- Terms:
- DLo is the difference in two longitudes.
- $\lambda 1$ is the starting longitude.
- $\lambda 2$ is the ending longitude.
- L1 is the starting latitude.
- L2 is the ending latitude.
- Vertex is the most poleward position along the great circle route.
- Lv is the latitude of the vertex.
- $\lambda \mathrm{v}$ is the longitude of the vertex.
- Lx is the latitude of any spot along the great circle route.
- $\operatorname{DLo}(\mathrm{v})$ is the difference in longitude from the vertex to a point on the great circle route.
- Cn or C is the course/course angle. Course angle is the course measured from 0° at the reference direction clockwise or counterclockwise through 90° or 180°. It is labeled with the reference direction as a prefix and the direction of measurement from the reference direction as a suffix. For example, a true course of $330^{\circ} \mathrm{T}$ would be noted as $\mathrm{N} 30^{\circ} \mathrm{W}$.
- D is distance in nautical miles.
- The main formula needed are:
- $\operatorname{Sin} C=\frac{((\operatorname{Sin} D L o)(\operatorname{Cos} L 2))}{\operatorname{Sin} D}$
- $\operatorname{Cos} L v=(\operatorname{Cos} L 1)(\operatorname{Sin} C)$
- $\operatorname{Sin} \operatorname{DLo}(v)=\frac{\operatorname{Cos} C}{\operatorname{Sin} L v}$
- $\operatorname{Tan} L x=((\operatorname{Cos} D L o(v))($ Tan Lv $))$
- $\operatorname{Csc} L x=(\operatorname{CscLv})(\operatorname{Sec} D V x)$
- $\operatorname{Cos} D=((\sin L 1)(\sin L 2)+(\cos L 1)(\cos L 2)(\cos D L o))$

Bowditch Formula:

Formula 24

Formula 25
Formula 27

Formula 31
Formula 32

- $\operatorname{Tan} C=\left(\frac{\sin D L o}{((\cos L 1)(\tan L 2))-((\sin L 1)(\cos D L o))}\right)$

Formula 36
Formula 37

- Bowditch article 1016 provides background knowledge on this task and is available during Coast Guard exams. Additionally, all of Bowditch chapter X is useful for this topic.
- See the article in Bowditch or in this text regarding basic trigonometric functions and particularly how to take the inverse Sin , Cos, and Tan when solving equations.
- Great Circle Sailings questions can come in three main varieties:
- Seeking the course and/or distance.
- Seeking the latitude and/or longitude of the vertex.
- Seeking a position along the great circle route.

Initial Course and/or Distance

GRC D1. Determine the distance and initial course along a great circle route from $33^{\circ} 53.3^{\prime} \mathrm{S}$, $18^{\circ} 23.1^{\prime} \mathrm{E}$ to a position $40^{\circ} 27.0^{\prime} \mathrm{N}, 73^{\circ} 49.4^{\prime} \mathrm{W}$.

Answer: $6762.7 \mathrm{~nm}, 304.5^{\circ} \mathrm{T}$
Step 1: Convert standard latitude and longitudes to decimal form:
Departure Location
$33^{\circ} 53.3^{\prime} \mathrm{S}=33.888^{\circ} \mathrm{S}$
$18^{\circ} 23.1^{\prime} \mathrm{E}=18.385^{\circ} \mathrm{E}$
Arrival Location
$40^{\circ} 27.0^{\prime} \mathrm{N}=40.450^{\circ} \mathrm{N}$
$73^{\circ} 49.4^{\prime} \mathrm{W}=73.823^{\circ} \mathrm{W}$
Step 2: Determine the Difference in Longitude.

$$
\begin{aligned}
& \lambda 1=18.385^{\circ} \mathrm{E} \\
& \lambda 2=73.823^{\circ} \mathrm{W} \\
& \text { DLo }=18.385^{\circ}+73.823^{\circ}=92.208^{\circ} \text { to the west. }
\end{aligned}
$$

Step 3: Determine the Distance.

$$
\begin{aligned}
& \operatorname{Cos} D=((\sin L 1)(\sin L 2)+(\cos L 1)(\cos L 2)(\cos D L o)) \\
& \operatorname{Cos} D=\left(\left(\sin 33.888^{\circ}\right)\left(\sin -40.450^{\circ}\right)+\left(\cos 33.888^{\circ}\right)\left(\cos -40.450^{\circ}\right)\left(\cos 92.208^{\circ}\right)\right) \\
& \operatorname{Cos} D=((0.5576)(-0.6488)+(0.8301)(0.7610)(-0.0385)) \\
& \operatorname{Cos} D=((-0.3618)+(-0.0243)) \\
& \operatorname{Cos} D=-0.3861 \\
& D=112.7^{\circ}=6762.7 \mathrm{~nm}
\end{aligned}
$$

Great Circle Sailings Problems

Step 4: Determine the Course Angle.
$\operatorname{Sin} C=\frac{((\operatorname{Sin} D L o)(\operatorname{Cos} L 2))}{\operatorname{Sin} D}$
$\operatorname{Sin} C=\frac{\left(\left(\operatorname{Sin} 92.208^{\circ}\right)\left(\operatorname{Cos} 40.450^{\circ}\right)\right)}{\operatorname{Sin} 112.7^{\circ}}$
$\operatorname{Sin} C=\frac{(0.9993)(0.7610)}{(.9225)}$
$\operatorname{Sin} C=\frac{(0.7605)}{(.9225)}$
$\operatorname{Sin} C=0.8244$
$C=55.5^{\circ}$

Because of the departure from the southern hemisphere, the elevated pole is the south pole and the correct course angle notation is $\mathrm{S} 55.5^{\circ} \mathrm{W}$.

However due to the change in hemispheres, the prefix must be reversed, so the correct course angle is $\mathrm{N} 55.5^{\circ} \mathrm{W}$, or $\mathbf{3 0 4 . 5}{ }^{\circ} \mathbf{~}$.

Great Circle Sailings Problems

Latitude and Longitude of the Vertex Problems

GRC D2. The great circle distance from latitude $25^{\circ} 50.0^{\prime} \mathrm{N}$, longitude $077^{\circ} 00.0^{\prime} \mathrm{W}$ to latitude $35^{\circ} 56.0^{\prime} \mathrm{N}$, longitude $006^{\circ} 15.0^{\prime} \mathrm{W}$ is 3616 nautical miles. The initial course is $061.7^{\circ} \mathrm{T}$. Determine the latitude and longitude of the vertex.

Answer: $37^{\circ} 35^{\prime} \mathrm{N}, 025^{\circ} 59^{\prime} \mathrm{W}$

Step 1: Convert standard latitude and longitudes to decimal form:
Departure Location
$25^{\circ} 50.0^{\prime} \mathrm{N}=25.833^{\circ} \mathrm{N}$
$77^{\circ} 00.0^{\prime} \mathrm{W}=77.000^{\circ} \mathrm{W}$

Arrival Location
$35^{\circ} 56.0^{\prime} \mathrm{N}=35.933^{\circ} \mathrm{N}$
$06^{\circ} 15.0^{\prime} \mathrm{W}=06.250^{\circ} \mathrm{W}$
Step 2: Determine the Latitude of the Vertex.

$$
\begin{aligned}
& L v=\cos ^{-1}((\cos L 1)(\sin C)) \\
& L v=\cos ^{-1}\left(\left(\cos 25.833^{\circ}\right)\left(\sin 61.7^{\circ}\right)\right) \\
& L v=\cos ^{-1}(0.9000)(0.8805) \\
& L v=\cos ^{-1}(0.7924) \\
& L v=37.587^{\circ}
\end{aligned}
$$

Step 3: Convert the decimal longitude to standard notation.

$$
37.587^{\circ} \mathrm{N}=37^{\circ} \mathbf{3 5}, \mathbf{N}
$$

Step 4: Determine the Difference in Longitude of the Vertex (DLo(v))

$$
\begin{aligned}
& D L o(v)=\sin ^{-1}\left(\frac{\cos C}{\sin L v}\right) \\
& D L o(v)=\sin ^{-1}\left(\frac{\cos 61.7^{\circ}}{\sin (37.587)}\right) \\
& D L o(v)=\sin ^{-1}\left(\frac{(0.4741)}{(0.6099)}\right) \\
& D L o(v)=\sin ^{-1}(0.7773) \\
& D L o(v)=51.02^{\circ}
\end{aligned}
$$

Step 5: Determine the Longitude of the Vertex given the initial longitude and the direction of travel (easterly in this case based on given positions).
Longitude $1=77.000^{\circ} \mathrm{W}$
Difference of Long $(\mathrm{vx})=51.02^{\circ}$
Longitude of the Vertex $=77.00^{\circ}-51.02^{\circ}=25.98^{\circ} \mathrm{W}$
Step 6: Convert the decimal longitude to standard notation. $25.98^{\circ} \mathrm{W}=25^{\circ} \mathbf{5 9}$ ' W

Positions Along the Great Circle Route

GRC D3. The great circle distance from latitude $25^{\circ} 50.0^{\prime} \mathrm{N}$, longitude $077^{\circ} 00.0^{\prime} \mathrm{W}$ to latitude $35^{\circ} 56.0^{\prime} \mathrm{N}$, longitude $006^{\circ} 15.0^{\prime} \mathrm{W}$ is 3616 nautical miles. The initial course is $061.7^{\circ} \mathrm{T}$. The position of the vertex is $37^{\circ} 35^{\prime} \mathrm{N}, 25^{\circ} 59^{\prime} \mathrm{W}$. Determine the latitude intersecting the great circle track 600 miles west of the vertex, along the great circle track.

Answer: $37^{\circ} 09^{\prime} \mathrm{N}$
Step 1: Convert standard latitude and longitudes to decimal form:
Departure Location

$$
25^{\circ} 50.0^{\prime} \mathrm{N}=25.834^{\circ} \mathrm{N}
$$

$$
77^{\circ} 00.0^{\prime} \mathrm{W}=77.000^{\circ} \mathrm{W}
$$

Arrival Location
$35^{\circ} 56.0^{\prime} \mathrm{N}=35.934^{\circ} \mathrm{N}$
$06^{\circ} 15.0^{\prime} \mathrm{W}=06.250^{\circ} \mathrm{W}$
Latitude of the Vertex
$37^{\circ} 35^{\prime} \mathrm{N}=37.583^{\circ} \mathrm{N}$
Longitude of the Vertex
$25^{\circ} 59^{\prime} \mathrm{W}=25.983^{\circ} \mathrm{W}$
Step 2: Convert 600 miles to arc.

$$
600 \div 60=10^{\circ}
$$

Step 3: Determine the latitude at a position 600 miles (10° of arc) west of the vertex along the great circle track.

$$
\begin{aligned}
& \operatorname{Tan} L x=((\operatorname{Cos} \operatorname{DLo}(\mathrm{v}))(\operatorname{Tan} \mathrm{Lv})) \\
& \operatorname{Tan} L x=\left(\left(\operatorname{Cos}\left(10^{\circ}\right)\right)(\operatorname{Tan} 37.583)\right) \\
& \operatorname{Tan} L x=((0.9848)(0.7696)) \\
& \operatorname{Tan} L x=(0.7579) \\
& L x=37.158^{\circ}
\end{aligned}
$$

Step 4: Convert the decimal latitude to standard notation.

$$
L x=37.158^{\circ}=37^{\circ} \mathbf{0 9} \mathbf{N}
$$

