
Java Programming AP Edition
U4C11 Inheritance and Polymorphism

INHERITANCE (SUPER CLASS AND SUBCLASS)

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

Inheritance
Inheritance in Java begins with the relationship between two classes
defined like this:
class SubClass extends SuperClass
Inheritance expresses the is a relationship in that SubClass is a
(specialization of) SuperClass. The extends relation has many of the
same characteristics of the implements relationship used for
interfaces
class MyImplementationClass implements MyInterface
As with inheritance, we say that MyImplementationClass is a
MyInterface.

Inheritance
Diagrammatically, these relationships are expressed in UML with the
extends as a solid line (white Triangle in some tools) and
implements as a dashed line:

The is a relationship is transitive
in that, if we have this hierarchy:

Inheritance
in which
ClassB is a ClassA
ClassC is a ClassB
then, by transitivity:
ClassC is a ClassA
The term base class is also used for superclass, and derived class as subclass.
Being a subclass is also transitive in that we can say that:
ClassC is a subclass of ClassA
The term inheritance expresses the fact that the objects of the subclass inherit
all the features of the superclass including data members and functions,
although the private data members and functions of the superclass are not
directly accessible.

What does a subclass inherit?
A subclass inherits all the members (fields, methods, and nested
classes) from its superclass. Constructors are not members, so
they are not inherited by subclasses, but the constructor of the
superclass can be invoked from the subclass.

Members of a class that are declared private are not directly accessible by
subclasses of that class. Only members of a class that are declared
protected or public are accessed directly by subclasses declared in a
package other than the one in which the class is declared.

protected: no access by other package but can be inherited.

Visibility Modifiers

Modifier Inheritance Access

+public All All

#protected All Subclasses

~default (none) All Same package

-private All Same class

Accessing an Objects of subclasses
(Subclass is another kind of Wrapper Class)

class A

-a: int

-f(): void

+getA(): int

+b: double

class A

-a: int

-f(): void

+getA(): int

+b: double

class B

-c: int

-h(): void

+getC(): int

+d: int

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

Superclasses and Subclasses

Demo Programs:
(TestCircleRectangle.java GeometricObject.java CircleFromSimpleGeometricObject.java
RectangleFromSimpleGeometricObject.java)

Go BlueJ!!!

Are superclass’s Constructor Inherited?
• No. They are not inherited.

• They are invoked explicitly or implicitly.

• Explicitly using the super keyword.

A constructor is used to construct an instance of a class. Unlike
properties and methods, a superclass's constructors are not inherited in
the subclass. They can only be invoked from the subclasses' constructors,
using the keyword super. If the keyword super is not explicitly used, the
superclass's no-arg constructor is automatically invoked.

Superclass’s Constructor Is Always
Invoked

A constructor may invoke an overloaded constructor or its superclass’s
constructor. If none of them is invoked explicitly, the compiler puts super() as
the first statement in the constructor. For example,

public A(double d) {

 // some statements

}

is equivalent to

public A(double d) {

 super();

 // some statements

}

public A() {

}

is equivalent to

public A() {

 super();

}

Violet UML for Inheritance
Go Violet UML Editor!!!

