0 5 . 1	Describe how monomers join to form the primary structure of a protein. [3 marks]			
0 5 . 2	Many proteins are enzymes.			
	In 1894, a scientist suggested the lock and key model of enzyme action.			
	Figure 5 shows the lock and key model.			
Figure 5				
	Substrate Product Active site			
	Describe one similarity and one difference between the induced-fit model of enzyme action and the lock and key model of enzyme action. [2 marks]			
	Similarity			
	Difference			

0	5		3	
U	J	-	5	

State how enzymes help reactions to proceed quickly at lower temperatures.

Do not write about active sites in your answer.

[1 mark]

0 5 . 4

The enzyme maltase catalyses the hydrolysis of maltose to glucose.

A scientist investigated maltase activity in two different maltose solutions, **G** and **H**.

For each solution, he measured:

- the total number of glucose molecules produced by complete hydrolysis of the maltose
- the time taken for the complete hydrolysis of the maltose.

Table 3 shows his results.

Table 3

Solution	Total number of glucose molecules produced	Time taken for complete hydrolysis of maltose / s
G	4 × 10 ⁷	20
Н	6 × 10 ⁸	

Complete **Table 3** by calculating the time taken for the complete hydrolysis of the maltose in solution **H**. Assume the rate of maltase activity is the same in solution **G** and in solution **H**.

Show your working.

[2 marks]

Question 5 continues on the next page

Turn over ►

12 0 5 . 5 Figure 6 shows the scientist's results for solution G. Curve I shows the results of a similar investigation in which he changed one independent variable. Figure 6 Number of glucose molecules Time Tick (\checkmark) one box next to the statement that describes the independent variable that the scientist changed to give the results shown by curve I in Figure 6. [1 mark] Addition of a competitive inhibitor Increased maltase concentration Increased maltose concentration Reduced temperature

