STUDY CARDS

© The Flipped Teacher 2020

MODULE 1: STRUCTURE & PROPERTIES OF MATTER

CHEMISTRY

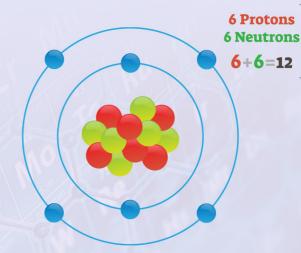
ATOMIC STRUCTURE

BASIC MODEL

• 3 main subatomic particles

Flectrons

- negative in charge
- located in shells that surround the nucleus.
- 1840 X less mass than a proton
- 1/1840 amu


Protons

- positive charge
- located in nucleus
- 1 amu

Neutrons

- neutral charge
- located in nucleus
- 1 amu

Syllabus statement:

* investigate the basic structure of stable and unstable isotopes by examining: - the distribution of electrons, protons and neutrons in the atom

Video in course

ATOMIC STRUCTURE

REPRESENTATION

 On the PT, elements are represented as follows Atomic Number → 79 **Au**Name → Gold

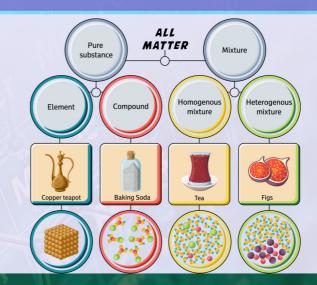
atomic # = the number of protons in the nucleus.

Electrons per shell —

Gold 196.97 2-8-18-32-18-1 ← Atomic Weight

- atomic mass = the number of protons + neutrons in the nucleus.
- For NEUTRAL atoms, the # protons = # electrons

STRUCTURE OF MATTER

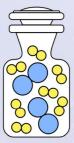

PURE VS IMPURE

• Pure substances:

- have only ONE type of atom, compound present.
- have fixed, well defined M.P & B.P

Impure substances:

- have two or more types of atoms, compounds present.
- variable M.P & B.P.
- can be physically separated



Syllabus statement:

Video in course * explore homogeneous mixtures and heterogeneous mixtures through practical investigations: - using separation techniques based on physical properties

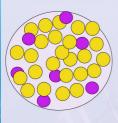
Mixtures:

- contain two or more different components (elements or compounds)
- have variable physical properties
- can be homogeneous or heterogeneous in nature

Mixture (H, and O,) Heterogeneous mixture that has:

- water
- orange pulp
- vitamins
- sugars

Colour of juice and concentration of components vary throughout a sample.


Syllabus statement:

MIXTURE TYPES HOMOGENEOUS

Homogeneous Mixtures:

- have uniform properties throughout
- composition, texture, density, colour, concentrations, are the same from one location to the next.

!Mixture that has: •water •food colouring

The distribution of food colour molecules are evenly spread throughout the liquid.

Colour, concentration are the SAME in all locations.

Red food colouring in water


Syllabus statement:

- using separation techniques based on physical properties

MIXTURE TYPES HETEROGENEOUS

Heterogeneous Mixtures:

- don't have uniform properties throughout
- composition, texture, density, colour, concentrations, may vary significantly from one location to the next.

Mixture has:

- water
- oil

The distribution of oil is not \ uniform. It clumps.

Two distinct layers can be seen.

Oil and water

Syllabus statement:

Video in course * explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties

SIEVING

 Sieving: a technique in which two or more components of a mixture can be separated based on their size difference.

 Sieving: only works if components have different sizes. eg will NOT work to separate a mixture of flour and chalk powder

Sieving a mixture of nuts

Geological Soil Profile

Soil mixture is placed in top, agitator turned on. The soil grains fall through each sieve grate until each sieve holds soil particles for its diameter size

Syllabus statement:

* explore homogeneous mixtures and heterogeneous mixtures through practical investigations: Video in course

– using separation techniques based on physical properties 2.5

DECANTATION

Decantation: a technique of separation for liquid-liquid immiscible liquids (oil/water) OR an insoluble solid that has settled from a liquid (muddy water).

Physical Property: density

Immiscible-liquids

Sediment in rivers

Decanting a solid-liquid mixture

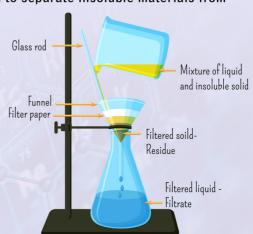
Syllabus statement:

* explore homogeneous mixtures and heterogeneous mixtures through practical investigations: Video in course - using separation techniques based on physical properties 2.4

SEPARATING MIXTURES

FILTRATION

• Filtration: a technique of separation used to separate insoluble materials from soluble materials.


Physical Property:

- (a) solubility
 - soluble component in filtrate

(b) particle size

 filter paper separates insoluble material which remains in the residue.

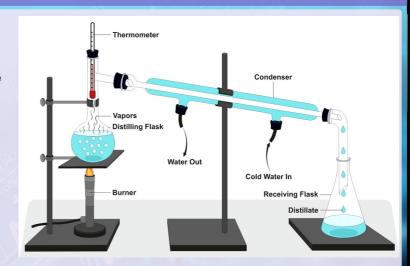
Syllabus statement:

* explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties

Video in course

2.

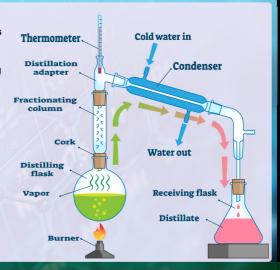


SIMPLE DISTILLATION

• Distillation:

a technique of separation used to separate mixtures containing miscible liquids who have relatively large gaps between their B.P (> 30°C)

Physical Property: B.P


Syllabus statement:

SEPARATING MIXTURES FRACTIONAL DISTILLATION

• Fractional Distillation:

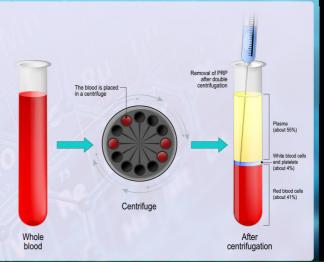
- is used when the B.P of the components are close together.
- this allows continual evaporation and condensation cycles to occur producing a more pure distillate.
- the most volatile components vapourise first.
- Physical Property: B.P
- Fractionating column is designed to have a large SA with glass beads, glass spirals often in the column.

Syllabus statement:

* explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties

Video in course


2.10

CENTRIFUGATION

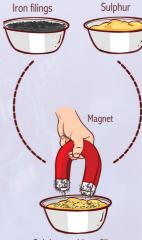
Centrifugation:

- is used to separate suspended particles in a solution due to differences in size, mass, density or viscosity.
- high speed is used to provide the force used to separate particles.
- **Physical Property:** size, mass, density, viscosity

Syllabus statement:

Video in course explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties



MAGNETIC SEPARATION

• Magnetic Separation:

- is used to separate magnetic materials from non-magnetic materials.
 often used in Industry to remove iron ore from waste or metal from recycling in factory processing.
- Magnetic materials have Fe, Ni or Co in them.
- Physical Property: magnetic attraction (material must be ferromagnetic)

Sulphur and Iron filings

Syllabus statement:

* explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties

Video in course

2.0

SEPARATING MIXTURES EVAPORATIVE CRYSTALISATION

- Evaporative crystallisation:
- is used to separate a mixture of soluble solutes.
- when solubility decreases, pure crystals form as they push out impurities when forming a crystal.
- differences in solubility are used to separate components.

 Physical Property: solubility in fixed volume of water

Syllabus statement: