
Layout 1

codewithmosh.com

LAYOUT

Absolute positioning
Absolute units
Box model
Breakpoints
Collapsing parent
Fixed positioning
FlexBox (Flexible box layout)
Floating elements

Grid layout
Margin collapsing
Media queries
Mobile-first approach
Overflowing
Relative positioning
Relative units
Responsive web design

Terms

Summary
• When rendering an HTML document, the browser puts each element inside a box. The

box contains four areas: the content area, the padding area, the border area and the
margin area.

• Padding is the space between the border and the content area. Margin is the space
outside of an element and should be used to separate elements from each other.

• Margin collapsing happens when the top and bottom margins of elements are
combined into a single margin. The size of the margin is equal to the largest of the two
margins.

Layout 2

codewithmosh.com

• There are two types of HTML elements: block-level and inline.

• Block-level elements always start on a new line and take up the entire available
horizontal space. The <p> and <div> elements are examples of block-level elements.

• Inline elements don’t start on a new line. They take up as much width as necessary. The
, <a> and are a few examples of inline elements.

• We can size elements by setting their width and height properties. These properties
have no effect on inline elements. To size an inline element, we need to set its display
property to inline-block.

• By default, the width and height properties are applied to the content box. So paddings
and borders increase the size of the visible box. This behavior can be changed by setting
the box-sizing property to border-box.

• Overflow occurs when an element’s content is too large to fit. Using the overflow
property we can specify what should happen when overflow occurs.

• Measurement units in CSS fall into two categories: absolute and relative units. Examples
of absolute units are px, pt, in, cm, etc. Examples of relative units are %, vw, vh, em and
rem.

• Using the position property we can precisely position an element. The default value
of this property is static. If we change the value of this property, the element is
considered positioned.

• By setting the position to relative, we can position an element relative to its
normal position. By setting it to absolute, we can position it relative to its positioned
parent. That means, the parent (or ancestor) should be a positioned element. By setting
the position to fixed, we can position the element relative to the viewport.

• By setting the float property, we can push an element to the left or right side of its
container. Other elements will flow around the floated element and fill the available
space.

Layout 3

codewithmosh.com

• Floated elements are invisible to their parent. This behavior is called collapsing parent
and often causes layout issues. To fix this, we have to clear the floated elements.

• The Flexible Box Layout (or FlexBox or just Flex) is used for laying out elements in one
direction (in a row or column). A common application of Flex is in building navigation
menus.

• The Grid Layout is a two-dimensional grid system. It’s often used to lay out major page
areas, photo galleries, etc.

• With media queries we can provide different styles for different devices depending on
their features such as screen size, orientation, etc. The most common application of
media queries is in providing different styles based on the viewport width.

• By using media queries and relative measurement units we can build responsive web
sites that adjust smoothly to various screen sizes.

Layout 4

codewithmosh.com

CSS Cheat Sheet

padding: 10px 20px;

padding-top: 30px;

margin: 1px 2px 3px 4px;

margin-top: 5px;

border: 1px solid black;

border-top: 1px solid black;

Box Model

width: 5rem;

height: 20%;

box-sizing: border-box;

Sizing Elements

To prevent paddings/borders from increasing the size of
the visible box.

overflow: hidden;

overflow: scroll;

overflow: auto;

Overflowing

Hides the overflown content
Always shows scroll bars
Shows scroll bars only if content overflows

position: static;

position: relative;

position: absolute;

position: fixed;

z-index: 1;

Positioning

The default value

To position relative to the element’s normal position
To position relative to the element’s positioned parent

To position relative to the viewport
To change the stacking order of an element

Layout 5

codewithmosh.com

float: left;

float: right;

clear: both;

Floating

FlexBox

display: flex;

flex-direction: column;

justify-content: center;

align-items: center;

flex-wrap: wrap;

align-content: center;

To enable the flex layout on a container

Direction (row, column)
To align items along the main axis

To align items along the cross axis
To enable wrapping
To align flex lines along the cross axis

Container properties

align-self: center;

flex-basis: 10rem;

flex-grow: 1;

flex-shrink: 0;

flex: 0 1 10rem;

To overwrite the alignment

The initial size of an item
The growth factor

The shrink factor
Shorthand (grow shrink basis)

Item properties

Layout 6

codewithmosh.com

Grid

display: grid;

grid-template-rows: repeat(3, 100px);

grid-template-columns: repeat(2, 100px);

grid-template: repeat(3, 100px) / repeat(2, 100px);

grid-template-areas:  
 “header header”  
 “sidebar main”  
 “footer footer”;

Defining a grid

row-gap: 10px;

column-gap: 20px;

gap: 10px 20px; Shorthand (row column)

Gaps

justify-items: center;

align-items: center;

justify-content: center;

align-content: center;

Align the items horizontally within their cell

Align the items vertically within their cell

Align the grid horizontally within its container
Align the grid vertically within its container

Alignment

Layout 7

codewithmosh.com

grid-column: 2;

grid-column: 1 / 3;

grid-column: 1 / -1;

grid-column: 1 / span 2;

grid-row: 2 / 4;

grid-area: header;

Placing items

display: none;

visibility: hidden;

Hides the element
Hides the element but keeps the reserved space

Hiding elements

@media screen and (min-width: 500px) {  
}

@media screen and (min-width: 500px) and (max-width: 700px) {  
}

@media print {  
}

Media queries

	Terms
	Summary
	CSS Cheat Sheet
	Box Model
	Sizing Elements
	Overflowing
	Positioning
	Floating
	FlexBox
	Container properties
	Item properties
	Grid
	Defining a grid
	Gaps
	Alignment
	Placing items
	Hiding elements
	Media queries

