt code with interrupts disabled and let it4.
run for a long time.

Use a code browsing tool (cscope(1) is a good choice) to find drivers that are5.
using the tasklet_hi_schedule() API.
Use the Ftrace irqsoff latency tracer plugin to find the maximum time for6.
which interrupts have been turned off.
Tip: This will involve using the irqsoff plugin (CONFIG_IRQSOFF_TRACER); if
it's not turned on by default, you will have to configure the kernel so that it
includes it (and other tracers as required; you can find them under make
menuconfig : Kernel Hacking / Tracers). Then, you must build the
kernel and turn off it.
Tip: When measuring things such as system latencies (interrupts-off, interrupts-
and-preemption-off, scheduling latency), it's best to disable lockdep.
Reference: Finding Origins of Latencies Using Ftrace, Steven Rostedt,
RedHat: https:/ ​/ ​static. ​lwn. ​net/​images/ ​conf/ ​rtlws11/ ​papers/ ​proc/ ​p02. ​pdf.

Solutions to some of the preceding questions could be found at https:/ ​/
github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming- ​Part- ​2/​tree/
main/ ​solutions_ ​to_ ​assgn.

Further reading
Kernel documentation: Linux generic IRQ handling: https:/ ​/​www. ​kernel. ​org/
doc/​html/ ​latest/ ​core- ​api/ ​genericirq. ​html#linux- ​generic- ​irq- ​handling

LWN kernel index on interrupts: https:/ ​/ ​lwn.​net/ ​Kernel/ ​Index/ ​#Interrupts

Interrupt triggering at the level/edge:
Edge Triggered versus Level Triggered interrupts, Mar '13: http:/ ​/
venkateshabbarapu. ​blogspot. ​com/​2013/ ​03/ ​edge- ​triggered- ​vs-
level- ​triggered. ​html

Level-triggered versus Edge-triggered Interrupts, Nov '08: https:/ ​/
www. ​garystringham. ​com/ ​level- ​triggered- ​vs-​edge- ​triggered-
interrupts/ ​

How do I disable non-maskable interrupts programmatically?: https:/ ​/
stackoverflow. ​com/ ​questions/ ​55394608/ ​how-​do- ​i-​disable- ​non- ​maskable-
interrupts- ​programmatically

Threadable NAPI polling, softirqs, and proper fixes, Jon Corbet, May 2016,
LWN: https:/ ​/​lwn. ​net/ ​Articles/ ​687617/ ​

https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://www.kernel.org/doc/html/latest/core-api/genericirq.html#linux-generic-irq-handling
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
https://lwn.net/Kernel/Index/#Interrupts
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://www.garystringham.com/level-triggered-vs-edge-triggered-interrupts/
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://stackoverflow.com/questions/55394608/how-do-i-disable-non-maskable-interrupts-programmatically
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/
https://lwn.net/Articles/687617/

Handling Hardware Interrupts Chapter 4

[235]

Possible future directions: softirq vector fine-grained masking:
Per-vector software-interrupt masking, Jon Corbet, Feb 2019,
LWN: https:/ ​/​lwn. ​net/ ​Articles/ ​779738/ ​

Soft-interruptible softirqs (or per vector masking), Frederic Weisbecker,
SuSe: https:/ ​/ ​linuxplumbersconf. ​org/ ​event/ ​4/​contributions/
420/ ​attachments/ ​375/ ​609/ ​lpc_ ​softirq. ​pdf

IRQ balancing and affinity:
IRQ Balancing, ntop project: https:/ ​/​www. ​ntop. ​org/ ​pf_ ​ring/ ​irq-
balancing/ ​

Setting interrupt affinity systems, RHEL8: https:/ ​/​access. ​redhat.
com/ ​documentation/ ​en-​us/ ​red_ ​hat_ ​enterprise_ ​linux/ ​8/​html/
monitoring_ ​and_ ​managing_ ​system_ ​status_ ​and_ ​performance/
configuring- ​an- ​operating- ​system- ​to-​optimize- ​cpu-
utilization_ ​monitoring- ​and- ​managing- ​system- ​status- ​and-
performance#setting- ​interrupt- ​affinity- ​systems_
configuring- ​an- ​operating- ​system- ​to-​optimize- ​cpu-
utilization

The modern approach to performance measurement and analysis with eBPF:
Linux bcc/eBPF tracing tools, Brendan Gregg: https:/ ​/​github. ​com/
iovisor/ ​bcc#tools

bcc Tutorial: https:/ ​/​github. ​com/ ​iovisor/ ​bcc/​blob/ ​master/
docs/ ​tutorial. ​md#bcc- ​tutorial

 Ftrace:
Kernel doc: ftrace – Function Tracer: https:/ ​/​www. ​kernel. ​org/ ​doc/
Documentation/ ​trace/ ​ftrace. ​txt

The following is a collection of links to articles on Ftrace on LWN
(some of which are mentioned here): https:/ ​/​lwn. ​net/ ​Kernel/
Index/ ​#Ftrace

Debugging the kernel using ftrace - part 1, Steven Rostedt, LWN, Dec
2009: https:/ ​/ ​lwn. ​net/​Articles/ ​365835/ ​

Secrets of the ftrace function tracer, Steven Rostedt, LWN, Jan
2010: https:/ ​/ ​lwn. ​net/​Articles/ ​370423/ ​

trace-cmd: a frontend for ftrace, Steven Rostedt, LWN, Oct
2010: https:/ ​/ ​lwn. ​net/​Articles/ ​410200/ ​

Finding Origins of Latencies Using Ftrace, Steven Rostedt, Oct
2011: https:/ ​/ ​static. ​lwn. ​net/ ​images/ ​conf/ ​rtlws11/ ​papers/
proc/ ​p02. ​pdf

LWN Kernel index on Latency: https:/ ​/​lwn. ​net/ ​Kernel/ ​Index/ ​#Latency

https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://lwn.net/Articles/779738/
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://linuxplumbersconf.org/event/4/contributions/420/attachments/375/609/lpc_softirq.pdf
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://www.ntop.org/pf_ring/irq-balancing/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-interrupt-affinity-systems_configuring-an-operating-system-to-optimize-cpu-utilization
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc#tools
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md#bcc-tutorial
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://static.lwn.net/images/conf/rtlws11/papers/proc/p02.pdf
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency
https://lwn.net/Kernel/Index/#Latency

5
Working with Kernel Timers,

Threads, and Workqueues
What if the low-level specification for your device driver demands that, between the
execution of func_a() and func_b(), there should be a 50-millisecond delay?
Furthermore, depending on your circumstances, the delay should work when you're
running in either process or interrupt contexts. What if, in another part of the driver, you
require a monitoring function of some sort to be executed asynchronously and periodically
(say, every second)? Or do you need to have a thread (or several threads) silently
performing work in the background but within the kernel?

These are very common requirements in all kinds of software, including our corner of the
universe – Linux kernel module (and driver) development! In this chapter, you will learn
how to set up, understand, and use delays while running in kernel space, as well as how to
work with kernel timers, kernel threads, and workqueues.

In this chapter, you will learn how to optimally perform these tasks. In a nutshell, we will
cover the following topics:

Delaying for a given time in the kernel
Setting up and using kernel timers
Creating and working with kernel threads
Using kernel workqueues

Let's get started!

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[237]

Technical requirements
I assume that you have gone through the Preface section To get the most out of this book
and have appropriately prepared a guest VM running Ubuntu 18.04 LTS (or a later stable
release) and installed all the required packages. If not, I highly recommend you do this first.
To get the most out of this book, I strongly recommend you first set up the workspace
environment, including cloning this book's GitHub repository for the code, and work on it
in a hands-on fashion. The repository can be found here: https:/ ​/​github. ​com/
PacktPublishing/​Linux- ​Kernel- ​Programming- ​Part- ​2.

Delaying for a given time in the kernel
Often, your kernel or driver code will need to wait for a given time before moving on to the
next instruction. This can be achieved within the Linux kernel space via a set of delay APIs.
Right from the outset, a key point to understand is that you can enforce a delay in two
broad ways:

Delay via non-blocking or atomic APIs that will never cause a sleep process to
occur (in other words, it will never schedule out)
Delay via blocking APIs that cause the current process context to sleep (in other
words, by scheduling out)

(As we covered in detail in the companion guide Linux Kernel Programming, our chapters on
CPU scheduling Chapter 10, The CPU Scheduler – Part 1, and Chapter 11, The CPU Scheduler –
Part 2), putting a process context to sleep internally implies that the kernel's
core schedule() function is invoked at some point, ultimately causing a context switch to
occur. This leads up to a really important point (one we've mentioned previously!): you
must never, ever invoke schedule() while running in an atomic or interrupt context of
any sort.

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[238]

Often, as is our case here with inserting delays, you have to figure out what context the
code where you intend to insert a delay is running in. We covered this in the companion
guide Linux Kernel Programming - Chapter 6, Kernel Internals Essentials – Processes and Threads,
in the Determining the context section; please refer back to it if you're unclear. (We went into
even more detail on this in Chapter 4, Handling Hardware Interrupts.)

Next, think about this carefully: if you are indeed in an atomic (or interrupt) context, is
there really a need to delay? The whole point of an atomic or interrupt context is that the
execution within it is limited to an as-brief-as-possible duration; it is strongly
recommended that you design it in this way. This implies that you don't insert delays into
atomic code unless you can't avoid doing so.

Use the first type: These are the non-blocking or atomic APIs that will never
cause a sleep to occur. You should use this when your code is in an atomic (or
interrupt) context and you really do require a non-blocking delay with a short
duration; but how short is that? As a rule of thumb, use these APIs for non-
blocking atomic delays that are 1 millisecond or less. Even if you need to delay
for longer than a millisecond in an atomic context – say, within the code of an
interrupt handler (but why delay in an interrupt!?) – use these *delay() APIs (the
* character implies a wildcard; here, as you will see, it implies the
ndelay(), delay(), and mdelay() routines).
Use the second type: These are the blocking APIs that cause the current process
context to sleep. You should use this when your code is in a process (or task)
context, for delays that are blocking in nature and of a longer duration; in effect,
for delays over a millisecond. These kernel APIs follow the form *sleep().
(Again, without going into too much detail, think about this: if you are in a
process context but within the critical section of a spinlock, it's an atomic context
– if you must incorporate a delay, then you must use the *delay() APIs! We'll
cover spinlocks and much more in the last two chapters of this book.)

Now, let's look at these kernel APIs and see how they're used. We'll begin by looking at
*delay() atomic APIs.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[239]

Understanding how to use the *delay() atomic
APIs
Without further ado, let's take a look at a table that quickly summarizes the available (to us
module authors) non-blocking or atomic *delay() kernel APIs; they're meant to be used in
any kind of atomic or interrupt context where you cannot block or sleep (or invoke schedule()):

API Comment
ndelay(ns); Delay for ns nanoseconds.
udelay(us); Delay for us microseconds.
mdelay(ms); Delay for ms milliseconds.

Table 5.1 – The *delay() non-blocking APIs

There are a few points to note regarding these APIs, their internal implementation, and
their usage:

Always include the <linux/delay.h> header when using these macros/APIs.
You are expected to call an appropriate routine based on the time you must delay
for; for example, if you need to perform an atomic non-blocking delay of, say, 30
milliseconds, you should call mdelay(30) and not udelay(30*1000). The
kernel code mentions this very point: linux/delay.h – "Using udelay() for
intervals greater than a few milliseconds can risk overflow for high loops_per_jiffy (high
bogomips) machines ...".
The internal implementation of these APIs, like many on Linux, is nuanced: there
is a higher-level abstracted implementation for these functions (or macros, as the
case may be) in the <linux/delay.h> header; there is often a low-level arch-
specific implementation within an arch-specific header (<asm-
<arch>/delay.h> or <asm-generic/delay.h>; where arch, of course, means
CPU) that will automatically override the high-level version at call time (the
linker will ensure this).

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[240]

In the current implementation, these APIs ultimately boil down to wrappers
over udelay(); this function itself boils down to a tight assembly loop that
performs what's called "busy looping"! (for x86, the code can be found
in arch/x86/lib/delay.c:__const_udelay()). Without going into the gory
details, early in the boot process, the kernel calibrates a couple of values: the so-
called bogomips – bogus MIPS – and loops per jiffy (lpj) values. Essentially, the
kernel figures out, on that particular system, how many times a loop must be
iterated over in order for 1 timer tick or a jiffy to elapse. This value is known as
the system's bogomips value and can be seen in the kernel log. For example, on
my Core-i7 laptop, it's as follows:

Calibrating delay loop (skipped), value calculated using timer
frequency.. 5199.98 BogoMIPS (lpj=10399968)

For delays over MAX_UDELAY_MS (set to 5 ms), the kernel will internally call the
udelay() function in a loop.

Remember the *delay() APIs must be used when you require a delay in any type of
atomic context, such as an interrupt handler (top or bottom half), as they guarantee that no
sleep – and thus no call to schedule() – ever occurs. A reminder (we mentioned this point
in Chapter 4, Handling Hardware Interrupts): might_sleep() is used as a debug aid; the
kernel (and drivers) internally uses the might_sleep() macro in places in the code base
where the code runs in the process context; that is, where it can sleep. Now, if
might_sleep() is ever invoked within an atomic context, that's just plain wrong – a
noisy printk stack trace is then emitted, thus helping you catch these issues early and fix
them. You can use these *delay() APIs in the process context as well.

In these discussions, you will often come across the jiffies kernel
variable; essentially, think of jiffies as a global unsigned 64-bit value
that is incremented on every timer interrupt (or timer tick; it's internally
protected against overflow). Thus, the continually incrementing variable
is used as a way to measure uptime, as well as a means of implementing
simple timeouts and delays.

Now, let's look at the second type of delay APIs available – the blocking type.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[241]

Understanding how to use the *sleep() blocking
APIs
Let's look at another table that quickly summarizes the available (to us module authors)
blocking *sleep*() kernel APIs; these are only meant to be used in the process context when
it's safe to sleep; that is, where the invocation of schedule() is not a problem. In other
words, the delay is implemented by the process context actually going to sleep for the
duration of the delay and is then woke up when it's done:

API Internally "backed by" Comment

usleep_range(umin, umax);
hrtimers (high-resolution
timers)

Sleep for between umin and
umax microseconds. Use
where the wakeup time is
flexible. This is the
recommended API to use.

msleep(ms); jiffies/legacy_timers

Sleep for ms milliseconds.
Typically meant for a sleep
with a duration of 10 ms or
more.

msleep_interruptible(ms); jiffies/legacy_timers An interruptible variant of
msleep(ms);.

ssleep(s); jiffies/legacy_timers
Sleep for s seconds. This
is meant for sleeps > 1 s
(wrapper over msleep()).

Table 5.2 – The *sleep*() blocking APIs

There's a few points to note regarding these APIs, their internal implementation, and their
usage:

Ensure you include the <linux/delay.h> header when using these
macros/APIs.
All these *sleep() APIs are internally implemented in such a manner that
they cause the current process context to sleep (that is, by internally
invoking schedule()); thus, of course, they must only ever be invoked in the
process context when it's "safe to sleep". Again, just because your code is in the
process context does not necessarily mean it's safe to sleep; for example, the
critical section of a spinlock is atomic; thus, you must not invoke the
aforementioned *sleep() APIs there!

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[242]

We mentioned that usleep_range() is the preferred/recommended API to use
when you want a short sleep – but why? This will become clearer in the Let's try
it – how long do delays and sleeps really take? section.

As you are aware, sleeps on Linux can be of two types: interruptible and uninterruptible.
The latter means that no signal task can "disturb" the sleep. So, when you invoke
msleep(ms);,i t puts the current process context to sleep for ms by internally invoking the
following:

__set_current_state(TASK_UNINTERRUPTIBLE);
return schedule_timeout(timeout);

The schedule_timeout() routine works by setting up a kernel timer (our next topic!) that
will expire in the desired time, then immediately putting the process to sleep by calling
schedule()! (For the curious, have a peek at its code
here: kernel/time/timer.c:schedule_timeout().) The msleep_interruptible()
implementation is very similar, except that it
calls __set_current_state(TASK_INTERRUPTIBLE);. As a design heuristic, follow the
UNIX paradigm of provide mechanism, not policy; this way, calling
msleep_interruptible() might be a good idea in situations where, if the userspace app
aborts the work (by the user pressing ^C perhaps), the kernel or driver obediently releases
the task: its process context is awoken, it runs the appropriate signal handler, and life
continues. In situations where it's important that the kernel space is not disturbed by user-
generated signals, use the msleep() variant.

Again, as a rule of thumb, use the following APIs, depending on the duration of the delay:

For delays of over 10 milliseconds: msleep() or msleep_interruptible()
For delays of over 1 second: ssleep()

As you might expect, ssleep() is a simple wrapper over msleep(); and
becomes msleep(seconds * 1000);.

One simple way to implement the (approximate) equivalent of the user space sleep(3)
API can be seen in our convenient.h header; at heart, it employs the
schedule_timeout() API:

#ifdef __KERNEL__
void delay_sec(long);
/*------------ delay_sec --
 * Delays execution for @val seconds.
 * If @val is -1, we sleep forever!
 * MUST be called from process context.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[243]

 * (We deliberately do not inline this function; this way, we can see it's
 * entry within a kernel stack call trace).
 */
void delay_sec(long val)
{
 asm (""); // force the compiler to not inline it!
 if (in_task()) {
 set_current_state(TASK_INTERRUPTIBLE);
 if (-1 == val)
 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
 else
 schedule_timeout(val * HZ);
 }
}
#endif /* #ifdef __KERNEL__ */

Now that you've learned how to delay (yes, smile please), let's move on and learn a useful
skill: timestamping kernel code. This allows you to quickly calculate how long a particular
piece of code takes to execute.

Taking timestamps within kernel code
It's important to be able to take an accurate timestamp as kernels open employ this facility.
For example, the dmesg(1) utility shows the time since the system booted in
seconds.microseconds format; Ftrace traces typically show the time a function takes to
execute. When in user mode, we often employ the gettimeofday(2) system call to take a
timestamp. Within the kernel, several interfaces exist; commonly, the
ktime_get_*() family of routines is employed for the purpose of obtaining accurate
timestamps. For our purposes, the following routine is useful:

u64 ktime_get_real_ns(void);

This routine internally queries the wall (clock) time via the ktime_get_real() API and
then converts the result into a nanosecond quantity. We won't bother with the internal
details here. Also, several variants of this API are available; for example,
ktime_get_real_fast_ns(), ktime_get_real_ts64(), and so on. The former is both
fast and NMI-safe.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[244]

Now that you know how to get a timestamp, you can calculate how long some code takes
to execute to a good degree of accuracy, with nanosecond resolution no less! You can use
the following pseudocode to achieve this:

#include <linux/ktime.h>
t1 = ktime_get_real_ns();
foo();
bar();
t2 = ktime_get_real_ns();
time_taken_ns = (t2 -> t1);

Here, the time taken for the (fictional) foo() and bar() functions to execute is calculated,
and the result – in nanoseconds – is available in the time_taken_ns variable. The
<linux/ktime.h> kernel header itself includes the <linux/timekeeping.h> header,
which is where the ktime_get_*() family of routines is defined.

A macro to help you calculate the time taken between two timestamps has
been provided in our convenient.h header file: SHOW_DELTA(later,
earlier);. Ensure that you pass the later timestamp as the first
parameter and the first timestamp as the second parameter.

The code example in the next section will help us employ this kind of approach.

Let's try it – how long do delays and sleeps really
take?
By now, you know how to use the *delay() and *sleep() APIs to construct delays and
sleeps (non-blocking and blocking, respectively). Hang on, though – we haven't really tried
it out in a kernel module. Not only that, are the delays and sleeps as accurate as we have
been led to believe? Let's, as usual, be empirical (this is important!) and not make any
assumptions. Let's actually try it out for ourselves!

The demo kernel module we'll be looking at in this subsection performs two kinds of
delays, in order:

First, it employs the *delay() routines (which you learned about in
the Understanding how to use the *delay() atomic APIs section) to implement atomic
non-blocking delays of 10 ns, 10 us, and 10 ms.
Next, it employs the *sleep() routines (which you learned about in
the Understanding how to use the *sleep() blocking APIs section) to implement
blocking delays of 10 us, 10 ms, and 1 second.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[245]

We call the code for this like so:

DILLY_DALLY("udelay() for 10,000 ns", udelay(10));

Here, DILLY_DALLY() is a custom macro. Its implementation is as follows:

// ch5/delays_sleeps/delays_sleeps.c
/*
 * DILLY_DALLY() macro:
 * Runs the code @run_this while measuring the time it takes; prints the
string
 * @code_str to the kernel log along with the actual time taken (in ns, us
 * and ms).
 * Macro inspired from the book 'Linux Device Drivers Cookbook', PacktPub.
 */
#define DILLY_DALLY(code_str, run_this) do { \
 u64 t1, t2; \
 t1 = ktime_get_real_ns(); \
 run_this; \
 t2 = ktime_get_real_ns(); \
 pr_info(code_str "-> actual: %11llu ns = %7llu us = %4llu ms\n", \
 (t2-t1), (t2-t1)/1000, (t2-t1)/1000000);\
} while(0)

Here, we have implemented the time delta calculation trivially; a good implementation will
involve checking that the value of t2 is greater than t1, that no overflow occurs, and so on.

We invoke it, for various delays and sleeps, within our kernel module's init function, like
this:

 [...]
 /* Atomic busy-loops, no sleep! */
 pr_info("\n1. *delay() functions (atomic, in a delay loop):\n");
 DILLY_DALLY("ndelay() for 10 ns", ndelay(10));
 /* udelay() is the preferred interface */
 DILLY_DALLY("udelay() for 10,000 ns", udelay(10));
 DILLY_DALLY("mdelay() for 10,000,000 ns", mdelay(10));

 /* Non-atomic blocking APIs; causes schedule() to be invoked */
 pr_info("\n2. *sleep() functions (process ctx, sleeps/schedule()'s
out):\n");
 /* usleep_range(): HRT-based, 'flexible'; for approx range [10us -
20ms] */
 DILLY_DALLY("usleep_range(10,10) for 10,000 ns", usleep_range(10, 10));
 /* msleep(): jiffies/legacy-based; for longer sleeps (> 10ms) */
 DILLY_DALLY("msleep(10) for 10,000,000 ns", msleep(10));
 DILLY_DALLY("msleep_interruptible(10) ",
msleep_interruptible(10));

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[246]

 /* ssleep() is a wrapper over msleep(): = msleep(ms*1000); */
 DILLY_DALLY("ssleep(1) ", ssleep(1));

Here's some sample output when the kernel module is run on our trusty x86_64 Ubuntu
VM:

Figure 5.1 – A partial screenshot showing the output of our delays_sleeps.ko kernel module

Carefully study the preceding output; it's peculiar that both the udelay(10) and
mdelay(10) routines seem to complete their execution before the desired delay period has
expired (in our sample output, in 9 us and 9 ms, respectively)! How come? The reality is
that the *delay() routines tend to finish earlier. This fact is documented within the
kernel source. Let's take a look at the relevant portion of code here (it's self-explanatory):

// include/linux/delay.h
/*
 [...]
 * Delay routines, using a pre-computed "loops_per_jiffy" value.
 *
 * Please note that ndelay(), udelay() and mdelay() may return early for
 * several reasons:
 * 1. computed loops_per_jiffy too low (due to the time taken to
 * execute the timer interrupt.)
 * 2. cache behavior affecting the time it takes to execute the
 * loop function.
 * 3. CPU clock rate changes.
 *
 * Please see this thread:
 * http://lists.openwall.net/linux-kernel/2011/01/09/56

The *sleep() routines have the reverse characteristic; they pretty much always tend to
sleep for longer than asked. Again, these are expected issues in a non-real-time OS such as
standard Linux.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[247]

You can mitigate these issues in a few ways:

On standard Linux, in user mode, do the following:
First of all, it's best to use the High-Resolution Timer (HRT)
interfaces for high accuracy. This, again, is code that's been merged
from the RTL project into mainstream Linux (way back in 2006). It
supports timers that require a resolution of less than a
single jiffy (which, as you know, is tightly coupled to the timer
"tick", the kernel CONFIG_HZ value); for example, with the HZ value
being 100, a jiffy is 1000/100 = 10 ms; with HZ being 250, a jiffy is 4
ms, and so on.
Once you've done this, why not employ the soft RT scheduling
features of Linux? Here, you can specify a scheduling policy
of SCHED_FIFO or SCHED_RR and a high priority for your user
mode thread (the range is 1 to 99; we covered these details in the
companion guide Linux Kernel Programming - Chapter 10, The CPU
Scheduler – Part 1).

Most modern Linux systems will have HRT support. However, how do
you exploit it? This is simple: you're recommended to write your timer
code in user space and employ standard POSIX timer APIs (such as
the timer_create(2) and timer_settime(2) system calls). Since this
book is concerned with kernel development, we won't delve into these
user space APIs here. In fact, this topic was covered in some detail in my
earlier book, Hands-On System Programming with Linux, in Chapter 13,
Timers, in the The newer POSIX (interval) timers mechanism section.

The kernel developers have taken the trouble to clearly document some excellent
recommendations for when you're using these delay and sleep APIs within the
kernel. It's really important that you browse through this document within the
official kernel documentation: https:/ ​/​www. ​kernel. ​org/ ​doc/ ​Documentation/
timers/​timers- ​howto. ​rst.
Configure and build the Linux OS as an RTOS; this will significantly reduce
scheduling "jitter" (we covered this topic in detail in the companion guide Linux
Kernel Programming - Chapter 11, The CPU Scheduler – Part 2, in the Converting
mainline Linux into an RTOS section).

https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst
https://www.kernel.org/doc/Documentation/timers/timers-howto.rst

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[248]

Interestingly, using our "better" Makefile's checkpatch target can be a real boon. Let's take a
look at what it (the kernel's checkpatch Perl script) has caught (first ensure you're in the
correct source directory):

$ cd <...>/ch5/delays_sleeps
$ make checkpatch
make clean
[...]
--- cleaning ---
[...]
--- kernel code style check with checkpatch.pl ---

/lib/modules/5.4.0-58-generic/build/scripts/checkpatch.pl --no-tree -f --
max-line-length=95 *.[ch]
[...]
WARNING: usleep_range should not use min == max args; see
Documentation/timers/timers-howto.rst
#63: FILE: delays_sleeps.c:63:
+ DILLY_DALLY("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", usleep_range(10, 10));

total: 0 errors, 2 warnings, 79 lines checked
[...]

That's really good! Ensure that you use the targets in our "better" Makefile (we covered
this in detail in the companion guide Linux Kernel Programming - Chapter 5, Writing Your
First Kernel Module LKMs – Part 2, in the A "better" Makefile template for your kernel
modules section).

With that, we've finished looking at kernel delays and sleeping within the kernel. With this
as a base, you shall now learn how to set up and use kernel timers, kernel threads, and
workqueues in the remaining sections of this chapter.

The "sed" drivers – to demo kernel timers,
kthreads, and workqueues
To make this chapter more interesting and hands-on, we shall begin evolving a
miscellaneous class character "driver" called a simple encrypt decrypt – or sed for short –
driver (not to be confused with the well-known sed(1) utility). No, you won't get a grand
prize for guessing that it provides some kind of – very simplistic – text
encryption/decryption support.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[249]

The point here is that we shall imagine that in the specification for this driver, one clause
demands that the work (practically speaking, the encryption/decryption functionality) is
carried out within a given time interval – in effect, within a given deadline. In order to check
this, we shall design our driver so that it has a kernel timer that will expire in the given
time interval; the driver will check that the functionality does indeed complete within this
time constraint!

We shall evolve a series of sed drivers and their user space counterparts (apps):

The first driver – the sed1 driver and user mode app (ch5/sed1) – will perform
what we just described: the demo user mode app will employ ioctl system calls
to interface with the driver and get the encrypt/decrypt message functionality
going. The driver will focus on a kernel timer that we will set up to expire by the
given deadline. If it does expire, we deem the operation to have failed; if not, the
timer is canceled and the operation is a success.
The second version, sed2 (ch5/sed2), will do the same as sed1, except that the
actual encrypt/decrypt message functionality here will be carried out in the
context of a separately created kernel thread! This changes the design of the
project.
The third version, sed3 (ch5/sed3), will again do the same as sed1 and sed2,
except that this time the actual encrypt/decrypt message functionality will be
carried out by a kernel workqueue!

Now that you have learned how to perform delays (both atomic and blocking) and capture
timestamps, let's learn how to set up and use kernel timers.

Setting up and using kernel timers
A timer provides software with a means of being asynchronously notified when a
designated amount of time has passed. All kinds of software, both in user and kernel space,
require timers; this commonly includes network protocol implementations, block layer
code, device drivers, and various kernel subsystems. This timer provides a means of
asynchronous notification, thus allowing the driver to execute work in parallel with the
running timer. An important question that arises is, how will I know when the timer expires? In
user space apps, typically, the kernel sends a signal to the relevant process (the signal is
typically SIGALRM).

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[250]

In kernel space, it's a bit nuanced. As you will know from our discussion on top and bottom
halves for hardware interrupts (see Chapter 4, Handling Hardware Interrupts,
the Understanding and using top and bottom halves section), after the timer interrupt's top half
(or ISR) completes, the kernel will ensure it runs the timer interrupt bottom half or timer
softirq (as we showed in the table in Chapter 4, Handling Hardware Interrupts
section Available softirqs and what they are for). This is a very high priority softirq
called TIMER_SOFTIRQ. This softirq is what consumes expired timers! In effect – and this is
very important to understand – your timer's "callback" function – the function that will run
when the timer expires – is run by the timer softirq and thus runs in atomic (interrupt) context.
Thus, it's limited in what it can and cannot do (again, this was explained in detail in Chapter
4, Handling Hardware Interrupts).

In the following section, you will learn how to set up and use a kernel timer.

Using kernel timers
In order to use a kernel timer, you must follow a few steps. Here's what to do in a nutshell
(we'll discuss this in more detail afterward):

Initialize the timer metadata structure (struct timer_list) with the1.
timer_setup() macro. The key items that get initialized here are as follows:

The time to expire by (that value that jiffies should reach for the
timer to expire)
The function to invoke when the timer expires – in effect, the timer
"callback" function

Write the code for your timer callback routine.2.
When appropriate, "arm" the timer – that is, have it start – by invoking the3.
add_timer() (or mod_timer()) function.
When the timer times out (expires), the OS will automatically invoke your timer's4.
callback function (the one you set up in step 2); remember, it will be running in
the timer softirq or an atomic or interrupt context.
(Optional) Timers are not cyclic, they are one-time by default. To have your timer run5.
again, you will have to invoke the mod_timer() API; this is how you can set up
an interval timer – one that times out at a given fixed time interval. If you don't
perform this step, your timer will be a one-shot timer - it will count down and
expire exactly once.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[251]

When you are done, delete the timer with del_timer[_sync](); this can also6.
be used to cancel the timeout. It returns a value denoting whether a pending
timer has been deactivated or not; that is, it returns 1 for an active timer or 0 for
an inactive timer being canceled.

The timer_list data structure is the one that's relevant to our work here; within it, the
relevant members (the module/driver authors) are shown:

// include/linux/timer.h
struct timer_list {[...]
 unsigned long expires;
 void (*function)(struct timer_list *);
 u32 flags;
[...] };

Use the timer_setup() macro to initialize it:

timer_setup(timer, callback, flags);

The parameters of timer_setup() are as follows:

@timer: The pointer to the timer_list data structure (this should be allocated
memory first; also, prefixing the formal parameter name with an @ is a common
convention).
@callback: The pointer to the callback function. This is the function that the OS
invokes (in the softirq context) when the timer expires. Its signature is void
(*function)(struct timer_list *);. The parameter you receive in the
callback function is the pointer to the timer_list data structure. So, how can
we pass and access some arbitrary data within our timer callback? We'll answer
this question shortly.
@flags: These are the timer flags. We typically pass this as 0 (implying no
special behavior). The flags you can specify
are TIMER_DEFERRABLE, TIMER_PINNED, and TIMER_IRQSAFE. Let's look at
both in the kernel source code:

// include/linux/timer.h
/**
 * @TIMER_DEFERRABLE: A deferrable timer will work normally when
the
 * system is busy, but will not cause a CPU to come out of idle
just
 * to service it; instead, the timer will be serviced when the CPU
 * eventually wakes up with a subsequent non-deferrable timer.
 [...]

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[252]

 * @TIMER_PINNED: A pinned timer will not be affected by any timer
 * placement heuristics (like, NOHZ) and will always expire on the
CPU
 * on which the timer was enqueued.

Using the TIMER_DEFERRABLE flag is useful when power consumption must be watched
(such as on a battery-backed device). The third flag, TIMER_IRQSAFE, is special-purpose
only; avoid using it.

Next, use the add_timer() API to arm, or start, the timer. Once called, the timer is "live"
and starts counting down:

void add_timer(struct timer_list *timer);

Its parameter is the pointer to the timer_list structure that you just initialized (via the
timer_setup() macro).

Our simple kernel timer module – code view 1
Without further ado, let's dive into the code of a simple kernel timer, written using the
Loadable Kernel Module (LKM) framework (this can be found at ch5/timer_simple). As
with most drivers, we keep a context or private data structure containing the information
required while running; here, we call it st_ctx. We instantiate it as the ctx variable. We
also specify the time to expire (as 420 ms) in a global named exp_ms:

// ch5/timer_simple/timer_simple.c
#include <linux/timer.h>
[...]
static struct st_ctx {
 struct timer_list tmr;
 int data;
} ctx;
static unsigned long exp_ms = 420;

Now, let's check out the first portion of our init code:

static int __init timer_simple_init(void)
{
 ctx.data = INITIAL_VALUE;

 /* Initialize our kernel timer */
 ctx.tmr.expires = jiffies + msecs_to_jiffies(exp_ms);
 ctx.tmr.flags = 0;
 timer_setup(&ctx.tmr, ding, 0);

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[253]

This is pretty straightforward. First, we initialize the ctx data structure, setting a
data member to the value 3. The one key point here is that the timer_list structure is
within our ctx structure, so we must initialize it. Now, setting the timer callback function
(the function parameter) and the flags parameter values is simple; what about setting
the time to expire? You must set the timer_list.expires member to the value that the
jiffies variable (macro, actually) in the kernel must reach; at that point, the timer will
expire! So, we prime it to have the timer expire 420 milliseconds in the future by adding the
current value of jiffies to the jiffies value that the 420 ms elapsed time will take, like this:

ctx.tmr.expires = jiffies + msecs_to_jiffies(exp_ms);

The msecs_to_jiffies() convenience routine helps us out here as it converts the
millisecond value that's passed to jiffies. Adding this result to the current value of
jiffies will give us the value that jiffies will be in the future, in 420 ms from now,
which is when we want our kernel timer to expire.

This code is an inline function
in include/linux/jiffies.h:msecs_to_jiffies(); the comments
help us understand how it works. In a similar fashion, the kernel contains
the usecs_to_jiffies(), nsecs_to_jiffies(), timeval_to_jiffie
s(), and jiffies_to_timeval() (inline) function helper routines.

The next portion of the init code is as follows:

 pr_info("timer set to expire in %ld ms\n", exp_ms);
 add_timer(&ctx.tmr); /* Arm it; let's get going! */
 return 0; /* success */
}

As we can see, by invoking the add_timer() API, we have armed (start) our kernel timer.
It's now live and counting down... in (approximately) 420 ms, it will expire. (Why
approximately? As you saw in the Let's try it – how long do delays and sleeps really
take? section, delay and sleep APIs aren't all that precise. In fact, a suggested exercise for
you to work on later is to test the accuracy of the timeout; you can find this in
the Questions/kernel_timer_check section. Also, in a sample solution for this exercise, we will
show how using the time_after() macro is a good idea; it performs a validity check to
ensure that the second timestamp is actually later than the first. Similar macros can be
found in include/linux/jiffies.h; see the comment preceding this line:
include/linux/jiffies.h:#define time_after(a,b)).

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[254]

Our simple kernel timer module – code view 2
add_timer() started our kernel timer. As you just saw, it will soon expire. Internally, as
we mentioned earlier, the kernel's timer softirq will run our timer's callback function. In the
preceding section, we initialized the callback function to the ding() function
(ha, onomatopoeia – a word that suggests the sound it describes – in action!) via the
timer_setup() API. Hence, this code will run when the timer expires:

static void ding(struct timer_list *timer)
{
 struct st_ctx *priv = from_timer(priv, timer, tmr);
 /* from_timer() is in fact a wrapper around the well known
 * container_of() macro! This allows us to retrieve access to our
 * 'parent' driver context structure */
 pr_debug("timed out... data=%d\n", priv->data--);
 PRINT_CTX();

 /* until countdown done, fire it again! */
 if (priv->data)
 mod_timer(&priv->tmr, jiffies + msecs_to_jiffies(exp_ms));
}

There are a few things to keep in mind regarding this function:

The timer callback handler code (ding() here) runs in atomic (interrupt, softirq)
context; thus, you aren't allowed to invoke any perform any blocking APIs,
memory allocation other than with the GFP_ATOMIC flag, or any kind of data
transfer between kernel and user space (we covered this in detail in the previous
chapter in the Interrupt context guidelines – what to do and what not to do section).
The callback function receives, as a parameter, the pointer to the timer_list
structure. Since we have (very deliberately) kept struct timer_list within
our context or private data structure, we can usefully employ the from_timer()
macro to retrieve the pointer to our private structure; that is, struct st_ctx).
The first line of code shown previous does this. How does this work? Let's look
at its implementation:

 // include/linux/timer.h
 #define from_timer(var, callback_timer, timer_fieldname) \
 container_of(callback_timer, typeof(*var),
timer_fieldname)

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[255]

It's really a wrapper over the container_of() macro!

We then print and decrement our data value.
We then issue our PRINT_CTX() macro (recall that it's defined in our
convenient.h header file). It will show that we're running in softirq context.
Next, as long as our data member is positive, we force another timeout (of the
same period) by invoking the mod_timer() API:

int mod_timer(struct timer_list *timer, unsigned long expires);

As you can see, with mod_timer(), when the timer triggers again is completely up to you;
it's considered an efficient way of updating a timer's expiry date. By using mod_timer(),
you can even arm an inactive timer (the job that add_timer() does); in this case, the return
value is 0, else it's 1 (implying that we've modified an existing active timer).

Our simple kernel timer module – running it
Now, let's test our kernel timer module. On our x86_64 Ubuntu VM, we will use our lkm
convenience script to load up the kernel module. The following screenshot shows a partial
view of this and the kernel log:

Figure 5.2 – A partial screenshot of running our timer_simple.ko kernel module

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[256]

Study the dmesg (kernel log) output shown here. Since we've set the initial value of our
private structure's data member to 3, the kernel timer expires three times (just as our logic
demands). Check out the timestamps in the left-most column; you can see that the second
timer expiry occurred at 4234.289334 (sec.us) and the third at 4234.737346; a quick
subtraction reveals that the time difference is 448,012 microseconds; that is, about 448
milliseconds. This is reasonable since we asked for a 420 ms timeout (its a bit over that; the
overheads of the printks do matter as well).

The PRINT_CTX() macro's output is revealing as well; let's look at the second one shown in
the preceding screenshot:

[4234.290177] timer_simple:ding(): 001) [swapper/1]:0 | ..s1 /*
ding() */

This shows that (as explained in detail in Chapter 4, Handling Hardware Interrupts) the code
ran on CPU 1 (the 001)) in softirq context (s in ..s1). Furthermore, the process context
that got interrupted – by the timer interrupt and softirq – is the swapper/1 kernel thread;
this is the CPU idle thread running on CPU 1 when it's idle. This makes sense and is quite
typical on an idle or lightly loaded system. The system (or at least CPU 1) was idle when
the timer interrupt was initiated and a subsequent softirq came along and ran our timer
callback.

sed1 – implementing timeouts with our demo
sed1 driver
In this section, we'll write a bit of a more interesting driver (the code's for this can be found
at ch5/sed1/sed1_driver). We'll design it so that it encrypts and/or decrypts a given
message (very trivially, of course). The basic idea is that a user mode app (this can be found
in ch5/userapp_sed) serves as its user interface. When run, it opens our misc character
driver's device file (/dev/sed1_drv) and issues an ioctl(2) system call upon it.

We have provided material online to help you understand how to
interface a kernel module or device driver to a user space process via
several common methods: via procfs, sysfs, debugfs, netlink sockets, and
the ioctl() system call (https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Learn-
Linux- ​Kernel- ​Development/ ​blob/ ​master/ ​User_ ​kernel_ ​communication_
pathways. ​pdf)!

https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/blob/master/User_kernel_communication_pathways.pdf

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[257]

The ioctl() call passes a data structure that encapsulates the data being passed, its length,
the operation (or transform) to perform upon it, and a timed_out field (to figure out if it
failed due to it missing its deadline). The valid ops are as follows:

Encrypt: XF_ENCRYPT
Decrypt: XF_DECRYPT

Due to lack of space, we don't intend to show the code in great detail here – after all, having
read so much of this book, you're now in a good position to browse and try and understand
the code on your own! Nevertheless, certain key details relevant to this section will be
shown.

Let's take a look at its overall design:

Our sed1 driver (ch5/sed1/sed1_driver/sed1_drv.c) is really a pseudo
driver, in the sense that it doesn't operate on any peripheral hardware controller
or chip but on memory; nevertheless, it's a full-fledged misc class character
device driver.
It registers itself as a misc device; in the process, a device node is auto-created by
the kernel (here, we will call it /dev/sed1_drv).
We arrange for it to have a driver "context" structure (struct stMyCtx)
containing key members that it uses throughout; one of them is a struct
timer_list structure for a kernel timer, which we initialize in the init code
path (with the timer_setup() API).
A user space app (ch5/sed1/userapp_sed/userapp_sed1.c) opens the
device file of our sed1 driver (it's passed as a parameter to it, along with the
message to encrypt). It invokes an ioctl(2) system call – the command being to
encrypt – and the arg parameter, which is a pointer to a duly populated
structure containing all the required information (including the message payload
to encrypt). Let's take a look at it in brief:

​ kd->data_xform = XF_ENCRYPT;
 ioctl(fd, IOCTL_LLKD_SED_IOC_ENCRYPT_MSG, kd);

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[258]

Our sed1 driver's ioctl method takes over. After performing validity checks, it
copies the metadata structure (via the usual copy_from_user()) and fires off
our process_it() function, which then invokes our
encrypt_decrypt_payload() routine.
encrypt_decrypt_payload() is the key routine here. It does the following:

Starts our kernel timer (with the mod_timer() API), setting it to
expire in TIMER_EXPIRE_MS milliseconds from now (here, we've
set TIMER_EXPIRE_MS to 1).
Grabs a timestamp, t1 = ktime_get_real_ns();.
Kicks off the actual work – it's either an encrypt or decrypt
operation (we've kept it very simplistic: a mere XOR operation
followed by an increment for each byte of the payload; the reverse
for decryption).
As soon as the work's complete, do two things: grab a second
timestamp, t2 = ktime_get_real_ns();, and cancel the kernel
timer (with the del_timer() API).
Show the time taken to complete (via our SHOW_DELTA() macro).

The user space app then sleeps for 1 second (to gather itself) and runs
the ioctl decryption, resulting in our driver decrypting the message.
Finally, it terminates.

The following is the relevant code from the sed1 driver:

// ch5/sed1/sed1_driver/sed1_drv.c
[...]
static void encrypt_decrypt_payload(int work, struct sed_ds *kd, struct
sed_ds *kdret)
{
 int i;
 ktime_t t1, t2; // a s64 qty
 struct stMyCtx *priv = gpriv;
 [...]
 /* Start - the timer; set it to expire in TIMER_EXPIRE_MS ms */
 mod_timer(&priv->timr, jiffies +
msecs_to_jiffies(TIMER_EXPIRE_MS));
 t1 = ktime_get_real_ns();

 // perform the actual processing on the payload
 memcpy(kdret, kd, sizeof(struct sed_ds));
 if (work == WORK_IS_ENCRYPT) {
 for (i = 0; i < kd->len; i++) {
 kdret->data[i] ^= CRYPT_OFFSET;

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[259]

 kdret->data[i] += CRYPT_OFFSET;
 }
 } else if (work == WORK_IS_DECRYPT) {
 for (i = 0; i < kd->len; i++) {
 kdret->data[i] -= CRYPT_OFFSET;
 kdret->data[i] ^= CRYPT_OFFSET;
 }
 }
 kdret->len = kd->len;
 // work done!
 [... // code to miss the deadline here! (explained below) ...]
 t2 = ktime_get_real_ns();

 // work done, cancel the timeout
 if (del_timer(&priv->timr) == 0)
 pr_debug("cancelled the timer while it's inactive!
(deadline missed?)\n");
 else
 pr_debug("processing complete, timeout cancelled\n");
 SHOW_DELTA(t2, t1);
}

That's pretty much it! To get a feel for how it works, let's see it in action. First, we must
insert our kernel driver (LKM):

$ sudo insmod ./sed1_drv.ko
$ dmesg
[29519.684832] misc sed1_drv: LLKD sed1_drv misc driver (major # 10)
registered, minor# = 55,
 dev node is /dev/sed1_drv
[29519.689403] sed1_drv:sed1_drv_init(): init done (make_it_fail is off)
[29519.690358] misc sed1_drv: loaded.
$

The following screenshot shows a sample run of it encrypting and decrypting (here, we
deliberately run the Address Sanitizer (ASan) debug version of this app; it might just
reveal bugs, so why not!):

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[260]

Figure 5.3 – Our sed1 mini-project encrypting and decrypting a message within the prescribed deadline

Everything went well here.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[261]

Let's take a look at the code of our kernel timer's callback function. Here, in our simple
sed1 driver, we merely have it do the following:

Atomically set an integer in our private structure, timed_out, to a
value of 1, indicating failure. As we copy the data structure back to our user
mode app (over ioctl()), this allows it to easily detect the failure and report/log
it (the details on using atomic operators and much more will be covered in the
last two chapters of this book).
Emit a printk to the kernel log (at the KERN_NOTICE level), indicating that we
timed out.
Invoke our PRINT_CTX() macro to show the context details.

The code for our kernel timer's callback function is as follows:

static void timesup(struct timer_list *timer)
{
 struct stMyCtx *priv = from_timer(priv, timer, timr);

 atomic_set(&priv->timed_out, 1);
 pr_notice("*** Timer expired! ***\n");
 PRINT_CTX();
}

Can we see this code – the timesup() timer expiry function – run? We arrange to do just
this next.

Deliberately missing the bus
The part I left out earlier is an interesting wrinkle: just before the second timestamp is
taken, we insert a bit of code to deliberately miss the sacrosanct deadline! How? It's really
very simple:

static void encrypt_decrypt_payload(int work, struct sed_ds *kd, struct
sed_ds *kdret)
{
 [...]
 // work done!
 if (make_it_fail == 1)
 msleep(TIMER_EXPIRE_MS + 1);
 t2 = ktime_get_real_ns();

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[262]

make_it_fail is a module parameter that is set to 0 by default; thus, only if you want to
live dangerously (yes, a bit exaggerated!) should you pass it as 1. Let's try it out and see our
kernel timer expire. The user mode app will detect this and report the failure as well:

Figure 5.4 – Our sed1 mini-project running with the make_it_fail module parameter set to 1, causing the deadline to be missed

This time, the deadline is exceeded before the timer is canceled, thus causing it to expire
and fire. Its timesup() callback function then runs (highlighted in the preceding
screenshot). I highly recommend that you take the time to read the code of the driver and
user mode app in detail and try it out on your own.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[263]

The schedule_timeout() function that we briefly used earlier is a great
example of using kernel timers! Its internal implementation can be seen
here: kernel/time/timer.c:schedule_timeout().

Additional information on timers can be found within the proc
filesystem; among the relevant (pseudo) files is /proc/[pid]/timers
(per-process POSIX timers) and the /proc/timer_list pseudofile (this
contains information about all pending high-resolution timers, as well as
all clock event sources. Note that the /proc/timer_stats pseudo-file
disappeared after kernel version 4.10). You can find out more information
about them on the man page about proc(5) at https:/ ​/​man7. ​org/ ​linux/
man-​pages/ ​man5/ ​proc. ​5. ​html.

In the next section, you will learn how to create and use kernel threads to your benefit.
Read on!

Creating and working with kernel threads
A thread is an execution path; it's purely concerned with executing a given function. That
function is its life and scope; once it returns from that function, it's dead. In user space, a
thread is an execution path within a process; processes can be single or multi-threaded.
Kernel threads are very similar to user mode threads in many respects. In kernel space, a
thread is also an execution path, except that it runs within the kernel VAS, with kernel
privilege. This means that kernels are also multi-threaded. A quick look at the output of
ps(1) (run with the Berkeley Software Distribution (BSD) style aux option switches)
shows us the kernel threads – they're the ones whose names are enclosed in square
brackets:

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME
COMMAND
root 1 0.0 0.5 167464 11548 ? Ss 06:20 0:00
/sbin/init splash 3
root 2 0.0 0.0 0 0 ? S 06:20 0:00
[kthreadd]
root 3 0.0 0.0 0 0 ? I< 06:20 0:00
[rcu_gp]
root 4 0.0 0.0 0 0 ? I< 06:20 0:00
[rcu_par_gp]
root 6 0.0 0.0 0 0 ? I< 06:20 0:00
[kworker/0:0H-kblockd]
root 9 0.0 0.0 0 0 ? I< 06:20 0:00

https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[264]

[mm_percpu_wq]
root 10 0.0 0.0 0 0 ? S 06:20 0:00
[ksoftirqd/0]
root 11 0.0 0.0 0 0 ? I 06:20 0:05
[rcu_sched]
root 12 0.0 0.0 0 0 ? S 06:20 0:00
[migration/0]
[...]
root 18 0.0 0.0 0 0 ? S 06:20 0:00
[ksoftirqd/1]
[...]

The majority of the kernel threads have been created for a definite purpose; often, they're
created at system startup and run forever (in an infinite loop). They put themselves into a
sleep state, and, when some work is required to be done, wake up, perform it, and go right
back to sleep. A good example is that of the ksoftirqd/n kernel thread(s) (there's typically
one per CPU core; that's what the n signifies – it's the core number); when the softirq load
gets too heavy, they're woken up by the kernel to help consume the pending softirqs and
thus help out (we discussed this in Chapter 4, Handling Hardware Interrupts, in
the Employing the ksoftirqd kernel threads section; in the preceding ps output, you can see
them on a dual-core VM; they have PID 10 and 18). Similarly, the kernel also employs
"kworker" worker threads, which are dynamic – they come and go as work is required (a
quick ps aux | grep kworker should reveal several of them).

Let's take a look at a few characteristics of kernel threads:

They always execute in kernel VAS, in kernel mode with kernel privilege.
They always run in process context (refer to the companion guide Linux Kernel
Programming - Chapter 6, Kernel Internals Essentials – Processes and Threads,
the Understanding process and interrupt contexts section) and they have a task
structure (and thus a PID and all other typical thread attributes, though their
credentials always are set to 0, implying root access).
They compete for the CPU resource with other threads (including user mode
threads) via the CPU scheduler; kernel threads (often abbreviated as kthreads)
do get a slight bump in priority.
Since they run purely in kernel VAS, they're blind to user VAS; thus, their
current->mm value is always NULL (indeed, it's a quick way to identify a
kthread).

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[265]

All kernel threads descend from the kernel thread named kthreadd, which has a
PID of 2. This is created by the kernel (technically, the first swapper/0 kthread
with a PID of 0) during early boot; you can verify this by doing pstree -t -p
2 (look up the man page on pstree(1) for usage details).
They have naming conventions. kthreads are named differently, though some
conventions are followed. Often, the name ends in /n; this signifies that it's a per-
CPU kernel thread. The number specifies the CPU core it's been affined to run
upon (we covered CPU affinity in the companion guide Linux Kernel
Programming - Chapter 11, The CPU Scheduler – Part 2, in the Understanding,
querying, and setting the CPU affinity mask section). Furthermore, kernel threads
are used for specific purposes and their name reflects that; for example, irq/%d-
%s (where %d is the PID and %s is the name) is a threaded interrupt handler
(covered in Chapter 4, Handling Hardware Interrupts). You can learn how to find
out the kthread name and about many practical uses of kthreads (and how to
tune them to reduce jitter) by reading the kernel documentation, Reducing OS
jitter due to per-cpu kthreads, at https:/ ​/​www. ​kernel. ​org/​doc/ ​Documentation/
kernel-​per- ​CPU- ​kthreads. ​txt.

The bit we're interested in is that the kernel modules and device drivers often need to run a
certain code path in the background, in parallel with other work that it and the kernel
routinely performs. Let's say you need to block upon an asynchronous event that's
occurring, or need to, upon some event, execute a user mode process from within the
kernel, which is time-consuming. The kernel thread is just the ticket here; thus, we shall
focus on how you, as a module author, can create and manage kernel threads.

Yes, you can execute a user mode process or app from within the kernel!
The kernel provides some user mode helper (umh) APIs to do so, with a
common one being call_usermode_helper(). You can view its
implementation
here: kernel/umh.c:int call_usermodehelper(const char
*path, char **argv, char **envp, int wait). Be careful, though;
you are not meant to abuse this API to invoke just any app from the kernel
– that's simply bad design! There are very few actual use cases of using
this API in the kernel; use cscope(1) to check it out.

Great; with that, let's learn how to create and work with a kernel thread.

https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[266]

A simple demo – creating a kernel thread
The primary API for creating kernel threads (that's exposed to us module/driver authors) is
kthread_create(); it's a macro that invokes the kthread_create_on_node() API. The
fact is, calling kthread_create() alone isn't sufficient to have your kernel thread do
anything useful; this is because, while this macro does create the kernel thread, you need
to make it a candidate for the scheduler by setting it's stated to running and waking it up.
This can be done with the wake_up_process() API (once successful, it's enqueued onto a
CPU runqueue, which makes it schedulable so that it runs in the near future). The good
news is that the kthread_run() helper macro can be used to invoke both
kthread_create() and wake_up_process() in one go. Let's take a look at its
implementation in the kernel:

// include/linux/kthread.h
/**
 * kthread_run - create and wake a thread.
 * @threadfn: the function to run until signal_pending(current).
 * @data: data ptr for @threadfn.
 * @namefmt: printf-style name for the thread.
 *
 * Description: Convenient wrapper for kthread_create() followed by
 * wake_up_process(). Returns the kthread or ERR_PTR(-ENOMEM).
 */
#define kthread_run(threadfn, data, namefmt, ...) \
({ \
 struct task_struct *__k \
 = kthread_create(threadfn, data, namefmt, ## __VA_ARGS__); \
 if (!IS_ERR(__k)) \
 wake_up_process(__k); \
 __k; \
})

The comments in the preceding code snippet make the parameters and return value
of kthread_run() clear.

 To demonstrate how to create and use a kernel thread, we will write a kernel module
called kthread_simple. The following is the relevant code of its init method:

// ch5/kthread_simple/kthread_simple.c
static int kthread_simple_init(void)
{ [...]
 gkthrd_ts = kthread_run(simple_kthread, NULL, "llkd/%s", KTHREAD_NAME);
 if (IS_ERR(gkthrd_ts)) {
 ret = PTR_ERR(gkthrd_ts); // it's usually -ENOMEM
 pr_err("kthread creation failed (%d)\n", ret);
 return ret;

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[267]

 }
 get_task_struct(gkthrd_ts); // inc refcnt, marking the task struct as
in use
 [...]

The first parameter to kthread_run() is the new kthread's lifeblood – its function! Here,
we don't intend to pass any data to our newborn kthread, which is why the second
parameter is NULL. The remaining parameters are the printf-style format string specifying
its name. Once successful, it returns the pointer to the new kthread's task structure (we
covered the task structures in some detail in the companion guide Linux Kernel
Programming - Chapter 6, Kernel Internals Essentials – Processes and Threads, in
the Understanding and accessing the kernel task structure section). Now, the
get_task_struct() inline function is important – it increments the reference count of the
task structure passed to it. This marks the task as being in use (later, in the cleanup code,
we will issue the kthread_stop() helper routine; it will perform the converse operation,
thus decrementing (and ultimately freeing up) the task structure's reference count).

Now, let's look at our kernel thread itself (we'll only show the relevant code snippets):

static int simple_kthread(void *arg)
{
 PRINT_CTX();
 if (!current->mm)
 pr_info("mm field NULL, we are a kernel thread!\n");

The moment kthread_run() succeeds in creating the kernel thread, it will begin running
its code in parallel with the rest of the system: it's now a schedulable thread! Our
PRINT_CTX() macro reveals that it runs in process context and is indeed a kernel thread.
(We have mimicked the tradition of enclosing its name in square brackets to show just this.
The check to verify that the current mm pointer is NULL confirms the same.) You can see the
output in Figure 5.5. All the code in your kernel thread routine is going to be running in
the process context; hence, you can perform blocking operations (unlike with interrupt
context).

Next, by default, the kernel thread runs with root ownership and all signals are masked.
However, as a simple test case, we can turn on a couple of signals via the allow_signal()
helper routine. After that, we simply loop (we'll get to the kthread_should_stop()
routine shortly); in the loop body, we put ourselves to sleep by setting our task's state to
TASK_INTERRUPTIBLE (implying that the sleep can be interrupted by signals) and
invoking schedule():

 allow_signal(SIGINT);
 allow_signal(SIGQUIT);

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[268]

 while (!kthread_should_stop()) {
 pr_info("FYI, I, kernel thread PID %d, am going to sleep now...\n",
 current->pid);
 set_current_state(TASK_INTERRUPTIBLE);
 schedule(); // yield the processor, go to sleep...
 /* Aaaaaand we're back! Here, it's typically due to either the
 * SIGINT or SIGQUIT signal hitting us! */
 if (signal_pending(current))
 break;
 }

Thus, only when we're awoken– which will happen when you send the kernel thread either
the SIGINT or SIGQUIT signal – will we resume execution. When this occurs, we break out
of the loop (notice how we first verify that this is indeed the case with the
signal_pending() helper routine!). Now, our kthread resumes execution outside the
loop, only to (deliberately, and quite dramatically) die:

 set_current_state(TASK_RUNNING);
 pr_info("FYI, I, kernel thread PID %d, have been rudely awoken; I
shall"
 " now exit... Good day Sir!\n", current->pid);
 return 0;
}

The cleanup code of the kernel module is as follows:

static void kthread_simple_exit(void)
{
 kthread_stop(gkthrd_ts); /* waits for our kthread to terminate;
 * it also internally invokes
 * the put_task_struct() to decrement task's
 * reference count
 */
 pr_info("kthread stopped, and LKM removed.\n");
}

Here, within the cleanup code path, you're expected to call kthread_stop(), which
performs the necessary cleanup. Internally, it actually waits for the kthread to die (via the
wait_for_completion() routine). So, if you call the rmmod without having killed the
kthread by sending it the SIGINT or SIGQUIT signal, the rmmod process will appear to hang
here; it's (the rmmod process, that is) waiting (well, kthread_stop() is really the one
waiting) for the kthread to die! This is why, if the kthread hasn't been signaled yet, this
could cause a problem.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[269]

There should be a better way to deal with stopping a kernel thread than sending it signals
from user space. Indeed there is: the correct way is to employ the
kthread_should_stop() routine as the (inverse) condition of the while loop it runs, so
this is exactly what we'll do! In the preceding code, we have the following:

while (!kthread_should_stop()) {

The kthread_should_stop() routine returns a Boolean value that's true if the kthread
should stop (terminate) now! Calling kthread_stop() in the cleanup code path will cause
kthread_should_stop() to return true, thus causing our kthread to break out of the
while loop and terminate via a simple return 0;. This value (0) is passed back to
kthread_stop(). Due to this, the kernel module is successfully unloaded, even if no signal
is ever sent to our kernel thread. We will leave testing this case as a simple exercise for you!

Note that the return value of kthread_stop() can be useful: it's an integer and the result
of the thread function that ran – in effect, it states whether your kthread succeeded (0
returned) in its work or not. It will be the value -EINTR if your kthread was never woken
up.

Running the kthread_simple kernel thread demo
Now, let's try it out (ch5/kthread_simple)! We can perform module insertion
via insmod(8); the module gets inserted into the kernel as planned. The kernel log shown
in the following screenshot, as well as a quick ps, proves that our brand new kernel thread
has indeed been created. Also, as you can see from the code
(ch5/kthread_simple/kthread_simple.c), our kthread puts itself to sleep (by setting
its state to TASK_INTERRUPTIBLE and then calling schedule()):

Figure 5.5 – A partial screenshot showing that our kernel thread is born, alive – and, well, asleep

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[270]

Quickly running ps(1) grep for our kernel thread by name shows that our kthread is
alive and well (and asleep):

$ ps -e |grep kt_simple
 11372 ? 00:00:00 llkd/kt_simple
$

Let's shake things up a bit and send the SIGQUIT signal to our kthread. This has it wake up
(since we've set its signal mask to allow the SIGINT and SIGQUIT signals), set its state to
TASK_RUNNING, and then, well, simply exit. We then use rmmod(8) to remove the kernel
module, as shown in the following screenshot:

Figure 5.6 – A partial screenshot showing our kernel thread waking up and the module successfully unloaded

Now that you have understood how to create and work with kernel threads, let's move on
and design and implement the second version of our sed driver.

The sed2 driver – design and implementation
In this section (as mentioned in the The "sed" drivers – to demo kernel timers, kthreads, and
workqueues section), we will write the next evolution of the sed1 driver, called sed2.

sed2 – the design
Our sed v2 (sed2; code: ch5/sed2/) mini-project is very similar to our sed1 project. The
key difference is that this time, we'll carry out the "work" via a kernel thread created by the
driver for just this purpose. The key differences between this version and the previous one
are as follows:

There's just one global shared memory buffer for holding the metadata, along
with the payload; that is, the message to encrypt/decrypt. This is the struct
sed_ds->shmem member within our driver context structure, struct stMyCtx.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[271]

The work of encryption/decryption is now performed within a kernel thread
(that this driver spawns); we keep the kernel thread asleep. Only when work
arises does the driver wake up the kthread and have it consume (execute) the
work.
We now run the kernel timer within the kthread's context and show if it expires
prematurely (indicating that the deadline wasn't met).
A quick test reveals that eliminating the several pr_debug() printks within the
kernel thread's critical section goes a long way toward reducing the time taken to
complete the work! (You can always change the Makefile's EXTRA_CFLAGS
variable to undefine the DEBUG symbol if you wish to eliminate this overhead (by
using EXTRA_CFLAGS += -UDEBUG)!). Hence, here, the deadline is longer (10
ms).

So, in a nutshell, the whole idea here is to primarily demonstrate using a custom kernel
thread, along with a kernel timer, to timeout an operation. A key point to understand that
changes the overall design (especially the way that the user space app interacts with our
sed2 driver) is that since we're running the work in the context of a kernel thread, it's not
the same context as that of the process that ioctl() is issued to. Due to this, it's very
important to realize the following things:

You cannot simply transfer data from the kernel thread's process context to the
user space process – they're completely different (they run in different virtual
address spaces: the user mode process has its own complete VAS and PID, and
so on; the kernel thread literally lives within the kernel VAS with its own PID
and kernel mode stack). Due to this, using the copy_{from|to}_user() (and
similar) routine is out of question for communicating from the kthread to the
user mode app.
The potential for dangerous races is significant; the kernel thread runs
asynchronously with respect to the user process context; thus, we can end up
creating concurrency-related bugs if we're not careful. This is the entire reason
for the last two chapters of this book, where we'll cover kernel synchronization,
locking (and related) concepts, and technologies. For now, bear with us – we
keep things as simple as possible by using some simple polling tricks in place of
proper synchronization.

We have four operations inside our sed2 project:

Encrypt the message (this also gets the message from user space into the driver;
thus, this has to be done first).
Decrypt the message.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[272]

Retrieve the message (sent from the driver to the user space app).
Destroy the message (in effect, it's reset – the memory and metadata are wiped
clean within the driver).

It's important to realize that due to the potential for races, we cannot simply transfer data
directly from the kthread to the user space app. Due to this, we must do the following:

We must carry out the retrieve and destroy operations in the process context of
the user space process by issuing the ioctl() system calls.
We must carry out the encrypt and decrypt operations in the process context of
our kernel thread, asynchronously with respect to the user space app (we run it
within a kernel thread, not because we have to but because we want to; this is,
after all, the point of this topic!).

This design can be summarized by a simple ASCII-art diagram:

Figure 5.7 – The high-level design of our sed2 mini-project

Right, let's now check out the relevant code implementation for sed2.

sed2 driver – code implementation
In terms of code, the ioctl() method's code within the sed2 driver for the encrypt
operation is as follows (for clarity, we won't show all the error checking code here; we will
show only the most relevant parts). You can find the full code at ch5/sed2/:

// ch5/sed2/sed2_driver/sed2_drv.c
[...]
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)
static long ioctl_miscdrv(struct file *filp, unsigned int cmd, unsigned

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[273]

long arg)
#else
static int ioctl_miscdrv(struct inode *ino, struct file *filp, unsigned int
cmd, unsigned long arg)
#endif
{
 struct stMyCtx *priv = gpriv;

[...]
switch (cmd) {
 case IOCTL_LLKD_SED_IOC_ENCRYPT_MSG: /* kthread: encrypts the msg
passed in */
 [...]
 if (atomic_read(&priv->msg_state) == XF_ENCRYPT) { // already
encrypted?
 pr_notice("encrypt op: message is currently encrypted; aborting
op...\n");
 return -EBADRQC; /* 'Invalid request code' */
 }
 if (copy_from_user(priv->kdata, (struct sed_ds *)arg, sizeof(struct
sed_ds))) {
 [...]

 POLL_ON_WORK_DONE(1);
 /* Wake up our kernel thread and have it encrypt the message ! */
 if (!wake_up_process(priv->kthrd_work))
 pr_warn("worker kthread already running when awoken?\n");
 [...]

The driver, after performing several validity checks in its ioctl() method, gets down to
work: for the encryption operation, we check if the current payload is already encrypted
(obviously, we have a state member within our context structure that is updated to hold
this information; that is, priv->msg_state). If everything is fine, it copies in the message
(along with the required metadata in struct sed_ds) from the user space app. Then, it
wakes up our kernel thread (via the wake_up_process() API; the parameter is the pointer to
its task structure, which is the return value from the kthread_create() API). This causes
the kernel thread to resume execution!

In the init code, we created the kthread with the kthread_create()
API (and not the kthread_run() macro) as we do not want the kthread
to run immediately! Instead, we prefer to keep it asleep, only awakening it
when work is required of it. This is the typical approach we should follow
when employing a worker thread (the so-called manager-worker model).

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[274]

The following code within our init method creates the kernel thread:

static int __init sed2_drv_init(void)
{
 [...]
 gpriv->kthrd_work = kthread_create(worker_kthread, NULL, "%s/%s",
DRVNAME, KTHREAD_NAME);
 if (IS_ERR(gpriv->kthrd_work)) {
 ret = PTR_ERR(gpriv->kthrd_work); // it's usually -ENOMEM
 dev_err(dev, "kthread creation failed (%d)\n", ret);
 return ret;
 }
 get_task_struct(gpriv->kthrd_work); // inc refcnt, marking the task
struct as in use
 pr_info("worker kthread created... (PID %d)\n",
task_pid_nr(gpriv->kthrd_work));
 [...]

After this, the timer is initialized (via the timer_setup() API). The (truncated) code of our
worker thread looks as follows:

static int worker_kthread(void *arg)
{
 struct stMyCtx *priv = gpriv;

 while (!kthread_should_stop()) {
 /* Start - the timer; set it to expire in TIMER_EXPIRE_MS ms */
 if (mod_timer(&priv->timr, jiffies +
msecs_to_jiffies(TIMER_EXPIRE_MS)))
 pr_alert("timer already active?\n");
 priv->t1 = ktime_get_real_ns();

 /*--------------- Critical section begins -------------------------
-*/
 atomic_set(&priv->work_done, 0);
 switch (priv->kdata->data_xform) {
 [...]
 case XF_ENCRYPT:
 pr_debug("data transform type: XF_ENCRYPT\n");
 encrypt_decrypt_payload(WORK_IS_ENCRYPT, priv->kdata);
 atomic_set(&priv->msg_state, XF_ENCRYPT);
 break;
 case XF_DECRYPT:
 pr_debug("data transform type: XF_DECRYPT\n");
 encrypt_decrypt_payload(WORK_IS_DECRYPT, priv->kdata);
 atomic_set(&priv->msg_state, XF_DECRYPT);
 break;
 [...]

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[275]

 priv->t2 = ktime_get_real_ns();
 // work done, cancel the timeout
 if (del_timer(&priv->timr) == 0)
 [...]

Here, you can see the timer being started (mod_timer()), the actual encrypt/decrypt
functions being invoked as required, the timestamps being captured, and then the kernel
timer being canceled. This is what happened in sed1 except that, this time (sed2), the work
happens in the context of our kernel thread! The kernel thread function then makes itself go
to sleep while yielding the processor by (as was covered in the companion guide Linux
Kernel Programming - Chapter 10, The CPU Scheduler – Part 1, and Chapter 11, The CPU
Scheduler – Part 2) setting the task state to a sleep state (TASK_INTERRUPTIBLE) and
invoking schedule().

Hang on a minute – within the ioctl() method, did you notice the call to
the POLL_ON_WORK_DONE(1); macro just before the kernel thread was woken up? Take a
look at the following code:

 [...]
 POLL_ON_WORK_DONE(1);
 /* Wake up our kernel thread
 * and have it encrypt the message !
 */
 if (!wake_up_process(priv->kthrd_work))
 pr_warn("worker kthread already running when awoken?\n");
 /*
 * Now, our kernel thread is doing the 'work';
 * it will either be done, or it will miss it's
 * deadline and fail. Attempting to lookup the payload
 * or do anything more here would be a
 * mistake, a race! Why? We're currently running in
 * the ioctl() process context; the kernel thread runs
 * in it's own process context! (If we must look it up,
 * then we really require a (mutex) lock; we shall
 * discuss locking in detail in the book's last two chapters.
 */
 break;

The poll is used to circumvent a possible race: what if one (user mode) thread invokes
ioctl() to, say, encrypt a given message, and simultaneously on another CPU core,
another user mode thread invokes ioctl() to, say, decrypt a given message? This will
cause concurrency issues! Again, the last two chapters of this book are devoted to
understanding and handling these; but here and now, what can we do? Let's implement a
poor man's synchronization solution: polling.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[276]

This is not ideal but will have to do. We'll make use of the fact that the driver sets an atomic
variable in the driver's context structure, named work_done, to 1 when the work is done;
its value is 0 otherwise. We poll for this within this macro:

/*
 * Is our kthread performing any ongoing work right now? poll...
 * Not ideal (but we'll live with it); ideally, use a lock (we cover
locking in
 * this book's last two chapters)
 */
#define POLL_ON_WORK_DONE(sleep_ms) do { \
 while (atomic_read(&priv->work_done) == 0) \
 msleep_interruptible(sleep_ms); \
} while (0)

To keep this code somewhat palatable, we aren't hogging the processor; if the work isn't
done (yet), we sleep for a millisecond (via the msleep_interruptible() API) and try
again.

So far, we've covered the relevant code for the encrypt and decrypt functionality of sed2
(both of which run in our worker kthread's context). Now, let's look at the remaining two
pieces of functionality – retrieving and destroying messages. These are carried out in the
original user space process context – the process (or thread) that issues the ioctl() system
calls. Here's the relevant code for them:

// ch5/sed2/sed2_driver/sed2_drv.c : ioctl() method
[...]
case IOCTL_LLKD_SED_IOC_RETRIEVE_MSG: /* ioctl: retrieves the encrypted msg
*/
 if (atomic_read(&priv->timed_out) == 1) {
 pr_debug("the encrypt op had timed out! returning -
ETIMEDOUT\n");
 return -ETIMEDOUT;
 }
 if (copy_to_user((struct sed_ds *)arg, (struct sed_ds
*)priv->kdata, sizeof(struct sed_ds))) {
 // [... error handling ...]
 break;
 case IOCTL_LLKD_SED_IOC_DESTROY_MSG: /* ioctl: destroys the msg */
 pr_debug("In ioctl 'destroy' cmd option\n");
 memset(priv->kdata, 0, sizeof(struct sed_ds));
 atomic_set(&priv->msg_state, 0);
 atomic_set(&priv->work_done, 1);
 atomic_set(&priv->timed_out, 0);

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[277]

 priv->t1 = priv->t2 = 0;
 break;
[...]

Now that you've seen the (relevant) sed2 code, let's try it out!

sed2 – trying it out
Let's take a look at a sample run of our sed2 mini project over a couple of screenshots;
ensure that you look at them carefully:

Figure 5.8 – Our sed2 mini-project showing off an interactive menu system. Here, a message has been successfully encrypted

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[278]

So, we have encrypted a message, but how do we view it? Simple: we use the menu! Select
option 2 to retrieve the (encrypted) message (it will be displayed for your leisurely perusal),
option 3 to decrypt it, option 2 once more to view it, and option 5 to see the kernel log –
quite useful! Some of these options are shown in the following screenshot:

Figure 5.9 – Our sed2 mini-project showing off an interactive menu system. Here, a message has been successfully encrypted

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[279]

As shown in the kernel log, our user mode app (userapp_sed2_dbg_asan) has opened the
device and issued the retrieve operation, followed by the encrypt operation a few seconds
later (the timestamps in the bottom-left corner of the preceding screenshot help you figure
this out). Then, the driver wakes up the kernel thread; you can see its printk output, as well
as the output of PRINT_CTX(), here:

[41178.885577] sed2_drv:worker_kthread(): 001) [sed2_drv/worker]:24117 |
...0 /* worker_kthread() */

The encrypt operation then completes (successfully and within the deadline; the timer is
canceled):

[41178.888875] sed2_drv:worker_kthread(): processing complete, timeout
cancelled

Similarly, other operations are carried out. We shall refrain from showing the user space
app's code here since it's a simple user mode "C" program. This time (unusually), it's an
interactive app with a simple menu (as shown in the screenshots); do check it out. I'll leave
it to you to read and understand the sed2 code in detail and try it out for yourself.

Querying and setting the scheduling
policy/priority of a kernel thread
In closing, how can you query and/or change the scheduling policy and (real-time) priority
of a kernel thread? The kernel provides APIs for this (the
sched_setscheduler_nocheck() API is often used within the kernel). As a practical
example, the kernel will require kernel threads for the purpose of servicing interrupts
– the threaded interrupt model, which we covered in Chapter 4, Handling Hardware
Interrupts, in the Internally implementing the threaded interrupt section).

It creates these threads (via kthread_create()) and changes their scheduling policy and
real-time priority via the sched_setscheduler_nocheck() API. We won't explicitly
cover their usage here as we covered this in the companion guide Linux Kernel Programming
- Chapter 11, The CPU Scheduler – Part 2. It's interesting:
the sched_setscheduler_nocheck() API is just a simple wrapper over the
underlying _sched_setscheduler() routine. Why? The _sched_setscheduler() API
isn't exported at all and is thus unavailable to module authors;
the sched_setscheduler_nocheck() wrapper is exported via the
EXPORT_SYMBOL_GPL() macro (implying that only GPL licensed code can actually make
use of it!).

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[280]

What about querying and/or changing the scheduling policy and (real-
time) priority of user space threads? The Pthreads library provides
wrapper APIs to do just this; the
pthread_[get|set]schedparam(3) pair can be used here since they're
wrappers around system calls such as sched_[get|set]scheduler(2)
and sched_[get|set]attr(2). They require root access and, for
security purposes, have the CAP_SYS_NICE capability bit set in the binary
executable file.

Though this book only covers kernel programming, I've mentioned this
here as it's a really powerful thing: in effect, the user space app
designer/developer has the ability to create and deploy application
threads perfectly suited to their purpose: real-time threads at differing
scheduling policies, real-time priorities between 1 and 99, non-RT threads
(with the base nice value of 0), and so on. Indiscriminately creating kernel
threads is frowned upon, and the reason is clear – every additional kernel
thread adds overhead, both in terms of memory and CPU cycles. When
you're in the design phase, pause and think: do you really require one or
more kernel threads? Or is there a better way of doing things?
Workqueues are often exactly that – a better way!

Now, let's look at workqueues!

Using kernel workqueues
A workqueue is an abstraction layer over the creation and management of kernel worker
threads. They help solve a crucial problem: directly working with kernel threads, especially
when several are involved, is not only difficult but can quite easily result in dangerous bugs
such as races (and thus the potential for deadlock), as well as poor thread management,
resulting in efficiency losses. Workqueues are bottom-half mechanisms that are employed
within the Linux kernel (along with tasklets and softirqs).

The modern workqueue implementation in the Linux kernel – called the concurrency
managed work queue (cmwq) – is really a pretty elaborate framework, with various
strategies for dynamically and efficiently provisioning kernel threads based on specific
requirements.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[281]

In this book, we prefer to focus on the usage of the kernel-global
workqueue rather than its internal design and implementation. If you'd
like to learn more about the internals, I recommend that you read the
"official" kernel documentation here: https:/ ​/​www. ​kernel. ​org/ ​doc/
Documentation/ ​core- ​api/ ​workqueue. ​rst. The Further reading section also
contains some useful resources.

The key characteristics of the workqueue are as follows:

The workqueue task(s) (callbacks) always execute in a preemptible process
context. This is obvious once you realize that they are executed by kernel
(worker) threads, which run in a preemptible process context.
By default, all interrupts are enabled and no locks are taken.
The aforementioned points imply that you can do lengthy, blocking, I/O-bound
work within your workqueue function(s) (this is diametrically opposite to an
atomic context such as a hardirq, tasklet, or softirq!).
Just as you learned about kernel threads, transferring data to and from user space
(via the typical copy_[to|from]_user() and similar routines) is not possible;
this is because your workqueue handler (function) executes within its own
process context – that of a kernel thread. As we know, kernel threads have no
user mapping.
The kernel workqueue framework maintains worker pools. These are literally
several kernel worker threads organized in differing ways according to their
needs. The kernel handles all the complexity of managing them, as well as
concurrency concerns. The following screenshot shows several workqueue kernel
worker threads (this was taken on my x86_64 Ubuntu 20.04 guest VM):

Figure 5.10 – Several kernel threads serving the kernel workqueue's bottom-half mechanism

https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[282]

As we mentioned in the Creating and working with kernel threads section, one way to figure
out the kthread's name and learn about the many practical uses of kthreads (and how to
tune them to reduce jitter) is by reading the relevant kernel documentation; that is, Reducing
OS jitter due to per-cpu kthreads (https:/ ​/ ​www. ​kernel. ​org/ ​doc/ ​Documentation/ ​kernel- ​per-
CPU-​kthreads.​txt).

In terms of how to use workqueues (and the other bottom-half
mechanisms), refer back to Chapter 4, Handling Hardware Interrupts,
the Hardirqs, tasklets, and threaded handlers – what to use when
section, especially the table there.

It's important to understand that the kernel has an always-ready default workqueue
available for use; it's known as the kernel-global workqueue or system workqueue. To avoid
stressing the system, it's highly recommended that you use it. We shall use the kernel-
global workqueue, enque our work task(s) on it, and have it consume our work.

You can even use and create other kinds of workqueues! The kernel provides the elaborate
cmwq framework, along with a set of APIs, to help you create specific types of workqueues.
We'll look at this in more detail in the next section.

The bare minimum workqueue internals
We don't go into too much depth about the internals of the workqueue here; in fact, we will
merely scratch the surface (as we mentioned previously, our purpose here is to only focus
on using the kernel-global workqueue).

It's always recommended that you use the default kernel-global (system) workqueue to
consume your asynchronous background work. If this is deemed to be insufficient, don't
worry – certain interfaces are exposed that let you create your workqueues. (Keep in mind
that doing so will increase stress on the system!) To allocate a new workqueue instance, you
can use the alloc_workqueue() API; this is the primary API that's used for creating
(allocating) workqueues (via the modern cmwq framework):

include/linux/workqueue.h
struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int
flags, int max_active, ...);

https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[283]

Note that it's exported via EXPORT_SYMBOL_GPL(), which means it's only available to
modules and drivers that use the GPL license. fmt (and the parameters following
max_active) specifies how to name the workqueue threads in the pool. The flags
parameter specifies a bitmask of special behavioral values or other characteristics, such as
the following:

Use the WQ_MEM_RECLAIM flag when the workqueue needs forward
progress guarantees under memory pressure.
Use the WQ_HIGHPRI flag when work items are to be serviced by a worker pool
of kthreads at an elevated priority level.
Use the WQ_SYSFS flag to make some of the workqueue details visible to user
space via sysfs (practically, look under /sys/devices/virtual/workqueue/).
Similarly, there are several other flags. Take a look at the official kernel
documentation for more details (https:/ ​/​www. ​kernel. ​org/ ​doc/ ​Documentation/
core-​api/ ​workqueue. ​rst; it provides some interesting coverage on reducing
"jitter" due to workqueue execution within the kernel).

The max_active parameter is used to specify the maximum number of kernel threads per
CPU that can be assigned to a work item.

Broadly speaking, there are two types of workqueues:

Single-threaded (ST) workqueues or ordered workqueues: Here, only one
thread can be active at any given point in time across the system. They can be
created with alloc_ordered_workqueue() (it's really just a wrapper
over alloc_workqueue() specifying the ordered flags with max_active set to
exactly 1).
Multi-threaded (MT) workqueues: This is the default option. The exact flags
specify the behavior; max_active specifies the maximum number of worker
kernel threads the work item can possibly have per CPU.

All workqueues can be created via the alloc_workqueue() API. The code for creating
them is as follows:

// kernel/workqueue.c
​int __init workqueue_init_early(void)
{
 [...]
 system_wq = alloc_workqueue("events", 0, 0);
 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
 system_long_wq = alloc_workqueue("events_long", 0, 0);
 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,

https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst
https://www.kernel.org/doc/Documentation/core-api/workqueue.rst

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[284]

WQ_UNBOUND_MAX_ACTIVE);
 system_freezable_wq = alloc_workqueue("events_freezable", WQ_FREEZABLE,
0);
 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
WQ_POWER_EFFICIENT, 0);
 system_freezable_power_efficient_wq =
alloc_workqueue("events_freezable_power_efficient",
 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 0);
[...]

This happens early in the boot process (literally in the early init kernel code path). The first
is highlighted in bold; this is the kernel-global workqueue or the system workqueue being
created. Its worker pool is named events. (The name of the kernel threads that belong to
this pool follow this naming convention and have the word events in their name; see
Figure 5.10 again. The same happens with kthreads belonging to other worker pools.)

The underlying framework has evolved a great deal; an earlier legacy workqueue
framework (prior to 2010) used to use the create_workqueue() and friends APIs;
however, these are now considered deprecated. The modern concurrency managed
workqueue (cmwq) framework (around 2010 onward) is, interestingly, backward
compatible with the old one. The following table summarizes the mapping of the older
workqueue APIs to the modern cmwq ones:

Legacy (old and deprecated) workqueue API Modern (cmwq) workqueue API
create_workqueue(name) alloc_workqueue(name,WQ_MEM_RECLAIM, 1)

create_singlethread_workqueue(na
me)

alloc_ordered_workqueue(name,
WQ_MEM_RECLAIM)

create_freezable_workqueue(name)
alloc_workqueue(name, WQ_FREEZABLE |
WQ_UNBOUND | WQ_MEM_RECLAIM, 1)

Table 5.3 – Mapping of the older workqueue APIs to the modern cmwq ones

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[285]

The following diagram summarizes (in a simple, conceptual manner) the kernel
workqueue subsystem:

Figure 5.11 – A simple conceptual view of the workqueue subsystem within the kernel

The kernel's workqueue framework dynamically maintains these worker pools (of kernel
threads); some, such as the events workqueue (corresponding to the kernel-global
workqueue) are general-purpose, while others are created and maintained for a specific
purpose (in terms of the names given to their kernel threads, such as block
I/O, kworker*blockd, memory control, kworker*mm_percpu_wq, device-specific ones
such as tpm, tpm_dev_wq, CPU frequency governor drivers, devfreq_wq, and so on).

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[286]

Note that the kernel workqueue subsystem maintains all these workqueues (and their
associated worker pools of kernel threads) automatically, elegantly, and efficiently.

So, how do you actually make use of the workqueue? The next section will show you how
to use the kernel-global workqueue. This will be followed by a demo kernel module that
clearly demonstrates its usage.

Using the kernel-global workqueue
In this section, we shall learn how exactly to use the kernel-global (also known as the
system or events workqueue, which is the default) workqueue. This typically involves
initializing the workqueue with your work task, having it consume your work, and finally,
performing cleanup.

Initializing the kernel-global workqueue for your task –
INIT_WORK()
Enqueuing work onto this workqueue is actually very easy: use the INIT_WORK() macro!
This macro takes two parameters:

#include <linux/workqueue.h>
INIT_WORK(struct work_struct *_work, work_func_t _func);

The work_struct structure is the workhorse structure for work queues (from the
module/driver author's point of view, at least); you are to allocate memory to it and pass
the pointer as the first parameter. The second parameter to INIT_WORK() is a pointer to the
workqueue callback function – the function that will be consumed by the worker thread(s)
of the workqueue! work_func_t is a typedef that specifies the signature for this function,
which is void (*work_func_t)(struct work_struct *work).

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[287]

Having your work task execute – schedule_work()
Calling INIT_WORK() registers the specified work structure and function with the in-house
default kernel-global workqueue. But it doesn't execute it – yet! You have to tell it when to
execute your "work" by calling the schedule_work() API at the appropriate moment:

bool schedule_work(struct work_struct *work);

Clearly, the parameter to schedule_work() is the pointer to the work_struct structure
(which you initialized earlier via the INIT_WORK() macro). It returns a Boolean (quoting
directly from the source): %false if @work was already on the kernel-global
workqueue and %true otherwise True. In effect, schedule_work() checks if the
function that was specified (via the work structure) is already on the kernel-global
workqueue; if not, it enqueues it there; if it already was there, it leaves it alone in the same
position (it doesn't add one more instance). It then marks the work item for execution. This
typically happens as soon as the underlying kernel thread(s) corresponding to the
workqueue get scheduled, thus giving you a chance to run your work.

To have two work items (functions) within your module or driver execute
via the (default) kernel-global workqueue, simply call the
INIT_WORK() macro twice, each time passing different work structures
and functions. Similarly, for more work items, call INIT_WORK() for each
of them... (For example, take this kernel block driver
(drivers/block/mtip32xx/mtip32xx.c): apparently, for Micron PCIe
SSDs, it calls INIT_WORK() eight times in a row (!) with its probe method,
using arrays to hold all the items).

Note that you can call schedule_work() in an atomic context! The call is non-blocking; it
merely schedules the work item to be consumed at a later, deferred (and safe) point in time,
when it will run in process context.

Variations of scheduling your work task
There are a few variations of the schedule_work() API we just described, all of which are
available via the schedule[_delayed]_work[_on]() APIs. Let's briefly enumerate them.
First, let's look at the schedule_delayed_work() inline function, whose signature is as
follows:

bool schedule_delayed_work(struct delayed_work *dwork, unsigned long
delay);

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[288]

Use this routine when you want to delay the execution of the workqueue handler function
by a specified amount of time; the second parameter, delay, is the number of jiffies you
want to wait for. Now, we know that the jiffies variable increments by HZ jiffies per
second; thus, to have your work task delayed by n seconds, specify n * jiffies.
Similarly, you could always pass the msecs_to_jiffies(n) value as the second
parameter to have it execute n milliseconds from now.

Next, notice that the first parameter to schedule_delayed_work() is different; it's a
delayed_work structure, which itself contains the now-familiar work_struct structure as
a member, along with other housekeeping members (a kernel timer, a pointer to the
workqueue structure, and a CPU number). To initialize it, just allocate memory to it and
then make use of the INIT_DELAYED_WORK() macro (the syntax remains identical
to INIT_WORK()); it will take care of all initialization.

Another slight variation on the theme is the schedule[_delayed]_work_on() routine;
on in the name allows you to specify which CPU core your work task will be scheduled
upon when it executes. Here's the signature of the schedule_delayed_work_on() inline
function:

bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned
long delay);

The first parameter specifies the CPU core to execute the work task upon, while the
remaining two parameters are identical to the schedule_delayed_work() routine's
parameters. (You can employ the schedule_delayed_work() routine to schedule your
task – immediately – on a given CPU core).

Cleaning up – canceling or flushing your work task
At some point, you will want to ensure that your work task(s) have actually completed
execution. You may wish to do this before destroying your workqueue (assuming it's a
custom created one and not the kernel-global one) or, more likely, when using the kernel-
global workqueue in the cleanup method of your LKM or driver. The typical API to use
here is cancel_[delayed_]work[_sync](). Its variations and signatures are as follows:

bool cancel_work_sync(struct work_struct *work);
bool cancel_delayed_work(struct delayed_work *dwork);
bool cancel_delayed_work_sync(struct delayed_work *dwork);

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[289]

It's quite simple, really: use cancel_work_sync() once you have used the INIT_WORK()
and schedule_work() routines; use the latter two when you've delayed your work task.
Notice that two of the routines are suffixed with _sync; this implies that the cancellation is
synchronous – the kernel will wait until your work tasks have completed execution before
these functions return! This is usually what we want. These routines return a boolean: True
if there was work pending and False otherwise.

Within a kernel module, not canceling (or flushing) your work task(s) in
your cleanup (rmmod) code path is a sure-fire way to cause serious issues;
ensure you do so!

The kernel workqueue subsystem also provides a few flush_*() routines
(including flush_scheduled_work(), flush_workqueue(),
and flush_[delayed_]work()). The kernel documentation (https:/ ​/​www. ​kernel. ​org/
doc/​html/​latest/ ​core- ​api/ ​workqueue. ​html) clearly warns us that these routines are not
the easiest to use as you can easily cause deadlock issues with them. It's recommended that
you use the aforementioned cancel_[delayed_]work[_sync]() APIs instead.

A quick summary of the workflow
When using the kernel-global workqueue, a simple pattern (workflow) emerges:

Initialize the work task.1.
At the appropriate point in time, schedule it to execute (perhaps with a delay2.
and/or on a particular CPU core).
Clean up. Typically, in the kernel module (or driver's) cleanup code path, cancel3.
it. (Preferably, do this with synchronization so that any pending work tasks are
completed first. Here, we will stick to employing the recommended
cancel*work*() routines, avoiding the flush_*() ones).

https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html
https://www.kernel.org/doc/html/latest/core-api/workqueue.html

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[290]

Let's summarize this using a table:

Using the
kernel-global
workqueue

Regular work task Delayed work task Execute work task on given CPU

1.
Initialization INIT_WORK() INIT_DELAYED_WORK() < either immediate or delayed's fine >

2. Schedule
work task to
execute

schedule_work() schedule_delayed_work() schedule_delayed_work_on()

3. Cancel (or
flush) it;
foo_sync() to
ensure it's
complete

cancel_work_sync() cancel_delayed_work_sync() < either immediate or delayed's fine >

Table 5.4 – Using the kernel-global workqueue – summary of the workflow

In the next few sections, we'll write a simple kernel module using the kernel-default
workqueue in order to execute a work task.

Our simple work queue kernel module – code
view
Let's get hands-on with a work queue! In the following sections, we will write a
simple demo kernel module (ch5/workq_simple) that demonstrates using the kernel-
default workqueue to execute a work task. It's actually built upon our earlier LKM, which
we used to demonstrate kernel timers (ch5/timer_simple). Let's check it out code-wise
(as usual, we won't show the full code here, only the most relevant portions). We'll begin by
looking at its private context data structure and init method:

static struct st_ctx {
 struct work_struct work;
 struct timer_list tmr;
 int data;
} ctx;
[...]
static int __init workq_simple_init(void)
{
 ctx.data = INITIAL_VALUE;
 /* Initialize our work queue */
 INIT_WORK(&ctx.work, work_func);
 /* Initialize our kernel timer */
 ctx.tmr.expires = jiffies + msecs_to_jiffies(exp_ms);
 ctx.tmr.flags = 0;

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[291]

 timer_setup(&ctx.tmr, ding, 0);
 add_timer(&ctx.tmr); /* Arm it; let's get going! */
 return 0;
}

A key point to ponder: how will we manage to pass along some useful data items to our
work function? The work_struct structure only has an atomic long integer that's used for
internal purposes. A good (and very typical!) trick is to have your work_struct structure
embedded within your driver's context structure; then, within the work task callback
function, use the container_of() macro to gain access to the parent context data
structure! This is a strategy that's often employed. (The container_of() is a powerful
macro, but not really easy to decipher! We've provided a couple of useful links for this in
the Further reading section.) So, in the preceding code, we have our driver's context
structure embed a struct work_struct within it. You can see the initialization of our
work task within the INIT_WORK() macro.

Once the timer's been armed (add_timer() does the trick here), it will expire in
approximately 420 milliseconds and the timer callback function will run in the timer softirq
context (this is very much an atomic context):

static void ding(struct timer_list *timer)
{
 struct st_ctx *priv = from_timer(priv, timer, tmr);
 pr_debug("timed out... data=%d\n", priv->data--);
 PRINT_CTX();
 /* until countdown done, fire it again! */
 if (priv->data)
 mod_timer(&priv->tmr, jiffies + msecs_to_jiffies(exp_ms));
 /* Now 'schedule' our work queue function to run */
 if (!schedule_work(&priv->work))
 pr_notice("our work's already on the kernel-global workqueue!\n");
}

After decrementing the data variable, it sets up the timer to fire again (in 420 ms, via
mod_timer()), after which, via the schedule_work() API, it schedules our work queue
callback to run! The kernel will recognize that the work queue function must now be
executed (consumed) as soon as is viable. But hang on – the work queue callback must and
will run only in the process context, via a global kernel worker thread – the so-called events
thread(s). Thus, only once we're out of this softirq context and (one of) the "events" kernel
worker threads is on a CPU runqueue and actually runs will our work queue callback
function be invoked.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[292]

Relax – it will happen soon enough... the whole point of using workqueues is that not only
is the thread management completely taken care of by the kernel, but the function runs in
the process context, where it's then possible to perform lengthy blocking or I/O operations.

Again, how soon is soon? Let's attempt to measure this: we take a timestamp (via the
usual ktime_get_real_ns() inline function) immediately after schedule_work() as the
first line of code in the work queue function. Our trusty SHOW_DELTA() macro shows the
difference in time. As expected, it's small, typically within a few hundredths of a
microsecond's range (of course, this depends on several factors, including the hardware
platform, kernel version, and so on). A highly loaded system would result in it taking
longer to context switch to the events kernel thread(s), which could cause a delay in your
work queue's functionality executing. You will see it in a sample run within a screenshot
capture (Figure 5.12) in the following section.

The following code is of our work task function. This is where we employ the
container_of() macro to gain access to our module's context structure:

/* work_func() - our workqueue callback function! */
static void work_func(struct work_struct *work)
{
 struct st_ctx *priv = container_of(work, struct st_ctx, work);

 t2 = ktime_get_real_ns();
 pr_info("In our workq function: data=%d\n", priv->data);
 PRINT_CTX();
 SHOW_DELTA(t2, t1);
}

Furthermore, our PRINT_CTX() macro's output conclusively shows that this function runs
in the process context.

Be careful when you're using container_of() within a delayed work task
callback function – you'll have to specify the third parameter as a work
member of struct delayed_work (one of our exercise questions has
you try out this very thing! There's a solution provided as well...). I
suggest that you master the basics first before trying this out for yourself.

In the next section, we will run our kernel module.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[293]

Our simple work queue kernel module – running
it
Let's take it for a spin! Take a look at the following screenshot:

Figure 5.12 – Our workq_simple.ko LKM with the work queue function execution highlighted

Let's take a look at this code in more detail:

Via our lkm helper script, we build and then insmod(8) the kernel module; that
is, workq_simple.ko.
The kernel log is displayed via dmesg(1):

Here, the workqueue and kernel timer are initialized and armed
within the init method.
The timer expires (in approximately 420 ms); you can see its
printks (showing timed out... and the value of
our data variable).

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[294]

It invokes the schedule_work() API, causing our workqueue
function to run.
As highlighted in the preceding screenshot, our work queue
function, work_func(), indeed runs; it displays the data variable's
current value, proving that it correctly gained access to our
"context" or private data structure.

Note that we used our PRINT_CTX() macro in this LKM (it's within our
convenient.h header) to reveal something interesting:

When it runs in the context of the timer callback function, its status
bits contain the s character (the third character within the four-
character field – .Ns1 or similar), showing that it's running in
softirq (an interrupt, atomic) context.
When it runs in the context of the work queue callback function, its
status bit's third character will never contain the s character; it will
always be a ., proving that the workqueue always executes in the
process context!

Next, the SHOW_DELTA() macro calculates and spits out the time difference between the
workqueue being scheduled and actually executing. As you can see (here, at least, on our
lightly loaded x86_64 guest VM), it's in the range of a few hundred microseconds.

Why not look up the actual kernel worker thread that was used to consume our work
queue? A simple ps(1) on the PID is all that's required here. In this particular case, it
happens to be one of the kernel's per CPU core generic workqueue consumer threads – a
kernel worker (kworker/...) thread:

$ ps -el | grep -w 55200
 1 I 0 55200 2 0 80 0 - 0 - ? 00:00:02
kworker/1:0-mm_percpu_wq
 $

Of course, the kernel code base is littered with workqueue usage (especially many device
drivers). Please use cscope(1) to find and browse through instances of such code.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[295]

The sed3 mini project – a very brief look
Let's conclude this chapter by taking a very brief look at the evolution of our sed2 project
to sed3. This mini-project is identical to sed2 except that it's simpler! The (en/de)crypt
work is now carried out by our work task (function) via the kernel's workqueue
functionality or bottom-half mechanism. We use a workqueue – the default kernel-global
workqueue – to get the work done instead of manually creating and managing kthreads (as
we did in sed2)!

The following screenshot shows us accessing the kernel log of a sample run; in the run, we
had the user mode app encrypt, then decrypt, and then retrieve the message for viewing.
We've highlighted the interesting bit here – the execution of our work task via the kernel-
global workqueue's worker threads – in the two red rectangles:

Figure 5.13 – Kernel log when running our sed3 driver; the work task running via the default kernel-global workqueue is highlighted

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[296]

By the way, the user mode app is identical to the one we used in sed2. The preceding
screenshot shows (via our trusty PRINT_CTX() macro) the actual kernel worker threads
that the kernel-global workqueue employed to run our encrypt and decrypt work; in this
particular case, it's [kworker/1:0] PID 9812 for the encrypt work and [kworker/0:2]
PID 9791 for the decrypt work. Note how they both run in the process context. We shall
leave it to you to browse through the code of sed3 (ch5/sed3).

This brings this section to a close. Here, you learned how the kernel workqueue
infrastructure is indeed a blessing for module/driver authors as it helps you add a powerful
abstraction layer over the underlying details regarding kernel threads, their creation, and
intricate management and manipulation. It makes it very easy for you to perform work in
the kernel – especially by employing the pre-existing kernel-global (default) workqueue –
without having to worry about the gory details.

Summary
Well done! We covered a lot of ground in this chapter. First, you learned how to create
delays in kernel space, both the atomic and the blocking types (via the *delay() and
*sleep() routines, respectively). Next, you learned how to set up and use kernel timers
within your LKM (or driver) – a very common and required task. Directly creating and
working with kernel threads can be a heady (and even difficult) experience, which is why
you learned the basics of doing so. After that, you looked at the kernel workqueue
subsystem, which solves complexity (and concurrency) issues. You learned what it is and
how to practically make use of the kernel-global (default) workqueue to make your work
task(s) execute when required.

The series of three sed (simple encrypt decrypt) demo drivers we designed and
implemented showed you a bit of a more sophisticated use case for these interesting
technologies: sed1 with the timeout implementation, sed2 adding to the kernel thread to
perform work, and sed3 using the kernel-global workqueue to have work consumed when
required.

Please take some time to work on the following Questions/exercises for this chapter and
browse through the Further reading resources. When you're done, I suggest that you take a
well-deserved break and jump back in. We're almost there: the final two chapters cover a
really key topic – kernel synchronization!

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[297]

Questions
Spot the bug(s) in the following pseudocode:1.

static my_chip_tasklet(void)
{
 // ... process data
 if (!copy_to_user(to, from, count)) {
 pr_warn("..."); [...]
 }
}
static irqreturn_t chip_hardisr(int irq, void *data)
{
 // ack irq
 // << ... fetch data into kfifo ... >>
 // << ... call func_a(), delay, then call func_b() >>
 func_a();
 usleep(100); // 100 us delay required here! see datasheet pg
...
 func_b();
 tasklet_schedule(...);
 return IRQ_HANDLED;
}
my_chip_probe(...)
{
 // ...
 request_irq(CHIP_IRQ, chip_hardisr, ...);
 // ...
 tasklet_init(...);
}

timer_simple_check: Enhance the timer_simple kernel module so that it2.
checks the amount of time that elapsed between setting up a timeout and it
actually being serviced.
kclock: Write a kernel module that sets up a kernel timer so that it times out3.
every second. Then, use this to print the timestamp to the kernel log to get, in
effect, a simple "clock app" in the kernel.

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[298]

mutlitime: Develop a kernel module that takes the number of seconds to issue a4.
timer callback in as a parameter. Have it default to zero (implying no timer and
thus a validity error). Here's how it should work: if the number that's passed is 3,
it should create three kernel timers; the first one will expire in 3 seconds, the
second in 2 seconds, and the last in 1 second. In other words, if the number
passed is "n", it should create "n" kernel timers; the first one will expire in "n"
seconds, the second in "n-1" seconds, the third in "n-2" seconds, and so on until
the count hits zero.
Build and run the sed[123] mini-projects provided in this chapter and verify5.
(by looking at the kernel logs) that they work the way they should.
workq_simple2: The ch5/workq_simple LKM we provided sets up and6.
"consumes" one work item (function) via the kernel-global workqueue; enhance
it so that it sets up and executes two "work" tasks. Verify that it works correctly.
workq_delayed: Build upon the previous assignment (workq_simple2) to7.
execute two work tasks, plus one more task (from the init code path). This one
(the third one) should be delayed; the amount of time to delay by should be
passed as a module parameter named work_delay_ms (in milliseconds; the
default should be 500 ms).
[Tip: Be careful when using container_of() within the delayed work task
callback function; you'll have to specify the third parameter as a work member
of struct delayed_work; check out a solution we've provided].

You will find some of the questions answered in the book's GitHub repo:
https:/ ​/​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming-
Part- ​2/ ​tree/ ​main/ ​solutions_ ​to_​assgn.

Further reading
Kernel documentation: Delays, sleep mechanisms: https:/ ​/​www. ​kernel. ​org/ ​doc/
Documentation/ ​timers/ ​timers- ​howto. ​tx

Kernel Timer Systems: https:/ ​/​elinux. ​org/ ​Kernel_ ​Timer_ ​Systems#Timer_
information

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/solutions_to_assgn
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information
https://elinux.org/Kernel_Timer_Systems#Timer_information

Working with Kernel Timers, Threads, and Workqueues Chapter 5

[299]

 Workqueues:
This is a very good presentation: Async execution with
workqueues, Bhaktipriya Shridhar: https:/ ​/ ​events. ​static.
linuxfound. ​org/ ​sites/ ​events/ ​files/ ​slides/
Async%20execution%20with%20wqs. ​pdf

Kernel documentation: Concurrency Managed Workqueue
(cmwq): https:/ ​/​www. ​kernel. ​org/ ​doc/ ​html/ ​latest/ ​core- ​api/
workqueue. ​html#concurrency- ​managed- ​workqueue- ​cmwq

The container_of() macro explained:
The Magical container_of() Macro, November 2012: https:/ ​/​radek.
io/ ​2012/ ​11/ ​10/ ​magical- ​container_ ​of-​macro/ ​

Understanding of container_of macro in Linux kernel: https:/ ​/
embetronicx. ​com/​tutorials/ ​linux/ ​c-​programming/
understanding- ​of- ​container_ ​of-​macro- ​in- ​linux- ​kernel/ ​

https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Async%20execution%20with%20wqs.pdf
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://www.kernel.org/doc/html/latest/core-api/workqueue.html#concurrency-managed-workqueue-cmwq
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://radek.io/2012/11/10/magical-container_of-macro/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/
https://embetronicx.com/tutorials/linux/c-programming/understanding-of-container_of-macro-in-linux-kernel/

2
Section 2: Delving Deeper

Here you will learn about an advanced and critical topic: the concepts behind, the need for,
and the usage of kernel synchronization technologies and APIs.

This section comprises the following chapters:

Chapter 6, Kernel Synchronization - Part 1
Chapter 7, Kernel Synchronization - Part 2

6
Kernel Synchronization - Part 1

As any developer familiar with programming in a multithreaded environment (or even
a single-threaded one where multiple processes work on shared memory, or where
interrupts are a possibility) is well aware, there is a need for synchronization whenever
two or more threads (code paths in general) may race; that is, their outcome cannot be
predicted. Pure code itself is never an issue as its permissions are read/execute (r-x);
reading and executing code simultaneously on multiple CPU cores is not only perfectly fine
and safe, but it's encouraged (it results in better throughput and is why multithreading is a
good idea). However, the moment you're working on shared writeable data is the moment
you need to start being very careful!

The discussions around concurrency and its control – synchronization – are varied,
especially in the context of a complex piece of software such as a Linux kernel (its
subsystems and related regions, such as device drivers), which is what we're dealing with
in this book. Thus, for convenience, we will split this large topic into two chapters, this one
and the next.

In this chapter, we will cover the following topics:

Critical sections, exclusive execution, and atomicity
Concurrency concerns within the Linux kernel
Mutex or spinlock? Which to use when
Using the mutex lock
Using the spinlock
Locking and interrupts

Let's get started!

Kernel Synchronization - Part 1 Chapter 6

[302]

Critical sections, exclusive execution, and
atomicity
Imagine you're writing software for a multicore system (well, nowadays, it's typical that
you will work on multicore systems, even on most embedded projects). As we mentioned
in the introduction, running multiple code paths in parallel is not only safe, it's desirable
(why spend those dollars otherwise, right?). On the other hand, concurrent (parallel and
simultaneous) code paths within which shared writeable data (also known as shared state)
is accessed in any manner is where you are required to guarantee that, at any given point
in time, only one thread can work on that data at a time! This is really key; why? Think
about it: if you allow multiple concurrent code paths to work in parallel on shared
writeable data, you're literally asking for trouble: data corruption (a "race") can occur as a
result.

What is a critical section?
A code path that can execute in parallel and that works on (reads and/or writes) shared
writeable data (shared state) is called a critical section. They require protection from
parallelism. Identifying and protecting critical sections from simultaneous execution is an
implicit requirement for correct software that you – the designer/architect/developer – must
handle.

A critical section is a piece of code that must run either exclusively; that is, alone
(serialized), or atomically; that is, indivisibly, to completion, without interruption.

By exclusively, we're implying that at any given point in time, one thread is running the
code of the critical section; this is obviously required for data safety reasons.

This notion also brings up the important concept of atomicity: a single atomic operation is
one that is indivisible. On any modern processor, two operations are considered to always
be atomic; that is, they cannot be interrupted and will run to completion:

The execution of a single machine language instruction.
Reads or writes to an aligned primitive data type that is within the processor's
word size (typically 32 or 64 bits); for example, reading or writing a 64-bit integer
on a 64-bit system is guaranteed to be atomic. Threads reading that variable will
never see an in-between, torn, or dirty result; they will either see the old or the
new value.

Kernel Synchronization - Part 1 Chapter 6

[303]

So, if you have some lines of code that work upon shared (global or static) writeable data, it
cannot – in the absence of any explicit synchronization mechanism – be guaranteed to run
exclusively. Note that at times, running the critical section's code atomically, as well as
exclusively, is required, but not all the time.

When the code of the critical section is running in a safe-to-sleep process context (such as
typical file operations on a driver via a user app (open, read, write, ioctl, mmap, and so on),
or the execution path of a kernel thread or workqueue), it might well be acceptable to not
have the critical section being truly atomic. However, when its code is running in a non-
blocking atomic context (such as a hardirq, tasklet, or softirq), it must run atomically as well
as exclusively (we shall cover these points in more detail in the Mutex or spinlock? Which to
use when section).

A conceptual example will help clarify things. Let's say that three threads (from user space
app(s)) attempt to open and read from your driver more or less simultaneously on a
multicore system. Without any intervention, they may well end up running the critical
section's code in parallel, thus working on the shared writable data in parallel, thus
very likely corrupting it! For now, let's look at a conceptual diagram to see how non-
exclusive execution within a critical section's code path is wrong (we won't even talk about
atomicity here):

Figure 6.1 – A conceptual diagram showing how a critical section code path is violated by having >1 thread running within it simultaneously

Kernel Synchronization - Part 1 Chapter 6

[304]

As shown in the preceding diagram, in your device driver, within its (say) read method,
you're having it run some code in order to perform its job (reading some data from the
hardware). Let's take a more in-depth look at this diagram in terms of data accesses being made
at different points in time:

From time t0 to t1: None or only local variable data is accessed. This is
concurrent-safe, with no protection required, and can run in parallel (since each
thread has its own private stack).
From time t1 to t2: Global/static shared writeable data is accessed. This
is not concurrent-safe; it's a critical section and thus must be protected from
concurrent access. It should only contain code that runs exclusively (alone,
exactly one thread at a time, serialized) and, perhaps, atomically.
From time t2 to t3: None or only local variable data is accessed. This is
concurrent-safe, with no protection required, and can run in parallel (since each
thread has its own private stack).

In this book, we assume that you are already aware of the need
to synchronize critical sections; we will not discuss this particular topic
any further. Those of you who are interested may refer to my earlier
book, Hands-On System Programming with Linux (Packt, October 2018),
which covers these points in detail (especially Chapter 15, Multithreading
with Pthreads Part II – Synchronization).

So, knowing this, we can now restate the notion of a critical section while also mentioning
when the situation arises (shown in square brackets and italics in the bullet points). A
critical section is code that must run as follows:

(Always) Exclusively: Alone (serialized)
(When in an atomic context) Atomically: Indivisibly, to completion, without
interruption

In the next section, we'll look at a classic scenario – the increment of a global integer.

Kernel Synchronization - Part 1 Chapter 6

[305]

A classic case – the global i ++
Think of this classic example: a global i integer is being incremented within a concurrent
code path, one within which multiple threads of execution can simultaneously execute. A
naive understanding of computer hardware and software will lead you to believe that this
operation is obviously atomic. However, the reality is that modern hardware and software
(the compiler and OS) are much more sophisticated than you may imagine, thus causing all
kinds of invisible (to the app developer) performance-driven optimizations.

We won't attempt to delve into too much detail here, but the reality is that
modern processors are extremely complex: among the many technologies
they employ toward better performance, a few are superscalar and super-
pipelined execution in order to execute multiple independent instructions
and several parts of various instructions in parallel (respectively),
performing on-the-fly instruction and/or memory reordering, caching
memory in complex hierarchical on-CPU caches, false sharing, and so on!
We will delve into some of these details in Chapter 7, Kernel
Synchronization – Part 2, in the Cache effects – false sharing and Memory
barriers sections.

The paper What every systems programmer should know about concurrency by
Matt Kline, April 2020, (https:/ ​/​assets. ​bitbashing. ​io/​papers/
concurrency- ​primer. ​pdf) is superb and a must-read on this subject; do
read it!

All of this makes for a situation that's more complex than it appears to be at first glance.
Let's continue with the classic i ++:

static int i = 5;
[...]
foo()
{
 [...]
 i ++; // is this safe? yes, if truly atomic... but is it truly
atomic??
}

https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf

Kernel Synchronization - Part 1 Chapter 6

[306]

Is this increment safe by itself? The short answer is no, you must protect it. Why? It's a
critical section – we're accessing shared writeable data for a read and/or write operation.
The longer answer is that it really depends on whether the increment operation is truly
atomic (indivisible); if it is, then i ++ poses no danger in the presence of parallelism – if
not, it does! So, how do we know whether i ++ is truly atomic or not? Two things
determine this:

The processor's Instruction Set Architecture (ISA), which determines (among
several things related to the processor at a low level) the machine instructions
that execute at runtime.
The compiler.

If the ISA has the facility to employ a single machine instruction to perform an integer
increment, and the compiler has the intelligence to use it, then it's truly atomic – it's safe and
doesn't require locking. Otherwise, it's not safe and requires locking!

Try this out: Navigate your browser to this wonderful compiler explorer website: https:/ ​/
godbolt.​org/​. Select C as the programming language and then, in the left pane, declare the
global i integer and increment within a function. Compile in the right pane with an
appropriate compiler and compiler options. You'll see the actual machine code generated
for the C high-level i ++; statement. If it's indeed a single machine instruction, then it will
be safe; if not, you will require locking. By and large, you will find that you can't really tell:
in effect, you cannot afford to assume things – you will have to assume it's unsafe by default
and protect it! This can be seen in the following screenshot:

Figure 6.2 – Even with the latest stable gcc version but no optimization, the x86_64 gcc produces multiple instructions for the i ++

https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/

Kernel Synchronization - Part 1 Chapter 6

[307]

The preceding screenshot clearly shows this: the yellow background regions in the left- and
right-hand panes is the C source and the corresponding assembly generated by the
compiler, respectively (based on the x86_64 ISA and the compiler's optimization level). By
default, with no optimization, i ++ becomes three machine instructions. This is exactly
what we expect: it corresponds to the fetch (memory to register), the increment, and the store
(register to memory)! Now, this is not atomic; it's entirely possible that, after one of the
machine instructions executes, the control unit interferes and switches the instruction
stream to a different point. This could even result in another process or thread being
context switched in!

The good news is that with a quick -O2 in the Compiler options... window, i
++ becomes just one machine instruction – truly atomic! However, we can't predict these
things in advance; one day, your code may execute on a fairly low-end ARM (RISC) system,
increasing the chance that multiple machine instructions are required for i ++. (Worry
not – we shall cover an optimized locking technology specifically for integers in the Using
the atomic integer operators section).

Modern languages provide native atomic operators; for C/C++, it's fairly
recent (from 2011); the ISO C++11 and the ISO C11 standards provide
ready-made and built-in atomic variables for this. A little googling will
quickly reveal them to you. Modern glibc also makes use of them. As an
example, if you've worked with signaling in user space, you will know to
use the volatile sig_atomic_t data type to safely access and/or
update an atomic integer within signal handlers. What about the kernel?
In the next chapter, you'll learn about the Linux kernel's solution to this
key issue. We'll cover this in the Using the atomic integer operators
and Using the atomic bit operators sections.

The Linux kernel is, of course, a concurrent environment: multiple threads of execution
run in parallel on multiple CPU cores. Not only that, but even on uni-processor (UP/single
CPU) systems, the presence of hardware interrupts, traps, faults, exceptions, and software
signals can cause data integrity issues. Needless to say, protecting against concurrency at
required points in the code path is easier said than done; identifying and protecting critical
sections using technologies such as locking – as well as other synchronization primitives
and technologies – is absolutely essential, which is why this is the core subject matter of this
chapter and the next.

Kernel Synchronization - Part 1 Chapter 6

[308]

Concepts – the lock
We require synchronization because of the fact that, without any intervention, threads can
concurrently execute critical sections where shared writeable data (shared state) is being
worked upon. To defeat concurrency, we need to get rid of parallelism, and we need
to serialize code that's within the critical section – the place where the shared data is being
worked upon (for reading and/or writing).

To force a code path to become serialized, a common technique is to use a lock. Essentially,
a lock works by guaranteeing that precisely one thread of execution can "take" or own the
lock at any given point in time. Thus, using a lock to protect a critical section in your code
will give you what we're after – running the critical section's code exclusively (and perhaps
atomically; more on this to come):

Figure 6.3 – A conceptual diagram showing how a critical section code path is honored, given exclusivity, by using a lock

The preceding diagram shows one way to fix the situation mentioned previously: using a
lock to protect the critical section! How does the lock (and unlock) work, conceptually?

Kernel Synchronization - Part 1 Chapter 6

[309]

The basic premise of a lock is that whenever there is contention for it – that is, when
multiple competing threads (say, n threads) attempt to acquire the lock
(the LOCK operation) – exactly one thread will succeed. This is called the "winner" or the
"owner" of the lock. It sees the lock API as a non-blocking call and thus continues to run
happily – and exclusively – while executing the code of the critical section (the critical
section is effectively the code between the lock and the unlock operations!). What happens to
the n-1 "loser" threads? They (perhaps) see the lock API as a blocking call; they, to all
practical effect, wait. Wait upon what? The unlock operation, of course, which is performed
by the owner of the lock (the "winner" thread)! Once unlocked, the remaining n-1 threads
now compete for the next "winner" slot; of course, exactly one of them will "win"
and proceed forward; in the interim, the n-2 losers will now wait upon the (new)
winner's unlock; this repeats until all n threads (finally and sequentially) acquire the lock.

Now, locking works of course, but – and this should be quite intuitive – it results in (pretty
steep!) overhead, as it defeats parallelism and serializes the execution flow! To help you
visualize this situation, think of a funnel, with the narrow stem being the critical section
where only one thread can fit at a time. All other threads get choked; locking creates
bottlenecks:

Figure 6.4 – A lock creates a bottleneck, analogous to a physical funnel

Kernel Synchronization - Part 1 Chapter 6

[310]

Another oft-mentioned physical analog is a highway with several lanes merging into
one very busy – and choked with traffic – lane (a poorly designed toll booth, perhaps).
Again, parallelism – cars (threads) driving in parallel with other cars in different lanes
(CPUs) – is lost, and serialized behavior is required – cars are forced to queue one behind
the other.

Thus, it is imperative that we, as software architects, try and design our products/projects
so that locking is minimally required. While completely eliminating global variables is not
practically possible in most real-world projects, optimizing and minimizing their usage is
required. We shall cover more regarding this, including some very interesting lockless
programming techniques, later.

Another really key point is that a newbie programmer might naively assume that
performing reads on a shared writeable data object is perfectly safe and thus requires no
explicit protection (with the exception of an aligned primitive data type that is within the
size of the processor's bus); this is untrue. This situation can lead to what's called dirty or
torn reads, a situation where possibly stale data can be read as another writer thread is
simultaneously writing while you are – incorrectly, without locking – reading the very
same data item.

Since we're on the topic of atomicity, as we just learned, on a typical modern
microprocessor, the only things guaranteed to be atomic are a single machine language
instruction or a read/write to an aligned primitive data type within the processor bus's
width. So, how can we mark a few lines of "C" code so that they're truly atomic? In user
space, this isn't even possible (we can come close, but cannot guarantee atomicity).

How do you "come close" to atomicity in user space apps? You can always
construct a user thread to employ a SCHED_FIFO policy and a real-time
priority of 99. This way, when it wants to run, pretty much nothing
besides hardware interrupts/exceptions can preempt it. (The old audio
subsystem implementation heavily relied on this.)

In kernel space, we can write code that's truly atomic. How, exactly? The short answer is
that we can use spinlocks! We'll learn about spinlocks in more detail shortly.

Kernel Synchronization - Part 1 Chapter 6

[311]

A summary of key points
Let's summarize some key points regarding critical sections. It's really important to go over
these carefully, keep these handy, and ensure you use them in practice:

A critical section is a code path that can execute in parallel and that works upon
(reads and/or writes) shared writeable data (also known as "shared state").
Because it works on shared writable data, the critical section requires protection
from the following:

Parallelism (that is, it must run alone/serialized/in a mutually
exclusive fashion)
When running in an atomic (interrupt) non-blocking context –
atomically: indivisibly, to completion, without interruption. Once
protected, you can safely access your shared state until you
"unlock".

Every critical section in the code base must be identified and protected:
Identifying critical sections is critical! Carefully review your code
and make sure you don't miss them.
Protecting them can be achieved via various technologies; one very
common technique is locking (there's also lock-free programming,
which we'll look at in the next chapter).
A common mistake is only protecting critical sections that write to
global writeable data; you must also protect critical sections that
read global writeable data; otherwise, you risk a torn or dirty
read! To help make this key point clear, visualize an unsigned 64-
bit data item being read and written on a 32-bit system; in such a
case, the operation can't be atomic (two load/store operations are
required). Thus, what if, while you're reading the value of the data
item in one thread, it's being simultaneously written to by another
thread!? The writer thread takes a "lock" of some sort but because
you thought reading is safe, the lock isn't taken by the reader
thread; due to an unfortunate timing coincidence, you can end up
performing a partial/torn/dirty read! We will learn how to
overcome these issues by using various techniques in the coming
sections and the next chapter.
Another deadly mistake is not using the same lock to protect a
given data item.

Kernel Synchronization - Part 1 Chapter 6

[312]

Failing to protect critical sections leads to a data race, a situation
where the outcome – the actual value of the data being
read/written – is "racy", which means it varies, depending on
runtime circumstances and timing. This is known as a bug. (A bug
that, once in "the field", is extremely difficult to see, reproduce,
determine its root cause, and fix. We will cover some very
powerful stuff to help you with this in the next chapter, in the Lock
debugging within the kernel section; be sure to read it!)

Exceptions: You are safe (implicitly, without explicit protection) in the following
situations:

When you are working on local variables. They're allocated on the
private stack of the thread (or, in the interrupt context, on the local
IRQ stack) and are thus, by definition, safe.
When you are working on shared writeable data in code that
cannot possibly run in another context; that is, it's serialized by
nature. In our context, the init and cleanup methods of an LKM
qualify (they run exactly once, serially, on insmod and rmmod
only).
When you are working on shared data that is truly constant and
read-only (don't let C's const keyword fool you, though!).

Locking is inherently complex; you must carefully think, design, and implement
this to avoid deadlocks. We'll cover this in more detail in the Locking guidelines and
deadlocks section.

Concurrency concerns within the Linux
kernel
Recognizing critical sections within a piece of kernel code is of critical importance; how
can you protect it if you can't even see it? The following are a few guidelines to help you, as
a budding kernel/driver developer, recognize where concurrency concerns – and thus
critical sections – may arise:

The presence of Symmetric Multi-Processor (SMP) systems (CONFIG_SMP)
The presence of a preemptible kernel
Blocking I/O
Hardware interrupts (on either SMP or UP systems)

Kernel Synchronization - Part 1 Chapter 6

[313]

These are critical points to understand, and we will discuss each in this section.

Multicore SMP systems and data races
The first point is pretty obvious; take a look at the pseudocode shown in the following
screenshot:

Figure 6.5 – Pseudocode – a critical section within a (fictional) driver's read method; it's wrong as there's no locking

It's a similar situation to what we showed in Figures 6.1 and 6.3; it's just that here, we're
showing the concurrency in terms of pseudocode. Clearly, from time t2 to time t3, the
driver is working on some global shared writeable data, thus making this a critical section.

Now, visualize a system with, say, four CPU cores (an SMP system); two user space
processes, P1 (running on, say, CPU 0) and P2 (running on, say, CPU 2), can concurrently
open the device file and simultaneously issue a read(2) system call. Now, both processes
will be concurrently executing the driver read "method", thus simultaneously working on
shared writeable data! This (the code between t2 and t3) is a critical section, and since we
are in violation of the fundamental exclusivity rule – critical sections must be executed by
only a single thread at any point in time – we can very well end up corrupting the data, the
application, or worse.

Kernel Synchronization - Part 1 Chapter 6

[314]

In other words, this is now a data race; depending on delicate timing coincidences, we may
or may not generate an error (a bug). This very uncertainty – the delicate timing
coincidence – is what makes finding and fixing errors like this extremely difficult (it can
escape your testing effort).

This aphorism is all too unfortunately true: Testing can detect the presence of
errors, not their absence. Adding to this, you're worse off if your testing fails
to catch races (and bugs), allowing them free rein in the field.

You might feel that since your product is a small embedded system running on one CPU
core (UP), this discussion regarding controlling concurrency (often, via locking) does not
apply to you. We beg to differ: pretty much all modern products, if they haven't already,
will move to multicore (in their next-generation phases, perhaps). More importantly, even
UP systems have concurrency concerns, as we shall explore.

Preemptible kernels, blocking I/O, and data races
Imagine you're running your kernel module or driver on a Linux kernel that's been
configured to be preemptible (that is, CONFIG_PREEMPT is on; we covered this topic in the
companion guide Linux Kernel Programming, Chapter 10, The CPU Scheduler – Part 1).
Consider that a process, P1, is running the driver's read method code in the process context,
working on the global array. Now, while it's within the critical section (between time t2
and t3), what if the kernel preempts process P1 and context switches to another process, P2,
which is just waiting to execute this very code path? It's dangerous, and again, a data race.
This could well happen on even a UP system!

Another scenario that's somewhat similar (and again, could occur on either a single core
(UP) or multicore system): process P1 is running through the critical section of the
driver method (between time t2 and t3; again, see Figure 6.5). This time, what if, within
the critical section, it hits a blocking call?

A blocking call is a function that causes the calling process context to be put to sleep,
waiting upon an event; when that event occurs, the kernel will "wake up" the task, and it
will resume execution from where it left off. This is also known as blocking on I/O and is
very common; many APIs (including several user space library and system calls, as well as
several kernel APIs, are blocking by nature). In such a case, process P1 is effectively context
switches off the CPU and goes to sleep, which means that the code of schedule()
runs and enqueues it onto a wait queue.

Kernel Synchronization - Part 1 Chapter 6

[315]

In the interim, before P1 gets switched back, what if another process, P2, is scheduled to
run? What if that process is also running this particular code path? Think about it – by the
time P1 is back, the shared data could have changed "underneath it", causing all kinds of
errors; again, a data race, a bug!

Hardware interrupts and data races
Finally, envision this scenario: process P1 is, again, innocently running the driver's
read method code; it enters the critical section (between time t2 and t3; again, see Figure
6.5). It makes some progress but then, alas, a hardware interrupt triggers (on the same
CPU)! On the Linux OS, hardware (peripheral) interrupts have the highest priority; they
preempt any code (including kernel code) by default. Thus, process (or thread) P1 will be at
least temporarily shelved, thus losing the processor; the interrupt handling code will
preempt it and run.

Well, you might be wondering, so what? Indeed, this is a completely commonplace
occurrence! Hardware interrupts fire very frequently on modern systems, effectively (and
literally) interrupting all kinds of task contexts (do a quick vmstat 3 on your shell; the
column under system labeled in shows the number of hardware interrupts that fired on
your system in the last 1 second!). The key question to ask is this: is the interrupt
handling code (either the hardirq top half or the so-called tasklet or softirq bottom half,
whichever occurred), sharing and working upon the same shared writable data of the process
context that it just interrupted?

If this is true, then, Houston, we have a problem – a data race! If not, then your interrupted
code is not a critical section with respect to the interrupt code path, and that's fine. The fact
is that the majority of device drivers do handle interrupt(s); thus, it is the driver author's
(your!) responsibility to ensure that no global or static data – in effect, no critical sections –
are shared between the process context and interrupt code paths. If they are (which
does happen), you must somehow protect that data from data races and possible
corruption.

These scenarios might leave you feeling that protecting against these concurrency concerns
is a really tall order; how exactly can you accomplish data safety in the face of critical
sections existing, along with various possible concurrency concerns? Interestingly, the
actual APIs are not hard to learn to use; again, we emphasize that recognizing critical
sections is the key thing to do.

Kernel Synchronization - Part 1 Chapter 6

[316]

Again, the basics regarding how a lock (conceptually) works,
locking guidelines (very important; we'll recap on them shortly), and the
types of and how to prevent deadlocks, are all dealt with in my
earlier book, Hands-On System Programming with Linux (Packt, Oct 2018).
This books covers these points in detail in Chapter 15, Multithreading with
Pthreads Part II – Synchronization.

Without further ado, let's dive into the primary synchronization technology that will
serve to protect our critical sections – locking.

Locking guidelines and deadlocks
Locking, by its very nature, is a complex beast; it tends to give rise to complex interlocking
scenarios. Not understanding it well enough can lead to both performance headaches and
bugs – deadlocks, circular dependencies, interrupt-unsafe locking, and more. The
following locking guidelines are key to ensuring correctly written code when using locking:

Locking granularity: The 'distance' between the lock and the unlock (in effect,
the length of the critical section) should not be coarse (too long a critical section)
it should be 'fine enough'; what does this mean? The points below explain this:

You need to be careful here. When you're working on large
projects, keeping too few locks is a problem, as is keeping too
many! Too few locks can lead to performance issues (as the same
locks are repeatedly used and thus tend to be highly contended).
Having a lot of locks is actually good for performance, but not
good for complexity control. This also leads to another key point to
understand: with many locks in the code base, you should be very
clear on which lock protects which shared data object. It's
completely meaningless if you use, say, lockA to protect
mystructX, but in a code path far away (perhaps an interrupt
handler) you forget this and try and use some other lock, lockB,
for protection when working on the same structure! Right now,
these things might sound obvious, but (as experienced developers
know), under sufficient pressure, even the obvious isn't always
obvious!
Try and balance things out. In large projects, using one lock to
protect one global (shared) data structure is typical. (Naming the
lock variable well can become a big problem in itself! This is why
we place the lock that protects a data structure within it as a
member.)

Kernel Synchronization - Part 1 Chapter 6

[317]

Lock ordering is critical; locks must be taken in the same order throughout, and
their order should be documented and followed by all the developers working
on the project (annotating locks is useful too; more on this in the section on
lockdep in the next chapter). Incorrect lock ordering often leads to deadlocks.
Avoid recursive locking as much as possible.
Take care to prevent starvation; verify that a lock, once taken, is indeed
released "quickly enough".
Simplicity is key: Try to avoid complexity or over-design, especially with regard
to complex scenarios involving locks.

On the topic of locking, the (dangerous) issue of deadlocks arises. A deadlock is the
inability to make any progress; in other words, the app and/or kernel component(s) appear
to hang indefinitely. While we don't intend to delve into the gory details of deadlocks here,
I will quickly mention some of the more common types of deadlock scenarios that can
occur:

Simple case, single lock, process context:
We attempt to acquire the same lock twice; this results in a self-
deadlock.

Simple case, multiple (two or more) locks, process context – an example:
On CPU 0, thread A acquires lock A and then wants lock B.
Concurrently, on CPU 1, thread B acquires lock B and then
wants lock A.
The result is a deadlock, often called the AB-BA deadlock.
It can be extended; for example, the AB-BC-CA circular
dependency (A-B-C lock chain) results in a deadlock.

Complex case, single lock, and process and interrupt contexts:
Lock A takes in an interrupt context.
What if an interrupt occurs (on another core) and the
handler attempts to take lock A? Deadlock is the result! Thus, locks
acquired in the interrupt context must always be used with
interrupts disabled. (How? We will look at this in more detail
when we cover spinlocks.)

More complex cases, multiple locks, and process and interrupt (hardirq and
softirq) contexts

Kernel Synchronization - Part 1 Chapter 6

[318]

In simpler cases, always following the lock ordering guideline is sufficient: always obtain and
release locks in a well-documented order (we will provide an example of this in kernel code
in the Using the mutex lock section). However, this can get very complex; complex deadlock
scenarios can trip up even experienced developers. Luckily for us, lockdep – the
Linux kernel's runtime lock dependency validator – can catch every single deadlock case!
(Don't worry – we shall get there: we'll cover lockdep in detail in the next chapter). When
we cover spinlocks (the Using the spinlock section), we'll come across process and/or
interrupt context scenarios similar to the ones mentioned previously; the type of spinlock to
use is made clear there.

With regard to deadlocks, a pretty detailed presentation on lockdep
was given by Steve Rostedt at a Linux Plumber's Conference (back in
2011); the relevant slides are informative and explore both simple and
complex deadlock scenarios, as well as how lockdep can detect them
(https:/ ​/​blog. ​linuxplumbersconf. ​org/​2011/ ​ocw/ ​sessions/ ​153).

Also, the reality is that not just deadlock, but even livelock situations, can
be just as deadly! Livelock is essentially a situation similar to deadlock; it's
just that the state of the participating task is running and not waiting. An
example, an interrupt "storm" can cause a livelock; modern
network drivers mitigate this effect by switching off interrupts (under
interrupt load) and resorting to a polling technique called New API;
Switching Interrupts (NAPI) (switching interrupts back on when
appropriate; well, it's more complex than that, but we leave it at that here).

For those of you who've been living under a rock, you will know that the Linux kernel has
two primary types of locks: the mutex lock and the spinlock. Actually, there are several
more types, including other synchronization (and "lockless" programming) technology, all
of which will be covered in the course of this chapter and the next.

Mutex or spinlock? Which to use when
The exact semantics of learning to use the mutex lock and the spinlock are quite simple
(with appropriate abstraction within the kernel API set, making it even easier for the typical
driver developer or module author). The critical question in this situation is a conceptual
one: what really is the difference between the two locks? More to the point, under
which circumstances should you use which lock? You will learn the answers to these
questions in this section.

https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153

Kernel Synchronization - Part 1 Chapter 6

[319]

Taking our previous driver read method's pseudocode (Figure 6.5) as a base example, let's
say that three threads – tA, tB, and tC – are running in parallel (on an SMP system) through
this code. We shall solve this concurrency issue, while avoiding any data races, by taking or
acquiring a lock prior to the start of the critical section (time t2), and release the lock
(unlock) just after the end of the critical section code path (time t3). Let's take a look at the
pseudocode once more, this time with locking to ensure it's correct:

Figure 6.6 – Pseudocode – a critical section within a (fictional) driver's read method; correct, with locking

When the three threads attempt to simultaneously acquire the lock, the system
guarantees that only exactly one of them will get it. Let's say that tB (thread B) gets the lock:
it's now the "winner" or "owner" thread. This means that threads tA and tC are the "losers";
what do they do? They wait upon the unlock! The moment the "winner" (tB) completes the
critical section and unlocks the lock, the battle resumes between the previous losers; one of
them will be the next winner and the process repeats.

Kernel Synchronization - Part 1 Chapter 6

[320]

The key difference between the two lock types – the mutex and the spinlock – is based on
how the losers wait upon the unlock. With the mutex lock, the loser threads are put
to sleep; that is, they wait by sleeping. The moment the winner performs the unlock, the
kernel awakens the losers (all of them) and they run, again competing for the lock. (In
fact, mutexes and semaphores are sometimes referred to as sleeplocks.)

With the spinlock, however, there is no question of sleeping; the losers wait by spinning
upon the lock until it is unlocked. Conceptually, this looks as follows:

while (locked) ;

Note that this is only conceptual. Think about it a moment – this is actually polling.
However, as a good programmer, you will understand, that polling is usually considered a
bad idea. Why, then, does the spinlock work this way? Well, it doesn't; it has only been
presented in this manner for conceptual purposes. As you will soon understand, spinlocks
only really have meaning on multicore (SMP) systems. On such systems, while the winner
thread is away and running the critical section code, the losers wait by spinning on other
CPU cores! In reality, at the implementation level, the code that's used to implement the
modern spinlock is highly optimized (and arch-specific) and does not work by trivially
"spinning" (for example, many spinlock implementations for ARM use the wait for event
(WFE) machine language instruction, which has the CPU optimally wait in a low power
state; see the Further reading section for several resources on the internal implementation of
spinlocks).

Determining which lock to use – in theory
How the spinlock is implemented is really not our concern here; the fact that the
spinlock has a lower overhead than the mutex lock is of interest to us. How so? It's simple,
really: for the mutex lock to work, the loser thread has to go to sleep. To do so, internally,
the schedule() function gets called, which means the loser sees the mutex lock API as a
blocking call! A call to the scheduler will ultimately result in the processer being context-
switched off. Conversely, when the owner thread unlocks the lock, the loser thread(s) must
be woken up; again, it will be context-switched back onto the processor. Thus, the minimal
"cost" of the mutex lock/unlock operation is the time it takes to perform two context
switches on the given machine. (See the Information Box in the next section.) By relooking at
the preceding screenshot once more, we can determine a few things, including the time
spent in the critical section (the "locked" code path); that is, t_locked = t3 - t2.

Kernel Synchronization - Part 1 Chapter 6

[321]

Let's say that t_ctxsw represents the time to context switch. As we've learned, the minimal
cost of the mutex lock/unlock operation is 2 * t_ctxsw. Now, let's say that the following
expression is true:

t_locked < 2 * t_ctxsw

In other words, what if the time spent within the critical section is less than the time taken
for two context switches? In this case, using the mutex lock is just wrong as this is far too
much overhead; more time is being spent performing metawork than actual work – a
phenomenon known as thrashing. It's this precise use case – the presence of very short
critical sections – that's often the case on modern OSes such as Linux. So, in conclusion, for
short non-blocking critical sections, using a spinlock is (far) superior to using a mutex lock.

Determining which lock to use – in practice
So, operating under the t_locked < 2 * t_ctxsw "rule" might be great in theory, but
hang on: are you really expected to precisely measure the context switch time and the time
spent in the critical section of each and every case where one (critical section) exists? No, of
course not – that's pretty unrealistic and pedantic.

Practically speaking, think about it this way: the mutex lock works by having the
loser threads sleep upon the unlock; the spinlock does not (the losers "spin"). Let's recall
one of our golden rules of the Linux kernel: a kernel cannot sleep (call schedule()) in any
kind of atomic context. Thus, we can never use the mutex lock in an interrupt context, or
indeed in any context where it isn't safe to sleep; using the spinlock, however, would be
fine. (Remember, a blocking API is one that puts the calling context to sleep by
calling schedule().) Let's summarize this:

Is the critical section running in an atomic (interrupt) context, or, in a process
context, where it cannot sleep? Use the spinlock.
Is the critical section running in a process context and sleep in the critical
section is necessary? Use the mutex lock.

Of course, using the spinlock is considered lower overhead than using the mutex; thus, you
can even use the spinlock in the process context (such as our fictional driver's read method),
as long as the critical section does not block (sleep).

Kernel Synchronization - Part 1 Chapter 6

[322]

[1] The time taken for a context switch is varied; it largely depends on the
hardware and the OS quality. Recent (September 2018) measurements
show that context switching time is in the region of 1.2 to 1.5 us
(microseconds) on a pinned-down CPU, and around 2.2 us without
pinning (https:/ ​/ ​eli. ​thegreenplace. ​net/ ​2018/ ​measuring- ​context-
switching- ​and- ​memory- ​overheads- ​for-​linux- ​threads/ ​).

Both hardware and the Linux OS have improved tremendously,
and because of that, so has the average context switching time. An old
(December 1998) Linux Journal article determined that on an x86 class
system, the average context switch time was 19 us (microseconds), and
that the worst-case time was 30 us.

This brings up the question, how do we know if the code is currently running in a process
or interrupt context? Easy: our PRINT_CTX() macro (within our convenient.h header)
shows us this:

if (in_task())
 /* we're in process context (usually safe to sleep / block) */
else
 /* we're in an atomic or interrupt context (cannot sleep / block) */

Now that you understand which one – mutex or spinlock – to use and when, let's get into
the actual usage. We'll begin with how to use the mutex lock!

Using the mutex lock
Mutexes are also called sleepable or blocking mutual exclusion locks. As you have
learned, they are used in the process context if the critical section can sleep (block). They
must not be used within any kind of atomic or interrupt context (top halves, bottom halves
such as tasklets or softirqs, and so on), kernel timers, or even the process context where
blocking is not allowed.

https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/

Kernel Synchronization - Part 1 Chapter 6

[323]

Initializing the mutex lock
A mutex lock "object" is represented in the kernel as a struct mutex data structure.
Consider the following code:

#include <linux/mutex.h>
struct mutex mymtx;

To use a mutex lock, it must be explicitly initialized to the unlocked state. Initialization can
be performed statically (declare and initialize the object) with the DEFINE_MUTEX() macro,
or dynamically via the mutex_init() function (this is actually a macro wrapper over the
__mutex_init() function).

For example, to declare and initialize a mutex object called mymtx, we can
use DEFINE_MUTEX(mymtx);.

We can also do this dynamically. Why dynamically? Often, the mutex lock is a member
of the (global) data structure that it protects (clever!). For example, let's say we have the
following global context structure in our driver code (note that this code is fictional):

struct mydrv_priv {
 <member 1>
 <member 2>
 [...]
 struct mutex mymtx; /* protects access to mydrv_priv */
 [...]
};

Then, in your driver's (or LKM's) init method, do the following:

static int init_mydrv(struct mydrv_priv *drvctx)
{
 [...]
 mutex_init(drvctx-mymtx);
 [...]
}

Keeping the lock variable as a member of the (parent) data structure it protects is a common
(and clever) pattern that's used within Linux; this approach has the added benefit of
avoiding namespace pollution and is unambiguous about which mutex protects which
shared data item (a bigger problem than it might appear to be at first, especially in
enormous projects such as the Linux kernel!).

Kernel Synchronization - Part 1 Chapter 6

[324]

Keep the lock protecting a global or shared data structure as a member
within that data structure.

Correctly using the mutex lock
Typically, you can find very insightful comments within the kernel source tree. Here's a
great one that neatly summarizes the rules you must follow to correctly use a mutex lock;
please read this carefully:

// include/linux/mutex.h
/*
 * Simple, straightforward mutexes with strict semantics:
 *
 * - only one task can hold the mutex at a time
 * - only the owner can unlock the mutex
 * - multiple unlocks are not permitted
 * - recursive locking is not permitted
 * - a mutex object must be initialized via the API
 * - a mutex object must not be initialized via memset or copying
 * - task may not exit with mutex held
 * - memory areas where held locks reside must not be freed
 * - held mutexes must not be reinitialized
 * - mutexes may not be used in hardware or software interrupt
 * contexts such as tasklets and timers
 *
 * These semantics are fully enforced when DEBUG_MUTEXES is
 * enabled. Furthermore, besides enforcing the above rules, the mutex
 * [...]

As a kernel developer, you must understand the following:

A critical section causes the code path to be serialized, defeating parallelism. Due to
this, it's imperative that you keep the critical section as short as possible. A
corollary to this is lock data, not code.
Attempting to reacquire an already acquired (locked) mutex lock – which is
effectively recursive locking – is not supported and will lead to a self-deadlock.

Kernel Synchronization - Part 1 Chapter 6

[325]

Lock ordering: This is a very important rule of thumb for preventing dangerous
deadlock situations. In the presence of multiple threads and multiple locks, it is
critical that the order in which locks are taken is documented and strictly followed by all
the developers working on the project. The actual lock ordering itself isn't sacrosanct,
but the fact that once it's been decided on it must be followed, is. While browsing
through the kernel source tree, you will come across many places where the
kernel developers ensure this is done, and they (usually) write a comment
regarding this for other developers to see and follow. Here's a sample comment
from the slab allocator code (mm/slub.c):

/*
 * Lock order:
 * 1. slab_mutex (Global Mutex)
 * 2. node-list_lock
 * 3. slab_lock(page) (Only on some arches and for debugging)

Now that we understand how mutexes work from a conceptual standpoint (and we
understand their initialization), let's learn how to make use of the lock/unlock APIs.

Mutex lock and unlock APIs and their usage
The actual locking and unlocking APIs for the mutex lock are as follows. The following
code shows how to lock and unlock a mutex, respectively:

void __sched mutex_lock(struct mutex *lock);
void __sched mutex_unlock(struct mutex *lock);

(Ignore __sched here; it's just a compiler attribute that has this function disappear in
the WCHAN output, which shows up in procfs and with certain option switches to ps(1)
(such as -l)).

Again, the comments within the source code in kernel/locking/mutex.c are very
detailed and descriptive; I encourage you to take a look at this file in more detail. We've
only shown some of its code here, which has been taken directly from the 5.4 Linux kernel
source tree:

// kernel/locking/mutex.c
[...]
/**
 * mutex_lock - acquire the mutex
 * @lock: the mutex to be acquired
 *
 * Lock the mutex exclusively for this task. If the mutex is not
 * available right now, it will sleep until it can get it.

Kernel Synchronization - Part 1 Chapter 6

[326]

 *
 * The mutex must later on be released by the same task that
 * acquired it. Recursive locking is not allowed. The task
 * may not exit without first unlocking the mutex. Also, kernel
 * memory where the mutex resides must not be freed with
 * the mutex still locked. The mutex must first be initialized
 * (or statically defined) before it can be locked. memset()-ing
 * the mutex to 0 is not allowed.
 *
 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 * checks that will enforce the restrictions and will also do
 * deadlock debugging)
 *
 * This function is similar to (but not equivalent to) down().
 */
void __sched mutex_lock(struct mutex *lock)
{
 might_sleep();

 if (!__mutex_trylock_fast(lock))
 __mutex_lock_slowpath(lock);
}
EXPORT_SYMBOL(mutex_lock);

might_sleep() is a macro with an interesting debug property; it catches code that's
supposed to execute in an atomic context but doesn't! So, think about it: might_sleep(),
which is the first line of code in mutex_lock(), implies that this code path should not be
executed by anything that's in an atomic context since it might sleep. This means that you
should only use the mutex in the process context when it's safe to sleep!

A quick and important reminder: The Linux kernel can be configured
with a large number of debug options; in this context,
the CONFIG_DEBUG_MUTEXES config option will help you catch possible
mutex-related bugs, including deadlocks. Similarly, under the Kernel
Hacking menu, you will find a large number of debug-related kernel
config options. We discussed this in the companion guide Linux Kernel
Programming - Chapter 5, Writing Your First Kernel Module – LKMs Part 2.
There are several very useful kernel configs with regard to lock
debugging; we shall cover these in the next chapter, in the Lock debugging
within the kernel section.

Kernel Synchronization - Part 1 Chapter 6

[327]

Mutex lock – via [un]interruptible sleep?
As usual, there's more to the mutex than what we've seen so far. You already know that a
Linux process (or thread) cycles through various states of a state machine. On Linux,
sleeping has two discrete states – an interruptible sleep and an uninterruptible sleep. A
process (or thread) in an interruptible sleep is sensitive, which means it will respond to user
space signals, whereas a task in an uninterruptible sleep is not sensitive to user signals.

In a human-interactive application with an underlying driver, as a general rule of thumb,
you should typically put a process into an interruptible sleep (while it's blocking upon the
lock), thus leaving it up to the end user as to whether to abort the application by pressing
Ctrl + C (or some such mechanism involving signals). There is a design rule that's often
followed on Unix-like systems: provide mechanism, not policy. Having said this, on non-
interactive code paths, it's often the case that you must wait on the lock to wait indefinitely,
with the semantic that a signal that's been delivered to the task should not abort the
blocking wait. On Linux, the uninterruptible case turns out to be the most common one.

So, here's the thing: the mutex_lock() API always puts the calling task into an
uninterruptible sleep. If this is not what you want, use the
mutex_lock_interruptible() API to put the calling task into an interruptible sleep.
There is one difference syntax-wise; the latter returns an integer value of 0 on success and -
EINTR (remember the 0/-E return convention) on failure (due to signal interruption).

In general, using mutex_lock() is faster than using mutex_lock_interruptible(); use
it when the critical section is short (thus pretty much guaranteeing that the lock is held for a
short while, which is a very desirable characteristic).

The 5.4.0 kernel contains over 18,500 and just over 800 instances of calling
the mutex_lock() and mutex_lock_interruptible() APIs,
respectively; you can check this out via the powerful cscope(1) utility on
the kernel source tree.

In theory, the kernel provides a mutex_destroy() API as well. This is the opposite
of mutex_init(); its job is to mark the mutex as being unusable. It must only be invoked
once the mutex is in the unlocked state, and once invoked, the mutex cannot be used. This
is a bit theoretical because, on regular systems, it just reduces to an empty function; only on
a kernel with CONFIG_DEBUG_MUTEXES enabled does it become actual (simple) code. Thus,
we should use this pattern when working with the mutex, as shown in the following
pseudocode:

DEFINE_MUTEX(...); // init: initialize the mutex object
/* or */ mutex_init();
[...]

Kernel Synchronization - Part 1 Chapter 6

[328]

 /* critical section: perform the (mutex) locking, unlocking */
 mutex_lock[_interruptible]();
 << ... critical section ... >>
 mutex_unlock();
 mutex_destroy(); // cleanup: destroy the mutex object

Now that you have learned how to use the mutex lock APIs, let's put this knowledge to use.
In the next section, we will build on top of one of our earlier (poorly written – no
protection!) "misc" drivers by employing the mutex object to lock critical sections as
required.

Mutex locking – an example driver
We have created a simple device driver code example in Chapter 1 - Writing a Simple misc
Character Device Driver; that is, ch1/miscdrv_rdwr. There, we wrote a simple misc class
character device driver and used a user space utility program
(ch12/miscdrv_rdwr/rdwr_drv_secret.c) to read and write a (so-called) secret from
and to the device driver's memory.

However, what we glaringly (egregiously is the right word here!) failed to do in that code is
protect shared (global) writeable data! This will cost us dearly in the real world. I urge you
to take some time to think about this: it isn't viable that two (or three or more) user mode
processes open the device file of this driver, and then concurrently issue various I/O reads
and writes. Here, the global shared writable data (in this particular case, two global integers
and the driver context data structure) could easily get corrupted.

So, let's learn from and correct our mistakes by making a copy of this driver (we will now
call it ch12/1_miscdrv_rdwr_mutexlock/1_miscdrv_rdwr_mutexlock.c) and
rewriting some portions of it. The key point is that we must use mutex locks to protect all
critical sections. Instead of displaying the code here (it's in this book's GitHub repository at
https:/​/​github.​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming, after all, please do
git clone it!), let's do something interesting: let's look at a "diff" (the differences – the
delta generated by diff(1)) between the older unprotected version and the newer
protected code version. The output here has been truncated:

$ pwd
<.../ch12/1_miscdrv_rdwr_mutexlock
$ diff -u ../../ch12/miscdrv_rdwr/miscdrv_rdwr.c miscdrv_rdwr_mutexlock.c>>
miscdrv_rdwr.patch
$ cat miscdrv_rdwr.patch
[...]
+#include <linux/mutex.h> // mutex lock, unlock, etc
 #include "../../convenient.h"

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Kernel Synchronization - Part 1 Chapter 6

[329]

[...]
-#define OURMODNAME "miscdrv_rdwr"
+#define OURMODNAME "miscdrv_rdwr_mutexlock"

+DEFINE_MUTEX(lock1); // this mutex lock is meant to protect the integers
ga and gb
[...]
+ struct mutex lock; // this mutex protects this data structure
 };
[...]

Here, we can see that in the newer safe version of the driver, we have declared and
initialized a mutex variable called lock1; we shall use it to protect the (just for
demonstration purposes) two global integers, ga and gb, within our driver. Next,
importantly, we declared a mutex lock named lock within the "driver context"
data structure; that is, drv_ctx. This will be used to protect any and all access to members
of that data structure. It is initialized within the init code:

+ mutex_init(&ctx->lock);
+
+ /* Initialize the "secret" value :-) */
 strscpy(ctx->oursecret, "initmsg", 8);
- dev_dbg(ctx->dev, "A sample print via the dev_dbg(): driver
initialized\n");
+ /* Why don't we protect the above strscpy() with the mutex lock?
+ * It's working on shared writable data, yes?
+ * Yes, BUT this is the init code; it's guaranteed to run in exactly
+ * one context (typically the insmod(8) process), thus there is
+ * no concurrency possible here. The same goes for the cleanup
+ * code path.
+ */

This detailed comment clearly explains why we don't need to lock/unlock around
strscpy(). Again, this should be obvious, but local variables are implicitly private to each
process context (as they reside in that process or thread's kernel mode stack) and therefore
require no protection (each thread/process has a separate instance of the variable, so no one
steps on anyone's toes!). Before we forget, the cleanup code path (which is invoked via the
rmmod(8) process context), must destroy the mutexes:

-static void __exit miscdrv_rdwr_exit(void)
+static void __exit miscdrv_exit_mutexlock(void)
 {
+ mutex_destroy(&lock1);
+ mutex_destroy(&ctx->lock);
 misc_deregister(&llkd_miscdev);
 }

Kernel Synchronization - Part 1 Chapter 6

[330]

Now, let's look at the diff of the driver's open method:

+
+ mutex_lock(&lock1);
+ ga++; gb--;
+ mutex_unlock(&lock1);
+
+ dev_info(dev, " filename: \"%s\"\n"
 [...]

This is where we manipulated the global integers, making this a critical section; unlike
the previous version of this program, here, we do protect this critical section with
the lock1 mutex. So, there it is: the critical section here is the code ga++; gb--;: the code
between the (mutex) lock and unlock operations.

But (there's always a but, isn't there?), all is not well! Take a look at the printk function
(dev_info()) following the mutex_unlock() line of code:

+ dev_info(dev, " filename: \"%s\"\n"
+ " wrt open file: f_flags = 0x%x\n"
+ " ga = %d, gb = %d\n",
+ filp->f_path.dentry->d_iname, filp->f_flags, ga, gb);

Does this look okay to you? No, look carefully: we are reading the value of the global
integers, ga and gb. Recall the fundamentals: in the presence of concurrency (which is
certainly a possibility here in this driver's open method), even reading shared writeable data
without the lock is potentially unsafe. If this doesn't make sense to you, please think: what if,
while one thread is reading the integers, another is simultaneously updating (writing)
them; what then? This kind of situation is called a dirty read (or a torn read); we might end
up reading stale data and must be protected against. (The fact is that this isn't really a great
example of a dirty read as, on most processors, reading and writing single integer items
does tend to be an atomic operation. However, we must not assume such things – we must
simply do our job and protect it.)

In fact, there's another similar bug-in-waiting: we have read data from the open file
structure (the filp pointer) without bothering to protect it (indeed, the open file structure
has a lock; we're supposed to use it! We shall do so later).

The precise semantics of how and when things such as dirty reads occur
does tend to be very arch (machine)-dependent; nevertheless, our job as
module or driver authors is clear: we must ensure that we protect
all critical sections. This includes reads upon shared writable data.

Kernel Synchronization - Part 1 Chapter 6

[331]

For now, we shall just flag these as potential errors (bugs). We will take care of this in
the Using the atomic integer operators section, in a more performance-friendly manner.
Looking at the diff of the driver's read method reveals something interesting (ignore the
line numbers shown here; they might change):

Figure 6.7 – The diff of the driver's read() method; see the usage of the mutex lock in the newer version

We have now used the driver context structure's mutex lock to protect the critical sections.
The same goes for both the write and close (release) methods of the device driver (generate
the patch for yourself and take a look).

Kernel Synchronization - Part 1 Chapter 6

[332]

Note that the user mode app remains unchanged, which means for us to test the new safer
version, we must continue using the user mode app
at ch12/miscdrv_rdwr/rdwr_drv_secret.c. Running and testing code such as this
driver code on a debug kernel, which contains various locking errors and deadlock
detection capabilities, is crucial (we'll return to these "debug" capabilities in the next
chapter, in the Lock debugging within the kernel section).

In the preceding code, we took the mutex lock just before the copy_to_user() routine;
that's fine. However, we only release it after dev_info(). Why not release it before this
printk, thus shortening the critical section?

A closer look at dev_info() reveals why it's within the critical section. We are printing the
values of three variables here: the number of bytes read by secret_len and the number
of bytes that are "transmitted" and "received" by ctx->tx and ctx->rx, respectively.
secret_len is a local variable and does not require protection, but the other two variables
are within the global driver context structure and thus do require protection, even from
(possibly dirty) reads.

The mutex lock – a few remaining points
In this section, we will cover a few additional points regarding mutexes.

Mutex lock API variants
First, let's take a look at a few variants of the mutex lock API; besides the interruptible
variant (described in the Mutex lock – via [un]interruptible sleep? section), we have the trylock,
killable, and io variants.

The mutex trylock variant
What if you would like to implement a busy-wait semantic; that is, test for the availability
of the (mutex) lock and, if available (meaning it's currently unlocked), acquire/lock it and
continue with the critical section code path? If this is not available (it's currently in the
locked state), do not wait for the lock; instead, perform some other work and retry. In effect,
this is a non-blocking mutex lock variant and is called the trylock; the following flowchart
shows how it works:

Kernel Synchronization - Part 1 Chapter 6

[333]

Figure 6.8 – The "busy wait" semantic, a non-blocking trylock operation

The API for this trylock variant of the mutex lock is as follows:

int mutex_trylock(struct mutex *lock);

This API's return value signifies what transpired at runtime:

A return value of 1 indicates that the lock has been successfully acquired.
A return value of 0 indicates that the lock is currently contended (locked).

Though it might sound tempting to, do not attempt to use
the mutex_trylock() API to figure out if a mutex lock is in a locked
or unlocked state; this is inherently "racy". Next, note that using this
trylock variant in a highly contended lock path may well reduce your
chances of acquiring the lock. The trylock variant has been traditionally
used in deadlock prevention code that might need to back out of a certain
lock order sequence and be retried via another sequence (ordering).

Kernel Synchronization - Part 1 Chapter 6

[334]

Also, with respect to the trylock variant, even though the literature uses the term try and
acquire the mutex atomically, it does not work in an atomic or interrupt context – it only works
in the process context (as with any type of mutex lock). As usual, the lock must be released
by mutex_unlock() being invoked by the owner context.

I suggest that you try working on the trylock mutex variant as an exercise. See
the Questions section at the end of this chapter for an assignment!

The mutex interruptible and killable variants
As you have already learned, the mutex_lock_interruptible() API is used when the
driver (or module) is willing to acknowledge any (user space) signal interrupting it (and
returns -ERESTARTSYS to tell the kernel VFS layer to perform signal handling; the user
space system call will fail with errno set to EINTR). An example can be found in the
module handling code in the kernel, within the delete_module(2) system call
(which rmmod(8) invokes):

// kernel/module.c
[...]
SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 unsigned int, flags)
{
 struct module *mod;
 [...]
 if (!capable(CAP_SYS_MODULE) || modules_disabled)
 return -EPERM;
 [...]
 if (mutex_lock_interruptible(&module_mutex) != 0)
 return -EINTR;
 mod = find_module(name);
 [...]
out:
 mutex_unlock(&module_mutex);
 return ret;
}

Notice how the API returns -EINTR on failure. (The SYSCALL_DEFINEn() macro becomes
a system call signature; n signifies the number of parameters this particular system call
accepts. Also, notice the capability check – unless you are running as root or have the
CAP_SYS_MODULE capability (or module loading is completely disabled), the system call
just returns a failure (-EPERM).)

Kernel Synchronization - Part 1 Chapter 6

[335]

If, however, your driver is only willing to be interrupted by fatal signals (those that will kill
the user space context), then use the mutex_lock_killable() API (the signature is
identical to that of the interruptible variant).

The mutex io variant
The mutex_lock_io() API is identical in syntax to the mutex_lock() API; the
only difference is that the kernel thinks that the wait time of the loser thread(s) is the same
as waiting for I/O (the code comment in kernel/locking/mutex.c:mutex_lock_io()
clearly documents this; take a look). This can matter accounting-wise.

You can find fairly exotic APIs such as
mutex_lock[_interruptible]_nested() within the kernel, with the
emphasis here being on the nested suffix. However, note that the
Linux kernel does not prefer developers to use nested (or recursive)
locking (as we mentioned in the Correctly using the mutex lock section).
Also, these APIs only get compiled in the presence of the
CONFIG_DEBUG_LOCK_ALLOC config option; in effect, the nested
APIs were added to support the kernel lock validator mechanism. They
should only be used in special circumstances (where a nesting level must
be incorporated between instances of the same lock type).

In the next section, we will answer a typical FAQ: what's the difference between the mutex
and semaphore objects? Does Linux even have a semaphore object? Read on to find out!

The semaphore and the mutex
The Linux kernel does provide a semaphore object, along with the usual operations you
can perform on a (binary) semaphore:

A semaphore lock acquire via the down[_interruptible]() (and variations)
APIs
A semaphore unlock via the up() API.

In general, the semaphore is an older implementation, so it's advised that
you use the mutex lock in place of it.

Kernel Synchronization - Part 1 Chapter 6

[336]

An FAQ worth looking at, though, is this: what is the difference between a mutex and
a semaphore? They appear to be conceptually similar, but are actually quite different:

A semaphore is a more generalized form of a mutex; a mutex lock can
be acquired (and subsequently released or unlocked) exactly once, while a
semaphore can be acquired (and subsequently released) multiple times.
A mutex is used to protect a critical section from simultaneous access, while
a semaphore should be used as a mechanism to signal another waiting task that a
certain milestone has been reached (typically, a producer task posts a signal via
the semaphore object, which a consumer task is waiting to receive, in order to
continue with further work).
A mutex has the notion of ownership of the lock and only the owner context
can perform the unlock; there is no ownership for a binary semaphore.

Priority inversion and the RT-mutex
A word of caution when using any kind of locking is that you should carefully design and
code to prevent the dreaded deadlock scenarios that could arise (more on this in the next
chapter in the The lock validator lockdep – catch locking issues early section).

Aside from deadlocks, there is another risky scenario that arises when using the mutex:
that of priority inversion (again, we will not delve into the details in this book). Suffice it to
say that the unbounded priority inversion case can be a deadly one; the end result is
that the product's high(est) priority thread is kept off the CPU for too long.

As I covered in some detail in my earlier book, Hands-on System
Programming with Linux, it's precisely this priority inversion issue that
struck NASA's Mars Pathfinder robot, on the Martian surface no less, back
in July 1997! See the Further reading section of this chapter for interesting
resources about this, something that every software developer should be
aware of!

Kernel Synchronization - Part 1 Chapter 6

[337]

The userspace Pthreads mutex implementation certainly has priority inheritance (PI)
semantics available. But what about within the Linux kernel? For this, Ingo Molnar
provided the PI-futex-based RT-mutex (a real-time mutex; in effect, a mutex extended to
have PI capabilities. futex(2) is a sophisticated system call that provides a fast userspace
mutex). These become available when the CONFIG_RT_MUTEXES config option is enabled.
Quite similar to the "regular" mutex semantics, RT-mutex APIs are provided to initialize,
(un)lock, and destroy the RT-mutex object. (This code has been merged into the mainline
kernel from Ingo Molnar's -rt tree). As far as actual usage is concerned, the RT-mutex is
used for internally implementing the PI futex (the futex(2) system call itself internally
implements the userspace Pthreads mutex). Besides this, the kernel locking self-test code
and the I2C subsystem uses the RT-mutex directly.

Thus, for a typical module (or driver) author, these APIs are not going to be used very
frequently. The kernel does provide some documentation on the internal design of the RT-
mutex at https:/ ​/​www. ​kernel. ​org/ ​doc/ ​Documentation/ ​locking/ ​rt- ​mutex- ​design.
rst (covering priority inversion, priority inheritance, and more).

Internal design
A word on the reality of the internal implementation of the mutex lock deep within
the kernel fabric: Linux tries to implement a fast path approach when possible.

A fast path is the most optimized high-performance type of code path;
for example, one with no locks and no blocking. The intent is to have code
follow this fast path as far as possible. Only when it really isn't possible
does the kernel fall back to a (possible) "mid path", and then a "slow path",
approach; it still works but is slow(er).

This fast path is taken in the absence of contention for the lock (that is, the lock is in an
unlocked state to begin with). So, the lock is locked with no fuss, pretty much immediately.
If, however, the mutex is already locked, then the kernel typically uses a mid path
optimistic spinning implementation, making it more of a hybrid (mutex/spinlock) lock type.
If even this isn't possible, the "slow path" is followed – the process context attempting to get
the lock may well enter the sleep state. If you're interested in its internal implementation,
more details can be found within the official kernel documentation: https:/ ​/​www. ​kernel.
org/​doc/​Documentation/ ​locking/ ​mutex- ​design. ​rst.

https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst

Kernel Synchronization - Part 1 Chapter 6

[338]

LDV (Linux Driver Verification) project: in the companion guide Linux Kernel
Programming - Chapter 1, Kernel Workspace Setup, in the section The LDV –
Linux Driver Verification – project, we mentioned that this project has useful
"rules" with respect to various programming aspects of Linux modules
(drivers, mostly) as well as the core kernel.

With regard to our current topic, here's one of the rules: Locking a mutex
twice or unlocking without prior locking (http:/ ​/​linuxtesting. ​org/ ​ldv/
online? ​action= ​show_ ​rule ​rule_ ​id= ​0032). It mentions the kind of things
you cannot do with the mutex lock (we have already covered this in the
Correctly using the mutex lock section). The interesting thing here: you can
see an actual example of a bug – a mutex lock double-acquire attempt,
leading to (self) deadlock – in a kernel driver (as well as the subsequent
fix).

Now that you've understood how to use the mutex lock, let's move on and look at the other
very common lock within the kernel – the spinlock.

Using the spinlock
In the Mutex or spinlock? Which to use when section, you learned when to use the spinlock
instead of the mutex lock and vice versa. For convenience, we have reproduced the key
statements we provided previously here:

Is the critical section running in an atomic (interrupt) context or in a
process context where it cannot sleep? Use the spinlock.
Is the critical section running in a process context and sleep in the
critical section is necessary? Use the mutex lock.

In this section, we shall consider that you've now decided to use the spinlock.

Spinlock – simple usage
For all the spinlock APIs, you must include the relevant header file; that is, include
<linux/spinlock.h>.

http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032

Kernel Synchronization - Part 1 Chapter 6

[339]

Similar to the mutex lock, you must declare and initialize the spinlock to the unlocked
state before use. The spinlock is an "object" that's declared via the typedef data type
named spinlock_t (internally, it's a structure defined in
include/linux/spinlock_types.h). It can be initialized dynamically via the
spin_lock_init() macro:

spinlock_t lock;
spin_lock_init(&lock);

Alternatively, this can be performed statically (declared and initialized)
with DEFINE_SPINLOCK(lock);.

As with the mutex, declaring a spinlock within the (global/static) data structure is meant
to protect against concurrent access, and is typically a very good idea. As we mentioned
earlier, this very idea is made use of within the kernel often; as an example, the data
structure representing an open file on the Linux kernel is called struct file:

// include/linux/fs.h
struct file {
 [...]
 struct path f_path;
 struct inode *f_inode; /* cached value */
 const struct file_operations *f_op;
 /*
 * Protects f_ep_links, f_flags.
 * Must not be taken from IRQ context.
 */
 spinlock_t f_lock;
 [...]
 struct mutex f_pos_lock;
 loff_t f_pos;
 [...]

Check it out: for the file structure, the spinlock variable named f_lock is the spinlock
that protects the f_ep_links and f_flags members of the file data structure (it also has
a mutex lock to protect another member; that is, the file's current seek position – f_pos).

How do you actually lock and unlock the spinlock? There are quite a few variations on the
API that are exposed by the kernel to us module/driver authors; the simplest form of the
spin(un)lock APIs are as folows:

void spin_lock(spinlock_t *lock);
<< ... critical section ... >>
void spin_unlock(spinlock_t *lock);

Kernel Synchronization - Part 1 Chapter 6

[340]

Note that there is no spinlock equivalent of the mutex_destroy() API.

Now, let's see the spinlock APIs in action!

Spinlock – an example driver
Similar to what we did with our mutex locking sample driver (the Mutex locking – an
example driver section), to illustrate the simple usage of a spinlock, we shall make a copy of
our earlier ch12/1_miscdrv_rdwr_mutexlock driver as a starting template and then
place it in a new kernel driver; that is, ch12/2_miscdrv_rdwr_spinlock. Again,
here, we'll only show small parts of the diff (the differences, the delta generated by
diff(1)) between that program and this one (we won't show every line of the diff, only
the relevant portions):

// location: ch12/2_miscdrv_rdwr_spinlock/
+#include <linux/spinlock.h>
[...]
-#define OURMODNAME "miscdrv_rdwr_mutexlock"
+#define OURMODNAME "miscdrv_rdwr_spinlock"
[...]
static int ga, gb = 1;
-DEFINE_MUTEX(lock1); // this mutex lock is meant to protect the integers
ga and gb
+DEFINE_SPINLOCK(lock1); // this spinlock protects the global integers ga
and gb
[...]
+/* The driver 'context' data structure;
+ * all relevant 'state info' reg the driver is here.
 */
 struct drv_ctx {
 struct device *dev;
@@ -63,10 +66,22 @@
 u64 config3;
 #define MAXBYTES 128
 char oursecret[MAXBYTES];
- struct mutex lock; // this mutex protects this data structure
+ struct mutex mutex; // this mutex protects this data structure
+ spinlock_t spinlock; // ...so does this spinlock
 };
 static struct drv_ctx *ctx;

Kernel Synchronization - Part 1 Chapter 6

[341]

This time, to protect the members of our drv_ctx global data structure, we have both
the original mutex lock and a new spinlock. This is quite common; the mutex lock
protects member usage in a critical section where blocking can occur, while the spinlock is
used to protect members in critical sections where blocking (sleeping – recall that it might
sleep) cannot occur.

Of course, we must ensure that we initialize all the locks so that they're in the unlocked
state. We can do this in the driver's init code (continuing with the patch output):

- mutex_init(&ctx->lock);
+ mutex_init(&ctx->mutex);
+ spin_lock_init(&ctx->spinlock);

In the driver's open method, we replace the mutex lock with the spinlock to protect the
increments and decrements of the global integers:

 * open_miscdrv_rdwr()
@@ -82,14 +97,15 @@

 PRINT_CTX(); // displays process (or intr) context info

- mutex_lock(&lock1);
+ spin_lock(&lock1);
 ga++; gb--;
- mutex_unlock(&lock1);
+ spin_unlock(&lock1);

Now, within the driver's read method, we use the spinlock instead of the mutex to protect
some critical sections:

 static ssize_t read_miscdrv_rdwr(struct file *filp, char __user *ubuf,
size_t count, loff_t *off)
 {
- int ret = count, secret_len;
+ int ret = count, secret_len, err_path = 0;
 struct device *dev = ctx->dev;

- mutex_lock(&ctx->lock);
+ spin_lock(&ctx->spinlock);
 secret_len = strlen(ctx->oursecret);
- mutex_unlock(&ctx->lock);
+ spin_unlock(&ctx->spinlock);

Kernel Synchronization - Part 1 Chapter 6

[342]

However, that's not all! Continuing with the driver's read method, carefully take a look at
the following code and comment:

[...]
@@ -139,20 +157,28 @@
 * member to userspace.
 */
 ret = -EFAULT;
- mutex_lock(&ctx->lock);
+ mutex_lock(&ctx->mutex);
+ /* Why don't we just use the spinlock??
+ * Because - VERY IMP! - remember that the spinlock can only be used
when
+ * the critical section will not sleep or block in any manner; here,
+ * the critical section invokes the copy_to_user(); it very much can
+ * cause a 'sleep' (a schedule()) to occur.
+ */
 if (copy_to_user(ubuf, ctx->oursecret, secret_len)) {
[...]

When protecting data where the critical section has possibly blocking APIs – such as
in copy_to_user() – we must only use a mutex lock! (Due to lack of space, we haven't
displayed more of the code diff here; we expect you to read through the spinlock sample
driver code and try it out for yourself.)

Test – sleep in an atomic context
You have already learned that the one thing we should not do is sleep (block) in any kind of
atomic or interrupt context. Let's put this to the test. As always, the empirical approach –
where you test things for yourself rather than relying on other's experiences – is key!

How exactly can we test this? Easy: we shall use a simple integer module
parameter, buggy, that, when set to 1 (the default value being 0), executes a code path
within our spinlock's critical section that violates this rule. We shall invoke the
schedule_timeout() API (which, as you learned in Chapter 5, Working with Kernel
Timers, Threads, and Workqueues, in the Understanding how to use the *sleep() blocking APIs
section) internally invokes schedule(); it's how we go to sleep in the kernel space).
Here's the relevant code:

// ch12/2_miscdrv_rdwr_spinlock/2_miscdrv_rdwr_spinlock.c
[...]
static int buggy;
module_param(buggy, int, 0600);
MODULE_PARM_DESC(buggy,

Kernel Synchronization - Part 1 Chapter 6

[343]

"If 1, cause an error by issuing a blocking call within a spinlock critical
section");
[...]
static ssize_t write_miscdrv_rdwr(struct file *filp, const char __user
*ubuf,
 size_t count, loff_t *off)
{
 int ret, err_path = 0;
 [...]
 spin_lock(&ctx->spinlock);
 strscpy(ctx->oursecret, kbuf, (count > MAXBYTES ? MAXBYTES : count));
 [...]
 if (1 == buggy) {
 /* We're still holding the spinlock! */
 set_current_state(TASK_INTERRUPTIBLE);
 schedule_timeout(1*HZ); /* ... and this is a blocking call!
 * Congratulations! you've just engineered a bug */
 }
 spin_unlock(&ctx->spinlock);
 [...]
}

Now, for the interesting part: let's test this (buggy) code path in two kernels: first, in our
custom 5.4 "debug" kernel (the kernel where we have enabled several kernel
debug configuration options (mostly from the Kernel Hacking menu in make
menuconfig), as explained in the companion guide Linux Kernel Programming - Chapter 5,
Writing Your First Kernel Module – LKMs Part 2), and second, on a generic distro (we usually
run on Ubuntu) 5.4 kernel without any relevant kernel debug options enabled.

Testing on a 5.4 debug kernel
First of all, ensure you've built the custom 5.4 kernel and that all the required kernel debug
config options enabled (again, look back to the companion guide Linux Kernel Programming
- Chapter 5, Writing Your First Kernel Module – LKMs Part 2, the Configuring a debug
kernel section if you need to). Then, boot off your debug kernel (here, it's named 5.4.0-
llkd-dbg). Now, build the driver (in ch12/2_miscdrv_rdwr_spinlock/) against this
debug kernel (the usual make within the driver's directory should do this; you might find
that, on the debug kernel, the build is noticeably slower!):

$ lsb_release -a 2>/dev/null | grep "^Description" ; uname -r
Description: Ubuntu 20.04.1 LTS
5.4.0-llkd-dbg
$ make
[...]
$ modinfo ./miscdrv_rdwr_spinlock.ko

Kernel Synchronization - Part 1 Chapter 6

[344]

filename:
/home/llkd/llkd_src/ch12/2_miscdrv_rdwr_spinlock/./miscdrv_rdwr_spinlock.ko
[...]
description: LLKD book:ch12/2_miscdrv_rdwr_spinlock: simple misc char
driver rewritten with spinlocks
[...]
parm: buggy:If 1, cause an error by issuing a blocking call within a
spinlock critical section (int)
$ sudo virt-what
virtualbox
kvm
$

As you can see, we're running our custom 5.4.0 "debug" kernel on our x86_64 Ubuntu 20.04
guest VM.

How do you know whether you're running on a virtual machine (VM) or
on the "bare metal" (native) system? virt-what(1) is a useful little script
that shows this (you can install it on Ubuntu with sudo apt install
virt-what).

To run our test case, insert the driver into the kernel and set the buggy module parameter
to 1. Invoking the driver's read method (via our user space app; that
is, ch12/miscdrv_rdwr/rdwr_test_secret) isn't an issue, as shown here:

$ sudo dmesg -C
$ sudo insmod ./miscdrv_rdwr_spinlock.ko buggy=1
$../../ch12/miscdrv_rdwr/rdwr_test_secret
Usage: ../../ch12/miscdrv_rdwr/rdwr_test_secret opt=read/write device_file
["secret-msg"]
 opt = 'r' => we shall issue the read(2), retrieving the 'secret' form the
driver
 opt = 'w' => we shall issue the write(2), writing the secret message
<secret-msg>
 (max 128 bytes)
$
$../../ch12/miscdrv_rdwr/rdwr_test_secret r
/dev/llkd_miscdrv_rdwr_spinlock
Device file /dev/llkd_miscdrv_rdwr_spinlock opened (in read-only mode):
fd=3
../../ch12/miscdrv_rdwr/rdwr_test_secret: read 7 bytes from
/dev/llkd_miscdrv_rdwr_spinlock
The 'secret' is:
 "initmsg"
$

Kernel Synchronization - Part 1 Chapter 6

[345]

Next, we issue a write(2) to the driver via the user mode app; this time, our buggy code
path gets executed. As you saw, we issued a schedule_timeout() within a spinlock
critical section (that is, between the lock and unlock). The debug kernel detects this as a
bug and spawns (impressively large) debug diagnostics into the kernel log (note that bugs
like this can quite possibly hang your system, so test this on a VM first):

Figure 6.9 – Kernel diagnostics being triggered by the "scheduling in atomic context" bug we've deliberately hit here

Kernel Synchronization - Part 1 Chapter 6

[346]

The preceding screenshot shows part of what transpired (follow along while viewing the
driver code in ch12/2_miscdrv_rdwr_spinlock/2_miscdrv_rdwr_spinlock.c):

First, we have our user mode app's process context (rdwr_test_secre; notice1.
how the name is truncated to the first 16 characters, including the NULL byte),
which enters the driver's write method; that is, write_miscdrv_rdwr(). This
can be seen in the output of our useful PRINT_CTX() macro (we've reproduced
this line here):

miscdrv_rdwr_spinlock:write_miscdrv_rdwr(): 004) rdwr_test_secre
:23578 | ...0 /* write_miscdrv_rdwr() */

It copies in the new 'secret' from the user space writer process and writes it,2.
for 24 bytes.
It then "takes" the spinlock, enters the critical section, and copies this data to the3.
oursecret member of our driver's context structure.
After this, if (1 == buggy) { evaluates to true.4.
Then, it calls schedule_timeout(), which is a blocking API (as it internally5.
calls schedule()), triggering the bug, which is helpfully highlighted in red:

BUG: scheduling while atomic: rdwr_test_secre/23578/0x00000002

The kernel now dumps a good deal of the diagnostic output. Among the first6.
things to be dumped is the call stack.

The call stack or stack backtrace (or "call trace") of the kernel mode stack of the process –
here, it's our user space app, rdwr_drv_secret, which is running our (buggy) driver's
code in the process context – can be clearly seen in Figure 6.9. Each line after the Call
Trace: header is essentially a call frame on the kernel stack.

As a tip, ignore the stack frames that begin with the ? symbol; they are literally
questionable call frames, in all likelihood "leftovers" from previous stack usage in the same
memory region. It's worth taking a small memory-related diversion here: this is how stack
allocation really works; stack memory isn't allocated and freed on a per-call frame basis as
that would be frightfully expensive. Only when a stack memory page is exhausted is a new
one automatically faulted in! (Recall our discussions in the companion guide Linux Kernel
Programming - Chapter 9, Kernel Memory Allocation for Module Authors – Part 2, in the A brief
note on memory allocations and demand paging section.) So, the reality is that, as code calls and
returns from functions, the same stack memory page(s) tend to keep getting reused.

Kernel Synchronization - Part 1 Chapter 6

[347]

Not only that, but for performance reasons, the memory isn't wiped each time, leading to
leftovers from previous frames often appearing. (They can literally "spoil" the picture.
However, fortunately, the modern stack call frame tracing algorithms are usually able to do
a superb job in figuring out the correct stack trace.)

Following the stack trace bottom-up (always read it bottom-up), we can see that, as expected,
our user space write(2) system call (it often shows up as (something like) SyS_write or,
on the x86, as __x64_sys_write, though not visible in Figure 6.9) invokes the kernel's
VFS layer code (you can see vfs_write() here, which calls __vfs_write()), which
further invokes our driver's write method; that is, write_miscdrv_rdwr()! This code, as
we well know, invokes the buggy code path where we call schedule_timeout(), which,
in turn, invokes schedule() (and __schedule()), causing the whole BUG: scheduling
while atomic bug to trigger.

The format of the scheduling while atomic code path is retrieved from the following
line of code, which can be found in kernel/sched/core.c:

printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", prev->comm,
prev->pid, preempt_count());

Interesting! Here, you can see that it printed the following string:

 BUG: scheduling while atomic: rdwr_test_secre/23578/0x00000002

After atomic:, it prints the process name – the PID – and then invokes the
preempt_count() inline function, which prints the preempt depth; the preempt depth is a
counter that's incremented every time a lock is taken and decremented on every unlock. So,
if it's positive, this implies that the code is within a critical or atomic section; here, it shows
as the value 2.

Note that this bug gets neatly served up during this test run precisely
because the CONFIG_DEBUG_ATOMIC_SLEEP debug kernel config option is turned on. It's
on because we're running a custom "debug kernel" (kernel version 5.4.0)! The config option
details (you can interactively find and set this option in make menuconfig, under the
Kernel Hacking menu) are as follows:

// lib/Kconfig.debug
[...]
config DEBUG_ATOMIC_SLEEP
 bool "Sleep inside atomic section checking"
 select PREEMPT_COUNT
 depends on DEBUG_KERNEL
 depends on !ARCH_NO_PREEMPT
 help

Kernel Synchronization - Part 1 Chapter 6

[348]

 If you say Y here, various routines which may sleep will become very
 noisy if they are called inside atomic sections: when a spinlock is
 held, inside an rcu read side critical section, inside preempt disabled
 sections, inside an interrupt, etc...

Testing on a 5.4 non-debug distro kernel
As a contrasting test, we will now perform the very same thing on our Ubuntu 20.04 LTS
VM, which we'll boot via its default generic 'distro' 5.4 Linux kernel that is typically not
configured as a 'debug' kernel (here, the CONFIG_DEBUG_ATOMIC_SLEEP kernel config option
hasn't been set).

First, we insert our (buggy) driver. Then, when we run our rdwr_drv_secret process in
order to write the new secret to the driver, the buggy code path gets executed. However,
this time, the kernel does not crash, nor does it report any issues at all (looking at the dmesg(1)
output validates this):

$ uname -r
5.4.0-56-generic
$ sudo insmod ./miscdrv_rdwr_spinlock.ko buggy=1
$../../ch12/miscdrv_rdwr/rdwr_test_secret w
/dev/llkd_miscdrv_rdwr_spinlock "passwdcosts500bucksdude"
Device file /dev/llkd_miscdrv_rdwr_spinlock opened (in write-only mode):
fd=3
../../ch12/miscdrv_rdwr/rdwr_test_secret: wrote 24 bytes to
/dev/llkd_miscdrv_rdwr_spinlock
$ dmesg
[...]
[65.420017] miscdrv_rdwr_spinlock:miscdrv_init_spinlock(): LLKD misc
driver (major # 10) registered, minor# = 56, dev node is
/dev/llkd_miscdrv_rdwr
[81.665077] miscdrv_rdwr_spinlock:miscdrv_exit_spinlock():
miscdrv_rdwr_spinlock: LLKD misc driver deregistered, bye
[86.798720] miscdrv_rdwr_spinlock:miscdrv_init_spinlock(): VERMAGIC_STRING
= 5.4.0-56-generic SMP mod_unload
[86.799890] miscdrv_rdwr_spinlock:miscdrv_init_spinlock(): LLKD misc
driver (major # 10) registered, minor# = 56, dev node is
/dev/llkd_miscdrv_rdwr
[130.214238] misc llkd_miscdrv_rdwr_spinlock: filename:
"llkd_miscdrv_rdwr_spinlock"
 wrt open file: f_flags = 0x8001
 ga = 1, gb = 0

Kernel Synchronization - Part 1 Chapter 6

[349]

[130.219233] misc llkd_miscdrv_rdwr_spinlock: stats: tx=0, rx=0
[130.219680] misc llkd_miscdrv_rdwr_spinlock: rdwr_test_secre wants to
write 24 bytes
[130.220329] misc llkd_miscdrv_rdwr_spinlock: 24 bytes written,
returning... (stats: tx=0, rx=24)
[131.249639] misc llkd_miscdrv_rdwr_spinlock: filename:
"llkd_miscdrv_rdwr_spinlock"
 ga = 0, gb = 1
[131.253511] misc llkd_miscdrv_rdwr_spinlock: stats: tx=0, rx=24
$

We know that our write method has a deadly bug, yet it doesn't seem to fail in any manner!
This is really bad; it's this kind of thing that can erroneously lead you to conclude that your
code is just fine when there's actually a nasty bug silently lying in wait to pounce one fine
day!

To help us investigate what exactly is going on under the hood, let's run our test app (the
rdwr_drv_secret process) once more, but this time via the powerful trace-cmd(1) tool
(a very useful wrapper over the Ftrace kernel infrastructure; the following is its
truncated output:

The Linux kernel's Ftrace infrastructure is the kernel's primary
tracing infrastructure; it provides a detailed trace of pretty much
every function that's been executed in the kernel space. Here, we are
leveraging Ftrace via a convenient frontend: the trace-cmd(1) utility.
These are indeed very powerful and useful debug tools; we've mentioned
several others in the companion guide Linux Kernel Programming - Chapter
1, Kernel Workspace Setup, but unfortunately, the details are beyond
the scope of this book. Check out the man pages to learn more.

$ sudo trace-cmd record -p function_graph -F
../../ch12/miscdrv_rdwr/rdwr_test_secret w /dev/llkd_miscdrv_rdwr_spinlock
"passwdcosts500bucks"
$ sudo trace-cmd report -I -S -l > report.txt
$ sudo less report.txt
[...]

Kernel Synchronization - Part 1 Chapter 6

[350]

The output can be seen in the following screenshot:

Figure 6.10 – A partial screenshot of the trace-cmd(1) report output

As you can see, the write(2) system call from our user mode app becomes, as expected,
vfs_write(), which itself (after security checks) invokes __vfs_write(), which, in turn,
invokes our driver's write method – the write_miscdrv_rdwr() function!

In the (large) Ftrace output stream, we can see that the schedule_timeout() function has
indeed been invoked:

Figure 6.11 – A partial screenshot of the trace-cmd(1) report output, showing the (buggy!) calls to schedule_timeout() and schedule() within an atomic context

A few lines of output after schedule_timeout(), we can clearly see schedule() being
invoked! So, there we have it: our driver has (deliberately, of course) performed
something buggy – calling schedule() in an atomic context. But again, the key point here
is that on this Ubuntu system, we are not running a "debug" kernel, which is why we have
the following:

$ grep DEBUG_ATOMIC_SLEEP /boot/config-5.4.0-56-generic
CONFIG_DEBUG_ATOMIC_SLEEP is not set
$

Kernel Synchronization - Part 1 Chapter 6

[351]

This is why the bug isn't being reported! This proves the usefulness of running test cases –
and indeed performing kernel development – on a "debug" kernel, a kernel with many
debug features enabled. (As an exercise, if you haven't done so already, prepare a "debug"
kernel and run this test case on it.)

Linux Driver Verification (LDV) project: In the companion guide Linux
Kernel Programming - Chapter 1, Kernel Workspace Setup, in the section The
LDV – Linux Driver Verification – project, we mentioned that this project has
useful "rules" with respect to various programming aspects of Linux
modules (drivers, mostly) as well as the core kernel.

With regard to our current topic, here's one of the rules: Usage of spin lock
and unlock functions (http:/ ​/​linuxtesting. ​org/ ​ldv/ ​online? ​action=
show_ ​rule ​rule_ ​id= ​0039). It mentions key points with regard to the
correct usage of spinlocks; interestingly, here, it shows an actual bug
instance in a driver where a spinlock was attempted to be released twice –
a clear violation of the locking rules, leading to an unstable system.

Locking and interrupts
So far, we have learned how to use the mutex lock and, for the spinlock, the basic
spin_[un]lock() APIs. A few other API variations on the spinlock exist, and we shall
examine the more common ones here.

To understand exactly why you may need other APIs for spinlocks, let's go over a scenario:
as a driver author, you find that the device you're working on asserts a hardware interrupt;
accordingly, you write the interrupt handler for it. Now, while implementing a read
method for your driver, you find that you have a non-blocking critical section within it.
This is easy to deal with: as you have learned, you should use a spinlock to protect it. Great!
But what if, while in the read method's critical section, the device's hardware interrupt
fires? As you're aware, hardware interrupts preempt anything and everything; thus, control will
go to the interrupt handler code preempting the driver's read method.

http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039

Kernel Synchronization - Part 1 Chapter 6

[352]

The key question here: is this an issue? That answer depends both on what your interrupt
handler and your read method were doing and how they were implemented. Let's
visualize a few scenarios:

The interrupt handler (ideally) uses only local variables, so even if the
read method were in a critical section, it really doesn't matter; the interrupt
handling will complete very quickly and control will be handed back to
whatever was interrupted (again, there's more to it than this; as you know, any
existing bottom-half, such as a tasklet or softirq, may also need to execute). In
other words, as such, there is really no race in this case.
The interrupt handler is working on (global) shared writeable data but not on the
data items that your read method is using. Thus, again, there is no conflict and
no race with the read code. What you should realize, of course, is that the
interrupt code does have a critical section and that it must be protected (perhaps with
another spinlock).
The interrupt handler is working on the same global shared writeable data
that your read method is using. In this case, we can see that the potential for a
race definitely exists, so we need locking!

Let's focus on the third case. Obviously, we should use a spinlock to protect the critical
section within the interrupt handling code (recall that using a mutex is disallowed when
we're in any kind of interrupt context). Also, unless we use the very same spinlock in both the
read method and the interrupt handler's code path, they will not be protected at all! (Be
careful when working with locks; take the time to think through your design and code in
detail.)

Let's try and make this a bit more hands-on (with pseudocode for now): let's say we have a
global (shared) data structure named gCtx; we're operating on it in both the read method
as well as the interrupt handler (hardirq handler) within our driver. Since it's shared, it's a
critical section and therefore requires protection; since we are running in an atomic
(interrupt) context, we can't use a mutex, so we must use a spinlock instead (here, the
spinlock variable is called slock). The following pseudocode shows some timestamps (t1,
t2, ...) for this situation:

// Driver read method ; WRONG !
driver_read(...) << time t0 >>
{
 [...]
 spin_lock(&slock);
 <<--- time t1 : start of critical section >>
... << operating on global data object gCtx >> ...
 spin_unlock(&slock);
 <<--- time t2 : end of critical section >>

Kernel Synchronization - Part 1 Chapter 6

[353]

 [...]
} << time t3 >>

The following pseudocode is for the device driver's interrupt handler:

handle_interrupt(...) << time t4; hardware interrupt fires!
>>
{
 [...]
 spin_lock(&slock);
 <<--- time t5: start of critical section >>
 ... << operating on global data object gCtx >> ...
 spin_unlock(&slock);
 <<--- time t6 : end of critical section >>
 [...]
} << time t7 >>

This can be summed up with the following diagram:

Figure 6.12 – Timeline – the driver's read method and hardirq handler run sequentially when working on global data; there's no issues here

Kernel Synchronization - Part 1 Chapter 6

[354]

Luckily, everything has gone well – "luckily" because the hardware interrupt fired after the
read function's critical section completed. Surely we can't count on luck as the exclusive
safety stamp of our product! The hardware interrupt is asynchronous; what if it fired at a
less opportune time (for us) – say, while the read method's critical section is running
between time t1 and t2? Well, isn't the spinlock going to do its job and protect our data?

At this point, the interrupt handler's code will attempt to acquire the same spinlock
(&slock). Wait a minute – it cannot "get" it as it's currently locked! In this situation,
it "spins", in effect waiting on the unlock. But how can it be unlocked? It cannot, and there
we have it: a (self) deadlock.

Interestingly, the spinlock is more intuitive and makes sense on an SMP (multicore) system.
Let's assume that the read method is running on CPU core 1; the interrupt can be delivered
on another CPU core, say core 2. The interrupt code path will "spin" on the lock on CPU
core 2, while the read method, on core 1, completes the critical section and then unlocks the
spinlock, thus unblocking the interrupt handler. But what about on UP (uniprocessor, with
only one CPU core)? How will it work then? Ah, so here's the solution to this conundrum:
when "racing" with interrupts, regardless of uniprocessor or SMP, simply use the _irq variant of
the spinlock API:

#include <linux/spinlock.h>
void spin_lock_irq(spinlock_t *lock);

The spin_lock_irq() API internally disables interrupts on the processor core that it's
running on; that is, the local core. So, by using this API in our read method, interrupts
will be disabled on the local core, thus making any possible "race" impossible via interrupts.
(If the interrupt does fire on another CPU core, the spinlock technology will simply work
as advertised, as discussed previously!)

The spin_lock_irq() implementation is pretty nested (as with most
of the spinlock functionality), yet fast; down the line, it ends up
invoking the local_irq_disable() and preempt_disable()
macros, disabling both interrupts and kernel preemption on the local
processor core that it's running on. (Disabling hardware interrupts has
the (desirable) side effect of disabling kernel preemption as well.)

spin_lock_irq() pairs off with the corresponding spin_unlock_irq() API. So, the
correct usage of the spinlock for this scenario (as opposed to what we saw previously) is as
follows:

// Driver read method ; CORRECT !
driver_read(...) << time t0 >>
{

Kernel Synchronization - Part 1 Chapter 6

[355]

 [...]
 spin_lock_irq(&slock);
 <<--- time t1 : start of critical section >>
[now all interrupts + preemption on local CPU core are masked (disabled)]
... << operating on global data object gCtx >> ...
 spin_unlock_irq(&slock);
 <<--- time t2 : end of critical section >>
 [...]
} << time t3 >>

Before patting ourselves solidly on the back and taking the rest of the day off, let's consider
another scenario. This time, on a more complex product (or project), it's quite possible that,
among the several developers working on the code base, one has deliberately set the
interrupt mask to a certain value, thus blocking some interrupts while allowing others. For
the sake of our example, let's say that this has occurred earlier, at some point in time t0.
Now, as we described previously, another developer (you!) comes along, and in order to
protect a critical section within the driver's read method, uses the spin_lock_irq() API.
Sounds correct, yes? Yes, but this API has the power to turn off (mask) all hardware interrupts
(and kernel preemption, which we'll ignore for now) on the local CPU core. It does so by
manipulating, at a low level, the (very arch-specific) hardware interrupt mask register. Let's
say that setting a bit corresponding to an interrupt to 1 enables that interrupt, while
clearing the bit (to 0) disables or masks it. Due to this, we may end up with the following
scenario:

time t0: The interrupt mask is set to some value, say, 0x8e (10001110b),
enabling some and disabling some interrupts. This is important to the project
(here, for simplicity, we're assuming there's an 8-bit mask register)
[... time elapses ...].
time t1: Just before entering the driver read method's critical section, call
spin_lock_irq(&slock);. This API will have the internal effect of clearing all
the bits in the interrupt mask registered to 0, thus disabling all interrupts (as we
think we desire).
time t2: Now, hardware interrupts cannot fire on this CPU core, so we go ahead
and complete the critical section. Once we're done, we
call spin_unlock_irq(&slock);. This API will have the internal effect of
setting all the bits in the interrupt mask register to 1, reenabling all interrupts.

Kernel Synchronization - Part 1 Chapter 6

[356]

However, the interrupt mask register has now been wrongly "restored" to a value of 0xff
(11111111b), not the value 0x8e as the original developer wants, requires, and assumes!
This can (and probably will) break something in the project.

The solution is quite straightforward: don't assume anything, simply save and restore
the interrupt mask. This can be achieved with the following API pair:

#include <linux/spinlock.h>>
 unsigned long spin_lock_irqsave(spinlock_t *lock, unsigned long flags);
 void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags);

The first parameter to both the lock and unlock functions is the spinlock variable to use.
The second parameter, flags, must be a local variable of the unsigned long type. This will
be used to save and restore the interrupt mask:

spinlock_t slock;
spin_lock_init(&slock);
[...]
driver_read(...)
{
 [...]
 spin_lock_irqsave(&slock, flags);
 << ... critical section ... >>
 spin_unlock_irqrestore(&slock, flags);
 [...]
}

To be pedantic, spin_lock_irqsave() is not an API, but a macro; we've
shown it as an API for readability. Also, although the return value of this
macro is not void, it's an internal detail (the flags parameter variable is
updated here).

What about if a tasklet or a softirq (a bottom-half interrupt mechanism) has a critical section
that "races" with your process-context code paths? In such situations, using the
spin_lock_bh() routine is likely what's required since it can disable bottom halves on the
local processor and then take the spinlock, thus safeguarding the critical section (similar to
the way that spin_lock_irq[save]() protects the critical section in the process context
by disabling hardware interrupts on the local core):

void spin_lock_bh(spinlock_t *lock);

Kernel Synchronization - Part 1 Chapter 6

[357]

Of course, overhead does matter in highly performance-sensitive code paths (the
network stack being a great example). Thus, using the simplest form of spinlocks will help
with more complex variants. Having said that, though, there are certainly going to be
occasions that demand the use of the stronger forms of the spinlock API. For example, on
the 5.4.0 Linux kernel, this is an approximation of the number of usage instances of
different forms of the spinlock APIs we have seen: spin_lock(): over 9,400 usage
instances; spin_lock_irq(): over 3,600 usage instances; spin_lock_irqsave(): over
15,000 usage instances; and spin_lock_bh(): over 3,700 usage instances. (We don't draw
any major inference from this; it's just that we wish to point out that using the stronger
form of spinlock APIs is quite widespread in the Linux kernel).

Finally, let's provide a very brief note on the internal implementation of the spinlock: in
terms of under-the-hood internals, the implementation tends to be very arch-specific code,
often comprised of atomic machine language instructions that execute very fast on
the microprocessor. On the popular x86[_64] architecture, for example, the spinlock
ultimately boils down to an atomic test-and-set machine instruction on a member of the
spinlock structure (typically implemented via the cmpxchg machine language instruction).
On ARM machines, as we mentioned earlier, it's often the wfe (Wait For Event, as well as
the SetEvent (SEV)) machine instruction at the heart of the implementation. (You will find
resources regarding its internal implementation in the Further reading section). Regardless,
as a kernel or driver author, you should only use the exposed APIs (and macros) when
using spinlocks.

Using spinlocks – a quick summary
Let's quickly summarize spinlocks:

Simplest, lowest overhead: Use the non-irq spinlock
primitives, spin_lock()/spin_unlock(), when protecting critical sections in
the process context (there's either no interrupts to deal with or there are
interrupts, but we do not race with them at all; in effect, use this when interrupts
don't come into play or don't matter).
Medium overhead: Use the irq-disabling (as well as kernel preemption
disabling) versions, spin_lock_irq() / spin_unlock_irq(), when
interrupts are in play and do matter (the process and interrupt contexts can
"race"; that is, they share global data).

Kernel Synchronization - Part 1 Chapter 6

[358]

Strongest (relatively), high overhead: This is the safest way to use a spinlock. It
does the same as the medium overhead, except it performs a save-and-restore on
the interrupt mask via the spin_lock_irqsave() /
spin_unlock_irqrestore() pair, so as to guarantee that the previous
interrupt mask settings aren't inadvertently overwritten, which could happen
with the previous case.

As we saw earlier, the spinlock – in the sense of "spinning" on the processor it's running on
when awaiting the lock – is impossible on UP (how can you spin on the one CPU that's
available while another thread runs simultaneously on the very same CPU?). Indeed, on UP
systems, the only real effect of the spinlock APIs is that it can disable hardware interrupts
and kernel preemption on the processor! On SMP (multicore) systems, however, the
spinning logic actually comes into play, and thus the locking semantics work as expected.
But hang on – this should not stress you, budding kernel/driver developer; in fact, the
whole point is that you should simply use the spinlock APIs as described and you will
never have to worry about UP versus SMP; the details of what is done and what isn't are all
hidden by the internal implementation.

Though this book is based on the 5.4 LTS kernel, a new feature was added
to the 5.8 kernel from the Real-Time Linux (RTL, previously called
PREEMPT_RT) project, which deserves a quick mention here: "local
locks". While the main use case for local locks is for (hard) real-time
kernels, they help with non-real-time kernels too, mainly for lock
debugging via static analysis, as well as runtime debugging via lockdep
(we cover lockdep in the next chapter). Here's the LWN article on the
subject: https:/ ​/​lwn. ​net/ ​Articles/ ​828477/ ​.

With this, we complete the section on spinlocks, an extremely common and key lock used
in the Linux kernel by virtually all its subsystems, including drivers.

https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/

Kernel Synchronization - Part 1 Chapter 6

[359]

Summary
Congratulations on completing this chapter!

Understanding concurrency and its related concerns is absolutely critical for any software
professional. In this chapter, you learned key concepts regarding critical sections, the need
for exclusive execution within them, and what atomicity means. You then learned why we
need to be concerned with concurrency while writing code for the Linux OS. After that, we
delved into the actual locking technologies – mutex locks and spinlocks – in detail. You also
learned what lock you should use and when. Finally, learning how to handle concurrency
concerns when hardware interrupts (and their possible bottom halves) are in play was
covered.

But we aren't done yet! There are many more concepts and technologies we need to learn
about, which is just what we will do in the next, and final, chapter of this book. I suggest
that you digest the content of this chapter well first by browsing through it, as well as the
resources in the Further reading section and the exercises provided, before diving into the
last chapter!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming/
tree/​master/​questions. You will find some of the questions answered in the book's
GitHub repo: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming/ ​tree/
master/​solutions_ ​to_ ​assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming/ ​blob/
master/​Further_​Reading. ​md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

7
Kernel Synchronization - Part 2

This chapter continues the discussion from the previous chapter, on the topic of kernel
synchronization and dealing with concurrency within the kernel in general. I suggest that if
you haven't already, first read the previous chapter, and then continue with this one.

Here, we shall continue our learning with respect to the vast topic of
kernel synchronization and handling concurrency when in kernel space. As before, the
material is targeted at kernel and/or device driver developers. In this chapter, we shall
cover the following:

Using the atomic_t and refcount_t interfaces
Using the RMW atomic operators
Using the reader-writer spinlock
Cache effects and false sharing
Lock-free programming with per-CPU variables
Lock debugging within the kernel
Memory barriers – an introduction

Kernel Synchronization - Part 2 Chapter 7

[361]

Using the atomic_t and refcount_t interfaces
In our simple demo misc character device driver
program's (miscdrv_rdwr/miscdrv_rdwr.c) open method (and elsewhere), we defined
and manipulated two static global integers, ga and gb:

static int ga, gb = 1;
[...]
ga++; gb--;

By now, it should be obvious to you that this – the place where we operate on these integers
– is a potential bug if left as is: it's shared writable data (in a shared state) and therefore a
critical section, thus requiring protection against concurrent access. You get it; so, we
progressively improved upon this. In the previous chapter, understanding the issue, in our
ch12/1_miscdrv_rdwr_mutexlock/1_miscdrv_rdwr_mutexlock.c program, we first
used a mutex lock to protect the critical section. Later, you learned that using a spinlock to
protect non-blocking critical sections such as this one would be (far) superior to using a
mutex in terms of performance; so, in our next
driver, ch12/2_miscdrv_rdwr_spinlock/2_miscdrv_rdwr_spinlock.c, we used a
spinlock instead:

spin_lock(&lock1);
ga++; gb--;
spin_unlock(&lock1);

That's good, but we can do better still! Operating upon global integers turns out to be
such a common occurrence within the kernel (think of reference or resource counters
getting incremented and decremented, and so on) that the kernel provides a class of
operators called the refcount and atomic integer operators or interfaces; these are very
specifically designed to atomically (safely and indivisibly) operate on only integers.

The newer refcount_t versus older atomic_t
interfaces
At the outset of this topic area, it's important to mention this: from the 4.11 kernel, there is
a newer and better set of interfaces christened the refcount_t APIs, meant for a kernel
space object's reference counters. It greatly improves the security posture of the kernel (via
much-improved Integer OverFlow (IoF) and Use After Free (UAF) protection as well as
memory ordering guarantees, which the older atomic_t APIs lack). The refcount_t
interfaces, like several other security technologies used on Linux, have their origins in work
done by The PaX Team – https:/ ​/​pax. ​grsecurity. ​net/ ​ (it was called PAX_REFCOUNT).

https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/

Kernel Synchronization - Part 2 Chapter 7

[362]

Having said that, the reality is that (as of the time of writing) the older atomic_t interfaces
are still very much in use within the kernel core and drivers (they are slowly being
converted, with the older atomic_t interfaces being moved to the newer refcount_t
model and the API set). Thus, in this topic, we cover both, pointing out differences and
mentioning which refcount_t API supersedes an atomic_t API wherever applicable.
Think of the refcount_t interfaces as a variant of the (older) atomic_t interfaces, which
are specialized toward reference counting.

A key difference between the atomic_t operators and the refcount_t ones is that the
former works upon signed integers whereas the latter is essentially designed to work upon
only an unsigned int quantity; more specifically, and this is important, it works only
within a strictly specified range: 1 to UINT_MAX-1 (or [1..INT_MAX] when
!CONFIG_REFCOUNT_FULL). The kernel has a config option named
CONFIG_REFCOUNT_FULL; if set, it performs a (slower and more thorough) "full" reference
count validation. This is beneficial for security but can result in slightly degraded
performance (the typical default is to keep this config turned off; it's the case with our
x86_64 Ubuntu guest).

Attempting to set a refcount_t variable to 0 or negative, or to [U]INT_MAX or above, is
impossible; this is good for preventing integer underflow/overflow issues and thus
preventing the use-after-free class bug in many cases! (Well, it's not impossible; it results in
a (noisy) warning being fired via the WARN() macro.) Think about it, refcount_t variables
are meant to be used only for kernel object reference counting, nothing else.

Thus, this is indeed the required behavior; the reference counter must start at a positive
value (typically 1 when the object is newly instantiated), is incremented (or added to)
whenever the code gets or takes a reference, and is decremented (or subtracted from)
whenever the code puts or leaves a reference on the object. You are expected to carefully
manipulate the reference counter (matching your gets and puts), always keeping its value
within the legal range.

Quite non-intuitively, at least for the generic arch-independent refcount implementation,
the refcount_t APIs are internally implemented over the atomic_t API set. For example,
the refcount_set() API – which atomically sets a refcount's value to the parameter
passed – is implemented like this within the kernel:

// include/linux/refcount.h
/**
 * refcount_set - set a refcount's value
 * @r: the refcount
 * @n: value to which the refcount will be set
 */
static inline void refcount_set(refcount_t *r, unsigned int n)

Kernel Synchronization - Part 2 Chapter 7

[363]

{
 atomic_set(&r->refs, n);
}

It's a thin wrapper over atomic_set() (which we will cover very shortly). The obvious
FAQ here is: why use the refcount API at all? There are a few reasons:

The counter saturates at the REFCOUNT_SATURATED value (which is set
to UINT_MAX by default) and will not budge once there. This is critical: it avoids
wrapping the counter, which could cause weird and spurious UAF bugs; this is
even considered as a key security fix (https:/ ​/​kernsec. ​org/ ​wiki/ ​index. ​php/
Kernel_​Protections/ ​refcount_ ​t).
Several of the newer refcount APIs do provide memory ordering guarantees; in
particular the refcount_t APIs – as compared to their older atomic_t cousins
– and the memory ordering guarantees they provide are clearly
documented at https:/ ​/ ​www. ​kernel. ​org/ ​doc/ ​html/ ​latest/ ​core- ​api/
refcount- ​vs- ​atomic. ​html#refcount- ​t-​api- ​compared- ​to-​atomic- ​t (do have a
look if you're interested in the low-level details).
Also, realize that arch-dependent refcount implementations (when they exist; for
example, x86 does have it, while ARM doesn't) can differ from the previously-
mentioned generic one.

What exactly is memory ordering and how does it affect us? The fact is, it's a
complex topic and, unfortunately, the inner details on this are beyond the
scope of this book. It's worth knowing the basics: I suggest you read up on
the Linux-Kernel Memory Model (LKMM), which includes coverage on
processor memory ordering and more. We refer you to good
documentation on this here: Explanation of the Linux-Kernel Memory Model
(https:/ ​/​github. ​com/ ​torvalds/ ​linux/ ​blob/ ​master/ ​tools/ ​memory-
model/ ​Documentation/ ​explanation. ​txt).

The simpler atomic_t and refcount_t interfaces
Regarding the atomic_t interfaces, we should mention that all the following atomic_t
constructs are for 32-bit integers only; of course, with 64-bit integers now being
commonplace, 64-bit atomic integer operators are available as well. Typically, they are
semantically identical to their 32-bit counterparts with the difference being in the name
(atomic_foo() becomes atomic64_foo()). So the primary data type for 64-bit atomic
integers is called atomic64_t (AKA atomic_long_t). The refcount_t interfaces, on the
other hand, cater to both 32 and 64-bit integers.

https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt

Kernel Synchronization - Part 2 Chapter 7

[364]

The following table shows how to declare and initialize an atomic_t and refcount_t
variable, side by side so that you can compare and contrast them:

(Older) atomic_t (32-bit only) (Newer) refcount_t (both 32- and 64-bit)
Header file to
include

<linux/atomic.h> <linux/refcount.h>

Declare and
initialize a
variable

static atomic_t gb =
ATOMIC_INIT(1);

static refcount_t gb =
REFCOUNT_INIT(1);

Table 17.1 – The older atomic_t versus the newer refcount_t interfaces for reference counting: header and init

The complete set of all the atomic_t and refcount_t APIs available within the kernel is
pretty large; to help keep things simple and clear in this section, we only list some of the
more commonly used (atomic 32-bit) and refcount_t interfaces in the following table
(they operate upon a generic atomic_t or refcount_t variable, v):

Operation (Older) atomic_t interface (Newer) refcount_t interface [range: 0 to
[U]INT_MAX]

Header file to include <linux/atomic.h> <linux/refcount.h>

Declare and initialize
a variable

static atomic_t v
= ATOMIC_INIT(1);

static refcount_t v
= REFCOUNT_INIT(1);

Atomically read the current
value of v

int
atomic_read(atomic_t
*v)

unsigned int
refcount_read(const
refcount_t *v)

Atomically set v to the
value i

void
atomic_set(atomic_t
*v, i)

void refcount_set(refcount_t
*v, int i)

Atomically increment the
v value by 1

void
atomic_inc(atomic_t
*v)

void refcount_inc(refcount_t
*v)

Atomically decrement the
v value by 1

void
atomic_dec(atomic_t
*v)

void refcount_dec(refcount_t
*v)

Atomically add the value
of i to v

void atomic_add(i,
atomic_t *v)

void refcount_add(int i,
refcount_t *v)

Atomically subtract the
value of i from v

void atomic_sub(i,
atomic_t *v)

void refcount_sub(int i,
refcount_t *v)

Kernel Synchronization - Part 2 Chapter 7

[365]

Atomically add the value of
i to v and return the result

int
atomic_add_return(i,
atomic_t *v)

bool
refcount_add_not_zero(int i,
refcount_t *v) (not a precise match;
adds i to v unless it's 0.)

Atomically subtract the
value of i from v and
return the result

int
atomic_sub_return(i,
atomic_t *v)

bool
refcount_sub_and_test(int i,
refcount_t *r) (not a precise match;
subtracts i from v and tests; returns
true if resulting refcount is 0, else
false.)

Table 17.2 – The older atomic_t versus the newer refcount_t interfaces for reference counting: APIs

You've now seen several atomic_t and refcount_t macros and APIs; let's quickly check
out a few examples of their usage in the kernel.

Examples of using refcount_t within the kernel code
base
In one of our demo kernel modules regarding kernel threads
(in ch15/kthread_simple/kthread_simple.c), we created a kernel thread and then
employed the get_task_struct() inline function to mark the kernel thread's task
structure as being in use. As you can now guess, the get_task_struct() routine
increments the task structure's reference counter – a refcount_t variable named usage –
via the refcount_inc() API:

// include/linux/sched/task.h
static inline struct task_struct *get_task_struct(struct task_struct *t)
{
 refcount_inc(&t->usage);
 return t;
}

The converse routine, put_task_struct(), performs the subsequent decrement on the
reference counter. The actual routine employed by it internally,
refcount_dec_and_test(), tests whether the new refcount value has dropped to 0; if so,
it returns true, and if this is the case, it implies that the task structure isn't being referenced
by anyone. The call to __put_task_struct() frees it up:

static inline void put_task_struct(struct task_struct *t)
{
 if (refcount_dec_and_test(&t->usage))

Kernel Synchronization - Part 2 Chapter 7

[366]

 __put_task_struct(t);
}

 Another example of the refcounting APIs in use within the kernel is found in
kernel/user.c (which helps track the number of processes, files, and so on that a user has
claimed via a per-user structure):

Figure 7.1 – Screenshot showing the usage of the refcount_t interfaces in kernel/user.c

Look up the refcount_t API interface documentation (https:/ ​/​www.
kernel. ​org/ ​doc/ ​html/ ​latest/ ​driver- ​api/ ​basics. ​html#reference-
counting); refcount_dec_and_lock_irqsave() returns true and
withholds the spinlock with interrupts disabled if able to decrement the
reference counter to 0, and false otherwise.

As an exercise for you, convert our
earlier ch16/2_miscdrv_rdwr_spinlock/miscdrv_rdwr_spinlock.c driver code to
use refcount; it has the integers ga and gb, which, when being read or written, were
protected via a spinlock. Now, make them refcount variables and use the appropriate
refcount_t APIs when working on them.

https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting

Kernel Synchronization - Part 2 Chapter 7

[367]

Careful! Don't allow their values to go out of the allowed range, [0..[U]INT_MAX]! (Recall
that the range is [1..UINT_MAX-1] for full refcount validation (CONFIG_REFCOUNT_FULL
being on) and [1..INT_MAX] when it's not full validation (the default)). Doing so typically
leads to the WARN() macro being invoked (the code for this demo seen in Figure 7.1 isn't
included in our GitHub repository):

Figure 7.2 – (Partial) screenshot showing the WARN() macro firing when we wrongly attempt to set a refcount_t variable to <= 0

The kernel has an interesting and useful test infrastructure called the
Linux Kernel Dump Test Module (LKDTM);
see drivers/misc/lkdtm/refcount.c for many test cases being run on
the refcount interfaces, which you can learn from... FYI, you can also use
LKDTM via the kernel's fault injection framework to test and evaluate the
kernel's reaction to faulty scenarios (see the documentation here: Provoking
crashes with Linux Kernel Dump Test Module (LKDTM) – https:/ ​/​www.
kernel. ​org/ ​doc/ ​html/ ​latest/ ​fault- ​injection/ ​provoke- ​crashes.
html#provoking- ​crashes- ​with- ​linux- ​kernel- ​dump- ​test- ​module-
lkdtm).

The atomic interfaces covered so far all operate on 32-bit integers; what about on 64-bit?
That's what follows.

https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm

Kernel Synchronization - Part 2 Chapter 7

[368]

64-bit atomic integer operators
As mentioned at the start of this topic, the set of atomic_t integer operators we have dealt
with so far all operate on traditional 32-bit integers (this discussion doesn't apply to the
newer refcount_t interfaces; they anyway operate upon both 32 and 64-bit quantities).
Obviously, with 64-bit systems becoming the norm rather than the exception nowadays, the
kernel community provides an identical set of atomic integer operators for 64-bit integers.
The difference is as follows:

Declare the 64-bit atomic integer as a variable of type atomic64_t (that
is, atomic_long_t).
For all operators, in place of the atomic_ prefix, use the atomic64_ prefix.

So, take the following examples:

In place of ATOMIC_INIT(), use ATOMIC64_INIT().
In place of atomic_read(), use atomic64_read().
In place of atomic64_dec_if_positive(), use
atomic64_dec_if_positive().

Recent C and C++ language standards – C11 and C++11 – provide an
atomic operations library that helps developers implement atomicity in an
easier fashion due to the implicit language support; we won't delve into
this aspect here. A reference can be found here (C11 also has pretty much
the same equivalents): https:/ ​/​en.​cppreference. ​com/ ​w/​c/ ​atomic.

Note that all these routines – both the 32- and 64-bit atomic ​_operators – are arch-
independent. A key point worth repeating is that any and all operations performed upon
an atomic integer must be done by declaring the variable as atomic_t and via the methods
provided. This includes initialization and even a (integer) read operation.

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic

Kernel Synchronization - Part 2 Chapter 7

[369]

In terms of internal implementation, a foo() atomic integer operator is typically a
macro that becomes an inline function, which in turn invokes the arch-
specific arch_foo() function. As usual, glancing through the official kernel
documentation on atomic operators is always a good idea (within the kernel source tree, it's
here: Documentation/atomic_t.txt; go to https:/ ​/ ​www.​kernel. ​org/ ​doc/
Documentation/​atomic_ ​t. ​txt). It neatly categorizes the numerous atomic integer APIs into
distinct sets. FYI, arch-specific memory ordering issues do affect the internal implementation.
Here, we won't delve into the internals. If interested, refer to this page on the official kernel
documentation site at https:/ ​/​www. ​kernel. ​org/ ​doc/​html/ ​v4. ​16/ ​core- ​api/​refcount- ​vs-
atomic.​html#refcount- ​t- ​api- ​compared- ​to-​atomic- ​t (also, details on memory ordering
go beyond the scope of this book; check out the kernel documentation at https:/ ​/ ​www.
kernel.​org/​doc/​Documentation/ ​memory- ​barriers. ​txt for more on this).

We haven't attempted to show all the atomic and refcount APIs here (it's really not
necessary); the official kernel documentation covers it:

atomic_t interfaces:
Semantics and Behavior of Atomic and Bitmask Operations (https:/ ​/
www. ​kernel. ​org/ ​doc/ ​html/ ​v5. ​4/​core- ​api/ ​atomic_ ​ops.
html#semantics- ​and- ​behavior- ​of-​atomic- ​and- ​bitmask-
operations)
API ref: Atomics (https:/ ​/​www. ​kernel. ​org/​doc/ ​html/ ​latest/
driver- ​api/ ​basics. ​html#atomics)

(Newer) refcount_t interfaces for kernel object reference counting:
refcount_t API compared to atomic_t (https:/ ​/​www. ​kernel.
org/ ​doc/ ​html/ ​latest/ ​core- ​api/ ​refcount- ​vs-​atomic.
html#refcount- ​t-​api- ​compared- ​to- ​atomic- ​t)
API ref: Reference counting (https:/ ​/​www. ​kernel. ​org/ ​doc/ ​html/
latest/ ​driver- ​api/ ​basics. ​html#reference- ​counting)

Let's move on to the usage of a typical construct when working on drivers – Read Modify
Write (RMW). Read on!

https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting

Kernel Synchronization - Part 2 Chapter 7

[370]

Using the RMW atomic operators
A more advanced set of atomic operators called the RMW APIs is available as well. Among
its many uses (we show a list in the coming section) is that of performing atomic RMW
operations on bits, in other words, performing bitwise operations atomically (safely,
indivisibly). As a device driver author operating upon device or peripheral registers, this is
indeed something you will find yourself using.

The material in this section assumes you have at least a basic
understanding of accessing peripheral device (chip) memory and
registers; we have covered this in detail in Chapter 3, Working with
Hardware I/O Memory. Please ensure you understand it before moving
further.

Very often, you'll need to perform bit operations (with the bitwise AND & and bitwise OR
| being the most commonplace operators) on registers; this is done to modify its
value, setting and/or clearing some bits within it. The thing is, merely performing some C
manipulation to query or set device registers isn't quite enough. No, sir: don't forget about
concurrency issues! Read on for the full story.

RMW atomic operations – operating on device
registers
Let's quickly go over some basics first: a byte consists of 8 bits, numbered from bit 0, the
Least Significant Bit (LSB), to bit 7, the Most Significant Bit (MSB). (This is actually
formally defined as the BITS_PER_BYTE macro in include/linux/bits.h, along with a
few other interesting definitions.)

A register is basically a small piece of memory within the peripheral device; typically, its
size, the register bit width, is one of 8, 16, or 32 bits. The device registers provide control,
status, and other information and are often programmable. This, in fact, is largely what you
as a driver author will do – program the device registers appropriately to make the device
do something, and query it.

Kernel Synchronization - Part 2 Chapter 7

[371]

To flesh out this discussion, let's consider a hypothetical device that has two registers:
a status register and a control register, each 8 bits wide. (In the real world, every device
or chip has a datasheet that will provide a detailed specification of the chip and register-level
hardware; this becomes an essential document for the driver author). Hardware
folks usually design devices in such a way that several registers are sequentially
clubbed together in a larger piece of memory; this is called register banking. By having the
base address of the first register and the offset to each following one, it becomes easy to
address any given register (here, we won't delve into how exactly registers are "mapped"
into the virtual address space on an OS such as Linux). For example, the (purely
hypothetical) registers may be described like this in a header file:

#define REG_BASE 0x5a00
#define STATUS_REG (REG_BASE+0x0)
#define CTRL_REG (REG_BASE+0x1)

Now, say that in order to turn on our fictional device, the datasheet informs us we can do
so by setting bit 7 (the MSB) of the control register to 1. As every driver author quickly
learns, there is a hallowed sequence for modifying registers:

Read the register's current value into a temporary variable.1.
Modify the variable to the desired value.2.
Write back the variable to the register.3.

This is often called the RMW sequence; so, great, we write the (pseudo)code like this:

turn_on_dev()
{
 u8 tmp;

 tmp = ioread8(CTRL_REG); /* read: current register value into tmp */
 tmp |= 0x80; /* modify: set bit 7 (MSB) */
 iowrite8(tmp, CTRL_REG); /* write: new tmp value into register */
}

(FYI, the actual routines used on Linux MMIO – memory-mapped I/O – are
ioread[8|16|32]() and iowrite[8|16|32]().)

A key point here: this isn't good enough; the reason is concurrency, data races! Think about
it: a register (both CPU and device registers) is in fact a global shared writable memory
location; thus, accessing it constitutes a critical section, which you have to take care to protect
from concurrent access! The how is easy; we could just use a spinlock (for now at least). It's
trivial to modify the preceding pseudocode to insert the spin_[un]lock() APIs in the
critical section – the RMW sequence.

Kernel Synchronization - Part 2 Chapter 7

[372]

However, there is an even better way to achieve data safety when dealing with small
quantities such as integers; we have already covered it: atomic operators! Linux, however,
goes further, providing a set of atomic APIs for both of the following:

Atomic non-RMW operations (the ones we saw earlier, in the Using the atomic_t
and refcount_t interfaces section)
Atomic RMW operations; these include several types of operators that can be
categorized into a few distinct classes: arithmetic, bitwise, swap (exchange),
reference counting, miscellaneous, and barriers

Let's not reinvent the wheel; the kernel documentation (https:/ ​/​www. ​kernel. ​org/ ​doc/
Documentation/​atomic_ ​t. ​txt) has all the information required. We'll show just a relevant
portion of this document as follows, quoting directly from
the Documentation/atomic_t.txt kernel code base:

// Documentation/atomic_t.txt
[...]
Non-RMW ops:
 atomic_read(), atomic_set()
 atomic_read_acquire(), atomic_set_release()

RMW atomic operations:

Arithmetic:
 atomic_{add,sub,inc,dec}()
 atomic_{add,sub,inc,dec}_return{,_relaxed,_acquire,_release}()
 atomic_fetch_{add,sub,inc,dec}{,_relaxed,_acquire,_release}()

Bitwise:
 atomic_{and,or,xor,andnot}()
 atomic_fetch_{and,or,xor,andnot}{,_relaxed,_acquire,_release}()

Swap:
 atomic_xchg{,_relaxed,_acquire,_release}()
 atomic_cmpxchg{,_relaxed,_acquire,_release}()
 atomic_try_cmpxchg{,_relaxed,_acquire,_release}()

Reference count (but please see refcount_t):
 atomic_add_unless(), atomic_inc_not_zero()
 atomic_sub_and_test(), atomic_dec_and_test()

https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt

Kernel Synchronization - Part 2 Chapter 7

[373]

Misc:
 atomic_inc_and_test(), atomic_add_negative()
 atomic_dec_unless_positive(), atomic_inc_unless_negative()
[...]

Good; now that you're aware of these RMW (and non-RMW) operators, let's get practical –
we'll check out how to use the RMW operators for bit operations next.

Using the RMW bitwise operators
Here, we'll focus on employing the RMW bitwise operators; we'll leave it to you to explore
the others (refer to the kernel docs mentioned). So, let's think again about how to more
efficiently code our pseudocode example. We can set (to 1) any given bit in any register or
memory item using the set_bit() API:

void set_bit(unsigned int nr, volatile unsigned long *p);

This atomically – safely and indivisibly – sets the nrth bit of p to 1. (The reality is that
the device registers (and possibly device memory) are mapped into kernel virtual address
space and thus appear to be visible as though they are RAM locations – such as the address
p here. This is called MMIO and is the common way by which driver authors map in and
work with device memory.)

Thus, with the RMW atomic operators, we can safely achieve what we've (incorrectly)
attempted previously – turning on our (fictional) device – with a single line of code:

set_bit(7, CTRL_REG);

The following table summarizes common RMW bitwise atomic APIs:

RMW bitwise atomic API Comment
void set_bit(unsigned int nr, volatile
unsigned long *p);

Atomically set (set to 1) the nrth bit of p.

void clear_bit(unsigned int nr, volatile
unsigned long *p)

Atomically clear (set to 0) the nrth bit of p.

void change_bit(unsigned int nr,
volatile unsigned long *p)

Atomically toggle the nrth bit of p.

The following APIs return the previous value of the bit being
operated upon (nr)

Kernel Synchronization - Part 2 Chapter 7

[374]

int test_and_set_bit(unsigned int nr,
volatile unsigned long *p)

Atomically set the nrth bit of p returning
the previous value (kernel API doc at
https:/ ​/ ​www.​kernel. ​org/ ​doc/
htmldocs/ ​kernel- ​api/ ​API- ​test-
and- ​set- ​bit.​html).

int test_and_clear_bit(unsigned int nr,
volatile unsigned long *p)

Atomically clear the nrth bit of p returning
the previous value.

int test_and_change_bit(unsigned int nr,
volatile unsigned long *p)

Atomically toggle the nrth bit
of p returning the previous value.

Table 17.3 – Common RMW bitwise atomic APIs

Careful: these atomic APIs are not just atomic with respect to the CPU
core they're running upon, but now with respect to all/other cores. In
practice, this implies that if you're performing atomic operations in
parallel on multiple CPUs, that is, if they (can) race, then it's a critical
section and you must protect it with a lock (typically a spinlock)!

Trying out a few of these RMW atomic APIs will help build your confidence in using them;
we do so in the section that follows.

Using bitwise atomic operators – an example
Let's check out a quick kernel module that demonstrates the usage of the Linux kernel's
RMW atomic bit operators (ch13/1_rmw_atomic_bitops). You should realize that these
operators can work on any memory, both a (CPU or device) register or RAM; here, we
operate on a simple static global variable (named mem) within the example LKM. It's very
simple; let's check it out:

// ch13/1_rmw_atomic_bitops/rmw_atomic_bitops.c
[...]
#include <linux/spinlock.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include "../../convenient.h"
[...]
static unsigned long mem;
static u64 t1, t2;
static int MSB = BITS_PER_BYTE - 1;
DEFINE_SPINLOCK(slock);

https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html

Kernel Synchronization - Part 2 Chapter 7

[375]

We include the required headers and declare and initialize a few global variables (notice
how our MSB variable uses BIT_PER_BYTE). We employ a simple macro, SHOW(), to display
the formatted output with the printk. The init code path is where the actual work is done:

[...]
#define SHOW(n, p, msg) do { \
 pr_info("%2d:%27s: mem : %3ld = 0x%02lx\n", n, msg, p, p); \
} while (0)
[...]
static int __init atomic_rmw_bitops_init(void)
{
 int i = 1, ret;

 pr_info("%s: inserted\n", OURMODNAME);
 SHOW(i++, mem, "at init");

 setmsb_optimal(i++);
 setmsb_suboptimal(i++);

 clear_bit(MSB, &mem);
 SHOW(i++, mem, "clear_bit(7,&mem)");

 change_bit(MSB, &mem);
 SHOW(i++, mem, "change_bit(7,&mem)");

 ret = test_and_set_bit(0, &mem);
 SHOW(i++, mem, "test_and_set_bit(0,&mem)");
 pr_info(" ret = %d\n", ret);

 ret = test_and_clear_bit(0, &mem);
 SHOW(i++, mem, "test_and_clear_bit(0,&mem)");
 pr_info(" ret (prev value of bit 0) = %d\n", ret);

 ret = test_and_change_bit(1, &mem);
 SHOW(i++, mem, "test_and_change_bit(1,&mem)");
 pr_info(" ret (prev value of bit 1) = %d\n", ret);

 pr_info("%2d: test_bit(%d-0,&mem):\n", i, MSB);
 for (i = MSB; i >= 0; i--)
 pr_info(" bit %d (0x%02lx) : %s\n", i, BIT(i), test_bit(i,
&mem)?"set":"cleared");

 return 0; /* success */
}

Kernel Synchronization - Part 2 Chapter 7

[376]

The RMW atomic operators we use here are highlighted in bold font. A key part of this
demo is to show that using the RMW bitwise atomic operators is not only much easier but
also much faster than using the traditional approach where we manually perform the RMW
operation within the confines of a spinlock. Here are the two functions for both of these
approaches:

/* Set the MSB; optimally, with the set_bit() RMW atomic API */
static inline void setmsb_optimal(int i)
{
 t1 = ktime_get_real_ns();
 set_bit(MSB, &mem);
 t2 = ktime_get_real_ns();
 SHOW(i, mem, "set_bit(7,&mem)");
 SHOW_DELTA(t2, t1);
}
/* Set the MSB; the traditional way, using a spinlock to protect the RMW
 * critical section */
static inline void setmsb_suboptimal(int i)
{
 u8 tmp;

 t1 = ktime_get_real_ns();
 spin_lock(&slock);
 /* critical section: RMW : read, modify, write */
 tmp = mem;
 tmp |= 0x80; // 0x80 = 1000 0000 binary
 mem = tmp;
 spin_unlock(&slock);
 t2 = ktime_get_real_ns();

 SHOW(i, mem, "set msb suboptimal: 7,&mem");
 SHOW_DELTA(t2, t1);
}

Kernel Synchronization - Part 2 Chapter 7

[377]

We call these functions early in our init method; notice that we take timestamps (via
the ktime_get_real_ns() routine) and display the time taken via our SHOW_DELTA()
macro (defined in our convenient.h header). Right, here's the output:

Figure 7.3 – Screenshot of output from our ch13/1_rmw_atomic_bitops LKM, showing off some of the atomic RMW operators at work

(I ran this demo LKM on my x86_64 Ubuntu 20.04 guest VM.) The modern approach – via
the set_bit() RMW atomic bitwise API – took, in this sample run, just 415 nanoseconds
to execute; the traditional approach was about 265 times slower! The code (via set_bit())
is so much simpler as well...

On a somewhat related note to the atomic bitwise operators, the following section is a very
brief look at the highly efficient APIs available within the kernel for searching a bitmask – a
fairly common operation in the kernel, as it turns out.

Kernel Synchronization - Part 2 Chapter 7

[378]

Efficiently searching a bitmask
Several algorithms depend on performing a really fast search of a bitmask; several
scheduling algorithms (such as SCHED_FIFO and SCHED_RR, which you learned about
in the companion guide Linux Kernel Programming - Chapter 10, The CPU Scheduler – Part 1,
and Chapter 11, The CPU Scheduler – Part 2) often internally require this. Implementing this
efficiently becomes important (especially for OS-level performance-sensitive code paths).
Hence, the kernel provides a few APIs to scan a given bitmask (these prototypes are found
in include/asm-generic/bitops/find.h):

unsigned long find_first_bit(const unsigned long

*addr, unsigned long size): Finds the first set bit in a memory region;
returns the bit number of the first set bit, else (no bits are set) returns @size.
unsigned long find_first_zero_bit(const unsigned long

*addr, unsigned long size): Finds the first cleared bit in a memory region;
returns the bit number of the first cleared bit, else (no bits are cleared) returns
@size.
Other routines
include find_next_bit(), find_next_and_bit(), find_last_bit().

Looking through the <linux/bitops.h> header reveals other quite interesting macros
as well, such as for_each_{clear,set}_bit{_from}().

Using the reader-writer spinlock
Visualize a piece of kernel (or driver) code wherein a large, global, doubly linked circular
list (with a few thousand nodes) is being searched. Now, since the data structure is
global (shared and writable), accessing it constitutes a critical section that requires
protection.

Assuming a scenario where searching the list is a non-blocking operation, you'd typically
use a spinlock to protect the critical section. A naive approach might propose not using a
lock at all since we're only reading data within the list, not updating it. But, of course (as you
have learned), even a read on shared writable data has to be protected to protect against
an inadvertent write occurring simultaneously, thus resulting in a dirty or torn read.

Kernel Synchronization - Part 2 Chapter 7

[379]

So, we conclude that we require the spinlock; we imagine the pseudocode might look
something like this:

spin_lock(mylist_lock);
for (p = &listhead; (p = next_node(p)) != &listhead;) {
 << ... search for something ...
 found? break out ... >>
}
spin_unlock(mylist_lock);

So, what's the problem? Performance, of course! Imagine several threads on a
multicore system ending up at this code fragment more or less at the same time; each will
attempt to take the spinlock, but only one winner thread will get it, iterate over the entire
list, and then perform the unlock, allowing the next thread to proceed. In other words, as
expected, execution is now serialized, dramatically slowing things down. But it can't be
helped; or can it?

Enter the reader-writer spinlock. With this locking construct, it's required that all
threads performing reads on the protected data will ask for a read lock, whereas any
thread requiring write access to the list will ask for an exclusive write lock. A read lock will
be granted immediately to any thread that asks as long as no write lock is currently in play.
In effect, this construct allows all readers concurrent access to the data, meaning, in effect, no
real locking at all. This is fine, as long as there are only readers. The moment a writer
thread comes along, it requests a write lock. Now, normal locking semantics apply: the
writer will have to wait for all readers to unlock. Once that happens, the writer gets an
exclusive write lock and proceeds. So now, if any readers or writers attempt access, they
will be forced to wait to spin upon the writer's unlock.

Thus, for those situations where the access pattern to data is such that
reads are performed very often and writes are rare, and the critical section
is a fairly long one, the reader-writer spinlock is a performance-enhancing
one.

Reader-writer spinlock interfaces
Having used spinlocks, using the reader-writer variant is straightforward; the lock data
type is abstracted as the rwlock_t structure (in place of spinlock_t) and, in terms of API
names, simply substitute read or write in place of spin:

#include <linux/rwlock.h>
rwlock_t mylist_lock;

Kernel Synchronization - Part 2 Chapter 7

[380]

The most basic APIs of the reader-writer spinlock are as follows:

void read_lock(rwlock_t *lock);
void write_lock(rwlock_t *lock);

As an example, the kernel's tty layer has code to handle a Secure Attention Key (SAK);
the SAK is a security feature, a means to prevent a Trojan horse-type credentials hack by
killing all processes associated with the TTY device. This will happen when the user presses
the SAK (https:/​/ ​www. ​kernel. ​org/ ​doc/ ​html/ ​latest/ ​security/ ​sak. ​html). When this
actually happens (that is, when the user presses the SAK, mapped to the Alt-SysRq-k
sequence by default), within its code path, it has to iterate over all tasks, killing the entire
session and any threads that have the TTY device open. To do so, it must take, in read
mode, a reader-writer spinlock called tasklist_lock. The (truncated) relevant code is
seen as follows, with read_[un]lock() on tasklist_lock highlighted:

// drivers/tty/tty_io.c
void __do_SAK(struct tty_struct *tty)
{
 [...]
 read_lock(&tasklist_lock);
 /* Kill the entire session */
 do_each_pid_task(session, PIDTYPE_SID, p) {
 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
task_pid_nr(p), p->comm);
 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 } while_each_pid_task(session, PIDTYPE_SID, p);
 [...]
 /* Now kill any processes that happen to have the tty open */
 do_each_thread(g, p) {
 [...]
 } while_each_thread(g, p);
 read_unlock(&tasklist_lock);

As an aside, in the companion guide Linux Kernel Programming - Chapter 6, Kernel Internals
Essentials section Processes and Threads Iterating over the task list, we did something kind of
similar: we wrote a kernel module (https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel-
Programming/​blob/ ​master/ ​ch6/ ​foreach/ ​thrd_​showall/ ​thrd_ ​showall. ​c) that iterated over
all threads in the task list, spewing out a few details about each thread. So, now that
we understand the deal regarding concurrency, shouldn't we have taken this very lock
– tasklist_lock – the reader-writer spinlock protecting the task list? Yes, but it didn't
work (insmod(8) failed with the message thrd_showall: Unknown
symbol tasklist_lock (err -2)). The reason, of course, is that
this tasklist_lock variable is not exported and thus is unavailable to our kernel module.

https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c

Kernel Synchronization - Part 2 Chapter 7

[381]

As another example of a reader-writer spinlock within the kernel code base, the ext4
filesystem uses one when working with its extent status tree. We don't intend to delve into
the details here; we will simply mention the fact that a reader-writer spinlock (within the
inode structure, inode->i_es_lock) is quite heavily used here to protect the extent status
tree against data races (fs/ext4/extents_status.c).

There are many such examples within the kernel source tree; many places in the
network stack including the ping code (net/ipv4/ping.c) use rwlock_t, routing table
lookup, neighbor, PPP code, filesystems, and so on.

Just as with regular spinlocks, we have the typical variations on the reader-writer
spinlock APIs: {read,write}_lock_irq{save}() paired with the corresponding
{read,write}_unlock_irq{restore}(), as well as
the {read,write}_{un}lock_bh() interfaces. Note that even the read IRQ lock disables
kernel preemption.

A word of caution
Issues do exist with reader-writer spinlocks. One typical issue with it is that,
unfortunately, writers can starve when blocking on several readers. Think about it: let's say
that three reader threads currently have the reader-writer lock. Now, a writer comes along
wanting the lock. It has to wait until all three readers perform the unlock. But what if, in the
interim, more readers come along (which is entirely possible)? This becomes a disaster for
the writer, who has to now wait even longer – in effect, starve. (Carefully instrumenting or
profiling the code paths involved might be necessary to figure out whether this is indeed
the case.)

Not only that, cache effects – known as cache ping-pong – can and do occur quite often when
several reader threads on different CPU cores are reading the same shared state in parallel
(while holding the reader-writer lock); we in fact discuss this in the Cache effects and false
sharing section). The kernel documentation on spinlocks (https:/ ​/​www. ​kernel. ​org/​doc/
Documentation/​locking/ ​spinlocks. ​txt) says pretty much the same thing. Here's a quote
directly from it: "NOTE! reader-writer locks require more atomic memory operations than
simple spinlocks. Unless the reader critical section is long, you are better off just using spinlocks." In
fact, the kernel community is working toward removing reader-writer spinlocks as far as is
possible, moving them to superior lock-free techniques (such as RCU - Read Copy Update,
an advanced lock-free technology). Thus, gratuitous use of reader-writer spinlocks is ill
advised.

https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt

Kernel Synchronization - Part 2 Chapter 7

[382]

The neat and simple kernel documentation on the usage of
spinlocks (written by Linus Torvalds himself), which is well worth
reading, is available here: https:/ ​/​www. ​kernel. ​org/ ​doc/ ​Documentation/
locking/ ​spinlocks. ​txt.

The reader-writer semaphore
We earlier mentioned the semaphore object (Chapter 6, Kernel Synchronization – Part 1, in
the The semaphore and the mutex section), contrasting it with the mutex. There,
you understood that it's preferable to simply use a mutex. Here, we point out that within
the kernel, just as there exist reader-writer spinlocks, so do there exist reader-
writer semaphores. The use cases and semantics are similar to that of the reader-writer
spinlock. The relevant macros/APIs are (within <linux/rwsem.h>)
{down,up}_{read,write}_{trylock,killable}(). A common example within the
struct mm_struct structure (which is itself within the task structure) is that one of the
members is a reader-writer semaphore: struct rw_semaphore mmap_sem;.

Rounding off this discussion, we'll merely mention a couple of other related
synchronization mechanisms within the kernel. A synchronization mechanism that is
heavily used in user space application development (we're thinking particularly of the
Pthreads framework in Linux user space) is the Condition Variable (CV). In a nutshell, it
provides the ability for two or more threads to synchronize with each other based on the
value of a data item or some specific state. Its equivalent within the Linux kernel is
called the completion mechanism. Please find details on its usage within the kernel
documentation at https:/ ​/ ​www. ​kernel. ​org/​doc/ ​html/ ​latest/ ​scheduler/ ​completion.
html#completions-​wait- ​for- ​completion- ​barrier- ​apis.

The sequence lock is used in mostly write situations (as opposed to the reader-write
spinlock/semaphore locks, which are suitable in mostly read scenarios), where the writes
far exceed the reads on the protected variable. As you can imagine, this isn't a very
common occurrence; a good example of using sequence locks is the update of the
jiffies_64 global.

For the curious, the jiffies_64 global's update code begins
here: kernel/time/tick-sched.c:tick_do_update_jiffies64().
This function figures out whether an update to jiffies is required, and if
so, calls do_timer(++ticks); to actually update it. All the while,
the write_seq[un]lock(&jiffies_lock); APIs provide protection
over the mostly write-critical section.

https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis

Kernel Synchronization - Part 2 Chapter 7

[383]

Cache effects and false sharing
Modern processors make use of several levels of parallel cache memory within them,
in order to provide a very significant speedup when working on memory (we
briefly touched upon this in the companion guide Linux Kernel Programming - Chapter 8,
Kernel Memory Allocation for Module Authors – Part 1, in the Allocating slab memory section).
We realize that modern CPUs do not really read and write RAM directly; no, when the
software indicates that a byte of RAM is to be read starting at some address, the CPU
actually reads several bytes – a whole cacheline of bytes (typically 64 bytes) from
the starting address into all the CPU caches (say, L1, L2, and L3: levels 1, 2, and 3). This
way, accessing the next few elements of sequential memory results in a tremendous
speedup as it's first checked for in the caches (first in L1, then L2, then L3, and a cache hit
becomes likely). The reason it's (much) faster is simple: accessing CPU cache memory takes
typically one to a few (single-digit) nanoseconds, whereas accessing RAM can take
anywhere between 50 and 100 nanoseconds (of course, this depends on the hardware
system in question and the amount of money you're willing to shell out!).

Software developers take advantage of such phenomena by doing things such as the
following:

Keeping important members of a data structure together (hopefully, within a
single cacheline) and at the top of the structure
Padding a structure member such that we don't fall off a cacheline (again,
these points have been covered in the companion guide Linux Kernel
Programming - Chapter 8, Kernel Memory Allocation for Module Authors – Part 1, in
the Data structures – a few design tips section)

However, risks are involved and things do go wrong. As an example, consider two
variables declared like so: u16 ax = 1, bx = 2; (u16 denotes an unsigned 16-bit integer
value).

Now, as they have been declared adjacent to each other, they will, in all likelihood, occupy
the same CPU cacheline at runtime. To understand what the issue is, let's take an example:
consider a multicore system with two CPU cores, with each core having two CPU caches,
L1 and L2, as well as a common or unified L3 cache. Now, a thread, T1, is working on
variable ax and another thread, T2, is concurrently (on another CPU core) working on
variable bx. So, think about it: when thread T1, running on CPU 0, accesses ax from main
memory (RAM), its CPU caches will get populated with the current values of ax and bx (as
they fall within the same cacheline!). Similarly, when thread T2, running on, say, CPU 1,
accesses bx from RAM, its CPU caches will get populated with the current values of both
variables as well. Figure 7.4 conceptually depicts the situation:

Kernel Synchronization - Part 2 Chapter 7

[384]

Figure 7.4 – Conceptual depiction of the CPU cache memory when threads T1 and T2 work in parallel on two adjacent variables, each on a distinct one

Fine so far; but what if T1 performs an operation, say, ax ++, while concurrently,
T2 performs bx ++? Well, so what? (By the way, you might wonder: why aren't they using
a lock? The interesting thing is, it's quite irrelevant to this discussion; there's no data race as
each thread is accessing a different variable. The issue is with the fact that they're in the
same CPU cacheline.)

Here's the issue: cache coherency. The processor and/or the OS in conjunction with the
processor (this is all very arch-dependent stuff) will have to keep the caches and RAM
synchronized or coherent with each other. Thus, the moment T1 modifies ax, that
particular cacheline of CPU 0 will have to be invalidated, that is, a CPU 0-cache-to-RAM
flush of the CPU cacheline will occur to update RAM to the new value, and then
immediately, a RAM-to-CPU 1-cache update must also occur to keep everything coherent!

But the cacheline contains bx as well, and, as we said, bx has also been modified on CPU 1
by T2. Thus, at about the same time, the CPU 1 cacheline will be flushed to RAM with the
new value of bx and subsequently updated to CPU 0's caches (all the while, the unified L3
cache too will be read from/updated as well). As you can imagine, any updates on these
variables will result in a whole lot of traffic over the caches and RAM; they will bounce. In
fact, this is often referred to as cache ping-pong! This effect is very detrimental,
significantly slowing down processing. This phenomenon is known as false sharing.

Kernel Synchronization - Part 2 Chapter 7

[385]

Recognizing false sharing is the hard part; we must look for variables living on a shared
cacheline that are updated by different contexts (threads or whatever else) simultaneously.

Interestingly, an earlier implementation of a key data structure in
the memory management layer,
include/linux/mmzone.h:struct zone, suffered from this very same
false sharing issue: two spinlocks that were declared adjacent to each
other! This has long been fixed (we briefly discussed memory zones in the
companion guide Linux Kernel Programming - Chapter 7, Memory
Management Internals – Essentials, in the Physical RAM
organization/zones section).

How do you fix this false sharing? Easy: just ensure that the variables are spaced
far enough apart to guarantee that they do not share the same cacheline (dummy padding
bytes are often inserted between variables for this purpose). Do refer to the references to
false sharing in the Further reading section as well.

Lock-free programming with per-CPU
variables
As you have learned, when operating upon shared writable data, the critical section must
be protected in some manner. Locking is perhaps the most common technology used to
effect this protection. It's not all rosy, though, as performance can suffer. To realize why,
consider a few analogies to a lock: one would be a funnel, with the stem of the funnel just
wide enough to allow one thread at a time to flow through, no more. Another is a single toll
booth on a busy highway or a traffic light at a busy intersection. These analogies help
us visualize and understand why locking can cause bottlenecks, slowing performance
down to a crawl in some drastic cases. Worse, these adverse effects can be multiplied on
high-end multicore systems with a few hundred cores; in effect, locking doesn't scale well.

Another issue is that of lock contention; how often is a particular lock being acquired?
Increasing the number of locks within a system has the benefit of lowering the contention
for a particular lock between two or more processes (or threads). This is called lock
proficiency. However, again, this is not scalable to an enormous extent: after a while,
having thousands of locks on a system (the case with the Linux kernel, in fact) is not good
news – the chances of subtle deadlock conditions arising is multiplied significantly.

Kernel Synchronization - Part 2 Chapter 7

[386]

So, many challenges exist – performance issues, deadlocks, priority inversion
risks, convoying (due to lock ordering, fast code paths might need to wait for the first
slower one that's taken a lock that the faster ones also require), and so on. Evolving the
kernel in a scalable manner a whole level further has mandated the use of lock-free
algorithms and their implementation within the kernel. These have led to several innovative
techniques, among them being per-CPU (PCP) data, lock-free data structures (by design),
and RCU.

In this book, though, we elect to cover only per-CPU as a lock-free programming technique
in some detail. The details regarding RCU (and its associated lock-free data structure by
design) are beyond this book's scope. Do refer to the Further reading section of this chapter
for several useful resources on RCU, its meaning, and its usage within the Linux kernel.

Per-CPU variables
As the name suggests, per-CPU variables work by keeping a copy of the variable, the data
item in question, assigned to each (live) CPU on the system. In effect, we get rid of the
problem area for concurrency, the critical section, by avoiding the sharing of data between
threads. With the per-CPU data technique, since every CPU refers to its very own copy of
the data, a thread running on that processor can manipulate it without any worry of racing.
(This is roughly analogous to local variables; as locals are on the private stack of each
thread, they aren't shared between threads, thus there's no critical section and no need for
locking.) Here, too, the need for locking is thus eliminated – making it a lock-
free technology!

So, think of this: if you are running on a system with four live CPU cores, then a per-CPU
variable on that system is essentially an array of four elements: element 0 represents the
data value on the first CPU, element 1 the data value on the second CPU core, and so
on. Understanding this, you'll realize that per-CPU variables are also roughly analogous to
the user space Pthreads Thread Local Storage (TLS) implementation where each thread
automatically obtains a copy of the (TLS) variable marked with the __thread keyword.
There, and here with per-CPU variables, it should be obvious: use per-CPU variables for
small data items only. This is because the data item is reproduced (copied) with one
instance per CPU core (on a high-end system with a few hundred cores, the overheads do
climb). We mention some examples of per-CPU usage in the kernel code base (in the Per-
CPU usage within the kernel section).

Kernel Synchronization - Part 2 Chapter 7

[387]

Now, when working with per-CPU variables, you must use the helper methods
(macros and APIs) provided by the kernel and not attempt to directly access them (much
like we saw with the refcount and atomic operators).

Working with per-CPU
Let's approach the helper APIs and macros (methods) for per-CPU data by dividing the
discussion into two portions. First, you will learn how to allocate, initialize, and
subsequently free a per-CPU data item. Then, you will learn how to work with (read/write)
it.

Allocating, initialization, and freeing per-CPU variables
There are broadly two types of per-CPU variables: statically and dynamically allocated
ones. Statically allocated per-CPU variables are allocated at compile time itself, typically via
one of these macros: DEFINE_PER_CPU or DECLARE_PER_CPU. Using the DEFINE one
allows you to allocate and initialize the variable. Here's an example of allocating a single
integer as a per-CPU variable:

#include <linux/percpu.h>
DEFINE_PER_CPU(int, pcpa); // signature: DEFINE_PER_CPU(type, name)

Now, on a system with, say, four CPU cores, it would conceptually appear like this
at initialization:

Figure 7.5 – Conceptual representation of a per-CPU data item on a system with four live CPUs

(The actual implementation is quite a bit more complex than this, of course; please refer to
the Further reading section of this chapter to see more on the internal implementation.)

Kernel Synchronization - Part 2 Chapter 7

[388]

In a nutshell, using per-CPU variables is good for performance enhancement on time-
sensitive code paths because of the following:

We avoid using costly, performance-busting locks.
The access and manipulation of a per-CPU variable is guaranteed to remain on
one particular CPU core; this eliminates expensive cache effects such as cache
ping-pong and false sharing (covered in the Cache effects and false sharing section).

Dynamically allocating per-CPU data can be achieved via the alloc_percpu() or
alloc_percpu_gfp() wrapper macros, simply passing the data type of the object to
allocate as per-CPU, and, for the latter, passing along the gfp allocation flag as well:

alloc_percpu[_gfp](type [,gfp]);

The underlying __alloc_per_cpu[_gfp]() routines are exported via
EXPORT_SYMBOL_GPL() (and thus can be employed only when an LKM is released under a
GPL-compatible license).

As you've learned, the resource-managed devm_*() API variants allow
you (typically when writing drivers) to conveniently use these routines to
allocate memory; the kernel will take care of freeing it, helping prevent
leakage scenarios. The devm_alloc_percpu(dev, type) macro allows
you to use this as a resource-managed version of __alloc_percpu().

The memory allocated via the preceding routine(s) must subsequently be freed using
the void free_percpu(void __percpu *__pdata) API.

Performing I/O (reads and writes) on per-CPU variables
A key question, of course, is how exactly can you access (read) and update (write) to per-
CPU variables? The kernel provides several helper routines to do so; let's take a simple
example to understand how. We define a single integer per-CPU variable, and at a later
point in time, we want to access and print its current value. You should realize that,
being per-CPU, the value retrieved will be auto-calculated based on the CPU core the code is
currently running on; in other words, if the following code is running on core 1, then in
effect, the pcpa[1] value is fetched (it's not done exactly like this; this is just conceptual):

DEFINE_PER_CPU(int, pcpa);
int val;
[...]
val = get_cpu_var(pcpa);
pr_info("cpu0: pcpa = %+d\n", val);
put_cpu_var(pcpa);

Kernel Synchronization - Part 2 Chapter 7

[389]

The pair of {get,put}_cpu_var() macros allows us to safely retrieve or modify the per-
CPU value of the given per-CPU variable (its parameter). It's important to understand that
the code between get_cpu_var() and put_cpu_var() (or equivalent) is, in effect, a
critical section – an atomic context – where kernel preemption is disabled and any kind of
blocking (or sleeping) is disallowed. If you do anything here that blocks (sleeps) in any manner,
it's a kernel bug. For example, see what happens if you try to allocate memory via
vmalloc() within the get_cpu_var()/put_cpu_var() pair of macros:

void *p;
val = get_cpu_var(pcpa);
p = vmalloc(20000);
pr_info("cpu1: pcpa = %+d\n", val);
put_cpu_var(pcpa);
vfree(p);
[...]

$ sudo insmod <whatever>.ko
$ dmesg
[...]
BUG: sleeping function called from invalid context at mm/slab.h:421
[67641.443225] in_atomic(): 1, irqs_disabled(): 0, pid: 12085, name:
thrd_1/1
[...]
$

(By the way, calling the printk() (or pr_<foo>()) wrappers as we do within the critical
section is fine as they're non-blocking.) The issue here is that the vmalloc() API
is possibly a blocking one; it might sleep (we discussed it in detail in the companion guide
Linux Kernel Programming - Chapter 9, Kernel Memory Allocation for Module Authors – Part 2, in
the Understanding and using the kernel vmalloc() API section), and the code between
the get_cpu_var()/put_cpu_var() pair must be atomic and non-blocking.

Internally, the get_cpu_var() macro invokes preempt_disable(), disabling
kernel preemption, and put_cpu_var() undoes this by invoking preempt_enable().
As seen earlier (in the companion guide Linux Kernel Programming chapters on CPU
scheduling), this can be nested and the kernel maintains a preempt_count variable to figure
out whether kernel preemption is actually enabled or disabled.

Kernel Synchronization - Part 2 Chapter 7

[390]

The upshot of all this is that you must carefully match the {get,put}_cpu_var() macros
when using them (for example, if we call the get macro twice, we must also call the
corresponding put macro twice).

The get_cpu_var() is an lvalue and can thus be operated upon; for example, to
increment the per-CPU pcpa variable, just do the following:

get_cpu_var(pcpa) ++;
put_cpu_var(pcpa);

You can also (safely) retrieve the current per-CPU value via the macro:

per_cpu(var, cpu);

So, to retrieve the per-CPU pcpa variable for every CPU core on the system, use the
following:

for_each_online_cpu(i) {
 val = per_cpu(pcpa, i);
 pr_info(" cpu %2d: pcpa = %+d\n", i, val);
}

FYI, you can always use the smp_processor_id() macro to figure out
which CPU core you're currently running upon; in fact, this is precisely
how our convenient.h:PRINT_CTX() macro does it.

In a similar manner, the kernel provides routines to work with pointers to variables
that require to be per-CPU, the {get,put}_cpu_ptr() and per_cpu_ptr() macros.
These macros are heavily employed when working with a per-CPU data structure (as
opposed to just a simple integer); we safely retrieve the pointer to the structure of the CPU
we're currently running upon, and use it (per_cpu_ptr()).

Per-CPU – an example kernel module
A hands-on session with our sample per-CPU demo kernel module will definitely help
in using this powerful feature (code here: ch13/2_percpu). Here, we define and use
two per-CPU variables:

A statically allocated and initialized per-CPU integer
A dynamically allocated per-CPU data structure

Kernel Synchronization - Part 2 Chapter 7

[391]

As an interesting way to help demo per-CPU variables, let's do this: we shall arrange for
our demo kernel module to spawn off a couple of kernel threads. Let's call them
thrd_0 and thrd_1. Furthermore, once created, we shall make use of the CPU mask (and
API) to affine our thrd_0 kernel thread on CPU 0 and our thrd_1 kernel thread on CPU 1
(hence, they will be scheduled to run on only these cores; of course, we must test this code
on a VM with at least two CPU cores).

The following code snippets illustrate how we define and use the per-CPU variables (we
leave out the code that creates the kernel threads and sets up their CPU affinity masks, as
they are not relevant to the coverage of this chapter; nevertheless, it's key to browse
through the full code and try it out!):

// ch13/2_percpu/percpu_var.c
[...]
/*--- The per-cpu variables, an integer 'pcpa' and a data structure --- */
/* This per-cpu integer 'pcpa' is statically allocated and initialized to 0
*/
DEFINE_PER_CPU(int, pcpa);

/* This per-cpu structure will be dynamically allocated via alloc_percpu()
*/
static struct drv_ctx {
 int tx, rx; /* here, as a demo, we just use these two members,
 ignoring the rest */
 [...]
} *pcp_ctx;
[...]

static int __init init_percpu_var(void)
{
 [...]
 /* Dynamically allocate the per-cpu structures */
 ret = -ENOMEM;
 pcp_ctx = (struct drv_ctx __percpu *) alloc_percpu(struct drv_ctx);
 if (!pcp_ctx) {
 [...]
}

Why not use the resource-managed devm_alloc_percpu() instead? Yes, you should
when appropriate; here, though, as we're not writing a proper driver, we don't have a
struct device *dev pointer handy, which is the required first parameter to
devm_alloc_percpu().

Kernel Synchronization - Part 2 Chapter 7

[392]

By the way, I faced an issue when coding this kernel module; to set the
CPU mask (to change the CPU affinity for each of our kernel threads), the
kernel API is the sched_setaffinity() function, which, unfortunately
for us, is not exported, thus preventing us from using it. So, we perform
what is definitely considered a hack: obtain the address of the
uncooperative function via kallsyms_lookup_name() (which works
when CONFIG_KALLSYMS is defined) and then invoke it as a
function pointer. It works, but is most certainly not the right way to code.

Our design idea is to create two kernel threads and have each of them differently
manipulate the per-CPU data variables. If these were ordinary global variables, this would
certainly constitute a critical section and we would of course require a lock; but
here, precisely because they are per-CPU and because we guarantee that our threads run
on separate cores, we can concurrently update them with differing data! Our kernel thread
worker routine is as follows; the argument to it is the thread number (0 or 1).
We accordingly branch off and manipulate the per-CPU data (we have our first kernel
thread increment the integer three times, while our second kernel thread decrements it
three times):

/* Our kernel thread worker routine */
static int thrd_work(void *arg)
{
 int i, val;
 long thrd = (long)arg;
 struct drv_ctx *ctx;
 [...]

 /* Set CPU affinity mask to 'thrd', which is either 0 or 1 */
 if (set_cpuaffinity(thrd) < 0) {
 [...]
 SHOW_CPU_CTX();

 if (thrd == 0) { /* our kthread #0 runs on CPU 0 */
 for (i=0; i<THRD0_ITERS; i++) {
 /* Operate on our perpcu integer */
 val = ++ get_cpu_var(pcpa);
 pr_info(" thrd_0/cpu0: pcpa = %+d\n", val);
 put_cpu_var(pcpa);

 /* Operate on our perpcu structure */
 ctx = get_cpu_ptr(pcp_ctx);
 ctx->tx += 100;
 pr_info(" thrd_0/cpu0: pcp ctx: tx = %5d, rx = %5d\n",
 ctx->tx, ctx->rx);
 put_cpu_ptr(pcp_ctx);

Kernel Synchronization - Part 2 Chapter 7

[393]

 }
 } else if (thrd == 1) { /* our kthread #1 runs on CPU 1 */
 for (i=0; i<THRD1_ITERS; i++) {
 /* Operate on our perpcu integer */
 val = -- get_cpu_var(pcpa);
 pr_info(" thrd_1/cpu1: pcpa = %+d\n", val);
 put_cpu_var(pcpa);
 /* Operate on our perpcu structure */
 ctx = get_cpu_ptr(pcp_ctx);
 ctx->rx += 200;
 pr_info(" thrd_1/cpu1: pcp ctx: tx = %5d, rx = %5d\n",
 ctx->tx, ctx->rx);
 put_cpu_ptr(pcp_ctx);
 }
 }
 disp_vars();
 pr_info("Our kernel thread #%ld exiting now...\n", thrd);
 return 0;
}

The effect at runtime is interesting; see the following kernel log:

Figure 7.6 – Screenshot showing the kernel log when our ch13/2_percpu/percpu_var LKM runs

In the last three lines of output in Figure 7.6, you can see a summary of the values of our
per-CPU data variables on CPU 0 and CPU 1 (we show it via our disp_vars() function).
Clearly, for the per-CPU pcpa integer (as well as the pcp_ctx data structure), the values
are different as expected, without explicit locking.

Kernel Synchronization - Part 2 Chapter 7

[394]

The kernel module just demonstrated uses
the for_each_online_cpu(i) macro to display the value of our per-
CPU variables on each online CPU. Next, what if you have, say, six CPUs
on your VM but want only two of them to be "live" at runtime? There are
several ways to arrange this; one is to pass the maxcpus=n parameter to
the VM's kernel at boot – you can see if it's there by looking up
/proc/cmdline:
$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-5.4.0-llkd-dbg
root=UUID=1c4<...> ro console=ttyS0,115200n8
console=tty0 quiet splash 3 maxcpus=2

Also notice that we're running on our custom 5.4.0-llkd-dbg debug
kernel.

Per-CPU usage within the kernel
Per-CPU variables are quite heavily used within the Linux kernel; one interesting case is in
the implementation of the current macro on the x86 architecture (we covered using the
current macro in the companion guide Linux Kernel Programming - Chapter 6, Kernel
Internals Essentials – Processes and Threads, in the Accessing the task structure with
current section). The fact is that current is looked up (and set) every so often; keeping it as
a per-CPU ensures that we keep its access lock-free! Here's the code that implements it:

// arch/x86/include/asm/current.h
[...]
DECLARE_PER_CPU(struct task_struct *, current_task);
static __always_inline struct task_struct *get_current(void)
{
 return this_cpu_read_stable(current_task);
}
#define current get_current()

The DECLARE_PER_CPU() macro declares the variable named current_task as a per-CPU
variable of type struct task_struct *. The get_current() inline function invokes
the this_cpu_read_stable() helper on this per-CPU variable, thus reading the value of
current on the CPU core that it's currently running on (read the comment at https:/ ​/
elixir.​bootlin.​com/ ​linux/ ​v5. ​4/​source/ ​arch/ ​x86/​include/ ​asm/ ​percpu. ​h#L383 to see
what this routine's about). Okay, that's fine, but an FAQ: where does
this current_task per-CPU variable get updated? Think about it: the kernel must change
(update) current whenever its context switches to another task.

https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383

Kernel Synchronization - Part 2 Chapter 7

[395]

That's exactly the case; it is indeed updated within the context-switching code
(arch/x86/kernel/process_64.c:__switch_to(); at https:/ ​/ ​elixir. ​bootlin. ​com/
linux/​v5.​4/​source/ ​arch/ ​x86/ ​kernel/ ​process_ ​64.​c#L504):

__visible __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
 [...]
 this_cpu_write(current_task, next_p);
 [...]
}

Next, a quick experiment to show per-CPU usage within the kernel code base via
__alloc_percpu(): run cscope -d in the root of the kernel source tree (this assumes
you've already built the cscope index via make cscope). In the cscope menu, under
the Find functions calling this function: prompt, type __alloc_percpu. The
result is as follows:

Figure 7.7 – (Partial) screenshot of the output of cscope -d showing kernel code that calls the __alloc_percpu() API

This, of course, is just a partial list of per-CPU usage within the kernel code base, tracking
only use via the __alloc_percpu() underlying API. Searching for functions calling
alloc_percpu[_gfp]() (wrappers over __alloc_percpu[_gfp]()) reveals many more
hits.

With this, having completed our discussions on kernel synchronization techniques and
APIs, let's finish this chapter by learning about a key area: tools and tips when debugging
locking issues within kernel code!

https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504

Kernel Synchronization - Part 2 Chapter 7

[396]

Lock debugging within the kernel
The kernel has several means to help debug difficult situations with regard to kernel-
level locking issues, deadlock being a primary one.

Just in case you haven't already, do ensure you've first read the basics on
synchronization, locking, and deadlock guidelines from the previous
chapter (Chapter 6, Kernel Synchronization – Part 1, especially the Exclusive
execution and atomicity and Concurrency concerns within the Linux
kernel sections).

With any debug scenario, there are different points at which debugging occurs, and thus
perhaps differing tools and techniques that should/could be used. Very broadly speaking, a
bug might be noticed at, and thus debugged at, a few different points in time (within
the Software Development Life Cycle (SDLC), really):

During development
After development but before release (testing, Quality Assurance (QA), and so
on)
After internal release
After release, in the field

A well-known and unfortunately true homily: the "further" a bug is exposed from
development, the costlier it is to fix! So you really do want to try and find and fix them as
early as possible!

As this book is focused squarely on kernel development, we shall focus here on a few tools
and techniques for debugging locking issues at development time.

Important: We expect that by now, you're running on a debug kernel, that
is, a kernel deliberately configured for development/debug purposes.
Performance will take a hit, but that's okay – we're out bug hunting now!
We covered the configuration of a typical debug kernel in the companion
guide Linux Kernel Programming - Chapter 5, Writing Your First Kernel
Module – LKMs Part 2, in the Configuring a debug kernel section, and have
even provided a sample kernel configuration file for debugging
here: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel-
Programming/ ​blob/ ​master/ ​ch5/ ​kconfigs/ ​sample_ ​kconfig_ ​llkd_ ​dbg.
config. Specifics on configuring the debug kernel for lock debugging are
in fact covered next.

https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch5/kconfigs/sample_kconfig_llkd_dbg.config

Kernel Synchronization - Part 2 Chapter 7

[397]

Configuring a debug kernel for lock debugging
Due to its relevance and importance to lock debugging, we will take a quick look at a key
point from the Linux Kernel patch submission checklist document (https:/ ​/​www. ​kernel. ​org/
doc/​html/​v5.​4/​process/ ​submit- ​checklist. ​html) that's most relevant to our discussions
here, on enabling a debug kernel (especially for lock debugging):

// https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
[...]
12. Has been tested with CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT,
CONFIG_DEBUG_SLAB, CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES,
CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_ATOMIC_SLEEP, CONFIG_PROVE_RCU and
CONFIG_DEBUG_OBJECTS_RCU_HEAD all simultaneously enabled.
13. Has been build- and runtime tested with and without CONFIG_SMP and
CONFIG_PREEMPT.

16. All codepaths have been exercised with all lockdep features enabled.
[...]

Though not covered in this book, I cannot fail to mention a very powerful
dynamic memory error detector called Kernel Address SANitizer
(KASAN). In a nutshell, it uses compile-time instrumentation-based
dynamic analysis to catch common memory-related bugs (it works with
both GCC and Clang). ASan (Address Sanitizer), contributed by Google
engineers, is used to monitor and detect memory issues in user space apps
(covered in some detail and compared with valgrind in the Hands-On
System Programming for Linux book). The kernel equivalent, KASAN, has
been available since the 4.0 kernel for both x86_64 and AArch64 (ARM64,
from 4.4 Linux). Details (on enabling and using it) can be found within the
kernel documentation (https:/ ​/​www. ​kernel. ​org/​doc/ ​html/ ​v5. ​4/​dev-
tools/ ​kasan. ​html#the- ​kernel- ​address- ​sanitizer- ​kasan); I highly
recommend you enable it in your debug kernel.

As covered in the companion guide Linux Kernel Programming - Chapter 2, Building the 5.x
Linux Kernel from Source – Part 1, we can configure our Linux kernel specifically for our
requirements. Here (within the root of the 5.4.0 kernel source tree), we perform make
menuconfig and navigate to the Kernel hacking / Lock Debugging (spinlocks,
mutexes, etc...) menu (see Figure 7.8, taken on our x86_64 Ubuntu 20.04 LTS guest
VM):

https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan

Kernel Synchronization - Part 2 Chapter 7

[398]

Figure 7.8 – (Truncated) screenshot of the kernel hacking / Lock Debugging (spinlocks, mutexes, etc...) menu with required items enabled for our debug kernel

Figure 7.8 is a (truncated) screenshot of the <Kernel hacking > Lock Debugging
(spinlocks, mutexes, etc...) menu with required items enabled for our debug
kernel.

Instead of interactively having to go through each menu item
and selecting the <Help> button to see what it's about, a much simpler
way to gain the same help information is to peek inside the relevant
Kconfig file (that describes the menu). Here, it's lib/Kconfig.debug, as
all debug-related menus are there. For our particular case, search for
the menu "Lock Debugging (spinlocks, mutexes,
etc...)" string, where the Lock Debugging section begins (see the
following table).

The following table summarizes what each kernel lock debugging configuration option
helps debug (we haven't shown all of them and, for some of them, have directly quoted
from the lib/Kconfig.debug file):

Lock debugging menu title What it does

Lock debugging: prove locking
correctness (CONFIG_PROVE_LOCKING)

This is the lockdep kernel option – turn it on to get
rolling proof of lock correctness at all times. Any possibility
of locking-related deadlock is reported even before it actually
occurs; very useful! (Explained shortly in more detail.)

Lock usage statistics (CONFIG_LOCK_STAT) Tracks lock contention points (explained shortly in more detail).
RT mutex debugging, deadlock detection
(CONFIG_DEBUG_RT_MUTEXES)

"This allows rt mutex semantics violations and rt mutex related deadlocks
(lockups) to be detected and reported automatically."

Kernel Synchronization - Part 2 Chapter 7

[399]

Spinlock and rw-lock debugging: basic checks
(CONFIG_DEBUG_SPINLOCK)

Turning this on (along with CONFIG_SMP) helps catch missing
spinlock initialization and other common spinlock errors.

Mutex debugging: basic checks
(CONFIG_DEBUG_MUTEXES) "This feature allows mutex semantics violations to be detected and reported."

RW semaphore debugging: basic checks
(CONFIG_DEBUG_RWSEMS)

Allows mismatched RW semaphore locks and unlocks to be detected
and reported.

Lock debugging: detect incorrect freeing of live
locks (CONFIG_DEBUG_LOCK_ALLOC)

"This feature will check whether any held lock (spinlock, rwlock, mutex or
rwsem) is incorrectly freed by the kernel, via any of the memory-freeing
routines (kfree(), kmem_cache_free(),
free_pages(), vfree(), etc.), whether a live lock is incorrectly
reinitialized via spin_lock_init()/mutex_init()/etc., or
whether there is any lock held during task exit."

Sleep inside atomic section checking
(CONFIG_DEBUG_ATOMIC_SLEEP)

"If you say Y here, various routines which may sleep will become very noisy
if they are called inside atomic sections: when a spinlock is held, inside an rcu
read side critical section, inside preempt disabled sections, inside an
interrupt, etc..."

Locking API boot-time self-tests
(CONFIG_DEBUG_LOCKING_API_SELFTESTS)

"Say Y here if you want the kernel to run a short self-test during bootup. The
self-test checks whether common types of locking bugs are detected by
debugging mechanisms or not. (if you disable lock debugging then those bugs
wont be detected of course.) The following locking APIs are covered:
spinlocks, rwlocks,
mutexes and rwsems."

Torture tests for locking
(CONFIG_LOCK_TORTURE_TEST)

"This option provides a kernel module that runs torture tests on kernel
locking primitives. The kernel module may be built after the fact on the
running kernel to be tested, if desired." (Can be built either inline with 'Y' or
externally as a module with 'M')."

Table 17.4 – Typical kernel lock debugging configuration options and their meaning

As suggested previously, turning on all or most of these lock debug options within a debug
kernel used during development and testing is a good idea. Of course, as expected,
doing so might considerably slow down execution (and use more memory); as in life, this is
a trade-off you have to decide on: you gain detection of common locking issues, errors, and
deadlocks, at the cost of speed. It's a trade-off you should be more than willing to make,
especially when developing (or refactoring) the code.

The lock validator lockdep – catching locking
issues early
The Linux kernel has a tremendously useful feature begging to be taken advantage of
by kernel developers: a runtime locking correctness or locking dependency validator;
in short, lockdep. The basic idea is this: the lockdep runtime comes into play whenever
any locking activity occurs within the kernel – the taking or the release of any kernel-level
lock, or any locking sequence involving multiple locks.

Kernel Synchronization - Part 2 Chapter 7

[400]

This is tracked or mapped (see the following paragraph for more on the performance
impact and how it's mitigated). By applying well-known rules for correct locking (you got a
hint of this in the previous chapter in the Locking guidelines and deadlock section), lockdep
then makes a conclusion regarding the validity of the correctness of what was done.

The beauty of it is that lockdep achieves 100% mathematical proof (or closure) that a lock
sequence is correct or not. The following is a direct quote from the kernel documentation on
the topic (https:/ ​/​www. ​kernel. ​org/ ​doc/ ​html/ ​v5. ​4/​locking/ ​lockdep- ​design. ​html):

"The validator achieves perfect, mathematical ‘closure’ (proof of locking correctness) in the
sense that for every simple, standalone single-task locking sequence that occurred at least
once during the lifetime of the kernel, the validator proves it with a 100% certainty that no
combination and timing of these locking sequences can cause any class of lock related
deadlock."

Furthermore, lockdep warns you (by issuing the WARN*() macros) of any violation of the
following classes of locking bugs: deadlocks/lock inversion scenarios, circular
lock dependencies, and hard IRQ/soft IRQ safe/unsafe locking bugs. This information is
precious; validating your code with lockdep can save hundreds of wasted hours of
productivity by catching locking issues early. (FYI, lockdep tracks all locks and their
locking sequence or "lock chains"; these can be viewed through /proc/lockdep_chains).

A word on performance mitigation: you might well imagine that, with literally thousands or
more lock instances floating around, it would be absurdly slow to validate every single lock
sequence (yes, in fact, it turns out to be a task of order O(N^2) algorithmic time
complexity!). This would just not work; so, lockdep works by verifying any locking
scenario (say, on a certain code path, lock A is taken, then lock B is taken – this is referred to
as a lock sequence or lock chain) only once, the very first time it occurs. (It knows this by
maintaining a 64-bit hash for every lock chain it encounters.)

https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html

Kernel Synchronization - Part 2 Chapter 7

[401]

Primitive user space approaches: A very primitive – and certainly not
guaranteed – way to try and detect deadlocks is via user space by simply
using GNU ps(1); doing ps -LA -o state,pid,cmd | grep "^D"
prints any threads in the D – uninterruptible
sleep (TASK_UNINTERRUPTIBLE) – state. This could – but may not – be due
to a deadlock; if it persists for a long while, chances are higher that it is a
deadlock. Give it a try! Of course, lockdep is a far superior solution.
(Note that this only works with GNU ps, not the lightweight ones such
as busybox ps.)

Other useful user space tools are strace(1) and ltrace(1) –
they provide a detailed trace of every system and library call,
respectively, issued by a process (or thread); you might be able to catch a
hung process/thread and see where it got stuck (using strace -p
PID might be especially useful on a hung process).

The other point that you need to be clear about is this: lockdep will issue warnings
regarding (mathematically) incorrect locking even if no deadlock actually occurs at runtime!
lockdep offers proof that there is indeed an issue that could conceivably cause a bug
(deadlock, unsafe locking, and so on) at some point in the future if no corrective action is
taken; it's usually dead right; take it seriously and fix the issue. (Then again, typically,
nothing in the software universe is 100% correct 100% of the time: what if a bug creeps into
the lockdep code itself? There's even a CONFIG_DEBUG_LOCKDEP config option. The
bottom line is that we, the human developers, must carefully assess the situation, checking
for false positives.)

Next, lockdep works upon a lock class; this is simply a "logical" lock as opposed to
"physical" instances of that lock. For example, the kernel's open file data structure, struct
file, has two locks – a mutex and a spinlock – and each of them is considered a lock class
by lockdep. Even if a few thousand instances of struct file exist in memory at runtime,
lockdep will track it as a class only. For more detail on lockdep's internal design, we refer
you to the official kernel documentation on it (https:/ ​/​www. ​kernel. ​org/​doc/ ​html/ ​v5. ​4/
locking/​lockdep- ​design. ​html).

https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html

Kernel Synchronization - Part 2 Chapter 7

[402]

Examples – catching deadlock bugs with lockdep
Here, we shall assume that you've by now built and are running upon a debug kernel with
lockdep enabled (as described in detail in the Configuring a debug kernel for lock
debugging section). Verify that it is indeed enabled:

$ uname -r
5.4.0-llkd-dbg
$ grep PROVE_LOCKING /boot/config-5.4.0-llkd-dbg
CONFIG_PROVE_LOCKING=y
$

Okay, good! Now, let's get hands-on with some deadlocks, seeing how lockdep will help
you catch them. Read on!

Example 1 – catching a self deadlock bug with lockdep
As a first example, let's travel back to one of our kernel modules from the companion guide
Linux Kernel Programming - Chapter 6, Kernel Internals Essentials – Processes and Threads, in
the Iterating over the task list section, here: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Linux-
Kernel-​Programming/ ​blob/ ​master/ ​ch6/ ​foreach/ ​thrd_ ​showall/ ​thrd_ ​showall. ​c. Here, we
looped over each thread, printing some details from within its task structure; with regard to
this, here's a code snippet where we obtain the name of the thread (recall that it's in a
member of the task structure called comm):

// ch6/foreach/thrd_showall/thrd_showall.c
static int showthrds(void)
{
 struct task_struct *g = NULL, *t = NULL; /* 'g' : process ptr; 't':
thread ptr */
 [...]
 do_each_thread(g, t) { /* 'g' : process ptr; 't': thread ptr */
 task_lock(t);
 [...]
 if (!g->mm) { // kernel thread
 snprintf(tmp, TMPMAX-1, " [%16s]", t->comm);
 } else {
 snprintf(tmp, TMPMAX-1, " %16s ", t->comm);
 }
 snprintf(buf, BUFMAX-1, "%s%s", buf, tmp);
 [...]

https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/ch6/foreach/thrd_showall/thrd_showall.c

Kernel Synchronization - Part 2 Chapter 7

[403]

This works, but there appears to be a better way to do it: instead of directly looking up the
thread's name with t->comm (as we do here), the kernel provides
the {get,set}_task_comm() helper routines to both get and set the name of the task. So,
we rewrite the code to use the get_task_comm() helper macro; the first parameter to it is
the buffer to place the name into (it's expected that you've allocated memory to it), and the
second parameter is the pointer to the task structure of the thread whose name you are
querying (the following code snippet is from
here: ch13/3_lockdep/buggy_thrdshow_eg/thrd_showall_buggy.c):

// ch13/3_lockdep/buggy_lockdep/thrd_showall_buggy.c
static int showthrds_buggy(void)
{
 struct task_struct *g, *t; /* 'g' : process ptr; 't': thread ptr */
 [...]
 char buf[BUFMAX], tmp[TMPMAX], tasknm[TASK_COMM_LEN];
 [...]
 do_each_thread(g, t) { /* 'g' : process ptr; 't': thread ptr */
 task_lock(t);
 [...]
 get_task_comm(tasknm, t);
 if (!g->mm) // kernel thread
 snprintf(tmp, sizeof(tasknm)+3, " [%16s]", tasknm);
 else
 snprintf(tmp, sizeof(tasknm)+3, " %16s ", tasknm);
 [...]

When compiled and inserted into the kernel on our test system (a VM, thank goodness), it
can get weird, or even just simply hang! (When I did this, I was able to retrieve the kernel
log via dmesg(1) before the system became completely unresponsive.).

What if your system just hangs upon insertion of this LKM? Well, that's a
taste of the difficulty of kernel debugging! One thing you can try (which
worked for me when trying this very example on a x86_64 Fedora 29 VM)
is to reboot the hung VM and look up the kernel log by leveraging
systemd's powerful journalctl(1) utility with the journalctl --
since="1 hour ago" command; you should be able to see the printks
from lockdep now. Again, unfortunately, it's not guaranteed that the key
portion of the kernel log is saved to disk (at the time it hung) for
journalctl to be able to retrieve. This is why using the kernel's kdump
feature – and then performing postmortem analysis of the kernel dump
image file with crash(8) – can be a lifesaver (see resources on using
kdump and crash in the Further reading section for this chapter).

Kernel Synchronization - Part 2 Chapter 7

[404]

Glancing at the kernel log, it becomes clear: lockdep has caught a (self) deadlock (we show
relevant parts of the output in the screenshot):

Figure 7.9 – (Partial) screenshot showing the kernel log after our buggy module is loaded; lockdep catches the self deadlock!

Though a lot more detail follows (including the stack backtrace of the kernel stack
of insmod(8) – as it was the process context, in this case, register values, and so on), what
we see in the preceding figure is sufficient to deduce what happened. Clearly, lockdep
tells us insmod/2367 is trying to acquire lock:, followed by but task is
already holding lock:. Next (look carefully at Figure 7.9), the lock that insmod is
holding is (p->alloc_lock) (for now, ignore what follows it; we will explain it shortly)
and the routine that actually attempts to acquire it (shown after at:)
is __get_task_comm+0x28/0x50. Now, we're getting somewhere: let's figure out what
exactly occurred when we called get_task_comm(); we find that it's a macro, a wrapper
around the actual worker routine, __get_task_comm(). Its code is as follows:

// fs/exec.c
char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
{
 task_lock(tsk);
 strncpy(buf, tsk->comm, buf_size);
 task_unlock(tsk);
 return buf;
}

Kernel Synchronization - Part 2 Chapter 7

[405]

EXPORT_SYMBOL_GPL(__get_task_comm);

Ah, there's the problem: the __get_task_comm() function attempts to reacquire the very
same lock that we're already holding, causing (self) deadlock! Where did we acquire it? Recall
that the very first line of code in our (buggy) kernel module after entering the loop is where
we call task_lock(t), and then just a few lines later, we invoke get_task_comm(),
which internally attempts to reacquire the very same lock: the result is self deadlock:

do_each_thread(g, t) { /* 'g' : process ptr; 't': thread ptr */
 task_lock(t);
 [...]
 get_task_comm(tasknm, t);

Furthermore, finding which particular lock this is easy; look up the code of
the task_lock() routine:

// include/linux/sched/task.h */
static inline void task_lock(struct task_struct *p)
{
 spin_lock(&p->alloc_lock);
}

So, it all makes sense now; it's a spinlock within the task structure named alloc_lock, just
as lockdep informs us.
lockdep's report has some amount of puzzling notations. Take the following lines:

[1021.449384] insmod/2367 is trying to acquire lock:
[1021.451361] ffff88805de73f08 (&(&p->alloc_lock)->rlock){+.+.}, at:
__get_task_comm+0x28/0x50
[1021.453676]
 but task is already holding lock:
[1021.457365] ffff88805de73f08 (&(&p->alloc_lock)->rlock){+.+.}, at:
showthrds_buggy+0x13e/0x6d1 [thrd_showall_buggy]

Ignoring the timestamp, the number in the leftmost column of the second line seen in the
preceding code block is the 64-bit lightweight hash value used to identify this particular
lock sequence. Notice it's precisely the same as the hash in the following line; so, we know
it's the very same lock being acted upon! {+.+.} is lockdep's notation for what state this
lock was acquired in (the meaning: + implies lock acquired with IRQs enabled, . implies
lock acquired with IRQs disabled and not in the IRQ context, and so on). These are
explained in the kernel documentation (https:/ ​/​www. ​kernel. ​org/ ​doc/ ​Documentation/
locking/​lockdep- ​design. ​txt); we'll leave it at that.

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt

Kernel Synchronization - Part 2 Chapter 7

[406]

A detailed presentation on interpreting lockdep output was given by
Steve Rostedt at a Linux Plumber's Conference (back in 2011); the relevant
slides are informative, exploring both simple and complex deadlock
scenarios and how lockdep can detect them:
Lockdep: How to read its cryptic output (https:/ ​/​blog. ​linuxplumbersconf.
org/​2011/ ​ocw/ ​sessions/ ​153).

Fixing it
Now that we understand the issue here, how do we fix it? Seeing lockdep's report (Figure
7.9) and interpreting it, it's quite simple: (as mentioned) since the task structure spinlock
named alloc_lock is already taken at the start of the do-while loop (via
task_lock(t)), ensure that before calling the get_task_comm() routine (which
internally takes and releases this same lock), you unlock it, then perform
get_task_comm(), then lock it again.

The following screenshot (Figure 7.10) shows the difference (via the diff(1) utility)
between the older buggy version
(ch13/3_lockdep/buggy_thrdshow_eg/thrd_showall_buggy.c) and the newer fixed
version of our code (ch13/3_lockdep/fixed_lockdep/thrd_showall_fixed.c):

Figure 7.10 – (Partial) screenshot showing the key part of the difference between the buggy and fixed versions of our demo thrdshow LKM

https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153

Kernel Synchronization - Part 2 Chapter 7

[407]

Great; another example follows – that of catching an AB-BA deadlock!

Example 2 – catching an AB-BA deadlock with lockdep
As one more example, let's check out a (demo) kernel module that quite deliberately creates
a circular dependency, which will ultimately result in a deadlock. The code is here:
ch13/3_lockdep/deadlock_eg_AB-BA. We've based this module on our earlier
one (ch13/2_percpu); as you'll recall, we create two kernel threads and ensure (by using a
hacked sched_setaffinity()) that each kernel thread runs on a unique CPU core
(the first kernel thread on CPU core 0 and the second on core 1).

This way, we have concurrency. Now, within the threads, we have them work with two
spinlocks, lockA and lockB. Understanding that we have a process context with two or
more locks, we document and follow a lock ordering rule: first take lockA, then lockB. Great;
so, one way it should not be done is like this:

kthread 0 on CPU #0 kthread 1 on CPU #1
 Take lockA Take lockB
 <perform work> <perform work>
 (Try and) take lockA
 < ... spins forever :
 DEADLOCK ... >
(Try and) take lockB
< ... spins forever :
 DEADLOCK ... >

This, of course, is the classic AB-BA deadlock! Because the program (kernel thread 1,
actually) ignored the lock ordering rule (when the lock_ooo module parameter is set to 1),
it deadlocks. Here's the relevant code (we haven't bothered showing the whole program
here; please clone this book's GitHub repository at https:/ ​/​github. ​com/ ​PacktPublishing/
Linux-​Kernel-​Programming and try it out yourself):

// ch13/3_lockdep/deadlock_eg_AB-BA/deadlock_eg_AB-BA.c
[...]
/* Our kernel thread worker routine */
static int thrd_work(void *arg)
{
 [...]
 if (thrd == 0) { /* our kthread #0 runs on CPU 0 */
 pr_info(" Thread #%ld: locking: we do:"
 " lockA --> lockB\n", thrd);
 for (i = 0; i < THRD0_ITERS; i ++) {
 /* In this thread, perform the locking per the lock ordering
'rule';

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Kernel Synchronization - Part 2 Chapter 7

[408]

 * first take lockA, then lockB */
 pr_info(" iteration #%d on cpu #%ld\n", i, thrd);
 spin_lock(&lockA);
 DELAY_LOOP('A', 3);
 spin_lock(&lockB);
 DELAY_LOOP('B', 2);
 spin_unlock(&lockB);
 spin_unlock(&lockA);
 }

Our kernel thread 0 does it correctly, following the lock ordering rule; the code relevant to
our kernel thread 1 (continued from the previous code) is as follows:

 [...]
 } else if (thrd == 1) { /* our kthread #1 runs on CPU 1 */
 for (i = 0; i < THRD1_ITERS; i ++) {
 /* In this thread, if the parameter lock_ooo is 1, *violate*
the
 * lock ordering 'rule'; first (attempt to) take lockB, then
lockA */
 pr_info(" iteration #%d on cpu #%ld\n", i, thrd);
 if (lock_ooo == 1) { // violate the rule, naughty boy!
 pr_info(" Thread #%ld: locking: we do: lockB -->
lockA\n",thrd);
 spin_lock(&lockB);
 DELAY_LOOP('B', 2);
 spin_lock(&lockA);
 DELAY_LOOP('A', 3);
 spin_unlock(&lockA);
 spin_unlock(&lockB);
 } else if (lock_ooo == 0) { // follow the rule, good boy!
 pr_info(" Thread #%ld: locking: we do: lockA -->
lockB\n",thrd);
 spin_lock(&lockA);
 DELAY_LOOP('B', 2);
 spin_lock(&lockB);
 DELAY_LOOP('A', 3);
 spin_unlock(&lockB);
 spin_unlock(&lockA);
 }
 [...]

Build and run it with the lock_ooo kernel module parameter set to 0 (the default); we find
that, obeying the lock ordering rule, all is well:

$ sudo insmod ./deadlock_eg_AB-BA.ko
$ dmesg
[10234.023746] deadlock_eg_AB-BA: inserted (param: lock_ooo=0)

Kernel Synchronization - Part 2 Chapter 7

[409]

[10234.026753] thrd_work():115: *** thread PID 6666 on cpu 0 now ***
[10234.028299] Thread #0: locking: we do: lockA --> lockB
[10234.029606] iteration #0 on cpu #0
[10234.030765] A
[10234.030766] A
[10234.030847] thrd_work():115: *** thread PID 6667 on cpu 1 now ***
[10234.031861] A
[10234.031916] B
[10234.032850] iteration #0 on cpu #1
[10234.032853] Thread #1: locking: we do: lockA --> lockB
[10234.038831] B
[10234.038836] Our kernel thread #0 exiting now...
[10234.038869] B
[10234.038870] B
[10234.042347] A
[10234.043363] A
[10234.044490] A
[10234.045551] Our kernel thread #1 exiting now...
$

Now, we run it with the lock_ooo kernel module parameter set to 1 and find that, as
expected, the system locks up! We've disobeyed the lock ordering rule, and we pay the
price as the system deadlocks! This time, rebooting the VM and doing journalctl --
since="10 min ago" got me lockdep's report:

==
WARNING: possible circular locking dependency detected
5.4.0-llkd-dbg #2 Tainted: G OE
--
thrd_0/0/6734 is trying to acquire lock:
ffffffffc0fb2518 (lockB){+.+.}, at: thrd_work.cold+0x188/0x24c
[deadlock_eg_AB_BA]

but task is already holding lock:
ffffffffc0fb2598 (lockA){+.+.}, at: thrd_work.cold+0x149/0x24c
[deadlock_eg_AB_BA]

which lock already depends on the new lock.
[...]
other info that might help us debug this:

 Possible unsafe locking scenario:

 CPU0 CPU1
 ---- ----
 lock(lockA);
 lock(lockB);
 lock(lockA);

Kernel Synchronization - Part 2 Chapter 7

[410]

 lock(lockB);

 *** DEADLOCK ***

[... lots more output follows ...]

The lockdep report is quite amazing. Check out the lines after the sentence Possible
unsafe locking scenario:; it pretty much precisely shows what actually occurred at
runtime – the out-of-order (ooo) locking sequence on CPU1 : lock(lockB); -->
lock(lockA);! Since lockA is already taken by the kernel thread on CPU 0, the kernel
thread on CPU 1 spins forever – the root cause of this AB-BA deadlock.

Furthermore, quite interestingly, soon after module insertion (with lock_ooo set to 1), the
kernel also detected a soft lockup bug. The printk is directed to our console at log
level KERN_EMERG, allowing us to see this even though the system appears to be hung. It
even shows the relevant kernel threads where the issue originated (again, this output is on
my x86_64 Ubuntu 20.04 LTS VM running the custom 5.4.0 debug kernel):

Message from syslogd@seawolf-VirtualBox at Dec 24 11:01:51 ...
kernel:[10939.279524] watchdog: BUG: soft lockup - CPU#0 stuck for 22s!
[thrd_0/0:6734]
Message from syslogd@seawolf-VirtualBox at Dec 24 11:01:51 ...
kernel:[10939.287525] watchdog: BUG: soft lockup - CPU#1 stuck for 23s!
[thrd_1/1:6735]

(FYI, the code that detected this and spewed out the preceding messages is
here: kernel/watchdog.c:watchdog_timer_fn()).

One additional note: the /proc/lockdep_chains output also "proves" the incorrect
locking sequence was taken (or exists):

$ sudo cat /proc/lockdep_chains
[...]
irq_context: 0
[000000005c6094ba] lockA
[000000009746aa1e] lockB
[...]
irq_context: 0
[000000009746aa1e] lockB
[000000005c6094ba] lockA

Also, recall that lockdep reports only once – the first time – that a lock rule on any kernel
lock is violated.

Kernel Synchronization - Part 2 Chapter 7

[411]

lockdep – annotations and issues
Let's wrap up this coverage with a couple more points on the powerful lockdep
infrastructure.

lockdep annotations
In user space, you will be familiar with using the very useful assert() macro. There, you
assert a Boolean expression, a condition (for example, assert(p == 5);). If the assertion
is true at runtime, nothing happens and execution continues; when the assertion is false, the
process is aborted and a noisy printf() to stderr indicates which assertion and where
it failed. This allows developers to check for runtime conditions that they expect.
Thus, assertions can be very valuable – they help catch bugs!

In a similar manner, lockdep allows the kernel developer to assert that a lock is held at
a particular point, via the lockdep_assert_held() macro. This is called a
lockdep annotation. The macro definition is displayed here:

// include/linux/lockdep.h
#define lockdep_assert_held(l) do { \
 WARN_ON(debug_locks && !lockdep_is_held(l)); \
 } while (0)

The assertion failing results in a warning (via WARN_ON()). This is very valuable as it
implies that though that lock l is supposed to be held now, it really isn't. Also notice that
these assertions only come into play when lock debugging is enabled (this is the default
when lock debugging is enabled within the kernel; it only gets turned off when an error
occurs within lockdep or the other kernel locking infrastructure). The kernel code base, in
fact, uses lockdep annotations all over the place, both in the core as well as the driver code.
(There are a few variations on the lockdep assertion of the form
lockdep_assert_held*() as well as the rarely used lockdep_*pin_lock() macros.)

Kernel Synchronization - Part 2 Chapter 7

[412]

lockdep issues
A couple of issues can arise when working with lockdep:

Repeated module loading and unloading can cause lockdep's internal lock class
limit to be exceeded (the reason, as explained within the kernel documentation, is
that loading a x.ko kernel module creates a new set of lock classes for all its
locks, while unloading x.ko does not remove them; it's actually reused). In
effect, either don't repeatedly load/unload modules or reset the system.
Especially in those cases where a data structure has an enormous number of
locks (such as an array of structures), failing to properly initialize every single
lock can result in lockdep lock-class overflow.

The debug_locks integer is set to 0 whenever lock debugging is disabled (even on a debug
kernel); this can result in this message showing up: *WARNING* lock debugging
disabled!! - possibly due to a lockdep warning. This could even happen due to
lockdep issuing warnings earlier. Reboot your system and retry.

Though this book is based on the 5.4 LTS kernel, a powerful feature was
(very recently as of the time of writing) merged into the 5.8 kernel: the
Kernel Concurrency Sanitizer (KCSAN). It's a data race detector for the
Linux kernel that works via compile-time instrumentation. You can find
more details in these LWN articles: Finding race conditions with KCSAN,
LWN, October 2019 (https:/ ​/​lwn. ​net/ ​Articles/ ​802128/ ​) and
Concurrency bugs should fear the big bad data-race detector (part 1), LWN,
April 2020 (https:/ ​/​lwn. ​net/​Articles/ ​816850/ ​).

Also, FYI, several tools do exist for catching locking bugs and deadlocks
in user space apps. Among them are the well-known helgrind (from the
Valgrind suite), TSan (Thread Sanitizer), which provides compile-time
instrumentation to check for data races in multithreaded applications, and
lockdep itself; lockdep can be made to work in user space as well (as a
library)! Moreover, the modern [e]BPF framework provides the
deadlock-bpfcc(8) frontend. It's designed specifically to find potential
deadlocks (lock order inversions) in a given running process (or thread).

https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/

Kernel Synchronization - Part 2 Chapter 7

[413]

Lock statistics
A lock can be contended, which is when, a context wants to acquire the lock but it has
already been taken, so it must wait for the unlock to occur. Heavy contention can create
severe performance bottlenecks; the kernel provides lock statistics with a view to easily
identifying heavily contended locks. Enable lock statistics by turning on
the CONFIG_LOCK_STAT kernel configuration option (without this, the /proc/lock_stat
entry will not be present, the typical case on most distribution kernels).

The lock stats code takes advantage of the fact that lockdep inserts hooks into the
locking code path (the __contended, __acquired, and __released hooks) to gather
statistics at these crucial points. The neatly written kernel documentation on lock statistics
(https:/​/​www.​kernel. ​org/ ​doc/ ​html/ ​latest/ ​locking/ ​lockstat. ​html#lock- ​statistics)
conveys this information (and a lot more) with a useful state diagram; do look it up.

Viewing lock stats
A few quick tips and essential commands to view lock statistics are as follows (this
assumes, of course, that CONFIG_LOCK_STAT is on):

Do what? Command
Clear lock stats sudo sh -c "echo 0 > /proc/lock_stat"

Enable lock stats
sudo sh -c "echo 1 >
/proc/sys/kernel/lock_stat"

Disable lock stats
sudo sh -c "echo 0 >
/proc/sys/kernel/lock_stat"

Next, a simple demo to see locking statistics: we write a very simple Bash
script, ch13/3_lockdep/lock_stats_demo.sh (check out its code in this book's GitHub
repo). It clears and enables locking statistics, then simply runs the cat
/proc/self/cmdline command. This will actually trigger a chain of code to run deep
within the kernel (within fs/proc mostly); several global – shared writable – data
structures will need to be looked up. This will constitute a critical section and thus locks
will be acquired. Our script will disable lock stats, and then grep the locking statistics to see
a few locks, filtering out the rest:

egrep "alloc_lock|task|mm" /proc/lock_stat

https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics

Kernel Synchronization - Part 2 Chapter 7

[414]

On running it, the output we obtained is as follows (again, on our x86_64 Ubuntu 20.04 LTS
VM running our custom 5.4.0 debug kernel):

Figure 7.11 – Screenshot showing our lock_stats_demo.sh script running, displaying some of the lock statistics

(The output in Figure 7.11 is pretty long horizontally and thus wraps.) The time displayed is
in microseconds. The class name field is the lock class; we can see several locks associated
with the task and memory structures (task_struct and mm_struct)! Instead of
duplicating the material, we refer you to the kernel documentation on lock statistics, which
explains each of the preceding fields (con-bounces, waittime*, and so on; hint: con is
short for contended) and how to interpret the output. As expected, see, in Figure 7.11, in
this simple case, the following:

The first field, class_name, is the lock class; the (symbolic) name of the lock is
seen here.
There's really no contention for locks (fields 2 and 3).
The wait times (waittime*, fields 3 to 6) are 0.
The acquisitions field (#9) is the total number of times the lock was acquired
(taken); it's positive (and even goes to over 300 for mm_struct semaphore
&mm->mmap_sem*).

Kernel Synchronization - Part 2 Chapter 7

[415]

The last four fields, 10 to 13, are the cumulative lock hold time statistics
(holdtime-{min|max|total|avg}). Again, here, you can see that mm_struct
mmap_sem* locks have the longest average hold time.
(Notice the task structure's spinlock named alloc_lock is taken as well; we
came across it in the Example 1 – catching a self deadlock bug with lockdep section).

The most contended locks on the system can be looked up via sudo grep
":" /proc/lock_stat | head. Of course, you should realize that this
is from when the locking statistics were last reset (cleared).

Note that lock statistics can get disabled due to lock debugging being disabled; for
example, you might come across this:

$ sudo cat /proc/lock_stat
lock_stat version 0.4
WARNING lock debugging disabled!! - possibly due to a lockdep warning

This warning might necessitate you rebooting the system.

All right, you're almost there! Let's finish this chapter with some brief coverage of memory
barriers.

Memory barriers – an introduction
Last but not least, let's briefly address another concern – that of the memory barrier. What
does it mean? Sometimes, a program flow becomes unknown to the human programmer as
the microprocessor, the memory controllers, and the compiler can reorder memory reads
and writes. In the majority of cases, these "tricks" remain benign and optimized. But there
are cases – typically across hardware boundaries, such as CPU cores on multicore systems,
CPU to peripheral device, and vice versa on UniProcessor (UP) – where this reordering
should not occur; the original and intended memory load and store sequences must
be honored. The memory barrier (typically machine-level instructions embedded within the
mb() macros) is a means to suppress such reordering; it's a way to force both the
CPU/memory controllers and the compiler to order instruction/data in a desired sequence.

Kernel Synchronization - Part 2 Chapter 7

[416]

Memory barriers can be placed into the code path by using the following
macros: #include <asm/barrier.h>:

rmb(): Inserts a read (or load) memory barrier into the instruction stream
wmb(): Inserts a write (or store) memory barrier into the instruction stream
mb(): A general memory barrier; quoting directly from the kernel documentation
on memory barriers (https:/ ​/​www. ​kernel. ​org/ ​doc/ ​Documentation/ ​memory-
barriers. ​txt), "A general memory barrier gives a guarantee that all the LOAD and
STORE operations specified before the barrier will appear to happen before all the LOAD
and STORE operations specified after the barrier with respect to the other components of
the system."

The memory barrier ensures that unless the preceding instruction or data access
executes, the following ones will not, thus maintaining the ordering. On some (rare)
occasions, DMA being the likely one, driver authors use memory barriers. When using
DMA, it's important to read the kernel documentation (https:/ ​/​www. ​kernel. ​org/ ​doc/
Documentation/​DMA- ​API- ​HOWTO. ​txt). It mentions where memory barriers are to be used
and the perils of not using them; see the example that follows for more on this.

As the placement of memory barriers is typically a fairly perplexing thing to get right
for many of us, we urge you to refer to the relevant technical reference manual for the
processor or peripheral you're writing a driver for, for more details. For example,
on the Raspberry Pi, the SoC is the Broadcom BCM2835 series; referring to its peripherals
manual – the BCM2835 ARM Peripherals manual (https:/ ​/ ​www.​raspberrypi. ​org/ ​app/
uploads/​2012/​02/ ​BCM2835- ​ARM- ​Peripherals. ​pdf), section 1.3, Peripheral access precautions
for correct memory ordering – is helpful to sort out when and when not to use memory
barriers.

An example of using memory barriers in a device
driver
As one example, take the Realtek 8139 "fast Ethernet" network driver. In order to transmit
a network packet via DMA, it must first set up a DMA (transmit) descriptor object. For
this particular hardware (NIC chip), the DMA descriptor object is defined as follows:

//​ drivers/net/ethernet/realtek/8139cp.c
struct cp_desc {
 __le32 opts1;
 __le32 opts2;
 __le64 addr;
};

https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

Kernel Synchronization - Part 2 Chapter 7

[417]

The DMA descriptor object, christened struct cp_desc, has three "words." Each of them
has to be initialized. Now, to ensure that the descriptor is correctly interpreted by the DMA
controller, it's often critical that the writes to the DMA descriptor are seen in the same order
as the driver author intends. To guarantee this, memory barriers are used. In fact, the
relevant kernel documentation – the Dynamic DMA mapping Guide (https:/ ​/​www. ​kernel.
org/​doc/​Documentation/ ​DMA- ​API- ​HOWTO. ​txt) – tells us to ensure that this is indeed the
case. So, for example, when setting up the DMA descriptor, you must code it as follows to
get correct behavior on all platforms:

desc->word0 = address;
wmb();
desc->word1 = DESC_VALID;

Thus, check out how the DMA transmit descriptor is set up in practice (by the Realtek
8139 driver code, as follows):

// drivers/net/ethernet/realtek/8139cp.c
[...]
static netdev_tx_t cp_start_xmit([...])
{
 [...]
 len = skb->len;
 mapping = dma_map_single(&cp->pdev->dev, skb->data, len,
PCI_DMA_TODEVICE);
 [...]
 struct cp_desc *txd;
 [...]
 txd->opts2 = opts2;
 txd->addr = cpu_to_le64(mapping);
 wmb();
 opts1 |= eor | len | FirstFrag | LastFrag;
 txd->opts1 = cpu_to_le32(opts1);
 wmb();
 [...]

The driver, acting upon what the chip's datasheet requires, requires that the words
txd->opts2 and txd->addr are stored to memory, followed by the storage of the
txd->opts1 word. As the order in which these writes go through is important, the driver makes
use of the wmb() write memory barrier. (Also, FYI, RCU is certainly a user of appropriate
memory barriers to enforce memory ordering.)

https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

Kernel Synchronization - Part 2 Chapter 7

[418]

Furthermore, using the READ_ONCE() and WRITE_ONCE() macros on individual variables
absolutely guarantees that the compiler and the CPU will do what you mean. It will preclude
compiler optimizations as required, use memory barriers as required, and guarantee cache
coherency when multiple threads on different cores simultaneously access the variable in
question.

For details, do refer to the kernel documentation on memory barriers (https:/ ​/​www.
kernel.​org/​doc/​Documentation/ ​DMA- ​API- ​HOWTO. ​txt). It has a detailed section entitled
WHERE ARE MEMORY BARRIERS NEEDED?. The good news is that it's mostly taken care
of under the hood; for a driver author, it's only when performing operations such as setting
up DMA descriptors or initiating and ending CPU-to-peripheral (and vice versa)
communication that you might require a barrier.

One last thing – an (unfortunate) FAQ: will using the volatile keyword magically
make concurrency concerns disappear? Of course not. The volatile keyword merely
instructs the compiler to disable common optimizations around that variable (things
outside this code path could also modify the variable marked as volatile), that's all. This
is often required and useful when working with MMIO. With regard to memory barriers,
interestingly, the compiler won't reorder reads or writes on a variable marked as volatile
with respect to other volatile variables. Still, atomicity is a separate construct, not
guaranteed by using the volatile keyword.

Summary
Well, what do you know!? Congratulations, you have done it, you have completed this
book!

In this chapter, we continued from the previous chapter in our quest to learn more about
kernel synchronization. Here, you learned how to more efficiently and safely perform
locking on integers, via both atomic_t and the newer refcount_t interface. Within this,
you learned how the typical RMW sequence can be atomically and safely employed in a
common activity for driver authors – updating a device's registers. The reader-writer
spinlock, interesting and useful, though with several caveats, was then covered. You saw
how easy it is to mistakenly create adverse performance issues caused by unfortunate
caching side effects, including looking at the false sharing problem and how to avoid it.

https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

Kernel Synchronization - Part 2 Chapter 7

[419]

A boon to developers – lock-free algorithms and programming techniques – was then
covered in some detail, with a focus on per-CPU variables within the Linux kernel. It's
important to learn how to use these carefully (especially the more advanced forms such as
RCU). Finally, you learned what memory barriers are and where they are typically used.

Your long journey in working within the Linux kernel (and related areas, such as device
drivers) has begun in earnest now. Do realize, though, that without constant hands-on
practice and actually working on these materials, the fruits quickly fade away... I urge you
to stay in touch with these topics and others. As you grow in knowledge and experience,
contributing to the Linux kernel (or any open source project for that matter) is a noble
endeavor, one you would do well to undertake.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming/
tree/​master/​questions. You will find some of the questions answered in the book's
GitHub repo: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming/ ​tree/
master/​solutions_ ​to_ ​assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Linux- ​Kernel- ​Programming/ ​blob/
master/​Further_​Reading. ​md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Linux Device Driver Development
John Madieu

ISBN: 978-1-78934-204-8

Explore and adopt Linux kernel helpers for locking, work deferral, and interrupt
management
Understand the Regmap subsystem to manage memory accesses and work with
the IRQ subsystem
Get to grips with the PCI subsystem and write reliable drivers for PCI devices
Write full multimedia device drivers using ALSA SoC and the V4L2 framework
Build power-aware device drivers using the kernel power management
framework
Find out how to get the most out of miscellaneous kernel subsystems such as
NVMEM and Watchdog

https://www.packtpub.com/product/mastering-linux-device-driver-development/9781789342048

Other Books You May Enjoy

[421]

Linux Kernel Development
Kaiwan N Billimoria

ISBN: 978-1-78995-343-5

Write high-quality modular kernel code (LKM framework) for 5.x kernels
Configure and build a kernel from source
Explore the Linux kernel architecture
Get to grips with key internals regarding memory management within the kernel
Understand and work with various dynamic kernel memory alloc/dealloc APIs
Discover key internals aspects regarding CPU scheduling within the kernel
Gain an understanding of kernel concurrency issues
Find out how to work with key kernel synchronization primitives

https://www.packtpub.com/product/linux-kernel-development-cookbook/9781789953435

Other Books You May Enjoy

[422]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

*
*delay() atomic APIs
 using 239, 240
*sleep() blocking APIs
 using 241, 242

/
/proc/iomem pseudofile
 mapping via 135, 137

6
64-bit atomic integer operators 368, 369

A
AB-BA deadlock 317
AB-BA deadlock, with lockdep
 catching, example 407, 408, 410
Address Sanitizer (ASan) 259, 397
allocated interrupt (IRQ) lines
 viewing 195, 196, 197, 198
Application Binary Interface (ABI) 17, 60
arch-independent 368
atomic context sleep
 testing 342
 testing, on 5.4 debug kernel 343, 345, 346, 347
 testing, on 5.4 non-debug kernel 348, 349, 350,

351

atomic integer operators 361
atomic non-RMW operations 372
atomic RMW operations 372
atomic_t interfaces
 about 363
 using 361
atomicity 302

B
basic procfs API 61, 62
BCM2835 ARM Peripherals
 reference link 127
Berkeley Software Distribution (BSD) 263
Big Kernel Lock (BKL) 114
bitmask
 searching 378
bitwise atomic operators
 usage, example 374, 375, 376, 377
block hardware interrupts 169
blocking call 314
blocking I/O 314
bogomips 240
bottom halves
 using 199, 201
bug 312
buggy read() 45, 47
buggy write()
 about 47, 50, 51
 device driver, modifying 48, 50
 user space test app, modifying 47, 48
busy-wait semantic 332

C
cache coherency 384
cache effects 383, 384, 385
cache ping-pong 381, 384
client drivers 17
concurrency managed work queue (cmwq) 280
Condition Variable (CV) 382
control operations 109
CPU caching 221
critical section
 about 302, 303, 304
 global i ++ 305, 306, 307

[424]

 key points 311, 312
 lock concept 308, 309, 310

D
data corruption 302
data race 313, 314, 315
data transfer
 from kernel, to user space 33
 from user space, to kernel 33
 kernel APIs, leveraging to perform 33, 34, 35,

36

deadlock 316, 317
deadlock bugs, catching with lockdep
 example 402, 403, 404
 examples 402
 fixing 406
debug filesystem (debugfs)
 actual users 97
 interfacing example 87
 kernel driver, interfacing via 84, 85
 presence, checking 85, 86
debug kernel
 configuring, for lock debugging 397, 398, 399
debug_level, via procfs
 controlling, dynamically 66, 67, 68, 69, 70, 71
debugfs API
 documentation 86
debugfs file
 creating 88, 90
 using 88, 90, 91
debugfs pseudo file(s)
 removing 93
device driver
 about 13, 14, 15, 16
 modifying 48, 50
device file 13
device node 13
Device Tree (DT) 75, 132, 156
Device Tree Blob (DTB) 133
Device Tree Source (DTS) 75, 133
devm_* managed APIs
 about 131
 device resources, obtaining 132, 133, 134
 devm_ioremap_resource() API 134, 135
devm_ioremap_resource() API 134, 135

Direct Memory Access (DMA) 128
dirty or torn read 330
dirty reads 310
DMA controller (DMAC) 142
driver
 connection between, kernel 22, 24
 connection between, process 22, 24
dynamic debug_level procfs control
 trying out 64

E
edge-triggered interrupt 160, 161
Effective User ID (EUID) 48
enhanced Berkeley Packet Filter ([e]BPF)
 about 224
 interrupts, measuring 224
exclusive execution 302
exclusive write lock 379

F
false sharing 383, 384, 385
fast path 337
Ftrace kernel infrastructure 349
Ftrace
 about 228
 irqsoff latency trace, finding 229, 230, 231
 system latencies, handling 228

G
General Purpose Input/Output (GPIO) 127
generic interrupt controller (GIC) 151
generic interrupt handling layer (generic IRQ layer)

153

H
hardware I/O memory
 accessing, from kernel 123
 direct access, issue 123, 124
 mapping 124
hardware I/O port
 mapping 124
hardware interrupts (hardirqs)
 about 151, 152, 153, 199, 315
 time service, measuring 224, 225

[425]

 usage 212, 213, 214
 working with 190
hardware IRQ
 allocating 153, 154
helper debugfs APIs
 for numeric globals 91, 92, 93
High-Resolution Timer (HRT) 247
high-resolution timer (HRT) 198, 209
human interface devices (HIDs) 151

I
I/O (reads and writes)
 performing, on per-CPU variables 388, 390
I/O memory 123
I/O resource management framework 132
I/O resources
 model approach 133
 traditional approach 132
i8042 controller
 about 144
 reference link 144
i8042 driver
 interrupt handler 172, 173
in-out parameter style 110
INIT_WORK()
 kernel-global workqueue, initializing for 286
input-output control 109
Instruction Set Architecture (ISA) 306
integer overflow (IoF) 361
Inter-Process Communication (IPC) 100
Inter-Work Interrupt 197
interfacing methods
 comparing 117
Internet of Things (IoT) 71
interrupt context
 examples 218, 219
 figuring out 215, 216, 217
interrupt flags
 setting 159, 160
interrupt handler routine
 writing 170, 171
interrupt handler
 about 351, 353, 354, 355, 356, 357
 allocating, with request_irq() 154, 155, 156, 157
 design and implementation 165

 pseudocode 166, 168
 scenarios 352
interrupt masking 169, 170
interrupt request (IRQ)
 about 132, 152
 disabling 191, 192
 enabling 191, 192
Interrupt Service Routine (ISR) 199
IO-[Advanced] Programmable Interrupt Controller

[IO][A]PIC 151
ioctl system call
 kernel driver, interfacing via 109
ioctl
 as debug interface 116, 117
 using, in kernel space 110, 111, 114, 115, 116
 using, in user space 110, 111, 112, 113
ioremap*() APIs
 using 128, 129, 130
IRQ affinity 221, 222
IRQ allocation 174, 175
IRQ line
 about 156
 freeing 158, 159
IRQ stack 223
IXGB network adapter 162
IXGB network driver
 about 162, 163, 164
 implementing 164
 interrupt handler 173, 174

K
kdump feature 403
Kernel Address Sanitizer (KASAN) 47, 397
kernel APIs
 leveraging, to perform data transfer 33, 34, 35,

36

kernel bug 94, 95, 96, 97
kernel code
 timestamps, taking within 243, 244
Kernel Concurrency Sanitizer (KCSAN) 412
kernel documentation
 reference link 372
kernel driver
 communicating/interfacing, with user space C

app 56, 57

[426]

 interfacing, via debug filesystem (debugfs) 84,
85

 interfacing, via ioctl system call 109
 interfacing, via netlink sockets 99
 interfacing, via proc filesystem (procfs) 57
 interfacing, via sys filesystem (sysfs) 72, 73
kernel softirq mechanism 206, 207
kernel space
 ioctl, using in 110, 111, 114, 115, 116
kernel threads (kthreads)
 about 264
 characteristics 264
 creating 263, 265, 266, 269
 demo 248, 249
 scheduling policy/priority, querying 279
 scheduling policy/priority, setting 279
 working with 263, 265
kernel timer module
 code view 1 252, 253
 code view 2 254, 255
 running 255, 256
kernel timer, sed1 driver
 timesup() timer expiry function 261, 262, 263
kernel timers
 demo 248, 249
 setting up 249, 250
 timeouts, implementing with demo sed1 driver

256, 257, 259, 260, 261
 using 249, 250, 251
kernel virtual addresses (KVA) 96, 128
kernel workqueues, types
 multi-threaded (MT) workqueues 283
 single-threaded (ST) workqueues 283
kernel workqueues
 characteristics 281
 demo 248, 249
 internals 282, 283, 284, 285, 286
 types 283
 using 280, 282
kernel-global workqueue
 initializing, for INIT_WORK() 286
 schedule_work() API 287
 sed3 mini project 295, 296
 using 282, 286
 work task, canceling 288, 289

 work task, cleaning up 288, 289
 work task, flushing 288, 289
 workflow, summary 289, 290
kernel-space netlink socket code
 writing, as kernel module 104, 105, 106
kernel
 *delay() atomic APIs 244, 245, 247, 248
 *sleep() blocking APIs 244, 245, 247, 248
 connection between, driver 22, 24
 connection between, process 22, 24
 delaying, for given time 237, 238
 hardware I/O memory, accessing from 123
 hardware interrupt, handling 151, 152, 153
 IRQ stacks, maintaining 222, 223
 lock debugging within 396
 per-CPU variables, usage 394, 395
 permission, requesting 125
killable variant 334
ksoftirqd kernel threads
 employing 211
kthread_simple kernel thread demo
 running 269, 270

L
Last Level Cache (LLC) 123
latency
 about 228
 measuring 223
Least Significant Bit (LSB) 370
level-triggered interrupt 160, 161
Linux Assigned Names And Numbers Authority

(LANANA) 15
Linux Device Model (LDM)
 about 17, 18, 19, 20, 74, 131, 158
 components 17
Linux Driver Verification (LDV) project 158, 351
Linux Kernel Dump Test Module (LKDTM)
 reference link 367
Linux kernel, concurrency concerns
 about 312
 blocking I/O 314
 data races 314
 hardware interrupts (hardirqs) and data race 315
 locking guidelines and deadlocks 316, 318
 multicore SMP systems and data race 313, 314

[427]

 preemptible kernels 314
Linux Tracing Toolkit (LTT) 231
Linux-Kernel Memory Model (LKMM) 363
Linux
 activities, prioritizing 219
livelock 153
load balancing interrupts 221, 222
Loadable Kernel Module (LKM) 252
local timer interrupt (LOC) 197
lock concept 308
lock debugging
 debug kernel, configuring 397, 398, 399
 within kernel 396
lock ordering 317
lock proficiency 385
lock statistics
 about 413
 viewing 413, 414, 415
lock validator lockdep 399, 400, 401
lock-free programming
 with per-CPU variables 385, 386
lockdep annotation 411
lockdep
 about 318, 399
 issues 412
locking 351, 353, 354, 355, 356, 357
locking deadlocks 318
locking granularity 316
locking guidelines 316, 318
loops per jiffy (lpj) 240

M
magic-SysRq 193
managed interrupt facility 174, 175
managed threaded interrupt model
 employing 178, 179, 180
map 128
mask hardware interrupts 169
memory barriers 415, 416
memory barriers, documentation
 reference link 418
memory barriers, using in device driver
 example 416, 418
Memory Management Unit (MMU) 123
memory ordering 363

memory-mapped I/O (MMIO)
 about 124, 371
 devm_* managed APIs 131
 ioremap*() APIs, using 128, 129, 130
 mapping, via /proc/iomem pseudofile 135, 137
 peripheral I/O memory, performing 137, 138
 using 126, 128
metrics
 measuring 223
misc character device driver
 code, writing 21, 22, 26, 27, 28, 30
 device driver 13, 14, 15, 16
 issues and security concerns 44
 Linux Device Model (LDM) 17, 18, 19, 20
 testing 30, 31, 32
 unsupported methods, handling 24, 25
 writing 13
misc procfs APIs 71
modern device model 72
Most Significant Bit (MSB) 370
multi-threaded (MT) workqueues 283
multicore SMP systems 313, 314
mutex interruptible 334
mutex io variant 335
mutex lock API variants
 about 332
 mutex interruptible and killable variant 334
 mutex io variant 335
 mutex trylock variant 332, 333, 334
mutex lock, key points
 internal design 337, 338
 mutex 336
 mutex lock API variants 332
 priority inversion 336
 RT-mutex 336
 semaphore 335, 336
mutex lock
 and unlock APIs 325
 about 332
 device driver, example 328, 330, 331, 332
 initializing 323
 usage, determining 321
 usage, determining in theory 320
 using 318, 319, 320, 322, 324, 325
 versus spinlock 320

[428]

 via interruptible sleep 327
mutex trylock variant 332, 333, 334

N
netlink interfacing project
 trying out 107, 108
netlink socket
 about 100
 kernel driver, interfacing via 99
New API (NAPI) 153, 318
newer refcount_t interfaces
 versus older atomic_t interfaces 361
non-maskable interrupt (NMI) 169, 192, 193, 194,

195

O
older atomic_t interfaces
 versus newer refcount_t interfaces 361
one value per sysfs file rule 83
Open Firmware (OF) 133

P
per-CPU variables
 about 386, 387
 allocating 387, 388
 freeing 387, 388
 I/O (reads and writes), performing on 388, 390
 initialization 387, 388
 kernel module, example 390, 391, 392
 lock-free programming, using with 385, 386
 usage, within kernel 394
 usage, within kernel, within kernel 395
 working with 387
peripheral I/O memory
 1- to 8-byte reads, performing on MMIO memory

regions 138, 139
 1- to 8-byte writes, performing on MMIO memory

regions 138, 139
 copying, on MMIO memory regions 140, 142
 performing 137, 138
 repeating versions, performing on MMIO memory

regions 139, 140
 setting, on MMIO memory regions 140, 142
physical memory map 142
platform bus 75

platform device
 about 75, 76, 77
 creating 74, 75
port address range 142
port-mapped I/O (PMIO)
 about 125
 miscellaneous points 146, 147
 peripheral I/O memory, performing 143, 144
 ports, viewing via /proc/ioports pseudofile 145,

146

 using 142
preemptible kernels 314
preferred API 242
priority inheritance (PI) 337
priority inversion 336
privilege escalation 45
proc filesystem (procfs)
 about 58
 directories 58, 59
 files 63
 off-bounds 60, 61
 purpose 59, 60
 used, for interfacing kernel driver 57
 used, for interfacing with user space 61
process
 connection between, driver 22, 24
 connection between, kernel 22, 24
processor exception 155
pseudo-terminal (pty) 15

Q
Quality Assurance (QA) 396

R
read copy update (RCU) 209, 381
Read Modify Write (RMW) 369
read-only (RO) sysfs file 78
read-write (RW) sysfs file 78
reader-writer semaphore 382
reader-writer spinlock
 about 379, 381
 interfaces 379, 381
 using 378, 379
Real User ID (RUID) 48
Real-Time Clock (RTC) 14

[429]

Real-Time Linux (RTL) 176, 358
recommended API 242
refcount_t interfaces, using within kernel code base
 example 365, 367
refcount_t interfaces
 about 363
 using 361
request_irq()
 used, for allocating interrupt handler 154, 155,

156, 157
RMW APIs 370
RMW atomic operators
 bitmask, searching 378
 operating, on device registers 370, 371, 372
 using 370
RMW bitwise operators
 using 373
RT-mutex 336
RT-mutex implementation design
 reference link 337

S
schedule_work() API
 about 287
 variations 287, 288
secret driver, hacking
 about 44
 buggy read() 45, 47
 buggy write() 47, 50, 51
secret driver
 hacking 45
secret misc device driver
 about 36
 cleanup 41
 code, writing 37
 init code 37
 read method 38
 user space test app 42, 44
 write method 39, 41
Secure Attention Key (SAK)
 about 380
 reference link 380
sed1 driver
 timeouts, implementing with 256, 257, 259, 260,

261

sed2 driver
 code implementation 272, 275, 276, 277
 design 270, 271, 272
 implementing 270
 operations 271, 272
 using 277, 278, 279
sed3 mini project 295
 about 296
self-deadlock 317
semaphore 335
Serial Clock (SCL) 19
Serial Data (SDA) 19
shared state 302, 311
shared writeable data 302
simple encrypt decrypt (sed) 248
single-threaded (ST) workqueues 283
sleeplocks 320
Small Computer System Interface (SCSI) 15
sockets
 advantages 99
Software Development Life Cycle (SDLC) 396
software-interrupt (softirq)
 about 206
 concurrency 212
 need for 207, 209
 running 210
 time service, measuring 225, 226, 227, 228
spinlock
 about 318
 atomic context sleep, testing 342
 device driver, example 340, 341, 342
 key statements 338
 medium overhead 357
 simplest, lowest overhead 357
 strongest, high overhead 358
 usage 338, 339
 usage, determining 321
 usage, determining in practice 321
 usage, determining in theory 320
 using 318, 319, 320, 338, 357
 versus mutex 320
STM32 F7 microcontroller
 threaded interrupt handler 180, 181, 182
Symmetric Multi Processor (SMP) 312
sys filesystem (sysfs)

[430]

 used, for interfacing kernel driver 72, 73
sysctl 59
sysfs (pseudo) file
 creating, in code 74
sysfs file
 callbacks 79, 80, 81, 82
 code, for implementation 79, 80, 81, 82
 creating 77, 78
 one value per sysfs file rule 83
system latencies
 tools 231
System on Chip (SoC) 20, 75
system workqueue 282

T
tasklet
 initializing 202
 parameters 203
 properties 202
 running 203, 210, 211
 specifying 202
 usage 212, 213, 214
 using 202
teletype terminal (tty) 15
theory of operation (TOO) 161
thrashing 321
Thread Local Storage (TLS) 386
Thread Sanitizer (TSan) 412
threaded handler
 usage 212, 213, 214
 usage, constraints 189
 working with 190
threaded interrupt model
 employing 177, 178
 implementing 182
 working with 176
threaded interrupts
 about 176
 key point 184, 185, 186, 187, 189
 need for 183
TI's Technical Reference Manual, for OMAP35x
 reference link 124
top halves
 using 199, 201
torn reads 310

Translation Lookaside Buffers (TLBs) 123

U
UniProcessor (UP) 415
unlock APIs
 usage 325
Use After Free (UAF) 361
user mode helper (umh) 265
user space C app
 used, for communicating/interfacing kernel driver

56, 57
user space netlink socket application
 creating 101, 103
 writing 100, 102
user space signal handling 155
user space test app
 about 42, 44
 modifying 47, 48
user space threads 280
user space
 ioctl, using in 110, 111, 112, 113

V
V4L driver-specific documentation
 reference link 133
value-result parameter style 110
Video For Linux (V4L) 133
VideoCore (VC) 127
Virtual Filesystem Switch (VFS) 23
virtual machine (VM) 344
virtual methods 22

W
wait for event (WFE) 320
work queue kernel module
 code view 290, 292
 running 293, 294
write-only (WO) sysfs file 78

X
x86 IO-APIC
 reference link 151

Y Your Mileage May Vary (YMMV) 72

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Character Device Driver Basics
	Chapter 1: Writing a Simple misc Character Device Driver
	Technical requirements
	Getting started with writing a simple misc character device driver
	Understanding the device basics
	A quick note on the Linux Device Model
	Writing the misc driver code – part 1
	Understanding the connection between the process, the driver, and the kernel
	Handling unsupported methods

	Writing the misc driver code – part 2
	Writing the misc driver code – part 3
	Testing our simple misc driver

	Copying data from kernel to user space and vice versa
	Leveraging kernel APIs to perform the data transfer

	A misc driver with a secret
	Writing the 'secret' misc device driver's code
	Our secret driver – the init code
	Our secret driver – the read method
	Our secret driver – the write method
	Our secret driver – cleanup
	Our secret driver – the user space test app

	Issues and security concerns
	Hacking the secret driver
	Bad driver – buggy read()
	Bad driver – buggy write() – a privesc!
	User space test app modifications
	Device driver modifications
	Let's get root now

	Summary
	Questions
	Further reading

	Chapter 2: User-Kernel Communication Pathways
	Technical requirements
	Approaches to communicating/interfacing a kernel driver with a user space C app
	Interfacing via the proc filesystem (procfs)
	Understanding the proc filesystem
	Directories under /proc
	The purpose behind the proc filesystem
	procfs is off-bounds to driver authors

	Using procfs to interface with the user space
	Basic procfs APIs
	The four procfs files we will create
	Trying out the dynamic debug_level procfs control
	Dynamically controlling debug_level via procfs

	A few misc procfs APIs

	Interfacing via the sys filesystem (sysfs)
	Creating a sysfs (pseudo) file in code
	Creating a simple platform device
	Platform devices

	Tying it all together – setting up the device attributes and creating the sysfs file
	The code for implementing our sysfs file and its callbacks

	The "one value per sysfs file" rule

	Interfacing via the debug filesystem (debugfs)
	Checking for the presence of debugfs
	Looking up the debugfs API documentation
	An interfacing example with debugfs
	Creating and using the first debugfs file
	Creating and using the second debugfs file

	Helper debugfs APIs for working on numeric globals
	Removing the debugfs pseudo file(s)
	Seeing a kernel bug – an Oops!

	Debugfs – actual users

	Interfacing via netlink sockets
	Advantages using sockets
	Understanding what a netlink socket is
	Writing the user space netlink socket application
	Writing the kernel-space netlink socket code as a kernel module
	Trying out our netlink interfacing project

	Interfacing via the ioctl system call
	Using ioctl in the user and kernel space
	User space – using the ioctl system call
	Kernel space – using the ioctl system call

	ioctl as a debug interface

	Comparing the interfacing methods – a table
	Summary
	Questions
	Further reading

	Chapter 3: Working with Hardware I/O Memory
	Technical requirements
	Accessing hardware I/O memory from the kernel
	Understanding the issue with direct access
	The solution – mapping via I/O memory or I/O port
	Asking the kernel's permission

	Understanding and using memory-mapped I/O
	Using the ioremap*() APIs
	The newer breed – the devm_* managed APIs
	Obtaining the device resources
	All in one with the devm_ioremap_resource() API

	Looking up the new mapping via /proc/iomem
	MMIO – performing the actual I/O
	Performing 1- to 8-byte reads and writes on MMIO memory regions
	Performing repeating I/O on MMIO memory regions
	Setting and copying on MMIO memory regions

	Understanding and using port-mapped I/O
	PMIO – performing the actual I/O
	A PIO example – the i8042

	Looking up the port(s) via /proc/ioports
	Port I/O – a few remaining points to note

	Summary
	Questions
	Further reading

	Chapter 4: Handling Hardware Interrupts
	Technical requirements
	Hardware interrupts and how the kernel handles them
	Allocating the hardware IRQ
	Allocating your interrupt handler with request_irq()
	Freeing the IRQ line

	Setting interrupt flags
	Understanding level- and edge-triggered interrupts – a brief note
	Code view 1 – the IXGB network driver

	Implementing the interrupt handler routine
	Interrupt context guidelines – what to do and what not to do
	Don't block – spotting possibly blocking code paths
	Interrupt masking – the defaults and controlling it
	Keep it fast

	Writing the interrupt handler routine itself
	Code view 2 – the i8042 driver's interrupt handler
	Code view 3 – the IXGB network driver's interrupt handler

	IRQ allocation – the modern way – the managed interrupt facility

	Working with the threaded interrupts model
	Employing the threaded interrupt model – the API
	Employing the managed threaded interrupt model – the recommended way
	Code view 4 – the STM32 F7 microcontroller's threaded interrupt handler

	Internally implementing the threaded interrupt
	Why use threaded interrupts?
	Threaded interrupts – to really make it real time

	Constraints when using a threaded handler
	Working with either hardirq or threaded handlers

	Enabling and disabling IRQs
	The NMI

	Viewing all allocated interrupt (IRQ) lines
	Understanding and using top and bottom halves
	Specifying and using a tasklet
	Initializing the tasklet
	Running the tasklet

	Understanding the kernel softirq mechanism
	Available softirqs and what they are for
	Understanding how the kernel runs softirqs
	Running tasklets
	Employing the ksoftirqd kernel threads

	Softirqs and concurrency

	Hardirqs, tasklets, and threaded handlers – what to use when
	Fully figuring out the context
	Viewing the context – examples

	How Linux prioritizes activities

	A few remaining FAQs answered
	Load balancing interrupts and IRQ affinity
	Does the kernel maintain separate IRQ stacks?
	Measuring metrics and latency
	Measuring interrupts with [e]BPF
	Measuring time servicing individual hardirqs
	Measuring time servicing individual softirqs

	Using Ftrace to get a handle on system latencies
	Finding the interrupts disabled worst-case time latency with Ftrace

	Other tools

	Summary
	Questions
	Further reading

	Chapter 5: Working with Kernel Timers, Threads, and Workqueues
	Technical requirements
	Delaying for a given time in the kernel
	Understanding how to use the *delay() atomic APIs
	Understanding how to use the *sleep() blocking APIs
	Taking timestamps within kernel code
	Let's try it – how long do delays and sleeps really take?
	The "sed" drivers – to demo kernel timers, kthreads, and workqueues

	Setting up and using kernel timers
	Using kernel timers
	Our simple kernel timer module – code view 1
	Our simple kernel timer module – code view 2
	Our simple kernel timer module – running it

	sed1 – implementing timeouts with our demo sed1 driver
	Deliberately missing the bus

	Creating and working with kernel threads
	A simple demo – creating a kernel thread
	Running the kthread_simple kernel thread demo
	The sed2 driver – design and implementation
	sed2 – the design
	sed2 driver – code implementation
	sed2 – trying it out

	Querying and setting the scheduling policy/priority of a kernel thread

	Using kernel workqueues
	The bare minimum workqueue internals
	Using the kernel-global workqueue
	Initializing the kernel-global workqueue for your task – INIT_WORK()
	Having your work task execute – schedule_work()
	Variations of scheduling your work task

	Cleaning up – canceling or flushing your work task
	A quick summary of the workflow

	Our simple work queue kernel module – code view
	Our simple work queue kernel module – running it
	The sed3 mini project – a very brief look

	Summary
	Questions
	Further reading

	Section 2: Delving Deeper
	Chapter 6: Kernel Synchronization - Part 1
	Critical sections, exclusive execution, and atomicity
	What is a critical section?
	A classic case – the global i ++
	Concepts – the lock
	A summary of key points

	Concurrency concerns within the Linux kernel
	Multicore SMP systems and data races
	Preemptible kernels, blocking I/O, and data races
	Hardware interrupts and data races
	Locking guidelines and deadlocks

	Mutex or spinlock? Which to use when
	Determining which lock to use – in theory
	Determining which lock to use – in practice

	Using the mutex lock
	Initializing the mutex lock
	Correctly using the mutex lock
	Mutex lock and unlock APIs and their usage
	Mutex lock – via [un]interruptible sleep?

	Mutex locking – an example driver
	The mutex lock – a few remaining points
	Mutex lock API variants
	The mutex trylock variant
	The mutex interruptible and killable variants
	The mutex io variant

	The semaphore and the mutex
	Priority inversion and the RT-mutex
	Internal design

	Using the spinlock
	Spinlock – simple usage
	Spinlock – an example driver
	Test – sleep in an atomic context
	Testing on a 5.4 debug kernel
	Testing on a 5.4 non-debug distro kernel

	Locking and interrupts
	Using spinlocks – a quick summary

	Summary
	Questions
	Further reading

	Chapter 7: Kernel Synchronization - Part 2
	Using the atomic_t and refcount_t interfaces
	The newer refcount_t versus older atomic_t interfaces
	The simpler atomic_t and refcount_t interfaces
	Examples of using refcount_t within the kernel code base

	64-bit atomic integer operators

	Using the RMW atomic operators
	RMW atomic operations – operating on device registers
	Using the RMW bitwise operators
	Using bitwise atomic operators – an example

	Efficiently searching a bitmask

	Using the reader-writer spinlock
	Reader-writer spinlock interfaces
	A word of caution
	The reader-writer semaphore

	Cache effects and false sharing
	Lock-free programming with per-CPU variables
	Per-CPU variables
	Working with per-CPU
	Allocating, initialization, and freeing per-CPU variables
	Performing I/O (reads and writes) on per-CPU variables

	Per-CPU – an example kernel module
	Per-CPU usage within the kernel

	Lock debugging within the kernel
	Configuring a debug kernel for lock debugging
	The lock validator lockdep – catching locking issues early
	Examples – catching deadlock bugs with lockdep
	Example 1 – catching a self deadlock bug with lockdep
	Fixing it

	Example 2 – catching an AB-BA deadlock with lockdep

	lockdep – annotations and issues
	lockdep annotations
	lockdep issues

	Lock statistics
	Viewing lock stats

	Memory barriers – an introduction
	An example of using memory barriers in a device driver

	Summary
	Questions
	Further reading

	Other Books You May Enjoy
	Index

