4 Colourless solutions of $\mathbf{X}(\mathrm{aq})$ and $\mathbf{Y}(\mathrm{aq})$ react to form an orange solution of $\mathbf{Z}(\mathrm{aq})$ according to the following equation.

$$
\mathbf{X}(\mathrm{aq})+2 \mathbf{Y}(\mathrm{aq}) \rightleftharpoons \mathbf{Z}(\mathrm{aq}) \quad \Delta H=-20 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

A student added a solution containing 0.50 mol of $\mathbf{X}(\mathrm{aq})$ to a solution containing 0.50 mol of $\mathrm{Y}(\mathrm{aq})$ and shook the mixture.

After 30 seconds, there was no further change in colour.
The amount of $\mathbf{Z}(\mathrm{aq})$ at equilibrium was 0.20 mol .

0	4	1	Deduce the amounts of $\mathbf{X}(\mathrm{aq})$ and $\mathbf{Y}(\mathrm{aq})$ at equilibrium.

Amount of $\mathbf{X}(\mathrm{aq})=$ \qquad mol

Amount of $\mathbf{Y}(\mathrm{aq})=$ mol

| 0 | 4 | 2 |
| :--- | :--- | :--- | time of initial mixing until 60 seconds had elapsed.

[3 marks]

| $\mathbf{0}$ | $\mathbf{4}$. |
| :--- | :--- | concentrations of \mathbf{X} and \mathbf{Z} were:

$\mathbf{X}(\mathrm{aq})=0.40 \mathrm{~mol} \mathrm{dm}^{-3}$ and $\mathbf{Z}(\mathrm{aq})=0.35 \mathrm{~mol} \mathrm{dm}^{-3}$.
For this reaction, the equilibrium constant $K_{\mathrm{c}}=2.9 \mathrm{~mol}^{-2} \mathrm{dm}^{6}$.
Calculate a value for the concentration of \mathbf{Y} at equilibrium.
Give your answer to the appropriate number of significant figures.
$[\mathrm{Y}]=$ \qquad $\mathrm{mol} \mathrm{dm}^{-3}$
 $\mathbf{Z}(\mathrm{aq})$ in Question 4.3.

Suggest how the colour of the mixture changed. Give a reason for your answer.

Colour change \qquad
Reason \qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{5}$ The student warmed the equilibrium mixture from Question 4.3. |
| :--- | :--- | :--- | :--- |

Predict the colour change, if any, when the equilibrium mixture was warmed.
\qquad
\qquad

