
Options Pattern
To make the application really robust and flexible at the same time, there is a
pattern called the Options Pattern. Okay, let’s jump right in, and let’s change our
current implementation in order to support the options pattern. In order to be
able to use the options pattern at all, we need to register it as a service, or rather,
map the part of the configuration to the specific strongly typed model. To do that,
we need to call the configure method of the IServiceCollection, use the
ApiConfiguration as the type, and then provide the section of the configuration
we want… We can do that by using the GetSection method as we did before. After
that, we can remove the ApiConfiguration initialization and configuration binding,
and we can easily access our service by using the ServiceProvider’s
GetRequiredService method and then typing the IOptions<ApiConfiguration> as
the service type. Then, we can access the values by using the Value property of
our options object and get the BaseAddress. At the first glance, not much has
changed, but we’ve effectively removed the manual initialization of the
configuration, and we’ve given that job to the dependency injection container.
We’ve also registered the service this once, and we can now use it throughout the
application without too much trouble. Let’s go to the Product repository and see
how we can inject our configuration now. First things first, we need to change the
IConfiguration to the IOptions<ApiConfiguration> in our constructor. This means
we don’t actually inject the whole configuration every time we need to read a
specific part of it, but just the section we need. We can inject as many sections as
we need. Now we can see that the compiler is not happy about this change
because it expects IConfiguration. That said, let’s assign the _apiConfiguration
field with the “Value” property as we did in the program class. Great. That’s all we
need to change! If we check out the file upload method again, we’ll see that we
can access the base address as we did earlier, and everything is nice and strongly
typed. There’s only one place we need to use the string to map the configuration,
and thus we’ve made sure that errors are far less likely to happen. We’ve also
utilized the in-built dependency injection mechanisms to achieve this and thus
decoupled our dependencies as much as possible. Now, we can just return the
environment variable to Development. As we’ve already mentioned, we won’t
talk about IOptionsSnapshot and IOptionsMonitor interfaces, but these interfaces
are really useful when building server-side applications. We encourage you to
look them up by following the links below the video.

	Options Pattern

