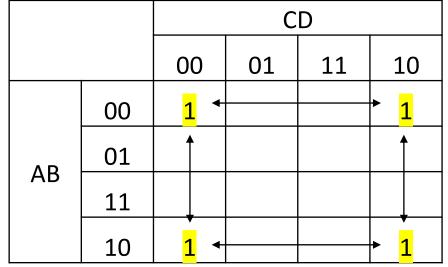

- 1. Construct K-Map based on truth table
- 2. Group large sets of adjacent cells containing 1's and form least # of groups. Groups can be formed in sets of 1, 2, 4, 8 etc.
- 3. Adjacent cells are the cells that differ in only one variable
- 4. Cells in Top and Bottom rows of the K Map are adjacent

A'B'+AB' = (A'+A)B' = B'


- 1. Construct K-Map based on truth table
- 2. Group large sets of adjacent cells containing 1's and form least # of groups. Groups can be formed in sets of 1, 2, 4, 8 etc.
- 3. Adjacent cells are the cells that differ in only one variable
- 4. Cells in Top and Bottom rows of the K Map are adjacent
- 5. Cells in Left and Right columns are adjacent

 $\mathsf{C}\mathsf{D}'+\mathsf{C}'\mathsf{D}'=(\mathsf{C}{+}\mathsf{C}')\mathsf{D}'=\mathsf{D}'$

- 1. Construct K-Map based on truth table
- 2. Group large sets of adjacent cells containing 1's and form least # of groups. Groups can be formed in sets of 1, 2, 4, 8 etc.
- 3. Adjacent cells are the cells that differ in only one variable
- 4. Cells in Top and Bottom rows of the K Map are adjacent
- 5. Cells in Left and Right columns are adjacent
- 6. Cells in the four corners of K Map are adjacent (non-diagonal)

- 1. Construct K-Map based on truth table
- 2. Group large sets of adjacent cells containing 1's and form least # of groups. Groups can be formed in sets of 1, 2, 4, 8 etc.
- 3. Adjacent cells are the cells that differ in only one variable
- 4. Cells in Top and Bottom rows of the K Map are adjacent
- 5. Cells in Left and Right columns are adjacent
- 6. Cells in the four corners of K Map are adjacent
- 7. Write the OR sum of all groups

		CD			
		00	01	11	10
AB	00				
	01		1	1	
	11		1	1	
	10				