
491.3 Conditionals and Loops

% java Flip
Heads
% java Flip
Tails
% java Flip
Tails

While loops Many computations are inherently repetitive. The basic Java con-
struct for handling such computations has the following format:

while (<boolean expression>) { <statements> }

The while statement has the same form as the if statement (the only difference be-
ing the use of the keyword while instead of if), but the meaning is quite different.
It is an instruction to the computer to behave as follows: if the expression is false,
do nothing; if the expression is true, execute the sequence of statements (just as
with if) but then check the expression again, execute the sequence of statements
again if the expression is true, and continue as long as the expression is true. We
often refer to the statement block in a loop as the body of the loop. As with the if
statement, the braces are optional if a while loop body has just one statement.
The while statement is equivalent to a sequence of identical if statements:

Program 1.3.1 Flipping a fair coin

public class Flip
{
 public static void main(String[] args)
 { // Simulate a coin flip.
 if (Math.random() < 0.5) System.out.println("Heads");
 else System.out.println("Tails");
 }
}

This program uses Math.random() to simulate a coin flip. Each time you run it, it prints either
heads or tails. A sequence of flips will have many of the same properties as a sequence that you
would get by flipping a fair coin, but it is not a truly random sequence.

!"#$%&'(')!"*+,,,-3 ./01/23,,,0425,67

50 Elements of Programming

if (<boolean expression>) { <statements> }
if (<boolean expression>) { <statements> }
if (<boolean expression>) { <statements> }
...

At some point, the code in one of the statements must
change something (such as the value of some variable in
the boolean expression) to make the boolean expression
false, and then the sequence is broken.

A common programming paradigm involves main-
taining an integer value that keeps track of the number of
times a loop iterates. We start at some initial value, and then increment the value
by 1 each time through the loop, testing whether it exceeds a predetermined maxi-

mum before deciding to continue. TenHellos
(PROGRAM 1.3.2) is a simple example of this para-
digm that uses a while statement. The key to the
computation is the statement

i = i + 1;

As a mathematical equation, this statement is
nonsense, but as a Java assignment statement it
makes perfect sense: it says to compute the value
i + 1 and then assign the result to the variable i.
If the value of i was 4 before the statement, it be-
comes 5 afterwards; if it was 5 it becomes 6; and
so forth. With the initial condition in TenHellos
that the value of i starts at 4, the statement block
is executed five times until the sequence is bro-
ken, when the value of i becomes 11.

Using the while loop is barely worthwhile for this simple task, but you will
soon be addressing tasks where you will need to specify that statements be repeated
far too many times to contemplate doing it without loops. There is a profound
difference between programs with while statements and programs without them,
because while statements allow us to specify a potentially unlimited number of
statements to be executed in a program. In particular, the while statement allows
us to specify lengthy computations in short programs. This ability opens the door
to writing programs for tasks that we could not contemplate addressing without a

int i = 4;
while (i <= 10)
{
 System.out.println(i + "th Hello");
 i = i + 1;
}

Flowchart example (while statement)

i <= 10 ?

i = 4;

no

yes

System.out.println(i + "th Hello");

i = i + 1;

loop
continuation

condition

Anatomy of a while loop

initialization is a
separate statement

int v = 1;
while (v <= N/2)

braces are
optional

when body
is a single
statement

body

{
 v = 2*v;
}

!"#$%&'(')!"*+,,,52 ./01/23,,,0425,67

511.3 Conditionals and Loops

% java TenHellos
1st Hello
2nd Hello
3rd Hello
4th Hello
5th Hello
6th Hello
7th Hello
8th Hello
9th Hello
10th Hello

Program 1.3.2 Your first while loop

public class TenHellos
{
 public static void main(String[] args)
 { // Print 10 Hellos.
 System.out.println("1st Hello");
 System.out.println("2nd Hello");
 System.out.println("3rd Hello");
 int i = 4;
 while (i <= 10)
 { // Print the ith Hello.
 System.out.println(i + "th Hello");
 i = i + 1;
 }
 }
}

This program uses a while loop for the simple, repetitive task of printing the output shown
below. After the third line, the lines to be printed differ only in the value of the index counting
the line printed, so we define a variable i to contain that index. After initializing the value of
i to 4, we enter into a while loop where we use the value of i in the System.out.println()
statement and increment it each time through the loop. After printing 10th Hello, the value
of i becomes 11 and the loop terminates.

i i <= 10 output

4 true 4th Hello

5 true 5th Hello

6 true 6th Hello

7 true 7th Hello

8 true 8th Hello

9 true 9th Hello

10 true 10th Hello

11 false

Trace of java TenHellos

!"#$%&'(')!"*+,,,5: ./01/23,,,0425,67

52 Elements of Programming

computer. But there is also a price to pay: as your pro-
grams become more sophisticated, they become more
difficult to understand.

PowersOfTwo (PROGRAM 1.3.3) uses a while loop
to print out a table of the powers of 2. Beyond the loop
control counter i, it maintains a variable v that holds
the powers of two as it computes them. The loop body
contains three statements: one to print the current
power of 2, one to compute the next (multiply the cur-
rent one by 2), and one to increment the loop control
counter.

There are many situations in computer science
where it is useful to be familiar with powers of 2. You
should know at least the first 10 values in this table
and you should note that 210 is about 1 thousand, 220 is
about 1 million, and 230 is about 1 billion.

PowersOfTwo is the prototype for many use-
ful computations. By varying the computations that
change the accumulated value and the way that the
loop control variable is incremented, we can print out
tables of a variety of functions (see EXERCISE 1.3.11).

It is worthwhile to carefully examine the behav-
ior of programs that use loops by studying a trace of
the program. For example, a trace of the operation of
PowersOfTwo should show the value of each variable
before each iteration of the loop and the value of the
conditional expression that controls the loop. Trac-
ing the operation of a loop can be very tedious, but it
is nearly always worthwhile to run a trace because it
clearly exposes what a program is doing.

PowersOfTwo is nearly a self-tracing program,
because it prints the values of its variables each time
through the loop. Clearly, you can make any program
produce a trace of itself by adding appropriate System.
out.println() statements. Modern programming en-
vironments provide sophisticated tools for tracing, but

i v i <= N

0 1 true

1 2 true

2 4 true

3 8 true

4 16 true

5 32 true

6 64 true

7 128 true

8 256 true

9 512 true

10 1024 true

11 2048 true

12 4096 true

13 8192 true

14 16384 true

15 32768 true

16 65536 true

17 131072 true

18 262144 true

19 524288 true

20 1048576 true

21 2097152 true

22 4194304 true

23 8388608 true

24 16777216 true

25 33554432 true

26 67108864 true

27 134217728 true

28 268435456 true

29 536870912 true

30 1073741824 false

Trace of java PowersOfTwo 29

!"#$%&'(')!"*+,,,50 ./01/23,,,0425,67

531.3 Conditionals and Loops

this tried-and-true method is simple and effective. You certainly should add print
statements to the first few loops that you write, to be sure that they are doing pre-
cisely what you expect.

There is a hidden trap in PowersOfTwo, because the largest integer in Java’s
int data type is 231 - 1 and the program does not test for that possibility. If you

% java PowersOfTwo 29
0 1
1 2
2 4
...
27 134217728
28 268435456
29 536870912

% java PowersOfTwo 5
0 1
1 2
2 4
3 8
4 16
5 32

Program 1.3.3 Computing powers of two

public class PowersOfTwo
{
 public static void main(String[] args)
 { // Print the first N powers of 2.
 int N = Integer.parseInt(args[0]);
 int v = 1;
 int i = 0;
 while (i <= N)
 { // Print ith power of 2.
 System.out.println(i + " " + v);
 v = 2 * v;
 i = i + 1;
 }
 }
}

This program takes a command-line argument N and prints a table of the powers of 2 that are
less than or equal to 2N. Each time through the loop, we increment the value of i and double
the value of v. We show only the first three and the last three lines of the table; the program
prints N+1 lines.

N loop termination value

i loop control counter

v current power of 2

!"#$%&'(')!"*+,,,5. ./01/23,,,0425,67

54 Elements of Programming

invoke it with java PowersOfTwo 31, you may be surprised by the last line of
output:

...
1073741824
-2147483648

The variable v becomes too large and takes on a negative value because of the way
Java represents integers. The maximum value of an int is available for us to use as
Integer.MAX_VALUE. A better version of PROGRAM 1.3.3 would use this value to test
for overflow and print an error message if the user types too large a value, though
getting such a program to work properly for all inputs is trickier than you might
think. (For a similar challenge, see EXERCISE 1.3.14.)

As a more complicated example, suppose that we
want to compute the largest power of two that is less
than or equal to a given positive integer N. If N is 13 we
want the result 8; if N is 1000, we want the result 512; if N
is 64, we want the result 64; and so forth. This computa-
tion is simple to perform with a while loop:

int v = 1;
while (v <= N/2)
 v = 2*v;

It takes some thought to convince yourself that this sim-
ple piece of code produces the desired result. You can do
so by making these observations:

v is always a power of 2.
v is never greater than N.
v increases each time through the loop, so the loop
must terminate.
After the loop terminates, 2*v is greater than N.

Reasoning of this sort is often important in understanding how while loops work.
Even though many of the loops you will write are much simpler than this one, you
should be sure to convince yourself that each loop you write is going to behave as
you expect.

The logic behind such arguments is the same whether the loop iterates just
a few times, as in TenHellos, dozens of times, as in PowersOfTwo, or millions of
times, as in several examples that we will soon consider. That leap from a few tiny
cases to a huge computation is profound. When writing loops, understanding how

v <= N/2 ?

int v = 1;

int v = 1;
while (v <= N/2)
 v = 2*v;

Flowchart for the statements

no

yes

v = 2*v;

!"#$%&'(')!"*+,,,5- ./01/23,,,0425,67

551.3 Conditionals and Loops

the values of the variables change each time through the loop (and checking that
understanding by adding statements to trace their values and running for a small
number of iterations) is essential. Having done so, you can confidently remove
those training wheels and truly unleash the power of the computer.

For loops As you will see, the while loop allows us to write programs for all
manner of applications. Before considering more examples, we will look at an al-
ternate Java construct that allows us even more flexibility when writing programs
with loops. This alternate notation is not fundamentally different from the basic
while loop, but it is widely used because it often allows us to write more compact
and more readable programs than if we used only while statements.

For notation. Many loops follow this scheme: initialize an index variable to some
value and then use a while loop to test a loop continuation condition involving
the index variable, where the last statement in the while loop increments the index
variable. You can express such loops directly with Java’s for notation:

for (<initialize>; <boolean expression>; <increment>)
{
 <statements>
}

This code is, with only a few exceptions, equivalent to

<initialize>;
while (<boolean expression>)
{
 <statements>
 <increment>;
}

Your Java compiler might even produce identical results for the two loops. In truth,
<initialize> and <increment> can be any statements at all, but we nearly always
use for loops to support this typical initialize-and-increment programming idiom.
For example, the following two lines of code are equivalent to the corresponding
lines of code in TenHellos (PROGRAM 1.3.2):

for (int i = 4; i <= 10; i = i + 1)
 System.out.println(i + "th Hello");

!"#$%&'(')!"*+,,,55 ./01/23,,,0425,67

56 Elements of Programming

Typically, we work with a slightly more compact version of this code, using the
shorthand notation discussed next.

Compound assignment idioms. Modifying the value of a variable is something
that we do so often in programming that Java provides a variety of different short-
hand notations for the purpose. For example, the following four statements all in-
crement the value of i by 1 in Java:

i = i + 1; i++; ++i; i += 1;

You can also say i-- or --i or i -= 1 or i = i-1 to decrement that value of i by 1.
Most programmers use i++ or i-- in for loops, though any of the others would do.
The ++ and -- constructs are normally used for integers, but the compound assign-
ment constructs are useful operations for any arithmetic operator in any primitive
numeric type. For example, you can say v *= 2 or v += v instead of v = 2*v. All
of these idioms are for notational convenience, nothing more. This combination of
shortcuts came into widespread use with the C programming language in the 1970s
and have become standard. They have survived the test of time because they lead to
compact, elegant, and easily understood programs. When you learn to write (and
to read) programs that use them, you will be able to transfer that skill to program-
ming in numerous modern languages, not just Java.

Scope. The scope of a variable is the part of the program where it is defined. Gen-
erally the scope of a variable is comprised of the statements that follow the decla-
ration in the same block as the declaration. For this purpose, the code in the for
loop header is considered to be in the same block as the for loop body. Therefore,
the while and for formulations of loops are not quite equivalent: in a typical for
loop, the incrementing variable is not available for use in later statements; in the
corresponding while loop, it is. This distinction is often a reason to use a while
instead of a for loop.

CHOOSING AMONG DIFFERENT FORMULATIONS OF THE same computation is a matter of
each programmer’s taste, as when a writer picks from among synonyms or chooses
between using active and passive voice when composing a sentence. You will not
find good hard-and-fast rules on how to compose a program any more than you
will find such rules on how to compose a paragraph. Your goal should be to find a
style that suits you, gets the computation done, and can be appreciated by others.

!"#$%&'(')!"*+,,,58 ./01/23,,,0425,67

571.3 Conditionals and Loops

The accompanying table includes
several code fragments with typical
examples of loops used in Java code.
Some of these relate to code that you
have already seen; others are new code
for straightforward computations. To
cement your understanding of loops
in Java, put these code snippets into a
class’s code that takes an integer N from
the command line (like PowersOfTwo)
and compile and run them. Then, write
some loops of your own for similar computations of your own invention, or do
some of the early exercises at the end of this section. There is no substitute for the
experience gained by running code that you create yourself, and it is imperative
that you develop an understanding of how to write Java code that uses loops.

print largest power of two
less than or equal to N

int v = 1;
while (v <= N/2)
 v = 2*v;
System.out.println(v);

compute a finite sum
(1 + 2 + . . . + N)

int sum = 0;
for (int i = 1; i <= N; i++)
 sum += i;
System.out.println(sum);

compute a finite product
(N ! = 1 × 2 × . . . × N)

int product = 1;
for (int i = 1; i <= N; i++)
 product *= i;
System.out.println(product);

print a table of
function values

for (int i = 0; i <= N; i++)
 System.out.println(i + " " + 2*Math.PI*i/N);

print the ruler function
(see Program 1.2.1)

String ruler = " ";
for (int i = 1; i <= N; i++)
 ruler = ruler + i + ruler;
System.out.println(ruler);

Typical examples of using for and while statements

loop
continuation

condition

Anatomy of a for loop (that prints powers of 2)

initialize another
variable in a

separate
statement

declare and initialize
a loop control variable

increment
int v = 1;
for (int i = 0; i <= N; i++)

body

{
 System.out.println(i + " " + v);
 v = 2*v;
}

!"#$%&'(')!"*+,,,51 ./01/23,,,0425,67

58 Elements of Programming

Nesting The if, while, and for statements have the same status as assignment
statements or any other statements in Java. That is, we can use them whenever a
statement is called for. In particular, we can use one or more of them in the <body>
of another to make compound statements. As a first example, DivisorPattern
(PROGRAM 1.3.4) has a for loop whose statements are a for loop (whose statement
is an if statement) and a print statement. It prints a pattern of asterisks where the
i th row has an asterisk in each position corresponding to divisors of i (the same
holds true for the columns).

To emphasize the nesting, we use indentation in the program code. We refer
to the i loop as the outer loop and the j loop as the inner loop. The inner loop iter-
ates all the way through for each iteration of the outer loop. As usual, the best way
to understand a new programming construct like this is to study a trace.

DivisorPattern has a complicated control structure, as you can see from its
flowchart. A diagram like this illustrates the importance of using a limited num-
ber of simple control structures in programming. With nesting, you can compose
loops and conditionals to build programs that are easy to understand even though
they may have a complicated control structure. A great many useful computations
can be accomplished with just one or two levels of nesting. For example, many pro-
grams in this book have the same general structure as DivisorPattern.

i <= N ?

i = 1;

Flowchart for DivisorPattern

no

yes

j <= N ?

j = 1;

yes

j++;

no
i++;

(i % j == 0) || (j % i == 0) ?

System.out.print("* ");

noyes

System.out.print(" ");

System.out.println(i);

!"#$%&'(')!"*+,,,59 ./01/23,,,0425,67

591.3 Conditionals and Loops

% java DivisorPattern 3
* * * 1
* * 2
* * 3

% java DivisorPattern 16
* * * * * * * * * * * * * * * * 1
* * * * * * * * * 2
* * * * * * 3
* * * * * * 4
* * * * 5
* * * * * 6
* * * 7
* * * * * 8
* * * 9
* * * * 10
* * 11
* * * * * * 12
* * 13
* * * * 14
* * * * 15
* * * * * 16

Program 1.3.4 Your first nested loops

public class DivisorPattern
{
 public static void main(String[] args)
 { // Print a square that visualizes divisors.
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 { // Print the ith line
 for (int j = 1; j <= N; j++)
 { // Print the jth entry in the ith line.
 if ((i % j == 0) || (j % i == 0))
 System.out.print("* ");
 else
 System.out.print(" ");
 }
 System.out.println(i);
 }
 }
}

This program takes an integer N as the command-line argument and uses nested for loops to
print an N-by-N table with an asterisk in row i and column j if either i divides j or j divides
i. The loop control variables i and j control the computation.

N
number of rows
and columns

i row index

j column index

i j i % j j % i output

1 1 0 0 *

1 2 1 0 *

1 3 1 0 *

1

2 1 0 1 *

2 2 0 0 *

2 3 2 1

2

3 1 0 1 *

3 2 1 2

3 3 0 0 *

3

Trace of java DivisorPattern 3

!"#$%&'(')!"*+,,,53 ./01/23,,,0425,67

60 Elements of Programming

As a second example of nesting, consider the following program fragment,
which a tax preparation program might use to compute income tax rates:

if (income < 0) rate = 0.0;
else if (income < 47450) rate = .22;
else if (income < 114650) rate = .25;
else if (income < 174700) rate = .28;
else if (income < 311950) rate = .33;
else rate = .35;

In this case, a number of if statements are nested to test from among a number
of mutually exclusive possibilities. This construct is a special one that we use often.
Otherwise, it is best to use braces to resolve ambiguities when nesting if state-
ments. This issue and more examples are addressed in the Q&A and exercises.

Applications The ability to program with loops immediately opens up the full
world of computation. To emphasize this fact, we next consider a variety of exam-
ples. These examples all involve working with the types of data that we considered
in SECTION 1.2, but rest assured that the same mechanisms serve us well for any
computational application. The sample programs are carefully crafted, and by
studying and appreciating them, you will be prepared to write your own programs
containing loops, as requested in many of the exercises at the end of this section.

The examples that we consider here involve computing with numbers. Sev-
eral of our examples are tied to problems faced by mathematicians and scientists
throughout the past several centuries. While computers have existed for only 50
years or so, many of the computational methods that we use are based on a rich
mathematical tradition tracing back to antiquity.

Finite sum. The computational paradigm used by PowersOfT-
wo is one that you will use frequently. It uses two variables—one
as an index that controls a loop and the other to accumulate a
computational result. Harmonic (PROGRAM 1.3.5) uses the same
paradigm to evaluate the finite sum HN = 1 + 1/2 + 1/3 + ... +
1/N . These numbers, which are known as the Harmonic num-
bers, arise frequently in discrete mathematics. Harmonic numbers are the discrete
analog of the logarithm. They also approximate the area under the curve y = 1/x.
You can use PROGRAM 1.3.5 as a model for computing the values of other sums (see
EXERCISE 1.3.16).

1/2

1

1/3
1/4

1/5

!"#$%&'(')!"*+,,,82 ./01/23,,,0425,67

611.3 Conditionals and Loops

Computing the square root. How are functions in Java’s Math li-
brary, such as Math.sqrt(), implemented? Sqrt (PROGRAM 1.3.6)
illustrates one technique. To compute the square root function, it
uses an iterative computation that was known to the Babylonians
over 4,000 years ago. It is also a special case of a general com-
putational technique that was developed in the 17th century by
Isaac Newton and Joseph Raphson and is widely known as New-
ton’s method. Under generous conditions on a given function f (x),
Newton’s method is an effective way to find roots (values of x for
which the function is 0). Start with an initial estimate, t0. Given the

% java Harmonic 2
1.5
% java Harmonic 10
2.9289682539682538
% java Harmonic 10000
9.787606036044348

Program 1.3.5 Harmonic numbers

public class Harmonic
{
 public static void main(String[] args)
 { // Compute the Nth Harmonic number.
 int N = Integer.parseInt(args[0]);
 double sum = 0.0;
 for (int i = 1; i <= N; i++)
 { // Add the ith term to the sum
 sum += 1.0/i;
 }
 System.out.println(sum);
 }
}

This program computes the value of the Nth Harmonic number. The value is known from math-
ematical analysis to be about ln(N) + 0.57721 for large N. Note that ln(10000) ! 9.21034.

N number of terms in sum

i loop index

sum cumulated sum

y = f(x)

root

t
i+2

t
i+1

t
i

Newton’s method

!"#$%&'(')!"*+,,,8: ./01/23,,,0425,67

62 Elements of Programming

% java Sqrt 2.0
1.414213562373095
% java Sqrt 2544545
1595.1630010754388

estimate ti , compute
a new estimate by
drawing a line tan-
gent to the curve y
= f (x) at the point (ti , f (ti)) and set ti+1 to the x-coordinate of the point where that
line hits the x-axis. Iterating this process, we get closer to the root.

Computing the square root of a positive number c is equivalent to finding the
positive root of the function f (x) = x 2 - c. For this special case, Newton’s method
amounts to the process implemented in Sqrt (see EXERCISE 1.3.17). Start with the
estimate t = c. If t is equal to c /t, then t is equal to the square root of c, so the com-
putation is complete. If not, refine the estimate by replacing t with the average of t

Program 1.3.6 Newton’s method

public class Sqrt
{
 public static void main(String[] args)
 {
 double c = Double.parseDouble(args[0]);
 double epsilon = 1e-15;
 double t = c;
 while (Math.abs(t - c/t) > epsilon * t)
 { // Replace t by the average of t and c/t.
 t = (c/t + t) / 2.0;
 }
 System.out.println(t);
 }
}

This program computes the square root of its command-line argument to 15 decimal places of
accuracy, using Newton’s method (see text).

c argument
epsilon error tolerance

t estimate of c

iteration t c/t

2.0000000000000000 1.0

1 1.5000000000000000 1.3333333333333333

2 1.4166666666666665 1.4117647058823530

3 1.4142156862745097 1.4142114384748700

4 1.4142135623746899 1.4142135623715002

5 1.4142135623730950 1.4142135623730951

Trace of java Sqrt 2.0

!"#$%&'(')!"*+,,,80 ./01/23,,,0425,67

631.3 Conditionals and Loops

and c/t. With Newton’s method, we get the value of the
square root of 2 accurate to 15 places in just 5 iterations
of the loop.

Newton’s method is important in scientific com-
puting because the same iterative approach is effec-
tive for finding the roots of a broad class of functions,
including many for which analytic solutions are not
known (so the Java Math library would be no help).
Nowadays, we take for granted that we can find what-
ever values we need of mathematical functions; before
computers, scientists and engineers had to use tables or
computed values by hand. Computational techniques
that were developed to enable calculations by hand
needed to be very efficient, so it is not surprising that
many of those same techniques are effective when we
use computers. Newton’s method is a classic example of
this phenomenon. Another useful approach for evalu-
ating mathematical functions is to use Taylor series ex-
pansions (see EXERCISES 1.3.35–36).

Number conversion. Binary (PROGRAM 1.3.7) prints
the binary (base 2) representation of the decimal num-
ber typed as the command-line argument. It is based on
decomposing a number into a sum of powers of two.
For example, the binary representation of 19 is 10011,
which is the same as saying that 19 = 16 + 2 + 1. To
compute the binary representation of N, we consider the
powers of 2 less than or equal to N in decreasing order
to determine which belong in the binary decomposi-
tion (and therefore correspond to a 1 bit in the binary
representation). The process corresponds precisely to
using a balance scale to weigh an object, using weights
whose values are powers of two. First, we find largest
weight not heavier than the object. Then, considering
the weights in decreasing order, we add each weight to
test whether the object is lighter. If so, we remove the Scale analog to binary conversion

16
>16

<24

<20

>18

=19

16 8

16 4

16 2

16 21

10???

less than 16 + 8

1????

greater than 16

100??

less than 16 4

1001?

greater than 16 2

10011

 10000+10+1 = 10011

equal to 16 + 2 + 1

!"#$%&'(')!"*+,,,8. ./01/23,,,0425,67

64 Elements of Programming

% java Binary 19
10011
% java Binary 100000000
101111101011110000100000000

Program 1.3.7 Converting to binary

public class Binary
{
 public static void main(String[] args)
 { // Print binary representation of N.
 int N = Integer.parseInt(args[0]);
 int v = 1;
 while (v <= N/2)
 v = 2*v;
 // Now v is the largest power of 2 <= N.

 int n = N;
 while (v > 0)
 { // Cast out powers of 2 in decreasing order.
 if (n < v) { System.out.print(0); }
 else { System.out.print(1); n -= v; }
 v = v/2;
 }
 System.out.println();
 }
}

This program prints the binary representation of a positive integer given as the command-line
argument, by casting out powers of 2 in decreasing order (see text).

N integer to convert
v current power of 2

n current excess

weight; if not, we leave the weight and try the next one. Each weight corresponds to
a bit in the binary representation of the weight of the object: leaving a weight corre-
sponds to a 1 bit in the binary representation of the object’s weight, and removing a
weight corresponds to a 0 bit in the binary representation of the object’s weight.

In Binary, the variable v corresponds to the current weight being tested, and
the variable n accounts for the excess (unknown) part of the object’s weight (to

!"#$%&'(')!"*+,,,8- ./01/23,,,0425,67

651.3 Conditionals and Loops

simulate leaving a weight on the balance, we just subtract that weight from n). The
value of v decreases through the powers of two. When it is larger than n, Binary
prints 0; otherwise, it prints 1 and subtracts v from n. As usual, a trace (of the val-
ues of n, v, n < v, and the output bit for each loop iteration) can be very useful in
helping you to understand the program. Read from top to bottom in the rightmost
column of the trace, the output is 10011, the binary representation of 19.

Converting data from one representation to another is a frequent theme in
writing computer programs. Thinking about conversion emphasizes the distinc-
tion between an abstraction (an integer like the number of hours in a day) and a
representation of that abstraction (24 or 11000). The irony here is that the com-
puter’s representation of an integer is actually based on its binary representation.

Simulation. Our next example is different in char-
acter from the ones we have been considering, but
it is representative of a common situation where we
use computers to simulate what might happen in
the real world so that we can make informed deci-
sions. The specific example that we consider now is
from a thoroughly studied class of problems known
as gambler’s ruin. Suppose that a gambler makes a
series of fair $1 bets, starting with some given ini-
tial stake. The gambler always goes broke eventually,
but when we set other limits on the game, various
questions arise. For example, suppose that the gam- Gambler simulation sequences

goal

stake

0

goal
win

stake

0

n binary
representation

v v > 0 binary
representation

n < v output

19 10011 16 true 10000 false 1

3 0011 8 true 1000 true 0

3 011 4 true 100 true 0

3 01 2 true 10 false 1

1 1 1 true 1 false 1

0 0 false

Trace of casting-out-powers-of-two loop for java Binary 19

!"#$%&'(')!"*+,,,85 ./01/23,,,0425,67

66 Elements of Programming

% java Gambler 10 20 1000
50% wins
Avg # bets: 100
% java Gambler 50 250 100
19% wins
Avg # bets: 11050
% java Gambler 500 2500 100
21% wins
Avg # bets: 998071

Program 1.3.8 Gambler’s ruin simulation

public class Gambler
{
 public static void main(String[] args)
 { // Run T experiments that start with $stake
 // and terminate on $0 or $goal.
 int stake = Integer.parseInt(args[0]);
 int goal = Integer.parseInt(args[1]);
 int T = Integer.parseInt(args[2]);
 int bets = 0;
 int wins = 0;
 for (int t = 0; t < T; t++)
 { // Run one experiment.
 int cash = stake;
 while (cash > 0 && cash < goal)
 { // Simulate one bet.
 bets++;
 if (Math.random() < 0.5) cash++;
 else cash--;
 } // Cash is either 0 (ruin) or $goal (win).
 if (cash == goal) wins++;
 }
 System.out.println(100*wins/T + "% wins");
 System.out.println("Avg # bets: " + bets/T);
 }
}

The inner while loop in this program simulates a gambler with $stake who makes a series
of $1 bets, continuing until going broke or reaching $goal. The running time of this program
is proportional to T times the average number of bets. For example, the third command below
causes nearly 100 million random numbers to be generated.

stake initial stake
goal walkaway goal

T number of trials

bets bet count

wins win count

cash cash on hand

!"#$%&'(')!"*+,,,88 ./01/23,,,0425,67

671.3 Conditionals and Loops

bler decides ahead of time to walk away after reaching a certain goal. What are the
chances that the gambler will win? How many bets might be needed to win or lose
the game? What is the maximum amount of money that the gambler will have dur-
ing the course of the game?

Gambler (PROGRAM 1.3.8) is a simulation that can help answer these ques-
tions. It does a sequence of trials, using Math.random() to simulate the sequence
of bets, continuing until the gambler is broke or the goal is reached, and keeping
track of the number of wins and the number of bets. After running the experiment
for the specified number of trials, it averages and prints out the results. You might
wish to run this program for various values of the command-line arguments, not
necessarily just to plan your next trip to the casino, but to help you think about the
following questions: Is the simulation an accurate reflection of what would hap-
pen in real life? How many trials are needed to get an accurate answer? What are
the computational limits on performing such a simulation? Simulations are widely
used in applications in economics, science, and engineering, and questions of this
sort are important in any simulation.

In the case of Gambler, we are verifying classical results from probability the-
ory, which say the probability of success is the ratio of the stake to the goal and that the
expected number of bets is the product of the stake and the desired gain (the difference
between the goal and the stake). For example, if you want to go to Monte Carlo to
try to turn $500 into $2,500, you have a reasonable (20%) chance of success, but
you should expect to make a million $1 bets! If you try to turn $1 into $1,000, you
have a .1% chance and can expect to be done (ruin, most likely) in about 999 bets.

Simulation and analysis go hand-in-hand, each validating the other. In prac-
tice, the value of simulation is that it can suggest answers to questions that might
be too difficult to resolve with analysis. For example, suppose that our gambler,
recognizing that there will never be enough time to make a million bets, decides
ahead of time to set an upper limit on the number of bets. How much money can
the gambler expect to take home in that case? You can address this question with
an easy change to PROGRAM 1.3.8 (see EXERCISE 1.3.24), but addressing it with math-
ematical analysis is not so easy.

!"#$%&'(')!"*+,,,81 ./01/23,,,0425,67

68 Elements of Programming

Factoring. A prime is an integer greater than one whose only positive divisors are
one and itself. The prime factorization of an integer is the multiset of primes whose
product is the integer. For example, 3757208 = 2*2*2*7*13*13*397. Factors
(PROGRAM 1.3.9) computes the prime factorization of any given positive integer. In
contrast to many of the other programs that we have seen (which we could do in a

few minutes with a calculator or even a pencil and paper),
this computation would not be feasible without a comput-
er. How would you go about trying to find the factors of
a number like 287994837222311? You might find the fac-
tor 17 quickly, but even with a calculator it would take you
quite a while to find 1739347.

Although Factors is compact and straightforward,
it certainly will take some thought to for you to convince
yourself that it produces the desired result for any given in-
teger. As usual, following a trace that shows the values of the
variables at the beginning of each iteration of the outer for
loop is a good way to understand the computation. For the
case where the initial value of N is 3757208, the inner while
loop iterates three times when i is 2, to remove the three
factors of 2; then zero times when i is 3, 4, 5, and 6, since
none of those numbers divide 469651; and so forth. Trac-
ing the program for a few example inputs clearly reveals its
basic operation. To convince ourselves that the program will
behave as expected for all inputs, we reason about what we
expect each of the loops to do. The while loop clearly prints
and removes from n all factors of i, but the key to under-
standing the program is to see that the following fact holds
at the beginning of each iteration of the for loop: n has no
factors between 2 and i-1. Thus, if i is not prime, it will not
divide n; if i is prime, the while loop will do its job. Once

we know that n has no factors less than or equal to i, we also know that it has no
factors greater than n/i, so we need look no further when i is greater than n/i.

In a more naïve implementation, we might simply have used the condition (i
< n) to terminate the for loop. Even given the blinding speed of modern comput-
ers, such a decision would have a dramatic effect on the size of the numbers that
we could factor. EXERCISE 1.3.26 encourages you to experiment with the program to

i N output

2 3757208 2 2 2

3 469651

4 469651

5 469651

6 469651

7 469651 7

8 67093

9 67093

10 67093

11 67093

12 67093

13 67093 13 13

14 397

15 397

16 397

17 397

18 397

19 397

20 397

397

Trace of java Factors 3757208

!"#$%&'(')!"*+,,,89 ./01/23,,,0425,67

691.3 Conditionals and Loops

learn the effectiveness of this simple change. On a computer that can do billions
of operations per second, we could factor numbers on the order of 109 in a few
seconds; with the (i <= n/i) test we can factor numbers on the order of 1018 in a
comparable amount of time. Loops give us the ability to solve difficult problems,
but they also give us the ability to construct simple programs that run slowly, so we
must always be cognizant of performance.

In modern applications in cryptography, there are important situations where
we wish to factor truly huge numbers (with, say, hundreds or thousands of digits).
Such a computation is prohibitively difficult even with the use of a computer.

% java Factors 3757208
2 2 2 7 13 13 397

Program 1.3.9 Factoring integers

public class Factors
{
 public static void main(String[] args)
 { // Print the prime factors of N.
 long N = Long.parseLong(args[0]);
 long n = N;
 for (long i = 2; i <= n/i; i++)
 { // Test whether i is a factor.
 while (n % i == 0)
 { // Cast out and print i factors.
 n /= i;
 System.out.print(i + " ");
 } // Any factors of n are greater than i.
 }
 if (n > 1) System.out.print(n);
 System.out.println();
 }
}

This program prints the prime factorization of any positive integer in Java’s long data type. The
code is simple, but it takes some thought to convince oneself that it is correct (see text).

N integer to factor
n unfactored part

i potential factor

% java Factors 287994837222311
17 1739347 9739789

!"#$%&'(')!"*+,,,83 ./01/23,,,0425,67

70 Elements of Programming

Other conditional and loop constructs To more fully cover the Java lan-
guage, we consider here four more control-flow constructs. You need not think
about using these constructs for every program that you write, because you are
likely to encounter them much less frequently than the if, while, and for state-
ments. You certainly do not need to worry about using these constructs until you
are comfortable using if, while, and for. You might encounter one of them in a
program in a book or on the web, but many programmers do not use them at all
and we do not use any of them outside this section.

Break statement. In some situations, we want to immediately exit a loop without
letting it run to completion. Java provides the break statement for this purpose.
For example, the following code is an effective way to test whether a given integer
N>1 is prime:

int i;
for (i = 2; i <= N/i; i++)
 if (N % i == 0) break;
if (i > N/i) System.out.println(N + " is prime");

There are two different ways to leave this loop: either the break statement is ex-
ecuted (because i divides N, so N is not prime) or the for loop condition is not
satisfied (because no i with i <= N/i was found that divides N, which implies that
N is prime). Note that we have to declare i outside the for loop instead of in the
initialization statement so that its scope extends beyond the loop.

Continue statement. Java also provides a way to skip to the next iteration of a
loop: the continue statement. When a continue is executed within a loop body,
the flow of control transfers directly to the increment statement for the next itera-
tion of the loop.

Switch statement. The if and if-else statements allow one or two alternatives
in directing the flow of control. Sometimes, a computation naturally suggests more
than two mutually exclusive alternatives. We could use a sequence or a chain of
if-else statements, but the Java switch statement provides a direct solution. Let
us move right to a typical example. Rather than printing an int variable day in a
program that works with days of the weeks (such as a solution to EXERCISE 1.2.29),
it is easier to use a switch statement, as follows:

!"#$%&'(')!"*+,,,12 ./01/23,,,0425,67

711.3 Conditionals and Loops

switch (day)
{
 case 0: System.out.println("Sun"); break;
 case 1: System.out.println("Mon"); break;
 case 2: System.out.println("Tue"); break;
 case 3: System.out.println("Wed"); break;
 case 4: System.out.println("Thu"); break;
 case 5: System.out.println("Fri"); break;
 case 6: System.out.println("Sat"); break;
}

When you have a program that seems to have a long and regular sequence of if
statements, you might consider consulting the booksite and using a switch state-
ment, or using an alternate approach described in SECTION 1.4.

Do-while loop. Another way to write a loop is to use the template

do { <statements> } while (<boolean expression>);

The meaning of this statement is the same as

while (<boolean expression>) { <statements> }

except that the first test of the condition is omitted. If the condition initially holds,
there is no difference. For an example in which do-while is useful, consider the
problem of generating points that are randomly distributed in the unit disk. We
can use Math.random() to generate x and y coordinates independently to get points
that are randomly distributed in the 2-by-2 square centered on the origin. Most
points fall within the unit disk, so we just reject those that do not. We always want
to generate at least one point, so a do-while loop is ideal for this computation. The
following code sets x and y such that the point (x, y) is randomly distributed in the
unit disk:

do
{ // Scale x and y to be random in (-1, 1).
 x = 2.0*Math.random() - 1.0;
 y = 2.0*Math.random() - 1.0;
} while (Math.sqrt(x*x + y*y) > 1.0);

Since the area of the disk is # and the area of the square is 4, the
expected number of times the loop is iterated is 4/# (about 1.27).

x

y

in

(0, 0)

(1, 1)

out

!"#$%&'(')!"*+,,,1: ./01/23,,,0425,67

72 Elements of Programming

Infinite loops Before you write programs that use loops, you need to think
about the following issue: what if the loop-continuation condition in a while loop
is always satisfied? With the statements that you have learned so far, one of two bad
things could happen, both of which you need to learn to cope with.

First, suppose that such a loop calls System.out.println(). For example, if
the condition in TenHellos were (i > 3) instead of (i <= 10), it would always
be true. What happens? Nowadays, we use print as an abstraction to mean display
in a terminal window and the result of attempting to display an unlimited number
of lines in a terminal window is dependent on operating-system conventions. If

your system is set up to have print mean print characters on
a piece of paper, you might run out of paper or have to un-
plug the printer. In a terminal window, you need a stop printing
operation. Before running programs with loops on your own,
you make sure that you know what to do to “pull the plug” on
an infinite loop of System.out.println() calls and then test
out the strategy by making the change to TenHellos indicated
above and trying to stop it. On most systems, <ctrl-c> means
stop the current program, and should do the job.

Second, nothing might happen. If your program has an
infinite loop that does not produce any output, it will spin
through the loop and you will see no results at all. When you
find yourself in such a situation, you can inspect the loops to
make sure that the loop exit condition always happens, but the
problem may not be easy to identify. One way to locate such
a bug is to insert calls to System.out.println() to produce
a trace. If these calls fall within an infinite loop, this strategy
reduces the problem to the case discussed in the previous para-
graph, but the output might give you a clue about what to do.

You might not know (or it might not matter) whether a loop is infinite or just
very long. Even BadHellos eventually would terminate after printing over a billion
lines because of overflow. If you invoke PROGRAM 1.3.8 with arguments such as java
Gambler 100000 200000 100, you may not want to wait for the answer. You will
learn to be aware of and to estimate the running time of your programs.

Why not have Java detect infinite loops and warn us about them? You might
be surprised to know that it is not possible to do so, in general. This counterintui-
tive fact is one of the fundamental results of theoretical computer science.

public class BadHellos
...
int i = 4;
while (i > 3)
{
 System.out.println
 (i + "th Hello");
 i = i + 1;
}
...

% java BadHellos
1st Hello
2nd Hello
3rd Hello
5th Hello
6th Hello
7th Hello
...

An infinite loop

!"#$%&'(')!"*+,,,10 ./01/23,,,0425,67

731.3 Conditionals and Loops

Summary For reference, the accompanying table lists the programs that we
have considered in this section. They are representative of the kinds of tasks we can
address with short programs comprised of if, while, and for statements process-
ing built-in types of data. These types of
computations are an appropriate way to
become familiar with the basic Java flow-
of-control constructs. The time that you
spend now working with as many such
programs as you can will certainly pay
off for you in the future.

To learn how to use condition-
als and loops, you must practice writ-
ing and debugging programs with if,
while, and for statements. The exer-
cises at the end of this section provide
many opportunities for you to begin this
process. For each exercise, you will write
a Java program, then run and test it. All
programmers know that it is unusual to
have a program work as planned the first
time it is run, so you will want to have an understanding of your program and an
expectation of what it should do, step by step. At first, use explicit traces to check
your understanding and expectation. As you gain experience, you will find yourself
thinking in terms of what a trace might produce as you compose your loops. Ask
yourself the following kinds of questions: What will be the values of the variables
after the loop iterates the first time? The second time? The final time? Is there any
way this program could get stuck in an infinite loop?

Loops and conditionals are a giant step in our ability to compute: if, while,
and for statements take us from simple straight-line programs to arbitrarily com-
plicated flow of control. In the next several chapters, we will take more giant steps
that will allow us to process large amounts of input data and allow us to define
and process types of data other than simple numeric types. The if, while, and
for statements of this section will play an essential role in the programs that we
consider as we take these steps.

program description

Flip simulate a coin flip

TenHellos your first loop

PowersOfTwo compute and print a table of values

DivisorPattern your first nested loop

Harmonic compute finite sum

Sqrt classic iterative algorithm

Binary basic number conversion

Gambler simulation with nested loops

Factors while loop within a for loop

Summary of programs in this section

!"#$%&'(')!"*+,,,1. ./01/23,,,0425,67

74 Elements of Programming

Q&A

Q. What is the difference between = and ==?

A. We repeat this question here to remind you to be sure not to use = when you
mean == in a conditional expression. The expression (x = y) assigns the value of
y to x, whereas the expression (x == y) tests whether the two variables currently
have the same values. In some programming languages, this difference can wreak
havoc in a program and be difficult to detect, but Java’s type safety usually will
come to the rescue. For example, if we make the mistake of typing (t = goal)
instead of (t == goal) in PROGRAM 1.3.8, the compiler finds the bug for us:

javac Gambler.java
Gambler.java:18: incompatible types
found : int
required: boolean
if (t = goal) wins++;
 ^
1 error

Be careful about writing if (x = y) when x and y are boolean variables, since this
will be treated as an assignment statement, which assigns the value of y to x and
evaluates to the truth value of y. For example, instead of writing if (isPrime =
false), you should write if (!isPrime).

Q. So I need to pay attention to using == instead of = when writing loops and con-
ditionals. Is there something else in particular that I should watch out for?

A. Another common mistake is to forget the braces in a loop or conditional with a
multi-statement body. For example, consider this version of the code in Gambler:

for (int t = 0; t < T; t++)
 for (cash = stake; cash > 0 && cash < goal; bets++)
 if (Math.random() < 0.5) cash++;
 else cash--;
 if (cash == goal) wins++;

The code appears correct, but it is dysfunctional because the second if is outside
both for loops and gets executed just once. Our practice of using explicit braces for
long statements is precisely to avoid such insidious bugs.

!"#$%&'(')!"*+,,,1- ./01/23,,,0425,67

751.3 Conditionals and Loops

Q. Anything else?

A. The third classic pitfall is ambiguity in nested if statements:

if <expr1> if <expr2> <stmntA> else <stmntB>

In Java this is equivalent to

if <expr1> { if <expr2> <stmntA> else <stmntB> }

even if you might have been thinking

if <expr1> { if <expr2> <stmntA> } else <stmntB>

Again, using explicit braces is a good way to avoid this pitfall.

Q. Are there cases where I must use a for loop but not a while, or vice versa?

A. No. Generally, you should use a for loop when you have an initialization, an
increment, and a loop continuation test (if you do not need the loop control vari-
able outside the loop). But the equivalent while loop still might be fine.

Q. What are the rules on where we declare the loop-control variables?

A. Opinions differ. In older programming languages, it was required that all vari-
ables be declared at the beginning of a <body>, so many programmers are in this
habit and there is a lot of code out there that follows this convention. But it makes a
lot of sense to declare variables where they are first used, particularly in for loops,
when it is normally the case that the variable is not needed outside the loop. How-
ever, it is not uncommon to need to test (and therefore declare) the loop-control
variable outside the loop, as in the primality-testing code we considered as an ex-
ample of the break statement.

Q. What is the difference between ++i and i++?

A. As statements, there is no difference. In expressions, both increment i, but ++i
has the value after the increment and i++ the value before the increment. In this
book, we avoid statements like x = ++i that have the side effect of changing vari-
able values. So, it is safe to not worry much about this distinction and just use i++

!"#$%&'(')!"*+,,,15 ./01/23,,,0425,67

76 Elements of Programming

in for loops and as a statement. When we do use ++i in this book, we will call at-
tention to it and say why we are using it.

Q. So, <initialize> and <increment> can be any statements whatsoever in a for
loop. How can I take advantage of that?

A. Some experts take advantage of this ability to create compact code fragments,
but, as a beginner, it is best for you to use a while loop in such situations. In fact,
the situation is even more complicated because <initialize> and <increment>
can be sequences of statements, separated by commas. This notation allows for code
that initializes and modifies other variables besides the loop index. In some cases,
this ability leads to compact code. For example, the following two lines of code
could replace the last eight lines in the body of the main() method in PowersOfTwo
(PROGRAM 1.3.3):

for (int i = 0, v = 1; i <= n; i++, v *= 2)
 System.out.println(i + " " + v);

Such code is rarely necessary and better avoided, particularly by beginners.

Q Can I use a double value as an index in a for loop?

A It is legal, but generally bad practice to do so. Consider the following loop:

for (double x = 0.0; x <= 1.0; x += 0.1)
 System.out.println(x + “ “ + Math.sin(x));

How many times does it iterate? The number of iterations depends on an equality
test between double values, which may not always give the result that you expect.

Q. Anything else tricky about loops?

A. Not all parts of a for loop need to be filled
in with code. The initialization statement, the
boolean expression, the increment statement,
and the loop body can each be omitted. It is gen-
erally better style to use a while statement than
null statements in a for loop. In the code in this
book, we avoid null statements.

null increment
statement

Three equivalent loops

null loop body

int v = 1;
while (v <= N/2)
 v *= 2;

for (int v = 1; v <= N/2;)
 v *= 2;

for (int v = 1; v <= N/2; v *= 2)
 ;

!"#$%&'(')!"*+,,,18 ./01/23,,,0425,67

771.3 Conditionals and Loops

Exercises

1.3.1 Write a program that takes three integer command-line arguments and
prints equal if all three are equal, and not equal otherwise.

1.3.2 Write a more general and more robust version of Quadratic (PROGRAM
1.2.3) that prints the roots of the polynomial ax2 + bx + c, prints an appropriate
message if the discriminant is negative, and behaves appropriately (avoiding divi-
sion by zero) if a is zero.

1.3.3 What (if anything) is wrong with each of the following statements?
a. if (a > b) then c = 0;

b. if a > b { c = 0; }

c. if (a > b) c = 0;

d. if (a > b) c = 0 else b = 0;

1.3.4 Write a code fragment that prints true if the double variables x and y are
both strictly between 0 and 1 and false otherwise.

1.3.5 Improve your solution to EXERCISE 1.2.25 by adding code to check that the
values of the command-line arguments fall within the ranges of validity of the for-
mula, and also adding code to print out an error message if that is not the case.

1.3.6 Suppose that i and j are both of type int. What is the value of j after each
of the following statements is executed?

a. for (i = 0, j = 0; i < 10; i++) j += i;

b. for (i = 0, j = 1; i < 10; i++) j += j;

c. for (j = 0; j < 10; j++) j += j;

d. for (i = 0, j = 0; i < 10; i++) j += j++;

1.3.7 Rewrite TenHellos to make a program Hellos that takes the number of
lines to print as a command-line argument. You may assume that the argument is
less than 1000. Hint: Use i % 10 and i % 100 to determine when to use st, nd, rd, or
th for printing the ith Hello.

1.3.8 Write a program that, using one for loop and one if statement, prints the

!"#$%&'(')!"*+,,,11 ./01/23,,,0425,67

78 Elements of Programming

integers from 1,000 to 2,000 with five integers per line. Hint: Use the % operation.

1.3.9 Write a program that takes an integer N as a command-line argument,
uses Math.random() to print N uniform random values between 0 and 1, and then
prints their average value (see EXERCISE 1.2.30).

1.3.10 Describe what happens when you try to print a ruler function (see the table
on page 57) with a value of N that is too large, such as 100.

1.3.11 Write a program FunctionGrowth that prints a table of the values log N,
N, N log N, N 2, N 3, and 2 N for N = 16, 32, 64, ... , 2048. Use tabs (\t characters) to
line up columns.

1.3.12 What are the values of m and n after executing the following code?

int n = 123456789;
int m = 0;
while (n != 0)
{
 m = (10 * m) + (n % 10);
 n = n / 10;
}

1.3.13 What does the following program print ?

int f = 0, g = 1;
for (int i = 0; i <= 15; i++)
{
 System.out.println(f);
 f = f + g;
 g = f - g;
}

Solution. Even an expert programmer will tell you that the only way to under-
stand a program like this is to trace it. When you do, you will find that it prints the
values 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 134, 233, 377, and 610. These numbers are
the first sixteen of the famous Fibonacci sequence, which are defined by the follow-
ing formulas: F0 = 0, F1 = 1, and Fn = Fn-1 + Fn-2 for n > 1. The Fibonacci sequence
arises in a surprising variety of contexts, they have been studied for centuries, and

!"#$%&'(')!"*+,,,19 ./01/23,,,0425,67

791.3 Conditionals and Loops

many of their properties are well-known. For example, the ratio of successive num-
bers approaches the golden ratio % (about 1.618) as n approaches infinity.

1.3.14 Write a program that takes a command-line argument N and prints all the
positive powers of two less than or equal to N. Make sure that your program works
properly for all values of N. (Integer.parseInt() will generate an error if N is too
large, and your program should print nothing if N is negative.)

1.3.15 Expand your solution to EXERCISE 1.2.24 to print a table giving the total
amount paid and the remaining principal after each monthly payment.

1.3.16 Unlike the harmonic numbers, the sum 1/12 + 1/22 + ... + 1/N2 does con-
verge to a constant as N grows to infinity. (Indeed, the constant is #2/6, so this
formula can be used to estimate the value of #.) Which of the following for loops
computes this sum? Assume that N is an int initialized to 1000000 and sum is a
double initialized to 0.0.

a. for (int i = 1; i <= N; i++) sum += 1 / (i*i);

b. for (int i = 1; i <= N; i++) sum += 1.0 / i*i;

c. for (int i = 1; i <= N; i++) sum += 1.0 / (i*i);

d. for (int i = 1; i <= N; i++) sum += 1 / (1.0*i*i);

1.3.17 Show that PROGRAM 1.3.6 implements Newton’s method for finding the
square root of c. Hint : Use the fact that the slope of the tangent to a (differentiable)
function f(x) at x = t is f '(t) to find the equation of the tangent line and then use
that equation to find the point where the tangent line intersects the x-axis to show
that you can use Newton’s method to find a root of any function as follows: at each
iteration, replace the estimate t by t ! f(t) / f '(t).

1.3.18 Using Newton’s method, develop a program that takes integers N and k as
command-line arguments and prints the kth root of N (Hint : see EXERCISE 1.3.17).

1.3.19 Modify Binary to get a program Kary that takes i and k as command-line
arguments and converts i to base k. Assume that i is an integer in Java’s long data
type and that k is an integer between 2 and 16. For bases greater than 10, use the
letters A through F to represent the 11th through 16th digits, respectively.

!"#$%&'(')!"*+,,,13 ./01/23,,,0425,67

80 Elements of Programming

1.3.20 Write a code fragment that puts the binary representation of a positive
integer N into a String s.

Solution. Java has a built-in method Integer.toBinaryString(N) for this job,
but the point of the exercise is to see how such a method might be implemented.
Working from PROGRAM 1.3.7, we get the solution

String s = "";
int v = 1;
while (v <= n/2) v = 2*v;
while (v > 0)
{
 if (n < v) { s += 0; }
 else { s += 1; n -= v; }
 v = v/2;
}

A simpler option is to work from right to left:

String s = "";
for (int n = N; n > 0; n /= 2)
 s = (n % 2) + s;

Both of these methods are worthy of careful study.

1.3.21 Write a version of Gambler that uses two nested while loops or two nested
for loops instead of a while loop inside a for loop.

1.3.22 Write a program GamblerPlot that traces a gambler’s ruin simulation by
printing a line after each bet in which one asterisk corresponds to each dollar held
by the gambler.

1.3.23 Modify Gambler to take an extra command-line argument that specifies
the (fixed) probability that the gambler wins each bet. Use your program to try to
learn how this probability affects the chance of winning and the expected number
of bets. Try a value of p close to .5 (say, .48).

1.3.24 Modify Gambler to take an extra command-line argument that specifies
the number of bets the gambler is willing to make, so that there are three possible

!"#$%&'(')!"*+,,,92 ./01/23,,,0425,67

811.3 Conditionals and Loops

ways for the game to end: the gambler wins, loses, or runs out of time. Add to the
output to give the expected amount of money the gambler will have when the game
ends. Extra credit : Use your program to plan your next trip to Monte Carlo.

1.3.25 Modify Factors to print just one copy each of the prime divisors.

1.3.26 Run quick experiments to determine the impact of using the termination
condition (i <= N/i) instead of (i < N) in Factors in PROGRAM 1.3.9. For each
method, find the largest n such that when you type in an n digit number, the pro-
gram is sure to finish within 10 seconds.

1.3.27 Write a program Checkerboard that takes one command-line argument N
and uses a loop within a loop to print out a two-dimensional N-by-N checkerboard
pattern with alternating spaces and asterisks.

1.3.28 Write a program GCD that finds the greatest common divisor (gcd) of two
integers using Euclid’s algorithm, which is an iterative computation based on the
following observation: if x is greater than y, then if y divides x, the gcd of x and y is
y; otherwise, the gcd of x and y is the same as the gcd of x % y and y.

1.3.29 Write a program RelativelyPrime that takes one command-line argu-
ment N and prints out an N-by-N table such that there is an * in row i and column j
if the gcd of i and j is 1 (i and j are relatively prime) and a space in that position
otherwise.

1.3.30 Write a program PowersOfK that takes an integer k as command-line argu-
ment and prints all the positive powers of k in the Java long data type. Note : The
constant Long.MAX_VALUE is the value of the largest integer in long.

1.3.31 Generate a random point (x, y, z) on the surface of a sphere using Mar-
saglia’s method: Pick a random point (a, b) in the unit disk using the method de-
scribed at the end of this section. Then, set x = 2 a "1 -a2 - b2 . y = 2 b "1 -a2 - b2.
and z = 1 - 2 (a2 + b2).

!"#$%&'(')!"*+,,,9: ./01/23,,,0425,67

82 Elements of Programming

Creative Exercises

1.3.32 Ramanujan’s taxi. Srinivasa Ramanujan was an Indian mathematician
who became famous for his intuition for numbers. When the English mathemati-
cian G. H. Hardy came to visit him one day, Hardy remarked that the number of
his taxi was 1729, a rather dull number. To which Ramanujan replied, “No, Hardy!
No, Hardy! It is a very interesting number. It is the smallest number expressible as
the sum of two cubes in two different ways.” Verify this claim by writing a program
that takes a command-line argument N and prints out all integers less than or equal
to N that can be expressed as the sum of two cubes in two different ways. In other
words, find distinct positive integers a, b, c, and d such that a3 + b3 = c3 + d3. Use four
nested for loops.

1.3.33 Checksum. The International Standard Book Number (ISBN) is a 10-digit
code that uniquely specifies a book. The rightmost digit is a checksum digit that
can be uniquely determined from the other 9 digits, from the condition that d1 +
2d2 +3d3 + ... + 10d10 must be a multiple of 11 (here di denotes the ith digit from the
right). The checksum digit di can be any value from 0 to 10. The ISBN convention is
to use the character 'X' to denote 10. Example: the checksum digit corresponding
to 020131452 is 5 since 5 is the only value of x between 0 and 10 for which

10·0 + 9·2 + 8·0 + 7·1 + 6·3 + 5·1 +4·4 +3·5 + 2·2 + 1·x

is a multiple of 11. Write a program that takes a 9-digit integer as a command-line
argument, computes the checksum, and prints out the the ISBN number.

1.3.34 Counting primes. Write a program PrimeCounter that takes a command-
line argument N and finds the number of primes less than or equal to N. Use it to
print out the number of primes less than or equal to 10 million. Note : if you are not
careful, your program may not finish in a reasonable amount of time!

1.3.35 2D random walk. A two-dimensional random walk simulates the behavior
of a particle moving in a grid of points. At each step, the random walker moves
north, south, east, or west with probability equal to 1/4, independent of previous
moves. Write a program RandomWalker that takes a command-line argument N and
estimates how long it will take a random walker to hit the boundary of a 2N-by-2N
square centered at the starting point.

!"#$%&'(')!"*+,,,90 ./01/23,,,0425,67

831.3 Conditionals and Loops

1.3.36 Exponential function. Assume that x is a positive variable of type double.
Write a code fragment that uses the Taylor series expansion to set the value of sum
to e x = 1 + x + x2/2! + x3/3! +

Solution. The purpose of this exercise is to get you to think about how a library
function like Math.exp() might be implemented in terms of elementary operators.
Try solving it, then compare your solution with the one developed here.

We start by considering the problem of computing one term. Suppose that x
and term are variables of type double and n is a variable of type int. The following
code fragment sets term to x N / N ! using the direct method of having one loop for
the numerator and another loop for the denominator, then dividing the results:

double num = 1.0, dem = 1.0;
for (int i = 1; i <= n; i++) num *= x;
for (int i = 1; i <= n; i++) den *= i;
double term = num/den;

A better approach is to use just a single for loop:

double term = 1.0;
for (i = 1; i <= n; i++) term *= x/i;

Besides being more compact and elegant, the latter solution is preferable because
it avoids inaccuracies caused by computing with huge numbers. For example, the
two-loop approach breaks down for values like x = 10 and N = 100 because 100! is
too large to represent as a double.

To compute ex , we nest this for loop within another for loop:

double term = 1.0;
double sum = 0.0;
for (int n = 1; sum != sum + term; n++)
{
 sum += term;
 term = 1.0;
 for (int i = 1; i <= n; i++) term *= x/i;
}

The number of times the loop iterates depends on the relative values of the next
term and the accumulated sum. Once the value of the sum stops changing, we

!"#$%&'(')!"*+,,,9. ./01/23,,,0425,67

84 Elements of Programming

leave the loop. (This strategy is more efficient than using the termination condi-
tion (term > 0) because it avoids a significant number of iterations that do not
change the value of the sum.) This code is effective, but it is inefficient because the
inner for loop recomputes all the values it computed on the previous iteration of
the outer for loop. Instead, we can make use of the term that was added in on the
previous loop iteration and solve the problem with a single for loop:

double term = 1.0;
double sum = 0.0;
for (int n = 1; sum != sum + term; n++)
{
 sum += term;
 term *= x/n;
}

1.3.37 Trigonometric functions. Write two programs, Sin and Cos, that
compute the sine and cosine functions using their Taylor series expansions
sin x = x ! x 3/3! + x 5/5! ! ... and cos x = 1 ! x 2/2! + x 4/4! !

1.3.38 Experimental analysis. Run experiments to determine the relative costs of
Math.exp() and the methods from EXERCISE 1.3.36 for computing e x : the direct
method with nested for loops, the improvement with a single for loop, and the
latter with the termination condition (term > 0). Use trial-and-error with a com-
mand-line argument to determine how many times your computer can perform
each computation in 10 seconds.

1.3.39 Pepys problem. In 1693 Samuel Pepys asked Isaac Newton which is more
likely: getting 1 at least once when rolling a fair die six times or getting 1 at least
twice when rolling it 12 times. Write a program that could have provided Newton
with a quick answer.

1.3.40 Game simulation. In the 1970s game show Let’s Make a Deal, a contestant
is presented with three doors. Behind one of them is a valuable prize. After the con-
testant chooses a door, the host opens one of the other two doors (never revealing
the prize, of course). The contestant is then given the opportunity to switch to the
other unopened door. Should the contestant do so? Intuitively, it might seem that

!"#$%&'(')!"*+,,,9- ./01/23,,,0425,67

851.3 Conditionals and Loops

the contestant’s initial choice door and the other unopened door are equally likely
to contain the prize, so there would be no incentive to switch. Write a program Mon-
teHall to test this intuition by simulation. Your program should take a command-
line argument N, play the game N times using each of the two strategies (switch or
do not switch), and print the chance of success for each of the two strategies.

1.3.41 Median-of-5. Write a program that takes five distinct integers from the
command line and prints the median value (the value such that two of the others
are smaller and two are larger). Extra credit : Solve the problem with a program that
compares values fewer than seven times for any given input.

1.3.42 Sorting three numbers. Suppose that the variables a, b, c, and t are all of
the same numeric primitive type. Prove that the following code puts a, b, and c in
ascending order:

if (a > b) { t = a; a = b; b = t; }
if (a > c) { t = a; a = c; c = t; }
if (b > c) { t = b; b = c; c = t; }

1.3.43 Chaos. Write a program to study the following simple model for popula-
tion growth, which might be applied to study fish in a pond, bacteria in a test tube,
or any of a host of similar situations. We suppose that the population ranges from
0 (extinct) to 1 (maximum population that can be sustained). If the population at
time t is x, then we suppose the population at time t + 1 to be rx(1!x), where the
argument r, known as the fecundity parameter, controls the rate of growth. Start
with a small population—say, x = 0.01—and study the result of iterating the model,
for various values of r. For which values of r does the population stabilize at x = 1
! 1/r ? Can you say anything about the population when r is 3.5? 3.8? 5?

1.3.44 Euler’s sum-of-powers conjecture. In 1769 Leonhard Euler formulated a
generalized version of Fermat’s Last Theorem, conjecturing that at least n nth pow-
ers are needed to obtain a sum that is itself an nth power, for n > 2. Write a program
to disprove Euler’s conjecture (which stood until 1967), using a quintuply nested
loop to find four positive integers whose 5th power sums to the 5th power of an-
other positive integer. That is, find a, b, c, d, and e such that a 5 " b 5 " c 5 " d 5 * e 5.
Use the long data type.

!"#$%&'(')!"*+,,,95 ./01/23,,,0425,67

