

Oxidation & Reduction The Basics

Presented by Amelia McCutcheon

www.zenofchemistry.com

What is Redox?

- Redox is the study of chemical reactions that undergo oxidation and reduction.
- Oxidation cannot occur without reduction, and reduction cannot occur without oxidation.
- This all essentially means that elements lose or gain electrons to change their oxidation state (or oxidation number).

OIL RIG

- Oxidation is the Loss of electrons
- Reduction is the Gain of electrons

Fe(s)
$$\rightarrow$$
 Fe²⁺_(aq) + 2e⁻ Cu²⁺_(aq) + 2e⁻ \rightarrow Cu_(s)

Addition of half equations

0 + 2 $Fe_{(s)} \rightarrow Fe^{2+}_{(aq)} + 2e^{-}$

YOU MUST

Iron is undergoing oxidation - increase in oxidation state

BALANCE

+2 $Cu^{2+}_{(aq)}$ + $2e^{-}$ $Cu_{(s)}$

ELECTRONS

Copper is undergoing reduction – reduction of oxidation state.

Overall equation

$$Fe(s) + Cu^{2+}_{(aq)} \rightarrow Fe^{2+}_{(aq)} + Cu_{(s)}$$

Reading the electrochemical series: Electrochemical cells

2. The electrochemical series

Addition of half equations: Ag/Cu cell

$$Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$$

$$E^{\circ} = +0.80 \text{ V}$$

$$Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$$

$$E^{\circ} = +0.34 \text{ V}$$

Therefore

$$Ag^{+}_{(aq)} + e^{-} \Rightarrow Ag_{(s)}$$

$$Cu_{(s)} \rightarrow Cu^{2+}_{(aq)} + 2e^{-}$$

BALANCE ELECTRONS

$$Cu_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Cu^{2+}_{(aq)} + 2Ag_{(s)}$$

Addition of half equations: Ag/Al cell

$$Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$$

$$AI^{3+}_{(aq)} + 3e^{-} \rightarrow AI_{(s)}$$

$$E^{\circ} = +0.80 \text{ V}$$

$$E^{\circ} = -1.67 \text{ V}$$

Therefore

$$Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$$
 $AI_{(s)} \rightarrow AI^{3+}_{(aq)} + 3e^{-}$

BALANCE ELECTRONS

$$AI_{(s)} + 3Ag^{+}_{(aq)} \rightarrow AI^{3+}_{(aq)} + 3Ag_{(s)}$$

Addition of half equations: Cu/Al cell

$$Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$$

$$E^{\circ} = +0.34 \text{ V}$$

$$AI^{3+}_{(aq)} + 3e^{-} \rightarrow AI_{(s)}$$

$$E^{\circ} = -1.67 \text{ V}$$

Therefore

$$Cu^{2+}_{(aq)} + 2e^{-} + Cu_{(s)}$$

 $Al_{(s)} \rightarrow Al^{3+}_{(aq)} + 3e^{-}$

BALANCE ELECTRONS

$$2AI_{(s)} + 3Cu^{+}_{(aq)} \rightarrow 2AI^{3+}_{(aq)} + 3Cu_{(s)}$$

Conjugate Redox Pairs

Conjugate Redox Pair

Conjugate Redox Pair

Calculating oxidation numbers

- 1. Any pure element solid liquid or gas will always have an oxidation number of 0.
- 2. Any ion, whether aqueous (alone) or part of an ionic compound, will have an oxidation number equal to that of its charge.
- 3. Hydrogen has an oxidation number of +1, except in metal hydrides, where the oxidation number is -1.
- 4. Oxygen has an oxidation number of -2, except in peroxides, where the oxidation number is -1.
- 5. All other oxidation number can be calculated

Oxidation Numbers

Determine the oxidation numbers of all elements in these compounds:

1) Mg

17) CO₂

33) $Fe(NO_3)_3$

2) Na+

18) O₃

34) H₃PO₄

3) O²⁻

19) N₂

35) NaH

4) Cr³⁺

20) NO₂

36) CaO

5) Au

21) XeF₄

37) MnO₂

6) Ca

22)

ZnBr₂

38) KMnO₄

11

Balancing redox half equations in acidic solution

- K Balance Key elements i.e. all elements other than O and H
- O Balance O with H₂O_(I) molecules
- H Balance H with H⁺_(aq) ions
- E Balance charge by adding Electrons

S Add States

Oxidants & Reductants

Reductant:
Reducing Agent

It itself undergoes oxidation

Oxidant:
Oxidising Agent

It itself undergoes reduction

$$Fe_{(s)} \rightarrow Fe^{2+}_{(aq)} + 2e^{-}$$

Oxidation & Reduction

Presented by
Amelia McCutcheon

www.zenofchemistry.com