| Question |  | Answer | Marks | AO | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | (a) | $R^{2}=9+49$ $R \cos \alpha=3, R \sin \alpha=7$ <br> hence $\tan \alpha=\frac{7}{3}$ $\sqrt{58} \cos (3 x-1.17)$ | M1 <br> M1 <br> A1 [3] | 1.1a <br> 1.1a <br> 1.1 | Attempt correct process to find $R$ <br> Attempt correct process to find $\tan \alpha$ (or equiv with $\sin \alpha$ or $\cos \alpha$ ) <br> Obtain $\sqrt{58} \cos (3 x-1.17)$ | M0 for $\tan \alpha=\frac{3}{7}$ <br> Allow M1 even if then evaluated in degrees <br> Allow $R=7.62$, or better <br> $\alpha$ must be in radians <br> If $R$ and $\alpha$ are correct then no need to see them substituted back into the expression |
|  | (b) | Stretch in the $y$ direction by sf $\sqrt{58}$ | B1FT | 1.1 | Follow through their $R$ (numerical or just ' $R$ ') <br> Given at any point in the sequence of transformations | Allow BOD if no 'scale factor' or equiv ie B1 for 'stretch in $y$-direction by $\sqrt{58}$, <br> Must be 'parallel to $y$-axis', 'in $y$ direction', ' $x$-axis invariant' or equiv, so B0 for 'along in / on / to $y$-axis', 'parallel to $y$ ' etc |
|  |  | Translation in the $x$ direction by 1.17 Stretch in the $x$ direction by sf $\frac{1}{3}$ | M1 | 3.1a | Translation by $\pm$ their $\alpha$ and stretch by (sf) 3 or $\frac{1}{3}$, in either order, both in the $x$ direction | Allow informal language for this mark eg 'shift', 'move', 'compression', 'squash' Allow translation by $\pm \frac{1}{3}$ (their $\alpha$ ) |
|  |  |  | A1FT | 1.1 | Translation by their $\alpha$ (numerical, inc in degrees, or just ' $\alpha$ ') | soi to be in the positive $x$-direction <br> Must use correct language (see B1FT) |
|  |  |  | A1 <br> [4] | 2.5 | Stretch by sf $\frac{1}{3}$ | A0A1 is possible For A1A1 stretch must follow translation, unless using $\frac{1}{3}$ (their $\alpha$ ) <br> Must use correct language (see B1FT) <br> Must mention 'scale factor', 'factor' or 'sf' |


| Question |  | Answer | Marks | AO |  | Guidance <br> (c) |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :--- | :--- |

