

Microsoft Power Query

M Formula Language Specification

 July, 2019

© 2019 Microsoft Corporation. All rights reserved.

This specification is provided “as is” and Microsoft disclaims all warranties whatsoever with

respect to this specification including specifically for merchantability and fitness for a

particular purpose. The posting of this specification does not grant you or your company any

license or other rights, either express or implied, or other rights to any intellectual property

owned or controlled by Microsoft, its affiliates or any other third party. You are granted no

rights to use “Microsoft” or other Microsoft trademarks or trade names in any way or any

form hereunder.

1. Introduction.. 7

1.1 Overview .. 7

1.2 Expressions and values ...8

1.3 Evaluation ... 9

1.4 Functions .. 11

1.5 Library .. 11

1.6 Operators .. 11

1.7 Metadata .. 12

1.8 Let expression ... 12

1.9 If expression .. 13

1.10 Errors ... 13

2. Lexical Structure .. 15

2.1 Documents .. 15

2.2 Grammar conventions .. 15

2.3 Lexical Analysis ... 16

2.4 Whitespace .. 17

2.5 Comments ... 17

2.6 Tokens ... 18

2.6.1 Character Escape Sequences .. 19

2

2.6.2 Literals .. 20

2.6.2.1 Null literals ... 20

2.6.2.2 Logical literals .. 20

2.6.2.3 Number literals .. 20

2.6.2.4 Text literals ... 21

2.6.3 Identifiers .. 22

2.6.3.1 Generalized Identifiers .. 23

2.6.4 Keywords ... 24

2.6.5 Operators and punctuators .. 24

3. Basic Concepts ... 25

3.1 Values .. 25

3.2 Expressions ... 25

3.3 Environments and variables ... 26

3.3.1 Identifier references ...28

3.4 Order of evaluation ... 29

3.5 Side effects .. 29

3.6 Immutability .. 30

4. Values ... 31

4.1 Null .. 31

4.2 Logical ... 32

4.3 Number ... 32

4.4 Time .. 34

4.5 Date ... 35

4.6 DateTime .. 36

4.7 DateTimeZone ... 37

4.8 Duration ..38

4.9 Text .. 40

4.10 Binary ... 40

4.11 List ... 41

4.12 Record ... 42

4.13 Table .. 44

4.14 Function .. 45

4.15 Type ... 45

5. Types .. 46

5.1 Primitive Types ..48

5.2 Any Type ... 49

3

5.3 List Types .. 49

5.4 Record Types ...50

5.5 Function Types .. 51

5.6 Table types .. 52

5.7 Nullable types .. 52

5.8 Ascribed type of a value .. 53

5.9 Type equivalence and compatibility .. 54

6. Operators ... 56

6.1 Operator precedence ... 56

6.2 Operators and metadata ... 58

6.3 Structurally recursive operators ... 58

6.4 Selection and Projection Operators .. 59

6.4.1 Item Access .. 59

6.4.2 Field Access ... 61

6.5 Metadata operator... 63

6.6 Equality operators... 63

6.7 Relational operators .. 66

6.8 Conditional logical operators ..68

6.9 Arithmetic Operators .. 69

6.9.1 Precision ... 69

6.9.2 Addition operator .. 70

6.9.2.1 Numeric sum ... 71

6.9.2.2 Sum of durations ... 72

6.9.2.3 Datetime offset by duration .. 72

6.9.3 Subtraction operator .. 73

6.9.3.1 Numeric difference .. 74

6.9.3.2 Difference of durations ... 75

6.9.3.3 Datetime offset by negated duration ... 75

6.9.3.4 Duration between two datetimes .. 75

6.9.4 Multiplication operator ... 76

6.9.4.1 Numeric product ... 76

6.9.4.2 Multiples of durations ... 77

6.9.5 Division operator ... 77

6.9.5.1 Numeric quotient... 78

6.9.5.2 Quotient of durations .. 79

6.9.5.3 Scaled durations .. 79

4

6.10 Structure Combination.. 79

6.10.1 Concatenation .. 79

6.10.2 Merge .. 80

6.10.2.1 Record merge .. 80

6.10.2.2 Date-time merge... 80

6.11 Unary operators ... 81

6.11.1 Unary plus operator .. 81

6.11.2 Unary minus operator .. 81

6.11.3 Logical negation operator ...82

6.12 Type operators ...83

6.12.1 Type compatibility operator ...83

6.12.2 Type assertion operator ...83

7. Let... 85

7.1 Let expression .. 85

8. Conditionals ... 87

9. Functions .. 88

9.1 Writing functions ... 88

9.2 Invoking functions ..89

9.3 Parameters ... 90

9.4 Recursive functions ... 91

9.5 Closures ... 92

9.6 Functions and environments .. 92

9.7 Simplified declarations ... 92

10. Error Handling ... 94

10.1 Raising errors .. 94

10.2 Handling errors ... 95

10.3 Errors in record and let initializers ... 96

10.4 Not implemented error ... 97

11. Sections ...98

11.1 Document Linking .. 100

11.2 Document Introspection .. 100

11.2.1 #sections ... 100

11.2.2 #shared ... 101

12. Consolidated Grammar .. 102

12.1 Lexical grammar .. 102

5

12.1.1 White space ... 102

12.1.2 Comment .. 102

12.1.3 Tokens .. 103

12.1.4 Character escape sequences.. 103

12.1.5 Literals .. 104

12.1.6 Identifiers ... 105

12.1.7 Keywords and predefined identifiers .. 106

12.1.8 Operators and punctuators... 106

12.2 Syntactic grammar .. 107

12.2.1 Documents .. 107

12.2.2 Section Documents .. 107

12.2.3 Expression Documents... 107

12.2.3.1 Expressions .. 107

12.2.3.2 Logical expressions .. 107

12.2.3.3 Is expression .. 108

12.2.3.4 As expression ... 108

12.2.3.5 Equality expression ... 108

12.2.3.6 Relational expression .. 108

12.2.3.7 Arithmetic expressions .. 108

12.2.3.8 Metadata expression ... 109

12.2.3.9 Unary expression ... 109

12.2.3.10 Primary expression .. 109

12.2.3.11 Literal expression ... 109

12.2.3.12 Identifier expression .. 109

12.2.3.13 Section-access expression .. 110

12.2.3.14 Parenthesized expression ... 110

12.2.3.15 Not-implemented expression ... 110

12.2.3.16 Invoke expression .. 110

12.2.3.17 List expression ... 110

12.2.3.18 Record expression .. 110

12.2.3.19 Item access expression .. 111

12.2.3.20 Field access expressions ... 111

12.2.3.21 Function expression ..112

12.2.3.22 Each expression ..112

12.2.3.23 Let expression ...112

12.2.3.24 If expression ... 113

6

12.2.3.25 Type expression .. 113

12.2.3.26 Error raising expression ...114

12.2.3.27 Error handling expression .. 115

12.2.4 Literal Attributes ... 115

7

1. Introduction

1.1 Overview

Microsoft Power Query provides a powerful “get data” experience that encompasses many

features. A core capability of Power Query is to filter and combine, that is, to “mash-up” data

from one or more of a rich collection of supported data sources. Any such data mashup is

expressed using the Power Query Formula Language (informally known as "M"). Power

Query embeds M documents in Excel and Power BI workbooks to enable repeatable mashup

of data.

This document provides the specification for M. After a brief introduction that aims at

building some first intuition and familiarity with the language, the document covers the

language precisely in several progressive steps:

1. The lexical structure defines the set of texts that are lexically valid.

2. Values, expressions, environments and variables, identifiers, and the evaluation model

form the language’s basic concepts.

3. The detailed specification of values, both primitive and structured, defines the target

domain of the language.

4. Values have types, themselves a special kind of value, that both characterize the

fundamental kinds of values and carry additional metadata that is specific to the shapes

of structured values.

5. The set of operators in M defines what kinds of expressions can be formed.

6. Functions, another kind of special values, provide the foundation for a rich standard

library for M and allow for the addition of new abstractions.

7. Errors can occur when applying operators or functions during expression evaluation.

While errors are not values, there are ways to handle errors that map errors back to

values.

8. Let expressions allow for the introduction of auxiliary definitions used to build up

complex expressions in smaller steps.

9. If expressions support conditional evaluation.

10. Sections provide a simple modularity mechanism. (Sections are not yet leveraged by

Power Query.)

11. Finally, a consolidated grammar collects the grammar fragments from all other

sections of this document into a single complete definition.

For computer language theorists: the formula language specified in this document is a mostly

pure, higher-order, dynamically typed, partially lazy functional language.

8

1.2 Expressions and values

The central construct in M is the expression. An expression can be evaluated (computed),

yielding a single value.

Although many values can be written literally as an expression, a value is not an expression.

For example, the expression 1 evaluates to the value 1; the expressions 1+1 evaluates to the

value 2. This distinction is subtle, but important. Expressions are recipes for evaluation;

values are the results of evaluation.

The following examples illustrate the different kinds of values available in M. As a

convention, a value is written using the literal form in which they would appear in an

expression that evaluates to just that value. (Note that the // indicates the start of a comment

which continues to the end of the line.)

• A primitive value is single-part value, such as a number, logical, text, or null. A null

value can be used to indicate the absence of any data.

123 // A number

true // A logical

"abc" // A text

null // null value

• A list value is an ordered sequence of values. M supports infinite lists, but if written as a

literal, lists have a fixed length. The curly brace characters { and } denote the beginning

and end of a list.

{123, true, "A"} // list containing a number, a logical, and

 // a text

{1, 2, 3} // list of three numbers

• A record is a set of fields. A field is a name/value pair where the name is a text value

that is unique within the field’s record. The literal syntax for record values allows the

names to be written without quotes, a form also referred to as identifiers. The following

shows a record containing three fields named “A”, “B” and “C”, which have values 1, 2,

and 3.

[

 A = 1,

 B = 2,

 C = 3

]

• A table is a set of values organized into columns (which are identifierd by name), and

rows. There is no literal syntax for creating a table, but there are several standard

functions that can be used to create tables from lists or records.

For example:

#table({"A", "B"}, { {1, 2}, {3, 4} })

This creates a table of the following shape:

9

A B

1 2

3 4

• A function is a value which, when invoked with arguments, produces a new value.

Function are written by listing the function’s parameters in parentheses, followed by

the goes-to symbol =>, followed by the expression defining the function. That expression

typically refers to the parameters (by name).

(x, y) => (x + y) / 2

1.3 Evaluation

The evaluation model of the M language is modeled after the evaluation model commonly

found in spreadsheets, where the order of calculation can be determined based on

dependencies between the formulas in the cells.

If you have written formulas in a spreadsheet such as Excel, you may recognize the formulas

on the left will result in the values on the right when calculated:

In M, parts of an expression can reference other parts of the expression by name, and the

evaluation process will automatically determine the order in which referenced expressions

are calculated.

We can use a record to produce an expression which is equivalent to the above spreadsheet

example. When initializing the value of a field, we can refer to other fields within the record

by using the name of the field, as follows:

[

 A1 = A2 * 2,

 A2 = A3 + 1,

 A3 = 1

]

The above expression is equivalent to the following (in that both evaluate to equal values):

[

 A1 = 4,

 A2 = 2,

 A3 = 1

]

10

Records can be contained within, or nest, within other records. We can use the lookup

operator ([]) to access the fields of a record by name. For example, the following record

has a field named Sales containing a record, and a field named Total that accesses the

FirstHalf and SecondHalf fields of the Sales record:

[

 Sales = [FirstHalf = 1000, SecondHalf = 1100],

 Total = Sales[FirstHalf] + Sales[SecondHalf]

]

The above expression is equivalent to the following when it is evaluated:

[

 Sales = [FirstHalf = 1000, SecondHalf = 1100],

 Total = 2100

]

Records can also be contained within lists. We can use the positional index operator ({})

to access an item in a list by its numeric index. The values within a list are referred to using a

zero-based index from the beginning of the list. For example, the indexes 0 and 1 are used to

reference the first and second items in the list below:

[

 Sales =

 {

 [

 Year = 2007,

 FirstHalf = 1000,

 SecondHalf = 1100,

 Total = FirstHalf + SecondHalf // 2100

],

 [

 Year = 2008,

 FirstHalf = 1200,

 SecondHalf = 1300,

 Total = FirstHalf + SecondHalf // 2500

]

 },

 TotalSales = Sales{0}[Total] + Sales{1}[Total] // 4600

]

List and record member expressions (as well as let expressions, introduced further below) are

evaluated using lazy evaluation, which means that they are evaluated only as needed. All

other expressions are evaluated using eager evaluation, which means that they are

evaluated immediately, when encountered during the evaluation process. A good way to think

about this is to remember that evaluating a list or record expression will return a list or

11

record value that itself remembers how its list items or record fields need to computed, when

requested (by lookup or index operators).

1.4 Functions

In M, a function is a mapping from a set of input values to a single output value. A function

is written by first naming the required set of input values (the parameters to the function)

and then providing an expression that will compute the result of the function using those

input values (the body of the function) following the goes-to (=>) symbol. For example:

 (x) => x + 1 // function that adds one to a value

 (x, y) => x + y // function that adds two values

A function is a value just like a number or a text value. The following example shows a

function which is the value of an Add field which is then invoked, or executed, from several

other fields. When a function is invoked, a set of values are specified which are logically

substituted for the required set of input values within the function body expression.

[

 Add = (x, y) => x + y,

 OnePlusOne = Add(1, 1), // 2

 OnePlusTwo = Add(1, 2) // 3

]

1.5 Library

M includes a common set of definitions available for use from an expression called the

standard library, or just library for short. These definitions consist of a set of named

values. The names of values provided by a library are available for use within an expression

without having been defined explicitly by the expression. For example:

Number.E // Euler’s number e (2.7182…)

Text.PositionOf("Hello", "ll") // 2

1.6 Operators

M includes a set of operators that can be used in expressions. Operators are applied to

operands to form symbolic expressions. For example, in the expression 1 + 2 the numbers

1 and 2 are operands and the operator is the addition operator (+).

The meaning of an operator can vary depending on what kind of values its operands are. For

example, the plus operator can be used with other kinds of values than numbers:

1 + 2 // numeric addition: 3

#time(12,23,0) + #duration(0,0,2,0)

 // time arithmetic: #time(12,25,0)

Another example of an operator with operand-depending meaning is the combination

operator (&):

"A" & "BC" // text concatenation: "ABC"

12

{1} & {2, 3} // list concatenation: {1, 2, 3}

[a = 1] & [b = 2] // record merge: [a = 1, b = 2]

Note that not all combinations of values may be supported by an operator. For example:

1 + "2" // error: adding number and text is not supported

Expressions that, when evaluated, encounter undefined operator conditions evaluate to

errors. More on errors in M later.

1.7 Metadata

Metadata is information about a value that is associated with a value. Metadata is

represented as a record value, called a metadata record. The fields of a metadata record

can be used to store the metadata for a value.

Every value has a metadata record. If the value of the metadata record has not been specified,

then the metadata record is empty (has no fields).

Metadata records provide a way to associate additional information with any kind of value in

an unobtrusive way. Associating a metadata record with a value does not change the value or

its behavior.

A metadata record value y is associated with an existing value x using the syntax x meta y.

For example, the following associates a metadata record with Rating and Tags fields with the

text value "Mozart":

"Mozart" meta [Rating = 5, Tags = {"Classical"}]

For values that already carry a non-empty metadata record, the result of applying meta is that

of computing the record merge of the existing and the new metadata record. For example, the

following two expressions are equivalent to each other and to the previous expression:

("Mozart" meta [Rating = 5]) meta [Tags = {"Classical"}]

"Mozart" meta ([Rating = 5] & [Tags = {"Classical"}])

A metadata record can be accessed for a given value using the Value.Metadata function. In

the following example, the expression in the ComposerRating field accesses the metadata

record of the value in the Composer field, and then accesses the Rating field of the metadata

record.

[

 Composer = "Mozart" meta [Rating = 5, Tags = {"Classical"}],

 ComposerRating = Value.Metadata(Composer)[Rating] // 5

]

1.8 Let expression

Many of the examples shown so far have included all the literal values of the expression in the

result of the expression. The let expression allows a set of values to be computed, assigned

names, and then used in a subsequent expression that follows the in. For example, in our

sales data example, we could do:

13

let

 Sales2007 =

 [

 Year = 2007,

 FirstHalf = 1000,

 SecondHalf = 1100,

 Total = FirstHalf + SecondHalf // 2100

],

 Sales2008 =

 [

 Year = 2008,

 FirstHalf = 1200,

 SecondHalf = 1300,

 Total = FirstHalf + SecondHalf // 2500

]

 in Sales2007[Total] + Sales2008[Total] // 4600

The result of the above expression is a number value (4600) which was computed from the

values bound to the names Sales2007 and Sales2008.

1.9 If expression

The if expression selects between two expressions based on a logical condition. For example:

if 2 > 1 then

 2 + 2

else

 1 + 1

The first expression (2 + 2) is selected if the logical expression (2 > 1) is true, and the

second expression (1 + 1) is selected if it is false. The selected expression (in this case 2 +

2) is evaluated and becomes the result of the if expression (4).

1.10 Errors

An error is an indication that the process of evaluating an expression could not produce a

value.

Errors are raised by operators and functions encountering error conditions or by using the

error expression. Errors are handled using the try expression. When an error is raised, a

value is specified that can be used to indicate why the error occurred.

14

let Sales =

 [

 Revenue = 2000,

 Units = 1000,

 UnitPrice = if Units = 0 then error "No Units"

 else Revenue / Units

],

 UnitPrice = try Number.ToText(Sales[UnitPrice])

in "Unit Price: " &

 (if UnitPrice[HasError] then UnitPrice[Error][Message]

 else UnitPrice[Value])

The above example accesses the Sales[UnitPrice] field and formats the value producing

the result:

"Unit Price: 2"

If the Units field had been zero, then the UnitPrice field would have raised an error which

would have been handled by the try. The resulting value would then have been:

"No Units"

A try expression converts proper values and errors into a record value that indicates whether

the try expression handled and error, or not, and either the proper value or the error record

it extracted when handling the error. For example, consider the following expression that

raises an error and then handles it right away:

try error "negative unit count"

This expression evaluates to the following nested record value, explaining the [HasError],

[Error], and [Message] field lookups in the unit-price example before.

[

 HasError = true,

 Error =

 [

 Reason = "Expression.Error",

 Message = "negative unit count",

 Detail = null

]

]

A common case is to replace errors with default values. The try expression can be used with

an optional otherwise clause to achieve just that in a compact form:

try error "negative unit count" otherwise 42

// 42

15

2. Lexical Structure

2.1 Documents

An M document is an ordered sequence of Unicode characters. M allows different classes of

Unicode characters in different parts of an M document. For information on Unicode

character classes, see The Unicode Standard, Version 3.0, section 4.5.

A document either consists of exactly one expression or of groups of definitions organized

into sections. Sections are described in detail in Chapter 10. Conceptually speaking, the

following steps are used to read an expression from a document:

1. The document is decoded according to its character encoding scheme into a sequence of

Unicode characters.

2. Lexical analysis is performed, thereby translating the stream of Unicode characters into a

stream of tokens. The remaining subsections of this section cover lexical analysis.

3. Syntactic analysis is performed, thereby translating the stream of tokens into a form that

can be evaluated. This process is covered in subsequent sections.

2.2 Grammar conventions

The lexical and syntactic grammars are presented using grammar productions. Each

grammar production defines a non-terminal symbol and the possible expansions of that non-

terminal symbol into sequences of non-terminal or terminal symbols. In grammar

productions, non-terminal symbols are shown in italic type, and terminal symbols are

shown in a fixed-width font.

The first line of a grammar production is the name of the non-terminal symbol being defined,

followed by a colon. Each successive indented line contains a possible expansion of the non-

terminal given as a sequence of non-terminal or terminal symbols. For example, the

production:

if-expression:

if if-condition then true-expression else false-expression

defines an if-expression to consist of the token if, followed by an if-condition, followed by

the token then, followed by a true-expression, followed by the token else, followed by a

false-expression.

When there is more than one possible expansion of a non-terminal symbol, the alternatives

are listed on separate lines. For example, the production:

variable-list:

variable

variable-list , variable

defines a variable-list to either consist of a variable or consist of a variable-list followed by a

variable. In other words, the definition is recursive and specifies that a variable list consists

of one or more variables, separated by commas.

16

A subscripted suffix “opt” is used to indicate an optional symbol. The production:

field-specification:

optionalopt identifier = field-type

is shorthand for:

field-specification:

identifier = field-type

optional identifier = field-type

and defines a field-specification to optionally begin with the terminal symbol optional

followed by an identifier, the terminal symbol =, and a field-type.

Alternatives are normally listed on separate lines, though in cases where there are many

alternatives, the phrase “one of” may precede a list of expansions given on a single line. This

is simply shorthand for listing each of the alternatives on a separate line. For example, the

production:

decimal-digit: one of

0 1 2 3 4 5 6 7 8 9

is shorthand for:

decimal-digit:

0

1

2

3

4

5

6

7

8

9

2.3 Lexical Analysis

The lexical-unit production defines the lexical grammar for an M document. Every valid M

document conforms to this grammar.

lexical-unit:

lexical-elementsopt

lexical-elements:

lexical-element

lexical-element lexical-elements

lexical-element:

whitespace

token

comment

17

At the lexical level, an M document consists of a stream of whitespace, comment, and token

elements. Each of these productions is covered in the following sections. Only token elements

are significant in the syntactic grammar.

2.4 Whitespace

Whitespace is used to separate comments and tokens within an M document. Whitespace

includes the space character (which is part of Unicode class Zs), as well as horizontal and

vertical tab, form feed, and newline character sequences. Newline character sequences

include carriage return, line feed, carriage return followed by line feed, next line, and

paragraph separator characters.

whitespace:

Any character with Unicode class Zs

Horizontal tab character (U+0009)

Vertical tab character (U+000B)

Form feed character (U+000C)

Carriage return character (U+000D) followed by line feed character (U+000A)

new-line-character

new-line-character:

Carriage return character (U+000D)

Line feed character (U+000A)

Next line character (U+0085)

Line separator character (U+2028)

Paragraph separator character (U+2029)

For compatibility with source code editing tools that add end-of-file markers, and to enable a

document to be viewed as a sequence of properly terminated lines, the following

transformations are applied, in order, to an M document:

• If the last character of the document is a Control-Z character (U+001A), this character is

deleted.

• A carriage-return character (U+000D) is added to the end of the document if that

document is non-empty and if the last character of the document is not a carriage return

(U+000D), a line feed (U+000A), a line separator (U+2028), or a paragraph separator

(U+2029).

2.5 Comments

Two forms of comments are supported: single-line comments and delimited comments.

Single-line comments start with the characters // and extend to the end of the source

line. Delimited comments start with the characters /* and end with the characters */.

Delimited comments may span multiple lines.

comment:

single-line-comment

delimited-comment

18

single-line-comment:

// single-line-comment-charactersopt

single-line-comment-characters:

single-line-comment-character

single-line-comment-characters single-line-comment-character

single-line-comment-character:

Any Unicode character except a new-line-character

delimited-comment:

/* delimited-comment-textopt asterisks /

delimited-comment-text:

delimited-comment-section

delimited-comment-text delimited-comment-section

delimited-comment-section:

/

asterisksopt not-slash-or-asterisk

asterisks:

*

* asterisks

not-slash-or-asterisk:

Any Unicode character except * or /

Comments do not nest. The character sequences /* and */ have no special meaning within a

single-line comment, and the character sequences // and /* have no special meaning within

a delimited comment.

Comments are not processed within text literals.

The example

/* Hello, world

*/

"Hello, world"

includes a delimited comment.

The example

// Hello, world

//

"Hello, world" // This is an example of a text literal

shows several single-line comments.

2.6 Tokens

A token is an identifier, keyword, literal, operator, or punctuator. Whitespace and comments

are used to separate tokens, but are not considered tokens.

19

token:

identifier

keyword

literal

operator-or-punctuator

2.6.1 Character Escape Sequences

M text values can contain arbitrary Unicode characters. Text literals, however, are limited to

graphic characters and require the use of escape sequences for non-graphic characters. For

example, to include a carriage-return, linefeed, or tab character in a text literal, the #(cr),

#(lf), and #(tab) escape sequences can be used, respectively. To embed the escape-

sequence start characters #(in a text literal, the # itself needs to be escaped:

#(#)(

Escape sequences can also contain short (four hex digits) or long (eight hex digits) Unicode

code-point values. The following three escape sequences are therefore equivalent:

#(000D) // short Unicode hexadecimal value

#(0000000D) // long Unicode hexadecimal value

#(cr) // compact escape shorthand for carriage return

Multiple escape codes can be included in a single escape sequence, separated by commas; the

following two sequences are thus equivalent:

#(cr,lf)

#(cr)#(lf)

The following describes the standard mechanism of character escaping in an M document.

character-escape-sequence:

#(escape-sequence-list)

escape-sequence-list:

single-escape-sequence

single-escape-sequence , escape-sequence-list

single-escape-sequence:

long-unicode-escape-sequence

short-unicode-escape-sequence

control-character-escape-sequence

escape-escape

long-unicode-escape-sequence:

hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

short-unicode-escape-sequence:

hex-digit hex-digit hex-digit hex-digit

control-character-escape-sequence:

 control-character

20

control-character:

cr

lf

tab

escape-escape:

2.6.2 Literals

A literal is a source code representation of a value.

literal:

logical-literal

number-literal

text-literal

null-literal

2.6.2.1 Null literals

The null literal is used to write the null value. The null value represents an absent value.

null-literal:

null

2.6.2.2 Logical literals

A logical literal is used to write the values true and false and produces a logical value.

logical-literal:

true

false

2.6.2.3 Number literals

A number literal is used to write a numeric value and produces a number value.

number-literal:

decimal-number-literal

hexadecimal-number-literal

decimal-number-literal:

decimal-digits . decimal-digits exponent-partopt

. decimal-digits exponent-partopt

decimal-digits exponent-part

decimal-digits

decimal-digits:

decimal-digit

decimal-digit decimal-digits

decimal-digit: one of

0 1 2 3 4 5 6 7 8 9

21

exponent-part:

e signopt decimal-digits

E signopt decimal-digits

sign: one of

+ -

hexadecimal-number-literal:

0x hex-digits

0X hex-digits

hex-digits:

hex-digit

hex-digit hex-digits

hex-digit: one of

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

A number can be specified in hexadecimal format by preceding the hex-digits with the

characters 0x. For example:

0xff // 255

Note that if a decimal point is included in a number literal, then it must have at least one digit

following it. For example, 1.3 is a number literal but 1. and 1.e3 are not.

2.6.2.4 Text literals

A text literal is used to write a sequence of Unicode characters and produces a text value.

text-literal:

" text-literal-charactersopt "

text-literal-characters:

text-literal-character

text-literal-character text-literal-characters

text-literal-character:

single-text-character

character-escape-sequence

double-quote-escape-sequence

single-text-character:

Any character except " (U+0022) or # (U+0023) followed by ((U+0028)

double-quote-escape-sequence:

"" (U+0022, U+0022)

To include quotes in a text value, the quote mark is repeated, as follows:

"The ""quoted"" text" // The "quoted" text

The character-escape-sequence (§2.6.1) production can be used to write characters in text

values without having to directly encode them as Unicode characters in the document. For

example, a carriage return and line feed can be written in a text value as:

22

"Hello world#(cr,lf)"

2.6.3 Identifiers

An identifier is a name used to refer to a value. Identifiers can either be regular identifiers

or quoted identifiers.

identifier:

regular-identifier

quoted-identifier

regular-identifier:

available-identifier

available-identifier dot-character regular-identifier

available-identifier:

A keyword-or-identifier that is not a keyword

keyword-or-identifier:

identifier-start-character identifier-part-charactersopt

identifier-start-character:

letter-character

underscore-character

identifier-part-characters:

identifier-part-character

identifier-part-character identifier-part-characters

identifier-part-character:

letter-character

decimal-digit-character

underscore-character

connecting-character

combining-character

formatting-character

dot-character:

. (U+002E)

underscore-character:

_ (U+005F)

letter-character:

A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character:

A Unicode character of classes Mn or Mc

decimal-digit-character:

A Unicode character of the class Nd

connecting-character:

A Unicode character of the class Pc

23

formatting-character:

A Unicode character of the class Cf

A quoted-identifier can be used to allow any sequence of zero or more Unicode characters to

be used as an identifier, including keywords, whitespace, comments, operators and

punctuators.

quoted-identifier:

#" text-literal-charactersopt "

Note that escape sequences and double-quotes to escape quotes can be used in a quoted

identifier, just as in a text-literal.

The following example uses identifier quoting for names containing a space character:

[

 #"1998 Sales" = 1000,

 #"1999 Sales" = 1100,

 #"Total Sales" = #"1998 Sales" + #"1999 Sales"

]

The following example uses identifier quoting to include the + operator in an identifier:

[

 #"A + B" = A + B,

 A = 1,

 B = 2

]

2.6.3.1 Generalized Identifiers

There are two places in M where no ambiguities are introduced by identifiers that contain

blanks or that are otherwise keywords or number literals. These places are the names of

record fields in a record literal and in a field access operator ([]) There, M allows such

identifiers without having to use quoted identifiers.

[

 Data = [Base Line = 100, Rate = 1.8],

 Progression = Data[Base Line] * Data[Rate]

]

The identifiers used to name and access fields are referred to as generalized identifiers

and defined as follows:

generalized-identifier:

generalized-identifier-part

generalized-identifier separated only by blanks (U+0020) generalized-identifier-part

generalized-identifier-part:

generalized-identifier-segment

decimal-digit-character generalized-identifier-segment

24

generalized-identifier-segment:

keyword-or-identifier

keyword-or-identifier dot-character keyword-or-identifier

2.6.4 Keywords

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used

as an identifier except when using the identifier-quoting mechanism (§2.6.3) or where a

generalized identifier is allowed (§2.6.3.1).

keyword: one of

and as each else error false if in is let meta not otherwise or

section shared then true try type #binary #date #datetime

#datetimezone #duration #infinity #nan #sections #shared #table #time

2.6.5 Operators and punctuators

There are several kinds of operators and punctuators. Operators are used in expressions to

describe operations involving one or more operands. For example, the expression a + b uses

the + operator to add the two operands a and b. Punctuators are for grouping and separating.

operator-or-punctuator: one of

, ; = < <= > >= <> + - * / & () [] { } @ ! ? =>

25

3. Basic Concepts

This section discusses basic concepts that appear throughout the subsequent sections.

3.1 Values

A single piece of data is called a value. Broadly speaking, there are two general categories of

values: primitive values, which are atomic, and structured values, which are

constructed out of primitive values and other structured values. For example, the values

1

true

3.14159

"abc"

are primitive in that they are not made up of other values. On the other hand, the values

{1, 2, 3}

[A = {1}, B = {2}, C = {3}]

are constructed using primitive values and, in the case of the record, other structured values.

3.2 Expressions

An expression is a formula used to construct values. An expression can be formed using a

variety of syntactic constructs. The following are some examples of expressions. Each line is a

separate expression.

"Hello World" // a text value

123 // a number

1 + 2 // sum of two numbers

{1, 2, 3} // a list of three numbers

[x = 1, y = 2 + 3] // a record containing two fields:

 // x and y

(x, y) => x + y // a function that computes a sum

if 2 > 1 then 2 else 1 // a conditional expression

let x = 1 + 1 in x * 2 // a let expression

error "A" // error with message "A"

The simplest form of expression, as seen above, is a literal representing a value.

More complex expressions are built from other expressions, called sub-expressions. For

example:

1 + 2

The above expression is actually composed of three expressions. The 1 and 2 literals are sub-

expressions of the parent expression 1 + 2.

26

Executing the algorithm defined by the syntactic constructs used in an expression is called

evaluating the expression. Each kind of expression has rules for how it is evaluated. For

example, a literal expression like 1 will produce a constant value, while the expression a + b

will take the resulting values produced by evaluating two other expressions (a and b) and add

them together according to some set of rules.

3.3 Environments and variables

Expressions are evaluated within a given environment. An environment is a set of named

values, called variables. Each variable in an environment has a unique name within the

environment called an identifier.

A top-level (or root) expression is evaluated within the global environment. The global

environment is provided by the expression evaluator instead of being determined from the

contents of the expression being evaluated. The contents of the global environment includes

the standard library definitions and can be affected by exports from sections from some set of

documents. (For simplicity, the examples in this section will assume an empty global

environment. That is, it is assumed that there is no standard library and that there are no

other section-based definitions.)

The environment used to evaluate a sub-expression is determined by the parent expression.

Most parent expression kinds will evaluate a sub-expression within the same environment

they were evaluated within, but some will use a different environment. The global

environment is the parent environment within which the global expression is evaluated.

For example, the record-initializer-expression evaluates the sub-expression for each field

with a modified environment. The modified environment includes a variable for each of the

fields of the record, except the one being initialized. Including the other fields of the record

allows the fields to depend upon the values of the fields. For example:

[

 x = 1, // environment: y, z

 y = 2, // environment: x, z

 z = x + y // environment: x, y

]

Similarly, the let-expression evaluates the sub-expression for each variable with an

environment containing each of the variables of the let except the one being initialized. The

let-expression evaluates the expression following the in with an environment containing all

the variables:

let

 x = 1, // environment: y, z

 y = 2, // environment: x, z

 z = x + y // environment: x, y

in

 x + y + z // environment: x, y, z

27

(It turns out that both record-initializer-expression and let-expression actually define two

environments, one of which does include the variable being initialized. This is useful for

advanced recursive definitions and covered in §3.3.1.)

To form the environments for the sub-expressions, the new variables are “merged” with the

variables in the parent environment. The following example shows the environments for

nested records:

[

 a =

 [

 x = 1, // environment: b, y, z

 y = 2, // environment: b, x, z

 z = x + y // environment: b, x, y

],

 b = 3 // environment: a

]

The following example shows the environments for a record nested within a let:

Let

 a =

 [

 x = 1, // environment: b, y, z

 y = 2, // environment: b, x, z

 z = x + y // environment: b, x, y

],

 b = 3 // environment: a

in

 a[z] + b // environment: a, b

Merging variables with an environment may introduce a conflict between variables (since

each variable in an environment must have a unique name). The conflict is resolved as

follows: if the name of a new variable being merged is the same as an existing variable in the

parent environment, then the new variable will take precedence in the new environment. In

the following example, the inner (more deeply nested) variable x will take precedence over

the outer variable x.

28

[

 a =

 [

 x = 1, // environment: b, x (outer), y, z

 y = 2, // environment: b, x (inner), z

 z = x + y // environment: b, x (inner), y

],

 b = 3, // environment: a, x (outer)

 x = 4 // environment: a, b

]

3.3.1 Identifier references

An identifier-reference is used to refer to a variable within an environment.

identifier-expression:

identifier-reference

identifier-reference:

exclusive-identifier-reference

inclusive-identifier-reference

The simplest form of identifier reference is an exclusive-identifier-reference:

exclusive-identifier-reference:

identifier

It is an error for an exclusive-identifier-reference to refer to a variable that is not part of the

environment of the expression that the identifier appears within, or to refer to an identifier

that is currently being initialized.

An inclusive-identifier-reference can be used to gain access to the environment that includes

the identifier being initialized. If it used in a context where there is no identifier being

initialized, then it is equivalent to an exclusive-identifier-reference.

inclusive-identifier-reference:

@ identifier

This is useful when defining recursive functions since the name of the function would

normally not be in scope.

[

 Factorial = (n) =>

 if n <= 1 then

 1

 else

 n * @Factorial(n - 1), // @ is scoping operator

 x = Factorial(5)

]

29

As with a record-initializer-expression, an inclusive-identifier-reference can be used within a

let-expression to access the environment that includes the identifier being initialized.

3.4 Order of evaluation

Consider the following expression which initializes a record:

[

 C = A + B,

 A = 1 + 1,

 B = 2 + 2

]

When evaluated, this expression produces the following record value:

[

 C = 6,

 A = 2,

 B = 4

]

The expression states that in order to perform the A + B calculation for field C, the values of

both field A and field B must be known. This is an example of a dependency ordering of

calculations that is provided by an expression. The M evaluator abides by the dependency

ordering provided by expressions, but is free to perform the remaining calculations in any

order it chooses. For example, the computation order could be:

A = 1 + 1

B = 2 + 2

C = A + B

Or it could be:

B = 2 + 2

A = 1 + 1

C = A + B

Or, since A and B do not depend on each other, they can be computed concurrently:

B = 2 + 2 concurrently with A = 1 + 1

C = A + B

3.5 Side effects

Allowing an expression evaluator to automatically compute the order of calculations for cases

where there are no explicit dependencies stated by the expression is a simple and powerful

computation model.

It does, however, rely on being able to reorder computations. Since expressions can call

functions, and those functions could observe state external to the expression by issuing

external queries, it is possible to construct a scenario where the order of calculation does

30

matter, but is not captured in the partial order of the expression. For example, a function may

read the contents of a file. If that function is called repeatedly, then external changes to that

file can be observed and, therefore, reordering can cause observable differences in program

behavior. Depending on such observed evaluation ordering for the correctness of an M

expression causes a dependency on particular implementation choices that might vary from

one evaluator to the next or may even vary on the same evaluator under varying

circumstances.

3.6 Immutability

Once a value has been calculated, it is immutable, meaning it can no longer be changed.

This simplifies the model for evaluating an expression and makes it easier to reason about the

result since it is not possible to change a value once it has been used to evaluate a subsequent

part of the expression. For instance, a record field is only computed when needed. However,

once computed, it remains fixed for the lifetime of the record. Even if the attempt to compute

the field raised an error, that same error will be raised again on every attempt to access that

record field.

An important exception to the immutable-once-calculated rule applies to list and table values.

Both have streaming semantics. That is, repeated enumeration of the items in a list or the

rows in a table can produce varying results. Streaming semantics enables the construction of

M expressions that transform data sets that would not fit in memory at once.

Also, note that function application is not the same as value construction. Library functions

may expose external state (such as the current time or the results of a query against a

database that evolves over time), rendering them non-deterministic. While functions

defined in M will not, as such, expose any such non-deterministic behavior, they can if they

are defined to invoke other functions that are non-deterministic.

A final source of non-determinsm in M are errors. Errors stop evaluations when they occur

(up to the level where they are handled by a try expression). It is not normally observable

whether a + b caused the evaluation of a before b or b before a (ignoring concurrency here

for simplicity). However, if the subexpression that was evaluated first raises an error, then it

can be determined which of the two expressions was evaluated first.

31

4. Values

A value is data produced by evaluating an expression. This section describes the kinds of

values in the M language. Each kind of value is associated with a literal syntax, a set of values

that are of that kind, a set of operators defined over that set of values, and an intrinsic type

ascribed to newly constructed values.

Kind Literal

Null null

Logical true false

Number 0 1 -1 1.5 2.3e-5

Time #time(09,15,00)

Date #date(2013,02,26)

DateTime #datetime(2013,02,26, 09,15,00)

DateTimeZone #datetimezone(2013,02,26, 09,15,00, 09,00)

Duration #duration(0,1,30,0)

Text "hello"

Binary #binary("AQID")

List {1, 2, 3}

Record [A = 1, B = 2]

Table #table({"X","Y"},{{0,1},{1,0}})

Function (x) => x + 1

Type type { number } type table [A = any, B = text]

The following sections cover each value kind in detail. Types and type ascription are defined

formally in Chapter 5. Function values are defined in Chapter 9. The following sections list

the operators defined for each value kind and give examples. The full definition of operator

semantics follows in Chapter 6.

4.1 Null

A null value is used to represent the absence of a value, or a value of indeterminate or

unknown state. A null value is written using the literal null. The following operators are

defined for null values:

32

Operator Result

x > y Greater than

x >= y Greater than or equal

x < y Less than

x <= y Less than or equal

x = y Equal

x <> y Not equal

The native type of the null value is the intrinsic type null.

4.2 Logical

A logical value is used for Boolean operations has the value true or false. A logical value is

written using the literals true and false. The following operators are defined for logical

values:

Operator Result

x > y Greater than

x >= y Greater than or equal

x < y Less than

x <= y Less than or equal

x = y Equal

x <> y Not equal

x or y Conditional logical OR

x and y Conditional logical

AND

not x Logical NOT

The native type of both logical values (true and false) is the intrinsic type logical.

4.3 Number

A number value is used for numeric and arithmetic operations. The following are examples

of number literals:

33

3.14 // Fractional number

-1.5 // Fractional number

1.0e3 // Fractional number with exponent

123 // Whole number

1e3 // Whole number with exponent

0xff // Whole number in hex (255)

A number is represented with at least the precision of a Double (but may retain more

precision). The Double representation is congruent with the IEEE 64-bit double precision

standard for binary floating point arithmetic defined in [IEEE 754-2008]. (The Double

representation have an approximate dynamic range from 5.0 × 10−324 to 1.7 × 10308 with a

precision of 15-16 digits.)

The following special values are also considered to be number values:

• Positive zero and negative zero. In most situations, positive zero and negative zero

behave identically as the simple value zero, but certain operations distinguish

between the two (§6.9).

• Positive infinity (#infinity) and negative infinity (-#infinity). Infinities are

produced by such operations as dividing a non-zero number by zero. For example,

1.0 / 0.0 yields positive infinity, and –1.0 / 0.0 yields negative infinity.

• The Not-a-Number value (#nan), often abbreviated NaN. NaN’s are produced by

invalid floating-point operations, such as dividing zero by zero.

Binary mathematical operations are performed using a Precision. The precision determines

the domain to which the operands are rounded and the domain in which the operation is

performed. In the absence of an explicitly specified precision, such operations are performed

using Double Precision.

• If the result of a mathematical operation is too small for the destination format, the result

of the operation becomes positive zero or negative zero.

• If the result of a mathematical operation is too large for the destination format, the result

of the operation becomes positive infinity or negative infinity.

• If a mathematical operation is invalid, the result of the operation becomes NaN.

• If one or both operands of a floating-point operation is NaN, the result of the operation

becomes NaN.

The following operators are defined for number values:

34

Operator Result

x > y Greater than

x >= y Greater than or equal

x < y Less than

x <= y Less than or equal

x = y Equal

x <> y Not equal

x + y Sum

x – y Difference

x * y Product

x / y Quotient

+x Unary plus

-x Negation

The native type of number values is the intrinsic type number.

4.4 Time

A time value stores an opaque representation of time of day. A time is encoded as the

number of ticks since midnight, which counts the number of 100-nanosecond ticks that have

elapsed on a 24-hour clock. The maximum number of ticks since midnight corresponds to

23:59:59.9999999 hours.

Time values may be constructed using the #time instrinsic.

#time(hour, minute, second)

The following must hold or an error with reason code Expression.Error is raised:

0 ≤ hour ≤ 24

0 ≤ minute ≤ 59

0 ≤ second ≤ 59

In addition, if hour = 24, then minute and second must be zero.

35

The following operators are defined for time values:

Operator Result

x = y Equal

x <> y Not equal

x >= y Greater than or equal

x > y Greater than

x < y Less than

x <= y Less than or equal

The following operators permit one or both of their operands to be a date:

Operator Left Operand Right Operand Meaning

x + y time duration Date offset by duration

x + y duration time Date offset by duration

x - y time duration Date offset by negated

duration

x - y time time Duration between dates

x & y date time Merged datetime

The native type of time values is the intrinsic type time.

4.5 Date

 A date value stores an opaque representation of a specific day. A date is encoded as a

number of days since epoch, starting from January 1, 0001 Common Era on the Gregorian

calendar. The maximum number of days since epoch is 3652058, corresponding to December

31, 9999.

Date values may be constructed using the #date intrinsic.

#date(year, month, day)

The following must hold or an error with reason code Expression.Error is raised:

1 ≤ year ≤ 9999

1 ≤ month ≤ 12

1 ≤ day ≤ 31

In addition, the day must be valid for the chosen month and year.

The following operators are defined for date values:

36

Operator Result

x = y Equal

x <> y Not equal

x >= y Greater than or equal

x > y Greater than

x < y Less than

x <= y Less than or equal

The following operators permit one or both of their operands to be a date:

Operator Left Operand Right Operand Meaning

x + y date duration Date offset by duration

x + y duration date Date offset by duration

x - y date duration Date offset by negated

duration

x - y date date Duration between dates

x & y date time Merged datetime

The native type of date values is the intrinsic type date.

4.6 DateTime

A datetime value contains both a date and time.

DateTime values may be constructed using the #datetime intrinsic.

#datetime(year, month, day, hour, minute, second)

The following must hold or an error with reason code Expression.Error is raised:

1 ≤ year ≤ 9999

1 ≤ month ≤ 12

1 ≤ day ≤ 31

0 ≤ hour ≤ 23

0 ≤ minute ≤ 59

0 ≤ second ≤ 59

In addition, the day must be valid for the chosen month and year.

The following operators are defined for datetime values:

37

Operator Result

x = y Equal

x <> y Not equal

x >= y Greater than or equal

x > y Greater than

x < y Less than

x <= y Less than or equal

The following operators permit one or both of their operands to be a datetime:

Operator Left Operand Right Operand Meaning

x + y datetime duration Datetime offset by duration

x + y duration datetime Datetime offset by duration

x - y datetime duration Datetime offset by negated

duration

x - y datetime datetime Duration between datetimes

The native type of datetime values is the intrinsic type datetime.

4.7 DateTimeZone

A datetimezone value contains a datetime and a timezone. A timezone is encoded as a

number of minutes offset from UTC, which counts the number of minutes the time portion of

the datetime should be offset from Universal Coordinated Time (UTC). The minimum

number of minutes offset from UTC is -840, representing a UTC offset of -14:00, or fourteen

hours earlier than UTC. The maximum number of minutes offset from UTC is 840,

corresponding to a UTC offset of 14:00.

DateTimeZone values may be constructed using the #datetimezone intrinsic.

#datetimezone(

 year, month, day,

 hour, minute, second,

 offset-hours, offset-minutes)

The following must hold or an error with reason code Expression.Error is raised:

1 ≤ year ≤ 9999

1 ≤ month ≤ 12

1 ≤ day ≤ 31

0 ≤ hour ≤ 23

38

0 ≤ minute ≤ 59

0 ≤ second ≤ 59

-14 ≤ offset-hours ≤ 14

-59 ≤ offset-minutes ≤ 59

In addition, the day must be valid for the chosen month and year and, if offset-hours = 14,

then offset-minutes <= 0 and, if offset-hours = -14, then offset-minutes >= 0.

 The following operators are defined for datetimezone values:

Operator Result

x = y Equal

x <> y Not equal

x >= y Greater than or equal

x > y Greater than

x < y Less than

x <= y Less than or equal

The following operators permit one or both of their operands to be a datetimezone:

Operator Left Operand Right Operand Meaning

x + y datetimezone duration Datetimezone offset by duration

x + y duration datetimezone Datetimezone offset by duration

x - y datetimezone duration Datetimezone offset by negated

duration

x - y datetimezone datetimezone Duration between datetimezones

The native type of datetimezone values is the intrinsic type datetimezone.

4.8 Duration

A duration value stores an opaque representation of the distance between two points on a

timeline measured 100-nanosecond ticks. The magnitude of a duration can be either

positive or negative, with positive values denoting progress forwards in time and negative

values denoting progress backwards in time. The minimum value that can be stored in a

duration is -9,223,372,036,854,775,808 ticks, or 10,675,199 days 2 hours 48 minutes

05.4775808 seconds backwards in time. The maximum value that can be stored in a

duration is 9,223,372,036,854,775,807 ticks, or 10,675,199 days 2 hours 48 minutes

05.4775807 seconds forwards in time.

Duration values may be constructed using the #duration intrinsic function:

39

#duration(0, 0, 0, 5.5) // 5.5 seconds

#duration(0, 0, 0, -5.5) // -5.5 seconds

#duration(0, 0, 5, 30) // 5.5 minutes

#duration(0, 0, 5, -30) // 4.5 minutes

#duration(0, 24, 0, 0) // 1 day

#duration(1, 0, 0, 0) // 1 day

The following operators are defined on duration values:

Operator Result

x = y Equal

x <> y Not equal

x >= y Greater than or equal

x > y Greater than

x < y Less than

x <= y Less than or equal

Additionally, the following operators allow one or both of their operands to be a duration

value:

Operator Left Operand Right Operand Meaning

x + y datetime duration Datetime offset by duration

x + y duration datetime Datetime offset by duration

x + y duration duration Sum of durations

x - y datetime duration Datetime offset by negated

duration

x - y datetime datetime Duration between datetimes

x - y duration duration Difference of durations

x * y duration number N times a duration

x * y number duration N times a duration

x / y duration number Fraction of a duration

The native type of duration values is the intrinsic type duration.

40

4.9 Text

A text value represents a sequence of Unicode characters. Text values have a literal form

conformant to the following grammar:

text-literal:

" text-literal-charactersopt "

text-literal-characters:

text-literal-character

text-literal-characters text-literal-character

text-literal-character:

single-text-character

character-escape-sequence

double-quote-escape-sequence

single-text-character:

Any character except " (U+0022) or # (U+0023) followed by ((U+0028)

double-quote-escape-sequence:

"" (U+0022, U+0022)

The following is an example of a text value:

"ABC" // the text value ABC

The following operators are defined on text values:

Operator Result

x = y Equal

x <> y Not equal

x >= y Greater than or

equal

x > y Greater than

x < y Less than

x <= y Less than or equal

x & y Concatenation

The native type of text values is the intrinsic type text.

4.10 Binary

A binary value represents a sequence of bytes. There is no literal format. Several standard

library functions are provided to construct binary values. For example, #binary can be used

to construct a binary value from a list of bytes:

#binary({0x00, 0x01, 0x02, 0x03})

41

The following operators are defined on binary values:

Operator Result

x = y Equal

x <> y Not equal

x >= y Greater than or equal

x > y Greater than

x < y Less than

x <= y Less than or equal

The native type of binary values is the intrinsic type binary.

4.11 List

A list value is a value which produces a sequence of values when enumerated. A value

produced by a list can contain any kind of value, including a list. Lists can be constructed

using the initialization syntax, as follows:

list-expression:

{ item-listopt }

item-list:

item

item , item-list

item:

expression

expression .. expression

The following is an example of a list-expression that defines a list with three text values: "A",

"B", and "C".

{"A", "B", "C"}

The value "A" is the first item in the list, and the value "C" is the last item in the list.

• The items of a list are not evaluated until they are accessed.

• While list values constructed using the list syntax will produce items in the order they

appear in item-list, in general, lists returned from library functions may produce a

different set or a different number of values each time they are enumerated.

To include a sequence of whole number in a list, the a..b form can be used:

{ 1, 5..9, 11 } // { 1, 5, 6, 7, 8, 9, 11 }

The number of items in a list, known as the list count, can be determined using the

List.Count function.

42

List.Count({true, false}) // 2

List.Count({}) // 0

A list may effectively have an infinite number of items; List.Count for such lists is undefined

and may either raise an error or not terminate.

If a list contains no items, it is called an empty list. An empty list is written as:

{} // empty list

The following operators are defined for lists:

Operator Result

x = y Equal

x <> y Not equal

x & y Concatenate

For example:

{1, 2} & {3, 4, 5} // {1, 2, 3, 4, 5}

{1, 2} = {1, 2} // true

{2, 1} <> {1, 2} // true

The native type of list values is the intrinsic type list, which specifies an item type of any.

4.12 Record

A record value is an ordered sequence of fields. A field consists of a field name, which is

a text value that uniquely identifies the field within the record, and a field value. The field

value can be any kind of value, including record. Records can be constructed using

initialization syntax, as follows:

record-expression:

[field-listopt]

field-list:

field

field , field-list

field:

field-name = expression

field-name:

generalized-identifier

The following example constructs a record with a field named x with value 1, and a field

named y with value 2.

[x = 1, y = 2]

43

The following example constructs a record with a field named a with a nested record value.

The nested record has a field named b with value 2.

[a = [b = 2]]

The following holds when evaluating a record expression:

• The expression assigned to each field name is used to determine the value of the

associated field.

• If the expression assigned to a field name produces a value when evaluated, then that

becomes the value of the field of the resulting record.

• If the expression assigned to a field name raises an error when evaluated, then the fact

that an error was raised is recorded with the field along with the error value that was

raised. Subsequent access to that field will cause an error to be re-raised with the

recorded error value.

• The expression is evaluated in an environment like the parent environment only with

variables merged in that correspond to the value of every field of the record, except the

one being initialized.

• A value in a record is not evaluated until the corresponding field is accessed.

• A value in a record is evaluated at most once.

• The result of the expression is a record value with an empty metadata record.

• The order of the fields within the record is defined by the order that they appear in the

record-initializer-expression.

• Every field name that is specified must be unique within the record, or it is an error.

Names are compared using an ordinal comparison.

[x = 1, x = 2] // error: field names must be unique

[X = 1, x = 2] // OK

A record with no fields is called an empty record, and is written as follows:

[] // empty record

Although the order of the fields of a record is not significant when accessing a field or

comparing two records, it is significant in other contexts such as when the fields of a record

are enumerated.

The same two records produce different results when the fields are obtained:

Record.FieldNames([x = 1, y = 2]) // ["x", "y"]

Record.FieldNames([y = 1, x = 2]) // ["y", "x"]

The number of fields in a record can be determined using the Record.FieldCount function.

For example:

Record.FieldCount([x = 1, y = 2 }) // 2

Record.FieldCount([]) // 0

44

In addition to using the record initialization syntax [], records can be constructed from a

list of values, and a list of field names or a record type. For example:

Record.FromList({1, 2}, {"a", "b"})The above is equivalent to:

[a = 1, b = 2]

The following operators are defined for record values:

Operator Result

x = y Equal

x <> y Not equal

x & y Merge

The following examples illustrate the above operators. Note that record merge uses the fields

from the right operand to override fields from the left operand, should there be an overlap in

field names.

[a = 1, b = 2] & [c = 3] // [a = 1, b = 2, c = 3]

[a = 1, b = 2] & [a = 3] // [a = 3, b = 2]

[a = 1, b = 2] = [b = 2, a = 1] // true

[a = 1, b = 2, c = 3] <> [a = 1, b = 2] // true

The native type of record values is the intrinsic type record, which specifies an open empty

list of fields.

4.13 Table

A table value is an ordered sequence of rows. A row is an ordered sequence of value. The

table’s type determines the length of all rows in the table, the names of the table’s columns,

the types of the table’s columns, and the structure of the table’s keys (if any).

There is no literal syntax for tables. Several standard library functions are provided to

construct binary values. For example, #table can be used to construct a table from a list of

row lists and a list of header names:

#table({"x", "x^2"}, {{1,1}, {2,4}, {3,9}})

The above example constructs a table with two columns, both of which are of type any.

#table can also be used to specify a full table type:

#table(

 type table [Digit = number, Name = text],

 {{1,"one"}, {2,"two"}, {3,"three"}}

)

Here the new table value has a table type that specifies column names and column types.

The following operators are defined for table values:

45

Operator Result

x = y Equal

x <> y Not equal

x & y Concatenation

Table concatenation aligns like-named columns and fills in null for columns appearing in

only one of the operand tables. The following example illustrates table concatenation:

 #table({"A","B"}, {{1,2}})

& #table({"B","C"}, {{3,4}})

A B C

1 2 null

null 3 4

The native type of table values is a custom table type (derived from the intrinsic type table)

that lists the column names, specifies all column types to be any, and has no keys. (See §5.6

for details on table types.)

4.14 Function

A function value is a value that maps a set of arguments to a single value. The details of

function values are described in Chapter 9.

4.15 Type

A type value is a value that classifies other values. The details of type values are described

in Chapter 5.

46

5. Types

A type value is a value that classifies other values. A value that is classified by a type is

said to conform to that type. The M type system consists of the following kinds of types:

• Primitive types, which classify primitive values (binary, date, datetime,

datetimezone, duration, list, logical, null, number, record, text, time, type)

and also include a number of abstract types (function, table, any, and none)

• Record types, which classify record values based on field names and value types

• List types, which classify lists using a single item base type

• Function types, which classify function values based on the types of their parameters

and return values

• Table types, which classify table values based on column names, column types, and

keys

• Nullable types, which classifies the value null in addition to all the values classified by

a base type

• Type types, which classify values that are types

The set of primitive types includes the types of primitive values a number of abstract

types, types that do not uniquely classify any values: function, table, any, and none. All

function values conform to the abstract type function, all table values to the abstract type

table, all values to the abstract type any, and no values to the abstract type none. An

expression of type none must raise an error or fail to terminate since no value could be

produced that conforms to type none. Note that the primitive types function and table are

abstract because no function or table is directly of those types, respectively. The primitive

types record and list are non-abstract because the empty record and the empty list are

directly of those types.

All types that are not members of the closed set of primitive types are collectively referred to

as custom types. Custom types can be written using a type-expression:

type-expression:

primary-expression

type primary-type

type:

parenthesized-expression

primary-type

47

primary-type:

primitive-type

record-type

list-type

function-type

table-type

nullable-type

primitive-type: one of

any binary date datetime datetimezone duration function list logical

none null number record table text time type

The primitive-type names are contextual keywords recognized only in a type context. The

use of parentheses in a type context moves the grammar back to a regular expression context,

requiring the use of the type keyword to move back into a type context. For example, to

invoke a function in a type context, parentheses can be used:

type nullable (Type.ForList({type number}))

// type nullable {number}

Parentheses can also be used to access a variable whose name collides with a primitive-type

name:

let record = type [A = any] in type {(record)}

// type {[A = any]}

The following example defines a type that classifies a list of numbers:

type { number }

Similarly, the following example defines a custom type that classifies records with mandatory

fields named X and Y whose values are numbers:

type [X = number, Y = number]

The ascribed type of a value is obtained using the standard library function Value.Type, as

shown in the following examples:

Value.Type(2) // type number

Value.Type({2}) // type list

Value.Type([X = 1, Y = 2]) // type record

The is operator is used to determine whether a value’s type is compatibile with a given type,

as shown in the following examples:

1 is number // true

1 is text // false

{2} is list // true

The as operator checks if the value is compatible with the given type, and raises an error if it

is not. Otherwise, it returns the original value.

Value.Type(1 as number) // type number

48

{2} as text // error, type mismatch

Note that the is and as operators only accept primitive types as their right operand. M does

not provide means to check values for conformance to custom types.

A type X is compatible with a type Y if and only if all values that conform to X also conform

to Y. All types are compatible with type any and no types (but none itself) are compatible with

type none. The following graph shows the compatibility relation. (Type compatibility is a

reflexive and transitive. It forms a lattice with type any as the top and type none as the

bottom value.) The names of abstract types are set in italics.

The following operators are defined for type values:

Operator Result

x = y Equal

x <> y Not equal

The native type of type values is the intrinsic type type.

5.1 Primitive Types

Types in the M language form a disjoint hierarchy rooted at type any, which is the type that

classifies all values. Any M value conforms to exactly one primitive subtype of any. The

closed set of primitive types deriving from type any are as follows:

• type null, which classifies the null value

any

list record table function

custom

list

custom

record

custom

table

custom

function

none

49

• type logical, which classifies the values true and false

• type number, which classifies number values

• type time, which classifies time values

• type date, which classifies date values

• type datetime, which classifies datetime values

• type datetimezone, which classifies datetimezone values

• type duration, which classifies duration values

• type text, which classifies text values

• type binary, which classifies binary values

• type type, which classifies type values.

• type list, which classifies list values

• type record, which classifies record values

• type table, which classifies table values

• type function, which classifies function values

• type anynonnull, which classifies all values excluding null

The intrinsic type none classifies no values.

5.2 Any Type

The type any is abstract, classifies all values in M, and all types in M are compatible with any.

Variables of type any can be bound to all possible values. Since any is abstract, it cannot be

ascribed to values – that is, no value is directly of type any.

5.3 List Types

Any value that is a list conforms to the intrinsic type list, which does not place any

restrictions on the items within a list value.

list-type:

{ item-type }

item-type:

type

The result of evaluating a list-type is a list type value whose base type is list.

The following examples illustrate the syntax for declaring homogeneous list types:

type { number } // list of numbers

type { record } // list of records

type {{ text }} // list of lists of text values

A value conforms to a list type if the value is a list and each item in that list value conforms to

the list type’s item type.

50

The item type of a list type indicates a bound: all items of a conforming list conform to the

item type.

5.4 Record Types

Any value that is a record conforms to the intrinsic type record, which does not place any

restrictions on the field names or values within a record value. A record-type value is used

to restrict the set of valid names as well as the types of values that are permitted to be

associated with those names.

record-type:

[open-record-marker]

[field-specification-list]

[field-specification-list , open-record-marker]

field-specification-list:

field-specification

field-specification , field-specification-list

field-specification:

optionalopt identifier field-type-specificationopt

field-type-specification:

= field-type

field-type:

type

open-record-marker:

...

The result of evaluating a record-type is a type value whose base type is record.

The following examples illustrate the syntax for declaring record types:

type [X = number, Y = number]

type [Name = text, Age = number]

type [Title = text, optional Description = text]

type [Name = text, ...]

Record types are closed by default, meaning that additional fields not present in the field-

specification-list are not allowed to be present in conforming values. Including the open-

record-marker in the record type declares the type to be open, which permits fields not

present in the field specification list. The following two expressions are equivalent:

type record // primitive type classifying all records

type [...] // custom type classifying all records

A value conforms to a record type if the value is a record and each field specification in the

record type is satisfied. A field specification is satisfied if any of the following are true:

• A field name matching the specification’s identifier exists in the record and the

associated value conforms to the specification’s type

51

• The specification is marked as optional and no corresponding field name is found in

the record

A conforming value may contain field names not listed in the field specification list if and only

if the record type is open.

5.5 Function Types

Any function value conforms to the primitive type function, which does not place any

restrictions on the types of the function’s formal parameters or the function’s return value. A

custom function-type value is used to place type restrictions on the signatures of

conformant function values.

function-type:

function (parameter-specification-listopt) function-return-type

parameter-specification-list:

required-parameter-specification-list

required-parameter-specification-list , optional-parameter-specification-list

optional-parameter-specification-list

required-parameter-specification-list:

required-parameter-specification

required-parameter-specification , required-parameter-specification-list

required-parameter-specification:

parameter-specification

optional-parameter-specification-list:

optional-parameter-specification

optional-parameter-specification , optional-parameter-specification-list

optional-parameter-specification:

optional parameter-specification

parameter-specification:

parameter-name parameter-type

function-return-type:

assertion

 assertion:

as nullable-primitve-type

The result of evaluating a function-type is a type value whose base type is function.

The following examples illustrate the syntax for declaring function types:

type function (x as text) as number

type function (y as number, optional z as text) as any

A function value conforms to a function type if the return type of the function value is

compatible with the function type’s return type and each parameter specification of the

function type is compatible to the positionally corresponding formal parameter of the

function. A parameter specification is compatible with a formal parameter if the specified

52

parameter-type type is compatible with the type of the formal parameter and the parameter

specification is optional if the formal parameter is optional.

Formal parameter names are ignored for the purposes of determining function type

conformance.

5.6 Table types

A table-type value is used to define the structure of a table value.

table-type:

table row-type

row-type:

[field-specification-list]

The result of evaluating a table-type is a type value whose base type is table.

The row type of a table specifies the column names and column types of the table as a

closed record type. So that all table values conform to the type table, its row type is type

record (the empty open record type). Thus, type table is abstract since no table value can

have type table’s row type (but all table values have a row type that is compatible with type

table’s row type). The following example shows the construction of a table type:

type table [A = text, B = number, C = binary]

// a table type with three columns named A, B, and C

// of column types text, number, and binary, respectively

A table-type value also carries the definition of a table value’s keys. A key is a set of column

names. At most one key can be designated as the table’s primary key. (Within M, table keys

have no semantic meaning. However, it is common for external data sources, such as

databases or OData feeds, to define keys over tables. Power Query uses key information to

improve performance of advanced functionality, such as cross-source join operations.)

The standard library functions Type.TableKeys, Type.AddTableKey, and

Type.ReplaceTableKeys can be used to obtain the keys of a table type, add a key to a table

type, and replace all keys of a table type, respectively.

Type.AddTableKey(tableType, {"A", "B"}, false)

// add a non-primary key that combines values from columns A and B

Type.ReplaceTableKeys(tableType, {})

// returns type value with all keys removed

5.7 Nullable types

For any type T, a nullable variant can be derived by using nullable-type:

nullable-type:

nullable type

The result is an abstract type that allows values of type T or the value null.

53

42 is nullable number // true

null is nullable number // true

Ascription of type nullable T reduces to ascription of type null or type T. (Recall that

nullable types are abstract and no value can be directly of abstract type.)

Value.Type(42 as nullable number) // type number

Value.Type(null as nullable number) // type null

The standard library functions Type.IsNullable and Type.NonNullable can be used to test

a type for nullability and to remove nullability from a type.

The following hold (for any type T):

• type T is compatible with type nullable T

• Type.NonNullable(type T) is compatible with type T

The following are pairwise equivalent (for any type T):

type nullable any

any

Type.NonNullable(type any)

type anynonnull

type nullable none

type null

Type.NonNullable(type null)

type none

type nullable nullable T

type nullable T

Type.NonNullable(Type.NonNullable(type T))

Type.NonNullable(type T)

Type.NonNullable(type nullable T)

Type.NonNullable(type T)

type nullable (Type.NonNullable(type T))

type nullable T

5.8 Ascribed type of a value

A value's ascribed type is the type to which a value is declared to conform. When a value is

ascribed a type, only a limited conformance check occurs. M does not perform conformance

checking beyond a nullable primitive type. M program authors that choose to ascribe values

54

with type definitions more complex than a nullable primitive-type must ensure that such

values conform to these types.

A value may be ascribed a type using the library function Value.ReplaceType. The function

either returns a new value with the type ascribed or raises an error if the new type is

incompatible with the value’s native primitive type. In particular, the function raises an error

when an attempt is made to ascribe an abstract type, such as any.

Library functions may choose to compute and ascribe complex types to results based on the

ascribed types of the input values.

The ascribed type of a value may be obtained using the library function Value.Type. For

example:

Value.Type(Value.ReplaceType({1}, type {number})

// type {number}

5.9 Type equivalence and compatibility

Type equivalence is not defined in M. Any two type values that are compared for equality may

or may not return true. However, the relation between those two types (whether true or

false) will always be the same.

Compatibility between a given type and a nullable primitive type can be determined using the

library function Type.Is, which accepts an arbitrary type value as its first and a nullable

primitive type value as its second argument:

Type.Is(type text, type nullable text) // true

Type.Is(type nullable text, type text) // false

Type.Is(type number, type text) // false

Type.Is(type [a=any], type record) // true

Type.Is(type [a=any], type list) // false

There is no support in M for determining compatibility of a given type with a custom type.

The standard library does include a collection of functions to extract the defining

characteristics from a custom type, so specific compatibility tests can be implemented as M

expressions. Below are some examples; consult the M library specification for full details.

Type.ListItem(type {number})

 // type number

Type.NonNullable(type nullable text)

 // type text

Type.RecordFields(type [A=text, B=time])

 // [A = [Type = type text, Optional = false],

 // B = [Type = type time, Optional = false]]

Type.TableRow(type table [X=number, Y=date])

 // type [X = number, Y = date]

55

Type.FunctionParameters(

 type function (x as number, optional y as text) as number)

 // [x = type number, y = type nullable text]

Type.FunctionRequiredParameters(

 type function (x as number, optional y as text) as number)

 // 1

Type.FunctionReturn(

 type function (x as number, optional y as text) as number)

 // type number

56

6. Operators

This section defines the behavior of the various M operators.

6.1 Operator precedence

When an expression contains multiple operators, the precedence of the operators controls

the order in which the individual operators are evaluated. For example, the expression

x + y * z is evaluated as x + (y * z) because the * operator has higher precedence than the

binary + operator. The precedence of an operator is established by the definition of its

associated grammar production. For example, an additive-expression consists of a sequence

of multiplicative-expression’s separated by + or - operators, thus giving the + and - operators

lower precedence than the * and / operators.

The parenthesized-expression production can be used to change the default precedence

ordering.

parenthesized-expression:

(expression)

For example:

1 + 2 * 3 // 7

(1 + 2) * 3 // 9

The following table summarizes the M operators, listing the operator categories in order of

precedence from highest to lowest. Operators in the same category have equal precedence.

57

Category Expression Description

Primary i

@i

Identifier expression

(x) Parenthesized expression

x[i] Lookup

x{y} Item access

x(…) Function invocation

{x, y, …} List initialization

[i = x, …] Record initialization

... Not implemented

Unary +x Identity

-x Negation

not x Logical negation

Metadata x meta y Associate metadata

Multiplicative x * y Multiplication

x / y Division

Additive x + y Addition

x – y Subtraction

Relational x < y Less than

x > y Greater than

x <= y Less than or equal

x >= y Greater than or equal

Equality x = y Equal

x <> y Not equal

Type assertion x as y Is compatible nullable-primitive type or error

Type conformance x is y Test if compatible nullable-primitive type

Logical AND x and y Short-circuiting conjunction

Logical OR x or y Short-circuiting disjunction

58

6.2 Operators and metadata

Every value has an associated record value that can carry additional information about the

value. This record is referred to as the metadata record for a value. A metadata record can

be associated with any kind of value, even null. The result of such an association is a new

value with the given metadata.

A metadata record is just a regular record and can contain any fields and values that a regular

record can, and itself has a metadata record. Associating a metadata record with a value is

“non-intrusive”. It does not change the value’s behavior in evaluations except for those that

explicitly inspect metadata records.

Every value has a default metadata record, even if one has not been specified. The default

metadata record is empty. The following examples show accessing the metadata record of a

text value using the Value.Metadata standard library function:

Value.Metadata("Mozart") // []

Metadata records are generally not preserved when a value is used with an operator or

function that constructs a new value. For example, if two text values are concatenated using

the & operator, the metadata of the resulting text value is the empty record []. The following

expressions are equivalent:

"Amadeus " & ("Mozart" meta [Rating = 5])

"Amadeus " & "Mozart"

The standard library functions Value.RemoveMetadata and Value.ReplaceMetadata can

be used to remove all metadata from a value and to replace a value’s metadata (rather than

merge metadata into possibly existing metadata).

The only operator that returns results that carry metadata is the meta operator (§6.5).

6.3 Structurally recursive operators

Values can be cyclic. For example:

let l = {0, @l} in l

// {0, {0, {0, … }}}

[A={B}, B={A}]

// [A = {{ … }}, B = {{ … }}]

M handles cyclic values by keeping construction of records, lists, and tables lazy. An attempt

to construct a cyclic value that does not benefit from interjected lazy structured values yields

an error:

[A=B, B=A]

// [A = Error.Record("Expression.Error",

// "A cyclic reference was encountered during evaluation),

// B = Error.Record("Expression.Error",

// "A cyclic reference was encountered during evaluation),

//]

59

Some operators in M are defined by structural recursion. For instance, equality of records

and lists is defined by the conjoined equality of corresponding record fields and item lists,

respectively.

For non-cyclic values, applying structural recursion yields a finite expansion of the value:

shared nested values will be traversed repeatedly, but the process of recursion always

terminates.

A cyclic value has an infinite expansion when applying structural recursion. The semantics

of M makes no special accomodations for such infinite expansions – an attempt to compare

cyclic values for equality, for instance, will typically run out of resources and terminate

exceptionally.

6.4 Selection and Projection Operators

The selection and projection operators allow data to be extracted from list and record values.

6.4.1 Item Access

A value may be selected from a list or table based on its zero-based position within that list or

table using an item-access-expression.

item-access-expression:

item-selection

optional-item-selection

item-selection:

primary-expression { item-selector }

optional-item-selection:

primary-expression { item-selector } ?

item-selector:

expression

The item-access-expression x{y} returns:

• For a list x and a number y, the item of list x at position y. The first item of a list is

considered to have an ordinal index of zero. If the requested position does not exist in

the list, an error is raised.

• For a table x and a number y, the row of table x at position y. The first row of a table

is considered to have an ordinal index of zero. If the requested position does not exist

in the table, an error is raised.

• For a table x and a record y, the row of table x that matches the field values of record

y for fields with field names that match corresponding table-column names. If there

is no unique matching row in the table, an error is raised.

 For example:

{"a","b","c"}{0} // "a"

{1, [A=2], 3}{1} // [A=2]

{true, false}{2} // error

60

#table({"A","B"},{{0,1},{2,1}}){0} // [A=0,B=1]

#table({"A","B"},{{0,1},{2,1}}){[A=2]} // [A=2,B=1]

#table({"A","B"},{{0,1},{2,1}}){[B=3]} // error

#table({"A","B"},{{0,1},{2,1}}){[B=1]} // error

The item-access-expression also supports the form x{y}?, which returns null when position

(or match) y does not exist in list or table x. If there are multiple matches for y, an error is

still raised.

For example:

{"a","b","c"}{0}? // "a"

{1, [A=2], 3}{1}? // [A=2]

{true, false}{2}? // null

#table({"A","B"},{{0,1},{2,1}}){0} // [A=0,B=1]

#table({"A","B"},{{0,1},{2,1}}){[A=2]} // [A=2,B=1]

#table({"A","B"},{{0,1},{2,1}}){[B=3]} // null

#table({"A","B"},{{0,1},{2,1}}){[B=1]} // error

Item access does not force the evaluation of list or table items other than the one being

accessed. For example:

{ error "a", 1, error "c"}{1} // 1

{ error "a", error "b"}{1} // error "b"

The following holds when the item access operator x{y} is evaluated:

• Errors raised during the evaluation of expressions x or y are propagated.

• The expression x produces a list or a table value.

• The expression y produces a number value or, if x produces a table value, a record

value.

• If y produces a number value and the value of y is negative, an error with reason code

"Expression.Error" is raised.

• If y produces a number value and the value of y is greater than or equal to the count

of x, an error with reason code "Expression.Error" is raised unless the optional

operator form x{y}? is used, in which case the value null is returned.

• If x produces a table value and y produces a record value and there are no matches

for y in x, an error with reason code "Expression.Error" is raised unless the

optional operator form x{y}? is used, in which case the value null is returned.

• If x produces a table value and y produces a record value and there are multiple

matches for y in x, an error with reason code "Expression.Error" is raised.

No items in x other than that at position y is evaluated during the process of item selection.

(For streaming lists or tables, the items or rows preceding that at position y are skipped over,

which may cause their evaluation, depending on the source of the list or table.)

61

6.4.2 Field Access

The field-access-expression is used to select a value from a record or to project a record or

table to one with fewer fields or columns, respectively.

field-access-expression:

field-selection

implicit-target-field-selection

projection

implicit-target-projection

field-selection:

primary-expression field-selector

field-selector:

required-field-selector

optional-field-selector

required-field-selector:

[field-name]

optional-field-selector:

[field-name] ?

field-name:

generalized-identifier

implicit-target-field-selection:

field-selector

projection:

primary-expression required-projection

primary-expression optional-projection

required-projection:

[required-selector-list]

optional-projection:

[required-selector-list] ?

required-selector-list:

required-field-selector

required-selector-list , required-field-selector

implicit-target -projection:

projection

The simplest form of field access is required field selection. It uses the operator x[y] to

look up a field in a record by field name. If the field y does not exist in x, an error is raised.

The form x[y]? is used to perform optional field selection, and returns null if the

requested field does not exist in the record.

For example:

[A=1,B=2][B] // 2

[A=1,B=2][C] // error

62

[A=1,B=2][C]? // null

Collective access of multiple fields is supported by the operators for required record

projection and optional record projection. The operator x[[y1],[y2],…] projects the

record to a new record with fewer fields (selected by y1, y2, …). If a selected field does not

exist, an error is raised. The operator x[[y1],[y2],…] projects the record to a new record

with the fields selected by y1, y2, …; if a field is missing, null is used instead.

For example:

[A=1,B=2][[B]] // [B=2]

[A=1,B=2][[C]] // error

[A=1,B=2][[B],[C]]? // [B=2,C=null]

The forms [y] and [y]? are supported as a shorthand reference to the identifier _

(underscore). The following two expressions are equivalent:

[A]

_[A]

The following example illustrates the shorthand form of field access:

let _ = [A=1,B=2] in [A] //1

The form [[y1],[y2],…] and [[y1],[y2],…]? are also supported as a shorthand and the

following two expressions are likewise equivalent:

[[A],[B]]

_[[A],[B]]

The shorthand form is particularly useful in combination with the each shorthand, a way to

introduce a function of a single parameter named _ (for details, see §9.7). Together, the two

shorthands simplify common higher-order functional expressions:

List.Select({[a=1, b=1], [a=2, b=4]}, each [a] = [b])

// {[a=1, b=1]}

The above expression is equivalent to the following more cryptic looking longhand:

List.Select({[a=1, b=1], [a=2, b=4]}, (_) => _[a] = _[b])

// {[a=1, b=1]}

Field access does not force the evaluation of fields other than the one(s) being accessed. For

example:

[A=error "a", B=1, C=error "c"][B] // 1

[A=error "a", B=error "b"][B] // error "b"

The following holds when a field access operator x[y], x[y]?, x[[y]], or x[[y]]? is

evaluated:

• Errors raised during the evaluation of expression x are propagated.

63

• Errors raised when evaluating field y are permanently associated with field y, then

propagated. Any future access to field y will raise the identical error.

• The expression x produces a record or table value or an error is raised.

• If the identifier y names a field that does not exist in x, an error with reason code

"Expression.Error" is raised unless the optional operator form …? is used, in

which case the value null is returned.

No fields of x other than that named by y is evaluated during the process of field access.

6.5 Metadata operator

The metadata record for a value is ammended using the meta operator (x meta y).

metadata-expression:

unary-expression

unary-expression meta unary-expression

The following example constructs a text value with a metadata record using the meta operator

and then accesses the metadata record of the resulting value using Value.Metadata:

Value.Metadata("Mozart" meta [Rating = 5])

// [Rating = 5]

Value.Metadata("Mozart" meta [Rating = 5])[Rating]

// 5

The following holds when applying the metadata combining operator x meta y:

• Errors raised when evaluating the x or y expressions are propagated.

• The y expression must be a record, or an error with reason code "Expression.Error" is

raised.

• The resulting metadata record is x’s metadata record merged with y. (For the semantics

of record merge, see §6.10.2.1.)

• The resulting value is the value from the x expression, without its metadata, with the

newly computed metadata record attached.

The standard library functions Value.RemoveMetadata and Value.ReplaceMetadata can

be used to remove all metadata from a value and to replace a value’s metadata (rather than

merge metadata into possibly existing metadata). The following expressions are equivalent:

x meta y

Value.ReplaceMetadata(x, Value.Metadata(x) & y)

Value.RemoveMetadata(x) meta (Value.Metadata(x) & y)

6.6 Equality operators

The equality operator = is used to determine if two values are the equal. The inequality

operator <> is used to determine if two values are not equal.

64

equality-expression:

relational-expression

relational-expression = equality-expression

relational-expression <> equality-expression

For example:

1 = 1 // true

1 = 2 // false

1 <> 1 // false

1 <> 2 // true

null = true // false

null = null // true

Metadata is not part of equality or inequality comparison. For example:

(1 meta [a = 1]) = (1 meta [a = 2]) // true

(1 meta [a = 1]) = 1 // true

The following holds when applying the equality operators x = y and x <> y:

• Errors raised when evaluating the x or y expressions are propagated.

• The = operator has a result of true if the values are equal, and false otherwise.

• The <> operator has a result of false if the values are equal, and true otherwise.

• Metadata records are not included in the comparison.

• If values produced by evaluating the x and y expressions are not the same kind of value,

then the values are not equal.

• If the values produced by evaluating the x and y expression are the same kind of value,

then there are specific rules for determining if they are equal, as defined below.

• The following is always true:

(x = y) = not (x <> y)

The equality operators are defined for the following types:

• The null value is only equal to itself.

null = null // true

null = true // false

null = false // false

• The logical values true and false are only equal to themselves. For example:

true = true // true

false = false // true

true = false // false

true = 1 // false

• Numbers are compared using the specified precision:

65

• If either number is #nan, then the numbers are not the same.

• When neither number is #nan, then the numbers are compared using a bit-wise

comparison of the numeric value.

• #nan is the only value that is not equal to itself.

For example:

1 = 1, // true

1.0 = 1 // true

2 = 1 // false

#nan = #nan // false

#nan <> #nan // true

• Two durations are equal if they represent the same number of 100-nanosecond ticks.

• Two times are equal if the magnitudes of their parts (hour, minute, second) are equal.

• Two dates are equal if the magnitudes of their parts (year, month, day) are equal.

• Two datetimes are equal if the magnitudes of their parts (year, month, day, hour, minute,

second) are equal.

• Two datetimezones are equal if the corresponding UTC datetimes are equal. To arrive at

the corresponding UTC datetime, the hours/minutes offset is subtracted from the

datetime component of the datetimezone.

• Two text values are equal if using an ordinal, case-sensitive, culture-insensitive

comparison they have the same length and equal characters at corresponding positions.

• Two list values are equal if all of the following are true:

• Both lists contain the same number of items.

• The values of each positionally corresponding item in the lists are equal. This means

that not only do the lists need to contain equal items, the items need to be in the

same order.

For example:

{1, 2} = {1, 2} // true

{2, 1} = {1, 2} // false

{1, 2, 3} = {1, 2} // false

• Two records are equal if all of the following are true:

• The number of fields is the same.

• Each field name of one record is also present in the other record.

• The value of each field of one record is equal to the like-named field in the other

record.

For example:

66

[A = 1, B = 2] = [A = 1, B = 2] // true

[B = 2, A = 1] = [A = 1, B = 2] // true

[A = 1, B = 2, C = 3] = [A = 1, B = 2] // false

[A = 1] = [A = 1, B = 2] // false

• Two tables are equal if all of the following are true:

• The number of columns is the same.

• Each column name in one table is also present in the other table.

• The number of rows is the same.

• Each row has equal values in corresponding cells.

For example:

#table({"A","B"},{{1,2}}) = #table({"A","B"},{{1,2}})

// true

#table({"A","B"},{{1,2}}) = #table({"X","Y"},{{1,2}})

// false

#table({"A","B"},{{1,2}}) = #table({"B","A"},{{2,1}})

// true

• A function value is equal to itself, but may or may not be equal to another function value.

If two function values are considered equal, then they will behave identically when

invoked.

Two given function values will always have the same equality relationship.

• A type value is equal to itself, but may or may not be equal to another type value. If two

type values are considered equal, then they will behave identically when queried for

conformance.

Two given type values will always have the same equality relationship.

6.7 Relational operators

The <, >, <=, and >= operators are called the relational operators.

relational-expression:

additive-expression

additive-expression < relational-expression

additive-expression > relational-expression

additive-expression <= relational-expression

additive-expression >= relational-expression

These operators are used to determine the relative ordering relationship between two values,

as shown in the following table:

67

Operation Result

x < y true if x is less than y, false otherwise

x > y true if x is greater than y, false otherwise

x <= y true if x is less than or equal to y, false otherwise

x >= y true if x is greater than or equal to y, false otherwise

For example:

0 <= 1 // true

null < 1 // null

null <= null // null

"ab" < "abc" // true

#nan >= #nan // false

#nan <= #nan // false

The following holds when evaluating an expression containing the relational operators:

• Errors raised when evaluating the x or y operand expressions are propagated.

• The values produced by evaluating both the x and y expressions must be a number, date,

datetime, datetimezone, duration, logical, null or time value. Otherwise, an error with

reason code "Expression.Error" is raised.

• If either or both operands are null, the result is the null value.

• If both operands are logical, the value true is considered to be greater than false.

• If both operands are durations, then the values are compared according to the total

number of 100-nanosecond ticks they represent.

• Two times are compared by comparing their hour parts and, if equal, their minute parts

and, if equal, their second parts.

• Two dates are compared by comparing their year parts and, if equal, their month parts

and, if equal, their day parts.

• Two datetimes are compared by comparing their year parts and, if equal, their month

parts and, if equal, their day parts and, if equal, their hour parts and, if equal, their

minute parts and, if equal, their second parts.

• Two datetimezones are compared by normalizing them to UTC by subtracting their

hour/minute offset and then comparing their datetime components.

• Two numbers x and y are compared according to the rules of the IEEE 754 standard:

• If either operand is #nan, the result is false for all relational operators.

• When neither operand is #nan, the operators compare the values of the two floating-

point operands with respect to the ordering

–∞ < –max < ... < –min < –0.0 = +0.0 < +min < ... < +max < +∞

68

where min and max are the smallest and largest positive finite values that can be

represented. The M names for –∞ and +∞ are -#infinity and #infinity.

Notable effects of this ordering are:

• Negative and positive zeros are considered equal.

• A -#infinity value is considered less than all other number values, but equal to

another -#infinity.

• A #infinity value is considered greater than all other number values, but equal

to another #infinity.

6.8 Conditional logical operators

The and and or operators are called the conditional logical operators.

logical-or-expression:

logical-and-expression

logical-and-expression or logical-or-expression

logical-and-expression:

is-expression

is-expression and logical-and-expression

The or operator returns true when at least one of its operands is true. The right operand is

evaluated if and only if the left operand is not true.

The and operator returns false when at least one of its operands is false. The right operand

is evaluated if and only if the left operand is not false.

Truth tables for the or and and operators are shown below, with the result of evaluating the

left operand expression on the vertical axis and the result of evaluating the right operand

expression on the horizontal axis.

and true false null error

true true false null error

false false false false false

null null false null error

error error error error error

or true false null error

69

true true true true true

false true false null error

null true null null error

error error error error error

The following holds when evaluating an expression containing conditional logical operators:

• Errors raised when evaluating the x or y expressions are propagated.

• The conditional logical operators are defined over the types logical and null. If the

operand values are not of those types, an error with reason code "Expression.Error" is

raised.

• The result is a logical value.

• In the expression x or y, the expression y will be evaluated if and only if x does not

evaluate to true.

• In the expression x and y, the expression y will be evaluated if and only if x does not

evaluate to false.

The last two properties give the conditional logical operators their “conditional” qualification;

properties also referred to as “short-circuiting”. These properties are useful to write compact

guarded predicates. For example, the following expressions are equivalent:

d <> 0 and n/d > 1

if d <> 0 then n/d > 1 else false

6.9 Arithmetic Operators

The +, -, * and / operators are the arithmetic operators.

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression – multiplicative-expression

multiplicative-expression:

metadata- expression

multiplicative-expression * metadata-expression

multiplicative-expression / metadata-expression

6.9.1 Precision

Numbers in M are stored using a variety of representations to retain as much information as

possible about numbers coming from a variety of sources. Numbers are only converted from

one representation to another as needed by operators applied to them. Two precisions are

supported in M:

70

Precision Semantics

Precision.Decimal 128-bit decimal representation with a range of

±1.0 × 10−28 to ±7.9 × 1028 and 28-29

significant digits.

Precision.Double Scientific representation using mantissa and

exponent; conforms to the 64-bit binary

double-precision IEEE 754 arithmetic

standard [IEEE 754-2008].

Arithmetic operations are performed by chosing a precision, converting both operands to that

precision (if necessary), then performing the actual operation, and finally returning a number

in the chosen precision.

The built-in arithmetic operators (+, -, *, /) use Double Precision. Standard library functions

(Value.Add, Value.Subtract, Value.Multiply, Value.Divide) can be used to request

these operations using a specific precision model.

• No numeric overflow is possible: #infinity or -#infinity represent values of

magnitues too large to be represented.

• No numeric underflow is possible: 0 and -0 represent values of magnitutes too small to

be represented.

• The IEEE 754 special value #nan (NaN – Not a Number) is used to cover arithmetically

invalid cases, such as a division of zero by zero.

• Conversion from Decimal to Double precision is performed by rounding decimal

numbers to the nearest equivalent double value.

• Conversion from Double to Decimal precision is perfomed by rounding double numbers

to the nearest equivalent decimal value and, if necessary, overflowing to #infinity or –

#infinity values.

6.9.2 Addition operator

The interpretation of the addition operator (x + y) is dependent on the kind of value of the

evaluated expressions x and y, as follows:

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

71

x y Result Interpretation

type number

type number

type number Numeric sum

type number null null

null type number null

type duration type duration type duration Numeric sum of magnitudes

type duration null null

null type duration null

type datetime type duration type datetime Datetime offset by duration

type duration type datetime type datetime

type datetime null null

null type datetime null

In the table, type datetime stands for any of type date, type datetime, type

datetimezone, or type time. When adding a duration and a value of some type datetime, the

resulting value is of that same type.

For other combinations of values than those listed in the table, an error with reason code

"Expression.Error" is raised. Each combination is covered in the following sections.

Errors raised when evaluating either operand are propagated.

6.9.2.1 Numeric sum

The sum of two numbers is computed using the addition operator, producing a number.

For example:

1 + 1 // 2

#nan + #infinity // #nan

The addition operator + over numbers uses Double Precision; the standard library function

Value.Add can be used to specify Decimal Precision. The following holds when computing a

sum of numbers:

• The sum in Double Precision is computed according to the rules of 64-bit binary double-

precision IEEE 754 arithmetic [IEEE 754-2008]. The following table lists the results of

all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the

table, x and y are nonzero finite values, and z is the result of x + y. If x and y have the

same magnitude but opposite signs, z is positive zero. If x + y is too large to be

represented in the destination type, z is an infinity with the same sign as x + y.

+ y +0 –0 +∞ –∞ NaN

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

72

x z x x +∞ –∞ NaN

+0 y +0 +0 +∞ –∞ NaN

–0 y +0 –0 +∞ –∞ NaN

+∞ +∞ +∞ +∞ +∞ NaN NaN

–∞ –∞ –∞ –∞ NaN –∞ NaN

NaN NaN NaN NaN NaN NaN NaN

• The sum in Decimal Precision is computed without losing precision. The scale of the

result is the larger of the scales of the two operands.

6.9.2.2 Sum of durations

The sum of two durations is the duration representing the sum of the number of 100-

nanosecond ticks represented by the durations. For example:

#duration(2,1,0,15.1) + #duration(0,1,30,45.3)

// #duration(2, 2, 31, 0.4)

6.9.2.3 Datetime offset by duration

A datetime x and an duration y may be added using x + y to compute a new datetime whose

distance from x on a linear timeline is exactly the magnitude of y. Here, datetime stands for

any of Date, DateTime, DateTimeZone, or Time and a non-null result will be of the same

type. The datetime offset by duration may be computed as follows:

• If the datetime's days since epoch value is specified, construct a new datetime with the

following information elements:

• Calculate a new days since epoch equivalent to dividing the magnitude of y by the

number of 100-nanosecond ticks in a 24-hour period, truncating the decimal portion

of the result, and adding this value to the x's days since epoch.

• Calculate a new ticks since midnight equivalent to adding the magnitude of y to the

x's ticks since midnight, modulo the number of 100-nanosecond ticks in a 24-hour

period. If x does not specify a value for ticks since midnight, a value of 0 is assumed.

• Copy x's value for minutes offset from UTC unchanged.

• If the datetime's days since epoch value is unspecified, construct a new datetime with the

following information elements specified:

• Calculate a new ticks since midnight equivalent to adding the magnitude of y to the

x's ticks since midnight, modulo the number of 100-nanosecond ticks in a 24-hour

period. If x does not specify a value for ticks since midnight, a value of 0 is assumed.

• Copy x's values for days since epoch and minutes offset from UTC unchanged.

73

The following examples show calculating the absolute temporal sum when the datetime

specifies the days since epoch:

#date(2010,05,20) + #duration(0,8,0,0)

 //#datetime(2010, 5, 20, 8, 0, 0)

 //2010-05-20T08:00:00

#date(2010,01,31) + #duration(30,08,0,0)

 //#datetime(2010, 3, 2, 8, 0, 0)

 //2010-03-02T08:00:00

#datetime(2010,05,20,12,00,00,-08) + #duration(0,04,30,00)

 //#datetime(2010, 5, 20, 16, 30, 0, -8, 0)

 //2010-05-20T16:30:00-08:00

#datetime(2010,10,10,0,0,0,0) + #duration(1,0,0,0)

 //#datetime(2010, 10, 11, 0, 0, 0, 0, 0)

 //2010-10-11T00:00:00+00:00

The following example shows calculating the datetime offset by duration for a given time:

#time(8,0,0) + #duration(30,5,0,0)

 //#time(13, 0, 0)

 //13:00:00

6.9.3 Subtraction operator

The interpretation of the subtraction operator (x – y) is dependent on the kind of the value

of the evaluated expressions x and y, as follows:

74

x Y Result Interpretation

type number type number type number Numeric difference

type number null null

null type number null

type duration type duration type duration Numeric difference of magnitudes

type duration null null

null type duration null

type datetime type datetime type duration Duration between datetimes

type datetime type duration type datetime Datetime offset by negated duration

type datetime null null

null type datetime null

In the table, type datetime stands for any of type date, type datetime, type

datetimezone, or type time. When subtracting a duration from a value of some type

datetime, the resulting value is of that same type.

For other combinations of values than those listed in the table, an error with reason code

"Expression.Error" is raised. Each combination is covered in the following sections.

Errors raised when evaluating either operand are propagated.

6.9.3.1 Numeric difference

The difference between two numbers is computed using the subtraction operator,

producing a number. For example:

1 - 1 // 0

#nan - #infinity // #nan

The subtraction operator - over numbers uses Double Precision; the standard library

function Value.Subtract can be used to specify Decimal Precision. The following holds

when computing a difference of numbers:

• The difference in Double Precision is computed according to the rules of 64-bit binary

double-precision IEEE 754 arithmetic [IEEE 754-2008]. The following table lists the

results of all possible combinations of nonzero finite values, zeros, infinities, and NaN's.

In the table, x and y are nonzero finite values, and z is the result of x – y. If x and y are

equal, z is positive zero. If x – y is too large to be represented in the destination type, z is

an infinity with the same sign as x – y.

- y +0 –0 +∞ –∞ NaN

x z x x –∞ +∞ NaN

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

75

+0 –y +0 +0 –∞ +∞ NaN

–0 –y –0 +0 –∞ +∞ NaN

+∞ +∞ +∞ +∞ NaN +∞ NaN

–∞ –∞ –∞ –∞ –∞ NaN NaN

NaN NaN NaN NaN NaN NaN NaN

• The difference in Decimal Precision is computed without losing precision. The scale of

the result is the larger of the scales of the two operands.

6.9.3.2 Difference of durations

The difference of two durations is the duration representing the difference between the

number of 100-nanosecond ticks represented by each duration. For example:

#duration(1,2,30,0) - #duration(0,0,0,30.45)

// #duration(1, 2, 29, 29.55)

6.9.3.3 Datetime offset by negated duration

A datetime x and a duration y may be subtracted using x – y to compute a new datetime.

Here, datetime stands for any of date, datetime, datetimezone, or time. The resulting

datetime has a distance from x on a linear timeline that is exactly the magnitude of y, in the

direction opposite the sign of y. Subtracting positive durations yields results that are

backwards in time relative to x, while subtracting negative values yields results that are

forwards in time.

#date(2010,05,20) - #duration(00,08,00,00)

 //#datetime(2010, 5, 19, 16, 0, 0)

 //2010-05-19T16:00:00

#date(2010,01,31) - #duration(30,08,00,00)

 //#datetime(2009, 12, 31, 16, 0, 0)

 //2009-12-31T16:00:00

6.9.3.4 Duration between two datetimes

Two datetimes t and u may be subtracted using t - u to compute the duration between

them. Here, datetime stands for any of date, datetime, datetimezone, or time. The

duration produced by subtracting u from t must yield t when added to u.

#date(2010,01,31) - #date(2010,01,15)

// #duration(16,00,00,00)

// 16.00:00:00

76

#date(2010,01,15)- #date(2010,01,31)

// #duration(-16,00,00,00)

// -16.00:00:00

#datetime(2010,05,20,16,06,00,-08,00) -

#datetime(2008,12,15,04,19,19,03,00)

// #duration(521,22,46,41)

// 521.22:46:41

Subtracting t – u when u > t results in a negative duration:

#time(01,30,00) - #time(08,00,00)

// #duration(0, -6, -30, 0)

The following holds when subtracting two datetimes using t - u:

• u + (t - u) = t

6.9.4 Multiplication operator

The interpretation of the multiplication operator (x * y) is dependent on the kind of value of

the evaluated expressions x and y, as follows:

X Y Result Interpretation

type number type number type number Numeric product

type number null null

null type number null

type duration type number type duration Multiple of duration

type number type duration type duration Multiple of duration

type duration null null

null type duration null

For other combinations of values than those listed in the table, an error with reason code

"Expression.Error" is raised. Each combination is covered in the following sections.

Errors raised when evaluating either operand are propagated.

6.9.4.1 Numeric product

The product of two numbers is computed using the multiplication operator, producing a

number. For example:

2 * 4 // 8

6 * null // null

#nan * #infinity // #nan

77

The multiplication operator * over numbers uses Double Precision; the standard library

function Value.Multiply can be used to specify Decimal Precision. The following holds

when computing a product of numbers:

• The product in Double Precision is computed according to the rules of 64-bit binary

double-precision IEEE 754 arithmetic [IEEE 754-2008]. The following table lists the

results of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s.

In the table, x and y are positive finite values. z is the result of x * y. If the result is too

large for the destination type, z is infinity. If the result is too small for the destination

type, z is zero.

* +y –y +0 –0 +∞ –∞ NaN

+x +z –z +0 –0 +∞ –∞ NaN

–x –z +z –0 +0 –∞ +∞ NaN

+0 +0 –0 +0 –0 NaN NaN NaN

–0 –0 +0 –0 +0 NaN NaN NaN

+∞ +∞ –∞ NaN NaN +∞ –∞ NaN

–∞ –∞ +∞ NaN NaN –∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• The product in Decimal Precision is computed without losing precision. The scale of the

result is the larger of the scales of the two operands.

6.9.4.2 Multiples of durations

The product of a duration and a number is the duration representing the number of 100-

nanosecond ticks represented by the duration operand times the number operand. For

example:

#duration(2,1,0,15.1) * 2

// #duration(4, 2, 0, 30.2)

6.9.5 Division operator

The interpretation of the division operator (x / y) is dependent on the kind of value of the

evaluated expressions x and y, as follows:

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

78

X Y Result Interpretation

type number type number type number Numeric quotient

type number null null

null type number null

type duration type number type duration Fraction of duration

type duration type duration type duration Numeric quotient of durations

type duration null null

null type duration null

For other combinations of values than those listed in the table, an error with reason code

"Expression.Error" is raised. Each combination is covered in the following sections.

Errors raised when evaluating either operand are propagated.

6.9.5.1 Numeric quotient

The quotient of two numbers is computed using the division operator, producing a

number. For example:

8 / 2 // 4

8 / 0 // #infinity

0 / 0 // #nan

0 / null // null

#nan / #infinity // #nan

The division operator / over numbers uses Double Precision; the standard library function

Value.Divide can be used to specify Decimal Precision. The following holds when

computing a quotient of numbers:

• The quotient in Double Precision is computed according to the rules of 64-bit binary

double-precision IEEE 754 arithmetic [IEEE 754-2008]. The following table lists the

results of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s.

In the table, x and y are positive finite values. z is the result of x / y. If the result is too

large for the destination type, z is infinity. If the result is too small for the destination

type, z is zero.

/ +y –y +0 –0 +∞ –∞ NaN

+x +z –z +∞ –∞ +0 –0 NaN

–x –z +z –∞ +∞ –0 +0 NaN

+0 +0 –0 NaN NaN +0 –0 NaN

–0 –0 +0 NaN NaN –0 +0 NaN

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

79

+∞ +∞ –∞ +∞ –∞ NaN NaN NaN

–∞ –∞ +∞ –∞ +∞ NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• The sum in Decimal Precision is computed without losing precision. The scale of the

result is the larger of the scales of the two operands.

6.9.5.2 Quotient of durations

The quotient of two durations is the number representing the quotient of the number of 100-

nanosecond ticks represented by the durations. For example:

#duration(2,0,0,0) / #duration(0,1,30,0)

// 32

6.9.5.3 Scaled durations

The quotient of a duration x and a number y is the duration representing the quotient of the

number of 100-nanosecond ticks represented by the duration x and the number y. For

example:

#duration(2,0,0,0) / 32

// #duration(0,1,30,0)

6.10 Structure Combination

The combination operator (x & y) is defined over the following kinds of values:

X Y Result Interpretation

type text type text type text Concatenation

type text null null

null type text null

type date type time type datetime Merge

type date null null

null type time null

type list type list type list Concatenation

type record type record type record Merge

type table type table type table Concatenation

6.10.1 Concatenation

Two text, two list, or two table values can be concatenated using x & y.

80

The following example illustrates concatenating text values:

"AB" & "CDE" // "ABCDE"

The following example illustrates concatenating lists:

{1, 2} & {3} // {1, 2, 3}

The following holds when concatenating two values using x & y:

• Errors raised when evaluating the x or y expressions are propagated.

• No error is propagated if an item of either x or y contains an error.

• The result of concatenating two text values is a text value that contains the value of x

immediately followed by y. If either of the operands is null and the other is a text value,

the result is null.

• The result of concatenating two lists is a list that contains all the items of x followed by all

the items of y.

• The result of concatenating two tables is a table that has the union of the two operand

table’s columns. The column ordering of x is preserved, followed by the columns only

appearing in y, preserving their relative ordering. For columns appearing only in one of

the operands, null is used to fill in cell values for the other operand.

6.10.2 Merge

6.10.2.1 Record merge

Two records can be merged using x & y, producing a record that includes fields from both x

and y.

The following examples illustrate merging records:

[x = 1] & [y = 2] // [x = 1, y = 2]

[x = 1, y = 2] & [x = 3, z = 4] // [x = 3, y = 2, z = 4]

The following holds when merging two records using x + y:

• Errors raised when evaluating the x or y expressions are propagated.

• If a field appears in both x and y, the value from y is used.

• The order of the fields in the resulting record is that of x, followed by fields in y that are

not part of x, in the same order that they appear in y.

• Merging records does not cause evaluation of the values.

• No error is raised because a field contains an error.

• The result is a record.

6.10.2.2 Date-time merge

A date x can be merged with a time y using x & y, producing a datetime that combines the

parts from both x and y.

81

The following example illustrates merging a date and a time:

#date(2013,02,26) & #time(09,17,00)

// #datetime(2013,02,26,09,17,00)

The following holds when merging two records using x + y:

• Errors raised when evaluating the x or y expressions are propagated.

• The result is a datetime.

6.11 Unary operators

The +, -, and not operators are unary operators.

unary-expression:

type-expression

+ unary expression

- unary expression

not unary expression

6.11.1 Unary plus operator

The unary plus operator (+x) is defined for the following kinds of values:

X Result Interpretation

type number type number Unary plus

type duration type duration Unary plus

null null

For other values, an error with reason code "Expression.Error" is raised.

The unary plus operator allows a + sign to be applied to a number, datetime, or null value.

The result is that same value. For example:

+ - 1 // -1

+ + 1 // 1

+ #nan // #nan

+ #duration(0,1,30,0) // #duration(0,1,30,0)

The following holds when evaluating the unary plus operator +x:

• Errors raised when evaluating x are propagated.

• If the result of evaluating x is not a number value, then an error with reason code

"Expression.Error" is raised.

6.11.2 Unary minus operator

The unary minus operator (-x) is defined for the following kinds of values:

82

X Result Interpretation

type number type number Negation

type duration type duration Negation

null null

For other values, an error with reason code "Expression.Error" is raised.

The unary minus operator is used to change the sign of a number or duration. For example:

- (1 + 1) // -2

- - 1 // 1

- - - 1 // -1

- #nan // #nan

- #infinity // -#infinity

- #duration(1,0,0,0) // #duration(-1,0,0,0)

- #duration(0,1,30,0) // #duration(0,-1,-30,0)

The following holds when evaluating the unary minus operator -x:

• Errors raised when evaluating x are propagated.

• If the expression is a number, then the result is the number value from expression x with

its sign changed. If the value is NaN, then the result is also NaN.

6.11.3 Logical negation operator

The logical negation operator (not) is defined for the following kinds of values:

X Result Interpretation

type logical type logical Negation

null null

This operator computes the logical not operation on a given logical value. For example:

not true // false

not false // true

not (true and true) // false

The following holds when evaluating the logical negation operator not x:

• Errors raised when evaluating x are propagated.

• The value produced from evaluating expression x must be a logical value, or an error with

reason code "Expression.Error" must be raised. If the value is true, the result is

false. If the operand is false, the result is true.

The result is a logical value.

83

6.12 Type operators

The operators is and as are known as the type operators.

6.12.1 Type compatibility operator

The type compatibility operator x is y is defined for the following types of values:

X Y Result

type any nullable-primitive-type type logical

The expression x is y returns true if the ascribed type of x is compatible with y, and

returns false if the ascribed type of x is incompatible with y. y must be a nullable-primitive-

type.

is-expression:

as-expression

is-expression is nullable-primitive-type

nullable-primitive-type:

nullableopt primitive-type

Type compatibility, as supported by the is operator, is a subset of general type compatibility

(§5) and is defined using the following rules:

• If x is null then it is compatible iff y is a nullable type or the type any.

• If x is non-null then if it is a compatible if the the primitive type of x is the same as y.

The following holds when evaluating the expression x is y:

• An error raised when evaluating expression x is propagated.

6.12.2 Type assertion operator

The type assertion operator x as y is defined for the following types of values:

X Y Result

type any nullable-primitive-type type any

The expression x as y asserts that the value x is compatible with y as per the is operator. If

it is not compatible, an error is raised. y must be a nullable-primitive-type.

as-expression:

equality -expression

as-expression as nullable-primitive-type

The expression x as y is evaluated as follows:

• A type compatibility check x is y is performed and the assertion returns x unchanged

if that test succeeds.

• If the compatibility check fails, an error with reason code "Expression.Error" is raised.

84

Examples:

1 as number // 1

"A" as number // error

null as nullable number // null

The following holds when evaluating the expression x as y:

An error raised when evaluating expression x is propagated.

85

7. Let

7.1 Let expression

A let expression can be used to capture a value from an intermediate calculation in a variable.

let-expression:

let variable-list in expression

variable-list:

variable

variable , variable-list

variable:

variable-name = expression

variable-name:

identifier

The following example shows intermediate results being calculated and stored in variables x,

y and z which are then used in a subsequent calculation x + y + z:

let

 x = 1 + 1,

 y = 2 + 2,

 z = y + 1

in

 x + y + z

The result of this expression is:

11 // (1 + 1) + (2 + 2) + (2 + 2 + 1)

The following holds when evaluating expressions within the let-expression:

• The expressions in the variable list define a new scope containing the identifiers from the

variable-list production and must be present when evaluating the expressions within the

variable-listproductions. Expressions within the variable-list may refer to one-another.

• The expressions within the variable-list must be evaluated before the expression in the

let-expression is evaluated.

• Unless the expressions in the variable-list are accessed, they must not be evaluated.

• Errors that are raised during the evaluation of the expressions in the let-expression are

propagated.

A let expression can be seen as syntactic sugar over an implicit record expression. The

following expression is equivalent to the example above:

86

[

 x = 1 + 1,

 y = 2 + 2,

 z = y + 1,

 result = x + y + z

][result]

87

8. Conditionals

The if-expression selects from two expressions based on the value of a logical input value and

evaluates only the selected expression.

if-expression:

if if-condition then true-expression else false-expression

if-condition:

expression

true-expression:

expression

false-expression:

expression

The following are examples of if-expressions:

if 2 > 1 then 2 else 1 // 2

if 1 = 1 then "yes" else "no" // "yes"

The following holds when evaluating an if-expression:

• If the value produced by evaluating the if-condition is not a logical value, then an error

with reason code "Expression.Error" is raised.

• The true-expression is only evaluated if the if-condition evaluates to the value true.

• The false-expression is only evaluated if the if-condition evaluates to the value false.

• The result of the if-expression is the value of the true-expression if the if-condition is

true, and the value of the false-expression is the if-condition is false.

• Errors raised during the evaluation of the if-condition, true-expression, or false-

expression are propagated.

88

9. Functions

A function is a value that represents a mapping from a set of argument values to a single

value. A function is invoked by provided a set of input values (the argument values), and

produces a single output value (the return value).

9.1 Writing functions

Functions are written using a function-expression:

function-expression:

(parameter-listopt) function-return-typeopt => function-body

function-body:

expression

parameter-list:

fixed-parameter-list

fixed-parameter-list , optional-parameter-list

optional-parameter-list

fixed-parameter-list:

parameter

parameter , fixed-parameter-list

parameter:

parameter-name parameter-typeopt

parameter-name:

identifier

parameter-type:

assertion

function-return-type:

assertion

 assertion:

as nullable-primitve-type

optional-parameter-list:

optional-parameter

optional-parameter , optional-parameter-list

optional-parameter:

optional parameter

nullable-primitve-type

nullableopt primitive-type

The following is an example of a function that requires exactly two values x and y, and

produces the result of applying the + operator to those values. The x and y are parameters

89

that are part of the formal-parameter-list of the function, and the x + y is the function

body:

(x, y) => x + y

The result of evaluating a function-expression is to produce a function value (not to evaluate

the function-body). As a convention in this document, function values (as opposed to

function expressions) are shown with the formal-parameter-list but with an ellipsis (...)

instead of the function-body. For example, once the function expression above has been

evaluated, it would be shown as the following function value:

 (x, y) => ...

The following operators are defined for function values:

Operator Result

x = y Equal

x <> y Not equal

The native type of function values is a custom function type (derived from the intrinsic type

function) that lists the parameter names and specifies all parameter types and the return

type to be any. (See §5.5 for details on function types.)

9.2 Invoking functions

The function-body of a function is executed by invoking the function value using an invoke-

expression. Invoking a function value means the function-body of the function value is

evaluated and a value is returned or an error is raised.

invoke-expression:

primary-expression (argument-listopt)

argument-list:

expression-list

Each time a function value is invoked, a set of values are specified as an argument-list, called

the arguments to the function.

An argument-list is used to specify a fixed number of arguments directly as a list of

expressions. The following example defines a record with a function value in a field, and then

invokes the function from another field of the record:

[

 MyFunction = (x, y, z) => x + y + z,

 Result1 = MyFunction(1, 2, 3) // 6

]

The following holds when invoking a function:

• The environment used to evaluate the function-body of the function includes a variable

that corresponds to each parameter, with the same name as the parameter. The value of

90

each parameter corresponds to a value constructed from the argument-list of the invoke-

expression, as defined in §9.3.

• All of the expressions corresponding to the function arguments are evaluated before the

function-body is evaluated.

• Errors raised when evaluating the expressions in the expression-list or function-

expression are propagated.

• The number of arguments constructed from the argument-list must be compatible with

the formal parameters of the function, or an error is raised with reason code

"Expression.Error". The process for determining compatibility is defined in §9.3.

9.3 Parameters

There are two kinds of formal parameters that may be present in a formal-parameter-list:

• A required parameter indicates that an argument corresponding to the parameter must

always be specified when a function is invoked. Required parameters must be specified

first in the formal-parameter-list. The function in the following example defines required

parameters x and y:

[

 MyFunction = (x, y) => x + y,

 Result1 = MyFunction(1, 1), // 2

 Result2 = MyFunction(2, 2) // 4

]

• An optional parameter indicates that an argument corresponding to the parameter may

be specified when a function is invoked, but is not required to be specified. If an

argument that corresponds to an optional parameter is not specified when the function is

invoked, then the value null is used instead. Optional parameters must appear after any

required parameters in a formal-parameter-list. The function in the following example

defines a fixed parameter x and an optional parameter y:

[

 MyFunction = fn(x, optional y) =>

 if (y = null) x else x + y,

 Result1 = MyFunction(1), // 1

 Result2 = MyFunction(1, null), // 1

 Result3 = MyFunction(2, 2), // 4

]

The number of arguments that are specified when a function is invoked must be compatible

with the formal parameter list. Compatibility of a set of arguments A for a function F is

computed as follows:

• Let the value N represent the number of arguments A constructed from the argument-

list. For example:

MyFunction() // N = 0

91

MyFunction(1) // N = 1

MyFunction(null) // N = 1

MyFunction(null, 2) // N = 2

MyFunction(1, 2, 3) // N = 3

MyFunction(1, 2, null) // N = 3

MyFunction(1, 2, {3, 4}) // N = 3

• Let the value Required represent the number of fixed parameters of F and Optional the

number of optional parameters of F. For example:

() // Required = 0, Optional = 0

(x) // Required = 1, Optional = 0

(optional x) // Required = 0, Optional = 1

(x, optional y) // Required = 1, Optional = 1

• Arguments A are compatible with function F if the following are true:

• (N >= Fixed) and (N <= (Fixed + Optional))

• The argument types are compatible with F’s corresponding parameter types

• If the function has a delared return type, then the result value of the body of function F is

compatible with F’s return type if the following is true:

• The value yielded by evaluating the function body with the supplied arguments for

the function parameters has a type that is compatible with the return type.

• If the function body yields a value incompatible with the function’s return type, an error

with reason code "Expression.Error" is raised.

9.4 Recursive functions

In order to write a function value that is recursive, it is necessary to use the scoping operator

(@) to reference the function within its scope. For example, the following record contains a

field that defines the Factorial function, and another field that invokes it:

[

 Factorial = (x) =>

 if x = 0 then 1 else x * @Factorial(x - 1),

 Result = Factorial(3) // 6

]

Similarly, mutually recursive functions can be written as long as each function that needs to

be accessed has a name. In the following example, part of the Factorial function has been

refactored into a second Factorial2 function.

[

 Factorial = (x) => if x = 0 then 1 else Factorial2(x),

 Factorial2 = (x) => x * Factorial(x – 1),

 Result = Factorial(3) // 6

]

92

9.5 Closures

A function can return another function as a value. This function can in turn depend on one or

more parameters to the original function. In the following example, the function associated

with the field MyFunction returns a function that returns the parameter specified to it:

[

 MyFunction = (x) => () => x,

 MyFunction1 = MyFunction(1),

 MyFunction2 = MyFunction(2),

 Result = MyFunction1() + MyFunction2() // 3

]

Each time the function is invoked, a new function value will be returned that maintains the

value of the parameter so that when it is invoked, the parameter value will be returned.

9.6 Functions and environments

In addition to parameters, the function-body of a function-expression can reference variables

that are present in the environment when the function is initialized. For example, the

function defined by the field MyFunction accesses the field C of the enclosing record A:

[

 A =

 [

 MyFunction = () => C,

 C = 1

],

 B = A[MyFunction]() // 1

]

When MyFunction is invoked, it accesses the value of the variable C, even though it is being

invoked from an environment (B) that does not contain a variable C.

9.7 Simplified declarations

The each-expression is a syntactic shortand for declaring untyped functions taking a single

formal parameter named _ (underscore).

each-expression:

each each-expression-body

each-expression-body:

function-body

Simplified declarations are commonly used to improve the readability of higher-order

function invocation.

For example, the following pairs of declarations are semantically equivalent:

93

each _ + 1

(_) => _ + 1

each [A]

(_) => _[A]

Table.SelectRows(aTable, each [Weight] > 12)

Table.SelectRows(aTable, (_) => _[Weight] > 12)

94

10. Error Handling

The result of evaluating an M expression produces one of the following outcomes:

• A single value is produced.

• An error is raised, indicating the process of evaluating the expression could not

produce a value. An error contains a single record value that can be used to provide

additional information about what caused the incomplete evaluation.

Errors can be raised from within an expression, and can be handled from within an

expression.

10.1 Raising errors

The syntax for raising an error is as follows:

error-raising-expression:

error expression

Text values can be used as shorthand for error values. For example:

error "Hello, world" // error with message "Hello, world"

Full error values are records and can be constructed using the Error.Record function:

error Error.Record("FileNotFound", "File my.txt not found",

 "my.txt")

The above expression is equivalent to:

error

[

 Reason = "FileNotFound",

 Message = "File my.txt not found",

 Detail = "my.txt"

]

Raising an error will cause the current expression evaluation to stop, and the expression

evaluation stack will unwind until one of the following occurs:

• A record field, section member, or let variable – collectively: an entry – is reached. The

entry is marked as having an error, the error value is saved with that entry, and then

propagated. Any subsequent access to that entry will cause an identical error to be raised.

Other entries of the record, section, or let expression are not necessarily affected (unless

they access an entry previously marked as having an error).

• The top-level expression is reached. In this case, the result of evaluating the top-level

expression is an error instead of a value.

• A try expression is reached. In this case, the error is captured and returned as a value.

95

10.2 Handling errors

An error-handling-expression is used to handle an error:

error-handling-expression:

try protected-expression otherwise-clauseopt

protected-expression:

expression

otherwise-clause:

 otherwise default-expression

default-expression:

expression

The following holds when evaluating an error-handling-expression without an otherwise-

clause:

• If the evaluation of the protected-expression does not result in an error and produces a

value x, the value produced by the error-handling-expression is a record of the following

form:

[HasErrors = false, Value = x]

• If the evaluation of the protected-expression raises an error value e, the result of the

error-handling-expression is a record of the following form:

[HasErrors = true, Error = e]

The following holds when evaluating an error-handling-expression with an otherwise-

clause:

• The protected-expression must be evaluated before the otherwise-clause.

• The otherwise-clause must be evaluated if and only if the evaluation of the protected-

expression raises an error.

• If the evaluation of the protected-expression raises an error, the value produced by the

error-handling-expression is the result of evaluating the otherwise-clause.

• Errors raised during the evaluation of the otherwise-clause are propagated.

The following example illustrates an error-handling-expression in a case where no error is

raised:

let

 x = try "A"

in

 if x[HasError] then x[Error] else x[Value]

// "A"

The following example shows raising an error and then handling it:

96

let

 x = try error "A"

in

 if x[HasError] then x[Error] else x[Value]

// [Reason = "Expression.Error", Message = "A", Detail = null]

An otherwise clause can be used to replace errors handled by a try expression with an

alternate value:

try error "A" otherwise 1

// 1

If the otherwise clause also raises an error, then so does the entire try expression:

try error "A" otherwise error "B"

// error with message "B"

10.3 Errors in record and let initializers

The following example shows a record initializer with a field A that raises an error and is

accessed by two other fields B and C. Field B does not handle the error that is raised by A, but

C does. The final field D does not access A and so it is not affected by the error in A.

[

 A = error "A",

 B = A + 1,

 C = let x =

 try A in

 if not x[HasError] then x[Value]

 else x[Error],

 D = 1 + 1

]

The result of evaluating the above expression is:

[

 A = // error with message "A"

 B = // error with message "A"

 C = "A",

 D = 2

]

Error handling in M should be performed close to the cause of errors to deal with the effects

of lazy field initialization and deferred closure evaluations. The following example shows an

unsuccessful attempt at handling an error using a try expression:

97

let

 f = (x) => [a = error "bad", b = x],

 g = try f(42) otherwise 123

in

 g[a] // error "bad"

In this example, the definition g was meant to handle the error raised when calling f.

However, the error is raised by a field initializer that only runs when needed and thus after

the record was returned from f and passed through the try expression.

10.4 Not implemented error

While an expression is being developed, an author may want to leave out the implementation

for some parts of the expression, but may still want to be able to execute the expression. One

way to handle this case is to raise an error for the unimplemented parts.For example:

(x, y) =>

 if x > y then

 x – y

 else

 error Error.Record("Expression.Error",

 "Not Implemented")

The ellipsis symbol (...) can be used as a shortcut for

 error Error.Record("Expression.Error", "Not Implemented")

not-implemented-expression:

...

For example, the following is equivalent to the previous example:

(x, y) => if x > y then x – y else ...

98

11. Sections

A section-document is an M program that consists of multiple named expressions.

section-document:

section

section:

literal-attributesopt section section-nameopt ; section-membersopt

section-name:

identifier

section-members:

section-member

section-members section-member

section-member:

literal-attributesopt sharedopt section-member-name = expression ;

section-member-name:

identifier

In M, a section is an organizational concept that allows related expressions to be named and

grouped within a document. Each section has a section-name, which identifies the section

and qualifies the names of the section-members declared within the section. A section-

member consists of a member-name and an expression. Section member expressions may

refer to other section members within the same section directly by member name.

The following example shows a section-document that contains one section:

section Section1;

A = 1; //1

B = 2; //2

C = A + B; //3

Section member expressions may refer to section members located in other sections by

means of a section-access-expression, which qualifies a section member name with the name

of the containing section.

section-access-expression:

identifier ! identifier

The following example shows a document containing two sections that are mutually

referential:

section Section1;

A = “Hello”; //”Hello”

B = 1 + Section2!A; //3

section Section2;

99

A = 2; //2

B = Section1!A & “ world!”; //”Hello, world”

Section members may optionally be declared as shared, which omits the requirement to use

a section-access-expression when referring to shared members outside of the containing

section. Shared members in external sections may be referred to by their unqualified member

name so long as no member of the same name is declared in the referring section and no

other section has a like-named shared member.

The following example illustrates the behavior of shared members when used across sections

within the same document:

section Section1;

shared A = 1; // 1

section Section2;

B = A + 2; // 3 (refers to shared A from Section1)

section Section3;

A = “Hello”; // "Hello"

B = A + “ world”; // "Hello world" (refers to local A)

C = Section1!A + 2; // 3

Defining a shared member with the same name in different sections will produce a valid

global environment, however accessing the shared member will raise an error when accessed.

section Section1;

shared A = 1;

section Section2;

shared A = “Hello”;

section Section3;

B = A; //Error: shared member A has multiple definitions

The following holds when evaluating a section-document:

• Each section-name must be unique in the global environment.

• Within a section, each section-member must have a unique section-member-name.

• Shared section members with more than one definition raise an error when the

shared member is accessed.

• The expression component of a section-member must not be evaluated before the

section member is accessed.

• Errors raised while the expression component of a section-member is evaluated are

associated with that section member before propagating outward and then re-raised

each time the section member is accessed.

100

11.1 Document Linking

A set of M section documents can be linked into an opaque record value that has one field per

shared member of the section documents. If shared members have ambiguous names, an

error is raised.

The resulting record value fully closes over the global environment in which the link process

was performed. Such records are, therefore, suitable components to compose M documents

from other (linked) sets of M documents. There are no opportunities for naming conflicts.

The standard library functions Embedded.Value can be used to retrieve such “embedded”

record values that correspond to reused M components.

11.2 Document Introspection

M provides programmatic access to the global environment by means of the #sections and

#shared keywords.

11.2.1 #sections

The #sections intrinsic variable returns all sections within the global environment as a

record. This record is keyed by section name and each value is a record representation of the

corresponding section indexed by section member name.

The following example shows a document consisting of two sections and the record produced

by evaluating the #sections intrinsic variable within the context of that document:

section Section1;

A = 1;

B = 2;

section Section2;

C = “Hello”;

D = “world”;

#sections

//[

// Section1 = [A = 1, B = 2],

// Section2 = [C = “Hello”, D = “world”]

//]

The following holds when evaluating #sections:

• The #sections intrinsic variable preserves the evaluation state of all section member

expressions within the document.

• The #sections intrinsic variable does not force the evaluation of any unevaluated

section members.

101

11.2.2 #shared

The #shared intrinsic variable returns a record containing the names and values of all shared

section members currently in scope.

The following example shows a document with two shared members and the corresponding

record produced by evaluating the #shared intrinsic variable within the context of that

document:

section Section1;

shared A = 1;

B = 2;

Section Section2;

C = “Hello”;

shared D = “world”;

//[

// A = 1,

// D = “world”

//]

The following holds when evaluating #shared:

• The #shared intrinsic variable preserves the evaluation state of all shared member

expressions within the document.

• The #shared intrinsic variable does not force the evaluation of any unevaluated

section members.

102

12. Consolidated Grammar

12.1 Lexical grammar

lexical-unit:

lexical-elementsopt

lexical-elements:

lexical-element

lexical-element lexical-elements

lexical-element:

whitespace

token

comment

12.1.1 White space

whitespace:

Any character with Unicode class Zs

Horizontal tab character (U+0009)

Vertical tab character (U+000B)

Form feed character (U+000C)

Carriage return character (U+000D) followed by line feed character (U+000A)

new-line-character

new-line-character:

Carriage return character (U+000D)

Line feed character (U+000A)

Next line character (U+0085)

Line separator character (U+2028)

Paragraph separator character (U+2029)

12.1.2 Comment

comment:

single-line-comment

delimited-comment

single-line-comment:

// single-line-comment-charactersopt

single-line-comment-characters:

single-line-comment-character

single-line-comment-characters single-line-comment-character

single-line-comment-character:

Any Unicode character except a new-line-character

103

delimited-comment:

/* delimited-comment-textopt asterisks /

delimited-comment-text:

delimited-comment-section

delimited-comment-text delimited-comment-section

delimited-comment-section:

/

asterisksopt not-slash-or-asterisk

asterisks:

*

asterisks *

not-slash-or-asterisk:

Any Unicode character except * or /

12.1.3 Tokens

token:

identifier

keyword

literal

operator-or-punctuator

12.1.4 Character escape sequences

character-escape-sequence:

#(escape-sequence-list)

escape-sequence-list:

single-escape-sequence

escape-sequence-list , single-escape-sequence

single-escape-sequence:

long-unicode-escape-sequence

short-unicode-escape-sequence

control-character-escape-sequence

escape-escape

long-unicode-escape-sequence:

hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

short-unicode-escape-sequence:

hex-digit hex-digit hex-digit hex-digit

control-character-escape-sequence:

 control-character

104

control-character:

cr

lf

tab

escape-escape:

12.1.5 Literals

literal:

number-literal

text-literal

null-literal

number-literal:

decimal-number-literal

hexadecimal-number-literal

decimal-digits:

decimal-digit

decimal-digit decimal-digits

decimal-digit: one of

0 1 2 3 4 5 6 7 8 9

hexadecimal-number-literal:

0x hex-digits

0X hex-digits

hex-digits:

hex-digit

hex-digit hex-digits

hex-digit: one of

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

decimal-number-literal:

decimal-digits . decimal-digits exponent-partopt

. decimal-digits exponent-partopt

decimal-digits exponent-part

decimal-digits

exponent-part:

e signopt decimal-digits

E signopt decimal-digits

sign: one of

+ -

text-literal:

" text-literal-charactersopt "

105

text-literal-characters:

text-literal-character

text-literal-character text-literal-characters

text-literal-character:

single-text-character

character-escape-sequence

double-quote-escape-sequence

single-text-character:

Any character except " (U+0022) or # (U+0023) followed by ((U+0028)

double-quote-escape-sequence:

"" (U+0022, U+0022)

null-literal:

null

12.1.6 Identifiers

identifier:

regular-identifier

quoted-identifier

regular-identifier:

available-identifier

available-identifier dot-character regular-identifier

available-identifier:

A keyword-or-identifier that is not a keyword

keyword-or-identifier:

letter-character

underscore-character

identifier-start-character identifier-part-characters

identifier-start-character:

letter-character

underscore-character

identifier-part-characters:

identifier-part-character

identifier-part-character identifier-part-characters

identifier-part-character:

letter-character

decimal-digit-character

underscore-character

connecting-character

combining-character

formatting-character

106

generalized-identifier:

generalized-identifier-part

generalized-identifier separated only by blanks (U+0020) generalized-identifier-part

generalized-identifier-part:

generalized-identifier-segment

decimal-digit-character generalized-identifier-segment

generalized-identifier-segment:

keyword-or-identifier

keyword-or-identifier dot-character keyword-or-identifier

dot-character:

. (U+002E)

underscore-character:

_ (U+005F)

letter-character:

A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character:

A Unicode character of classes Mn or Mc

decimal-digit-character:

A Unicode character of the class Nd

connecting-character:

A Unicode character of the class Pc

formatting-character:

A Unicode character of the class Cf

quoted-identifier:

#" text-literal-charactersopt "

12.1.7 Keywords and predefined identifiers

Predefined identifiers and keywords cannot be redefined. A quoted identifier can be used to

handle identifiers that would otherwise collide with predefined identifiers or keywords.

keyword: one of

and as each else error false if in is let meta not otherwise or

section shared then true try type #binary #date #datetime

#datetimezone #duration #infinity #nan #sections #shared #table #time

12.1.8 Operators and punctuators

operator-or-punctuator: one of

, ; = < <= > >= <> + - * / & () [] { } @ ? =>

107

12.2 Syntactic grammar

12.2.1 Documents

document:

section-document

expression-document

12.2.2 Section Documents

section-document:

section

section:

literal-attributesopt section section-nameopt ; section-membersopt

section-name:

identifier

section-members:

section-member

section-member section-members

section-member:

literal-attributesopt sharedopt section-member-name = expression ;

section-member-name:

identifier

12.2.3 Expression Documents

12.2.3.1 Expressions

expression-document:

expression

expression:

logical-or-expression

each-expression

function-expression

let-expression

if-expression

error-raising-expression

error-handling-expression

12.2.3.2 Logical expressions

logical-or-expression:

logical-and-expression

logical-and-expression or logical-or-expression

108

logical-and-expression:

is-expression

logical-and-expression and is-expression

12.2.3.3 Is expression

is-expression:

as-expression

is-expression is nullable-primitive-type

nullable-primitive-type:

nullableopt primitive-type

12.2.3.4 As expression

as-expression:

equality-expression

as-expression as nullable-primitive-type

12.2.3.5 Equality expression

equality-expression:

relational-expression

relational-expression = equality-expression

relational-expression <> equality-expression

12.2.3.6 Relational expression

relational-expression:

additive-expression

additive-expression < relational-expression

additive-expression > relational-expression

additive-expression <= relational-expression

additive-expression >= relational-expression

12.2.3.7 Arithmetic expressions

additive-expression:

multiplicative-expression

multiplicative-expression + additive-expression

multiplicative-expression – additive-expression

multiplicative-expression & additive-expression

multiplicative-expression:

metadata-expression

metadata-expression * multiplicative-expression

metadata-expression / multiplicative-expression

109

12.2.3.8 Metadata expression

metadata-expression:

unary-expression

unary-expression meta unary-expression

12.2.3.9 Unary expression

unary-expression:

type-expression

+ unary-expression

- unary-expression

not unary-expression

12.2.3.10 Primary expression

primary-expression:

literal-expression

list-expression

record-expression

identifier-expression

section-access-expression

parenthesized-expression

field-access-expression

item-access-expression

invoke-expression

not-implemented-expression

12.2.3.11 Literal expression

literal-expression:

literal

12.2.3.12 Identifier expression

identifier-expression:

identifier-reference

identifier-reference:

exclusive-identifier-reference

inclusive-identifier-reference

exclusive-identifier-reference:

identifier

inclusive-identifier-reference:

@ identifier

110

12.2.3.13 Section-access expression

section-access-expression:

identifier ! identifier

12.2.3.14 Parenthesized expression

parenthesized-expression:

(expression)

12.2.3.15 Not-implemented expression

not-implemented-expression:

...

12.2.3.16 Invoke expression

invoke-expression:

primary-expression (argument-listopt)

argument-list:

expression

expression , argument-list

12.2.3.17 List expression

list-expression:

{ item-listopt }

item-list:

item

item , item-list

item:

expression

expression .. expression

12.2.3.18 Record expression

record-expression:

[field-listopt]

field-list:

field

field , field-list

field:

field-name = expression

field-name:

generalized-identifier

111

12.2.3.19 Item access expression

item-access-expression:

item-selection

optional-item-selection

item-selection:

primary-expression { item-selector }

optional-item-selection:

primary-expression { item-selector } ?

12.2.3.20 Field access expressions

field-access-expression:

field-selection

implicit-target-field-selection

projection

implicit-target-projection

field-selection:

primary-expression field-selector

field-selector:

required-field-selector

optional-field-selector

required-field-selector:

[field-name]

optional-field-selector:

[field-name] ?

field-name:

generalized-identifier

implicit-target-field-selection:

field-selector

projection:

primary-expression required-projection

primary-expression optional-projection

required-projection:

[required-selector-list]

optional- projection:

[required-selector-list] ?

required-selector-list:

required-field-selector

required-field-selector , required-selector-list

implicit-target -projection:

projection

112

12.2.3.21 Function expression

function-expression:

(parameter-listopt) return-typeopt => function-body

function-body:

expression

parameter-list:

fixed-parameter-list

fixed-parameter-list , optional-parameter-list

optional-parameter-list

fixed-parameter-list:

parameter

parameter , fixed-parameter-list

parameter:

parameter-name parameter-typeopt

parameter-name:

identifier

parameter-type:

assertion

return-type:

assertion

 assertion:

as type

optional-parameter-list:

optional-parameter

optional-parameter , optional-parameter-list

optional-parameter:

optional parameter

12.2.3.22 Each expression

each-expression:

each each-expression-body

each-expression-body:

function-body

12.2.3.23 Let expression

let-expression:

let variable-list in expression

variable-list:

variable

variable , variable-list

113

variable:

variable-name = expression

variable-name:

identifier

12.2.3.24 If expression

if-expression:

if if-condition then true-expression else false-expression

if-condition:

expression

true-expression:

expression

false-expression:

expression

12.2.3.25 Type expression

type-expression:

primary-expression

type primary-type

type:

parenthesized-expression

primary-type

primary-type:

primitive-type

record-type

list-type

function-type

table-type

nullable-type

primitive-type: one of

any anynonnull binary date datetime datetimezone duration function

list logical none null number record table text type

record-type:

[open-record-marker]

[field-specification-list]

[field-specification-list , open-record-marker]

field-specification-list:

field-specification

field-specification , field-specification-list

field-specification:

optionalopt identifier field-type-specificationopt

114

field-type-specification:

= field-type

 field-type:

type

 open-record-marker:

...

list-type:

{ item-type }

item-type:

type

function-type:

function (parameter-specification-listopt) return-type

parameter-specification-list:

required-parameter-specification-list

required-parameter-specification-list , optional-parameter-specification-list

optional-parameter-specification-list

required-parameter-specification-list:

required-parameter-specification

required-parameter-specification , required-parameter-specification-list

required-parameter-specification:

parameter-specification

optional-parameter-specification-list:

optional-parameter-specification

optional-parameter-specification , optional-parameter-specification-list

optional-parameter-specification:

optional parameter-specification

parameter-specification:

parameter-name parameter-type

table-type:

table row-type

row-type:

[field-specification-list]

nullable-type:

nullable type

12.2.3.26 Error raising expression

error-raising-expression:

error expression

115

12.2.3.27 Error handling expression

error-handling-expression:

try protected-expression otherwise-clauseopt

protected-expression:

expression

otherwise-clause:

 otherwise default-expression

default-expression:

expression

12.2.4 Literal Attributes

literal-attributes:

record-literal

record-literal:

[literal-field-listopt]

literal-field-list:

literal-field

literal-field , literal-field-list

literal-field:

field-name = any-literal

list-literal:

{ literal-item-listopt }

literal-item-list:

any-literal , literal-item-list

any-literal:

record-literal

list-literal

logical-literal

number-literal

text-literal

null-literal

	1. Introduction
	1.1 Overview
	1.2 Expressions and values
	1.3 Evaluation
	1.4 Functions
	1.5 Library
	1.6 Operators
	1.7 Metadata
	1.8 Let expression
	1.9 If expression
	1.10 Errors

	2. Lexical Structure
	2.1 Documents
	2.2 Grammar conventions
	2.3 Lexical Analysis
	2.4 Whitespace
	2.5 Comments
	2.6 Tokens
	2.6.1 Character Escape Sequences
	2.6.2 Literals
	2.6.2.1 Null literals
	2.6.2.2 Logical literals
	2.6.2.3 Number literals
	2.6.2.4 Text literals

	2.6.3 Identifiers
	2.6.3.1 Generalized Identifiers

	2.6.4 Keywords
	2.6.5 Operators and punctuators

	3. Basic Concepts
	3.1 Values
	3.2 Expressions
	3.3 Environments and variables
	3.3.1 Identifier references

	3.4 Order of evaluation
	3.5 Side effects
	3.6 Immutability

	4. Values
	4.1 Null
	4.2 Logical
	4.3 Number
	4.4 Time
	4.5 Date
	4.6 DateTime
	4.7 DateTimeZone
	4.8 Duration
	4.9 Text
	4.10 Binary
	4.11 List
	4.12 Record
	4.13 Table
	4.14 Function
	4.15 Type

	5. Types
	5.1 Primitive Types
	5.2 Any Type
	5.3 List Types
	5.4 Record Types
	5.5 Function Types
	5.6 Table types
	5.7 Nullable types
	5.8 Ascribed type of a value
	5.9 Type equivalence and compatibility

	6. Operators
	6.1 Operator precedence
	6.2 Operators and metadata
	6.3 Structurally recursive operators
	6.4 Selection and Projection Operators
	6.4.1 Item Access
	6.4.2 Field Access

	6.5 Metadata operator
	6.6 Equality operators
	6.7 Relational operators
	6.8 Conditional logical operators
	6.9 Arithmetic Operators
	6.9.1 Precision
	6.9.2 Addition operator
	6.9.2.1 Numeric sum
	6.9.2.2 Sum of durations
	6.9.2.3 Datetime offset by duration

	6.9.3 Subtraction operator
	6.9.3.1 Numeric difference
	6.9.3.2 Difference of durations
	6.9.3.3 Datetime offset by negated duration
	6.9.3.4 Duration between two datetimes

	6.9.4 Multiplication operator
	6.9.4.1 Numeric product
	6.9.4.2 Multiples of durations

	6.9.5 Division operator
	6.9.5.1 Numeric quotient
	6.9.5.2 Quotient of durations
	6.9.5.3 Scaled durations

	6.10 Structure Combination
	6.10.1 Concatenation
	6.10.2 Merge
	6.10.2.1 Record merge
	6.10.2.2 Date-time merge

	6.11 Unary operators
	6.11.1 Unary plus operator
	6.11.2 Unary minus operator
	6.11.3 Logical negation operator

	6.12 Type operators
	6.12.1 Type compatibility operator
	6.12.2 Type assertion operator

	7. Let
	7.1 Let expression

	8. Conditionals
	9. Functions
	9.1 Writing functions
	9.2 Invoking functions
	9.3 Parameters
	9.4 Recursive functions
	9.5 Closures
	9.6 Functions and environments
	9.7 Simplified declarations

	10. Error Handling
	10.1 Raising errors
	10.2 Handling errors
	10.3 Errors in record and let initializers
	10.4 Not implemented error

	11. Sections
	11.1 Document Linking
	11.2 Document Introspection
	11.2.1 #sections
	11.2.2 #shared

	12. Consolidated Grammar
	12.1 Lexical grammar
	12.1.1 White space
	12.1.2 Comment
	12.1.3 Tokens
	12.1.4 Character escape sequences
	12.1.5 Literals
	12.1.6 Identifiers
	12.1.7 Keywords and predefined identifiers
	12.1.8 Operators and punctuators

	12.2 Syntactic grammar
	12.2.1 Documents
	12.2.2 Section Documents
	12.2.3 Expression Documents
	12.2.3.1 Expressions
	12.2.3.2 Logical expressions
	12.2.3.3 Is expression
	12.2.3.4 As expression
	12.2.3.5 Equality expression
	12.2.3.6 Relational expression
	12.2.3.7 Arithmetic expressions
	12.2.3.8 Metadata expression
	12.2.3.9 Unary expression
	12.2.3.10 Primary expression
	12.2.3.11 Literal expression
	12.2.3.12 Identifier expression
	12.2.3.13 Section-access expression
	12.2.3.14 Parenthesized expression
	12.2.3.15 Not-implemented expression
	12.2.3.16 Invoke expression
	12.2.3.17 List expression
	12.2.3.18 Record expression
	12.2.3.19 Item access expression
	12.2.3.20 Field access expressions
	12.2.3.21 Function expression
	12.2.3.22 Each expression
	12.2.3.23 Let expression
	12.2.3.24 If expression
	12.2.3.25 Type expression
	12.2.3.26 Error raising expression
	12.2.3.27 Error handling expression

	12.2.4 Literal Attributes

