
Java Generics
Parametric Polymorphism

GENERICS BASICS

DR. ERIC CHOU IEE E SENIOR MEMBER

Type Variable
<T> in angle brackets

• <T> represents a formal generic type, which can be replaced later with an
actual concrete type. Replacing a generic type is called a generic
instantiation.

• By convention, a single capital letter such as E or T is used to denote a
formal generic type. (Entity and Type)

• To see the benefits of using generics, let us examine the code in Figure B.
The statement in Figure B(a) declares that c is a reference variable whose
type is Comparable and invokes the compareTo method to compare a
Date object with a string. The code compiles fine, but it has a runtime
error because a string cannot be compared with a date.

Type Variable
<T> in angle brackets

• The statement in Figure B(b) declares that c is a reference variable whose
type is Comparable<Date> and invokes the compareTo method to
compare a Date object with a string.

• This code generates a compile error, because the argument passed to the
compareTo method must be of the Date type. Since the errors can be
detected at compile time rather than at runtime, the generic type makes
the program more reliable. (The compareTo() can be overrided.)

• The ArrayList Class. This class has been a generic class since JDK 1.5.

Type Variable
<T> in angle brackets

Figure C.

ArrayList as an Example for Generic Container
Declaration of the Pointer(Reference):
ArrayList<String> alist = new ArrayList<String>();

Addition of Element (body):
alist.add(new String(1));

Generic Container only for Reference Type:
ArrayList<int> alist = new ArrayList<int>();
The primitive type is not allowed here.

Casting is not needed to retrieve a value from a
list with a specified element type, because the
compiler already knows the element type. For
example, the following statements create a list
that contains strings, add strings to the list, and
retrieve strings from the list.

ArrayList<String> alist = new ArrayList<>();
alist.add(“Red”);
alist.add(“White”);
String s = list.get(o); // No casting needed.

Defining Generic Classes and Interfaces
A generic type can be defined for a class or interface. A concrete type must be specified when
using the class to create an object or using the class or interface to declare a reference variable.

This example creates a stack to hold integers and adds three integers to the stack.
GenericStack<Integer> stack2 = new GenericStack<>();
stack2.push(1); // autoboxing
stack2.push(2);
stack2.push(3);

Instead of using a generic type, you could simply make the type element Object,
which can accommodate any object type. However, using generic types can
improve software reliability and readability, because certain errors can be detected
at compile time rather than at runtime. For example, because stack1 is declared
GenericStrck<String>, only strings can be added to the stack. It would be a compile
error if you attempted to add an integer to stack1.

Note:
•Multiple type variables for a generic class definition. For example,
<E1, E2, E3>

•To create a stack of strings, you can new GenericStack<String>() or
new GenericStack(). This could mislead you into thinking that the
constructor of GenericStack should be defined as

public GenericStack<E>()

This is wrong. It should be defined as

public GenericStack()

Generic Stack
Demo Program: GenericStack.java + TestGenericStack.java

Go BlueJ!

