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Preface

The White Rabbit put on his spectacles,
“Where shall I begin, please your Majesty?” he asked.
“Begin at the beginning,” the King said, very gravely,
“and go on till you come to the end: then stop.”

—Lewis Carroll, Alice’s Adventures in Wonderland

This book is about “threads” and how to use them. “Thread” is just a name for
a basic software “thing” that can do work on a computer. A thread is smaller,
faster, and more maneuverable than a traditional process. In fact, once threads
have been added to an operating system, a “process” becomes just data—address
space, files, and so forth—plus one or more threads that do something with all
that data.

With threads, you can build applications that utilize system resources more
efficiently, that are more friendly to users, that run blazingly fast on multiproces-
sors, and that may even be easier to maintain. To accomplish all this, you need
only add some relatively simple function calls to your code, adjust to a new way of
thinking about programming, and leap over a few yawning chasms. Reading this
book carefully will, I hope, help you to accomplish all that without losing your
sense of humor.

The threads model used in this book is commonly called “Pthreads,” or
“POSIX threads.” Or, more formally (since you haven’t yet been properly intro-
duced), the POSIX 1003.1c–1995 standard. I’ll give you a few other names later—
but for now, “Pthreads” is all you need to worry about.

Pthreads interfaces are included with Sun’s Solaris; Hewlett-Packard’s Tru64
UNIX, OpenVMS, NonStop platform, and HP-UX; IBM’s AIX, OS/400, and OS/
390; SGI’s IRIX; SCO’s UnixWare; Apple’s Mac OS X; and Linux (any major distri-
bution). There’s even an Open Source emulation package that allows you to use
portable Pthread interfaces on Win32 systems.

In the personal computer market, Microsoft’s Win32 API (the primary pro-
gramming interface to both Windows NT and Windows 95) supports threaded
programming, as does IBM’s OS/2. These threaded programming models are
quite different from Pthreads, but the important first step toward using them pro-
ductively is understanding concurrency, synchronization, and scheduling. The
rest is (more or less) a matter of syntax and style, and an experienced thread pro-
grammer can adapt to any of these models.



xvi Preface

The threaded model can be (and has been) applied with great success to a
wide range of programming problems. Here are just a few:

• Large scale, computationally intensive programs
• High-performance application programs and library code that can take

advantage of multiprocessor systems
• Library code that can be used by threaded application programs
• Realtime application programs and library code
• Application programs and library code that perform I/O to slow external

devices (such as networks and human beings).

Intended audience

This book assumes that you are an experienced programmer, familiar with
developing code for an operating system in “the UNIX family” using the ANSI C
language. I have tried not to assume that you have any experience with threads
or other forms of asynchronous programming. The Introduction chapter provides
a general overview of the terms and concepts you’ll need for the rest of the book.
If you don’t want to read the Introduction first, that’s fine, but if you ever feel like
you’re “missing something” you might try skipping back to get introduced.

Along the way you’ll find examples and simple analogies for everything. In the
end I hope that you’ll be able to continue comfortably threading along on your
own. Have fun, and “happy threading.”

About the author

I have been involved in the Pthreads standard since it began, although I
stayed at home for the first few meetings. I was finally forced to spend a grueling
week in the avalanche-proof concrete bunker at the base of Snowbird ski resort
in Utah, watching hard-working standards representatives from around the
world wax their skis. This was very distracting, because I had expected a stan-
dards meeting to be a formal and stuffy environment. As a result of this
misunderstanding, I was forced to rent ski equipment instead of using my own.

After the Pthreads standard went into balloting, I worked on additional thread
synchronization interfaces and multiprocessor issues with several POSIX work-
ing groups. I also helped to define the Aspen threads extensions, which were fast-
tracked into X/Open XSH5.

I have worked at Digital Equipment Corporation for (mumble, mumble) years,
in various locations throughout Massachusetts and New Hampshire. I was one of
the creators of Digital’s own threading architecture, and I designed (and imple-
mented much of) the Pthreads interfaces on Digital UNIX 4.0. I have been helping
people develop and debug threaded code for more than eight years.
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My unofficial motto is “Better Living Through Concurrency.” Threads are not
sliced bread, but then, we’re programmers, not bakers, so we do what we can.
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3 Synchronization

“That’s right!” said the Tiger-lily. “The daisies are worst of all.
When one speaks, they all begin together, and it’s 
enough to make one wither to hear the way they go on!”

—Lewis Carroll, Through the Looking-Glass

To write a program of any complexity using threads, you’ll need to share data
between threads, or cause various actions to be performed in some coherent
order across multiple threads. To do this, you need to synchronize the activity of
your threads.

Section 3.1 describes a few of the basic terms we’ll be using to talk about
thread synchronization: critical section and invariant.

Section 3.2 describes the basic Pthreads synchronization mechanism, the
mutex.

Section 3.3 describes the condition variable, a mechanism that your code can
use to communicate changes to the state of invariants protected by a mutex.

Section 3.4 completes this chapter on synchronization with some important
information about threads and how they view the computer’s memory.

3.1 Invariants, critical sections, and predicates

“I know what you’re thinking about,”
said Tweedledum; “but it isn’t so, nohow.”
“Contrariwise,” continued Tweedledee,
“if it was so, it might be; and if it were so, it would be;
but as it isn’t, it ain’t. That’s logic.”

—Lewis Carroll, Through the Looking-Glass

Invariants are assumptions made by a program, especially assumptions about
the relationships between sets of variables. When you build a queue package, for
example, you need certain data. Each queue has a queue header, which is a
pointer to the first queued data element. Each data element includes a pointer to
the next data element. But the data isn’t all that’s important—your queue pack-
age relies on relationships between that data. The queue header, for example,
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must either be NULL or contain a pointer to the first queued data element. Each
data element must contain a pointer to the next data element, or NULL if it is the
last. Those relationships are the invariants of your queue package.

It is hard to write a program that doesn’t have invariants, though many of
them are subtle. When a program encounters a broken invariant, for example, if
it dereferences a queue header containing a pointer to something that is not a
valid data element, the program will probably produce incorrect results or fail
immediately.

Critical sections (also sometimes called “serial regions”) are areas of code that
affect a shared state. Since most programmers are trained to think about pro-
gram functions instead of program data, you may well find it easier to recognize
critical sections than data invariants. However, a critical section can almost
always be translated into a data invariant, and vice versa. When you remove an
element from a queue, for example, you can see the code performing the removal
as a critical section, or you can see the state of the queue as an invariant. Which
you see first may depend on how you’re thinking about that aspect of your
design.

Most invariants can be “broken,” and are routinely broken, during isolated
areas of code. The trick is to be sure that broken invariants are always repaired
before “unsuspecting” code can encounter them. That is a large part of what “syn-
chronization” is all about in an asynchronous program. Synchronization protects
your program from broken invariants. If your code locks a mutex whenever it
must (temporarily) break an invariant, then other threads that rely on the invari-
ant, and which also lock the mutex, will be delayed until the mutex is unlocked—
when the invariant has been restored.

Synchronization is voluntary, and the participants must cooperate for the sys-
tem to work. The programmers must agree not to fight for (or against) possession
of the bailing bucket. The bucket itself does not somehow magically ensure that
one and only one programmer bails at any time. Rather, the bucket is a reliable
shared token that, if used properly, can allow the programmers to manage their
resources effectively.

“Predicates” are logical expressions that describe the state of invariants
needed by your code. In English, predicates can be expressed as statements like
“the queue is empty” or “the resource is available.” A predicate may be a boolean
variable with a TRUE or FALSE value, or it may be the result of testing whether a
pointer is NULL. A predicate may also be a more complicated expression, such as
determining whether a counter is greater than some threshold. A predicate may
even be a value returned from some function. For example, you might call select
or poll to determine whether a file is ready for input.
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3.2 Mutexes

 “How are you getting on?” said the Cat,
as soon as there was mouth enough for it to speak with.

Alice waited till the eyes appeared, and then nodded.
“It’s no use speaking to it,” she thought,
“till its ears have come, or at least one of them.”
—Lewis Carroll, Alice’s Adventures in Wonderland

Most threaded programs need to share some data between threads. There may
be trouble if two threads try to access shared data at the same time, because one
thread may be in the midst of modifying some data invariant while another acts
on the data as if it were consistent. This section is all about protecting the pro-
gram from that sort of trouble.

The most common and general way to synchronize between threads is to
ensure that all memory accesses to the same (or related) data are “mutually
exclusive.” That means that only one thread is allowed to write at a time—others
must wait for their turn. Pthreads provides mutual exclusion using a special
form of Edsger Dijkstra’s semaphore [Dijkstra, 1968a], called a mutex. The word
mutex is a clever combination of “mut” from the word “mutual” and “ex” from the
word “exclusion.”

Experience has shown that it is easier to use mutexes correctly than it is to
use other synchronization models such as a more general semaphore. It is also
easy to build any synchronization models using mutexes in combination with
condition variables (we’ll meet them at the next corner, in Section 3.3). Mutexes
are simple, flexible, and can be implemented efficiently.

The programmers’ bailing bucket is something like a mutex (Figure 3.1). Both
are “tokens” that can be handed around, and used to preserve the integrity of the
concurrent system. The bucket can be thought of as protecting the bailing critical
section—each programmer accepts the responsibility of bailing while holding the
bucket, and of avoiding interference with the current bailer while not holding the
bucket. Or, the bucket can be thought of as protecting the invariant that water
can be removed by only one programmer at any time.

Synchronization isn’t important just when you modify data. You also need
synchronization when a thread needs to read data that was written by another
thread, if the order in which the data was written matters. As we’ll see a little
later, in Section 3.4, many hardware systems don’t guarantee that one processor
will see shared memory accesses in the same order as another processor without
a “nudge” from software.
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Consider, for example, a thread that writes new data to an element in an
array, and then updates a max_index variable to indicate that the array element
is valid. Now consider another thread, running simultaneously on another pro-
cessor, that steps through the array performing some computation on each valid
element. If the second thread “sees” the new value of max_index before it sees the
new value of the array element, the computation would be incorrect. This may
seem irrational, but memory systems that work this way can be substantially
faster than memory systems that guarantee predictable ordering of memory
accesses. A mutex is one general solution to this sort of problem. If each thread
locks a mutex around the section of code that’s using shared data, only one
thread will be able to enter the section at a time.

Figure 3.2 shows a timing diagram of three threads sharing a mutex. Sections
of the lines that are above the rounded box labeled “mutex” show where the asso-
ciated thread does not own the mutex. Sections of the lines that are below the
center line of the box show where the associated thread owns the mutex, and sec-
tions of the lines hovering above the center line show where the thread is waiting
to own the mutex.

Initially, the mutex is unlocked. Thread 1 locks the mutex and, because there
is no contention, it succeeds immediately—thread 1’s line moves below the center

FIGURE 3.1 Mutex analogy
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of the box. Thread 2 then attempts to lock the mutex and, because the mutex is
already locked, thread 2 blocks, its line remaining above the center line. Thread 1
unlocks the mutex, unblocking thread 2, which then succeeds in locking the
mutex. Slightly later, thread 3 attempts to lock the mutex, and blocks. Thread 1
calls pthread_mutex_trylock to try to lock the mutex and, because the mutex is
locked, returns immediately with EBUSY status. Thread 2 unlocks the mutex,
which unblocks thread 3 so that it can lock the mutex. Finally, thread 3 unlocks
the mutex to complete our example.

3.2.1 Creating and destroying a mutex

A mutex is represented in your program by a variable of type pthread_mutex_t.
You should never make a copy of a mutex, because the result of using a copied
mutex is undefined. You can, however, freely copy a pointer to a mutex so that
various functions and threads can use it for synchronization.

FIGURE 3.2 Mutex operation

time:

mutex

thread 1

thread 1 locks

thread 2 waits

thread 1 unlocks

thread 1 tries to lock,
returns EBUSY

thread 3

thread 2

thread 3 waits

thread 2 locks thread 2 unlocks

thread 3 locks

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int pthread_mutex_init (
    pthread_mutex_t *mutex, pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);



50 CHAPTER 3 Synchronization

Most of the time you’ll probably declare mutexes using extern or static stor-
age class, at “file scope,” that is, outside of any function. They should have
“normal” (extern) storage class if they are used by other files, or static storage
class if used only within the file that declares the variable. When you declare a
static mutex that has default attributes, you should use the PTHREAD_MUTEX_
INITIALIZER macro, as shown in the mutex_static.c program shown next. (You
can build and run this program, but don’t expect anything interesting to happen,
since main is empty.)

1 #include <pthread.h>
2 #include "errors.h"
3
4 /*
5  * Declare a structure, with a mutex, statically initialized. This
6  * is the same as using pthread_mutex_init, with the default
7  * attributes.
8  */
9 typedef struct my_struct_tag {

10     pthread_mutex_t     mutex;  /* Protects access to value */
11     int                 value;  /* Access protected by mutex */
12 } my_struct_t;
13
14 my_struct_t data = {PTHREAD_MUTEX_INITIALIZER, 0};
15
16 int main (int argc, char *argv[])
17 {
18     return 0;
19 }

Often you cannot initialize a mutex statically, for example, when you use
malloc to create a structure that contains a mutex. Then you will need to call
pthread_mutex_init to initialize the mutex dynamically, as shown in mutex_
dynamic.c, the next program. You can also dynamically initialize a mutex that
you declare statically—but you must ensure that each mutex is initialized before
it is used, and that each is initialized only once. You may initialize it before creat-
ing any threads, for example, or by calling pthread_once (Section 5.1). Also, if
you need to initialize a mutex with nondefault attributes, you must use dynamic
initialization (see Section 5.2.1).

1 #include <pthread.h>
2 #include "errors.h"
3

■ mutex_static.c

■ mutex_static.c

■ mutex_dynamic.c
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4 /*
5  * Define a structure, with a mutex.
6  */
7 typedef struct my_struct_tag {
8     pthread_mutex_t     mutex;  /* Protects access to value */
9     int                 value;  /* Access protected by mutex */

10 } my_struct_t;
11
12 int main (int argc, char *argv[])
13 {
14     my_struct_t *data;
15     int status;
16
17     data = malloc (sizeof (my_struct_t));
18     if (data == NULL)
19         errno_abort ("Allocate structure");
20     status = pthread_mutex_init (&data->mutex, NULL);
21     if (status != 0)
22         err_abort (status, "Init mutex");
23     status = pthread_mutex_destroy (&data->mutex);
24     if (status != 0)
25         err_abort (status, "Destroy mutex");
26     (void)free (data);
27     return status;
28 }

It is a good idea to associate a mutex clearly with the data it protects, if possi-
ble, by keeping the definition of the mutex and data together. In mutex_static.c
and mutex_dynamic.c, for example, the mutex and the data it protects are
defined in the same structure, and line comments document the association.

When you no longer need a mutex that you dynamically initialized by calling
pthread_mutex_init, you should destroy the mutex by calling pthread_mutex_
destroy. You do not need to destroy a mutex that was statically initialized using
the PTHREAD_MUTEX_INITIALIZER macro.

You can destroy a mutex as soon as you are sure no threads are 
blocked on the mutex.

It is safe to destroy a mutex when you know that no threads can be blocked on
the mutex, and the mutex is unlocked. The best way to know this is usually
within a thread that has just unlocked the mutex, when program logic ensures
that no threads will try to lock the mutex later. When a thread locks a mutex
within some heap data structure to remove the structure from a list and free the
storage, for example, it is safe (and a good idea) to unlock and destroy the mutex
before freeing the storage that the mutex occupies.

■ mutex_dynamic.c



52 CHAPTER 3 Synchronization

3.2.2 Locking and unlocking a mutex

In the simplest case, using a mutex is easy. You lock the mutex by calling
either pthread_mutex_lock or pthread_mutex_trylock, do something with the
shared data, and then unlock the mutex by calling pthread_mutex_unlock. To
make sure that a thread can read consistent values for a series of variables, you
need to lock your mutex around any section of code that reads or writes those
variables.

You cannot lock a mutex when the calling thread already has that mutex
locked. The result of attempting to do so may be an error return (EDEADLK), or it
may be a self-deadlock, where the unfortunate thread waits forever. You cannot
unlock a mutex that is unlocked, or that is locked by another thread. Locked
mutexes are owned by the thread that locks them. If you need an “unowned” lock,
use a semaphore. (Section 6.6.6 discusses semaphores.)

The following program, alarm_mutex.c, is an improved version of alarm_
thread.c (from Chapter 1). It lines up multiple alarm requests in a single “alarm
server” thread.

12-17 The alarm_t structure now contains an absolute time, as a standard UNIX
time_t, which is the number of seconds from the UNIX Epoch (Jan 1  1970  00:00)
to the expiration time. This is necessary so that alarm_t structures can be sorted
by “expiration time” instead of merely by the requested number of seconds. In
addition, there is a link member to connect the list of alarms.

19-20 The alarm_mutex mutex coordinates access to the list head for alarm
requests, called alarm_list. The mutex is statically initialized using default
attributes, with the PTHREAD_MUTEX_INITIALIZER macro. The list head is initial-
ized to NULL, or empty.

1 #include <pthread.h>
2 #include <time.h>
3 #include "errors.h"
4
5 /*
6  * The "alarm" structure now contains the time_t (time since the
7  * Epoch, in seconds) for each alarm, so that they can be
8  * sorted. Storing the requested number of seconds would not be
9  * enough, since the "alarm thread" cannot tell how long it has

10  * been on the list.
11  */

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

■ alarm_mutex.c part 1 definitions
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12 typedef struct alarm_tag {
13     struct alarm_tag    *link;
14     int                 seconds;
15     time_t              time;   /* seconds from EPOCH */
16     char                message[64];
17 } alarm_t;
18
19 pthread_mutex_t alarm_mutex = PTHREAD_MUTEX_INITIALIZER;
20 alarm_t *alarm_list = NULL;

The code for the alarm_thread function follows. This function is run as a
thread, and processes each alarm request in order from the list alarm_list. The
thread never terminates—when main returns, the thread simply “evaporates.”
The only consequence of this is that any remaining alarms will not be delivered—
the thread maintains no state that can be seen outside the process.

If you would prefer that the program process all outstanding alarm requests
before exiting, you can easily modify the program to accomplish this. The main
thread must notify alarm_thread, by some means, that it should terminate when
it finds the alarm_list empty. You could, for example, have main set a new global
variable alarm_done and then terminate using pthread_exit rather than exit.
When alarm_thread finds alarm_list empty and alarm_done set, it would
immediately call pthread_exit rather than waiting for a new entry.

29-30 If there are no alarms on the list, alarm_thread needs to block itself, with the
mutex unlocked, at least for a short time, so that main will be able to add a new
alarm. It does this by setting sleep_time to one second.

31-42 If an alarm is found, it is removed from the list. The current time is retrieved
by calling the time function, and it is compared to the requested time for the
alarm. If the alarm has already expired, then alarm_thread will set sleep_time
to 0. If the alarm has not expired, alarm_thread computes the difference between
the current time and the alarm expiration time, and sets sleep_time to that
number of seconds.

52-58 The mutex is always unlocked before sleeping or yielding. If the mutex
remained locked, then main would be unable to insert a new alarm on the list.
That would make the program behave synchronously—the user would have to
wait until the alarm expired before doing anything else. (The user would be able
to enter a single command, but would not receive another prompt until the next
alarm expired.) Calling sleep blocks alarm_thread for the required period of
time—it cannot run until the timer expires. 

Calling sched_yield instead is slightly different. We’ll describe sched_yield
in detail later (in Section 5.5.2)—for now, just remember that calling sched_yield
will yield the processor to a thread that is ready to run, but will return immedi-
ately if there are no ready threads. In this case, it means that the main thread
will be allowed to process a user command if there’s input waiting—but if the
user hasn’t entered a command, sched_yield will return immediately.

■ alarm_mutex.c part 1 definitions
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64-67 If the alarm pointer is not NULL, that is, if an alarm was processed from
alarm_list, the function prints a message indicating that the alarm has expired.
After printing the message, it frees the alarm structure. The thread is now ready
to process another alarm.

1 /*
2  * The alarm thread's start routine.
3  */
4 void *alarm_thread (void *arg)
5 {
6     alarm_t *alarm;
7     int sleep_time;
8     time_t now;
9     int status;

10
11     /*
12      * Loop forever, processing commands. The alarm thread will
13      * be disintegrated when the process exits.
14      */
15     while (1) {
16         status = pthread_mutex_lock (&alarm_mutex);
17         if (status != 0)
18             err_abort (status, "Lock mutex");
19         alarm = alarm_list;
20
21         /*
22          * If the alarm list is empty, wait for one second. This
23          * allows the main thread to run, and read another
24          * command. If the list is not empty, remove the first
25          * item. Compute the number of seconds to wait -- if the
26          * result is less than 0 (the time has passed), then set
27          * the sleep_time to 0.
28          */
29         if (alarm == NULL)
30             sleep_time = 1;
31         else {
32             alarm_list = alarm->link;
33             now = time (NULL);
34             if (alarm->time <= now)
35                 sleep_time = 0;
36             else
37                 sleep_time = alarm->time - now;
38 #ifdef DEBUG
39             printf ("[waiting: %d(%d)\"%s\"]\n", alarm->time,
40                 sleep_time, alarm->message);
41 #endif
42             }
43

■ alarm_mutex.c part 2 alarm_thread
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44         /*
45          * Unlock the mutex before waiting, so that the main
46          * thread can lock it to insert a new alarm request. If
47          * the sleep_time is 0, then call sched_yield, giving
48          * the main thread a chance to run if it has been
49          * readied by user input, without delaying the message
50          * if there's no input.
51          */
52         status = pthread_mutex_unlock (&alarm_mutex);
53         if (status != 0)
54             err_abort (status, "Unlock mutex");
55         if (sleep_time > 0)
56             sleep (sleep_time);
57         else
58             sched_yield ();
59
60         /*
61          * If a timer expired, print the message and free the
62          * structure.
63          */
64         if (alarm != NULL) {
65             printf ("(%d) %s\n", alarm->seconds, alarm->message);
66             free (alarm);
67         }
68     }
69 }

And finally, the code for the main program for alarm_mutex.c. The basic
structure is the same as all of the other versions of the alarm program that we’ve
developed—a loop, reading simple commands from stdin and processing each in
turn. This time, instead of waiting synchronously as in alarm.c, or creating a
new asynchronous entity to process each alarm command as in alarm_fork.c
and alarm_thread.c, each request is queued to a server thread, alarm_thread.
As soon as main has queued the request, it is free to read the next command.

8-11 Create the server thread that will process all alarm requests. Although we
don’t use it, the thread’s ID is returned in local variable thread.

13-28 Read and process a command, much as in any of the other versions of our
alarm program. As in alarm_thread.c, the data is stored in a heap structure
allocated by malloc.

30-32 The program needs to add the alarm request to alarm_list, which is shared
by both alarm_thread and main. So we start by locking the mutex that synchro-
nizes access to the shared data, alarm_mutex.

33 Because alarm_thread processes queued requests, serially, it has no way of
knowing how much time has elapsed between reading the command and process-
ing it. Therefore, the alarm structure includes the absolute time of the alarm
expiration, which we calculate by adding the alarm interval, in seconds, to the

■ alarm_mutex.c part 2 alarm_thread
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current number of seconds since the UNIX Epoch, as returned by the time
function.

39-49 The alarms are sorted in order of expiration time on the alarm_list queue.
The insertion code searches the queue until it finds the first entry with a time
greater than or equal to the new alarm’s time. The new entry is inserted preced-
ing the located entry. Because alarm_list is a simple linked list, the traversal
maintains a current entry pointer (next) and a pointer to the previous entry’s
link member, or to the alarm_list head pointer (last).

56-59 If no alarm with a time greater than or equal to the new alarm’s time is found,
then the new alarm is inserted at the end of the list. That is, if the alarm pointer
is NULL on exit from the search loop (the last entry on the list always has a link
pointer of NULL), the previous entry (or queue head) is made to point to the new
entry.

1 int main (int argc, char *argv[])
2 {
3     int status;
4     char line[128];
5     alarm_t *alarm, **last, *next;
6     pthread_t thread;
7
8     status = pthread_create (
9         &thread, NULL, alarm_thread, NULL);

10     if (status != 0)
11         err_abort (status, "Create alarm thread");
12     while (1) {
13         printf ("alarm> ");
14         if (fgets (line, sizeof (line), stdin) == NULL) exit (0);
15         if (strlen (line) <= 1) continue;
16         alarm = (alarm_t*)malloc (sizeof (alarm_t));
17         if (alarm == NULL)
18             errno_abort ("Allocate alarm");
19
20         /*
21          * Parse input line into seconds (%d) and a message
22          * (%64[^\n]), consisting of up to 64 characters
23          * separated from the seconds by whitespace.
24          */
25         if (sscanf (line, "%d %64[^\n]", 
26             &alarm->seconds, alarm->message) < 2) {
27             fprintf (stderr, "Bad command\n");
28             free (alarm);
29         } else {
30             status = pthread_mutex_lock (&alarm_mutex);

■ alarm_mutex.c part 3 main
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31             if (status != 0)
32                 err_abort (status, "Lock mutex");
33             alarm->time = time (NULL) + alarm->seconds;
34
35             /*
36              * Insert the new alarm into the list of alarms,
37              * sorted by expiration time.
38              */
39             last = &alarm_list;
40             next = *last;
41             while (next != NULL) {
42                 if (next->time >= alarm->time) {
43                     alarm->link = next;
44                     *last = alarm;
45                     break;
46                 }
47                 last = &next->link;
48                 next = next->link;
49             }
50             /*
51              * If we reached the end of the list, insert the new
52              * alarm there. ("next" is NULL, and "last" points
53              * to the link field of the last item, or to the
54              * list header).
55              */
56             if (next == NULL) {
57                 *last = alarm;
58                 alarm->link = NULL;
59             }
60 #ifdef DEBUG
61             printf ("[list: ");
62             for (next = alarm_list; next != NULL; next = next->link)
63                 printf ("%d(%d)[\"%s\"] ", next->time,
64                     next->time - time (NULL), next->message);
65             printf ("]\n");
66 #endif
67             status = pthread_mutex_unlock (&alarm_mutex);
68             if (status != 0)
69                 err_abort (status, "Unlock mutex");
70         }
71     }
72 }

This simple program has a few severe failings. Although it has the advantage,
compared to alarm_fork.c or alarm_thread.c, of using fewer resources, it is less
responsive. Once alarm_thread has accepted an alarm request from the queue, it

■ alarm_mutex.c part 3 main
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sleeps until that alarm expires. When it fails to find an alarm request on the list,
it sleeps for a second anyway, to allow main to accept another alarm command.
During all this sleeping, it will fail to notice any alarm requests added to the head
of the queue by main, until it returns from sleep.

This problem could be addressed in various ways. The simplest, of course,
would be to go back to alarm_thread.c, where a thread was created for each
alarm request. That wasn’t so bad, since threads are relatively cheap. They’re still
not as cheap as the alarm_t data structure, however, and we’d like to make effi-
cient programs—not just responsive programs. The best solution is to make use
of condition variables for signaling changes in the state of shared data, so it
shouldn’t be a surprise that you’ll be seeing one final version of the alarm pro-
gram, alarm_cond.c, in Section 3.3.4.

3.2.2.1 Nonblocking mutex locks

When you lock a mutex by calling pthread_mutex_lock, the calling thread
will block if the mutex is already locked. Normally, that’s what you want. But
occasionally you want your code to take some alternate path if the mutex is
locked. Your program may be able to do useful work instead of waiting. Pthreads
provides the pthread_mutex_trylock function, which will return an error status
(EBUSY) instead of blocking if the mutex is already locked.

When you use a nonblocking mutex lock, be careful to unlock the mutex only
if pthread_mutex_trylock returned with success status. Only the thread that
owns a mutex may unlock it. An erroneous call to pthread_mutex_unlock may
return an error, or it may unlock the mutex while some other thread relies on
having it locked—and that will probably cause your program to break in ways
that may be very difficult to debug.

The following program, trylock.c, uses pthread_mutex_trylock to occasion-
ally report the value of a counter—but only when its access does not conflict with
the counting thread.

4 This definition controls how long counter_thread holds the mutex while
updating the counter. Making this number larger increases the chance that the
pthread_mutex_trylock in monitor_thread will occasionally return EBUSY.

14-39 The counter_thread wakes up approximately each second, locks the mutex,
and spins for a while, incrementing counter. The counter is therefore increased
by SPIN each second.

46-72 The monitor_thread wakes up every three seconds, and tries to lock the
mutex. If the attempt fails with EBUSY, monitor_thread counts the failure and
waits another three seconds. If the pthread_mutex_trylock succeeds, then
monitor_thread prints the current value of counter (scaled by SPIN).

80-88 On Solaris 2.5, call thr_setconcurrency to set the thread concurrency level
to 2. This allows the counter_thread and monitor_thread to run concurrently
on a uniprocessor. Otherwise, monitor_thread would not run until counter_
thread terminated.
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1 #include <pthread.h>
2 #include "errors.h"
3
4 #define SPIN 10000000
5
6 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
7 long counter;
8 time_t end_time;
9

10 /*
11  * Thread start routine that repeatedly locks a mutex and
12  * increments a counter.
13  */
14 void *counter_thread (void *arg)
15 {
16     int status;
17     int spin;
18
19     /*
20      * Until end_time, increment the counter each second. Instead of
21      * just incrementing the counter, it sleeps for another second
22      * with the mutex unlocked, to give monitor_thread a reasonable
23      * chance of running.
24      */
25     while (time (NULL) < end_time)
26     {
27         status = pthread_mutex_lock (&mutex);
28         if (status != 0)
29             err_abort (status, "Lock mutex");
30         for (spin = 0; spin < SPIN; spin++)
31             counter++;
32         status = pthread_mutex_unlock (&mutex);
33         if (status != 0)
34             err_abort (status, "Unlock mutex");
35         sleep (1);
36     }
37     printf ("Counter is %#lx\n", counter);
38     return NULL;
39 }
40
41 /*
42  * Thread start routine to "monitor" the counter. Every 3
43  * seconds, try to lock the mutex and read the counter. If the
44  * trylock fails, skip this cycle.
45  */
46 void *monitor_thread (void *arg)

■ trylock.c
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47 {
48     int status;
49     int misses = 0;
50
51
52     /*
53      * Loop until end_time, checking the counter every 3 seconds.
54      */
55     while (time (NULL) < end_time)
56     {
57         sleep (3);
58         status = pthread_mutex_trylock (&mutex);
59         if (status != EBUSY)
60         {
61             if (status != 0)
62                 err_abort (status, "Trylock mutex");
63             printf ("Counter is %ld\n", counter/SPIN);
64             status = pthread_mutex_unlock (&mutex);
65             if (status != 0)
66                 err_abort (status, "Unlock mutex");
67         } else
68             misses++;           /* Count "misses" on the lock */
69     }
70     printf ("Monitor thread missed update %d times.\n", misses);
71     return NULL;
72 }
73
74 int main (int argc, char *argv[])
75 {
76     int status;
77     pthread_t counter_thread_id;
78     pthread_t monitor_thread_id;
79
80 #ifdef sun
81     /*
82      * On Solaris 2.5, threads are not timesliced. To ensure
83      * that our threads can run concurrently, we need to
84      * increase the concurrency level to 2.
85      */
86     DPRINTF (("Setting concurrency level to 2\n"));
87     thr_setconcurrency (2);
88 #endif
89
90     end_time = time (NULL) + 60;        /* Run for 1 minute */
91     status = pthread_create (
92         &counter_thread_id, NULL, counter_thread, NULL);
93     if (status != 0)
94         err_abort (status, "Create counter thread");
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95     status = pthread_create (
96         &monitor_thread_id, NULL, monitor_thread, NULL);
97     if (status != 0)
98         err_abort (status, "Create monitor thread");
99     status = pthread_join (counter_thread_id, NULL);

100     if (status != 0)
101         err_abort (status, "Join counter thread");
102     status = pthread_join (monitor_thread_id, NULL);
103     if (status != 0)
104         err_abort (status, "Join monitor thread");
105     return 0;
106 }

3.2.3 Using mutexes for atomicity

Invariants, as we saw in Section 3.1, are statements about your program that
must always be true. But we also saw that invariants probably aren’t always
true, and many can’t be. To be always true, data composing an invariant must be
modified atomically. Yet it is rarely possible to make multiple changes to a pro-
gram state atomically. It may not even be possible to guarantee that a single
change is made atomically, without substantial knowledge of the hardware and
architecture and control over the executed instructions.

“Atomic” means indivisible. But most of the time, we just mean 
that threads don’t see things that would confuse them.

Although some hardware will allow you to set an array element and increment
the array index in a single instruction that cannot be interrupted, most won’t.
Most compilers don’t let you control the code to that level of detail even if the
hardware can do it, and who wants to write in assembler unless it is really impor-
tant? And, more importantly, most interesting invariants are more complicated
than that.

By “atomic,” we really mean only that other threads can’t accidentally find
invariants broken (in intermediate and inconsistent states), even when the
threads are running simultaneously on separate processors. There are two basic
ways to do that when the hardware doesn’t support making the operation indi-
visible and noninterruptable. One is to detect that you’re looking at a broken
invariant and try again, or reconstruct the original state. That’s hard to do reli-
ably unless you know a lot about the processor architecture and are willing to
design nonportable code.

When there is no way to enlist true atomicity in your cause, you need to create
your own synchronization. Atomicity is nice, but synchronization will do just as
well in most cases. So when you need to update an array element and the index
variable atomically, just perform the operation while a mutex is locked.
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Whether or not the store and increment operations are performed indivisibly
and noninterruptably by the hardware, you know that no cooperating thread can
peek until you’re done. The transaction is, for all practical purposes, “atomic.”
The key, of course, is the word “cooperating.” Any thread that is sensitive to the
invariant must use the same mutex before modifying or examining the state of
the invariant.

3.2.4 Sizing a mutex to fit the job

How big is a mutex? No, I don’t mean the amount of memory consumed by a
pthread_mutex_t structure. I’m talking about a colloquial and completely inac-
curate meaning that happens to make sense to most people. This colorful usage
became common during discussions about modifying existing nonthreaded code
to be thread-safe. One relatively simple way to make a library thread-safe is to
create a single mutex, lock it on each entry to the library, and unlock it on each
exit from the library. The library becomes a single serial region, preventing any
conflict between threads. The mutex protecting this big serial region came to be
referred to as a “big” mutex, clearly larger in some metaphysical sense than a
mutex that protects only a few lines of code.

By irrelevant but inevitable extension, a mutex that protects two variables
must be “bigger” than a mutex protecting only a single variable. So we can ask,
“How big should a mutex be?” And we can answer only, “As big as necessary, but
no bigger.”

When you need to protect two shared variables, you have two basic strategies:
You can assign a small mutex to each variable, or assign a single larger mutex to
both variables. Which is better will depend on a lot of factors. Furthermore, the
factors will probably change during development, depending on how many
threads need the data and how they use it.

These are the main design factors:

1. Mutexes aren’t free. It takes time to lock them, and time to unlock them.
Therefore, code that locks fewer mutexes will usually run faster than code
that locks more mutexes. So use as few as practical, each protecting as
much as makes sense.

2. Mutexes, by their nature, serialize execution. If a lot of threads frequently
need to lock a single mutex, the threads will spend most of their time wait-
ing. That’s bad for performance. If the pieces of data (or code) protected by
the mutex are unrelated, you can often improve performance by splitting
the big mutex into several smaller mutexes. Fewer threads will need the
smaller mutexes at any time, so they’ll spend less time waiting. So use as
many as makes sense, each protecting as little as is practical.

3. Items 1 and 2 conflict. But that’s nothing new or unique, and you can deal
with it once you understand what’s going on.
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In a complicated program it will usually take some experimentation to get the
right balance. Your code will be simpler in most cases if you start with large
mutexes and then work toward smaller mutexes as experience and performance
data show where the heavy contention happens. Simple is good. Don’t spend too
much time optimizing until you know there’s a problem.

On the other hand, in cases where you can tell from the beginning that the
algorithms will make heavy contention inevitable, don’t oversimplify. Your job will
be a lot easier if you start with the necessary mutexes and data structure design
rather than adding them later. You will get it wrong sometimes, because, espe-
cially when you are working on your first major threaded project, your intuition
will not always be correct. Wisdom, as they say, comes from experience, and
experience comes from lack of wisdom.

3.2.5 Using more than one mutex

Sometimes one mutex isn’t enough. This happens when your code “crosses
over” some boundary within the software architecture. For example, when multi-
ple threads will access a queue data structure at the same time, you may need a
mutex to protect the queue header and another to protect data within a queue
element. When you build a tree structure for threaded programming, you may
need a mutex for each node in the tree.

Complications can arise when using more than one mutex at the same time.
The worst is deadlock—when each of two threads holds one mutex and needs the
other to continue. More subtle problems such as priority inversion can occur when
you combine mutexes with priority scheduling. For more information on deadlock,
priority inversion, and other synchronization problems, refer to Section 8.1.

3.2.5.1 Lock hierarchy

If you can apply two separate mutexes to completely independent data, do it.
You’ll almost always win in the end by reducing the time when a thread has to
wait for another thread to finish with data that this thread doesn’t even need.
And if the data is independent you’re unlikely to run into many cases where a
given function will need to lock both mutexes.

The complications arise when data isn’t completely independent. If you have
some program invariant—even one that’s rarely changed or referenced—that
affects data protected by two mutexes, sooner or later you’ll need to write code
that must lock both mutexes at the same time to ensure the integrity of that
invariant. If one thread locks mutex_a and then locks mutex_b, while another
thread locks mutex_b and then mutex_a, you’ve coded a classic deadlock, as
shown in Table 3.1.
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Both of the threads shown in Table 3.1 may complete the first step about the
same time. Even on a uniprocessor, a thread might complete the first step and
then be timesliced (preempted by the system), allowing the second thread to com-
plete its first step. Once this has happened, neither of them can ever complete the
second step because each thread needs a mutex that is already locked by the
other thread.

Consider these two common solutions to this type of deadlock:

• Fixed locking hierarchy: All code that needs both mutex_a and mutex_b
must always lock mutex_a first and then mutex_b.

• Try and back off: After locking the first mutex of some set (which can be
allowed to block), use pthread_mutex_trylock to lock additional mutexes
in the set. If an attempt fails, release all mutexes in the set and start again.

There are any number of ways to define a fixed locking hierarchy. Sometimes
there’s an obvious hierarchical order to the mutexes anyway, for example, if one
mutex controls a queue header and one controls an element on the queue, you’ll
probably have to have the queue header locked by the time you need to lock the
queue element anyway.

When there’s no obvious logical hierarchy, you can create an arbitrary hierar-
chy; for example, you could create a generic “lock a set of mutexes” function that
sorts a list of mutexes in order of their identifier address and locks them in that
order. Or you could assign them names and lock them in alphabetical order, or
integer sequence numbers and lock them in numerical order.

To some extent, the order doesn’t really matter as long as it is always the
same. On the other hand, you will rarely need to lock “a set of mutexes” at one
time. Function A will need to lock mutex 1, and then call function B, which needs
to also lock mutex 2. If the code was designed with a functional locking hierarchy,
you will usually find that mutex 1 and mutex 2 are being locked in the proper
order, that is, mutex 1 is locked first and then mutex 2. If the code was designed
with an arbitrary locking order, especially an order not directly controlled by the
code, such as sorting pointers to mutexes initialized in heap structures, you may
find that mutex 2 should have been locked before mutex 1.

If the code invariants permit you to unlock mutex 1 safely at this point, you
would do better to avoid owning both mutexes at the same time. That is, unlock
mutex 1, and then lock mutex 2. If there is a broken invariant that requires
mutex 1 to be owned, then mutex 1 cannot be released until the invariant is
restored. If this situation is possible, you should consider using a backoff (or “try
and back off”) algorithm.

“Backoff” means that you lock the first mutex normally, but any additional
mutexes in the set that are required by the thread are locked conditionally by

First thread Second thread

pthread_mutex_lock (&mutex_a);
pthread_mutex_lock (&mutex_b);

pthread_mutex_lock (&mutex_b);
pthread_mutex_lock (&mutex_a);

TABLE 3.1 Mutex deadlock
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calling pthread_mutex_trylock. If pthread_mutex_trylock returns EBUSY, indi-
cating that the mutex is already locked, you must unlock all of the mutexes in the
set and start over.

The backoff solution is less efficient than a fixed hierarchy. You may waste a
lot of time trying and backing off. On the other hand, you don’t need to define and
follow strict locking hierarchy conventions, which makes backoff more flexible.
You can use the two techniques in combination to minimize the cost of backing
off. Follow some fixed hierarchy for well-defined areas of code, but apply a backoff
algorithm where a function needs to be more flexible.

The program below, backoff.c, demonstrates how to avoid mutex deadlocks
by applying a backoff algorithm. The program creates two threads, one running
function lock_forward and the other running function lock_backward. The two
threads loop ITERATIONS times, each iteration attempting to lock all of three
mutexes in sequence. The lock_forward thread locks mutex 0, then mutex 1,
then mutex 2, while lock_backward locks the three mutexes in the opposite
order. Without special precautions, this design will always deadlock quickly
(except on a uniprocessor system with a sufficiently long timeslice that either
thread can complete before the other has a chance to run).

15 You can see the deadlock by running the program as backoff 0. The first
argument is used to set the backoff variable. If backoff is 0, the two threads will
use pthread_mutex_lock to lock each mutex. Because the two threads are start-
ing from opposite ends, they will crash in the middle, and the program will hang.
When backoff is nonzero (which it is unless you specify an argument), the
threads use pthread_mutex_trylock, which enables the backoff algorithm. When
the mutex lock fails with EBUSY, the thread will release all mutexes it currently
owns, and start over.

16 It is possible that, on some systems, you may not see any mutex collisions,
because one thread is always able to lock all mutexes before the other thread has
a chance to lock any. You can resolve that problem by setting the yield_flag
variable, which you do by running the program with a second argument, for
example, backoff 1 1. When yield_flag is 0, which it is unless you specify a sec-
ond argument, each thread’s mutex locking loop may run uninterrupted,
preventing a deadlock (at least, on a uniprocessor). When yield_flag has a value
greater than 0, however, the threads will call sched_yield after locking each
mutex, ensuring that the other thread has a chance to run. And if you set yield_
flag to a value less than 0, the threads will sleep for one second after locking
each mutex, to be really sure the other thread has a chance to run.

70-75 After locking all of the three mutexes, each thread reports success, and tells
how many times it had to back off before succeeding. On a multiprocessor, or
when you’ve set yield_flag to a nonzero value, you’ll usually see a lot more non-
zero backoff counts. The thread unlocks all three mutexes, in the reverse order of
locking, which helps to avoid unnecessary backoffs in other threads. Calling
sched_yield at the end of each iteration “mixes things up” a little so one thread
doesn’t always start each iteration first. The sched_yield function is described in
Section 5.5.2.
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1 #include <pthread.h>
2 #include "errors.h"
3
4 #define ITERATIONS 10
5
6 /*
7  * Initialize a static array of 3 mutexes.
8  */
9 pthread_mutex_t mutex[3] = {

10     PTHREAD_MUTEX_INITIALIZER,
11     PTHREAD_MUTEX_INITIALIZER,
12     PTHREAD_MUTEX_INITIALIZER
13     };
14
15 int backoff = 1;        /* Whether to backoff or deadlock */
16 int yield_flag = 0;          /* 0: no yield, >0: yield, <0: sleep */
17
18 /*
19  * This is a thread start routine that locks all mutexes in
20  * order, to ensure a conflict with lock_reverse, which does the
21  * opposite.
22  */
23 void *lock_forward (void *arg)
24 {
25     int i, iterate, backoffs;
26     int status;
27
28     for (iterate = 0; iterate < ITERATIONS; iterate++) {
29         backoffs = 0;
30         for (i = 0; i < 3; i++) {
31             if (i == 0) {
32                 status = pthread_mutex_lock (&mutex[i]);
33                 if (status != 0)
34                     err_abort (status, "First lock");
35             } else {
36                 if (backoff)
37                     status = pthread_mutex_trylock (&mutex[i]);
38                 else
39                     status = pthread_mutex_lock (&mutex[i]);
40                 if (status == EBUSY) {
41                     backoffs++;
42                     DPRINTF ((
43                         " [forward locker backing off at %d]\n",
44                         i));
45                     for (i--; i >= 0; i--) {
46                         status = pthread_mutex_unlock (&mutex[i]);
47                         if (status != 0)

■ backoff.c
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48                             err_abort (status, "Backoff");
49                     }
50                 } else {
51                     if (status != 0)
52                         err_abort (status, "Lock mutex");
53                     DPRINTF ((" forward locker got %d\n", i));
54                 }
55             }
56             /*
57              * Yield processor, if needed to be sure locks get
58              * interleaved on a uniprocessor.
59              */
60             if (yield_flag) {
61                 if (yield_flag > 0)
62                     sched_yield ();
63                 else
64                     sleep (1);
65             }
66         }
67         /*
68          * Report that we got 'em, and unlock to try again.
69          */
70         printf (
71             "lock forward got all locks, %d backoffs\n", backoffs);
72         pthread_mutex_unlock (&mutex[2]);
73         pthread_mutex_unlock (&mutex[1]);
74         pthread_mutex_unlock (&mutex[0]);
75         sched_yield ();
76     }
77     return NULL;
78 }
79
80 /*
81  * This is a thread start routine that locks all mutexes in
82  * reverse order, to ensure a conflict with lock_forward, which
83  * does the opposite.
84  */
85 void *lock_backward (void *arg)
86 {
87     int i, iterate, backoffs;
88     int status;
89
90     for (iterate = 0; iterate < ITERATIONS; iterate++) {
91         backoffs = 0;
92         for (i = 2; i >= 0; i--) {
93             if (i == 2) {
94                 status = pthread_mutex_lock (&mutex[i]);
95                 if (status != 0)
96                     err_abort (status, "First lock");



68 CHAPTER 3 Synchronization

97             } else {
98                 if (backoff)
99                     status = pthread_mutex_trylock (&mutex[i]);

100                 else
101                     status = pthread_mutex_lock (&mutex[i]);
102                 if (status == EBUSY) {
103                     backoffs++;
104                     DPRINTF ((
105                         " [backward locker backing off at %d]\n",
106                         i));
107                     for (i++; i < 3; i++) {
108                         status = pthread_mutex_unlock (&mutex[i]);
109                         if (status != 0)
110                             err_abort (status, "Backoff");
111                     }
112                 } else {
113                     if (status != 0)
114                         err_abort (status, "Lock mutex");
115                     DPRINTF ((" backward locker got %d\n", i));
116                 }
117             }
118             /*
119              * Yield processor, if needed to be sure locks get
120              * interleaved on a uniprocessor.
121              */
122             if (yield_flag) {
123                 if (yield_flag > 0)
124                     sched_yield ();
125                 else
126                     sleep (1);
127             }
128         }
129         /*
130          * Report that we got 'em, and unlock to try again.
131          */
132         printf (
133             "lock backward got all locks, %d backoffs\n", backoffs);
134         pthread_mutex_unlock (&mutex[0]);
135         pthread_mutex_unlock (&mutex[1]);
136         pthread_mutex_unlock (&mutex[2]);
137         sched_yield ();
138     }
139     return NULL;
140 }
141
142 int main (int argc, char *argv[])
143 {
144     pthread_t forward, backward;
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145     int status;
146
147 #ifdef sun
148     /*
149      * On Solaris 2.5, threads are not timesliced. To ensure
150      * that our threads can run concurrently, we need to
151      * increase the concurrency level.
152      */
153     DPRINTF (("Setting concurrency level to 2\n"));
154     thr_setconcurrency (2);
155 #endif
156
157     /*
158      * If the first argument is absent, or nonzero, a backoff
159      * algorithm will be used to avoid deadlock. If the first
160      * argument is zero, the program will deadlock on a lock
161      * "collision."
162      */
163     if (argc > 1)
164         backoff = atoi (argv[1]);
165
166     /*
167      * If the second argument is absent, or zero, the two threads
168      * run "at speed." On some systems, especially uniprocessors,
169      * one thread may complete before the other has a chance to run,
170      * and you won't see a deadlock or backoffs. In that case, try
171      * running with the argument set to a positive number to cause
172      * the threads to call sched_yield() at each lock; or, to make
173      * it even more obvious, set to a negative number to cause the
174      * threads to call sleep(1) instead.
175      */
176     if (argc > 2)
177         yield_flag = atoi (argv[2]);
178     status = pthread_create (
179         &forward, NULL, lock_forward, NULL);
180     if (status != 0)
181         err_abort (status, "Create forward");
182     status = pthread_create (
183         &backward, NULL, lock_backward, NULL);
184     if (status != 0)
185         err_abort (status, "Create backward");
186     pthread_exit (NULL);
187 }

Whatever type of hierarchy you choose, document it, carefully, completely, and
often. Document it in each function that uses any of the mutexes. Document it
where the mutexes are defined. Document it where they are declared in a project

■ backoff.c
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header file. Document it in the project design notes. Write it on your whiteboard.
And then tie a string around your finger to be sure that you do not forget.

You are free to unlock the mutexes in whatever order makes the most sense.
Unlocking mutexes cannot result in deadlock. In the next section, I will talk
about a sort of “overlapping hierarchy” of mutexes, called a “lock chain,” where
the normal mode of operation is to lock one mutex, lock the next, unlock the first,
and so on. If you use a “try and back off” algorithm, however, you should always
try to release the mutexes in reverse order. That is, if you lock mutex 1, mutex 2,
and then mutex 3, you should unlock mutex 3, then mutex 2, and finally mutex 1.
If you unlock mutex 1 and mutex 2 while mutex 3 is still locked, another thread
may have to lock both mutex 1 and mutex 2 before finding it cannot lock the
entire hierarchy, at which point it will have to unlock mutex 2 and mutex 1, and
then retry. Unlocking in reverse order reduces the chance that another thread will
need to back off.

3.2.5.2 Lock chaining

“Chaining” is a special case of locking hierarchy, where the scope of two locks
overlap. With one mutex locked, the code enters a region where another mutex is
required. After successfully locking that second mutex, the first is no longer
needed, and can be released. This technique can be very valuable in traversing
data structures such as trees or linked lists. Instead of locking the entire data
structure with a single mutex, and thereby preventing any parallel access, each
node or link has a unique mutex. The traversal code would first lock the queue
head, or tree root, find the desired node, lock it, and then release the root or
queue head mutex.

Because chaining is a special form of hierarchy, the two techniques are com-
patible, if you apply them carefully. You might use hierarchical locking when
balancing or pruning a tree, for example, and chaining when searching for a spe-
cific node.

Apply lock chaining with caution, however. It is exceptionally easy to write
code that spends most of its time locking and unlocking mutexes that never
exhibit any contention, and that is wasted processor time. Use lock chaining only
when multiple threads will almost always be active within different parts of the
hierarchy.

3.3 Condition variables

“There’s no sort of use in knocking,” said the Footman, “and that for two 
reasons. First, because I’m on the same side of the door as you are: 
secondly, because they’re making such a noise inside, no one could 
possibly hear you.”
—Lewis Carroll, Alice’s Adventures in Wonderland
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A condition variable is used for communicating information about the state of
shared data. You would use a condition variable to signal that a queue was no
longer empty, or that it had become empty, or that anything else needs to be done
or can be done within the shared data manipulated by threads in your program.

Our seafaring programmers use a mechanism much like condition variables to
communicate (Figure 3.3). When the rower nudges a sleeping programmer to sig-
nal that the sleeping programmer should wake up and start rowing, the original
rower “signals a condition.” When the exhausted ex-rower sinks into a deep slum-
ber, secure that another programmer will wake him at the appropriate time, he is
“waiting on a condition.” When the horrified bailer discovers that water is seeping
into the boat faster than he can remove it, and he yells for help, he is “broadcast-
ing a condition.”

When a thread has mutually exclusive access to some shared state, it may
find that there is no more it can do until some other thread changes the state.
The state may be correct, and consistent—that is, no invariants are broken—but
the current state just doesn’t happen to be of interest to the thread. If a thread
servicing a queue finds the queue empty, for example, the thread must wait until
an entry is added to the queue.

The shared data, for example, the queue, is protected by a mutex. A thread
must lock the mutex to determine the current state of the queue, for example, to
determine that it is empty. The thread must unlock the mutex before waiting (or

FIGURE 3.3 Condition variable analogy
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no other thread would be able to insert an entry onto the queue), and then it
must wait for the state to change. The thread might, for example, by some means
block itself so that a thread inserting a new queue entry can find its identifier and
awaken it. There is a problem here, though—the thread is running between
unlocking and blocking.

If the thread is still running while another thread locks the mutex and inserts
an entry onto the queue, that other thread cannot determine that a thread is
waiting for the new entry. The waiting thread has already looked at the queue and
found it empty, and has unlocked the mutex, so it will now block itself without
knowing that the queue is no longer empty. Worse, it may not yet have recorded
the fact that it intends to wait, so it may wait forever because the other thread
cannot find its identifier. The unlock and wait operations must be atomic, so that
no other thread can lock the mutex before the waiter has become blocked, and is
in a state where another thread can awaken it.

A condition variable wait always returns with the mutex locked.

That’s why condition variables exist. A condition variable is a “signaling mech-
anism” associated with a mutex and by extension is also associated with the
shared data protected by the mutex. Waiting on a condition variable atomically
releases the associated mutex and waits until another thread signals (to wake
one waiter) or broadcasts (to wake all waiters) the condition variable. The mutex
must always be locked when you wait on a condition variable and, when a thread
wakes up from a condition variable wait, it always resumes with the mutex
locked.

The shared data associated with a condition variable, for example, the queue
“full” and “empty” conditions, are the predicates we talked about in Section 3.1. A
condition variable is the mechanism your program uses to wait for a predicate to
become true, and to communicate to other threads that it might be true. In other
words, a condition variable allows threads using the queue to exchange informa-
tion about the changes to the queue state.

Condition variables are for signaling, not for mutual exclusion.

Condition variables do not provide mutual exclusion. You need a mutex to
synchronize access to the shared data, including the predicate for which you
wait. That is why you must specify a mutex when you wait on a condition vari-
able. By making the unlock atomic with the wait, the Pthreads system ensures
that no thread can change the predicate after you have unlocked the mutex but
before your thread is waiting on the condition variable.

Why isn’t the mutex created as part of the condition variable? First, mutexes
are used separately from any condition variable as often as they’re used with con-
dition variables. Second, it is common for one mutex to have more than one
associated condition variable. For example, a queue may be “full” or “empty.”
Although you may have two condition variables to allow threads to wait for either
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condition, you must have one and only one mutex to synchronize all access to the
queue header.

A condition variable should be associated with a single predicate. If you try to
share one condition variable between several predicates, or use several condition
variables for a single predicate, you’re risking deadlock or race problems. There’s
nothing wrong with doing either, as long as you’re careful—but it is easy to con-
fuse your program (computers aren’t very smart) and it is usually not worth the
risk. I will expound on the details later, but the rules are as follows: First, when
you share a condition variable between multiple predicates, you must always
broadcast, never signal; and second, signal is more efficient than broadcast.

Both the condition variable and the predicate are shared data in your pro-
gram; they are used by multiple threads, possibly at the same time. Because
you’re thinking of the condition variable and predicate as being locked together, it
is easy to remember that they’re always controlled using the same mutex. It is
possible (and legal, and often even reasonable) to signal or broadcast a condition
variable without having the mutex locked, but it is safer to have it locked.

Figure 3.4 is a timing diagram showing how three threads, thread 1, thread 2,
and thread 3, interact with a condition variable. The rounded box represents the
condition variable, and the three lines represent the actions of the three threads.

FIGURE 3.4 Condition variable operation
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When a line goes within the box, it is “doing something” with the condition vari-
able. When a thread’s line stops before reaching below the middle line through
the box, it is waiting on the condition variable; and when a thread’s line reaches
below the middle line, it is signaling or broadcasting to awaken waiters.

Thread 1 signals the condition variable, which has no effect since there are no
waiters. Thread 1 then waits on the condition variable. Thread 2 also blocks on
the condition variable and, shortly thereafter, thread 3 signals the condition vari-
able. Thread 3’s signal unblocks thread 1. Thread 3 then waits on the condition
variable. Thread 1 broadcasts the condition variable, unblocking both thread 2
and thread 3. Thread 3 waits on the condition variable shortly thereafter, with a
timed wait. Some time later, thread 3’s wait times out, and the thread awakens.

3.3.1 Creating and destroying a condition variable

A condition variable is represented in your program by a variable of type
pthread_cond_t. You should never make a copy of a condition variable, because
the result of using a copied condition variable is undefined. It would be like tele-
phoning a disconnected number and expecting an answer. One thread could, for
example, wait on one copy of the condition variable, while another thread sig-
naled or broadcast the other copy of the condition variable—the waiting thread
would not be awakened. You can, however, freely pass pointers to a condition
variable so that various functions and threads can use it for synchronization.

Most of the time you’ll probably declare condition variables using the extern
or static storage class at file scope, that is, outside of any function. They should
have normal (extern) storage class if they are used by other files, or static stor-
age class if used only within the file that declares the variable. When you declare
a static condition variable that has default attributes, you should use the
PTHREAD_COND_INITIALIZER initialization macro, as shown in the following exam-
ple, cond_static.c.

1 #include <pthread.h>
2 #include "errors.h"
3
4 /*
5  * Declare a structure, with a mutex and condition variable,
6  * statically initialized. This is the same as using

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int pthread_cond_init (pthread_cond_t *cond,
    pthread_condattr_t *condattr);
int pthread_cond_destroy (pthread_cond_t *cond);

■ cond_static.c
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7  * pthread_mutex_init and pthread_cond_init, with the default
8  * attributes.
9  */

10 typedef struct my_struct_tag {
11     pthread_mutex_t     mutex;  /* Protects access to value */
12     pthread_cond_t      cond;   /* Signals change to value */
13     int                 value;  /* Access protected by mutex */
14 } my_struct_t;
15
16 my_struct_t data = {
17     PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER, 0};
18
19 int main (int argc, char *argv[])
20 {
21     return 0;
22 }

Condition variables and their predicates are “linked”—for best results, 
treat them that way!

When you declare a condition variable, remember that a condition variable
and the associated predicate are “locked together.” You may save yourself (or your
successor) some confusion by always declaring the condition variable and predi-
cate together, if possible. I recommend that you try to encapsulate a set of
invariants and predicates with its mutex and one or more condition variables as
members in a structure, and carefully document the association.

Sometimes you cannot initialize a condition variable statically; for example,
when you use malloc to create a structure that contains a condition variable.
Then you will need to call pthread_cond_init to initialize the condition variable
dynamically, as shown in the following example, cond_dynamic.c. You can also
dynamically initialize condition variables that you declare statically—but you
must ensure that each condition variable is initialized before it is used, and that
each is initialized only once. You may initialize it before creating any threads, for
example, or by using pthread_once (Section 5.1). If you need to initialize a condi-
tion variable with nondefault attributes, you must use dynamic initialization (see
Section 5.2.2).

1 #include <pthread.h>
2 #include "errors.h"
3
4 /*
5  * Define a structure, with a mutex and condition variable.
6  */
7 typedef struct my_struct_tag {

■ cond_static.c

■ cond_dynamic.c
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8     pthread_mutex_t     mutex;  /* Protects access to value */
9     pthread_cond_t      cond;   /* Signals change to value */

10     int                 value;  /* Access protected by mutex */
11 } my_struct_t;
12
13 int main (int argc, char *argv[])
14 {
15     my_struct_t *data;
16     int status;
17
18     data = malloc (sizeof (my_struct_t));
19     if (data == NULL)
20         errno_abort ("Allocate structure");
21     status = pthread_mutex_init (&data->mutex, NULL);
22     if (status != 0)
23         err_abort (status, "Init mutex");
24     status = pthread_cond_init (&data->cond, NULL);
25     if (status != 0)
26         err_abort (status, "Init condition");
27     status = pthread_cond_destroy (&data->cond);
28     if (status != 0)
29         err_abort (status, "Destroy condition");
30     status = pthread_mutex_destroy (&data->mutex);
31     if (status != 0)
32         err_abort (status, "Destroy mutex");
33     (void)free (data);
34     return status;
35 }

When you dynamically initialize a condition variable, you should destroy the
condition variable when you no longer need it, by calling pthread_cond_destroy.
You do not need to destroy a condition variable that was statically initialized
using the PTHREAD_COND_INITIALIZER macro.

It is safe to destroy a condition variable when you know that no threads can
be blocked on the condition variable, and no additional threads will try to wait on,
signal, or broadcast the condition variable. The best way to determine this is usu-
ally within a thread that has just successfully broadcast to unblock all waiters,
when program logic ensures that no threads will try to use the condition variable
later.

When a thread removes a structure containing a condition variable from a list,
for example, and then broadcasts to awaken any waiters, it is safe (and also a
very good idea) to destroy the condition variable before freeing the storage that
the condition variable occupies. The awakened threads should check their wait
predicate when they resume, so you must make sure that you don’t free
resources required for the predicate before they’ve done so—this may require
additional synchronization.

■ cond_dynamic.c
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3.3.2 Waiting on a condition variable

Each condition variable must be associated with a specific mutex, and with a
predicate condition. When a thread waits on a condition variable it must always
have the associated mutex locked. Remember that the condition variable wait
operation will unlock the mutex for you before blocking the thread, and it will
relock the mutex before returning to your code.

All threads that wait on any one condition variable concurrently (at the same
time) must specify the same associated mutex. Pthreads does not allow thread 1,
for example, to wait on condition variable A specifying mutex A while thread 2
waits on condition variable A specifying mutex B. It is, however, perfectly reason-
able for thread 1 to wait on condition variable A specifying mutex A while thread 2
waits on condition variable B specifying mutex A. That is, each condition variable
must be associated, at any given time, with only one mutex—but a mutex may
have any number of condition variables associated with it.

It is important that you test the predicate after locking the appropriate mutex
and before waiting on the condition variable. If a thread signals or broadcasts a
condition variable while no threads are waiting, nothing happens. If some other
thread calls pthread_cond_wait right after that, it will keep waiting regardless of
the fact that the condition variable was just signaled, which means that if a
thread waits when it doesn’t have to, it may never wake up. Because the mutex
remains locked until the thread is blocked on the condition variable, the predi-
cate cannot become set between the predicate test and the wait—the mutex is
locked and no other thread can change the shared data, including the predicate.

Always test your predicate; and then test it again!

It is equally important that you test the predicate again when the thread
wakes up. You should always wait for a condition variable in a loop, to protect
against program errors, multiprocessor races, and spurious wakeups. The follow-
ing short program, cond.c, shows how to wait on a condition variable. Proper
predicate loops are also shown in all of the examples in this book that use condi-
tion variables, for example, alarm_cond.c in Section 3.3.4.

20-37 The wait_thread sleeps for a short time to allow the main thread to reach its
condition wait before waking it, sets the shared predicate (data.value), and then
signals the condition variable. The amount of time for which wait_thread will
sleep is controlled by the hibernation variable, which defaults to one second.

int pthread_cond_wait (pthread_cond_t *cond,
    pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
    pthread_mutex_t *mutex,
    struct timespec *expiration);
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51-52 If the program was run with an argument, interpret the argument as an inte-
ger value, which is stored in hibernation. This controls the amount of time for
which wait.thread will sleep before signaling the condition variable.

68-83 The main thread calls pthread_cond_timedwait to wait for up to two seconds
(from the current time). If hibernation has been set to a value of greater than two
seconds, the condition wait will time out, returning ETIMEDOUT. If hibernation
has been set to two, the main thread and wait_thread race, and, in principle, the
result could differ each time you run the program. If hibernation is set to a value
less than two, the condition wait should not time out.

1 #include <pthread.h>
2 #include <time.h>
3 #include "errors.h"
4
5 typedef struct my_struct_tag {
6     pthread_mutex_t     mutex;  /* Protects access to value */
7     pthread_cond_t      cond;   /* Signals change to value */
8     int                 value;  /* Access protected by mutex */
9 } my_struct_t;

10
11 my_struct_t data = {
12     PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER, 0};
13
14 int hibernation = 1;            /* Default to 1 second */
15
16 /*
17  * Thread start routine. It will set the main thread's predicate
18  * and signal the condition variable.
19  */
20 void *
21 wait_thread (void *arg)
22 {
23     int status;
24
25     sleep (hibernation);
26     status = pthread_mutex_lock (&data.mutex);
27     if (status != 0)
28         err_abort (status, "Lock mutex");
29     data.value = 1;             /* Set predicate */
30     status = pthread_cond_signal (&data.cond);
31     if (status != 0)
32         err_abort (status, "Signal condition");
33     status = pthread_mutex_unlock (&data.mutex);
34     if (status != 0)
35         err_abort (status, "Unlock mutex");
36     return NULL;
37 }

■ cond.c
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38
39 int main (int argc, char *argv[])
40 {
41     int status;
42     pthread_t wait_thread_id;
43     struct timespec timeout;
44
45     /*
46      * If an argument is specified, interpret it as the number
47      * of seconds for wait_thread to sleep before signaling the
48      * condition variable.  You can play with this to see the
49      * condition wait below time out or wake normally.
50      */
51     if (argc > 1)
52         hibernation = atoi (argv[1]);
53
54     /*
55      * Create wait_thread.
56      */
57     status = pthread_create (
58         &wait_thread_id, NULL, wait_thread, NULL);
59     if (status != 0)
60         err_abort (status, "Create wait thread");
61
62     /*
63      * Wait on the condition variable for 2 seconds, or until
64      * signaled by the wait_thread. Normally, wait_thread
65      * should signal. If you raise "hibernation" above 2
66      * seconds, it will time out.
67      */
68     timeout.tv_sec = time (NULL) + 2;
69     timeout.tv_nsec = 0;
70     status = pthread_mutex_lock (&data.mutex);
71     if (status != 0)
72         err_abort (status, "Lock mutex");
73
74     while (data.value == 0) {
75         status = pthread_cond_timedwait (
76             &data.cond, &data.mutex, &timeout);
77         if (status == ETIMEDOUT) {
78             printf ("Condition wait timed out.\n");
79             break;
80         }
81         else if (status != 0)
82             err_abort (status, "Wait on condition");
83     }
84
85     if (data.value != 0)
86         printf ("Condition was signaled.\n");
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87     status = pthread_mutex_unlock (&data.mutex);
88     if (status != 0)
89         err_abort (status, "Unlock mutex");
90     return 0;
91 }

There are a lot of reasons why it is a good idea to write code that does not
assume the predicate is always true on wakeup, but here are a few of the main
reasons:

Intercepted wakeups: Remember that threads are asynchronous. Waking up
from a condition variable wait involves locking the associated mutex. But
what if some other thread acquires the mutex first? It may, for example, be
checking the predicate before waiting itself. It doesn’t have to wait, since
the predicate is now true. If the predicate is “work available,” it will accept
the work. When it unlocks the mutex there may be no more work. It would
be expensive, and usually counterproductive, to ensure that the latest
awakened thread got the work.

Loose predicates: For a lot of reasons it is often easy and convenient to use
approximations of actual state. For example, “there may be work” instead
of “there is work.” It is often much easier to signal or broadcast based on
“loose predicates” than on the real “tight predicates.” If you always test the
tight predicates before and after waiting on a condition variable, you’re free
to signal based on the loose approximations when that makes sense. And
your code will be much more robust when a condition variable is signaled
or broadcast accidentally. Use of loose predicates or accidental wakeups
may turn out to be a performance issue; but in many cases it won’t make a
difference.

Spurious wakeups: This means that when you wait on a condition variable,
the wait may (occasionally) return when no thread specifically broadcast or
signaled that condition variable. Spurious wakeups may sound strange,
but on some multiprocessor systems, making condition wakeup completely
predictable might substantially slow all condition variable operations. The
race conditions that cause spurious wakeups should be considered rare.

It usually takes only a few instructions to retest your predicate, and it is a
good programming discipline. Continuing without retesting the predicate could
lead to serious application errors that might be difficult to track down later. So
don’t make assumptions: Always wait for a condition variable in a while loop
testing the predicate.

You can also use the pthread_cond_timedwait function, which causes the
wait to end with an ETIMEDOUT status after a certain time is reached. The time is
an absolute clock time, using the POSIX.1b struct timespec format. The time-
out is absolute rather than an interval (or “delta time”) so that once you’ve
computed the timeout it remains valid regardless of spurious or intercepted

■ cond.c
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wakeups. Although it might seem easier to use an interval time, you’d have to
recompute it every time the thread wakes up, before waiting again—which would
require determining how long it had already waited.

When a timed condition wait returns with the ETIMEDOUT error, you should
test your predicate before treating the return as an error. If the condition for
which you were waiting is true, the fact that it may have taken too long usually
isn’t important. Remember that a thread always relocks the mutex before return-
ing from a condition wait, even when the wait times out. Waiting for a locked
mutex after timeout can cause the timed wait to appear to have taken a lot longer
than the time you requested.

3.3.3 Waking condition variable waiters

Once you’ve got a thread waiting on a condition variable for some predicate,
you’ll probably want to wake it up. Pthreads provides two ways to wake a condi-
tion variable waiter. One is called “signal” and the other is called “broadcast.” A
signal operation wakes up a single thread waiting on the condition variable, while
broadcast wakes up all threads waiting on the condition variable.

The term “signal” is easily confused with the “POSIX signal” mechanisms that
allow you to define “signal actions,” manipulate “signal masks,” and so forth.
However, the term “signal,” as we use it here, had independently become well
established in threading literature, and even in commercial implementations,
and the Pthreads working group decided not to change the term. Luckily, there
are few situations where we might be tempted to use both terms together—it is a
very good idea to avoid using signals in threaded programs when at all possible. If
we are careful to say “signal a condition variable” or “POSIX signal” (or “UNIX sig-
nal”) where there is any ambiguity, we are unlikely to cause anyone severe
discomfort.

It is easy to think of “broadcast” as a generalization of “signal,” but it is more
accurate to think of signal as an optimization of broadcast. Remember that it is
never wrong to use broadcast instead of signal since waiters have to account for
intercepted and spurious wakes. The only difference, in fact, is efficiency: A
broadcast will wake additional threads that will have to test their predicate and
resume waiting. But, in general, you can’t replace a broadcast with a signal.
“When in doubt, broadcast.”

Use signal when only one thread needs to wake up to process the changed
state, and when any waiting thread can do so. If you use one condition variable
for several program predicate conditions, you can’t use the signal operation; you
couldn’t tell whether it would awaken a thread waiting for that predicate, or for

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);
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another predicate. Don’t try to get around that by resignaling the condition vari-
able when you find the predicate isn’t true. That might not pass on the signal as
you expect; a spurious or intercepted wakeup could result in a series of pointless
resignals.

If you add a single item to a queue, and only threads waiting for an item to
appear are blocked on the condition variable, then you should probably use a sig-
nal. That’ll wake up a single thread to check the queue and let the others sleep
undisturbed, avoiding unnecessary context switches. On the other hand, if you
add more than one item to the queue, you will probably need to broadcast. For
examples of both broadcast and signal operations on condition variables, check
out the “read/write lock” package in Section 7.1.2.

Although you must have the associated mutex locked to wait on a condition
variable, you can signal (or broadcast) a condition variable with the associated
mutex unlocked if that is more convenient. The advantage of doing so is that, on
many systems, this may be more efficient. When a waiting thread awakens, it
must first lock the mutex. If the thread awakens while the signaling thread holds
the mutex, then the awakened thread must immediately block on the mutex—
you’ve gone through two context switches to get back where you started.

*

Weighing on the other side is the fact that, if the mutex is not locked, any
thread (not only the one being awakened) can lock the mutex prior to the thread
being awakened. This race is one source of intercepted wakeups. A lower-priority
thread, for example, might lock the mutex while another thread was about to
awaken a very high-priority thread, delaying scheduling of the high-priority
thread. If the mutex remains locked while signaling, this cannot happen—the
high-priority waiter will be placed before the lower-priority waiter on the mutex,
and will be scheduled first.

3.3.4 One final alarm program

It is time for one final version of our simple alarm program. In alarm_
mutex.c, we reduced resource utilization by eliminating the use of a separate
execution context (thread or process) for each alarm. Instead of separate execu-
tion contexts, we used a single thread that processed a list of alarms. There was
one problem, however, with that approach—it was not responsive to new alarm
commands. It had to finish waiting for one alarm before it could detect that
another had been entered onto the list with an earlier expiration time, for exam-
ple, if one entered the commands “10 message 1” followed by “5 message 2.”

* There is an optimization, which I’ve called “wait morphing,” that moves a thread directly
from the condition variable wait queue to the mutex wait queue in this case, without a context
switch, when the mutex is locked. This optimization can produce a substantial performance ben-
efit for many applications.
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Now that we have added condition variables to our arsenal of threaded pro-
gramming tools, we will solve that problem. The new version, creatively named
alarm_cond.c, uses a timed condition wait rather than sleep to wait for an alarm
expiration time. When main inserts a new entry at the head of the list, it signals
the condition variable to awaken alarm_thread immediately. The alarm_thread
then requeues the alarm on which it was waiting, to sort it properly with respect
to the new entry, and tries again.

20,22 Part 1 shows the declarations for alarm_cond.c. There are two additions to
this section, compared to alarm_mutex.c: a condition variable called alarm_cond
and the current_alarm variable, which allows main to determine the expiration
time of the alarm on which alarm_thread is currently waiting. The current_alarm
variable is an optimization—main does not need to awaken alarm_thread unless
it is either idle, or waiting for an alarm later than the one main has just inserted.

1 #include <pthread.h>
2 #include <time.h>
3 #include "errors.h"
4
5 /*
6  * The "alarm" structure now contains the time_t (time since the
7  * Epoch, in seconds) for each alarm, so that they can be
8  * sorted. Storing the requested number of seconds would not be
9  * enough, since the "alarm thread" cannot tell how long it has

10  * been on the list.
11  */
12 typedef struct alarm_tag {
13     struct alarm_tag    *link;
14     int                 seconds;
15     time_t              time;   /* seconds from EPOCH */
16     char                message[64];
17 } alarm_t;
18
19 pthread_mutex_t alarm_mutex = PTHREAD_MUTEX_INITIALIZER;
20 pthread_cond_t alarm_cond = PTHREAD_COND_INITIALIZER;
21 alarm_t *alarm_list = NULL;
22 time_t current_alarm = 0;

Part 2 shows the new function alarm_insert. This function is nearly the same
as the list insertion code from alarm_mutex.c, except that it signals the condition
variable alarm_cond when necessary. I made alarm_insert a separate function
because now it needs to be called from two places—once by main to insert a new
alarm, and now also by alarm_thread to reinsert an alarm that has been “pre-
empted” by a new earlier alarm.

■ alarm_cond.c part 1 declarations

■ alarm_cond.c part 1 declarations
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9-14 I have recommended that mutex locking protocols be documented, and here is
an example: The alarm_insert function points out explicitly that it must be
called with the alarm_mutex locked.

48-53 If current_alarm (the time of the next alarm expiration) is 0, then the alarm_
thread is not aware of any outstanding alarm requests, and is waiting for new
work. If current_alarm has a time greater than the expiration time of the new
alarm, then alarm_thread is not planning to look for new work soon enough to
handle the new alarm. In either case, signal the alarm_cond condition variable so
that alarm_thread will wake up and process the new alarm.

1 /*
2  * Insert alarm entry on list, in order.
3  */
4 void alarm_insert (alarm_t *alarm)
5 {
6     int status;
7     alarm_t **last, *next;
8
9     /*

10      * LOCKING PROTOCOL:
11      * 
12      * This routine requires that the caller have locked the
13      * alarm_mutex!
14      */
15     last = &alarm_list;
16     next = *last;
17     while (next != NULL) {
18         if (next->time >= alarm->time) {
19             alarm->link = next;
20             *last = alarm;
21             break;
22         }
23         last = &next->link;
24         next = next->link;
25     }
26     /*
27      * If we reached the end of the list, insert the new alarm
28      * there.  ("next" is NULL, and "last" points to the link
29      * field of the last item, or to the list header.)
30      */
31     if (next == NULL) {
32         *last = alarm;
33         alarm->link = NULL;
34     }
35 #ifdef DEBUG
36     printf ("[list: ");

■ alarm_cond.c part 2 alarm_insert
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37     for (next = alarm_list; next != NULL; next = next->link)
38         printf ("%d(%d)[\"%s\"] ", next->time,
39             next->time - time (NULL), next->message);
40     printf ("]\n");
41 #endif
42     /*
43      * Wake the alarm thread if it is not busy (that is, if
44      * current_alarm is 0, signifying that it's waiting for
45      * work), or if the new alarm comes before the one on
46      * which the alarm thread is waiting.
47      */
48     if (current_alarm == 0 || alarm->time < current_alarm) {
49         current_alarm = alarm->time;
50         status = pthread_cond_signal (&alarm_cond);
51         if (status != 0)
52             err_abort (status, "Signal cond");
53     }
54 }

Part 3 shows the alarm_thread function, the start function for the “alarm
server” thread. The general structure of alarm_thread is very much like the
alarm_thread in alarm_mutex.c. The differences are due to the addition of the
condition variable.

26-31 If the alarm_list is empty, alarm_mutex.c could do nothing but sleep any-
way, so that main would be able to process a new command. The result was that
it could not see a new alarm request for at least a full second. Now, alarm_thread
instead waits on the alarm_cond condition variable, with no timeout. It will
“sleep” until you enter a new alarm command, and then main will be able to
awaken it immediately. Setting current_alarm to 0 tells main that alarm_thread
is idle. Remember that pthread_cond_wait unlocks the mutex before waiting,
and relocks the mutex before returning to the caller.

35 The new variable expired is initialized to 0; it will be set to 1 later if the timed
condition wait expires. This makes it a little easier to decide whether to print the
current alarm’s message at the bottom of the loop.

36-42 If the alarm we’ve just removed from the list hasn’t already expired, then we
need to wait for it. Because we’re using a timed condition wait, which requires a
POSIX.1b struct timespec, rather than the simple integer time required by
sleep, we convert the expiration time. This is easy, because a struct timespec
has two members—tv_sec is the number of seconds since the Epoch, which is
exactly what we already have from the time function, and tv_nsec is an addi-
tional count of nanoseconds. We will just set tv_nsec to 0, since we have no need
of the greater resolution.

43 Record the expiration time in the current_alarm variable so that main can
determine whether to signal alarm_cond when a new alarm is added.

■ alarm_cond.c part 2 alarm_insert



86 CHAPTER 3 Synchronization

44-53 Wait until either the current alarm has expired, or main requests that alarm_
thread look for a new, earlier alarm. Notice that the predicate test is split here,
for convenience. The expression in the while statement is only half the predicate,
detecting that main has changed current_alarm by inserting an earlier timer.
When the timed wait returns ETIMEDOUT, indicating that the current alarm has
expired, we exit the while loop with a break statement at line 49.

54-55 If the while loop exited when the current alarm had not expired, main must
have asked alarm_thread to process an earlier alarm. Make sure the current
alarm isn’t lost by reinserting it onto the list.

57 If we remove from alarm_list an alarm that has already expired, just set the
expired variable to 1 to ensure that the message is printed.

1 /*
2  * The alarm thread's start routine.
3  */
4 void *alarm_thread (void *arg)
5 {
6     alarm_t *alarm;
7     struct timespec cond_time;
8     time_t now;
9     int status, expired;

10
11     /*
12      * Loop forever, processing commands. The alarm thread will
13      * be disintegrated when the process exits. Lock the mutex
14      * at the start -- it will be unlocked during condition
15      * waits, so the main thread can insert alarms.
16      */
17     status = pthread_mutex_lock (&alarm_mutex);
18     if (status != 0)
19         err_abort (status, "Lock mutex");
20     while (1) {
21         /*
22          * If the alarm list is empty, wait until an alarm is
23          * added. Setting current_alarm to 0 informs the insert
24          * routine that the thread is not busy.
25          */
26         current_alarm = 0;
27         while (alarm_list == NULL) {
28             status = pthread_cond_wait (&alarm_cond, &alarm_mutex);
29             if (status != 0)
30                 err_abort (status, "Wait on cond");
31             }
32         alarm = alarm_list;
33         alarm_list = alarm->link;
34         now = time (NULL);
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35         expired = 0;
36         if (alarm->time > now) {
37 #ifdef DEBUG
38             printf ("[waiting: %d(%d)\"%s\"]\n", alarm->time,
39                 alarm->time - time (NULL), alarm->message);
40 #endif
41             cond_time.tv_sec = alarm->time;
42             cond_time.tv_nsec = 0;
43             current_alarm = alarm->time;
44             while (current_alarm == alarm->time) {
45                 status = pthread_cond_timedwait (
46                     &alarm_cond, &alarm_mutex, &cond_time);
47                 if (status == ETIMEDOUT) {
48                     expired = 1;
49                     break;
50                 }
51                 if (status != 0)
52                     err_abort (status, "Cond timedwait");
53             }
54             if (!expired)
55                 alarm_insert (alarm);
56         } else
57             expired = 1;
58         if (expired) {
59             printf ("(%d) %s\n", alarm->seconds, alarm->message);
60             free (alarm);
61         }
62     }
63 }

Part 4 shows the final section of alarm_cond.c, the main program. It is nearly
identical to the main function from alarm_mutex.c.

38 Because the condition variable signal operation is built into the new alarm_
insert function, we call alarm_insert rather than inserting a new alarm
directly.

1 int main (int argc, char *argv[])
2 {
3     int status;
4     char line[128];
5     alarm_t *alarm;
6     pthread_t thread;
7
8     status = pthread_create (
9         &thread, NULL, alarm_thread, NULL);

■ alarm_cond.c part 3 alarm_routine

■ alarm_cond.c part 4 main



88 CHAPTER 3 Synchronization

10     if (status != 0)
11         err_abort (status, "Create alarm thread");
12     while (1) {
13         printf ("Alarm> ");
14         if (fgets (line, sizeof (line), stdin) == NULL) exit (0);
15         if (strlen (line) <= 1) continue;
16         alarm = (alarm_t*)malloc (sizeof (alarm_t));
17         if (alarm == NULL)
18             errno_abort ("Allocate alarm");
19
20         /*
21          * Parse input line into seconds (%d) and a message
22          * (%64[^\n]), consisting of up to 64 characters
23          * separated from the seconds by whitespace.
24          */
25         if (sscanf (line, "%d %64[^\n]", 
26             &alarm->seconds, alarm->message) < 2) {
27             fprintf (stderr, "Bad command\n");
28             free (alarm);
29         } else {
30             status = pthread_mutex_lock (&alarm_mutex);
31             if (status != 0)
32                 err_abort (status, "Lock mutex");
33             alarm->time = time (NULL) + alarm->seconds;
34             /*
35              * Insert the new alarm into the list of alarms,
36              * sorted by expiration time.
37              */
38             alarm_insert (alarm);
39             status = pthread_mutex_unlock (&alarm_mutex);
40             if (status != 0)
41                 err_abort (status, "Unlock mutex");
42         }
43     }
44 }

3.4 Memory visibility between threads

The moment Alice appeared, she was appealed to by all three to settle the 
question, and they repeated their arguments to her, though, as they all 
spoke at once, she found it very hard to make out exactly what they 
said.
—Lewis Carroll, Alice’s Adventures in Wonderland
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In this chapter we have seen how you should use mutexes and condition vari-
ables to synchronize (or “coordinate”) thread activities. Now we’ll journey off on a
tangent, for just a few pages, and see what is really meant by “synchronization” in
the world of threads. It is more than making sure two threads don’t write to the
same location at the same time, although that’s part of it. As the title of this sec-
tion implies, it is about how threads see the computer’s memory.

Pthreads provides a few basic rules about memory visibility. You can count on
all implementations of the standard to follow these rules:

1. Whatever memory values a thread can see when it calls pthread_create
can also be seen by the new thread when it starts. Any data written to
memory after the call to pthread_create may not necessarily be seen by
the new thread, even if the write occurs before the thread starts.

2. Whatever memory values a thread can see when it unlocks a mutex, either
directly or by waiting on a condition variable, can also be seen by any
thread that later locks the same mutex. Again, data written after the mutex
is unlocked may not necessarily be seen by the thread that locks the
mutex, even if the write occurs before the lock.

3. Whatever memory values a thread can see when it terminates, either by
cancellation, returning from its start function, or by calling pthread_exit,
can also be seen by the thread that joins with the terminated thread by
calling pthread_join. And, of course, data written after the thread termi-
nates may not necessarily be seen by the thread that joins, even if the write
occurs before the join.

4. Whatever memory values a thread can see when it signals or broadcasts a
condition variable can also be seen by any thread that is awakened by that
signal or broadcast. And, one more time, data written after the signal or
broadcast may not necessarily be seen by the thread that wakes up, even if
the write occurs before it awakens.

Figures 3.5 and 3.6 demonstrate some of the consequences. So what should
you, as a programmer, do?

First, where possible make sure that only one thread will ever access a piece of
data. A thread’s registers can’t be modified by another thread. A thread’s stack
and heap memory a thread allocates is private unless the thread communicates
pointers to that memory to other threads. Any data you put in register or auto
variables can therefore be read at a later time with no more complication than in
a completely synchronous program. Each thread is synchronous with itself. The
less data you share between threads, the less work you have to do.

Second, any time two threads need to access the same data, you have to apply
one of the Pthreads memory visibility rules, which, in most cases, means using a
mutex. This is not only to protect against multiple writes—even when a thread
only reads data it must use a mutex to ensure that it sees the most recent value
of the data written while the mutex was locked. 
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As the rules state, there are specific cases where you do not need to use a
mutex to ensure visibility. If one thread sets a global variable, and then creates a
new thread that reads the same variable, you know that the new thread will not
see an old value. But if you create a thread and then set some variable that the
new thread reads, the thread may not see the new value, even if the creating
thread succeeds in writing the new value before the new thread reads it.

This example does everything correctly. The left-hand code (running in thread A) 
sets the value of several variables while it has a mutex locked. The right-hand 
code (running in thread B) reads those values, also while holding the mutex.

Thread A Thread B

pthread_mutex_lock (&mutex1);
variableA = 1;
variableB = 2;
pthread_mutex_unlock (&mutex1);

pthread_mutex_lock (&mutex1);

localA = variableA;
localB = variableB;
pthread_mutex_unlock (&mutex1);

Rule 2: visibility from pthread_mutex_unlock to pthread_mutex_lock. When 
thread B returns from pthread_mutex_lock, it will see the same values for 
variableA and variableB that thread A had seen at the time it called pthread_
mutex_unlock. That is, 1 and 2, respectively.

FIGURE 3.5 Correct memory visibility

This example shows an error. The left-hand code (running in thread A) sets the 
value of variables after unlocking the mutex. The right-hand code (running in 
thread B) reads those values while holding the mutex.

Thread A Thread B

pthread_mutex_lock (&mutex1);
variableA = 1;
pthread_mutex_unlock (&mutex1);
variableB = 2;

pthread_mutex_lock (&mutex1);

localA = variableA;
localB = variableB;
pthread_mutex_unlock (&mutex1);

Rule 2: visibility from pthread_mutex_unlock to pthread_mutex_lock. When 
thread B returns from pthread_mutex_lock, it will see the same values for 
variableA and variableB that thread A had seen at the time it called pthread_
mutex_unlock. That is, it will see the value 1 for variableA, but may not see 
the value 2 for variableB since that was written after the mutex was unlocked.

FIGURE 3.6 Incorrect memory visibility
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Warning! We are now descending below the Pthreads API into details 
of hardware memory architecture that you may prefer not to know. You 
may want to skip this explanation for now and come back later.

If you are willing to just trust me on all that (or if you’ve had enough for now),
you may now skip past the end of this section. This book is not about multipro-
cessor memory architecture, so I will just skim the surface—but even so, the
details are a little deep, and if you don’t care right now, you do not need to worry
about them yet. You will probably want to come back later and read the rest,
though, when you have some time.

In a single-threaded, fully synchronous program, it is “safe” to read or write
any memory at any time. That is, if the program writes a value to some memory
address, and later reads from that memory address, it will always receive the last
value that it wrote to that address.

When you add asynchronous behavior (which includes multiprocessors) to the
program, the assumptions about memory visibility become more complicated.
For example, an asynchronous signal could occur at any point in the program’s
execution. If the program writes a value to memory, a signal handler runs and
writes a different value to the same memory address, when the main program
resumes and reads the value, it may not receive the value it wrote.

That’s not usually a major problem, because you go to a lot of trouble to
declare and use signal handlers. They run “specialized” code in a distinctly differ-
ent environment from the main program. Experienced programmers know that
they should write global data only with extreme care, and it is possible to keep
track of what they do. If that becomes awkward, you block the signal around
areas of code that use the global data.

When you add multiple threads to the program the asynchronous code is no
longer special. Each thread runs normal program code, and all in the same unre-
stricted environment. You can hardly ever be sure you always know what each
thread may be doing. It is likely that they will all read and write some of the same
data. Your threads may run at unpredictable times or even simultaneously on
different processors. And that’s when things get interesting.

By the way, although we are talking about programming with multiple
threads, none of the problems outlined in this section is specific to threads.
Rather, they are artifacts of memory architecture design, and they apply to any
situation where two “things” independently access the same memory. The two
things may be threads running on separate processors, but they could instead be
processes running on separate processors and using shared memory. Or one
“thing” might be code running on a uniprocessor, while an independent I/O con-
troller reads or writes the same memory.

A memory address can hold only one value at a time; don’t let threads 
“race” to get there first.

When two threads write different values to the same memory address, one
after the other, the final state of memory is the same as if a single thread had
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written those two values in the same sequence. Either way only one value
remains in memory. The problem is that it becomes difficult to know which write
occurred last. Measuring some absolute external time base, it may be obvious
that “processor B” wrote the value “2” several microseconds after “processor A”
wrote the value “1.” That doesn’t mean the final state of memory will have a “2.”

Why? Because we haven’t said anything about how the machine’s cache and
memory bus work. The processors probably have cache memory, which is just
fast, local memory used to keep quickly accessible copies of data that were
recently read from main memory. In a write–back cache system, data is initially
written only to cache, and copied (“flushed”) to main memory at some later time.
In a machine that doesn’t guarantee read/write ordering, each cache block may
be written whenever the processor finds it convenient. If two processors write dif-
ferent values to the same memory address, each processor’s value will go into its
own cache. Eventually both values will be written to main memory, but at essen-
tially random times, not directly related to the order in which the values were
written to the respective processor caches.

Even two writes from within a single thread (processor) need not appear in
memory in the same order. The memory controller may find it faster, or just more
convenient, to write the values in “reverse” order, as shown in Figure 3.7. They
may have been cached in different cache blocks, for example, or interleaved to
different memory banks. In general, there’s no way to make a program aware of
these effects. If there was, a program that relied on them might not run correctly
on a different model of the same processor family, much less on a different type of
computer.

The problems aren’t restricted to two threads writing memory. Imagine that
one thread writes a value to a memory address on one processor, and then
another thread reads from that memory address on another processor. It may
seem obvious that the thread will see the last value written to that address, and on
some hardware that will be true. This is sometimes called “memory coherence” or
“read/write ordering.” But it is complicated to ensure that sort of synchronization
between processors. It slows the memory system and the overhead provides no
benefit to most code. Many modern computers (usually among the fastest) don’t
guarantee any ordering of memory accesses between different processors, unless
the program uses special instructions commonly known as memory barriers.

Time Thread 1 Thread 2

t write “1” to address 1 (cache)

t+1 write “2” to address 2 (cache) read “0” from address 1

t+2 cache system flushes address 2

t+3 read “2” from address 2

t+4 cache system flushes address 1

FIGURE 3.7 Memory ordering without synchronization
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Memory accesses in these computers are, at least in principle, queued to the
memory controller, and may be processed in whatever order becomes most effi-
cient. A read from an address that is not in the processor’s cache may be held
waiting for the cache fill, while later reads complete. A write to a “dirty” cache
line, which requires that old data be flushed, may be held while later writes com-
plete. A memory barrier ensures that all memory accesses that were initiated by
the processor prior to the memory barrier have completed before any memory
accesses initiated after the memory barrier can complete.

A “memory barrier” is a moving wall, not a “cache flush” command.

A common misconception about memory barriers is that they “flush” values to
main memory, thus ensuring that the values are visible to other processors. That
is not the case, however. What memory barriers do is ensure an order between
sets of operations. If each memory access is an item in a queue, you can think of
a memory barrier as a special queue token. Unlike other memory accesses, how-
ever, the memory controller cannot remove the barrier, or look past it, until it has
completed all previous accesses.

A mutex lock, for example, begins by locking the mutex, and completes by
issuing a memory barrier. The result is that any memory accesses issued while
the mutex is locked cannot complete before other threads can see that the mutex
was locked. Similarly, a mutex unlock begins by issuing a memory barrier and
completes by unlocking the mutex, ensuring that memory accesses issued while
the mutex is locked cannot complete after other threads can see that the mutex is
unlocked.

This memory barrier model is the logic behind my description of the Pthreads
memory rules. For each of the rules, we have a “source” event, such as a thread
calling pthread_mutex_unlock, and a “destination” event, such as another thread
returning from pthread_mutex_lock. The passage of “memory view” from the first
to the second occurs because of the memory barriers carefully placed in each.

Even without read/write ordering and memory barriers, it may seem that
writes to a single memory address must be atomic, meaning that another thread
will always see either the intact original value or the intact new value. But that’s
not always true, either. Most computers have a natural memory granularity,
which depends on the organization of memory and the bus architecture. Even if
the processor naturally reads and writes 8-bit units, memory transfers may occur
in 32- or 64-bit “memory units.”

That may mean that 8-bit writes aren’t atomic with respect to other memory
operations that overlap the same 32- or 64-bit unit. Most computers write the full
memory unit (say, 32 bits) that contains the data you’re modifying. If two threads
write different 8-bit values within the same 32-bit memory unit, the result may
be that the last thread to write the memory unit specifies the value of both bytes,
overwriting the value supplied by the first writer. Figure 3.8 shows this effect.
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If a variable crosses the boundary between memory units, which can happen
if the machine supports unaligned memory access, the computer may have to
send the data in two bus transactions. An unaligned 32-bit value, for example,
may be sent by writing the two adjacent 32-bit memory units. If either memory
unit involved in the transaction is simultaneously written from another proces-
sor, half of the value may be lost. This is called “word tearing,” and is shown in
Figure 3.9.

We have finally returned to the advice at the beginning of this section: If you
want to write portable Pthreads code, you will always guarantee correct memory
visibility by using the Pthreads memory visibility rules instead of relying on any
assumptions regarding the hardware or compiler behavior. But now, at the bot-
tom of the section, you have some understanding of why this is true. For a
substantially more in-depth treatment of multiprocessor memory architecture,
refer to UNIX Systems for Modern Architectures [Schimmel, 1994].

Figure 3.10 shows the same sequence as Figure 3.7, but it uses a mutex to
ensure the desired read/write ordering. Figure 3.10 does not show the cache
flush steps that are shown in Figure 3.7, because those steps are no longer rele-
vant. Memory visibility is guaranteed by passing mutex ownership in steps t+3
and t+4, through the associated memory barriers. That is, when thread 2 has

memory

thread 1 thread 2

each modifies a byte

each writes a new value

thread 1 wins: (this time)

00 02 03

each reads the value

14

00 01 02 03

00 02 03 00 01 03

25

00 01 02 03

00 01 02 03

14

14

25

FIGURE 3.8 Memory conflict
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successfully locked the mutex previously unlocked by thread 1, thread 2 is guar-
anteed to see memory values “at least as recent” as the values visible to thread 1
at the time it unlocked the mutex.

Time Thread 1 Thread 2

t lock mutex
(memory barrier)

t+1 write “1” to address 1 (cache)

t+2 write “2” to address 2 (cache)

t+3 (memory barrier)
unlock mutex

t+4 lock mutex
(memory barrier)

t+5 read “1” from address 1

t+6 read “2” from address 2

t+7 (memory barrier)
unlock mutex

FIGURE 3.10 Memory ordering with synchronization

memory (unaligned value)

thread 1 thread 2

each modifies a byte

each writes a new value

Each thread has written 16 bits of the 32 bit value

each reads the value

14

00 01 02 03

00 02 03 00 01 03

25

00 01 02 03

00 01 02 03xxxx xxxx

00 03xxxx xxxx

25

14 25

14

FIGURE 3.9 Word tearing
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condition variables, waiting on, 78–80
creating and using threads, 38–39
errors, 32–34
flockfile, 205–207

fork handlers, 201–203
initialization, 133–134
multiple processes, 15–16
multiple threads, 17–19
mutex attributes object, 136
mutexes, deadlock avoidance, 66–69
mutexes, dynamic, 50–68
mutexes, locking and unlocking, 

52–57
mutexes, non-blocking locks, 58–61
mutexes, static mutex, 50
pipeline, 99–105
putchar, 208–209
read/write locks, 255–269
realtime scheduling, 175–181
sample information, 13
semaphore, 238–240
SIGEV_THREAD, 232–234
sigwait, 228–230
suspend and resume, 218–227
synchronous programming, 13–15, 27
thread attributes, 140–141
thread inertia, 292
thread-specific, 164–165, 169–172
user and terminal identification, 211
work crews, 108–120
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pthread_atfork (function), 199, 336
pthread_attr_destroy (function), 312
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pthread_attr_setstacksize (function), 
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pthread_attr_t (datatype), 135, 139, 231
pthread_cancel (function)

asynchronous cancelability, 151
deferred cancelability, 148
definition of, 323
and pthread_kill, 217
termination, 43, 143–145

PTHREAD_CANCEL_ASYNCHRONOUS
(value), 152, 324

PTHREAD_CANCEL_DEFERRED (value), 
145, 147, 324

PTHREAD_CANCEL_DISABLE (value), 
145, 149, 324

PTHREAD_CANCELED (value), 43, 145
PTHREAD_CANCEL_ENABLE (value), 

147, 324
pthread_cleanup_pop (function), 43, 

147, 155, 323
pthread_cleanup_push (function), 43, 

147, 155, 323
pthread_condattr_destroy (function), 

319
pthread_condattr_getclock (function), 

360
pthread_condattr_getpshared (function), 

320
pthread_condattr_init (function), 137, 

320
pthread_condattr_setclock (function), 

360
pthread_condattr_setpshared (func-
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pthread_cond_broadcast (function), 81, 

256, 300, 321
pthread_cond_destroy (function), 76, 

321
pthread_cond_init (function), 75, 137, 

321
pthread_cond_signal (function), 81, 300, 

322
pthread_cond_t (datatype), 74, 137
pthread_cond_timedwait (function), 78, 

80, 322
pthread_cond_wait (function), 77, 85, 

322
pthread_create (function)

and attributes objects, 139
creating and using threads, 36–42, 

189
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execution context, 30
and memory visibility, 89
and multiple threads, 17
and thread identifier, 144–145, 266

PTHREAD_CREATE_DETACHED (value), 
44, 125, 139, 231, 312–313

PTHREAD_CREATE_JOINABLE (value), 
139, 231, 312–313

PTHREAD_DESTRUCTOR_ITERATIONS
(limit), 168, 309

pthread_detach (function)
cleaning up, 158
creating and using threads, 37
definition of, 315
and multiple threads, 17
termination, 43–44

pthread_equal (function), 36, 315
pthread_exit (function)

and attributes objects, 140
cleaning up, 155
creating and using threads, 37–38
definition of, 204, 315
and fork, 197
and memory visibility, 89
and multiple threads, 17
termination, 30, 40–44, 53

PTHREAD_EXPLICIT_SCHED (value), 
176, 327–329

pthread_getconcurrency (function), 352



376 Index

pthread_getschedparam (function), 331
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pthread_join (function)

and attributes objects, 139
cleaning up, 158
creating and using threads, 37–38
definition of, 315
and error checking, 32
and memory visibility, 89
and pthread_kill, 225
termination, 43–44, 128, 145

pthread_key_create (function), 163–166, 
325–326

pthread_key_delete (function), 166, 326
PTHREAD_KEYS_MAX (limit), 166, 309
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tion), 317
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317
pthread_mutexattr_setprioceiling (func-

tion), 333
pthread_mutexattr_setprotocol (func-

tion), 186, 333–334
pthread_mutexattr_setpshared (func-

tion), 136, 317
pthread_mutexattr_settype (function), 

351
pthread_mutexattr_t (datatype), 135
PTHREAD_MUTEX_DEFAULT (value), 

349–351
pthread_mutex_destroy (function), 51, 

318, 350

PTHREAD_MUTEX_ERRORCHECK
(value), 349

pthread_mutex_getprioceiling (func-
tion), 331

pthread_mutex_init (function)
and attributes objects, 135
creating and destroying mutexes, 

50–51
definition of, 318
initialization of, 132, 186
standardization, future, 350
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(macro), 50–52, 74–76

pthread_mutex_lock (function)
asynchronous cancelability, 151
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lock hierarchy, 64–65
locking and unlocking, 52, 58
and memory visibility, 90, 93
mutexes, number of, 303–304
standardization, future, 350
XSHS mutex types, 350

PTHREAD_MUTEX_NORMAL (value), 
349

PTHREAD_MUTEX_RECURSIVE (value), 
349

pthread_mutex_setprioceiling (func-
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pthread_mutex_t (datatype), 49, 62, 136
pthread_mutex_trylock (function)

creating and destroying mutexes, 49
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and flockfile and funlockfile, 207
lock hierarchy, 64–65
locking and unlocking, 52, 58
mutexes, number of, 303–304
read/write locks, 257
standardization, future, 350
XSHS mutex types, 350

pthread_mutex_unlock (function)
creating and destroying mutexes, 49
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and flockfile and funlockfile, 207
lock hierarchy, 64–65
locking and unlocking, 52, 58
and memory visibility, 90
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mutexes, number of, 303–304
standardization, future, 350
XSHS mutex types, 350

pthread_once (function)
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initialization, condition variables, 75
initialization, mutexes, 50
or statically initialized mutex, 132
in suspend/resume, 220–221
and thread races, 295–296
thread-specific data, 163–164

PTHREAD_ONCE_INIT (macro), 132
pthread_once_t (datatype), 132
PTHREAD_PRIO_INHERIT (value), 186, 

333–334
PTHREAD_PRIO_NONE (value), 333–334
PTHREAD_PRIO_PROTECT (value), 186, 

333–334
PTHREAD_PROCESS_PRIVATE (value), 

136–137, 317–320
PTHREAD_PROCESS_SHARED (value), 

136–138, 204, 317–320
PTHREAD_SCOPE_PROCESS (value), 

182, 328–330
PTHREAD_SCOPE_SYSTEM (value), 

182, 328–330
pthread_self (function), 17, 36–37, 

144–145, 316
pthread_setcancelstate (function), 147, 

149, 151, 324
pthread_setcanceltype (function), 151, 

324
pthread_setconcurrency (function), 

352–353
pthread_setschedparam (function), 334
pthread_setspecific (function), 166, 326
pthread_sigmask (function), 215–216, 

343
pthread_spin_lock (function), 359
PTHREAD_STACK_MIN (limit), 139, 309
pthread_t (datatype)

creating and using threads, 36–37, 
189, 266

and pthread_kill, 217
termination, 43, 144–145
thread-specific data, 161–162

pthread_testcancel (function), 144–145, 
150, 158, 325

PTHREAD_THREAD_MAX (limit), 309
putc (function), 207
putchar (function), 6, 207
putchar_unlocked (function), 207–209, 

338
putc_unlocked (function), 207–208, 338
pwrite (function), 355

R
Races

avoidance of, 26–27
and condition variables, 73
and memory visibility, 91
overview, 293–295
sequence race, 284–285, 295–297
synchronization race, 294–296
thread inertia, 291–293

raise (function), 217
Random number generation function, 

213
rand_r (function), 213, 341
readdir_r (function)

definition of, 339
directory searching, 212
reentrancy, 7, 297
thread-safe function, 210
and work crews, 107–109

Read/write locks, 242, 253–269, 358
Read/write ordering, 92–95
Ready threads, 39–42, 53
Realtime scheduling

allocation domain, 181–183
architectural overview, 30
contention scope, 181–183
definition of, 7–8, 172–173
hard realtime, 172–173
interfaces, 326–335
mutexes, priority ceiling, 186–187, 

300
mutexes, priority inheritance, 

186–188, 300, 307
mutexes, priority-aware, 185–186
policies and priorities, 174–181
POSIX options, 173
and priority inversion, 299–300, 326
problems with, 183–185
soft realtime, 172–173
and synchronization, 295

Recursive mutexes, 349–351
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Recycling threads, 43–44
Reentrant, 6–7, 297

See also Readdir_r (function)
Resume. See Pthread_kill (function)
Running threads, 42

S
Scaling, 20–22
SC_GETGR_R_SIZE_MAX (value), 214
SC_GETPW_R_SIZE_MAX (value), 214
SCHED_BG_NP (value), 175
SCHED_FG_NP (value), 175
SCHED_FIFO (value)

problems with, 183–185
as a scheduling interface value, 

328–331, 334–335
scheduling policies and priorities, 

174–175
and thread race, 295

sched_get_priority_max (function), 174, 
335

sched_get_priority_min (function), 174, 
335

SCHED_OTHER (value), 175, 328–331, 
334–335

schedparam (attribute), 138–141, 175
schedpolicy (attribute), 138–141, 175
SCHED_RR (value), 174, 185, 328–331, 

334–335
Scheduler Activations model, 194
Scheduling. See Realtime scheduling
sched_yield (function), 53–54, 65, 221, 

316
Schimmel, Curt, 94
scope (attribute), 138–141, 182
_SC_THREAD_ATTR_STACKADDR

(option), 308
_SC_THREAD_ATTR_STACKSIZE

(option), 308
_SC_THREAD_DESTRUCTOR_ITERA-

TIONS (limit), 309
_SC_THREAD_KEYS_MAX (limit), 309
_SC_THREAD_PRIO_INHERIT (option), 

185, 308
_SC_THREAD_PRIO_PROTECT (option), 

185–186, 308
_SC_THREAD_PRIORITY_SCHEDULING

(option), 308

_SC_THREAD_PROCESS_SHARED
(option), 308

_SC_THREADS (limit), 308
_SC_THREAD_SAFE_FUNCTIONS

(option), 308
_SC_THREAD_STACK_MIN (limit), 309
_SC_THREAD_THREADS_MAX (limit), 

309
Semaphores

functions, definition of, 345–346
as a synchronization mechanism, 8, 

30
synchronization with signal catching, 

234–240
sem_destroy (function), 237, 345
sem_getvalue (function), 237
sem_init (function), 237, 345
sem_post (function), 235–237, 346
sem_t (value), 237
sem_trywait (function), 237, 346
sem_wait (function), 236–237, 346
Sequence races, 284–285, 295–297
Serial programming, 25
Serial regions. See Predicates
Serialization, 21
Shared data, 3
sigaction (function), 215
SIG_BLOCK (value), 343
SIGCONT (action), 217
sigevent, 311
sigev_notify_attributes, 231
sigev_notify_function, 231
SIGEV_THREAD (function), 40, 231–234
sigev_value (function), 311
SIGFPE (function), 215–216
SIGKILL (function), 216–217
Signals

actions, 215–216
background, 214–215
and condition variables, 72–76, 

80–81
handlers, 91–92
interfaces, 342–345
masks, 216
and memory visibility, 89
pthread_kill, 217–227
running and blocking threads, 42
semaphores, 234–240
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SIGEV_THREAD, 231–234
sigwait, 227–230
See also Condition variables

SIGPIPE (action), 215
sigprocmask (function), 216
sigqueue (function), 230
SIGSEGV (action), 216
SIG_SETMASK (value), 343
SIGSTOP (action), 216–217
sigtimedwait (function), 228, 343–344
SIGTRAP signal, 216, 290
SIG_UNBLOCK (value), 343
sigwait (function)

definition of, 227–230, 344
running and blocking, 42
and semaphores, 234

sigwaitinfo (function), 228, 234, 344–
345

SIMD (single instruction, multiple data), 
106

sleep (function), 15
SMP. See Multiprocessors
Soft realtime, 172–173
Solaris 2.5

concurrency level, setting of, 58, 119, 
128, 145, 152, 266

thread debugging library, 290
programming examples, introduction 

to, 12–13
realtime scheduling, 176, 179
SIGEV_THREAD implementation, 231

Spinlocks, 359
Spurious wakeups, 80–81
stackaddr (attribute), 138–141
stacksize (attribute), 138–141
Startup threads, 41–42
stderr, 33
stdin (function)

in asynchronous program example, 
14, 18

and client servers, 121
in pipeline program example, 98, 105
and stdio, 205–207

stdio (function)
and concurrency, 23
and fork handlers, 199
interfaces, 336–338
and realtime scheduling, 190
thread-safety, 6, 205–207

stdout (function)
and client servers, 121
in pipeline program example, 98
and stdio, 205
in suspend program example, 224

strerror (function), 33
String token function, 212
strtok_r (function), 212, 339
struct aiocb, 230
struct dirent, 109, 210
struct sigevent, 230
Suspend. See Pthread_kill (function)
Synchronization

architectural overview, 30
and computing overhead, 26
critical sections, 46
definition of, 7–8
objects, 3
and programming model, 24–25
protocols, 26
races, 284–285
and reentrant code, 6–7
and scheduling, 295
and semaphores, 234–240
and sequence race, 294–297
and UNIX, 9–11
See also Barriers; Condition variables; 

Invariants; Memory, visibility; 
Mutexes; Parallelism; Read/write 
locks

Synchronous
I/O operations, 22–23
programming, 13–15, 27

sysconf (function), 185, 214, 307–308
System contention, 181–185

T
Termination of threads, 43–44
thd_continue (interface), 217, 223–224
thd_suspend (interface), 217–221, 224
Threads

abort (POSIX 1003.1J), 361
architectural overview, 30
and asynchronous programming, 

8–12
attributes, 138–141
benefits of, 10–11, 20–25
blocking, 42
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client server programming model, 

120–129
costs of, 25–28
creating and using, 25–41
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error checking, 31–34
identifier, 36
implementation of, 189
initial (main), 36–42, 119, 131–134
interfaces, 311–316
introduction to, 1–3
many to few (two level), 193–195
many to one (user level), 190–191
one to one (kernel level), 191–193
as part of a process, 10
pipeline programming model, 97–105
processes, compared to, 10, 20
programmers, compared to, 3
programming model, 24–25
ready, 39–42, 53
recycling, 43–44
running, 42
startup, 41–42
states of, 39–41
termination, 43–44
and traditional programming, 4, 27
types and interfaces, 30–31
work crew programming model, 

105–120
See also Concurrency; Debugging, 

threads
Thread-safe

definition of, 6–7
interfaces, 286–287, 338–342
libraries, 283–285
library, 303–304
and mutexes, 62
and programming discipline, 26–27

Thread-safe functions
directory searching, 212
group and user database, 213–214
random number generation, 213
string token, 212
time representation, 212–213
user and terminal identification, 

209–211

Thread-specific data
creating, 163–166
destructor functions, 167–172
interfaces, 325–326
overview, 161–163
and termination, 43
and thread-safety, 6–7
use of, 166–167

thr_setconcurrency (function), 13, 58, 
119, 128, 145, 152

Time representation function, 212–213
Timer signals, 23
timer_create (function), 230
Timeslice, 8, 42, 174
Tokens, 3, 47
tty_name_r (function), 210

U
Uniprocessors

and allocation domain, 182
and concurrency, 4–5
and deadlock, 65
definition of, 5
and thread inertia, 291–293
and thread race, 293–297

unistd.h (header file), 307
University of Washington, 194
UNIX

and asynchronous, 9–11, 22
and error checking, 31–34
kernel, 154
programming examples, introduction 

to, 12–13
UNIX Systems for Modern Architectures,

94
UNIX98. See XSH5
User and terminal identification func-

tion, 210–211

V
Variable weight processes, 1
void *

creating and using threads, 36
definition of, 311
thread startup, 42
thread termination, 43
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waitpid (function), 15, 19
WNOHANG (flag), 15
Word tearing, 95
Work crews, 105–120, 270–283
Work queue. See Work crews

X
X Windows, 23
X/Open. See XSH5
X/Open CAE Specification, System Inter-

faces and Headers, Issue 5. See 
XSH5

XSH5
cancellation points, 148, 355–356
concurrency level, 351–353
mutex error detection and reporting, 
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parallel I/O, 354–355
POSIX options for, 348–349
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