Question Number	Answer	Mark
$\mathbf{2 (a) (\mathbf { i })}$	$\mathbf{2 (a) (\mathbf { i }) . \text { The only correct answer is } \mathbf { B ~ 3 3 . 5 1 \mathbf { c m } ^ { \mathbf { 3 } } }}$ C is not correct because volume needs cm^{3} \boldsymbol{D} is not correct because the equation requires the diameter to be halved	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 ~ (a) ~ (i i) ~}$	A description that makes reference to two of the following: - they can rely on diffusion to \{take in oxygen / remove wastes\} (1) - large surface area to volume ratio (allows diffusion to occur at a sufficient rate) (1)		

Question Number	Answer	Additional Guidance	Mark
2(b)	An explanation that makes reference to the following: - many alveoli provide a large surface area - \{alveoli / capillaries\} have walls that are one cell thick providing a short distance for diffusion - high concentration gradient maintained by \{circulation / ventilation\} - extensive capillary network around alveoli provides large surface area for gas exchange	ALLOW thin walls	(4)

Question Number	Answer		Additional Guidance	Mark
2(c)	- correct numbers inserted into equation - correct answer	(1) (1)	$\begin{aligned} & \{104 / 105 / 106\} \div 10000 \\ & =1 \text { in } 95 / 0.0104 / 0.0105 / \\ & 0.0106 / 1.04 \% / 1.05 \% / \\ & 1.06 \% \\ & \text { (0.011 or } 0.01 \text { if correctly } \\ & \text { rounded) } \end{aligned}$ Correct answer with no working gains full marks	(2)

Question Number	Answer	Additional Guidance	Mark	
2(d)	An explanation that makes reference to two of the following:			
	• smaller surface area of alveoli (with emphysema)	(1)	ALLOW smaller SA:vol Allow smaller surface area for gas exchange	
	• therefore need a larger concentration gradient	(1)		
	• to maintain the rate of diffusion	(1)	ALLOW diffusion gradient	(2)

