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a b s t r a c t

The increasing number of natural catastrophes like floods, hurricanes, and earthquakes not only causes
many victims, but also leads to severe production, infrastructure, and individual property losses. Classic
insurance mechanisms may be inadequate for dealing with such losses because of the dependencies that
exist, inter alia, between the sources of the losses, the huge values of claims, and problems with adverse
selection andmoral hazard. To copewith the dramatic consequences of extreme events, new financial and
insurance instruments are required. One example of a catastrophe-linked security is the catastrophe bond
(cat bond), also known as the Act-of-God bond. In this paper we price some catastrophe bonds. We apply
models of the risk-free spot interest rate under the assumption that the occurrence of the catastrophe is
independent of financial market behavior. We then useMonte Carlo simulations to analyze the numerical
properties of the pricing formulas thus obtained. We make a twofold contribution to the literature of
catastrophe bond pricing. First, we prove a general pricing formula, which can be applied to cat bonds
with different payoff functions under the assumption of different models of the risk-free spot interest
rate. Second, we price some new types of cat bonds with interest rate dynamics described by the CIR and
the Hull–White model.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The insurance industry faces overwhelming risks from natural
catastrophes. Losses fromHurricane Andrew, for example, reached
US$30 billion in 1992, while the losses from Hurricane Katrina
in 2005 are estimated at $40–60 billion (see Muermann, 2008).
To cope with the dramatic impacts of extreme events like these,
an integrated policy that combines mitigation measures with
diversified ex ante and ex post financial instruments is required.

Classic insurance mechanisms are unsuitable for addressing
the extreme losses caused by natural catastrophes. For many
insurers, even a single catastrophe can cause problems relating
to reserve adequacy or even lead to bankruptcy. For example,
after Hurricane Andrew more than 60 insurance companies fell
into insolvency (see Muermann, 2008). For traditional insurance
models (see, e.g. Borch, 1974) independent risk claims that are
small in relation to the value of the whole insurance portfolio are
the norm. This classic strategy of selecting an insurance contract
portfolio is justified by the law of large numbers and the central
limit theorem (see Borch, 1974; Ermoliev et al., 2001).

However, catastrophic risks mean that new approaches are
needed to building insurance company portfolios. As the sources
of losses caused by natural catastrophes are strongly dependent on
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time and location, the traditional portfolio-building strategy can
only increase the probability of insurer bankruptcy (see Ermoliev
et al., 2001).

As mentioned earlier, a single catastrophic event, like an
earthquake or a hurricane, could result in damages of $50–100
billion. On the other hand, worldwide financial markets may
fluctuate by tens of billions of dollars on a daily basis. This is
why securitization of losses, that is, the ‘‘packaging’’ of risks into
tradable assets in the form of so-called catastrophe derivatives,
may be useful for dealing with the impacts of extreme natural
catastrophes (see, e.g. Cummins et al., 2002; Freeman and
Kunreuther, 1997; Froot, 2001; Harrington and Niehaus, 2003;
Nowak and Romaniuk, 2010a,c,d; Nowak et al., 2012).

Themost popular catastrophe-linked security is the catastrophe
bond (cat bond) or Act-of-God bond (see, for example, Cox et al.,
2000; D’Arcy and France, 1992; Ermolieva et al., 2007; George,
1999; Nowak and Romaniuk, 2009b; O’Brien, 1997; Romaniuk and
Ermolieva, 2005; Vaugirard, 2003). In 1993 catastrophe derivatives
were introduced by the Chicago Board of Trade (CBoT). These
financial derivatives were based on underlying indexes reflecting
the insured property losses due to natural catastrophes reported
by insurance and reinsurance companies.

The payoff received by the cat bond holder is linked to an
additional random variable, namely, that a natural catastrophe
occurs in a specified region at a fixed time interval. An event
such as this is called the triggering point (see George, 1999). The
structure of payments for cat bonds also depends on some primary
underlying asset (e.g. the LIBOR).
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The triggering point may be connected, for example, with the
issuers actual losses (losses from, say, a flood), losses modeled by
special software based on the real parameters of a catastrophe,
the insurance industry index, the real parameters of a catastrophe
(e.g., earthquakemagnitude orwind speeds in case ofwindstorms),
or the hybrid index related to modeled losses (see, e.g. Niedzielski,
1997;Walker, 1997). For some cat bonds (like the Atlas Re II issued
for the SCOR Group), the triggering points may be the second or
third event during a fixed period of time.

The financial literature with respect to catastrophe bonds and
their pricing is not very rich. In a number of papers, authorsmainly
emphasize the advantages of investing in cat bonds. The pricing
methods used, as described in Anderson et al. (2000) and Froot
(2001), are very simplified ones. The probabilistic model, proposed
in Froot (2001), also has limitations. In Bodoff and Gan (2009) an
analysis of empirical data is conducted, and the issuing price of cat
bonds is described as a linear function of the expected loss. In Kai
et al. (2007) the behavioral finance method is applied, the authors
emphasizing its potential for practical use in China. InWang (2004)
probability transforms are used to extend the Sharpe ratio concept
to evaluate the risk-adjusted performance of cat bonds.

There are a few approaches using stochastic processes with
discrete time. Catastrophe bond pricing in discrete time within
the framework of representative agent equilibrium is the subject
of Cox and Pedersen (2000). A similar pricing method is used in
Reshetar (2008), where the payoff functions are linked to two
types of underlying processes: catastrophic property losses and
catastrophic mortality.

There are several advanced models with continuous time. In
Baryshnikov et al. (1998) compound Poisson processes are used
to incorporate various characteristics of the catastrophe process.
The authors assume that the arbitrage and the ‘‘real-life’’ measures
coincide, which may be seen as a disadvantage in their approach.
The paper contains interesting numerical considerations, but no
analytical pricing formula is obtained. The authors of Burnecki and
Kukla (2003) continue and correct the method from Baryshnikov
et al. (1998). The approach in Burnecki and Kukla (2003) is applied
in Härdle and Lopez Cabrera (2010) for cat bonds connected
with Mexican earthquakes. In Albrecher et al. (2004) the doubly
stochastic compound Poisson process is used to model the
claim index, and QMC algorithms are applied. Random variables
describing claims are independent, and the claims’ reporting lags
are incorporated into the model. In Egamia and Young (2008) the
indifference pricing method is used for the valuation of structured
cat bonds. A very important and interesting approach is presented
by Vaugirard in Vaugirard (2003). The author was one of the first
to apply the arbitrage approach to cat bond pricing. In common
with the other valuation methods mentioned here, the main
problem with Vaugirard’s solution is the market incompleteness
caused by natural risk being taken into account. This problem has
been considered in many papers devoted to financial derivative
pricing (e.g., see Föllmer and Schweizer, 1991; Miyahara, 2005;
Schweizer, 1992) and also in the fuzzy framework (see Nowak and
Romaniuk, 2010b). Vaugirard overcame the problem of themarket
incompleteness and non-traded insurance-linked underlyings in
the manner of Merton (see Merton, 1976). In Vaugirard (2003) a
catastrophe bondholder was deemed to have a short position on
an option based upon a risk index. In Lin et al. (2008) the authors
applied an approach similar to that in Vaugirard (2003), using the
Markov-modulated Poisson process to describe the arrival rate of
natural catastrophes.

In Nowak and Romaniuk (2009b,a, 2010d), where a portfolio
of financial and insurance instruments were the main subject of
analysis, we assumed the simple form of the catastrophe bond
payoff function and the Vasicek or the Hull–White model of
the spot interest rate. In Nowak and Romaniuk (2010a,c) we
considered catastrophe bonds with a piecewise linear payoff
function,while the spot interest rate behaviorwas described by the
Merton or the Vasicek stochastic equation. In Nowak et al. (2012)
we priced the catastrophe bond with a stepwise payoff function,
assuming Vasicek’s interest rate dynamics.

The present paper can be treated as an extension of the
Vaugirard approach. Simultaneously it summarizes our earlier
results concerning catastrophe bond pricing. We assume (i) no
possibility of arbitrage, (ii) the independence of catastrophe
occurrence from the behavior of the financial market, and
(iii) the replicability of interest rate changes by other financial
instruments. This paper contributes a general catastrophe bond
pricing formula, which can be applied to different types of payoff
functions and different interest rate models. In particular, we
price catastrophe bonds using three Gaussian models of the risk-
free spot interest rate. We begin with the Vasicek model and
subsequently consider two of its alternatives: the Hull–White
model and the Cox–Ingersoll–Ross (CIR) model. We also consider
two complex forms of catastrophe bond payoff functions: a
stepwise one and a piecewise linear one. Using the martingale
method of pricing we find the valuation formulas for cat bonds.
Catastrophe bonds for the Vasicek interest rate model were priced
by us before. In Nowak and Romaniuk (2010d) we also consider
the Hull–White interest rate dynamics, but only cat bonds with a
simple payoff function. An approach similar to ours for default-
free and default-risky cat bonds with a simple form of payoff
function and CIR interest rate dynamics was proposed in Lee and
Yu (2002). New cases of catastrophic instruments, considered in
this paper, are cat bonds with a complex payoff structure, priced
under the assumption of the Hull–White and CIR dynamics of the
spot interest rate. However, we show that all the formulas for
cat bonds presented here can be treated as special cases of the
valuation formula proved in ourmain theorem.We then useMonte
Carlo simulations to show how our theoretical results might be
applied to compute examples of cat bond pricing, and we analyze
the numerical properties of the pricing formulas obtained.

In comparison with other continuous time-pricing models,
our approach has several advantages. We give a very general
cat bond pricing formula that can be applied to many kinds
of catastrophe bonds, especially those with a more complicated
payoff structure. Following the Vaugirard method of changing the
probability measure, we justify the use of the conditional expected
value in the pricing formula. Such a justification cannot be found
in the catastrophe bond literature, despite this expectation being
used by many authors. We do not incorporate the utility function
into the pricing model (as in Cox and Pedersen, 2000; Egamia and
Young, 2008; Reshetar, 2008), as choosing a well-suited utility
function can, in practice, be an additional problem.

This paper is organized as follows. In Section 2 we introduce
pricing formulas for some models of catastrophe bonds and
for risk-free interest rates. The formulas obtained are used in
simulations in Section 3 to conduct numerical analysis. Section 4
is devoted to some conclusions and final remarks.

2. Cat bond pricing

2.1. Definitions and notations

In this section we introduce a pricing formula for catastrophe
bonds, which generalizes our earlier approaches from Nowak and
Romaniuk (2009b, 2010a,c,d) and Nowak et al. (2012).

Webeginwith notations andbasic definitions concerning catas-
trophe bonds and their pricing. We define stochastic processes
describing the dynamics of the spot interest rate and aggregated
catastrophe losses.
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We apply stochastic models with continuous time and time
horizon in the form


0, T ′


, where T ′ > 0. The date of maturity of

catastrophe bonds T is not later than T ′, i.e. T ≤ T ′. We consider
two probabilitymeasures: P andQ andwedenote the expectations
with respect to them by EP and EQ .

We define stochastic processes and random variables with
respect to probability P .

Let (Wt)t∈[0,T ′] be a Brownian motion. It will be used in the
stochastic model of the risk-free interest rate.

Let (Ui)
∞

i=1 be a sequence of independent, identically distributed
random variables. We treat Ui as the value of losses during the
i-th catastrophic event. The independence of losses is a typical
assumption in insurance. In this paper we focus our attention on
this; however, it is possible to generalize our approach to the
case of dependent losses. For real-life cases the selection of the Ui
distribution is a crucial point. Appropriate goodness-of-fit tests and
estimation of parameters of the selected distribution is necessary
(see, e.g. Albrecher et al., 2004; Chernobai et al., 2005; Hewitt and
Lefkowitz, 1979; Papush et al., 2001).

We also define the compound Poisson process by the formula

Ñt =

Nt
i=1

Ui, t ∈

0, T ′


,

where Nt is a homogeneous Poisson process (HPP) with an inten-
sity κ > 0. In Section 3 we will use the symbol κHPP in place of κ
to emphasize that its value is constant in time. For each t ∈


0, T ′


the value of the process Nt is equal to the number of catastrophic
events until the moment t . In particular,

N0 = 0 P-a.s.,
EPNt = κt for t ∈


0, T ′


and

P (Nt − Ns = k) = e−κ(t−s) [κ (t − s)]k

k!
, k = 0, 1, 2, . . . .

Moments of jumps of process (Nt)t∈[0,T ′] are interpreted as
moments of catastrophic events.

For each t ∈

0, T ′


the process Ñt describes the aggregated

catastrophe losses until themoment t .

Ñt


t∈[0,T ′]

is a nondecreas-

ing stochastic process, with right continuous trajectories of a step-
wise form. The heights of its jumps are equal to the values of losses
caused by catastrophic events.

All the above processes and random variables are defined on
a filtered probability space


Ω, F , (Ft)t∈[0,T ′] , P


. The filtration

(Ft)t∈[0,T ′] is given by the formulas

Ft = σ

F 0
t ∪ F 1

t


, F 0

t = σ (Ws, s ≤ t) ,

F 1
t = σ


Ñs, s ≤ t


, t ∈


0, T ′


.

We assume that

F0 = σ({A ∈ F : P(A) = 0}),

the Brownian motion (Wt)t∈[0,T ′] is independent of (Nt)t∈[0,T ′]
and (Ui)

∞

i=1, and also the sequence (Ui)
∞

i=1 is independent of
(Nt)t∈[0,T ′]. Then the probability space with filtration satisfies
standard assumptions (i.e., σ -algebra F is P-complete, filtration
(Ft)t∈[0,T ′] is right continuous and F0 contains all the sets in F of
P-probability zero). Moreover, we assume that random variables
Ui, i = 1, 2, . . . , have the bounded second moment.

We denote by (Bt)t∈[0,T ′] the banking account, satisfying the
following equation:

dBt = rtBtdt, B0 = 1,

where r = (rt)t∈[0,T ′] is the risk-free spot interest rate.
We assume that zero-coupon bonds are traded on the market.
We denote by B (t, T ) the price at the time t of a zero-coupon bond
with a maturity date T ≤ T ′ and with face value equal to 1.

We price catastrophe bonds under the assumption of no
possibility of arbitrage on themarket.We alsomake two additional
assumptions. We first assume that investors are neutral toward
the nature jump risk (Assumption 1). This assumption has been
verified by the market (see, e.g. Anderson et al., 2000; Vaugirard,
2003). Secondly (Assumption 2), we assume routinely that changes
in the interest rate r can be replicated by existing financial
instruments (especially zero-coupon bonds).

We assume that the dynamics of B(t, T ), t ∈ [0, T ], are
described by the equation

dB(t, T ) = B(t, T )(µT
t dt + σ T

t dWt),

where µT
= (µT

t )t∈[0,T ] is the drift and σ T
= (σ T

t )t∈[0,T ] is the
volatility of the bond price process. The process λ̄ = (λ̄t)t∈[0,T ],
where

λ̄t =
µT

t − rt
σ T
t

, t ∈ [0, T ],

is called themarket price of risk. In a no-arbitragemarket all bonds,
regardless of maturity time T , have the same market price of risk.
For further details we refer the reader to Kwok (2008). We assume
that λ̄ satisfies the Novikov condition

EP

exp


1
2

 T

0
λ̄2
t dt


< ∞.

2.2. General result

In Vaugirard (2003) a simple form of the cat bond payoff
function is considered. It assumes that if the triggering point
does not occur, the bondholder is paid the face value Fv; and if
the triggering point does occur, the bondholder receives the face
value minus a coefficient in percentage w, i.e. Fv(1 − w). The
triggering point is the first passage in time through a level K of
risk index I , driven by a Poisson jump-diffusion process. Therefore,
bondholders are deemed to be in a short position on a one-touch,
up-and-in digital option on I . Thanks to such an approach the
appropriate martingale method, similar to that used for option
pricing, can be applied to the case of cat bonds and a conditional
expectation with respect to the equivalent martingale measure
can be used in the pricing formula. Although we do not explicitly
define the risk index, we follow the steps of the Vaugirard method
of pricing. However, our theorem in this section is more general.
In Vaugirard (2003) only the Vasicek spot interest rate model is
applied and only the above-mentioned cat bond payoff function
is considered. The main theorem, proved below, enables the user
to price many types of catastrophe bond with different payoff
functions, under different models of interest rate dynamics.

For a date of maturity and payoff T and a face value Fv we
consider a catastrophe bond IBcat (T , Fv) with a payoff function
νIBcat(T ,Fv) dependent on T , Fv and the compound Poisson process
Ñ . The following theorem shows the general valuation expression
for this bond.

Theorem 1. Let IB (t) be the price of a IBcat (T , Fv) at time t. Then

IB (t) = EQ

exp


−

 T

t
rudu


νIBcat(T ,Fv)|Ft


. (1)

In particular,

IB (0) = EQ

exp


−

 T

0
rudu


EQ νIBcat(T ,Fv). (2)
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Proof. Using the above assumptions, we obtain the unique
probability measure Q using arguments similar to Vaugirard
(2003). If λ̄ is the market price of risk process, then the following
Radon–Nikodym derivative defines the measure Q :

dQ
dP

= exp


−

 T

0
λ̄tdWt −

1
2

 T

0
λ̄2
t dt


P-a.s.

For Q the family B (t, T ) , t ≤ T ≤ T ′, is an arbitrage-free family
of zero-coupon bond prices with respect to r . That is, for each
T ∈


0, T ′


, B (T , T ) = 1 and the process of discounted zero-

coupon bond price

B (t, T ) /Bt , t ∈ [0, T ] ,

is a martingale with respect to Q . We then have the following
pricing formula for a zero-coupon bond:

B (t, T ) = EQ

e−

 T
t rudu|Ft


, t ∈ [0, T ] .

Using arguments similar to Vaugirard (2003), we obtain analogous
equality for the catastrophe bond:

IB (t) = EQ

exp


−

 T

t
rudu


νIBcat(T ,Fv)|Ft


.

From Assumption 1, exp

−
 T
t rudu


and νIBcat(T ,Fv) are indepen-

dent under Q . Therefore, for t = 0, formula (1) can be written in
the form (2). �

2.3. Some particular cases

In this subsection we consider some particular catastrophe
bond cases with different payoff functions and using different in-
terest rate models. Their valuation is a consequence of Theorem 1.

We start by defining a catastrophe bond with a stepwise payoff
function. Let

0 < K1 < · · · < Kn, n > 1

be a sequence of constants. Let τi : Ω →

0, T ′


, 1 ≤ i ≤ n be a

sequence of stopping times defined as follows

τi (ω) = inf
t∈[0,T ′]


Ñ (t) (ω) > Ki


∧ T ′, 1 ≤ i ≤ n.

Let

w1 < w2 < · · · < wn

be a sequence of nonnegative constants, for which
n

i=1 wi ≤ 1.

Definition 1. We denote by IBs (T , Fv) a catastrophe bond satisfy-
ing the following assumptions:

(a) If the catastrophedoes not occur in the period [0, T ], i.e. τ1 > T ,
the bondholder is paid the face value Fv.

(b) If τn ≤ T , the bondholder receives the face value minus the
sum of write-down coefficients in the percentage

n
i=1 wi.

(c) If τk−1 ≤ T < τk, 1 < k ≤ n, the bondholder receives the
face value minus the sum of write-down coefficients in the
percentage

k−1
i=1 wi.

(d) Cash payments are made at the date of maturity T .

The following lemma, proved in Nowak et al. (2012), gives the
form of the cumulative distribution functions of τi and can be
applied to computations of the catastrophe bond price.
Lemma 1. The value of the cumulative distribution function Φi, 1 ≤

i ≤ n, at the moment T , has the form

Φi (T ) = 1 −

∞
j=0

(κT )j

j!
e−κTΦŨj

(Ki) ,

where ΦŨj
is the cumulative distribution function of the sum Ũj =j

p=0 Up. In the above formula we assume that U0 ≡ 0.

As previously noted, the choice of the distribution of Up is
the key in real-life cases. Additionally, for many distributions ΦŨj
is analytically intractable because of the complex nature of the
convolution that is obtained. Numerical simulationsmay therefore
be useful in such cases.

The next type of catastrophe bond is a bond with a piecewise
linear payoff function defined below.

Let 0 ≤ K0 < K1 < · · · < Kn and w1 < w2 < · · · < wn withn
j=1 wj ≤ 1.

Definition 2. We denote by IBp(T , Fv) a catastrophe bond with
face value Fv, maturity and payoff date T and a payoff function in
the form

νIBp(T ,Fv) = Fv


1 −

n−1
j=0

ÑT ∧ Kj+1 − ÑT ∧ Kj

Kj+1 − Kj
wj+1


.

IBp(T , Fv) has the following properties

1. The payoff function is a piecewise linear function of losses ÑT .
2. If the catastrophe does not occur (ÑT < K0), the bondholder

receives a payoff equal to the bond’s face value Fv.
3. If ÑT ≥ Kn, the bondholder receives a payoff equal to Fv(1 −n

i=1 wi).
4. If Kj ≤ ÑT ≤ Kj+1 for j = 0, 1, 2, . . . , n − 1, the bondholder

receives a payoff equal to

Fv


1 −


0≤i<j

wi+1 −
ÑT ∧ Kj+1 − ÑT ∧ Kj

Kj+1 − Kj
wj+1


and when ÑT increases in the interval


Kj, Kj+1


the payoff

changes linearly from value Fv

1 −


0≤i<j wi+1


to value

Fv

1 −


0≤i≤j wi+1


.

Lemma2 (proved inNowak andRomaniuk, 2010c) is very useful
in the pricing procedure of catastrophe bonds discussed in this
subsection.

Lemma 2. Let

ϕm = P(ÑT ≤ Km), m = 0, 1, 2, . . . , n

and let

em = EÑT IKm<ÑT≤Km+1
, m = 0, 1, 2, . . . , n − 1.

The following equality holds

EQ νIBp(T ,Fv) = Fv


1 − (1 − ϕn)

n
j=1

wj

−

n−1
m=0


(ϕm+1 − ϕm)


0≤j<m

wj+1

+
em − (ϕm+1 − ϕm) Km

Km+1 − Km
wm+1


.



22 P. Nowak, M. Romaniuk / Insurance: Mathematics and Economics 52 (2013) 18–28
We further denote by IBs (0) the price of catastrophe bond
IBs (T , Fv) and by IBp (0) the price of catastrophe bond IBp (T , Fv)
at the moment 0.

2.3.1. The Vasicek model
Weconsider theVasicekmodel of the risk-free spot interest rate

r . The interest rate process satisfies the following equation
drt = a (b − rt) dt + σdWt (3)
for positive constants a, b and σ . We also assume that λ̄t = λ, t ∈
0, T ′


, is constant.

Theorem 2. Let the risk-free spot interest rate r be described by the
Vasicek model. Let

Φ =

n
i=1

wiΦi, (4)

where Φi are the cumulative distribution functions of τi. Then

IBs (0) = Fve−T ·R(T ,r0) {1 − Φ (T )} (5)

and

IBp (0) = e−T ·R(T ,r0)EQ νIBp(T ,Fv), (6)

where

R (θ, r) = R∞ −
1
aθ


(R∞ − r)


1 − e−aθ 

−
σ 2

4a2

1 − e−aθ 2

and

R∞ = b −
λσ

a
−

σ 2

2a2
.

Proof. We apply Theorem 1. Formulas (5) and (6) follow from (2),
since for the zero-coupon bond, under the Vasicek interest rate
dynamics, the following equality holds (see, e.g. Vaugirard, 2003)

EQ

exp


−

 T

0
rudu


= e−T ·R(T ,r0). �

Formula (5) was proved by us in Nowak et al. (2012) and in
Nowak and Romaniuk (2009b) and Nowak and Romaniuk (2009a)
forn = 1. In turn, equality (6)was introduced andproved inNowak
and Romaniuk (2010a,c).

2.3.2. The Hull–White model
We denote by f M (t, T ) the market instantaneous forward rate

at time t for maturity T . In particular, f M (0, T ) is associated with
the zero-bond curve by the formula

f M (0, T ) = −
∂ ln PM (0, T )

∂T
.

We assume the Hull–White (extended Vasicek) model of the
risk-free spot interest rate r . Its dynamics are described by the
following stochastic equation
drt = (ϑ (t) − art) dt + σdWt (7)
for constants a, σ > 0 and function ϑ which is exactly fitted into
the term structure of current market interest rates, given by the
formula

ϑ (t) =
∂ f M (0, t)

∂t
+ af M (0, t) +

σ 2

2a


1 − e−2at

+ λσ .

In Nowak and Romaniuk (2010d) we considered catastrophe
bonds for the Hull–White interest rate model, but their payoff
function had an easy, nonlinear form.

We assume the constant form of process λ̄t = λ, t ∈

0, T ′


.

The next theorem, which is also a consequence of Theorem 1,
gives the pricing formula for the stepwise and the piecewise linear
payoff functions.
Theorem 3. Let the risk-free spot interest rate r be described by the
Hull–White (extended Vasicek) model. Let Φ be defined by (4). Then

IBs (0) = PM (0, T ) exp

B (0, T ) f M (0, 0)


× e−B(0,T )r0Fv {1 − Φ (T )} (8)

and

IBp (0) = PM (0, T ) exp

B (0, T ) f M (0, 0)


× e−B(0,T )r0EQ νIBp(T ,Fv), (9)

where

B (t, T ) =
1
a


1 − e−a(T−t) .

Proof. Similar to the previous case, (8) and (9) follow from (2), as

EQ

exp


−

 T

t
rudu


|Ft


= A (t, T ) e−B(t,T )rt , (10)

where

A (t, T ) =
PM (0, T )

PM (0, t)
exp


B (t, T ) f M (0, t)

−
σ 2

4a


1 − e−2at B (t, T )2


.

For the equality (10) we refer the reader to Brigo and Mercurio
(2006). �

2.3.3. CIR model
We assume the CIRmodel of the risk-free spot interest rate. The

dynamics of r are described by the following stochastic equation

dr (t) = a (b − rt) dt + σ
√
rtdWt (11)

for constants a, b, σ > 0 such that 2ab > σ 2.
The Cox–Ingersoll–Ross model (the CIR model) was introduced

by Cox, Ingersoll, and Ross as an extension of the Vasicek model. It
is often used formodeling the risk-free interest rate on themarket.
As the volatility part in the CIR equation is proportional to

√
r , to

obtain a convenient analytical pricing formula after the change of
measure (see Brigo andMercurio, 2006; Carmona and León, 2007),
we assume the stochastic form of process λ̄ given by

λ̄t =
λ

σ

√
rt , t ∈


0, T ′


,

whereλ is a constant. Such an approach is frequently applied in the
zero-coupon bond pricing. Under this choice of λ̄, we receive the
interest rate process which is tractable under measures P and Q .
It can be helpful for estimation purposes (see Brigo and Mercurio,
2006).

The next theorem gives the pricing formula for catastrophe
bonds, under assumption of the CIR form of the stochastic process
describing the interest rate.

Theorem 4. Let the risk-free spot interest rate r be described by the
Cox–Ingersoll–Ross model. Let Φ be defined by (4). Then

IBs (0) = P (r, 0) Fv {1 − Φ (T )} , (12)

IBp (0) = P (r, 0) EQ νIBp(T ,Fv), (13)
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where

P (r, 0) = A (T ) e−r0B(T ),

A (T ) =


θ1eθ2T

θ2

eθ1T − 1


+ θ1

θ3

,

B (T ) =
eθ1T − 1

θ2

eθ1T − 1


+ θ1

,

θ1 =


(a + λ)2 + 2σ 2, θ2 =

a + λ + θ1

2
and

θ3 =
2ab
σ 2

.

Proof. We apply Theorem 1. To prove Theorem 4 we use the zero-
coupon bond pricing formula for the Cox–Ingersoll–Ross interest
rate model (see, e.g. Wu, 2000), from which it follows that

EQ

exp


−

 T

0
rudu


= P (r, 0) . �

3. Numerical experiments

To price the catastrophe bonds and analyze the features
of pricing formulas presented in Section 2, we conducted the
appropriate Monte Carlo simulations. Our main aim is to illustrate
the possibility of pricing cat bonds via numerical computation,
despite the complex nature of equations introduced in Section 2.3.

We analyze the price of a catastrophe bond when interest rates
are described by the Vasicek model (in the case of Model I and
Model II), the Hull–White model (Model III) and the CIR model
(Model IV). This section thus has a similar structure to that of
Section 2.3. The parameters of the models of interest rates applied
in our experiments were fitted in Episcopos (2000) and Hull and
White (1993) for real-life data.

We assume that the losses generated are of a catastrophic
nature, that is, they are rare, but each loss has a high value.
Therefore the quantity of losses is modeled by HPP and the value
of each loss is given by a random variable with a relatively high
expected value and variance (i.e., high risk with high variability).
We assume that the value of the loss is modeled by a lognormal
distribution or Weibull distribution which are commonly used in
simulations of risk events in insurance. The intensity ofHPP and the
parameters of the applied distributions were fitted in Chernobai
et al. (2005) for data describing natural catastrophic events in the
United States provided by the Property Claim Services (PCS) of the
Insurance Service Office Inc. (ISO).

Apart from the lognormal and Weibull distributions, other
types of complex probabilistic distributions (e.g., gamma, Burr,
generalized Pareto—see Chernobai et al., 2005; Furman, 2008;
Hogg and Klugman, 1983; Hewitt and Lefkowitz, 1979; Melnick
and Tenenbein, 2000; Papush et al., 2001; Rioux and Klugman,
2004) or simulations based on historical records (see Ermolieva
and Ermoliev, 2005; Pekárová et al., 2005) are possible.

We assume that the face value of the bond in each experiment
is set to 1 (onemonetary unit assumption) and the trading horizon
of the catastrophe bond is set to 1 year. In the analysis we apply the
stepwise (see Definition 1) payoff function (in the case of Model I)
or the piecewise (see Definition 2) linear payoff function (in the
case of Model II, Model III, and Model IV).

The overall characterization of the models is summarized in
Table 1.

For each model we start with pricing the catastrophe bond for
the given sets of parameters. We then alter one or two parameters
and the other set as constants. In each experiment we generate
N = 1 000 000 simulations.
Table 1
Characterization of models applied in numerical experiments.

Model Model of interest rates Distribution of losses Payoff function

I Vasicek Lognormal Stepwise
II Vasicek Weibull Piecewise
III Hull–White Lognormal Piecewise
IV CIR Lognormal Piecewise

Table 2
Parameters of Model I.

Parameters

Vasicek model a = 0.0235, b = 0.0055, σ = 0.0, r0 = 0.0614
Intensity of HPP κHPP = 31.7143
Lognormal distribution µLN = 17.3570, σLN = 1.7643
Triggering points K1 = QHPP–LN(0.75), K2 = QHPP–LN(0.95)
Values of losses coefficients w1 = 0.2, w2 = 0.3

3.1. The Vasicek model

Model I: We analyze the price of the catastrophe bond when
interest rates are described by the Vasicekmodel. The value of each
loss is modeled by lognormal distribution and the payoff function
is the simple stepwise function (see (5)). The parameters of this
model can be found in Table 2.

For the Vasicek interest rate model, we use the parameters
described in Episcopos (2000) based on a one-month interbank
rate for the United States. To assess the intensity of losses (driven
by HPP) and the lognormal distribution of each loss we apply the
parameters described in Chernobai et al. (2005). The triggering
points for the payment function are connected with exceeding the
limits given by quantiles of the cumulated value of losses for the
HPP process (number of losses) and lognormal distribution (value
of each loss). This x-th quantile is denoted further by QHPP–LN(x).
The parameters of HPP and lognormal distribution for these
quantiles are also described in Chernobai et al. (2005) (i.e., they are
the same as those for the simulated process of catastrophic events).
The values of losses coefficients for the bondholder are also set.

In this case the price of the catastrophe bond is equal to
0.879891.

Model I, Analysis I:We analyze the price of the catastrophe bond
as the function of µLN and σLN (see Table 3(a)), with the other
parameters being set as in Table 2 (see Fig. 1(a)). The situation
we analyze is thus one where the parameters of distribution
describing the value of losses are slightly changed compared with
those fitted into historical data. Taking into account only one
variable and with the other set to constant, the appropriate cut
of this graph is a hyperbolic-type function. However, the relative
changes in price are quite subtle, as can be seen in Table 3(b) for a
set of prices where µLN = 17.4 and σLN = 1.7.

Model I, Analysis II: We analyze the price of the catastrophe
bond as the function of triggering points, where K1 and K2 are
given by appropriate quantiles QHPP–LN (see Table 3(a)). The other
parameters are the same as in Table 2. As we use only two
triggering points, a satisfactory graph can be created (see Fig. 1(b)).
In this case the cuts of the graph (i.e., the functions of only one
variable, with the other set to constant) seem to be almost linear.

Some exact prices for K1 = QHPP–LN(0.7) and K2 = QHPP–LN(0.8)
are given in Table 3(c). Even for such a wide set of quantiles, the
relative changes in price are quite subtle.

Model II: We analyze the price of the catastrophe bond when
interest rates are described by the Vasicekmodel, the value of each
loss ismodeled by theWeibull distribution, and the payoff function
is the piecewise linear one (see (6)). The parameters of this model
can be found in Table 4.

For the Vasicek model of interest rates we use the parameters
specified in Episcopos (2000) for a one-month interbank rate for
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Fig. 1. Graphs for numerical analysis of Model I.
Table 3
Parameters and data for numerical analysis of Model I.

(a) Variables applied in numerical analysis

Variables

Model I, Analysis I µLN ∈ [17.3, 17.6], σLN ∈ [1.6, 1.9]
Model I, Analysis II K1 ∈ [0.6, 0.75], K2 ∈ [0.8, 0.95]

(b) Model I, Analysis I: price of the bond as the function of µLN and σLN

µLN = 17.4

σLN 1.6 1.7 1.8 1.9
Price 0.911603 0.889852 0.86275 0.83049
Difference 0 −0.021751 −0.027102 −0.03226

σLN = 1.7

µLN 17.3 17.4 17.5 17.6
Price 0.901956 0.889852 0.875786 0.858252
Difference 0 −0.012104 −0.014066 −0.017534

(c) Model I, Analysis II: price of the bond as the function of K1 and K2

K2 = QHPP–LN(0.8)

K1(QHPP–LN) 0.6 0.65 0.7 0.75
Price 0.809312 0.818697 0.82863 0.837118
Difference 0 0.009385 0.009933 0.008488

K1 = QHPP–LN(0.7)

K2(QHPP–LN) 0.8 0.85 0.9 0.95
Price 0.82863 0.841553 0.856099 0.869869
Difference 0 0.012923 0.014546 0.01377

the United Kingdom. We use a market other than that in the
previous case so as to have a wider scope of characterizations. For
the intensity of losses (driven by HPP) and theWeibull distribution
of each loss, we apply the parameters described in Chernobai et al.
(2005).

We set n = 2, sowe use three triggering points and two shifts in
the payoff function (see Definition 2). We are thus able to prepare
appropriate graphs to illustrate our simulations. There are also
catastrophe bonds in existencewhich have payment functions that
depend on the second or third catastrophe in any given year (like
Atlas Re) or on there being a certain surplus above the value of
the first catastrophe. This means our example is similar to such cat
bonds.

The triggering points for the payment function are connected
with exceeding the limits given by the quantiles of the cumulated
value of losses for the HPP process (number of losses) and the
Weibull distribution (value of each loss) with the parameters
mentioned above. This x-th quantile is denoted further by
QHPP–W(x). Values of losses coefficients for the bond’s holder are
also set.
Table 4
Parameters of Model II.

Parameters

Vasicek model a = 0.0263, b = 0.0988593, σ =

0.01, r0 = 0.1039
Intensity of HPP κHPP = 31.7143
Weibull distribution βW = 0.0187, τW = 0.2656
Triggering points K0 = QHPP–W(0.75), K1 =

QHPP–W(0.85), K2 = QHPP–W(0.95)
Values of loss coefficients w1 = 0.2, w2 = 0.3

In such a case the price of the catastrophe bond is equal to
0.842215.

Model II, Analysis I: We analyze the price of the cat bond as
a function of the parameters of the Weibull distribution βW and
τW (see Table 5(a)). Other parameters are as in Table 4. As we
could see in Fig. 2(a), the associated cuts of the graph seem to be
hyperbolic. Some prices for βW = 0.0185 and τW = 0.29 may be
found in Table 5(b).

Model II, Analysis II: We analyze the price of the catastrophe
bond as the function of the values of losses coefficients w1 and w2
(see Table 5(a)). Other parameters are the same as in Table 4. As
we assume that n = 2, an appropriate graph may be constructed
(see Fig. 2(b)). As we could see, the cuts of the graph seem to be
almost linear. Some prices forw1 = 0.1 andw2 = 0.1 can be found
in Table 5(c).

3.2. The Hull–White model

Model III: We analyze the price of the catastrophe bond when
interest rates are described by the Hull–White model, the value of
each loss is modeled by a lognormal distribution and the payoff
function is the piecewise linear one (see (9)). The parameters of
this model can be found in Table 6.

For the Hull–White model we use the parameters described
in Hull and White (1993). For the intensity of losses (driven by
HPP) and the lognormal distribution of each loss we apply the
parameters described in Chernobai et al. (2005). We assume that
n = 2 and, as previously, the triggering points are connected with
exceeding the limits given by quantiles QHPP–LN(x).

In this case the price of the catastrophe bond is equal to
0.829764.

Model III, Analysis I: We set K0 = QHPP–LN(0.45) and analyze
the price of the catastrophe bond as the function of K1 and K2
(see Table 7(a)). Other parameters are the same as in Table 6.
Only two triggering points are used as variables to enable us to
prepare an appropriate graph (see Fig. 3(a)), but a similar analysis
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Fig. 2. Graphs for numerical analysis of Model II.
Table 5
Parameters and data for numerical analysis of Model II.

(a) Variables applied in numerical analysis

Variables

Model II, Analysis I βW ∈ [0.018, 0.0195], τW ∈ [0.26, 0.29]
Model II, Analysis II w1 ∈ [0.1, 0.5], w2 ∈ [0.1, 0.5]

(b) Model II, Analysis I: price of the bond as the function of βW and τW

τW = 0.29

βW 0.018 0.0185 0.019 0.0195
Price 0.900366 0.900654 0.900834 0.900977
Difference 0 0.000288 0.00018 0.000143

βW = 0.0185

τW 0.26 0.27 0.28 0.29
Price 0.782262 0.866747 0.894999 0.900654
Difference 0 0.084485 0.028252 0.005655

(c)Model II, Analysis II: price of the bond as the function ofw1 andw2

w1 = 0.1

w2 0.1 0.2 0.3 0.4 0.5
Price 0.875782 0.867806 0.859902 0.851882 0.843813
Difference 0 −0.007976 −0.007904 −0.00802 −0.008069

w2 = 0.1

w1 0.1 0.2 0.3 0.4 0.5
Price 0.875782 0.858121 0.840316 0.822898 0.805151
Difference 0 −0.017661 −0.017805 −0.017418 −0.017747

can be made for all Ki. Some exact prices and some differences in
prices for K1 = QHPP–LN(0.5) and K2 = QHPP–LN(0.95) can be found
in Table 7(b).

Model III, Analysis II: We analyze the price of the catastrophe
bond as the function of µLN and σLN (see Table 7(a)) with other
parameters set as in Table 6. The graph (see Fig. 3(b)) has the
same hyperbolic-like cuts that can be seen in Fig. 1(a). Some exact
prices and differences for µLN = 17.4 and σLN = 1.7 can be found
in Table 7(c).

3.3. The CIR model

Model IV: We analyze the price of the catastrophe bond when
interest rates are described by the CIRmodel, the value of each loss
ismodeled by lognormal distribution and the payoff function is the
piecewise linear one (see (13)). The parameters of this model can
be found in Table 8.

For the CIR model of interest rates we use the parameters
described in Episcopos (2000) for a one-month interbank rate for
Table 6
Parameters of Model III.

Parameters

Hull–White model a = 0.1, σ = 0.014, r0 = 0.095, r(1) = 0.1
Intensity of HPP κHPP = 31.7143
Lognormal distribution µLN = 17.3570, σLN = 1.7643
Triggering points K0 = QHPP–LN(0.75), K1 =

QHPP–LN(0.85), K2 = QHPP–LN(0.95)
Values of losses coefficients w1 = 0.3, w2 = 0.3

Table 7
Parameters and data for numerical analysis of Model III.

(a) Variables applied in numerical analysis

Variables

Model III, Analysis I K1 ∈ [0.5, 0.7], K2 ∈ [0.75, 0.95]
Model III, Analysis II µLN ∈ [17.3, 17.6], σLN ∈ [1.6, 1.9]

(b) Model III, Analysis I: price of the bond as the function of K1 and K2

K2 = QHPP–LN(0.95)

K1(QHPP–LN) 0.5 0.55 0.6 0.65 0.7
Price 0.713708 0.724512 0.73516 0.746877 0.757744
Difference 0 0.010804 0.010648 0.011717 0.010867

K1 = QHPP–LN(0.5)

K2(QHPP–LN) 0.75 0.8 0.85 0.9 0.95
Price 0.665199 0.675093 0.684722 0.69736 0.713708
Difference 0 0.009894 0.009629 0.012638 0.016348

(c)Model III, Analysis II: price of the bond as the function ofµLN andσLN

µLN = 17.4

σLN 1.6 1.7 1.8 1.9
Price 0.871577 0.843729 0.807277 0.764421
Difference 0 −0.027848 −0.036452 −0.042856

σLN = 1.7

µLN 17.3 17.4 17.5 17.6
Price 0.858967 0.843729 0.824886 0.801844
Difference 0 −0.015238 −0.018843 −0.023042

the United States. For the intensity of losses (driven by HPP) and
the lognormal distribution of each loss we apply the parameters
described in Chernobai et al. (2005). We assume that n = 2 and, as
previously, the triggering points are connected with exceeding the
limits given by quantiles QHPP–LN(x).

In this case the price of the catastrophe bond is equal to
0.862881.

Model IV, Analysis I: We analyze the price of the catastrophe
bond as the function of intensity of HPP κHPP (see Table 9(a)),
with other parameters set as in Table 8. We can therefore observe
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Table 8
Parameters of Model IV.

Parameters

CIR model a = 0.0241, b = 0.0539419, σ =

0.0141421, r0 = 0.0614
Intensity of HPP κHPP = 31.7143
Lognormal distribution µLN = 17.3570, σLN = 1.7643
Triggering points K0 = QHPP–LN(0.75), K1 = QHPP–LN(0.85), K2 =

QHPP–LN(0.95)
Values of losses coefficients w1 = 0.2, w2 = 0.3

how the price behaves if catastrophes are more or less frequent
compared with the parameter fitted into historical data (see
Fig. 4(a)). Some exact prices and differences in prices can be found
in Table 9(b).

Model IV, Analysis II: We analyze the price as the function of a
and b (see Table 9(a)) for the CIR model with other parameters set
as in Table 8. As we have seen, the appropriate cuts of the graph
seem to be close to linear (see Fig. 4(b)). Some exact prices and
somedifferences in prices for a = 0.02 and b = 0.054 can be found
in Table 9(c).

4. Conclusions

The insurance industry faces overwhelming risks caused by
natural catastrophes, but classical insurance mechanisms are
Table 9
Parameters and data for numerical analysis of Model IV.

(a) Variables applied in numerical analysis

Variables

Model IV, Analysis I κHPP ∈ [31, 33]
Model IV, Analysis II a ∈ [0.02, 0.03], b ∈ [0.05, 0.06]

(b) Model IV, Analysis I: price of the bond as the function of HPP
intensity κHPP

κHPP 31 31.25 31.5 31.75 32
Price 0.866683 0.865637 0.864093 0.862489 0.861274
Difference 0 −0.001046 −0.001544 −0.001604 −0.001215

κHPP 32.25 32.5 32.75 35
Price 0.860076 0.858799 0.856708 0.855075
Difference −0.001198 −0.001277 −0.002091 −0.001633

(c) Model IV, Analysis II: price of the bond as the function of a and b

a = 0.02

b 0.05 0.052 0.054 0.056 0.058 0.06
Price 0.862905 0.862888 0.862871 0.862855 0.862838 0.862822
Difference 0 −0.000017−0.000017−0.000016−0.000017−0.000016

b = 0.054

a 0.02 0.022 0.024 0.026 0.028 0.03
Price 0.862871 0.862876 0.86288 0.862885 0.862889 0.862893
Difference 0 0.000005 0.000004 0.000005 0.000004 0.000004
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not appropriate for dealing with such extreme losses. Even a
single catastrophe could cause problems with reserve adequacy
for many insurers or even the bankruptcy of insurance firms.
Traditional insurance models deal with independent risks that
generate proportionately small claims in terms of the value of the
whole insurance portfolio. Newapproaches are needed for insuring
against catastrophic risks, as the sources of losses caused bynatural
catastrophes are strongly dependent on time and localization.
Additionally, in the wake of such events enormous financial claims
are made.

A single catastrophic event, for example, an earthquake or a
hurricane, could result in damage worth perhaps tens of billions
of dollars, reaching the same scale as the daily fluctuations on
worldwide financial markets. Because of this, securitization of
losses (in the form of the so-called catastrophe derivatives) may be
helpful in dealingwith the results of extreme natural catastrophes.
An example of a catastrophe-linked security is the catastrophe
bond.

In this paper we price some catastrophe bonds applyingmodels
of the risk-free spot interest rate under the assumption of no
arbitrage, independence of the catastrophe occurrence from the
behavior of the financial market, and the possibility of replication
of interest rate changes by other existing financial instruments.We
use the martingale method of pricing. We describe examples of
catastrophe bonds with two types of payoff function (the stepwise
payoff function and the piecewise linear payoff function) for three
models of interest rates (the Vasicekmodel, the Hull–White model
and the CIR model).

The pricing formulas obtained are then used in Monte Carlo
simulations to analyze some numerical properties. We describe
the behavior of the cat bond price, taking into account, inter alia,
variables like the shape parameter and scale parameter for the
value of loss distribution, the value of triggering points, and the
value of percentage loss for the payment function.
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