Question	Marking guidance	Mark	AO	Comments
06.1	Burette	1	AO3 1b	
	Because it can deliver variable volumes	1	AO2g	
06.2	The change in pH is gradual / not rapid at the end point	1	AO3 1a	
	An indicator would change colour over a range of volumes of sodium hydroxide	1	AO3 1a	Allow indicator would not change colour rapidly / with a few drops of NaOH
06.3	$[H^+] = 10^{-pH} = 1.58 \times 10^{-12}$	1	AO2h	
	$K_{\rm w}$ = [H ⁺] [OH ⁻] therefore [OH ⁻] = $K_{\rm w}$ / [H ⁺]	1	AO2h	
	Therefore, $[OH^{-}] = 1 \times 10^{-14}/1.58 \times 10^{-12} = 6.33 \times 10^{-3} \text{ (mol dm}^{-3})$	1	AO2h	Allow $6.31-6.33 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$
06.4	At this point, $[NH_3] = [H^{\dagger}]$			
	Therefore $K_a = \underline{[H^{\pm}]^2}$ $[NH_4^{\dagger}]$	1	AO2f	
	$[H^+] = 10^{-4.6} = 2.51 \times 10^{-5}$	1	AO2f	
	$K_a = (2.51 \times 10^{-5})^2/2 = 3.15 \times 10^{-10} \text{ (mol dm}^{-3})$	1	AO2f	Allow $3.15-3.16 \times 10^{-10} \text{ (mol dm}^{-3}\text{)}$
06.5	When $[NH_3] = [NH_4^+]$, $K_a = [H^+]$ therefore $-\log K_a = -\log [H^+]$	1	AO2h	Answer using alternative value
	Therefore pH = $-\log_{10}(3.15 \times 10^{-10}) = 9.50$	1	AO2h	M2 pH = $-\log_{10}(4.75 \times 10^{-9}) = 8.32$
				Allow consequential marking based on answer from 6.4