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CREDIBILITY USING COPULAS
Edward W. Frees* and Ping Wang†

ABSTRACT

Credibility is a form of insurance pricing that is widely used, particularly in North America. The
theory of credibility has been called a ‘‘cornerstone’’ in the field of actuarial science. Students of
the North American actuarial bodies also study loss distributions, the process of statistical inference
of relating a set of data to a theoretical (loss) distribution. In this work, we develop a direct link
between credibility and loss distributions through the notion of a copula, a tool for understanding
relationships among multivariate outcomes.

This paper develops credibility using a longitudinal data framework. In a longitudinal data
framework, one might encounter data from a cross section of risk classes (towns) with a history
of insurance claims available for each risk class. For the marginal claims distributions, we use
generalized linear models, an extension of linear regression that also encompasses Weibull and
Gamma regressions. Copulas are used to model the dependencies over time; specifically, this
paper is the first to propose using a t-copula in the context of generalized linear models. The t-
copula is the copula associated with the multivariate t-distribution; like the univariate t-
distributions, it seems especially suitable for empirical work. Moreover, we show that the t-copula
gives rise to easily computable predictive distributions that we use to generate credibility predic-
tors. Like Bayesian methods, our copula credibility prediction methods allow us to provide an
entire distribution of predicted claims, not just a point prediction.

We present an illustrative example of Massachusetts automobile claims, and compare our new
credibility estimates with those currently existing in the literature.

1. INTRODUCTION

Credibility rate making is a technique for predicting future expected claims of a risk class, given past

claims of that and related risk classes. This technique has a long history in actuarial science, with

fundamental contributions dating back to Mowbray (1914). Whitney (1918) introduced the intuitively

appealing concept of using a weighted average of (1) average claims from the risk class and (2) average

claims over all risk classes to predict future expected claims. The weight associated with the risk class

under consideration is known as the credibility factor.

In part, credibility predictors succeed in practice because they are intuitively appealing. By expressing

the predictors as weighted averages, credibility predictors are straightforward in their explanation of

actuarial merchandise to consumers. The American Academy of Actuaries published an important piece

of evidence on this in the discussion of credibility applications in the Actuarial Standard of Practice

Number 25.

In part, credibility predictors succeed because they are known to be the best possible predictors in

a broad variety of situations. Bühlmann (1967) described a fundamental model containing latent (unob-

served) effects that are common to all claims from a risk class; Bühlmann called these ‘‘structure

effects.’’ The ‘‘best’’ linear unbiased predictors that can be derived from this model turn out to be the

* Edward W. Frees is a Professor with the School of Business, University of Wisconsin, 975 University Avenue, Madison, WI 53706,
jfrees@bus.wisc.edu.
† Ping Wang is a Ph.D candidate, Actuarial Science, Risk Management and Insurance, University of Wisconsin-Madison, 3164 Grainger, Madison,
WI 53706, pwang4@wisc.edu.
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32 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 9, NUMBER 2

same intuitively appealing linear credibility predictors described above. Bühlmann’s basic model for-

mulation extends readily to encompass a large class of models. See Frees, Young, and Luo (1999) for

a review that is oriented towards linear regression and longitudinal data models.

In Bühlmann’s model formulation, the descriptor ‘‘best’’ means minimum mean square error. Al-

though minimizing a mean square error has proven to be very useful in applied statistics, it is well-

known that it may not be appropriate for skewed or long-tailed distributions such as commonly en-

countered in insurance claims analysis.

To account for the entire distribution of claims, a common approach used in credibility is to adopt

a Bayesian perspective. Keffer (1929) initially suggested using a Bayesian perspective for experience

rating in the context of group life insurance. Subsequently, Bailey (1945, 1950) showed how to derive

the linear credibility form from a Bayesian perspective as the mean of a predictive distribution. Several

authors have provided useful extensions of this paradigm. Jewell (1974) extended Bailey’s results to a

broader class of distributions, the natural exponential family, with conjugate prior distributions for the

structure variables. Klugman (1992) investigated normal linear hierarchical models; this restricts the

class of distributions but allows the analyst to include covariate effects.

In addition to the works cited above, we also note the work of Miller and Hickman (1975) and Pinquet

(1997). Miller and Hickman examined credibility in the context of aggregate loss distributions. Pinquet

was also interested in automobile claims; he considered collision claims arising from two lines, at fault

and no fault coverages. Both of these papers assumed parametric distributions for the claims number

and amount distributions and used Bayesian techniques to develop estimators.

In the Bayesian framework, one can explicitly account for the distribution of claims conditional

on the latent structure variable (sampling distribution), make a preliminary (prior) assumption about

the distribution of the structure variable, and use the data to improve this preliminary assumption

(and hence compute the posterior distribution). This new posterior distribution, together with the

sampling distribution, can then be used to compute the predictive distribution of a new claim, given

prior claims.

In this paper, we will give a frequentist version of a predictive distribution. With this distribution,

we will be able to compute the mean, median, or any other measure to summarize the distribution;

thus, this aspect is the same as in Bayesian analysis. However, because we are adopting a frequentist

perspective, we will not make an assumption concerning the prior distribution of the latent variables.

As is well-known, this may be an advantage or disadvantage, depending on the situation.

To model the dependencies among claims within a risk class, we use a copula directly in lieu of a

latent variable framework. Although Bühlmann’s latent variable framework has proved successful for

many applications, a limitation of this approach is that the unobserved variable (structure) is constant

over time. This means that dependencies among claims are constant over time; this is a strong as-

sumption in time-series analysis. To illustrate, for our application described below, it will mean that

1998 claims and 1997 claims have the same dependency as between 1998 claims and 1993 claims. It

is customary in time-series analysis to assume that dependencies weaken as random variables become

further apart in time.

A copula is a tool for understanding relationships among multivariate outcomes; it is a function that

links univariate marginals to their full multivariate distribution. Copulas were introduced in 1959 in
the context of probabilistic metric spaces. Recently there has been a rapidly developing literature on
the statistical properties and applications of copulas, particularly in the enterprise risk management
literature, see for example Frees and Valdez (1998), Nelsen (1999), and Embrechts, Lindskog, and
McNeil (2001).

This paper extends earlier work by Frees, Young, and Luo (1999, 2001), which showed how to produce
credibility predictors for linear longitudinal and panel data models, in two ways. First, we consider a
generalized linear model (GLM) for marginal claims distributions. This framework has been applied by
actuaries (Haberman and Renshaw, 1996); it allows us to consider long-tailed claims through, for
example, a Gamma distribution. Moreover, it also gives a direct method for incorporating covariate
(explanatory) variables into credibility estimators for these non-Gaussian situations.
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CREDIBILITY USING COPULAS 33

Second, we replace the latent variable method of inducing dependencies with a copula. This direct

method of modeling dependencies will allow us to derive models that can be closely fit by the data; an

important consideration for applied modeling. An important advantage of the copula approach is that

it preserves the shape of marginal distributions. In actuarial applications, we have well-developed meth-

ods for estimating marginal distributions; that is, estimating model parameters for each time period

in isolation of the others. In this paper, we propose using copula functions to link these period-by-

period estimates of distributions, thus preserving all of the standard estimation machinery when de-

veloping credibility estimates.

Our approach is to use all of the tools that actuaries (as well as statisticians) use for parametric

modeling of the marginal distributions (see, for example, Klugman, Panjer, and Willmot [1998]) but

also to connect information in the claims history using theory from copulas. Thus we envision a highly

parametric approach to claims rate making. We document several advantages of this new approach

compared to the current paradigm in place (as well as some disadvantages). The new approach will be

easy to use on a computer in that it is likelihood-based. It should be applicable to a much broader set

of problems (such as those listed above), without needing special tools for each problem. We demon-

strate that the copula formulation is more flexible than positing a (constant) latent variable. In this

paper we compare and contrast the two approaches by examining the Massachusetts automobile claims

data set that was used in a previous paper (Frees, 2003) on multivariate credibility (an example where

specialized credibility techniques were required). Our intent is to develop a basic theory using this data

set as our guide.

The following is an outline for the remainder of the paper. Section 2 lays out the basic stochastic

model, including the GLM model for marginal claims and the copula for dependencies over time.

Section 3 introduces the Massachusetts automobile claims data and Section 4 shows how to fit this

data to our framework. Section 5 summarizes the prediction and Section 6 provides summary and

concluding remarks.

2. MODELING LONGITUDINAL DATA USING COPULAS

This section outlines the theory part of the paper. Section 2.1 describes the marginal distributions

using a GLM framework. Section 2.2 connects the marginals via a copula and Section 2.3 shows how

to predict future observations.

2.1 Marginal Distribution
Suppose that there are Ti potential claims for the ith risk class, Yi � (Yi1, Yi2, Yi3, . . . , and thatY )�,iTi

the corresponding realizations are yi � ( yi1, yi2, yi3, . . . , the observed sample. The joint distri-y )�,iTi

bution function for the ith risk class is denoted by

F ( y , . . . , y ) � Prob(Y � y , . . . , Y � y ),i i1 iT i1 i1 iT iTi i i

with marginal distribution functions

F ( y ) � Prob(Y � y ) � F � F( y , � ).it it it it it it it

We assume independence among risk classes i � 1, . . . , n.

With this notation, we assume that the marginal distribution function F(.) for claims Yit is common

up to a systematic component �it that is known up to K parameters. For applications, we typically work

with models such that �it is a linear function of unknown parameters and use �it � where xit is ax��,it

K � 1 vector of known explanatory variables (covariates) and � is a K � 1 vector of unknown param-

eters. The corresponding marginal density (mass) function is fit( yit) � fit � f( yit, �it).

In this paper, we assume that f(.) is from the natural exponential family of distributions. This family

encompasses the normal, Poisson and Gamma distributions, as well as others that are important in

actuarial applications (Haberman and Renshaw, 1996). Thus, the marginal density (mass) function for

the ith risk class at the tth time point can be written as:
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34 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 9, NUMBER 2

y � � b(� )it it itf( y , � ) � exp � S( y , �) .� �it it it�

Here, the functions b(.) and S(.,.) are chosen to represent a particular distribution and � is a known

dispersion factor. We can also select a function to link the mean component to the systematic com-

ponent. For illustrative purposes, we focus on the canonical link function so that b�(�it) � E ( yit) and

�it � � � g(E yit). This family, with the use of covariates, is commonly known as the generalizedx�it
linear model (GLM) in statistics, see for example, McCullagh and Nelder (1989). The GLM framework

is an extension of ordinary linear regression that also encompasses logistic and Poisson regression.

Thus, by itself, it is an applied statistical model that is useful in many applications.

2.2 Modeling the Dynamics
Using copulas for the generalized linear model is a natural idea that has been proposed in the bio-

medical literature; see Meester and MacKay (1994) and Lambert (1996) for early discussions and

Lambert and Vandenhende (2002) for a more recent contribution. However the idea is not widely

known, perhaps because of the nature of the applications investigated. This is the first such investi-

gation in a social science context.

The joint distribution function of Yi can be expressed as a function of the marginal distributions

through the copula function

F ( y , . . . , y ) � C(F , . . . , F ),i i1 iT i1 iTi i

where C is a copula. Thus, the copula allows a fully parametric specification of the probability model,

we exploit this specification by using maximum likelihood estimation. We assume independence among

risk classes and use the copula to model dependencies over time. Hence, the copula accounts for the

dynamic aspect of claims behavior.

Let c(.) be the probability density function corresponding to the copula distribution function C(.)

(we now assume continuous claims). Thus, the log-likelihood of the ith risk class is

Ti

l � ln f( y , � ) � ln c(F , F , . . . , F ).�i it it i1 i2 iTi
t�1

For the GLM framework, we have

Ti y x�� � b(x��)it it itl � constant � � ln c(F , F , . . . , F ). (2.1)�i i1 i2 iTi�t�1

Although not as extensive as with bivariate data (T � 2), there are still several options in the choice

of a copula function for multivariate data, such as the Archimedean, Markov, and elliptical copulas (see

for example, Joe, 1997, Nelson, 1999). We will focus on the copula associated with the multivariate t-

distribution, known as the t-copula. This generalization of the normal copula retains many of its desir-

able properties, including tractability and ease of implementation in simulation studies. Moreover, it

has proven popular in the risk management literature recently because of its ability to provide positive

large tail dependence. See for example, Embrechts et al. (2001), Venter (2003), and Demarta and

McNeil (2004), as well as the discussion in the Appendices.

Appendix B gives the formula for the t-copula density. Substituting the copula density into equation

(2.1) gives an expression for the log-likelihood of the ith risk class. Nonlinear optimization subroutines

such as NLPNMS and NLPQN from statistics software package SAS provide numerical tools for maxi-

mizing the log-likelihood equations. This, together with likelihood expressions, is sufficient for standard

parametric estimation. Section 4 provides illustrations.
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CREDIBILITY USING COPULAS 35

Table 1
Descriptive Statistics of Average Claims (in dollars)

AC1993 AC1994 AC1995 AC1996 AC1997 AC1998

Mean 133.00 129.03 143.38 141.17 142.94 134.37
Median 131.57 131.45 138.76 149.00 144.73 131.96
Standard deviation 31.59 32.63 38.28 39.28 36.22 32.85
Minimum 80.03 42.74 61.04 66.20 61.68 74.89
Maximum 212.46 209.52 238.22 201.99 248.75 191.05

2.3 Credibility Prediction with Copulas
In Appendix B, we see that the t-copula is parameterized by r, its degrees of freedom, and �, a corre-

lation matrix. For the T � 1 observations from the ith risk class, ( yi1, . . . , yi,T, yi,T�1), we may partition

this correlation matrix as

� �T T�1�T� � .� �T�1 �� 1T�1�T

That is, �T describes that correlations among ( yi1, . . . , yi,T) and �T�1�T describes the correlation between

yi,T�1 and ( yi1, . . . , yi,T). Using this partition, we may define the conditional variance � 1 �2�T�1�T

where is the inverse of the correlation matrix �T.
�1 �1�� � � , �T�1�T T T�1�T T

In Appendix C, we show that the density function of the predictive distribution is

�1� � �� � v f( y , � )i,T�1 T�1�T T i i,T�1 i,T�1f( y �y , . . . y ) � g , (2.2)� �i,T�1 i1 i,T r � g (� )�T�1�T r i,T�1 T�1�T

where �it � (Fit( yit)), t � 1, . . . , T � 1 and vi � (�i1, . . . , �iT)�. Here, Fit( yit) and fit( yit) � f( yit,
�1Gr

�it), t � 1, . . . , T � 1, are cumulative and density (mass) distribution functions, respectively, of the

univariate marginal distribution. Further, Gr is the distribution function of a t-distribution with r de-

grees of freedom and gr is the associated density, given by
�(r�1)/22�((r � 1)/2) z

g (z) � 1 � .� �r 1/2(r	) �(r/2) r

With the formula for the conditional density in equation (2.2) and the help of computational soft-

ware, we can easily compute the mean, median, or any percentile of the conditional distribution for

the purpose of application or comparison of prediction methods.

3. MASSACHUSETTS AUTOMOBILE CLAIMS

To illustrate our proposed procedures, this article considers automobile bodily injury liability claims

from a sample of n � 29 Massachusetts towns described in Frees (2003). For this coverage, we consider

annual data from T � 6 years, 1993–98, inclusive. To mitigate the effect of time trends, claims amounts

have been rescaled to adjust for the effects of inflation. Specifically, all claims are in 1991 dollars,

using the Consumer Price Index (CPI) for the rescaling factor. We study the behavior of average claims

per unit of exposure (the pure premium), defined to be the total claim amount divided by the amount

of exposure, for each town, and each year.

We first present summary statistics of the claims data in Section 3.1. Section 3.2 examines the

marginal claims distribution and Section 3.3 introduces explanatory variables.

3.1 Descriptive Statistics
Table 1 displays the descriptive statistics for average claims (AC) by year. For instance, the mean of

average claims in 1993 is $133.00 and the standard deviation for the same period is $31.59. This table

suggests that the claims distribution appears to be stable over time.
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36 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 9, NUMBER 2

Table 2
Claims Correlations

AC1993 AC1994 AC1995 AC1996 AC1997 AC1998

AC1993 1.000
AC1994 0.811 1.000
AC1995 0.731 0.668 1.000
AC1996 0.754 0.670 0.680 1.000
AC1997 0.761 0.626 0.875 0.745 1.000
AC1998 0.645 0.573 0.648 0.711 0.674 1.000

Figure 1
Q-Q Plots of Six Marginal Claims Distributions

Weibull (� = est) Lognormal

Table 2 displays correlations of claims among the six years. Clearly the multivariate average claims

variables are not independent. For example, the correlation coefficient between the average claims of

1993 and 1994 is 0.811. The smallest correlation coefficient, 0.573, occurs between 1994 and 1998.

We will demonstrate how copulas can be employed to model these relationships in Section 4.

3.2 Marginal Claims Distributions
To validate our prediction methods in Section 4, the observations for year 1998 are reserved as the

‘‘hold-out’’ sample. This leaves T � 5 years of observations for each town at our disposal for parameter

estimation.

To obtain intuitive knowledge of the distribution of the average claims, several probability distribu-

tion (q-q or quantile-quantile) plots were produced and presented in Figure 1. These plots compare

empirical quantiles to quantiles from an estimated parametric model. There are two fitted Weibull

distributions. One sets the position parameter � at zero while estimating the scale parameter and shape

parameter. The other estimates all three parameters simultaneously. Table 3 reports three goodness-

of-fit statistics that assess the relation between the empirical distribution and the estimated parametric

distribution. A large p-value indicates a nonsignificant difference between the two. Table 3 gives the

results of goodness-of-fit for all candidate distributions.

Both probability plots and p-values indicate that, except for the exponential distribution, all hypoth-

esized distributions provide a reasonable fit for the average claims variable. The variable of interest,

average claims, is equal to the sum of all claim amounts divided by the number of exposures, which is
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CREDIBILITY USING COPULAS 37

Figure 1
(continued)

Gamma Normal

Exponential Weibull (� = 0)

Table 3
p-values of Goodness-of-Fit

Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling

Exponential �0.001 �0.001 �0.001
Gamma �0.250 �0.500 �0.500
Lognormal �0.250 �0.500 �0.500
Normal �0.150 �0.250 �0.250
Weibull (� � 0) N/A �0.250 �0.150
Weibull (� est) �0.500 �0.500 �0.250

at least three thousands for each town-year in our sample. Theoretically, the central limit theorem

suggests that average claims be approximately normally distributed and thus have thin-tails. Because

all of our hypothesized distributions are capable of fitting thin-tailed distributions, it is not surprising

that they fit well. To illustrate the procedures proposed, we chose the Gamma distribution as the fitted

marginal distribution of average claims. The Gamma distribution also has the flexibility to allow for

long-tail claims distributions.

D
ow

nl
oa

de
d 

by
 [

C
hu

la
lo

ng
ko

rn
 U

ni
ve

rs
ity

] 
at

 0
1:

46
 1

3 
N

ov
em

be
r 

20
17
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3.3 Explanatory Variables
In our study, two explanatory variables, per capita income (PCI) and logarithmic population per square

mile (PPSM) were identified as being related to the response variable, claims. Population estimates of

the towns in Massachusetts for years 1993 through 1998 were prepared by MISER/State Data Center

of Massachusetts and available at http:///www.umass.edu/miser. Data of per capita income were con-

structed as follows. We first collected information about per capita income in 1989 for each sampled

town from the 1990 census report. We then found county estimates for median household income on

the website of U.S. Census Bureau at http:///www.census.gov/hhes/www/saipe/stcty for years 1990

through 1999. The annual increase rate of median household income in a county was used to proxy

that of per capita income of towns in the same county, so per capita income for each town can be

estimated. Finally all income data were deflated to 1991 dollars using the CPI index.

Figure 2
Claims versus Per Capita Income (in thousands, PCI)

15 20 25 30

50

150

250

PCI

Claims

Figures 2 and 3 reveal the association of AC with PCI and with PPSM, respectively. Figure 2 suggests

that lower bodily injury claims are associated with higher income. A reasonable explanation may be

that when more money is at disposal people are more willing to settle disputes by themselves to avoid

the penalty of increased premium that is associated with claim payments by the insurance company.

In towns of high population density, Figure 3 indicates average claims tend to be high, which may be

a consequence of the more frequent occurrences of losses and claims.

Figure 3
Claims versus Population per Square Mile (in logarithmic units, PPSM).

 

8.57.56.55.54.5

250

150

50

PPSM

Claims
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CREDIBILITY USING COPULAS 39

Table 4
Regression of Claim versus PCI and PPSM

Coefficients Standard Error t-statistic p-value

Intercept 76.344 23.357 3.27 0.0014
PCI �4.123 0.569 �7.25 �.0001
PPSM 22.604 3.013 7.50 �.0001

R-square 0.458

The relationships of average claims with income and population density are supported by a regression

analysis whose results are displayed in Table 4. For instance, every $1,000 increase in per capita income

is associated with $4.12 decrease in average claim amount per exposure, i.e., pure premium. Every

2.72 persons increase in population density (equivalent to increase of 1 in logarithmic population per

square mile) is associated with $22.60 increase in average claim amount. Moreover both covariates are

significant at 1% level.

4. INFERENCE USING COPULAS

In this section we show how copulas can be applied to incorporate the dependence structure. Section

4.1 discusses parameterizations of the t-copula. To demonstrate the application of copulas in modeling

and prediction, we divide our analysis into two stages. Section 4.2 summarizes estimation that does

not involve explanatory variables while concentrating on estimation of the copula and marginal distri-

bution parameters. Section 4.3 incorporates the explanatory variables parameters.

4.1 Parameters of the t-Copula
For inference, one needs to estimate the t-copula parameters given by the correlation matrix � and

the degrees of freedom r.

We will compare four different structures of �: the identity, exchangeable, AR(1), and band Toeplitz.

Essentially, these four choices capture different aspects of the (time-series) correlation structure. One

well-known fact of t-copulas is that the identity correlation matrix implies a type of zero correlation

although not independence among observations. (From Appendix A, this is because of the common

denominator, used in the definition of the multivariate t-distribution.) However, when r tends to2
 ,r

infinity, the t-copula tends to a normal copula in which case the identity matrix does imply independent

components (because /r tends to a constant).2
r

The exchangeable structure, also known as ‘‘compound symmetry’’ or ‘‘uniform correlation’’ in lon-

gitudinal data models (see for example, Frees 2004), is most closely aligned with traditional credibility

models. Bühlmann (1967) posited a latent ‘‘structure’’ variable that is common to each claim within

a risk class; this structure variable induces dependencies among claims within a risk class that does

not vary over time.

In contrast, the AR(1) structure is a traditional time-series representation of temporal relationships;

this structure implies that the claim experience of current year poses diminishing influence on claims

of the following years. A band Toeplitz structure is adopted when we assume that the claims have a

Markovian characteristic; current year claims only affects claims of next several, say, l, years. In linear

time-series analysis, this structure corresponds to the ‘‘moving-average’’ model.

Because the time dimension consists of T � 5 years, the four different structures of � can be

expressed as:
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1 0 0 0 0 1 � � � �
0 1 0 0 0 � 1 � � �

� � 0 0 1 0 0 , � � � � 1 � � ,I EX

0 0 0 1 0 � � � 1 �� � � �
0 0 0 0 1 � � � � 1

2 3 41 � � � � 1 � � 0 01 2
2 3� 1 � � � � 1 � � 01 1 2

2 2� � � � 1 � � , or � � � � 1 � � . (4.1)AR T 2 1 1 2
3 2� � � 1 � 0 � � 1 �2 1 1� � � �
4 3 2� � � � 1 0 0 � � 12 1

In expression (4.1) of band Toeplitz matrix, we use a band of l � 2.

The number of parameters to be evaluated depends on the matrix structure adopted. For example,

when either the exchangeable or AR(1) structure is employed, two parameters determine the t-copula,

r and �. In addition, there are parameters associated with the fitted marginal distribution, Gamma.

Generally a two-parameter Gamma distribution has shape parameter � and scale parameter �. This

means we have to evaluate four parameters when the structure of � is assumed to be exchangeable or

AR(1).

There are at least three approaches to dealing with degrees of freedom, r. One is to treat r in the

same way as other parameters and estimate it using maximum likelihood by treating it as a continuous

variable. Specifically, r and other parameters are estimated altogether by maximum likelihood, as in

Lambert and Vandenhende (2002). Another approach is to estimate other parameters for selected

values of r, essentially treating it as discrete. We report results using both approaches. A third approach

is to assume that r is known, either as infinity resulting in a normal copula or as a finite value when

based on a ‘‘degrees of freedom’’ argument, such as is customary in the univariate case.

4.2 Estimation Without Explanatory Variables
We assume that the marginal claims distribution can be modeled by a two-parameter Gamma distri-

bution with density function

��1y y
f( y; �, �) � exp � .� ��� �(�) �

So that this can be expressed as a member of the exponential family, one chooses � � �1/(� �) and

� � 1/�. We also assume that the dependence structure can be modeled by a t-copula with r de-

grees of freedom. With these assumptions, the log-likelihood function for town i over Ti years can be

expressed as

T Ti i1
l (�, �) � �T � log � � T log �(�) � (� � 1) log y � y� �i i i it it�t�1 t�1

T � r r r�1 1i� log � � (T � 1) log � � T log � � log ��� (4.2)� � � � � �i i2 2 2 2

Ti 2r � 1 � r � T 1it i �1� log 1 � � log 1 � v�� v ,� � � � �i i2 r 2 rt�1

where vi � (�i1, �i2, . . . , and �it � (Fit( yit; �, �)) for t � 1, . . . , Ti.
�1� )� GiT ri

At this stage of analysis, we assume that the Gamma distribution parameters are the same for all

towns in our sample, so there are only four parameters, �, �, �, and r, to be estimated for exchangeable

and AR(1) models, three for the identity and five for Toeplitz. For estimation, we employ maximum

likelihood. Table 5 displays values of Akaike Information Criteria (AIC) over several choices of r to

compare goodness of fit. For this criterion, smaller values of AIC mean a better fit. The entry r �
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Table 5
Akaike Information Criterion (AIC) by Correlation Matrix (�) and Degrees of Freedom (r).

Degrees of
Freedom (r)

Correlation Matrix (�)

Identity Exchangeable AR(1) Toeplitz (l � 2)

2 1,426.36 1,357.13 1,379.83 1,389.08
4 1,427.61 1,348.68 1,372.37 1,382.30
6 1,431.07 1,346.39 1,370.61 1,380.86
8 1,434.13 1,345.63 1,370.20 1,380.65

10 1,436.58 1,345.40 1,370.23 1,380.79

12 1,438.54 1,345.38 1,370.42 1,381.04
14 1,440.13 1,345.46 1,370.65 1,381.32
16 1,441.45 1,345.56 1,370.90 1,381.58
18 1,442.56 1,345.69 1,371.14 1,381.83
20 1,443.51 1,345.81 1,371.36 1,382.05

22 1,444.32 1,345.93 1,371.57 1,382.25
24 1,445.04 1,346.04 1,371.76 1,382.43
26 1,445.66 1,346.15 1,371.94 1,382.60
28 1,446.22 1,346.25 1,372.10 1,382.75
30 1,446.72 1,346.34 1,372.25 1,382.88

45 1,449.25 1,346.86 1,373.05 1,383.60
60 1,450.67 1,347.18 1,373.53 1,384.01

120 1,453.02 1,347.75 1,374.36 1,384.70
1,000 1,455.37 1,348.34 1,375.22 1,385.40

10,000 1,455.68 1,348.42 1,375.33 1,385.49
� (normal) 1,455.72 1,348.43 1,375.34 1,385.51

Note: No covariates are used in the model fitting.

infinity is also added to compare the fitness of t-copula with normal copula. Table 5 shows that the t-

copula provides a better fit than the normal model regardless of the choice of the correlation matrix.

Because of this, in Table 6 we only report results using t-copula. We can see from Table 6 that all

parameters (except r) are statistically significant. Our major interest is the significance of correlation

coefficients; they are all statistically significant which provides strong evidence that the correlation

structure is not independent.

Table 6
Maximum Likelihood Estimation Results by Correlation Matrix (�).

Parameter

Correlation Matrix (�)

Identity Exchangeable AR(1) Toeplitz

�1 NA 0.744 (0.067) 0.710 (0.063) 0.478 (0.081)
�2 NA NA NA 0.402 (0.080)
� 14.410 (2.766) 13.242 (2.912) 14.123 (2.662) 16.728 (2.645)
� 10.106 (2.044) 10.393 (2.311) 9.759 (1.849) 8.233 (1.319)
r 2.494 (0.897) 11.236 (8.225) 8.685 (5.338) 7.823 (4.752)

AIC 1,427.978 1,347.377 1,372.180 1,382.644

Notes: Standard errors are reported in parentheses. No covariates are used in the model fitting.

4.3 Estimation with Explanatory Variables
The discussion in Section 3.3 suggests that PCI and PPSM are useful predictors of claims. With Gamma

distributed claims, we use a canonical link function so that �it � � 
0 � 
1 PCIit � 
2 PPSMit. Asx��it

is customary in generalized linear models, we assume that the scale parameter � � 1/� is constant

over towns and years while the shape parameter varies through the relation �it � �1/(��it).

Now the parameters to be determined include 
0, 
1, and 
2. Again, we first compare the t-copula

and normal copula under different correlation structures, as reported in Table 7. Values of AIC indicate,
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Table 7
Akaike Information Criterion (AIC) by Correlation Matrix (�) and Degrees of Freedom (r).

Degrees of
Freedom (r)

Correlation Matrix (�)

Identity Exchangeable AR(1) Toeplitz

2 1,354.24 1,335.35 1,345.43 1,342.84
4 1,349.48 1,328.06 1,338.84 1,335.44
6 1,349.64 1,326.41 1,337.66 1,333.76
8 1,350.62 1,326.06 1,337.67 1,333.39

10 1,351.66 1,326.13 1,338.01 1,333.43

12 1,352.61 1,326.33 1,338.44 1,333.60
14 1,353.44 1,326.57 1,338.86 1,333.81
16 1,354.16 1,326.82 1,339.26 1,334.02
18 1,354.79 1,327.05 1,339.63 1,334.22
20 1,355.34 1,327.27 1,339.96 1,334.40

22 1,355.83 1,327.47 1,340.26 1,334.56
24 1,356.25 1,327.65 1,340.53 1,334.71
26 1,356.64 1,327.82 1,340.77 1,334.85
28 1,356.98 1,327.97 1,340.99 1,334.97
30 1,357.29 1,328.11 1,341.20 1,335.08

45 1,358.89 1,328.86 1,342.26 1,335.67
60 1,359.80 1,329.30 1,342.88 1,336.01

120 1,361.34 1,330.06 1,343.94 1,336.58
1,000 1,362.90 1,330.84 1,345.02 1,337.15

10,000 1,363.11 1,330.94 1,345.17 1,337.23
� (normal) 1,363.13 1,330.96 1,345.18 1,337.24

Note: Covariates are used in the model fitting.

Table 8
Maximum Likelihood Estimation Results by Correlation Matrix (�).

Correlation Matrix (�)

Parameter Identity Exchangeable AR(1) Toeplitz

�1 NA 0.442 (0.105) 0.395 (0.097) 0.275 (0.096)
�2 NA NA NA 0.372 (0.084)

0 1.374 (0.861) 1.416 (1.300) 1.714 (1.088) 1.836 (0.947)

1 �0.142 (0.029) �0.143 (0.037) �0.147 (0.033) �0.137 (0.028)

2 1.022 (0.204) 1.049 (0.269) 0.987 (0.217) 0.881 (0.169)
� 27.340 (4.370) 26.309 (4.616) 27.125 (4.326) 29.017 (4.013)
r 4.686 (1.983) 8.405 (5.200) 6.863 (3.679) 19.230 (22.438)

AIC 1,351.33 1,328.057 1,339.592 1,336.331

Note: Standard errors are reported in parentheses. Covariates are used in the model fitting.

as in the case of no covariates, that the t-copula fits our sample data better than the normal copula.

Another observation about Table 7 is that the AIC for each of the models with covariates present is

less than that of corresponding models without covariates; this shows evidence that covariates provide

useful explanatory information.

Table 8 displays the results for models with covariates, using the t-copula and different matrix struc-

tures. Once again we observe that the correlation coefficients for exchangeable, AR(1) and Toeplitz

are strong statistically greater than zero (p-values less than 1%), indicating the value of the dependence

structure. The coefficients of the explanatory variables, 
1 and 
2, are also significant at the 1% level.

This substantiates the hypothesis that lower average income and higher population density are asso-

ciated with higher bodily injury claims.

D
ow

nl
oa

de
d 

by
 [

C
hu

la
lo

ng
ko

rn
 U

ni
ve

rs
ity

] 
at

 0
1:

46
 1

3 
N

ov
em

be
r 

20
17

 



CREDIBILITY USING COPULAS 43

Figure 4
Shrinkage Effect of Bühlmann Credibility
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Notes: Each town is connected by a line. The left-hand vertical axis
displays the full credibility predictions. The right-hand vertical axis
displays the predictions using Bühlmann’s credibility.

5. PREDICTION WITH COPULAS

In Section 4, using data for years 1993 through 1997, we estimated parameters associated with the t-

copula and the coefficients of explanatory variables per capita income and population density. Now we

can predict the pure premium for 1998, the major interest of this study, and compare predictions using

copulas to that of standard existing approaches, namely, full credibility and Bühlmann credibility.

On the one hand, when full credibility is granted to past observations, the predicted value of the

next period equals the mean of prior observations. Specifically, the predicted value of the (T � 1)-st

period for the ith risk class is

T
1

ȳ � y .�i itT t�1

On the other hand, Bühlmann credibility suggests that prediction for the ith risk class can ‘‘borrow’’

information of other risk classes as well as using its own past experience. Here the credibility predictor

is given by

ȳ � � � ȳ � (1 � �)ȳ,i,cred i

where is the overall mean and � � T/(T � / is the credibility factor. Refer to Frees, Young, and2 2ȳ � � )ε �

Luo (2001) for details. There is less spread in the credibility predictions compared to the mean for

each risk class; the credibility predictor for a risk class is ‘‘shrunk’’ to the overall mean The shrinkageȳ.

effect of the Bühlmann credibility predictor, applied to our sample data, is shown in Figure 4. From

this figure, we see that for our data set, the estimated value of is large relative to so that the2 2� �� ε
credibility factor is close to one, indicating near full credibility.

For copula-based credibility, we used the parameter estimates in Section 4 and 1998 covariate values

to estimate the predictive density, given in equation (2.2). For this predictive density, we computed

the mean of the distribution that we refer to as the ‘‘copula credibility predictor.’’ Predictions using

copula credibility were made with an exchangeable correlation matrix of t-copula. Figure 5 summarizes

the predictions for our data set.

Figure 5 shows that copula credibility predictors also have a mild shrinkage effect. On the left-hand

side of each panel, values of full credibility prediction vary over a broader range than values on the

right-hand side do, where copula credibility predictions are displayed. Not surprisingly, because these

copula credibility predictors use covariates, Figure 5 displays some crossover among lines. Unlike linear

predictor theory, we do not know of a broad statistical principle that would ensure a shrinkage effect.
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Figure 5
Shrinkage Effect of Copula Credibility Predictors
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Notes: Each town is connected by a line. The left-hand vertical axis displays
the full credibility predictions. The right-hand vertical axis displays the pre-
dictions using the copula credibility. The graph suggests that the copula
credibility predictors preserve the shrinkage effect.

Figure 6
Distributions of Copula Credibility Predictor

50

70

90

110

130

150

170

190

210

Full Copula Mean Copula Percentile

P
re

di
ct

ed
 C

la
im

s

Notes: Each town is connected by a line. On the horizontal axis, ‘‘Full’’ indi-
cates prediction using full credibility. Copula Mean reports the predicted mean
using copula credibility. Copula Percentile displays the predicted 25% percen-
tile, mean, and 75% percentile for two towns.

We conjecture that it may be because all of the independent risk classes are being used to estimate

common parameters.

Figure 6 augments Figure 5 by adding prediction percentiles for two selected towns. For each of the

two towns, Figure 6 shows the 25th and 75th percentiles of the predictive distribution, as well as the

mean (for this data set, the mean and median of the predictive distribution are close). For more skewed

data sets, the median may be more appropriate. The percentiles provide the actuary with a range of

reliability for assessing the copula credibility predictor for rate making purposes. This figure emphasizes

that copula credibility predictors share a desirable property with Bayesian credibility; namely the ability

to provide a full predictive distribution of future claims.
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CREDIBILITY USING COPULAS 45

Table 9
Comparisons of Sum of Squared Prediction Error

Full Credibility
Bühlmann
Credibility

Copula Credibility

AR(1) Exchangeable Toeplitz

15,700.8 14,916.4 14,437.5 14,255.6 15,265.4

Another examination of the usefulness of copula credibility is displayed in Table 9, the sum of squared

prediction errors (SSPE). The error of prediction is defined as the difference between the actual average

claim of 1998 and the predicted value using different methods. Table 9 shows that the SSPE of copula

credibility methods are less than that of full credibility and the SSPE of the AR(1) and exchangeable

correlation copula are less than that of Bühlmann predictors; this suggests that copula credibility

deserves a position in the toolbox of actuaries. This result is not surprising in that the copula credibility

predictors use the information in the distribution of claims, the dynamic dependencies, and the asso-

ciated explanatory variables.

6. SUMMARY AND CONCLUDING REMARKS

Credibility estimators are designed to predict claims for a risk class, given prior claims from a risk

class and claims from other risk classes. In the traditional linear random effects setting, one models

dependencies among claims through latent random quantities known as structure variables; predictors

of claims are minimum mean square error among the class of all linear unbiased predictors. This paper

considers claims distributions that may be skewed so that the mean square error criterion may not be

suitable. Claims distributions are modeled parametrically; this allows one to calculate predictive dis-

tributions for future claims given past claims. With the predictive distribution, one can compute means,

medians, or any other measure to summarize the predictive distribution.

Computing predictive distributions is an exercise well-known to Bayesian enthusiasts of credibility.

From this perspective, it is traditional in credibility theory to assume a prior distribution for the struc-

ture variables and use posterior distributions to compute predictive distributions. Instead, in this paper

we directly use a copula to model dependences among claims for a risk class. In this way we need not

make assumptions about prior distribution. Moreover, we need not assume that the common latent

variable induces an exchangeable structure among claims; we can and do investigate time-series models

of claims.

For this paper, we used claims from a Gamma family and provided the necessary theoretical under-

pinnings for the exponential family of distributions that also includes the normal and Weibull distri-

butions. Although any parametric family of copulas fits within the framework described here, this paper

explores the advantages of the t-copula. We find that this is a desirable dependence structure, at least

for the bodily injury liability automobile claims data investigated here. We hope to explore the robust-

ness of the choice of marginal distributions, covariates, and the copula in subsequent work.

For our data, we compared the copula-based credibility predictors and found that they performed

well compared to traditional credibility estimators. They even demonstrated the well-known ‘‘shrink-

age’’ characteristic that actuaries find appealing for traditional estimators. This may not be a general

characteristic of copula-based credibility predictors; we are not aware of general conditions under which

an actuary could expect that these new predictors would possess this characteristic. We leave this a

problem for future investigation.

We do not anticipate that current available credibility rate making techniques will disappear; to

illustrate, the proposed structure does not enjoy the intuitively appealing linear credibility theory for-

mula that actuarial students learn. However, we illustrated procedures that are easy to implement in

today’s computing environment and that should be applicable in a broad set of circumstances. We did

this by positing a stochastic model of insurance claims and developing algorithms for producing cred-
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ibility forecasts based on this model. We showed how the algorithms work with real data and compared

our new procedures to existing methods.

APPENDIX
THE MULTIVARIATE t-COPULA

In this appendix, we collect properties about the t-copula that actuaries will find useful for GLM mod-

eling. Important references include Johnson and Kotz (1972), Embrechts, Lindskog, and McNeil (2001)

and Venter (2003).

APPENDIX A
THE MULTIVARIATE t-DISTRIBUTION

Suppose (N1, . . . , NT)� has a joint standardized multivariate normal distribution with correlation matrix

�. Further suppose that has a chi-square distribution with r degrees of freedom and is independent2
r

of (N1, . . . , NT). Then, the joint distribution of Zt � Nt / t � 1, . . . , T constitutes a multivariate2 �1(
 �r) ,r

t-distribution with r degrees of freedom. One property of this distribution is that each marginal distri-

bution is a t-distribution with r degrees of freedom, denoted by Gr. Moreover, subsets have the same

family as the joint. Thus, if we assume that (Z1, . . . , ZT�1) has a multivariate t-distribution, then (Z1,

. . . , ZT) also has a multivariate t-distribution. The joint probability density function of (Z1, . . . , ZT)�
is

�(r�T )/2
�((r � T)/2) 1 �1f (z; r, �) � 1 � z�� z , (A.1)� �z T/2 1/2(r	) �(r/2)��� r

where z � (z1, . . . , zT)�. See, for example, Johnson and Kotz (1972).

Conditional distributions can be derived in a straightforward manner. Suppose that the correlation

matrix associated with (N1, . . . , NT�1)� is given by

� �T T�1�T� � .� �T�1 �� 1T�1�T

Then, from standard multivariate normal theory, we have that NT�1�{N1, . . . , NT} is normal with mean

(N1, . . . , NT)� and variance � 1 � �T�1�T. Thus, ZT�1�{Z1, . . . , ZT, is also�1 2 �1 2�� � � �� � 
 }T�1�T T T�1�T T�1�T T r

normal with mean (Z1, . . . , ZT)� and variance / Integrating over the distribution�1 2 2 �2�� � � (
 �r) .T�1�T T T�1�T r

of we have that ZT�1�{Z1, . . . , ZT} is equal in distribution to (Z1, . . . , ZT)� � �T�1�T tr,
2 �1
 , �� �r T�1�T T

where tr is a t-distributed random variable with r degrees of freedom. Thus, the conditional density

function is

�11 z � �� � zT�1 T�1�T Tf (z �z) � g , (A.2)� �z T�1 r� �T�1�T T�1�T

where gr(.) is the probability density function of a t-distribution with r degrees of freedom.

APPENDIX B
THE t-COPULA

We are now ready to define the multivariate t-copula, a function defined for all (u1, u2, . . . , uT) �
[0,1]T by

�1 �1C(u , . . . , u ) � F (G (u ), . . . , G (u )),1 T z r 1 r T

where FZ is the distribution function associated with the probability density function fZ. From equation

(A.1), the corresponding probability density function is
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CREDIBILITY USING COPULAS 47

T
1�1 �1c(u , . . . , u ) � f (G (u ), . . . , G (u )) , (B.1)	1 T Z r 1 r T �1g (G (u ))t�1 r r t

where gr(.) is the probability density function associated with Gr, that is, a t-distribution with r degrees

of freedom.

The conditional density function

1�1 �1 �1c(u �u , . . . , u ) � f (G (u )�G (u ), . . . , G (u )) , (B.2)T�1 1 T Z r T�1 r 1 r T �1g (G (u ))r r T�1

can be evaluated using equation (A.2).

APPENDIX C
PREDICTIVE DENSITY

The joint density function is given by

Ti

f ( y , . . . , y ) � c(F , F , . . . , F ) f( y , � ).	i i1 i,T i1 i2 iT it iti
t�1

where fit( yit) � fit � f( yit, �it) and Fit( yit) � Fit is the corresponding distribution function. Thus, using

equations (A.2) and (B.2), the predictive distribution is

f ( y , . . . , y , y ) c(F , . . . , F )i i1 i,T i,T�1 i1 i,T�1f( y �y , . . . y ) � � f( y , � )i,T�1 i1 i,T i,T�1 i,T�1f ( y , . . . , y ) c(F , . . . , F )i i1 i,T i1 iT

1
� f (� �� , . . . , � ) f( y , � )Z i,T�1 i1 iT i,T�1 i,T�1g (� )r i,T�1

�1� � �� � v f( y , � )i,T�1 T�1�T T i i,T�1 i,T�1� g � �r � g (� )�T�1�T r i,T�1 T�1�T

where �it � (Fit( yit)), t � 1, . . . , T � 1 and vi � (�i1, . . . , �iT)�.�1Gr
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