
OVERVIEW OF GRAPHICS (JPANEL+GRAPHICS)

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

Java GUI Programming
AWT/SWING - Graphics

Graphical Representation
If you want to draw shapes such as a bar chart, a
clock, or a stop sign, how do you do it?

Java Coordinate System

(0, 0) X Axis

Y Axis

(x, y)

 x

 y

Java Coordinate

System

X Axis
Conventional

Coordinate

System

(0, 0)

Y Axis

Each GUI Component Has its Own
Coordinate System

(0, 0) Component c2

Component c1

(0, 0)

(0, 0)
(x1, y1)

(x2, y2)

(x3, y3)
Component c3

c3’s coordinate

system

c2’s coordinate

system

c1’s coordinate
system

The Graphics Class
 java.awt.Graphics

+setColor(color: Color): void

+setFont(font: Font): void

+drawString(s: String, x: int, y: int): void

+drawLine(x1: int, y1: int, x2: int, y2: int): void

+drawRect(x: int, y: int, w: int, h: int): void

+fillRect(x: int, y: int, w: int, h: int): void

+drawRoundRect(x: int, y: int, w: int, h: int, aw:
int, ah: int): void

+fillRoundRect(x: int, y: int, w: int, h: int, aw:

int, ah: int): void

+draw3DRect(x: int, y: int, w: int, h: int, raised:

boolean): void

+fill3DRect(x: int, y: int, w: int, h: int, raised:
boolean): void

+drawOval(x: int, y: int, w: int, h: int): void

+fillOval(x: int, y: int, w: int, h: int): void

+drawArc(x: int, y: int, w: int, h: int, startAngle:

int, arcAngle: int): void

+fillArc(x: int, y: int, w: int, h: int, startAngle:
int, arcAngle: int): void

+drawPolygon(xPoints: int[], yPoints: int[],

nPoints: int): void

+fillPolygon(xPoints: int[], yPoints: int[],

nPoints: int): void

+drawPolygon(g: Polygon): void

+fillPolygon(g: Polygon): void

+drawPolyline(xPoints: int[], yPoints: int[],

nPoints: int): void

Sets a new color for subsequent drawings.

Sets a new font for subsequent drwings.

Draws a string starting at point (x, y).

Draws a line from (x1, y1) to (x2, y2).

Draws a rectangle with specified upper-left corner point at (x,

y) and width w and height h.

Draws a filled rectangle with specified upper-left corner point

at (x, y) and width w and height h.

Draws a round-cornered rectangle with specified arc width aw
and arc height ah.

Draws a filled round-cornered rectangle with specified arc

width aw and arc height ah.

Draws a 3-D rectangle raised above the surface or sunk into the

surface.

Draws a filled 3-D rectangle raised above the surface or sunk

into the surface.

Draws an oval bounded by the rectangle specified by the
parameters x, y, w, and h.

Draws a filled oval bounded by the rectangle specified by the

parameters x, y, w, and h.

Draws an arc conceived as part of an oval bounded by the

rectangle specified by the parameters x, y, w, and h.

Draws a filled arc conceived as part of an oval bounded by the
rectangle specified by the parameters x, y, w, and h.

Draws a closed polygon defined by arrays of x and y

coordinates. Each pair of (x[i], y[i]) coordinates is a point.

Draws a filled polygon defined by arrays of x and y

coordinates. Each pair of (x[i], y[i]) coordinates is a point.

Draws a closed polygon defined by a Polygon object.

Draws a filled polygon defined by a Polygon object.

Draws a polyline defined by arrays of x and y coordinates.

Each pair of (x[i], y[i]) coordinates is a point.

You can draw strings,
lines, rectangles,
ovals, arcs, polygons,
and polylines, using
the methods in the
Graphics class.

Basic Java Graphics
The simplest to draw graphics in Java is to extend JPanel, a Swing
component, and override its paintComponent (Graphics g) method
in order to draw on the graphics object g. Whenever Java tries to
render a Swing GUI component, it calls the component's
paintComponent (Graphics g) method with the current graphics
context as the parameter. In the code for paintComponent
(Graphics g), you almost always call super.paintComponent (g) in
order to get the correct internal (hidden) rendering sequence. The
code for BodyPartsCanvas illustrates this process.

BodyPartsCanvas
A sub-class of JPanel as Graphical Component Holder

public class BodyPartsCanvas extends JPanel
{

// Other fields and methods...
public void paintComponent (Graphics g)
{

super.paintComponent (g);
// code to draw on g....

}
}

You never call paintComponent
(Graphics g) directly.

Instead, you should call repaint()
to let Java schedule the repaint
process and properly call
paintComponent.

paintComponent Example
Demo Program: TestPaintComponent.java

In order to draw things on a
component, you need to define a class
that extends JPanel and overrides its
paintComponent method to specify
what to draw. The first program in this
chapter can be rewritten using
paintComponent.

