
The Little Book of Semaphores

Allen B. Downey

2

The Little Book of Semaphores
Second Edition

Copyright 2005 Allen B. Downey

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later ver-
sion published by the Free Software Foundation; this book contains no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts.

You can obtain a copy of the GNU Free Documentation License from
www.gnu.org or by writing to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.

The original form of this book is LaTeX source code. Compiling this LaTeX
source has the effect of generating a device-independent representation of a
book, which can be converted to other formats and printed.

This book was typeset by the author using latex, dvips and ps2pdf, among
other free, open-source programs. The LaTeX source for this book is available
from http://greenteapress.com/semaphores.

Preface

Most undergraduate Operating Systems textbooks have a module on Synchro-
nization, which usually presents a set of primitives (mutexes, semaphores, mon-
itors, and sometimes condition variables), and classical problems like readers-
writers and producers-consumers.

When I took the Operating Systems class at Berkeley, and taught it at Colby
College, I got the impression that most students were able to understand the
solutions to these problems, but few would have been able to produce them, or
solve similar problems.

One reason students don’t understand this material deeply is that it takes
more time, and more practice, than most classes can spare. Synchronization is
just one of the modules competing for space in an Operating Systems class, and
I’m not sure I can argue that it is the most important. But I do think it is one
of the most challenging, interesting, and (done right) fun.

I wrote the first edition this book with the goal of identifying synchronization
idioms and patterns that could be understood in isolation and then assembled
to solve complex problems. This was a challenge, because synchronization code
doesn’t compose well; as the number of components increases, the number of
interactions grows unmanageably.

Nevertheless, I found patterns in the solutions I saw, and discovered at
least some systematic approaches to assembling solutions that are demonstrably
correct.

I had a chance to test this approach when I taught Operating Systems at
Wellesley College. I used the first edition of The Little Book of Semaphores

along with one of the standard textbooks, and I taught Synchronization as a
concurrent thread for the duration of the course. Each week I gave the students
a few pages from the book, ending with a puzzle, and sometimes a hint. I told
them not to look at the hint unless they were stumped.

I also gave them some tools for testing their solutions: a small magnetic
whiteboard where they could write code, and a stack of magnets to represent
the threads executing the code.

The results were dramatic. Given more time to absorb the material, stu-
dents demonstrated a depth of understanding I had not seen before. More
importantly, most of them were able to solve most of the puzzles. In some
cases they reinvented classical solutions; in other cases they found creative new
approaches.

ii Preface

When I moved to Olin College, I took the next step and created a half-class,
called Synchronization, which covered The Little Book of Semaphores and also
the implementation of synchronization primitives in x86 Assembly Language,
POSIX, and Python.

The students who took the class helped me find errors in the first edition and
several of them contributed solutions that were better than mine. At the end of
the semester, I asked each of them to write a new, original problem (preferably
with a solution). I have added their contributions to the second edition.

Also since the first edition appeared, Kenneth Reek presented the article
“Design Patterns for Semaphores” at the ACM Special Interest Group for Com-
puter Science Education. He presents a problem, which I have cast as the Sushi
Bar Problem, and two solutions that demonstrate patterns he calls “Pass the
baton” and “I’ll do it for you.” Once I came to appreciate these patterns, I was
able to apply them to some of the problems from the first edition and produce
solutions that I think are better.

One other change in the second edition is the syntax. After I wrote the first
edition, I learned Python, which is not only a great programming language; it
also makes a great pseudocode language. So I switched from the C-like syntax
in the first edition to syntax that is pretty close to executable Python1. In fact,
I have written a simulator that can execute many of the solutions in this book.

Readers who are not familiar with Python will (I hope) find it mostly ob-
vious. In cases where I use a Python-specific feature, I explain the syntax and
what it means. I hope that these changes make the book more readable.

The pagination of this book might seem peculiar, but there is a method to
my whitespace. After each puzzle, I leave enough space that the hint appears
on the next sheet of paper and the solution on the next sheet after that. When
I use this book in my class, I hand it out a few pages at a time, and students
collect them in a binder. My pagination system makes it possible to hand out
a problem without giving away the hint or the solution. Sometimes I fold and
staple the hint and hand it out along with the problem so that students can
decide whether and when to look at the hint. If you print the book single-sided,
you can discard the blank pages and the system still works.

This is a Free Book, which means that anyone is welcome to read, copy,
modify and redistribute it, subject to the restrictions of the license, which is the
GNU Free Documentation License. I hope that people will find this book useful,
but I also hope they will help continue to develop it by sending in corrections,
suggestions, and additional material. Thanks!

Allen B. Downey
Needham, MA
June 1, 2005

1The primary difference is that I sometimes use indentation to indicate code that is pro-
tected by a mutex, which would cause syntax errors in Python.

iii

Contributor’s list

The following are some of the people who have contributed to this book:

• Many of the problems in this book are variations of classical problems
that appeared first in technical articles and then in textbooks. Whenever
I know the origin of a problem or solution, I acknowledge it in the text.

• I also thank the students at Wellesley College who worked with the first
edition of the book, and the students at Olin College who worked with
the second edition.

• Se Won sent in a small but important correction in my presentation of
Tanenbaum’s solution to the Dining Philosophers Problem.

• Daniel Zingaro punched a whole in the Dancer’s problem, which provoked
me to rewrite that section. I can only hope that it makes more sense now.
Daniel also pointed out an error in a previous version of my solution to
the H2O problem

• Thomas Hansen found a typo in the Cigarette smokers problem.

• Pascal Rütten pointed out several typos, including my embarassing mis-
spelling of Edsger Dijkstra.

• Marcelo Johann pointed out an error in my solution to the Dining Savages
problem, and fixed it!

iv Preface

Contents

Preface i

1 Introduction 1

1.1 Synchronization . 1
1.2 Execution model . 1
1.3 Serialization with messages . 3
1.4 Non-determinism . 4
1.5 Shared variables . 4

1.5.1 Concurrent writes . 4
1.5.2 Concurrent updates . 5
1.5.3 Mutual exclusion with messages 6

2 Semaphores 7

2.1 Definition . 7
2.2 Syntax . 8
2.3 Why semaphores? . 9

3 Basic synchronization patterns 11

3.1 Signaling . 11
3.2 Rendezvous . 12

3.2.1 Rendezvous hint . 13
3.2.2 Rendezvous solution . 15
3.2.3 Deadlock #1 . 15

3.3 Mutex . 16
3.3.1 Mutual exclusion hint . 17
3.3.2 Mutual exclusion solution 19

3.4 Multiplex . 19
3.4.1 Multiplex solution . 21

3.5 Barrier . 21
3.5.1 Barrier hint . 23
3.5.2 Barrier non-solution . 25
3.5.3 Deadlock #2 . 27
3.5.4 Barrier solution . 29
3.5.5 Deadlock #3 . 31

vi CONTENTS

3.6 Reusable barrier . 31
3.6.1 Reusable barrier non-solution #1 33
3.6.2 Reusable barrier problem #1 35
3.6.3 Reusable barrier non-solution #2 37
3.6.4 Reusable barrier hint . 39
3.6.5 Reusable barrier solution 41
3.6.6 Preloaded turnstile . 43
3.6.7 Barrier objects . 44

3.7 Queue . 45
3.7.1 Queue hint . 47
3.7.2 Queue solution . 49
3.7.3 Exclusive queue hint . 51
3.7.4 Exclusive queue solution 53

3.8 Fifo queue . 55
3.8.1 Fifo queue hint . 57
3.8.2 Fifo queue solution . 59

4 Classical synchronization problems 61

4.1 Producer-consumer problem . 61
4.1.1 Producer-consumer hint 63
4.1.2 Producer-consumer solution 65
4.1.3 Deadlock #4 . 67
4.1.4 Producer-consumer with a finite buffer 67
4.1.5 Finite buffer producer-consumer hint 69
4.1.6 Finite buffer producer-consumer solution 71

4.2 Readers-writers problem . 71
4.2.1 Readers-writers hint . 73
4.2.2 Readers-writers solution 75
4.2.3 Starvation . 77
4.2.4 No-starve readers-writers hint 79
4.2.5 No-starve readers-writers solution 81
4.2.6 Writer-priority readers-writers hint 83
4.2.7 Writer-priority readers-writers solution 85

4.3 No-starve mutex . 87
4.3.1 No-starve mutex hint . 89
4.3.2 No-starve mutex solution 91

4.4 Dining philosophers . 93
4.4.1 Deadlock #5 . 95
4.4.2 Dining philosophers hint #1 97
4.4.3 Dining philosophers solution #1 99
4.4.4 Dining philosopher’s solution #2 101
4.4.5 Tanenbaum’s solution . 103
4.4.6 Starving Tanenbaums . 105

4.5 Cigarette smokers problem . 107
4.5.1 Deadlock #6 . 111
4.5.2 Smokers problem hint . 113

CONTENTS vii

4.5.3 Smoker problem solution 115

4.5.4 Generalized Smokers Problem 115

4.5.5 Generalized Smokers Problem Hint 117

4.5.6 Generalized Smokers Problem Solution 119

5 Less classical synchronization problems 121

5.1 The dining savages problem . 121

5.1.1 Dining Savages hint . 123

5.1.2 Dining Savages solution 125

5.2 The barbershop problem . 127

5.2.1 Barbershop hint . 129

5.2.2 Barbershop solution . 131

5.3 Hilzer’s Barbershop problem . 133

5.3.1 Hilzer’s barbershop hint 134

5.3.2 Hilzer’s barbershop solution 134

5.4 The Santa Claus problem . 137

5.4.1 Santa problem hint . 139

5.4.2 Santa problem solution 141

5.5 Building H2O . 143

5.5.1 H2O hint . 145

5.5.2 H2O solution . 147

5.6 River crossing problem . 148

5.6.1 River crossing hint . 149

5.6.2 River crossing solution . 151

5.7 The roller coaster problem . 153

5.7.1 Roller Coaster hint . 155

5.7.2 Roller Coaster solution . 157

5.7.3 Multi-car Roller Coaster problem 159

5.7.4 Multi-car Roller Coaster hint 161

5.7.5 Multi-car Roller Coaster solution 163

6 Not-so-classical problems 165

6.1 The search-insert-delete problem 165

6.1.1 Search-Insert-Delete hint 167

6.1.2 Search-Insert-Delete solution 169

6.2 The unisex bathroom problem . 170

6.2.1 Unisex bathroom hint . 171

6.2.2 Unisex bathroom solution 173

6.2.3 No-starve unisex bathroom problem 175

6.2.4 No-starve unisex bathroom solution 177

6.3 Baboon crossing problem . 177

6.4 The Modus Hall Problem . 178

6.4.1 Modus Hall problem hint 179

6.4.2 Modus Hall problem solution 181

viii CONTENTS

7 Not remotely classical problems 183

7.1 The sushi bar problem . 183
7.1.1 Sushi bar hint . 185
7.1.2 Sushi bar non-solution . 187
7.1.3 Sushi bar non-solution . 189
7.1.4 Sushi bar solution #1 . 191
7.1.5 Sushi bar solution #2 . 193

7.2 The child care problem . 194
7.2.1 Child care hint . 195
7.2.2 Child care non-solution 197
7.2.3 Child care solution . 199
7.2.4 Extended child care problem 199
7.2.5 Extended child care hint 201
7.2.6 Extended child care solution 203

7.3 The room party problem . 205
7.3.1 Room party hint . 207
7.3.2 Room party solution . 209

7.4 The Senate Bus problem . 211
7.4.1 Bus problem hint . 213
7.4.2 Bus problem solution #1 215
7.4.3 Bus problem solution #2 217

7.5 The Faneuil Hall problem . 219
7.5.1 Faneuil Hall Problem Hint 221
7.5.2 Faneuil Hall problem solution 223
7.5.3 Extended Faneuil Hall Problem Hint 225
7.5.4 Extended Faneuil Hall problem solution 227

7.6 Dining Hall problem . 229
7.6.1 Dining Hall problem hint 231
7.6.2 Dining Hall problem solution 233
7.6.3 Extended Dining Hall problem 234
7.6.4 Extended Dining Hall problem hint 235
7.6.5 Extended Dining Hall problem solution 237

8 Synchronization in Python 239

8.1 Mutex checker problem . 240
8.1.1 Mutex checker hint . 243
8.1.2 Mutex checker solution 245

8.2 The coke machine problem . 247
8.2.1 Coke machine hint . 249
8.2.2 Coke machine solution . 251

9 Synchronization in C 253

9.1 Mutual exclusion . 253
9.1.1 Parent code . 254
9.1.2 Child code . 254
9.1.3 Synchronization errors . 255

CONTENTS ix

9.1.4 Mutual exclusion hint . 257
9.1.5 Mutual exclusion solution 259

9.2 Make your own semaphores . 261
9.2.1 Semaphore implementation hint 263
9.2.2 Semaphore implementation 265
9.2.3 Semaphore implementation detail 267

A Cleaning up Python threads 271

A.1 Semaphore methods . 271
A.2 Creating threads . 271
A.3 Handling keyboard interrupts . 272

B Cleaning up POSIX threads 275

B.1 Compiling Pthread code . 275
B.2 Creating threads . 276
B.3 Joining threads . 277
B.4 Semaphores . 278

x CONTENTS

Chapter 1

Introduction

1.1 Synchronization

In common use, “synchronization” means making two things happen at the
same time. In computer systems, synchronization is a little more general; it
refers to relationships among events—any number of events, and any kind of
relationship (before, during, after).

Computer programmers are often concerned with synchronization con-

straints, which are requirements pertaining to the order of events. Examples
include:

Serialization: Event A must happen before Event B.

Mutual exclusion: Events A and B must not happen at the same time.

In real life we often check and enforce synchronization constraints using a
clock. How do we know if A happened before B? If we know what time both
events occurred, we can just compare the times.

In computer systems, we often need to satisfy synchronization constraints
without the benefit of a clock, either because there is no universal clock, or
because we don’t know with fine enough resolution when events occur.

That’s what this book is about: software techniques for enforcing synchro-
nization constraints.

1.2 Execution model

In order to understand software synchronization, you have to have a model of
how computer programs run. In the simplest model, computers execute one
instruction after another in sequence. In this model, synchronization is trivial;
we can tell the order of events by looking at the program. If Statement A comes
before Statement B, it will be executed first.

2 Introduction

There are two ways things get more complicated. One possibility is that
the computer is parallel, meaning that it has multiple processors running at the
same time. In that case it is not easy to know if a statement on one processor
is executed before a statement on another.

Another possibility is that a single processor is running multiple threads of
execution. A thread is a sequence of instructions that execute sequentially. If
there are multiple threads, then the processor can work on one for a while, then
switch to another, and so on.

In general the programmer has no control over when each thread runs; the
operating system (specifically, the scheduler) makes those decisions. As a result,
again, the programmer can’t tell when statements in different threads will be
executed.

For purposes of synchronization, there is no difference between the parallel
model and the multithread model. The issue is the same—within one processor
(or one thread) we know the order of execution, but between processors (or
threads) it is impossible to tell.

A real world example might make this clearer. Imagine that you and your
friend Bob live in different cities, and one day, around dinner time, you start to
wonder who ate lunch first that day, you or Bob. How would you find out?

Obviously you could call him and ask what time he ate lunch. But what if
you started lunch at 11:59 by your clock and Bob started lunch at 12:01 by his
clock? Can you be sure who started first? Unless you are both very careful to
keep accurate clocks, you can’t.

Computer systems face the same problem because, even though their clocks
are usually accurate, there is always a limit to their precision. In addition,
most of the time the computer does not keep track of what time things happen.
There are just too many things happening, too fast, to record the exact time of
everything.

Puzzle: Assuming that Bob is willing to follow simple instructions, is there
any way you can guarantee that tomorrow you will eat lunch before Bob?

1.3 Serialization with messages 3

1.3 Serialization with messages

One solution is to instruct Bob not to eat lunch until you call. Then, make
sure you don’t call until after lunch. This approach may seem trivial, but the
underlying idea, message passing, is a real solution for many synchronization
problems. At the risk of belaboring the obvious, consider this timeline.

You

a1 Eat breakfast

a2 Work

a3 Eat lunch

a4 Call Bob

Bob

b1 Eat breakfast

b2 Wait for a call

b3 Eat lunch

The first column is a list of actions you perform; in other words, your thread
of execution. The second column is Bob’s thread of execution. Within a thread,
we can always tell what order things happen. We can denote the order of events

a1 < a2 < a3 < a4

b1 < b2 < b3

where the relation a1 < a2 means that a1 happened before a2.
In general, though, there is no way to compare events from different threads;

for example, we have no idea who ate breakfast first (is a1 < b1?).
But with message passing (the phone call) we can tell who ate lunch first

(a3 < b3). Assuming that Bob has no other friends, he won’t get a call until
you call, so b2 > a4 . Combining all the relations, we get

b3 > b2 > a4 > a3

which proves that you had lunch before Bob.
In this case, we would say that you and Bob ate lunch sequentially, because

we know the order of events, and you ate breakfast concurrently, because we
don’t.

When we talk about concurrent events, it is tempting to say that they happen
at the same time, or simultaneously. As a shorthand, that’s fine, as long as you
remember the strict definition:

Two events are concurrent if we cannot tell by looking at the program
which will happen first.

Sometimes we can tell, after the program runs, which happened first, but
often not, and even if we can, there is no guarantee that we will get the same
result the next time.

4 Introduction

1.4 Non-determinism

Concurrent programs are often non-deterministic, which means it is not pos-
sible to tell, by looking at the program, what will happen when it executes.
Here is a simple example of a non-deterministic program:

Thread A

a1 print "yes"

Thread B

b1 print "no"

Because the two threads run concurrently, the order of execution depends
on the scheduler. During any given run of this program, the output might be
“yes no” or “no yes”.

Non-determinism is one of the things that makes concurrent programs hard
to debug. A program might work correctly 1000 times in a row, and then crash
on the 1001st run, depending on the particular decisions of the scheduler.

These kinds of bugs are almost impossible to find by testing; they can only
be avoided by careful programming.

1.5 Shared variables

Most of the time, most variables in most threads are local, meaning that they
belong to a single thread and no other threads can access them. As long as
that’s true, there tend to be few synchronization problems, because threads
just don’t interact.

But usually some variables are shared among two or more threads; this
is one of the ways threads interact with each other. For example, one way
to communicate information between threads is for one thread to read a value
written by another thread.

If the threads are unsynchronized, then we cannot tell by looking at the
program whether the reader will see the value the writer writes or an old value
that was already there. Thus many applications enforce the constraint that
the reader should not read until after the writer writes. This is exactly the
serialization problem in Section 1.3.

Other ways that threads interact are concurrent writes (two or more writ-
ers) and concurrent updates (two or more threads performing a read followed
by a write). The next two sections deal with these interactions. The other
possible use of a shared variable, concurrent reads, does not generally create a
synchronization problem.

1.5.1 Concurrent writes

In the following example, x is a shared variable accessed by two writers.
Thread A

a1 x = 5

a2 print x

Thread B

b1 x = 7

1.5 Shared variables 5

What value of x gets printed? What is the final value of x when all these
statements have executed? It depends on the order in which the statements are
executed, called the execution path. One possible path is a1 < a2 < b1, in
which case the output of the program is 5, but the final value is 7.

Puzzle: What path yields output 5 and final value 5?
Puzzle: What path yields output 7 and final value 7?
Puzzle: Is there a path that yields output 7 and final value 5? Can you

prove it?
Answering questions like these is an important part of concurrent program-

ming: What paths are possible and what are the possible effects? Can we prove
that a given (desirable) effect is necessary or that an (undesirable) effect is
impossible?

1.5.2 Concurrent updates

An update is an operation that reads the value of a variable, computes a new
value based on the old value, and writes the new value. The most common kind
of update is an increment, in which the new value is the old value plus one. The
following example shows a shared variable, count, being updated concurrently
by two threads.

Thread A

a1 count = count + 1

Thread B

b1 count = count + 1

At first glance, it is not obvious that there is a synchronization problem here.
There are only two execution paths, and they yield the same result.

The problem is that these operations are translated into machine language
before execution, and in machine language the update takes two steps, a read
and a write. The problem is more obvious if we rewrite the code with a tempo-
rary variable, temp.

Thread A

a1 temp = count

a2 count = temp + 1

Thread B

b1 temp = count

b2 count = temp + 1

Now consider the following execution path

a1 < b1 < b2 < a2

Assuming that the initial value of x is 0, what is its final value? Because
both threads read the same initial value, they write the same value. The variable
is only incremented once, which is probably not what the programmer had in
mind.

This kind of problem is subtle because it is not always possible to tell, look-
ing at a high-level program, which operations are performed in a single step and
which can be interrupted. In fact, some computers provide an increment in-
struction that is implemented in hardware cannot be interrupted. An operation
that cannot be interrupted is said to be atomic.

6 Introduction

So how can we write concurrent programs if we don’t know which operations
are atomic? One possibility is to collect specific information about each opera-
tion on each hardware platform. The drawbacks of this approach are obvious.

The most common alternative is to make the conservative assumption that
all updates and all writes are not atomic, and to use synchronization constraints
to control concurrent access to shared variables.

The most common constraint is mutual exclusion, or mutex, which I men-
tioned in Section 1.1. Mutual exclusion guarantees that only one thread accesses
a shared variable at a time, eliminating the kinds of synchronization errors in
this section.

1.5.3 Mutual exclusion with messages

Like serialization, mutual exclusion can be implemented using message passing.
For example, imagine that you and Bob operate a nuclear reactor that you
monitor from remote stations. Most of the time, both of you are watching for
warning lights, but you are both allowed to take a break for lunch. It doesn’t
matter who eats lunch first, but it is very important that you don’t eat lunch
at the same time, leaving the reactor unwatched!

Puzzle: Figure out a system of message passing (phone calls) that enforces
these restraints. Assume there are no clocks, and you cannot predict when lunch
will start or how long it will last. What is the minimum number of messages
that is required?

Chapter 2

Semaphores

In real life a semaphore is a system of signals used to communicate visually,
usually with flags, lights, or some other mechanism. In software, a semaphore is
a data structure that is useful for solving a variety of synchronization problems.

Semaphores were invented by Edsger Dijkstra, a famously eccentric com-
puter scientist. Some of the details have changed since the original design, but
the basic idea is the same.

2.1 Definition

A semaphore is like an integer, with three differences:

1. When you create the semaphore, you can initialize its value to any integer,
but after that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the
thread blocks itself and cannot continue until another thread increments
the semaphore.

3. If the value of the semaphore is negative and a thread increments it, one
of the threads that is waiting gets woken up.

To say that a thread blocks itself (or simply “blocks”) is to say that it notifies
the scheduler that it cannot proceed. The scheduler will prevent the thread from
running until it is notified otherwise. Since the blocked thread cannot run, some
other thread has to unblock it. In the tradition of mixed metaphors in computer
science, unblocking is often called “waking”.

That’s all there is to the definition, but there are some consequences of the
definition you might want to think about.

8 Semaphores

• In general, there is no way to know before a thread decrements a
semaphore whether it will block or not (in specific cases you might be
able to prove that it will or will not).

• After a thread increments a semaphore and another thread gets woken
up, both threads continue running concurrently. There is no way to know
which thread, if either, will continue immediately.

Finally, you might want to think about what the value of the semaphore
means. If the value is positive, then it represents the number of threads that
can decrement without blocking. If it is negative, then it represents the number
of threads that have blocked and are waiting. If the value is zero, it means there
are no threads waiting, but if a thread tries to decrement, it will block.

2.2 Syntax

In most programming environments, an implementation of semaphores is avail-
able as part of the programming language or the operating system. Different
implementations sometimes offer slightly different capabilities, and usually re-
quire different syntax.

In this book I will use a simple pseudo-language to demonstrate how
semaphores work. The syntax for creating a new semaphore and initializing
it is

Listing 2.1: Semaphore initialization syntax

1 fred = Semaphore(1)

The function Semaphore is a constructor; it creates and returns a new
Semaphore. The initial value of the semaphore is passed as a parameter to
the constructor.

The semaphore operations go by different names in different environments.
The most common alternatives are

Listing 2.2: Semaphore operations

1 fred.increment()

2 fred.decrement()

and

Listing 2.3: Semaphore operations

1 fred.signal()

2 fred.wait()

and

2.3 Why semaphores? 9

Listing 2.4: Semaphore operations

1 fred.V()

2 fred.P()

It may be surprising that there are so many names, but there is a reason for the
plurality. increment and decrement describe what the operations do. signal

and wait describe what they are often used for. And V and P were the original
names proposed by Dijkstra, who wisely realized that a meaningless name is
better than a misleading name1.

I consider the other pairs misleading because increment and decrement

neglect to mention the possibility of blocking and waking, and semaphores are
often used in ways that have nothing to do with signal and wait.

If you insist on meaningful names, then I would suggest these:

Listing 2.5: Semaphore operations

1 fred.increment_and_wake_a_waiting_process_if_any()

2 fred.decrement_and_block_if_the_result_is_negative()

I don’t think the world is likely to embrace either of these names soon. In
the meantime, I choose (more or less arbitrarily) to use signal and wait.

2.3 Why semaphores?

Looking at the definition of semaphores, it is not at all obvious why they are use-
ful. It’s true that we don’t need semaphores to solve synchronization problems,
but there are some advantages to using them:

• Semaphores impose deliberate constraints that help programmers avoid
errors.

• Solutions using semaphores are often clean and organized, making it easy
to demonstrate their correctness.

• Semaphores can be implemented efficiently on many systems, so solutions
that use semaphores are portable and usually efficient.

1Actually, V and P aren’t completely meaningless to people who speak Dutch.

10 Semaphores

Chapter 3

Basic synchronization

patterns

This chapter presents a series of basic synchronization problems and shows ways
of using semaphores to solve them. These problems include serialization and
mutual exclusion, which we have already seen, along with others.

3.1 Signaling

Possibly the simplest use for a semaphore is signaling, which means that one
thread sends a signal to another thread to indicate that something has happened.

Signaling makes it possible to guarantee that a section of code in one thread
will run before a section of code in another thread; in other words, it solves the
serialization problem.

Assume that we have a semaphore named sem with initial value 0, and that
Threads A and B have shared access to it.

Thread A

1 statement a1

2 sem.signal()

Thread B

1 sem.wait()

2 statement b1

The word statement represents an arbitrary program statement. To make
the example concrete, imagine that a1 reads a line from a file, and b1 displays
the line on the screen. The semaphore in this program guarantees that Thread
A has completed a1 before Thread B begins b1.

Here’s how it works: if thread B gets to the wait statement first, it will find
the initial value, zero, and it will block. Then when Thread A signals, Thread
B proceeds.

Similarly, if Thread A gets to the signal first then the value of the semaphore
will be incremented, and when Thread B gets to the wait, it will proceed im-
mediately. Either way, the order of a1 and b1 is guaranteed.

12 Basic synchronization patterns

This use of semaphores is the basis of the names signal and wait, and
in this case the names are conveniently mnemonic. Unfortunately, we will see
other cases where the names are less helpful.

Speaking of meaningful names, sem isn’t one. When possible, it is a good
idea to give a semaphore a name that indicates what it represents. In this case
a name like a1Done might be good, where a1Done = 0 means that a1 has not
executed and a1Done = 1 means it has.

3.2 Rendezvous

Puzzle: Generalize the signal pattern so that it works both ways. Thread A has
to wait for Thread B and vice versa. In other words, given this code

Thread A

1 statement a1

2 statement a2

Thread B

1 statement b1

2 statement b2

we want to guarantee that a1 happens before b2 and b1 happens before a2. In
writing your solution, be sure to specify the names and initial values of your
semaphores (little hint there).

Your solution should not enforce too many constraints. For example, we
don’t care about the order of a1 and b1. In your solution, either order should
be possible.

This synchronization problem has a name; it’s a rendezvous. The idea is
that two threads rendezvous at a point of execution, and neither is allowed to
proceed until both have arrived.

3.2 Rendezvous 13

3.2.1 Rendezvous hint

The chances are good that you were able to figure out a solution, but if not,
here is a hint. Create two semaphores, named aArrived and bArrived, and
initialize them both to zero.

As the names suggest, aArrived indicates whether Thread A has arrived at
the rendezvous, and bArrived likewise.

14 Basic synchronization patterns

3.2 Rendezvous 15

3.2.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1

2 aArrived.signal()

3 bArrived.wait()

4 statement a2

Thread B

1 statement b1

2 bArrived.signal()

3 aArrived.wait()

4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1

2 bArrived.wait()

3 aArrived.signal()

4 statement a2

Thread B

1 statement b1

2 bArrived.signal()

3 aArrived.wait()

4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.2.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1

2 bArrived.wait()

3 aArrived.signal()

4 statement a2

Thread B

1 statement b1

2 aArrived.wait()

3 bArrived.signal()

4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

16 Basic synchronization patterns

3.3 Mutex

A second common use for semaphores is to enforce mutual exclusion. We have al-
ready seen one use for mutual exclusion, controlling concurrent access to shared
variables. The mutex guarantees that only one thread accesses the shared vari-
able at a time.

A mutex is like a token that passes from one thread to another, allowing one
thread at a time to proceed. For example, in The Lord of the Flies a group of
children use a conch as a mutex. In order to speak, you have to hold the conch.
As long as only one child holds the conch, only one can speak1.

Similarly, in order for a thread to access a shared variable, it has to “get”
the mutex; when it is done, it “releases” the mutex. Only one thread can hold
the mutex at a time.

Puzzle: Add semaphores to the following example to enforce mutual exclu-
sion to the shared variable count.

Thread A

count = count + 1

Thread B

count = count + 1

1Although this metaphor is helpful, for now, it can also be misleading, as you will see in
Section 5.5

3.3 Mutex 17

3.3.1 Mutual exclusion hint

Create a semaphore named mutex that is initialized to 1. A value of one means
that a thread may proceed and access the shared variable; a value of zero means
that it has to wait for another thread to release the mutex.

18 Basic synchronization patterns

3.4 Multiplex 19

3.3.2 Mutual exclusion solution

Here is a solution:
Thread A

mutex.wait()

critical section

count = count + 1

mutex.signal()

Thread B

mutex.wait()

critical section

count = count + 1

mutex.signal()

Since mutex is initially 1, whichever thread gets to the wait first will be able
to proceed immediately. Of course, the act of waiting on the semaphore has the
effect of decrementing it, so the second thread to arrive will have to wait until
the first signals.

I have indented the update operation to show that it is contained within the
mutex.

In this example, both threads are running the same code. This is sometimes
called a symmetric solution. If the threads have to run different code, the solu-
tion is asymmetric. Symmetric solutions are often easier to generalize. In this
case, the mutex solution can handle any number of concurrent threads without
modification. As long as every thread waits before performing an update and
signals after, then no two threads will access count concurrently.

Often the code that needs to be protected is called the critical section, I
suppose because it is critically important to prevent concurrent access.

In the tradition of computer science and mixed metaphors, there are several
other ways people sometimes talk about mutexes. In the metaphor we have been
using so far, the mutex is a token that is passed from one thread to another.

In an alternative metaphor, we think of the critical section as a room, and
only one thread is allowed to be in the room at a time. In this metaphor,
mutexes are called locks, and a thread is said to lock the mutex before entering
and unlock it while exiting. Occasionally, though, people mix the metaphors
and talk about “getting” or “releasing” a lock, which doesn’t make much sense.

Both metaphors are potentially useful and potentially misleading. As you
work on the next problem, try out both ways of thinking and see which one
leads you to a solution.

3.4 Multiplex

Puzzle: Generalize the previous solution so that it allows multiple threads to
run in the critical section at the same time, but it enforces an upper limit on
the number of concurrent threads. In other words, no more than n threads can
run in the critical section at the same time.

This pattern is called a multiplex. In real life, the multiplex problem occurs
at busy nightclubs where there is a maximum number of people allowed in the
building at a time, either to maintain fire safety or to create the illusion of
exclusivity.

20 Basic synchronization patterns

At such places a bouncer usually enforces the synchronization constraint by
keeping track of the number of people inside and barring arrivals when the room
is at capacity. Then, whenever one person leaves another is allowed to enter.

Enforcing this constraint with semaphores may sound difficult, but it is
almost trivial.

3.5 Barrier 21

3.4.1 Multiplex solution

To allow multiple threads to run in the critical section, just initialize the mutex
to n, which is the maximum number of threads that should be allowed.

At any time, the value of the semaphore represents the number of additional
threads that may enter. If the value is zero, then the next thread will block
until one of the threads inside exits and signals. When all threads have exited
the value of the semaphore is restored to n.

Since the solution is symmetric, it’s conventional to show only one copy of the
code, but you should imagine multiple copies of the code running concurrently
in multiple threads.

Listing 3.1: Multiplex solution

1 multiplex.wait()

2 critical section

3 multiplex.signal()

What happens if the critical section is occupied and more than one thread
arrives? Of course, what we want is for all the arrivals to wait. This solution
does exactly that. Each time an arrival joins the queue, the semaphore is decre-
mented, so that the value of the semaphore (negated) represents the number of
threads in queue.

When a thread leaves, it signals the semaphore, incrementing its value and
allowing one of the waiting threads to proceed.

Thinking again of metaphors, in this case I find it useful to think of the
semaphore as a set of tokens (rather than a lock). As each thread invokes wait,
it picks up one of the tokens; when it invokes signal it releases one. Only a
thread that holds a token can enter the room. If no tokens are available when
a thread arrives, it waits until another thread releases one.

In real life, ticket windows sometimes use a system like this. They hand
out tokens (sometimes poker chips) to customers in line. Each token allows the
holder to buy a ticket.

3.5 Barrier

Consider again the Rendezvous problem from Section 3.2. A limitation of the
solution we presented is that it does not work with more than two threads.

Puzzle: Generalize the rendezvous solution. Every thread should run the
following code:

Listing 3.2: Barrier code

1 rendezvous

2 critical point

The synchronization requirement is that no thread executes critical point

until after all threads have executed rendezvous.

22 Basic synchronization patterns

You can assume that there are n threads and that this value is stored in a
variable, n, that is accessible from all threads.

When the first n − 1 threads arrive they should block until the nth thread
arrives, at which point all the threads may proceed.

3.5 Barrier 23

3.5.1 Barrier hint

For many of the problems in this book I will provide hints by presenting the
variables I used in my solution and explaining their roles.

Listing 3.3: Barrier hint

1 int n # the number of threads

2 int count = 0

3 Semaphore mutex = 1

4 Semaphore barrier = 0

count keeps track of how many threads have arrived. mutex provides exclu-
sive access to count so that threads can increment it safely.

barrier is locked (zero or negative) until all threads arrive; then it should
be unlocked (1 or more).

24 Basic synchronization patterns

3.5 Barrier 25

3.5.2 Barrier non-solution

First I will present a solution that is not quite right, because it is useful to
examine incorrect solutions and figure out what is wrong.

Listing 3.4: Barrier non-solution

1 rendezvous

2
3 mutex.wait()

4 count = count + 1

5 mutex.signal()

6
7 if count == n: barrier.signal()

8
9 barrier.wait()

10
11 critical point

Since count is protected by a mutex, it counts the number of threads that
pass. The first n−1 threads wait when they get to the barrier, which is initially
locked. When the nth thread arrives, it unlocks the barrier.

Puzzle: What is wrong with this solution?

26 Basic synchronization patterns

3.5 Barrier 27

3.5.3 Deadlock #2

The problem is a deadlock.
An an example, imagine that n = 5 and that 4 threads are waiting at the

barrier. The value of the semaphore is the number of threads in queue, negated,
which is -4.

When the 5th thread signals the barrier, one of the waiting threads is allowed
to proceed, and the semaphore is incremented to -3.

But then no one signals the semaphore again and none of the other threads
can pass the barrier. This is a second example of a deadlock.

Puzzle: Does this code always create a deadlock? Can you find an execution
path through this code that does not cause a deadlock?

Puzzle: Fix the problem.

28 Basic synchronization patterns

3.5 Barrier 29

3.5.4 Barrier solution

Finally, here is a working barrier:

Listing 3.5: Barrier solution

1 rendezvous

2
3 mutex.wait()

4 count = count + 1

5 mutex.signal()

6
7 if count == n: barrier.signal()

8
9 barrier.wait()

10 barrier.signal()

11
12 critical point

The only change is another signal after waiting at the barrier. Now as each
thread passes, it signals the semaphore so that the next thread can pass.

This pattern, a wait and a signal in rapid succession, occurs often enough
that it has a name; it’s called a turnstile, because it allows one thread to pass
at a time, and it can be locked to bar all threads.

In its initial state (zero), the turnstile is locked. The nth thread unlocks it
and then all n threads go through.

After the nth thread, what state is the turnstile in? Is there any way the
barrier might be signaled more than once?

30 Basic synchronization patterns

3.6 Reusable barrier 31

3.5.5 Deadlock #3

Since only one thread at a time can pass through the mutex, and only one
thread at a time can pass through the turnstile, it might seen reasonable to put
the turnstile inside the mutex, like this:

Listing 3.6: Bad barrier solution

1 rendezvous

2
3 mutex.wait()

4 count = count + 1

5 if count == n: barrier.signal()

6
7 barrier.wait()

8 barrier.signal()

9 mutex.signal()

10
11 critical point

This turns out to be a bad idea because it can cause a deadlock.
Imagine that the first thread enters the mutex and then blocks when it

reaches the turnstile. Since the mutex is locked, no other threads can enter,
so the condition, count==n, will never be true and no one will ever unlock the
turnstile.

In this case the deadlock is fairly obvious, but it demonstrates a common
source of deadlocks: blocking on a semaphore while holding a mutex.

3.6 Reusable barrier

Often a set of cooperating threads will perform a series of steps in a loop and
synchronize at a barrier after each step. For this application we need a reusable
barrier that locks itself after all the threads have passed through.

Puzzle: Rewrite the barrier solution so that after all the threads have passed
through, the turnstile is locked again.

32 Basic synchronization patterns

3.6 Reusable barrier 33

3.6.1 Reusable barrier non-solution #1

Once again, we will start with a simple attempt at a solution and gradually
improve it:

Listing 3.7: Reusable barrier non-solution

1 rendezvous

2
3 mutex.wait()

4 count += 1

5 mutex.signal()

6
7 if count == n: turnstile.signal()

8
9 turnstile.wait()

10 turnstile.signal()

11
12 critical point

13
14 mutex.wait()

15 count -= 1

16 mutex.signal()

17
18 if count == 0: turnstile.wait()

Notice that the code after the turnstile is pretty much the same as the code
before it. Again, we have to use the mutex to protect access to the shared
variable count. Tragically, though, this code is not quite correct.

Puzzle: What is the problem?

34 Basic synchronization patterns

3.6 Reusable barrier 35

3.6.2 Reusable barrier problem #1

There is a problem spot at Line 7 of the previous code.
If the n − 1th thread is interrupted at this point, and then the nth thread

comes through the mutex, both threads will find that count==n and both
threads will signal the turnstile. In fact, it is even possible that all the threads
will signal the turnstile.

Similarly, at Line 18 it is possible for multiple threads to wait, which will
cause a deadlock.

Puzzle: Fix the problem.

36 Basic synchronization patterns

3.6 Reusable barrier 37

3.6.3 Reusable barrier non-solution #2

This attempt fixes the previous error, but a subtle problem remains.

Listing 3.8: Reusable barrier non-solution

1 rendezvous

2
3 mutex.wait()

4 count += 1

5 if count == n: turnstile.signal()

6 mutex.signal()

7
8 turnstile.wait()

9 turnstile.signal()

10
11 critical point

12
13 mutex.wait()

14 count -= 1

15 if count == 0: turnstile.wait()

16 mutex.signal()

In both cases the check is inside the mutex so that a thread cannot be
interrupted after changing the counter and before checking it.

Tragically, this code is still not correct. Remember that this barrier will be
inside a loop. So, after executing the last line, each thread will go back to the
rendezvous.

Puzzle: Identify and fix the problem.

38 Basic synchronization patterns

3.6 Reusable barrier 39

3.6.4 Reusable barrier hint

As it is currently written, this code allows a precocious thread to pass through
the second mutex, then loop around and pass through the first mutex and the
turnstile, effectively getting ahead of the other threads by a lap.

To solve this problem we can use two turnstiles.

Listing 3.9: Reusable barrier hint

1 turnstile = Semaphore(0)

2 turnstile2 = Semaphore(1)

3 mutex = Semaphore(1)

Initially the first is locked and the second is open. When all the threads
arrive at the first, we lock the second and unlock the first. When all the threads
arrive at the second we relock the first, which makes it safe for the threads to
loop around to the beginning, and then open the second.

40 Basic synchronization patterns

3.6 Reusable barrier 41

3.6.5 Reusable barrier solution

Listing 3.10: Reusable barrier solution

1 # rendezvous

2
3 mutex.wait()

4 count += 1

5 if count == n:

6 turnstile2.wait() # lock the second

7 turnstile.signal() # unlock the first

8 mutex.signal()

9
10 turnstile.wait() # first turnstile

11 turnstile.signal()

12
13 # critical point

14
15 mutex.wait()

16 count -= 1

17 if count == 0:

18 turnstile.wait() # lock the first

19 turnstile2.signal() # unlock the second

20 mutex.signal()

21
22 turnstile2.wait() # second turnstile

23 turnstile2.signal()

This solution is sometimes called a two-phase barrier because it forces all
the threads to wait twice: once for all the threads to arrive and again for all the
threads to execute the critical section.

Unfortunately, this solution is typical of most non-trivial synchronization
code: it is difficult to be sure that a solution is correct. Often there is a subtle
way that a particular path through the program can cause an error.

To make matters worse, testing an implementation of a solution is not much
help. The error might occur very rarely because the particular path that causes
it might require a spectacularly unlucky combination of circumstances. Such
errors are almost impossible to reproduce and debug by conventional means.

The only alternative is to examine the code carefully and “prove” that it is
correct. I put “prove” in quotation marks because I don’t mean, necessarily,
that you have to write a formal proof (although there are zealots who encourage
such lunacy).

The kind of proof I have in mind is more informal. We can take advantage
of the structure of the code, and the idioms we have developed, to assert, and
then demonstrate, a number of intermediate-level claims about the program.
For example:

42 Basic synchronization patterns

1. Only the nth thread can lock or unlock the turnstiles.

2. Before a thread can unlock the first turnstile, it has to close the second,
and vice versa; therefore it is impossible for one thread to get ahead of
the others by more than one turnstile.

By finding the right kinds of statements to assert and prove, you can some-
times find a concise way to convince yourself (or a skeptical colleague) that your
code is bulletproof.

3.6 Reusable barrier 43

3.6.6 Preloaded turnstile

One nice thing about a turnstile is that it is a versatile component you can
use in a variety of solutions. But one drawback is that it forces threads to go
through sequentially, which may cause more context switching than necessary.

In the reusable barrier solution, we can simplify the solution if the thread
that unlocks the turnstile preloads the turnstile with enough signals to let the
right number of threads through2.

The syntax I am using here assumes that signal can take a parameter
that specifies the number of signals. This is a non-standard feature, but it
would be easy to implement with a loop. The only thing to keep in mind is
that the multiple signals are not atomic; that is, the signaling thread might be
interrupted in the loop. But in this case that is not a problem.

Listing 3.11: Reusable barrier solution

1 # rendezvous

2
3 mutex.wait()

4 count += 1

5 if count == n:

6 turnstile.signal(n) # unlock the first

7 mutex.signal()

8
9 turnstile.wait() # first turnstile

10
11 # critical point

12
13 mutex.wait()

14 count -= 1

15 if count == 0:

16 turnstile2.signal(n) # unlock the second

17 mutex.signal()

18
19 turnstile2.wait() # second turnstile

When the nth thread arrives, it preloads the first turnstile with one signal
for each thread. When the nth thread passes the turnstile, it “takes the last
token” and leaves the turnstile locked again.

The same thing happens at the second turnstile, which is unlocked when the
last thread goes through the mutex.

2Thanks to Matt Tesch for this solution!

44 Basic synchronization patterns

3.6.7 Barrier objects

It is natural to encapsulate a barrier in an object. I will borrow the Python
syntax for defining a class:

Listing 3.12: Barrier class

1 class Barrier:

2 def __init__(self, n):

3 self.n = n

4 self.count = 0

5 self.mutex = Semaphore(1)

6 self.turnstile = Semaphore(0)

7 self.turnstile2 = Semaphore(0)

8
9 def phase1(self):

10 self.mutex.wait()

11 self.count += 1

12 if self.count == n:

13 self.turnstile.signal(n)

14 self.mutex.signal()

15 self.turnstile.wait()

16
17 def phase2(self):

18 self.mutex.wait()

19 self.count -= 1

20 if self.count == 0:

21 self.turnstile2.signal(n)

22 self.mutex.signal()

23 self.turnstile2.wait()

24
25 def wait(self):

26 self.phase1()

27 self.phase2()

The init method runs when we create a new Barrier object, and ini-
tializes the instance variables. The parameter n is the number of threads that
have to invoke wait before the Barrier opens.

The variable self refers to the object the method is operating on. Since
each barrier object has its own mutex and turnstiles, self.mutex refers to the
specific mutex of the current object.

Here is an example that creates a Barrier object and waits on it:

Listing 3.13: Barrier interface

1 barrier = Barrier(n) # initialize a new barrier

2 barrier.wait() # wait at a barrier

3.7 Queue 45

Optionally, code that uses a barrier can call phase1 and phase2 separately,
if there is something else that should be done in between.

3.7 Queue

Semaphores can also be used to represent a queue. In this case, the initial value
is 0, and usually the code is written so that it is not possible to signal unless
there is a thread waiting, so the value of the semaphore is never positive.

For example, imagine that threads represent ballroom dancers and that two
kinds of dancers, leaders and followers, wait in two queues before entering the
dance floor. When a leader arrives, it checks to see if there is a follower waiting.
If so, they can both proceed. Otherwise it waits.

Similarly, when a follower arrives, it checks for a leader and either proceeds
or waits, accordingly.

Puzzle: write code for leaders and followers that enforces these constraints.

46 Basic synchronization patterns

3.7 Queue 47

3.7.1 Queue hint

Here are the variables I used in my solution:

Listing 3.14: Queue hint

1 leaderQueue = Semaphore(0)

2 followerQueue = Semaphore(0)

leaderQueue is the queue where leaders wait and followerQueue is the
queue where followers wait.

48 Basic synchronization patterns

3.7 Queue 49

3.7.2 Queue solution

Here is the code for leaders:

Listing 3.15: Queue solution (leaders)

1 followerQueue.signal()

2 leaderQueue.wait()

3 dance()

And here is the code for followers:

Listing 3.16: Queue solution (followers)

1 leaderQueue.signal()

2 followerQueue.wait()

3 dance()

This solution is about as simple as it gets; it is just a Rendezvous. Each
leader signals exactly one follower, and each follower signals one leader, so it
is guaranteed that leaders and followers are allowed to proceed in pairs. But
whether they actually proceed in pairs is not clear. It is possible for any number
of threads to accumulate before executing dance, and so it is possible for any
number of leaders to dance before any followers do. Depending on the semantics
of dance, that behavior may or may not be problematic.

To make things more interesting, let’s add the additional constraint that each
leader can invoke dance concurrently with only one follower, and vice versa.

50 Basic synchronization patterns

3.7 Queue 51

3.7.3 Exclusive queue hint

Here are the variables I used in my solution:

Listing 3.17: Queue hint

1 leaders = followers = 0

2 mutex = Semaphore(1)

3 leaderQueue = Semaphore(0)

4 followerQueue = Semaphore(0)

leaders and followers are counters that keep track of the number of
dancers of each kinds that are waiting. The mutex guarantees exclusive ac-
cess to the counters.

leaderQueue and followerQueue are the queues where dancers wait.

52 Basic synchronization patterns

3.7 Queue 53

3.7.4 Exclusive queue solution

Here is the code for leaders:

Listing 3.18: Queue solution (leaders)

1 mutex.wait()

2 if followers > 0:

3 followers--

4 followerQueue.signal()

5 else:

6 leaders++

7 mutex.signal()

8 leaderQueue.wait()

9
10 dance()

11 mutex.signal()

When a leader arrives, it gets the mutex that protects leaders and
followers. If there is a follower waiting, the leader decrements followers,
signals a follower, and then invokes dance, all before releasing mutex. That
guarantees that there can be only one follower thread running dance concur-
rently.

If there are no followers waiting, the leader has to give up the mutex before
waiting on leaderQueue.

The code for followers is similar:

Listing 3.19: Queue solution (followers)

1 mutex.wait()

2 if leaders > 0:

3 leaders--

4 leaderQueue.signal()

5 else:

6 followers++

7 mutex.signal()

8 followerQueue.wait()

9
10 dance()

When a follower arrives, it checks for a waiting leader. If there is one, the
follower decrements leaders, signals a leader, and executes dance, all without
releasing mutex. Actually, in this case the follower never releases mutex! For-
tunately, the leader does. We don’t have to keep track of which thread has
the mutex because we know that one of them does, and either one of them can
release it. In my solution it’s always the leader.

54 Basic synchronization patterns

When a semaphore is used as a queue3, I find it useful to read “wait” as
“wait for this queue” and signal as “let someone from this queue go.”

In this code we never signal a queue unless someone is waiting, so the values
of the queue semaphores are seldom positive. It is possible, though. See if you
can figure out how.

3A semaphore used as a queue is very similar to a condition variable. The primary difference
is that threads have to release the mutex explicitly before waiting, and reacquire it explicitly
afterwards (but only if they need it).

3.8 Fifo queue 55

3.8 Fifo queue

If there is more than one thread waiting in queue when a semaphore is signaled,
there is usually no way to tell which thread will be woken. Some implementa-
tions wake threads up in a particular order, like first-in-first-out, but the seman-
tics of semaphores don’t require any particular order. Even if your environment
doesn’t provide first-in-first-out queueing, you can build it yourself.

Puzzle: use semaphores to build a first-in-first-out queue. Each time the Fifo
is signaled, the thread at the head of the queue should proceed. If more than
one thread is waiting on a semaphore, you should not make any assumptions
about which thread will proceed when the semaphore is signaled.

For bonus points, your solution should define a class named Fifo that pro-
vides methods named wait and signal.

56 Basic synchronization patterns

3.8 Fifo queue 57

3.8.1 Fifo queue hint

A natural solution is to allocate one semaphore to each thread by having each
thread run the following initialization:

Listing 3.20: Thread initialization

1 local mySem = Semaphore(0)

As each thread enters the Fifo, it adds its semaphore to a Queue data struc-
ture. When a thread signals the queue, it removes the semaphore at the head
of the Queue and signals it.

Using Python syntax, here is what the Fifo class definition might look like:

Listing 3.21: Fifo class definition

1 class Fifo:

2 def __init__(self):

3 self.queue = Queue()

4 self.mutex = Semaphore(1)

You can assume that there is a data structure named Queue that provides
methods named add and remove, but you should not assume that the Queue is
thread-safe; in other words, you have to enforce exclusive access to the Queue.

58 Basic synchronization patterns

3.8 Fifo queue 59

3.8.2 Fifo queue solution

Here is my solution:

Listing 3.22: Fifo queue solution

1 class Fifo:

2 def __init__(self):

3 self.queue = Queue()

4
5 def wait():

6 self.mutex.wait()

7 self.queue.add(mySem)

8 self.mutex.signal()

9 mySem.wait()

10
11 def signal():

12 self.mutex.wait()

13 sem = self.queue.remove()

14 self.mutex.signal()

15 sem.signal()

We use the mutex to protect the Queue, but release it as soon as possible to
minimize contention (and context switches).

60 Basic synchronization patterns

Chapter 4

Classical synchronization

problems

In this chapter we examine the classical problems that appear in nearly every
operating systems textbook. They are usually presented in terms of real-world
problems, so that the statement of the problem is clear and so that students
can bring their intuition to bear.

For the most part, though, these problems do not happen in the real world, or
if they do, the real-world solutions are not much like the kind of synchronization
code we are working with.

The reason we are interested in these problems is that they are analogous
to common problems that operating systems (and some applications) need to
solve. For each classical problem I will present the classical formulation, and
also explain the analogy to the corresponding OS problem.

4.1 Producer-consumer problem

In multithreaded programs there is often a division of labor between threads. In
one common pattern, some threads are producers and some are consumers. Pro-
ducers create items of some kind and add them to a data structure; consumers
remove the items and process them.

Event-driven programs are a good example. An “event” is something that
happens that requires the program to respond: the user presses a key or moves
the mouse, a block of data arrives from the disk, a packet arrives from the
network, a pending operation completes.

Whenever an event occurs, a producer thread creates an event object and
adds it to the event buffer. Concurrently, consumer threads take events out
of the buffer and process them. In this case, the consumers are called “event
handlers.”

There are several synchronization constraints that we need to enforce to
make this system work correctly:

62 Classical synchronization problems

• While an item is being added to or removed from the buffer, the buffer is
in an inconsistent state. Therefore, threads must have exclusive access to
the buffer.

• If a consumer thread arrives while the buffer is empty, it blocks until a
producer adds a new item.

Assume that producers perform the following operations over and over:

Listing 4.1: Basic producer code

1 event = waitForEvent()

2 buffer.add(event)

Also, assume that consumers perform the following operations:

Listing 4.2: Basic consumer code

1 event = buffer.get()

2 event.process()

As specified above, access to the buffer has to be exclusive, but
waitForEvent and event.process can run concurrently.

Puzzle: Add synchronization statements to the producer and consumer code
to enforce the synchronization constraints.

4.1 Producer-consumer problem 63

4.1.1 Producer-consumer hint

Here are the variables you might want to use:

Listing 4.3: Producer-consumer initialization

1 mutex = Semaphore(1)

2 items = Semaphore(0)

3 local event

Not surprisingly, mutex provides exclusive access to the buffer. When items

is positive, it indicates the number of items in the buffer. When it is negative,
it indicates the number of consumer threads in queue.

event is a local variable, which in this context means that each thread has
its own version. So far we have been assuming that all threads have access to
all variables, but we will sometimes find it useful to attach a variable to each
thread.

There are a number of ways this can be implemented in different environ-
ments:

• If each thread has its own run-time stack, then any variables allocated on
the stack are thread-specific.

• If threads are represented as objects, we can add an attribute to each
thread object.

• If threads have unique IDs, we can use the IDs as an index into an array
or hash table, and store per-thread data there.

In most programs, most variables are local unless declared otherwise, but in
this book most variables are shared, so we will assume that that variables are
shared unless they are explicitly declared local.

64 Classical synchronization problems

4.1 Producer-consumer problem 65

4.1.2 Producer-consumer solution

Here is the producer code from my solution.

Listing 4.4: Producer solution

1 event = waitForEvent()

2 mutex.wait()

3 buffer.add(event)

4 items.signal()

5 mutex.signal()

The producer doesn’t have to get exclusive access to the buffer until it gets
an event. Several threads can run waitForEvent concurrently.

The items semaphore keeps track of the number of items in the buffer. Each
time the producer adds an item, it signals items, incrementing it by one.

The consumer code is similar.

Listing 4.5: Consumer solution

1 items.wait()

2 mutex.wait()

3 event = buffer.get()

4 mutex.signal()

5 event.process()

Again, the buffer operation is protected by a mutex, but before the consumer
gets to it, it has to decrement items. If items is zero or negative, the consumer
blocks until a producer signals.

Although this solution is correct, there is an opportunity to make one small
improvement to its performance. Imagine that there is at least one consumer
in queue when a producer signals items. If the scheduler allows the consumer
to run, what happens next? It immediately blocks on the mutex that is (still)
held by the producer.

Blocking and waking up are moderately expensive operations; performing
them unnecessarily can impair the performance of a program. So it would
probably be better to rearrange the producer like this:

Listing 4.6: Improved producer solution

1 event = waitForEvent()

2 mutex.wait()

3 buffer.add(event)

4 mutex.signal()

5 items.signal()

Now we don’t bother unblocking a consumer until we know it can proceed
(except in the rare case that another producer beats it to the mutex).

There’s one other thing about this solution that might bother a stickler. In
the hint section I claimed that the items semaphore keeps track of the number

66 Classical synchronization problems

of items in queue. But looking at the consumer code, we see the possibility that
several consumers could decrement items before any of them gets the mutex
and removes an item from the buffer. At least for a little while, items would
be inaccurate.

We might try to address that by checking the buffer inside the mutex:

Listing 4.7: Broken consumer solution

1 mutex.wait()

2 items.wait()

3 event = buffer.get()

4 mutex.signal()

5 event.process()

This is a bad idea.
Puzzle: why?

4.1 Producer-consumer problem 67

4.1.3 Deadlock #4

If the consumer is running this code

Listing 4.8: Broken consumer solution

1 mutex.wait()

2 items.wait()

3 event = buffer.get()

4 mutex.signal()

5
6 event.process()

it can cause a deadlock. Imagine that the buffer is empty. A consumer arrives,
gets the mutex, and then blocks on items. When the producer arrives, it blocks
on mutex and the system comes to a grinding halt.

This is a common error in synchronization code: any time you wait for a
semaphore while holding a mutex, there is a danger of deadlock. When you are
checking a solution to a synchronization problem, you should check for this kind
of deadlock.

4.1.4 Producer-consumer with a finite buffer

In the example I described above, event-handling threads, the shared buffer is
usually infinite (more accurately, it is bounded by system resources like physical
memory and swap space).

In the kernel of the operating system, though, there are limits on available
space. Buffers for things like disk requests and network packets are usually fixed
size. In situations like these, we have an additional synchronization constraint:

• If a producer arrives when the buffer is full, it blocks until a consumer
removes an item.

Assume that we know the size of the buffer. Call it bufferSize. Since we
have a semaphore that is keeping track of the number of items, it is tempting
to write something like

Listing 4.9: Broken finite buffer solution

1 if items >= bufferSize:

2 block()

But we can’t. Remember that we can’t check the current value of a
semaphore; the only operations are wait and signal.

Puzzle: write producer-consumer code that handles the finite-buffer con-
straint.

68 Classical synchronization problems

4.1 Producer-consumer problem 69

4.1.5 Finite buffer producer-consumer hint

Add a second semaphore to keep track of the number of available spaces in the
buffer.

Listing 4.10: Finite-buffer producer-consumer initialization

1 mutex = Semaphore(1)

2 items = Semaphore(0)

3 spaces = Semaphore(buffer.size())

When a consumer removes an item it should signal spaces. When a producer
arrives it should decrement spaces, at which point it might block until the next
consumer signals.

70 Classical synchronization problems

4.2 Readers-writers problem 71

4.1.6 Finite buffer producer-consumer solution

Here is a solution.

Listing 4.11: Finite buffer consumer solution

1 items.wait()

2 mutex.wait()

3 event = buffer.get()

4 mutex.signal()

5 spaces.signal()

6
7 event.process()

The producer code is symmetric, in a way:

Listing 4.12: Finite buffer producer solution

1 event = waitForEvent()

2
3 spaces.wait()

4 mutex.wait()

5 buffer.add(event)

6 mutex.signal()

7 items.signal()

In order to avoid deadlock, producers and consumers check availability be-
fore getting the mutex. For best performance, they release the mutex before
signaling.

4.2 Readers-writers problem

The next classical problem, called the Reader-Writer Problem, pertains to any
situation where a data structure, database, or file system is read and modified
by concurrent threads. While the data structure is being written or modified
it is often necessary to bar other threads from reading, in order to prevent a
reader from interrupting a modification in progress and reading inconsistent or
invalid data.

As in the producer-consumer problem, the solution is asymmetric. Readers
and writers execute different code before entering the critical section. The
synchronization constraints are:

1. Any number of readers can be in the critical section simultaneously.

2. Writers must have exclusive access to the critical section.

In other words, a writer cannot enter the critical section while any other
thread (reader or writer) is there, and while the writer is there, no other thread
may enter.

72 Classical synchronization problems

The exclusion pattern here might be called categorical mutual exclusion.
A thread in the critical section does not necessarily exclude other threads, but
the presence of one category in the critical section excludes other categories.

Puzzle: Use semaphores to enforce these constraints, while allowing readers
and writers to access the data structure, and avoiding the possibility of deadlock.

4.2 Readers-writers problem 73

4.2.1 Readers-writers hint

Here is a set of variables that is sufficient to solve the problem.

Listing 4.13: Readers-writers initialization

1 int readers = 0

2 mutex = Semaphore(1)

3 roomEmpty = Semaphore(1)

The counter readers keeps track of how many readers are in the room.
mutex protects the shared counter.

roomEmpty is 1 if there are no threads (readers or writers) in the critical
section, and 0 otherwise. This demonstrates the naming convention I use for
semaphores that indicate a condition. In this convention, “wait” usually means
“wait for the condition to be true” and “signal” means “signal that the condition
is true”.

74 Classical synchronization problems

4.2 Readers-writers problem 75

4.2.2 Readers-writers solution

The code for writers is simple. If the critical section is empty, a writer may
enter, but entering has the effect of excluding all other threads:

Listing 4.14: Writers solution

1 roomEmpty.wait()

2 critical section for writers

3 roomEmpty.signal()

When the writer exits, can it be sure that the room is now empty? Yes,
because it knows that no other thread can have entered while it was there.

The code for readers is similar to the barrier code we saw in the previous
section. We keep track of the number of readers in the room so that we can
give a special assignment to the first to arrive and the last to leave.

The first reader that arrives has to wait for roomEmpty. If the room is empty,
then the reader proceeds and, at the same time, bars writers. Subsequent readers
can still enter because none of them will try to wait on roomEmpty.

If a reader arrives while there is a writer in the room, it waits on roomEmpty.
Since it holds the mutex, any subsequent readers queue on mutex.

Listing 4.15: Readers solution

1 mutex.wait()

2 readers += 1

3 if readers == 1:

4 roomEmpty.wait() # first in locks

5 mutex.signal()

6
7 # critical section for readers

8
9 mutex.wait()

10 readers -= 1

11 if readers == 0:

12 roomEmpty.signal() # last out unlocks

13 mutex.signal()

The code after the critical section is similar. The last reader to leave the
room turns out the lights—that is, it signals roomEmpty, possibly allowing a
waiting writer to enter.

Again, to demonstrate that this code is correct, it is useful to assert and
demonstrate a number of claims about how the program must behave. Can you
convince yourself that the following are true?

• Only one reader can queue waiting for roomEmpty, but several writers
might be queued.

• When a reader signals roomEmpty the room must be empty.

76 Classical synchronization problems

Patterns similar to this reader code are common: the first thread into a
section locks a semaphore (or queues) and the last one out unlocks it. In fact,
it is so common we should give it a name and wrap it up in an object.

The name of the pattern is Lightswitch, by analogy with the pattern where
the first person into a room turns on the light (locks the mutex) and the last one
out turns it off (unlocks the mutex). Here is a class definition for a Lightswitch:

Listing 4.16: Lightswitch definition

1 class Lightswitch:

2 def __init__(self):

3 self.counter = 0

4 self.mutex = Semaphore(1)

5
6 def lock(self, semaphore):

7 self.mutex.wait()

8 self.counter += 1

9 if self.counter == 1:

10 semaphore.wait()

11 self.mutex.signal()

12
13 def unlock(self, semaphore):

14 self.mutex.wait()

15 self.counter -= 1

16 if self.counter == 0:

17 semaphore.signal()

18 self.mutex.signal()

lock takes one parameter, a semaphore that it will check and possibly hold.
If the semaphore is locked, the calling thread blocks on semaphore and all
subsequent threads block on self.mutex. When the semaphore is unlocked,
the first waiting thread locks it again and all waiting threads proceed.

If the semaphore is initially unlocked, the first thread locks it and all subse-
quent threads proceed.

unlock has no effect until every thread that called lock also calls unlock.
When the last thread calls unlock, it unlocks the semaphore.

4.2 Readers-writers problem 77

Using these functions, we can rewrite the reader code more simply:

Listing 4.17: Readers-writers initialization

1 readLightswitch = Lightswitch()

2 roomEmpty = Semaphore(1)

readLightswitch is a shared Lightswitch object whose counter is initially
zero.

Listing 4.18: Readers-writers solution (reader)

1 readLightswitch.lock(roomEmpty)

2 # critical section

3 readLightswitch.unlock(roomEmpty)

The code for writers is unchanged.
It would also be possible to store a reference to roomEmpty as an attribute of

the Lightswitch, rather than pass it as a parameter to lock and unlock. This
alternative would be less error-prone, but I think it improves readability if each
invocation of lock and unlocks specifies the semaphore it operates on.

4.2.3 Starvation

In the previous solution, is there any danger of deadlock? In order for a deadlock
to occur, it must be possible for a thread to wait on a semaphore while holding
another, and thereby prevent itself from being signaled.

In this example, deadlock is not possible, but there is a related problem that
is almost as bad: it is possible for a writer to starve.

If a writer arrives while there are readers in the critical section, it might wait
in queue forever while readers come and go. As long as a new reader arrives
before the last of the current readers departs, there will always be at least one
reader in the room.

This situation is not a deadlock, because some threads are making progress,
but it is not exactly desirable. A program like this might work as long as the
load on the system is low, because then there are plenty of opportunities for the
writers. But as the load increases the behavior of the system would deteriorate
quickly (at least from the point of view of writers).

Puzzle: Extend this solution so that when a writer arrives, the existing
readers can finish, but no additional readers may enter.

78 Classical synchronization problems

4.2 Readers-writers problem 79

4.2.4 No-starve readers-writers hint

Here’s a hint. You can add a turnstile for the readers and allow writers to lock it.
The writers have to pass through the same turnstile, but they should check the
roomEmpty semaphore while they are inside the turnstile. If a writer gets stuck
in the turnstile it has the effect of forcing the readers to queue at the turnstile.
Then when the last reader leaves the critical section, we are guaranteed that at
least one writer enters next (before any of the queued readers can proceed).

Listing 4.19: No-starve readers-writers initialization

1 readSwitch = Lightswitch()

2 roomEmpty = Semaphore(1)

3 turnstile = Semaphore(1)

readSwitch keeps track of how many readers are in the room; it locks
roomEmpty when the first reader enters and unlocks it when the last reader
exits.

turnstile is a turnstile for readers and a mutex for writers.

80 Classical synchronization problems

4.2 Readers-writers problem 81

4.2.5 No-starve readers-writers solution

Here is the writer code:

Listing 4.20: No-starve writer solution

1 turnstile.wait()

2 roomEmpty.wait()

3 # critical section for writers

4 turnstile.signal()

5
6 roomEmpty.signal()

If a writer arrives while there are readers in the room, it will block at Line 2,
which means that the turnstile will be locked. This will bar readers from entering
while a writer is queued. Here is the reader code:

Listing 4.21: No-starve reader solution

1 turnstile.wait()

2 turnstile.signal()

3
4 readSwitch.lock(roomEmpty)

5 # critical section for readers

6 readSwitch.unlock(roomEmpty)

When the last reader leaves, it signals roomEmpty, unblocking the waiting
writer. The writer immediately enters its critical section, since none of the
waiting readers can pass the turnstile.

When the writer exits it signals turnstile, which unblocks a waiting thread,
which could be a reader or a writer. Thus, this solution guarantees that at least
one writer gets to proceed, but it is still possible for a reader to enter while
there are writers queued.

Depending on the application, it might be a good idea to give more priority
to writers. For example, if writers are making time-critical updates to a data
structure, it is best to minimize the number of readers that see the old data
before the writer has a chance to proceed.

In general, though, it is up to the scheduler, not the programmer, to choose
which waiting thread to unblock. Some schedulers use a first-in-first-out queue,
which means that threads are unblocked in the same order they queued. Other
schedulers choose at random, or according to a priority scheme based on the
properties of the waiting threads.

If your programming environment makes it possible to give some threads
priority over others, then that is a simple way to address this issue. If not, you
will have to find another way.

Puzzle: Write a solution to the readers-writers problem that gives priority
to writers. That is, once a writer arrives, no readers should be allowed to enter
until all writers have left the system.

82 Classical synchronization problems

4.2 Readers-writers problem 83

4.2.6 Writer-priority readers-writers hint

As usual, the hint is in the form of variables used in the solution.

Listing 4.22: Writer-priority readers-writers initialization

1 readSwitch = Lightswitch()

2 writeSwitch = Lightswitch()

3 mutex = Semaphore(1)

4 noReaders = Semaphore(1)

5 noWriters = Semaphore(1)

84 Classical synchronization problems

4.2 Readers-writers problem 85

4.2.7 Writer-priority readers-writers solution

Here is the reader code:

Listing 4.23: Writer-priority reader solution

1 noReaders.wait()

2 readSwitch.lock(noWriters)

3 noReaders.signal()

4
5 # critical section for readers

6
7 readSwitch.unlock(noWriters)

If a reader is in the critical section, it holds noWriters, but it doesn’t hold
noReaders. Thus if a writer arrives it can lock noReaders, which will cause
subsequent readers to queue.

When the last reader exits, it signals noWriters, allowing any queued writers
to proceed.

The writer code:

Listing 4.24: Writer-priority writer solution

1 writeSwitch.lock(noReaders)

2 noWriters.wait()

3 # critical section for writers

4 noWriters.signal()

5 writeSwitch.unlock(noReaders)

When a writer is in the critical section it holds both noReaders and
noWriters. This has the (relatively obvious) effect of insuring that there are no
readers and no other writers in the critical section. In addition, writeSwitch
has the (less obvious) effect of allowing multiple writers to queue on noWriters,
but keeping noReaders locked while they are there. Thus, many writers can
pass through the critical section without without ever signaling noReaders.
Only when the last writer exits can the readers enter.

Of course, a drawback of this solution is that now it is possible for readers

to starve (or at least face long delays). For some applications it might be better
to get obsolete data with predictable turnaround times.

86 Classical synchronization problems

4.3 No-starve mutex 87

4.3 No-starve mutex

In the previous section, we addressed what I’ll call categorical starvation,
in which one category of threads (readers) allows another category (writers) to
starve. At a more basic level, we have to address the issue of thread starvation,
which is the possibility that one thread might wait indefinitely while others
proceed.

For most concurrent applications, starvation is unacceptable, so we enforce
the requirement of bounded waiting, which means that the time a thread
waits on a semaphore (or anywhere else, for that matter) has to be provably
finite.

In part, starvation is the responsibility of the scheduler. Whenever multiple
threads are ready to run, the scheduler decides which one or, on a parallel
processor, which set of threads gets to run. If a thread is never scheduled, then
it will starve, no matter what we do with semaphores.

So in order to say anything about starvation, we have to start with some
assumptions about the scheduler. If we are willing to make a strong assumption,
we can assume that the scheduler uses one of the many algorithms that can
be proven to enforce bounded waiting. If we don’t know what algorithm the
scheduler uses, then we can get by with a weaker assumption:

Property 1: if there is only one thread that is ready to run, the
scheduler has to let it run.

If we can assume Property 1, then we can build a system that is provably
free of starvation. For example, if there are a finite number of threads, then any
program that contains a barrier cannot starve, since eventually all threads but
one will be waiting at the barrier, at which point the last thread has to run.

In general, though, it is non-trivial to write programs that are free from
starvation unless we make the stronger assumption:

Property 2: if a thread is ready to run, then the time it waits until
it runs is bounded.

In our discussion so far, we have been assuming Property 2 implicitly, and
we will continue to. On the other hand, you should know that many existing
systems use schedulers that do not guarantee this property strictly.

Even with Property 2, starvation rears its ugly head again when we introduce
semaphores. In the definition of a semaphore, we said that when one thread
executes signal, one of the waiting threads gets woken up. But we never
said which one. In order to say anything about starvation, we have to make
assumptions about the behavior of semaphores.

The weakest assumption that makes it possible to avoid starvation is:

Property 3: if there are threads waiting on a semaphore when a
thread executes signal, then one of the waiting threads has to be
woken.

88 Classical synchronization problems

This requirement may seem obvious, but it is not trivial. It has the effect
of barring one form of problematic behavior, which is a thread that signals a
semaphore while other threads are waiting, and then keeps running, waits on
the same semaphore, and gets its own signal! If that were possible, there would
be nothing we could do to prevent starvation.

With Property 3, it becomes possible to avoid starvation, but even for some-
thing as simple as a mutex, it is not easy. For example, imagine three threads
running the following code:

Listing 4.25: Mutex loop

1 while True:

2 mutex.wait()

3 # critical section

4 mutex.signal()

The while statement is an infinite loop; in other words, as soon as a thread
leaves the critical section, it loops to the top and tries to get the mutex again.

Imagine that Thread A gets the mutex and Thread B and C wait. When A
leaves, B enters, but before B leaves, A loops around and joins C in the queue.
When B leaves, there is no guarantee that C goes next. In fact, if A goes next,
and B joins the queue, then we are back to the starting position, and we can
repeat the cycle forever. C starves.

The existence of this pattern proves that the mutex is vulnerable to star-
vation. One solution to this problem is to change the implementation of the
semaphore so that it guarantees a stronger property:

Property 4: if a thread is waiting at a semaphore, then the number
of threads that will be woken before it is bounded.

For example, if the semaphore maintains a first-in-first-out queue, then Prop-
erty 4 holds because when a thread joins the queue, the number of threads ahead
of it is finite, and no threads that arrive later can go ahead of it.

A semaphore that has Property 4 is sometimes called a strong semaphore;
one that has only Property 3 is called a weak semaphore. We have shown that
with weak semaphores, the simple mutex solution is vulnerable to starvation.
In fact, Dijkstra conjectured that it is not possible to solve the mutex problem
without starvation using only weak semaphores.

In 1979, J.M. Morris refuted the conjecture by solving the problem, assuming
that the number of threads is finite [6]. If you are interested in this problem,
the next section presents his solution. If this is not your idea of fun, you can
just assume that semaphores have Property 4 and go on to Section 4.4.

Puzzle: write a solution to the mutual exclusion problem using weak
semaphores. Your solution should provide the following guarantee: once a
thread arrives and attempts to enter the mutex, there is a bound on the number
of threads that can proceed ahead of it. You can assume that the total number
of threads is finite.

4.3 No-starve mutex 89

4.3.1 No-starve mutex hint

Morris’s solution is similar to the reusable barrier in Section 3.6. It uses two
turnstiles to create two waiting rooms before the critical section. The mechanism
works in two phases. During the first phase, the first turnstile is open and the
second is closed, so threads accumulate in the second room. During the second
phase, the first turnstile is closed, so no new threads can enter, and the second
is open, so the existing threads can get to the critical section.

Although there may be an arbitrary number of threads in the waiting room,
each one is guaranteed to enter the critical section before any future arrivals.

Here are the variables I used in the solution (I changed the names Morris
used, trying to make the structure clearer).

Listing 4.26: No-starve mutex hint

1 room1 = room2 = 0

2 mutex = Semaphore(1)

3 t1 = Semaphore(1)

4 t2 = Semaphore(0)

room1 and room2 keep track of how many threads are in the waiting rooms.
mutex helps protect the counters. t1 and t2 are the turnstiles.

90 Classical synchronization problems

4.3 No-starve mutex 91

4.3.2 No-starve mutex solution

Here is Morris’s solution.

Listing 4.27: Morris’s algorithm

1 mutex.wait()

2 room1 += 1

3 mutex.signal()

4
5 t1.wait()

6 room2 += 1

7 mutex.wait()

8 room1 -= 1

9
10 if room1 == 0:

11 mutex.signal()

12 t2.signal()

13 else:

14 mutex.signal()

15 t1.signal()

16
17 t2.wait()

18 room2 -= 1

19
20 # critical section

21
22 if room2 == 0:

23 t1.signal()

24 else:

25 t2.signal()

Before entering the critical section, a thread has to pass two turnstiles. These
turnstiles divide the code into three “rooms”. Room 1 is Lines 2– 8. Room 2
is Lines 6– 18. Room 3 is the rest. Speaking loosely, the counters room1 and
room2 keep track of the number of threads in each room.

The counter room1 is protected by mutex in the usual way, but guard duty
for room2 is split between t1 and t2. Similarly, responsibility for exclusive
access to the critical section involves both t1 and t2. In order to enter the
critical section, a thread has to hold one or the other, but not both. Then,
before exiting, it gives up whichever one it has.

To understand how this solution works, start by following a single thread all
the way through. When it gets to Line 8, it holds mutex and t1. Once it checks
room1, which is 0, it can release mutex and then open the second turnstile, t2.
As a result, it doesn’t wait at Line 17 and it can safely decrement room2 and
enter the critical section, because any following threads have to be queued on
t1. Leaving the critical section, it finds room2 = 0 and releases t1, which brings
us back to the starting state.

92 Classical synchronization problems

Of course, the situation is more interesting if there is more than one thread.
In that case, it is possible that when the lead thread gets to Line 8, other threads
have entered the waiting room and queued on t1. Since room1 > 0, the lead
thread leaves t2 locked and instead signals t1 to allow a following thread to
enter Room 2. Since t2 is still locked, neither thread can enter Room 3.

Eventually (because there are a finite number of threads), a thread will get
to Line 8 before another thread enters Room 1, in which case it will open t2,
allowing any threads there to move into Room 3. The thread that opens t2

continues to hold t1, so if any of the lead threads loop around, they will block
at Line 5.

As each thread leaves Room 3, it signals t2, allowing another thread to leave
Room 2. When the last thread leaves Room 2, it leaves t2 locked and opens
t1, which brings us back to the starting state.

To see how this solution avoids starvation, it helps to think of its operation
in two phases. In the first phase, threads check into Room 1, increment room1,
and then cascade into Room 2 one at a time. The only way to keep a t2 locked
is to maintain a procession of threads through Room 1. Because there are a
finite number of threads, the procession has to end eventually, at which point
t1 stays locked and t2 opens.

In the second phase, threads cascade into Room 3. Because there are a finite
number of threads in Room 2, and no new threads can enter, eventually the last
thread leaves, at which point t2 locks and t1 opens.

At the end of the first phase, we know that there are no threads waiting
at t1, because room1 = 0. And at the end of the second phase, we know that
there are no threads waiting at t2 because room2 = 0.

With a finite number of threads, starvation is only possible if one thread
can loop around and overtake another. But the two-turnstile mechanism makes
that impossible, so starvation is impossible.

The moral of this story is that with weak semaphores, it is very difficult to
prevent starvation, even for the simplest synchronization problems. In the rest
of this book, when we discuss starvation, we will assume strong semaphores.

4.4 Dining philosophers 93

4.4 Dining philosophers

The Dining Philosophers Problem was proposed by Dijkstra in 1965, when di-
nosaurs ruled the earth [3]. It appears in a number of variations, but the stan-
dard features are a table with five plates, five forks (or chopsticks) and a big
bowl of spaghetti. Five philosophers, who represent interacting threads, come
to the table and execute the following loop:

Listing 4.28: Basic philosopher loop

1 while True:

2 think()

3 get_forks()

4 eat()

5 put_forks()

The forks represent resources that the threads have to hold exclusively in
order to make progress. The thing that makes the problem interesting, unreal-
istic, and unsanitary, is that the philosophers need two forks to eat, so a hungry
philosopher might have to wait for a neighbor to put down a fork.

Assume that the philosophers have a local variable i that identifies each
philosopher with a value in (0..4). Similarly, the forks are numbered from 0 to
4, so that Philosopher i has fork i on the right and fork i + 1 on the left. Here
is a diagram of the situation:

2

1

0

4

3
2

3

0 1

4

Assuming that the philosophers know how to think and eat, our job is to
write a version of get forks and put forks that satisfies the following con-
straints:

• Only one philosopher can hold a fork at a time.

• It must be impossible for a deadlock to occur.

• It must be impossible for a philosopher to starve waiting for a fork.

• It must be possible for more than one philosopher to eat at the same time.

94 Classical synchronization problems

The last requirement is one way of saying that the solution should be efficient;
that is, it should allow the maximum amount of concurrency.

We make no assumption about how long eat and think take, except that
eat has to terminate eventually. Otherwise, the third constraint is impossible—
if a philosopher keeps one of the forks forever, nothing can prevent the neighbors
from starving.

To make it easy for philosophers to refer to their forks, we can use the
functions left and right:

Listing 4.29: Which fork?

1 def left(i): return i

2 def right(i): return (i + 1) % 5

The % operator wraps around when it gets to 5, so (4 + 1) % 5 = 0.
Since we have to enforce exclusive access to the forks, it is natural to use a

list of Semaphores, one for each fork. Initially, all the forks are available.

Listing 4.30: Variables for dining philosophers

1 forks = [Semaphore(1) for i in range(5)]

This notation for initializing a list might be unfamiliar to readers who don’t
use Python. The range function returns a list with 5 elements; for each element
of this list, Python creates a Semaphore with initial value 1 and assembles the
result in a list named forks.

Here is an initial attempt at get fork and put fork:

Listing 4.31: Dining philosophers non-solution

1 def get_forks(i):

2 fork[right(i)].wait()

3 fork[left(i)].wait()

4
5 def put_forks(i):

6 fork[right(i)].signal()

7 fork[left(i)].signal()

It’s clear that this solution satisfies the first constraint, but we can be pretty
sure it doesn’t satisfy the other two, because if it did, this wouldn’t be an
interesting problem and you would be reading Chapter 5.

Puzzle: what’s wrong?

4.4 Dining philosophers 95

4.4.1 Deadlock #5

The problem is that the table is round. As a result, each philosopher can pick
up a fork and then wait forever for the other fork. Deadlock!

Puzzle: write a solution to this problem that prevents deadlock.
Hint: one way to avoid deadlock is to think about the conditions that make

deadlock possible and then change one of those conditions. In this case, the
deadlock is fairly fragile—a very small change breaks it.

96 Classical synchronization problems

4.4 Dining philosophers 97

4.4.2 Dining philosophers hint #1

If only four philosophers are allowed at the time at a time, deadlock is impos-
sible.

First, convince yourself that this claim is true, then write code that limits
the number of philosophers at the table.

98 Classical synchronization problems

4.4 Dining philosophers 99

4.4.3 Dining philosophers solution #1

If there are only four philosophers at the table, then in the worst case each one
picks up a fork. Even then, there is a fork left on the table, and that fork has
two neighbors, each of which is holding another fork. Therefore, either of these
neighbors can pick up the remaining fork and eat.

We can control the number of philosophers at the table with a Multiplex
named footman that is initialized to 4. Then the solution looks like this:

Listing 4.32: Dining philosophers solution #1

1 def get_forks(i):

2 footman.wait()

3 fork[right(i)].wait()

4 fork[left(i)].wait()

5
6 def put_forks(i):

7 fork[right(i)].signal()

8 fork[left(i)].signal()

9 footman.signal()

In addition to avoiding deadlock, this solution also guarantees that no
philosopher starves. Imagine that you are sitting at the table and both of your
neighbors are eating. You are blocked waiting for your right fork. Eventually
your right neighbor will put it down, because eat can’t run forever. Since you
are the only thread waiting for that fork, you will necessarily get it next. By a
similar argument, you cannot starve waiting for your left fork.

Therefore, the time a philosopher can spend at the table is bounded. That
implies that the wait time to get into the room is also bounded, as long as
footman has Property 4 (see Section 4.3).

This solution shows that by controlling the number of philosophers, we can
avoid deadlock. Another way to avoid deadlock is to change the order in which
the philosophers pick up forks. In the original non-solution, the philosophers
are “righties”; that is, they pick up the right fork first. But what happens if
Philosopher 0 is a leftie?

Puzzle: prove that if at least one Philosopher is a leftie, then deadlock is not
possible.

Hint: deadlock can only occur when all 5 philosophers are holding one fork
and waiting, forever, for the other. Otherwise, one of them could get both forks,
eat, and leave.

The proof works by contradiction. First, assume that deadlock is possible.
Then choose one of the supposedly deadlocked philosophers. If she’s a leftie,
you can prove that the philosophers are all lefties, which is a contradiction.
Similarly, if she’s a rightie, you can prove that they are all righties. Either way
you get a contradiction; therefore, deadlock is not possible.

100 Classical synchronization problems

4.4 Dining philosophers 101

4.4.4 Dining philosopher’s solution #2

In the asymmetric solution to the Dining philosophers problem, there has to be
at least one leftie and at least one rightie at the table. In that case, deadlock is
impossible. The previous hint outlines the proof. Here are the details.

Again, if deadlock is possible, it occurs when all 5 philosophers are holding
one fork and waiting for the other. If we assume that Philosopher j is a leftie,
then she must be holding her left fork and waiting for her right. Therefore
her neighbor to the right, Philosopher k, must be holding his left fork and
waiting for his right neighbor; in other words, Philosopher k must be a leftie.
Repeating the same argument, we can prove that the philosophers are all lefties,
which contradicts the original claim that there is at least one rightie. Therefore
deadlock is not possible.

The same argument we used for the previous solution also proves that star-
vation is impossible for this solution.

102 Classical synchronization problems

4.4 Dining philosophers 103

4.4.5 Tanenbaum’s solution

There is nothing wrong with the previous solutions, but just for completeness,
let’s look at some alternatives. One of the best known is the one that appears
in Tanenbaum’s popular operating systems textbook [12]. For each philosopher
there is a state variable that indicates whether the philosopher is thinking,
eating, or waiting to eat (“hungry”) and a semaphore that indicates whether
the philosopher can start eating. Here are the variables:

Listing 4.33: Variables for Tanenbaum’s solution

1 state = [’thinking’] * 5

2 sem = [Semaphore(0) for i in range(5)]

3 mutex = Semaphore(1)

The initial value of state is a list of 5 copies of ’thinking’. sem is a list of
5 semaphores with the initial value 0. Here is the code:

Listing 4.34: Tanenbaum’s solution

1 def get_fork(i):

2 mutex.wait()

3 state[i] = hungry

4 test(i)

5 mutex.signal()

6 sem[i].wait()

7
8 def put_fork(i):

9 mutex.wait()

10 state[i] = thinking

11 test(right(i))

12 test(left(i))

13 mutex.signal()

14
15 def test(i):

16 if state[i] == hungry and

17 state (left (i)) != eating and

18 state (right (i)) != eating:

19 state[i] = eating

20 sem[i].signal()

The test function checks whether the ith philosopher can start eating, which
he can if he is hungry and neither of his neighbors are eating. If so, the test

signals semaphore i.
There are two ways a philosopher gets to eat. In the first case, the philoso-

pher executes get forks, finds the forks available, and proceeds immediately.
In the second case, one of the neighbors is eating and the philosopher blocks
on its own semaphore. Eventually, one of the neighbors will finish, at which
point it executes test on both of its neighbors. It is possible that both tests

104 Classical synchronization problems

will succeed, in which case the neighbors can run concurrently. The order of the
two tests doesn’t matter.

In order to access state or invoke test, a thread has to hold mutex. Thus,
the operation of checking and updating the array is atomic. Since a philosopher
can only proceed when we know both forks are available, exclusive access to the
forks is guaranteed.

No deadlock is possible, because the only semaphore that is accessed by
more than one philosopher is mutex, and no thread executes wait while holding
mutex.

But again, starvation is tricky.
Puzzle: Either convince yourself that Tanenbaum’s solution prevents star-

vation or find a repeating pattern that allows a thread to starve while other
threads make progress.

4.4 Dining philosophers 105

4.4.6 Starving Tanenbaums

Unfortunately, this solution is not starvation-free. Gingras demonstrated that
there are repeating patterns that allow a thread to wait forever while other
threads come and go [4].

Imagine that we are trying to starve Philosopher 0. Initially, 2 and 4 are
at the table and 1 and 3 are hungry. Imagine that 2 gets up and 1 sit downs;
then 4 gets up and 3 sits down. Now we are in the mirror image of the starting
position.

If 3 gets up and 4 sits down, and then 1 gets up and 2 sits down, we are
back where we started. We could repeat the cycle indefinitely and Philosopher
0 would starve.

So, Tanenbaum’s solution doesn’t satisfy all the requirements.

106 Classical synchronization problems

4.5 Cigarette smokers problem 107

4.5 Cigarette smokers problem

The cigarette smokers problem problem was originally presented by Suhas Patil
[8], who claimed that it cannot be solved with semaphores. That claim comes
with some qualifications, but in any case the problem is interesting and chal-
lenging.

Four threads are involved: an agent and three smokers. The smokers loop
forever, first waiting for ingredients, then making and smoking cigarettes. The
ingredients are tobacco, paper, and matches.

We assume that the agent has an infinite supply of all three ingredients, and
each smoker has an infinite supply of one of the ingredients; that is, one smoker
has matches, another has paper, and the third has tobacco.

The agent repeatedly chooses two different ingredients at random and makes
them available to the smokers. Depending on which ingredients are chosen, the
smoker with the complementary ingredient should pick up both resources and
proceed.

For example, if the agent puts out tobacco and paper, the smoker with the
matches should pick up both ingredients, make a cigarette, and then signal the
agent.

To explain the premise, the agent represents an operating system that allo-
cates resources, and the smokers represent applications that need resources. The
problem is to make sure that if resources are available that would allow one more
applications to proceed, those applications should be woken up. Conversely, we
want to avoid waking an application if it cannot proceed.

Based on this premise, there are three versions of this problem that often
appear in textbooks:

The impossible version: Patil’s version imposes restrictions on the solution.
First, you are not allowed to modify the agent code. If the agent represents
an operating system, it makes sense to assume that you don’t want to
modify it every time a new application comes along. The second restriction
is that you can’t use conditional statements or an array of semaphores.
With these constraints, the problem cannot be solved, but as Parnas points
out, the second restriction is pretty artificial [7]. With constraints like
these, a lot of problems become unsolvable.

The interesting version: This version keeps the first restriction—you can’t
change the agent code—but it drops the others.

The trivial version: In some textbooks, the problem specifies that the agent
should signal the smoker that should go next, according to the ingredients
that are available. This version of the problem is uninteresting because
it makes the whole premise, the ingredients and the cigarettes, irrelevant.
Also, as a practical matter, it is probably not a good idea to require the
agent to know about the other threads and what they are waiting for.
Finally, this version of the problem is just too easy.

108 Classical synchronization problems

Naturally, we will focus on the interesting version. To complete the state-
ment of the problem, we need to specify the agent code. The agent uses the
following semaphores:

Listing 4.35: Agent semaphores

1 agentSem = Semaphore(1)

2 tobacco = Semaphore(0)

3 paper = Semaphore(0)

4 match = Semaphore(0)

The agent is actually made up of three concurrent threads, Agent A, Agent
B and Agent C. Each waits on agentSem; each time agentSem is signaled, one
of the Agents wakes up and provides ingredients by signaling two semaphores.

Listing 4.36: Agent A code

1 agentSem.wait()

2 tobacco.signal()

3 paper.signal()

Listing 4.37: Agent B code

1 agentSem.wait()

2 paper.signal()

3 match.signal()

Listing 4.38: Agent C code

1 agentSem.wait()

2 tobacco.signal()

3 match.signal()

This problem is hard because the natural solution does not work. It is
tempting to write something like:

Listing 4.39: Smoker with matches

1 tobacco.wait()

2 paper.wait()

3 agentSem.signal()

Listing 4.40: Smoker with tobacco

1 paper.wait()

2 match.wait()

3 agentSem.signal()

4.5 Cigarette smokers problem 109

Listing 4.41: Smoker with paper

1 tobacco.wait()

2 match.wait()

3 agentSem.signal()

What’s wrong with this solution?

110 Classical synchronization problems

4.5 Cigarette smokers problem 111

4.5.1 Deadlock #6

The problem with the previous solution is the possibility of deadlock. Imagine
that the agent puts out tobacco and paper. Since the smoker with matches is
waiting on tobacco, it might be unblocked. But the smoker with tobacco is
waiting on paper, so it is possible (even likely) that it will also be unblocked.
Then the first thread will block on paper and the second will block on match.
Deadlock!

112 Classical synchronization problems

4.5 Cigarette smokers problem 113

4.5.2 Smokers problem hint

The solution proposed by Parnas uses three helper threads called “pushers” that
respond to the signals from the agent, keep track of the available ingredients,
and signal the appropriate smoker.

The additional variables and semaphores are

Listing 4.42: Smokers problem hint

1 isTobacco = isPaper = isMatch = False

2 tobaccoSem = Semaphore(0)

3 paperSem = Semaphore(0)

4 matchSem = Semaphore(0)

The boolean variables indicate whether or not an ingredient is on the table.
The pushers use tobaccoSem to signal the smoker with tobacco, and the other
semaphores likewise.

114 Classical synchronization problems

4.5 Cigarette smokers problem 115

4.5.3 Smoker problem solution

Here is the code for one of the pushers:

Listing 4.43: Pusher A

1 tobacco.wait()

2 mutex.wait()

3 if isPaper:

4 isPaper = False

5 matchSem.signal()

6 elseif isMatch:

7 isMatch = False

8 paperSem.signal()

9 else:

10 isTobacco = True

11 mutex.signal()

This pusher wakes up any time there is tobacco on the table. If it finds
isPaper true, it knows that Pusher B has already run, so it can signal the
smoker with matches. Similarly, if it finds a match on the table, it can signal
the smoker with paper.

But if Pusher A runs first, then it will find both isPaper and isMatch false.
It cannot signal any of the smokers, so it sets isTobacco.

The other pushers are similar. Since the pushers do all the real work, the
smoker code is trivial:

Listing 4.44: Smoker with tobacco

1 tobaccoSem.wait()

2 makeCigarette()

3 agentSem.signal()

4 smoke()

Parnas presents a similar solution that assembles the boolean variables, bit-
wise, into an integer, and then uses the integer as an index into an array of
semaphores. That way he can avoid using conditionals (one of the artificial
constraints). The resulting code is a bit more concise, but its function is not as
obvious.

4.5.4 Generalized Smokers Problem

Parnas suggested that the smokers problem becomes more difficult if we modify
the agent, eliminating the requirement that the agent wait after putting out
ingredients. In this case, there might be multiple instances of an ingredient on
the table.

Puzzle: modify the previous solution to deal with this variation.

116 Classical synchronization problems

4.5 Cigarette smokers problem 117

4.5.5 Generalized Smokers Problem Hint

If the agents don’t wait for the smokers, ingredients might accumulate on the
table. Instead of using boolean values to keep track of ingredients, we need
integers to count them.

Listing 4.45: Generalized Smokers problem hint

1 numTobacco = numPaper = numMatch = 1

118 Classical synchronization problems

4.5 Cigarette smokers problem 119

4.5.6 Generalized Smokers Problem Solution

Here is the modified code for Pusher A:

Listing 4.46: Pusher A

1 tobacco.wait()

2 mutex.wait()

3 if numPaper:

4 numPaper -= 1

5 matchSem.signal()

6 elseif numMatch:

7 numMatch -= 1

8 paperSem.signal()

9 else:

10 numTobacco += 1

11 mutex.signal()

One way to visualize this problem is to imagine that when an Agent runs,
it creates two pushers, gives each of them one ingredient, and puts them in a
room with all the other pushers. Because of the mutex, the pushers file into
a room where there are three sleeping smokers and a table. One at a time,
each pusher enters the room and checks the ingredients on the table. If he can
assemble a complete set of ingredients, he takes them off the table and wakes the
corresponding smoker. If not, he leaves his ingredient on the table and leaves
without waking anyone.

This is an example of a pattern we will see several times, which I call a
scoreboard. The variables numPaper, numTobacco and numMatch keep track of
the state of the system. As each thread files through the mutex, it checks the
state as if looking at the scoreboard, and reacts accordingly.

120 Classical synchronization problems

Chapter 5

Less classical

synchronization problems

5.1 The dining savages problem

This problem is from Andrews’s Concurrent Programming [1].

A tribe of savages eats communal dinners from a large pot that
can hold M servings of stewed missionary1. When a savage wants to
eat, he helps himself from the pot, unless it is empty. If the pot is
empty, the savage wakes up the cook and then waits until the cook
has refilled the pot.

Any number of savage threads run the following code:

Listing 5.1: Unsynchronized savage code

1 while True:

2 getServingFromPot()

3 eat()

And one cook thread runs this code:

Listing 5.2: Unsynchronized cook code

1 while True:

2 putServingsInPot(M)

The synchronization constraints are:

1This problem is based on a cartoonish representation of the history of Western mis-
sionaries among hunter-gatherer societies. Some humor is intended by the allusion to the
Dining Philosophers problem, but the representation of “savages” here isn’t intended to be
any more realistic than the previous representation of philosophers. If you are interested in
hunter-gatherer societies, I recommend Jared Diamond’s Guns, Germs and Steel, Napoleon
Chagnon’s The Yanomamo and Redmond O’Hanlon’s In Trouble Again

122 Less classical synchronization problems

• Savages cannot invoke getServingFromPot if the pot is empty.

• The cook can invoke putServingsInPot only if the pot is empty.

Puzzle: Add code for the savages and the cook that satisfies the synchro-
nization constraints.

5.1 The dining savages problem 123

5.1.1 Dining Savages hint

It is tempting to use a semaphore to keep track of the number of servings, as
in the producer-consumer problem. But in order to signal the cook when the
pot is empty, a thread would have to know before decrementing the semaphore
whether it would have to wait, and we just can’t do that.

An alternative is to use a scoreboard to keep track of the number of servings.
If a savage finds the counter at zero, he wakes the cook and waits for a signal
that the pot is full. Here are the variables I used:

Listing 5.3: Dining Savages hint

1 servings = 0

2 mutex = Semaphore(1)

3 emptyPot = Semaphore(0)

4 fullPot = Semaphore(0)

Not surprisingly, emptyPot indicates that the pot is empty and fullPot

indicates that the pot is full.

124 Less classical synchronization problems

5.1 The dining savages problem 125

5.1.2 Dining Savages solution

My solution is a combination of the scoreboard pattern with a rendezvous. Here
is the code for the cook:

Listing 5.4: Dining Savages solution (cook)

1 while True:

2 emptyPot.wait()

3 putServingsInPot(M)

4 fullPot.signal()

The code for the savages is only a little more complicated. As each savage
passes through the mutex, he checks the pot. If it is empty, he signals the cook
and waits. Otherwise, he decrements servings and get a serving from the pot.

Listing 5.5: Dining Savages solution (savage)

1 while True:

2 mutex.wait()

3 if servings == 0:

4 emptyPot.signal()

5 fullPot.wait()

6 servings = M

7 servings -= 1

8 getServingFromPot()

9 mutex.signal()

10
11 eat()

It might seem odd that the savage, rather than the cook, sets servings =

M. That’s not really necessary; when the cook runs putServingsInPot, we know
that the savage that holds the mutex is waiting on fullPot. So the cook could
access servings safely. But in this case, I decided to let the savage do it so
that it is clear from looking at the code that all accesses to servings are inside
the mutex.

This solution is deadlock-free. The only opportunity for deadlock comes
when the savage that holds mutex waits for fullPot. While he is waiting,
other savages are queued on mutex. But eventually the cook will run and signal
fullPot, which allows the waiting savage to resume and release the mutex.

Does this solution assume that the pot is thread-safe, or does it guarantee
that putServingsInPot and getServingFromPot are executed exclusively?

126 Less classical synchronization problems

5.2 The barbershop problem 127

5.2 The barbershop problem

The original barbershop problem was proposed by Dijkstra. A variation of it
appears in Silberschatz and Galvin’s Operating Systems Concepts [10].

A barbershop consists of a waiting room with n chairs, and the
barber room containing the barber chair. If there are no customers
to be served, the barber goes to sleep. If a customer enters the
barbershop and all chairs are occupied, then the customer leaves
the shop. If the barber is busy, but chairs are available, then the
customer sits in one of the free chairs. If the barber is asleep, the
customer wakes up the barber. Write a program to coordinate the
barber and the customers.

To make the problem a little more concrete, I added the following informa-
tion:

• Customer threads should invoke a function named getHairCut.

• If a customer thread arrives when the shop is full, it can invoke balk,
which does not return.

• Barber threads should invoke cutHair.

• When the barber invokes cutHair there should be exactly one thread
invoking getHairCut concurrently.

128 Less classical synchronization problems

5.2 The barbershop problem 129

5.2.1 Barbershop hint

Listing 5.6: Barbershop hint

1 customers = 0

2 mutex = Semaphore(1)

3 customer = Semaphore(0)

4 barber = Semaphore(0)

customers counts the number of customers in the shop; it is protected by
mutex.

The barber waits on customer until a customer enters the shop, then the
customer waits on barber until the barber signals him to take a seat.

130 Less classical synchronization problems

5.2 The barbershop problem 131

5.2.2 Barbershop solution

Again, my solution combines a scoreboard and a rendezvous. Here is the code
for customers:

Listing 5.7: Barbershop solution (customer)

1 mutex.wait()

2 if customers == n+1:

3 mutex.signal()

4 balk()

5 customers += 1

6 mutex.signal()

7
8 customer.signal()

9 barber.wait()

10 getHairCut()

11
12 mutex.wait()

13 customers -= 1

14 mutex.signal()

If there are n customers in the waiting room and one in the barber chair,
then the shop is full and any customers that arrive immediately invoke balk.
Otherwise each customer signals customer and waits on barber.

Here is the code for barbers:

Listing 5.8: Barbershop solution (barber)

1 customer.wait()

2 barber.signal()

3 cutHair()

Each time a customer signals, the barber wakes, signals barber, and gives
one hair cut. If another customer arrives while the barber is busy, then on the
next iteration the barber will pass the customer semaphore without sleeping.

The names for customer and barber are based on the naming convention for
a rendezvous, so customer.wait() means “wait for a customer,” not “customers
wait here.”

132 Less classical synchronization problems

5.3 Hilzer’s Barbershop problem 133

5.3 Hilzer’s Barbershop problem

William Stallings [11] presents a more complicated version of the barbershop
problem, which he attributes to Ralph Hilzer at the California State University
at Chico.

Our barbershop has three chairs, three barbers, and a waiting
area that can accommodate four customers on a sofa and that has
standing room for additional customers. Fire codes limit the total
number of customers in the shop to 20.

A customer will not enter the shop if it is filled to capacity with
other customers. Once inside, the customer takes a seat on the sofa
or stands if the sofa is filled. When a barber is free, the customer
that has been on the sofa the longest is served and, if there are any
standing customers, the one that has been in the shop the longest
takes a seat on the sofa. When a customer’s haircut is finished,
any barber can accept payment, but because there is only one cash
register, payment is accepted for one customer at a time. The bar-
bers divide their time among cutting hair, accepting payment, and
sleeping in their chair waiting for a customer.

In other words, the following synchronization constraints apply:

• Customers invoke the following functions in order: enterShop, sitOnSofa,
sitInBarberChair, pay, exitShop.

• Barbers invoke cutHair and acceptPayment.

• Customers cannot invoke enterShop if the shop is at capacity.

• If the sofa is full, an arriving customer cannot invoke sitOnSofa until one
of the customers on the sofa invokes sitInBarberChair.

• If all three barber chairs are busy, an arriving customer cannot invoke
sitInBarberChair until one of the customers in a chair invokes pay.

• The customer has to pay before the barber can acceptPayment.

• The barber must acceptPayment before the customer can exitShop.

One difficulty with this problem is that in each waiting area (the sofa and the
standing room), customers have to be served in first-in-first-out (FIFO) order.
If our implementation of semaphores happens to enforce FIFO queueing, then
we can use nested multiplexes to create the waiting areas. Otherwise we can
use Fifo objects as defined in Section 3.8.

Puzzle: Write code that enforces the synchronization constraints for Hilzer’s
barbershop.

134 Less classical synchronization problems

5.3.1 Hilzer’s barbershop hint

Here are the variables I used in my solution:

Listing 5.9: Hilzer’s barbershop hint

1 customers = 0

2 mutex = Semaphore(1)

3 standingRoom = Fifo(16)

4 sofa = Fifo(4)

5 chair = Semaphore(3)

6 barber = Semaphore(0)

7 customer = Semaphore(0)

8 cash = Semaphore(0)

9 receipt = Semaphore(0)

mutex protects customers, which keeps track of the number of customers
in the shop so that if a thread arrives when the shop is full, it can exit.
standingRoom and sofa are Fifos that represent the waiting areas. chair is a
multiplex that limits the number of customers in the seating area.

The other semaphores are used for the rendezvous between the barber and
the customers. The customer signals barber and then wait on customer. Then
the customer signals cash and waits on receipt.

5.3.2 Hilzer’s barbershop solution

There is nothing here that is new; it’s just a combination of patterns we have
seen before.

Listing 5.10: Hilzer’s barbershop solution (customer)

1 mutex.wait()

2 if customers == 20:

3 mutex.signal()

4 exitShop()

5 customers += 1

6 mutex.signal()

7
8 standingRoom.wait()

9 enterShop()

10
11 sofa.wait()

12 sitOnSofa()

13 standingRoom.signal()

14
15 chair.wait()

16 sitInBarberChair()

17 sofa.signal()

18

5.3 Hilzer’s Barbershop problem 135

19 customer.signal()

20 barber.wait()

21 getHairCut()

22
23 pay()

24 cash.signal()

25 receipt.wait()

26
27 mutex.wait()

28 customers -= 1

29 mutex.signal()

30
31 exitShop()

The mechanism that counts the number of customers and allows threads to
exit is the same as in the previous problem.

In order to maintain FIFO order for the whole system, threads cascade from
standingRoom to sofa to chair; as each thread moves to the next stage, it
signals the previous stage.

The exchange with the barber is basically two consecutive rendezvouses2

The code for the barber is self-explanatory:

Listing 5.11: Hilzer’s barbershop solution (barber)

1 customer.wait()

2 barber.signal()

3 cutHair()

4
5 cash.wait()

6 acceptPayment()

7 receipt.signal()

If two customers signal cash concurrently, there is no way to know which
waiting barber will get which signal, but the problem specification says that’s
ok. Any barber can take money from any customer.

2The plural of rendezvous is rare, and not all dictionaries agree about what it is. Another
possibility is that the plural is also spelled “rendezvous,” but the final “s” is pronounced.

136 Less classical synchronization problems

5.4 The Santa Claus problem 137

5.4 The Santa Claus problem

This problem is from William Stallings’s Operating Systems [11], but he at-
tributes it to John Trono of St. Michael’s College in Vermont.

Stand Claus sleeps in his shop at the North Pole and can only be
awakened by either (1) all nine reindeer being back from their vaca-
tion in the South Pacific, or (2) some of the elves having difficulty
making toys; to allow Santa to get some sleep, the elves can only
wake him when three of them have problems. When three elves are
having their problems solved, any other elves wishing to visit Santa
must wait for those elves to return. If Santa wakes up to find three
elves waiting at his shop’s door, along with the last reindeer having
come back from the tropics, Santa has decided that the elves can
wait until after Christmas, because it is more important to get his
sleigh ready. (It is assumed that the reindeer do not want to leave
the tropics, and therefore they stay there until the last possible mo-
ment.) The last reindeer to arrive must get Santa while the others
wait in a warming hut before being harnessed to the sleigh.

Here are some addition specifications:

• After the ninth reindeer arrives, Santa must invoke prepareSleigh, and
then all nine reindeer must invoke getHitched.

• After the third elf arrives, Santa must invoke helpElves. Concurrently,
all three elves should invoke getHelp.

• All three elves must invoke getHelp before any additional elves enter
(increment the elf counter).

Santa should run in a loop so he can help many sets of elves. We can assume
that there are exactly 9 reindeer, but there may be any number of elves.

138 Less classical synchronization problems

5.4 The Santa Claus problem 139

5.4.1 Santa problem hint

Listing 5.12: Santa problem hint

1 elves = 0

2 reindeer = 0

3 santaSem = Semaphore(0)

4 reindeerSem = Semaphore(0)

5 elfTex = Semaphore(1)

6 mutex = Semaphore(1)

elves and reindeer are counters, both protected by mutex. Elves and
reindeer get mutex to modify the counters; Santa gets it to check them.

Santa waits on santaSem until either an elf or a reindeer signals him.
The reindeer wait on reindeerSem until Santa signals them to enter the

paddock and get hitched.
The elves use elfTex to prevent additional elves from entering while three

elves are being helped.

140 Less classical synchronization problems

5.4 The Santa Claus problem 141

5.4.2 Santa problem solution

Santa’s code is pretty straightforward. Remember that it runs in a loop.

Listing 5.13: Santa problem solution (Santa)

1 santaSem.wait()

2 mutex.wait()

3 if reindeer == 9:

4 prepareSleigh()

5 reindeerSem.signal(9)

6 else if elves == 3:

7 helpElves()

8 mutex.signal()

When Santa wakes up, he checks which of the two conditions holds and
either deals with the reindeer or the waiting elves. If there are nine reindeer
waiting, Santa invokes prepareSleigh, then signals reindeerSem nine times,
allowing the reindeer to invoke getHitched. If there are elves waiting, Santa
just invokes helpElves. There is no need for the elves to wait for Santa; once
they signal santaSem, they can invoke getHelp immediately.

Here is the code for reindeer:

Listing 5.14: Santa problem solution (reindeer)

1 mutex.wait()

2 reindeer += 1

3 if reindeer == 9:

4 santaSem.signal()

5 mutex.signal()

6
7 reindeerSem.wait()

8 getHitched()

The ninth reindeer signals Santa and then joins the other reindeer waiting
on reindeerSem. When Santa signals, the reindeer all execute getHitched.

The elf code is similar, except that when the third elf arrives it has to bar
subsequent arrivals until the first three have executed getHelp.

142 Less classical synchronization problems

Listing 5.15: Santa problem solution (elves)

1 elfTex.wait()

2 mutex.wait()

3 elves += 1

4 if elves == 3:

5 santaSem.signal()

6 else

7 elfTex.signal()

8 mutex.signal()

9
10 getHelp()

11
12 mutex.wait()

13 elves -= 1

14 if elves == 0:

15 elfTex.signal()

16 mutex.signal()

The first two elves release elfTex at the same time they release the mutex,
but the last elf holds elfTex, barring other elves from entering until all three
elves have invoked getHelp.

The last elf to leave releases elfTex, allowing the next batch of elves to
enter.

5.5 Building H2O 143

5.5 Building H2O

This problem has been a staple of the Operating Systems class at U.C. Berke-
ley for at least a decade. It seems to be based on an exercise in Andrews’s
Concurrent Programming [1].

There are two kinds of threads, oxygen and hydrogen. In order to assemble
these threads into water molecules, we have to create a barrier that makes each
thread wait until a complete molecule is ready to proceed.

As each thread passes the barrier, it should invoke bond. You must guarantee
that all the threads from one molecule invoke bond before any of the threads
from the next molecule do.

In other words:

• If an oxygen thread arrives at the barrier when no hydrogen threads are
present, it has to wait for two hydrogen threads.

• If a hydrogen thread arrives at the barrier when no other threads are
present, it has to wait for an oxygen thread and another hydrogen thread.

We don’t have to worry about matching the threads up explicitly; that is,
the threads do not necessarily know which other threads they are paired up
with. The key is just that threads pass the barrier in complete sets; thus, if we
examine the sequence of threads that invoke bond and divide them into groups
of three, each group should contain one oxygen and two hydrogen threads.

Puzzle: Write synchronization code for oxygen and hydrogen molecules that
enforces these constraints.

144 Less classical synchronization problems

5.5 Building H2O 145

5.5.1 H2O hint

Here are the variables I used in my solution:

Listing 5.16: Water building hint

1 mutex = Semaphore(1)

2 oxygen = 0

3 hydrogen = 0

4 barrier = Barrier(3)

5 oxyQueue = Semaphore(0)

6 hydroQueue = Semaphore(0)

oxygen and hydrogen are counters, protected by mutex. barrier is where
each set of three threads meets after invoking bond and before allowing the next
set of threads to proceed.

oxyQueue is the semaphore oxygen threads wait on; hydroQueue is the
semaphore hydrogen threads wait on. I am using the naming conven-
tion for queues, so oxyQueue.wait() means “join the oxygen queue” and
oxyQueue.signal() means “release an oxygen thread from the queue.”

146 Less classical synchronization problems

5.5 Building H2O 147

5.5.2 H2O solution

Initially hydroQueue and oxyQueue are locked. When an oxygen thread arrives
it signals hydroQueue twice, allowing two hydrogens to proceed. Then the
oxygen thread waits for the hydrogen threads to arrive.

Listing 5.17: Oxygen code

1 mutex.wait()

2 oxygen += 1

3 if hydrogen >= 2:

4 hydroQueue.signal(2)

5 hydrogen -= 2

6 oxyQueue.signal()

7 oxygen -= 1

8 else:

9 mutex.signal()

10
11 oxyQueue.wait()

12 bond()

13
14 barrier.wait()

15 mutex.signal()

As each oxygen thread enters, it gets the mutex and checks the scoreboard.
If there are at least two hydrogen threads waiting, it signals two of them and
itself and then bonds. If not, it releases the mutex and waits.

After bonding, threads wait at the barrier until all three threads have
bonded, and then the oxygen thread releases the mutex. Since there is only
one oxygen thread in each set of three, we are guaranteed to signal mutex once.

The code for hydrogen is similar:

Listing 5.18: Hydrogen code

1 mutex.wait()

2 hydrogen += 1

3 if hydrogen >= 2 and oxygen >= 1:

4 hydroQueue.signal(2)

5 hydrogen -= 2

6 oxyQueue.signal()

7 oxygen -= 1

8 else:

9 mutex.signal()

10
11 hydroQueue.wait()

12 bond()

13
14 barrier.wait()

148 Less classical synchronization problems

An unusual feature of this solution is that the exit point of the mutex is
ambiguous. In some cases, threads enter the mutex, update the counter, and
exit the mutex. But when a thread arrives that forms a complete set, it has to
keep the mutex in order to bar subsequent threads until the current set have
invoked bond.

After invoking bond, the three threads wait at a barrier. When the barrier
opens, we know that all three threads have invoked bond and that one of them
holds the mutex. We don’t know which thread holds the mutex, but it doesn’t
matter as long as only one of them releases it. Since we know there is only one
oxygen thread, we make it do the work.

This might seem wrong, because until now it has generally been true that a
thread has to hold a lock in order to release it. But there is no rule that says
that has to be true. This is one of those cases where it can be misleading to
think of a mutex as a token that threads acquire and release.

5.6 River crossing problem

This is from a problem set written by Anthony Joseph at U.C. Berkeley, but
I don’t know if he is the original author. It is similar to the H2O problem in
the sense that it is a peculiar sort of barrier that only allows threads to pass in
certain combinations.

Somewhere near Redmond, Washington there is a rowboat that is used by
both Linux hackers and Microsoft employees (serfs) to cross a river. The ferry
can hold exactly four people; it won’t leave the shore with more or fewer. To
guarantee the safety of the passengers, it is not permissible to put one hacker
in the boat with three serfs, or to put one serf with three hackers. Any other
combination is safe.

As each thread boards the boat it should invoke a function called board. You
must guarantee that all four threads from each boatload invoke board before
any of the threads from the next boatload do.

After all four threads have invoked board, exactly one of them should call
a function named rowBoat, indicating that that thread will take the oars. It
doesn’t matter which thread calls the function, as long as one does.

Don’t worry about the direction of travel. Assume we are only interested in
traffic going in one of the directions.

5.6 River crossing problem 149

5.6.1 River crossing hint

Here are the variables I used in my solution:

Listing 5.19: River crossing hint

1 barrier = Barrier(4)

2 mutex = Semaphore(1)

3 hackers = 0

4 serfs = 0

5 hackerQueue = Semaphore(0)

6 serfQueue = Semaphore(0)

7 local isCaptain = False

hackers and serfs count the number of hackers and serfs waiting to board.
Since they are both protected by mutex, we can check the condition of both
variables without worrying about an untimely update. This is another example
of a scoreboard.

hackerQueue and serfQueue allow us to control the number of hackers and
serfs that pass. The barrier makes sure that all four threads have invoked board

before the captain invokes rowBoat.
isCaptain is a local variable that indicates which thread should invoke row.

150 Less classical synchronization problems

5.6 River crossing problem 151

5.6.2 River crossing solution

The basic idea of this solution is that each arrival updates one of the counters
and then checks whether it makes a full complement, either by being the fourth
of its kind or by completing a mixed pair of pairs.

I’ll present the code for hackers; the serf code is symmetric (except, of course,
that it is 1000 times bigger, full of bugs, and it contains an embedded web
browser):

Listing 5.20: River crossing solution

1 mutex.wait()

2 hackers += 1

3 if hackers == 4:

4 hackerQueue.signal(4)

5 hackers = 0

6 isCaptain = True

7 elseif hackers == 2 and serfs >= 2:

8 hackerQueue.signal(2)

9 serfQueue.signal(2)

10 serfs -= 2

11 hackers = 0

12 isCaptain = True

13 else:

14 mutex.signal() # captain keeps the mutex

15
16 hackerQueue.wait()

17
18 board()

19 barrier.wait()

20
21 if isCaptain:

22 rowBoat()

23 mutex.signal() # captain releases the mutex

As each thread files through the mutual exclusion section, it checks whether
a complete crew is ready to board. If so, it signals the appropriate threads,
declares itself captain, and holds the mutex in order to bar additional threads
until the boat has sailed.

The barrier keeps track of how many threads have boarded. When the last
thread arrives, all threads proceed. The captain invoked row and then (finally)
releases the mutex.

152 Less classical synchronization problems

5.7 The roller coaster problem 153

5.7 The roller coaster problem

This problem is from Andrews’s Concurrent Programming [1], but he attributes
it to J. S. Herman’s Master’s thesis.

Suppose there are n passenger threads and a car thread. The
passengers repeatedly wait to take rides in the car, which can hold
C passengers, where C < n. The car can go around the tracks only
when it is full.

Here are some additional details:

• Passengers should invoke board and unboard.

• The car should invoke load, run and unload.

• Passengers cannot board until the car has invoked load

• The car cannot depart until C passengers have boarded.

• Passengers cannot unboard until the car has invoked unload.

Puzzle: Write code for the passengers and car that enforces these constraints.

154 Less classical synchronization problems

5.7 The roller coaster problem 155

5.7.1 Roller Coaster hint

Listing 5.21: Roller Coaster hint

1 mutex = Semaphore(1)

2 mutex2 = Semaphore(1)

3 boarders = 0

4 unboarders = 0

5 boardQueue = Semaphore(0)

6 unboardQueue = Semaphore(0)

7 allAboard = Semaphore(0)

8 allAshore = Semaphore(0)

mutex protects passengers, which counts the number of passengers that
have invoked boardCar.

Passengers wait on boardQueue before boarding and unboardQueue before
unboarding. allAboard indicates that the car is full.

156 Less classical synchronization problems

5.7 The roller coaster problem 157

5.7.2 Roller Coaster solution

Here is my code for the car thread:

Listing 5.22: Roller Coaster solution (car)

1 load()

2 boardQueue.signal(C)

3 allAboard.wait()

4
5 run()

6
7 unload()

8 unboardQueue.signal(C)

9 allAshore.wait()

When the car arrives, it signals C passengers, then waits for the last one to
signal allAboard. After it departs, it allows C passengers to disembark, then
waits for allAshore.

Listing 5.23: Roller Coaster solution (passenger)

1 boardQueue.wait()

2 board()

3
4 mutex.wait()

5 boarders += 1

6 if boarders == C:

7 allAboard.signal()

8 boarders = 0

9 mutex.signal()

10
11 unboardQueue.wait()

12 unboard()

13
14 mutex2.wait()

15 unboarders += 1

16 if unboarders == C:

17 allAshore.signal()

18 unboarders = 0

19 mutex2.signal()

Passengers wait for the car before boarding, naturally, and wait for the car
to stop before leaving. The last passenger to board signals the car and resets
the passenger counter.

158 Less classical synchronization problems

5.7 The roller coaster problem 159

5.7.3 Multi-car Roller Coaster problem

This solution does not generalize to the case where there is more than one car.
In order to do that, we have to satisfy some additional constraints:

• Only one car can be boarding at a time.

• Multiple cars can be on the track concurrently.

• Since cars can’t pass each other, they have to unload in the same order
they boarded.

• All the threads from one carload must disembark before any of the threads
from subsequent carloads.

Puzzle: modify the previous solution to handle the additional constraints.
You can assume that there are m cars, and that each car has a local variable
named i that contains an identifier between 0 and m − 1.

160 Less classical synchronization problems

5.7 The roller coaster problem 161

5.7.4 Multi-car Roller Coaster hint

I used two lists of semaphores to keep the cars in order. One represents the
loading area and one represents the unloading area. Each list contains one
semaphore for each car. At any time, only one semaphore in each list is unlocked,
so that enforces the order threads can load and unload. Initially, only the
semaphores for Car 0 are unlocked. As each car enters the loading (or unloading)
it waits on its own semaphore; as it leaves it signals the next car in line.

Listing 5.24: Multi-car Roller Coaster hint

1 loadingArea = [Semaphore(0) for i in range(m)]

2 loadingArea[1].signal()

3 unloadingArea = [Semaphore(0) for i in range(m)]

4 unloadingArea[1].signal()

The function next computes the identifier of the next car in the sequence
(wrapping around from m − 1 to 0):

Listing 5.25: Implementation of next

1 def next(i):

2 return (i + 1) % m

162 Less classical synchronization problems

5.7 The roller coaster problem 163

5.7.5 Multi-car Roller Coaster solution

Here is the modified code for the cars:

Listing 5.26: Multi-car Roller Coaster solution (car)

1 loadingArea[i].wait()

2 load()

3 boardQueue.signal(C)

4 allAboard.wait()

5 loadingArea[next(i)].signal()

6
7 run()

8
9 unloadingArea[i].wait()

10 unload()

11 unboardQueue.signal(C)

12 allAshore.wait()

13 unloadingArea[next(i)].signal()

The code for the passengers is unchanged.

164 Less classical synchronization problems

Chapter 6

Not-so-classical problems

6.1 The search-insert-delete problem

This one is from Andrews’s Concurrent Programming [1].

Three kinds of threads share access to a singly-linked list:
searchers, inserters and deleters. Searchers merely examine the list;
hence they can execute concurrently with each other. Inserters add
new items to the end of the list; insertions must be mutually ex-
clusive to preclude two inserters from inserting new items at about
the same time. However, one insert can proceed in parallel with
any number of searches. Finally, deleters remove items from any-
where in the list. At most one deleter process can access the list at
a time, and deletion must also be mutually exclusive with searches
and insertions.

Puzzle: write code for searchers, inserters and deleters that enforces this
kind of three-way categorical mutual exclusion.

166 Not-so-classical problems

6.1 The search-insert-delete problem 167

6.1.1 Search-Insert-Delete hint

Listing 6.1: Search-Insert-Delete hint

1 insertMutex = Semaphore(1)

2 noSearcher = Semaphore(1)

3 noInserter = Semaphore(1)

4 searchSwitch = Lightswitch()

5 insertSwitch = Lightswitch()

insertMutex ensures that only one inserter is in its critical section at a time.
noSearcher and noInserter indicate (surprise) that there are no searchers and
no inserters in their critical sections; a deleter needs to hold both of these to
enter.

searchSwitch and insertSwitch are used by searchers and inserters to
exclude deleters.

168 Not-so-classical problems

6.1 The search-insert-delete problem 169

6.1.2 Search-Insert-Delete solution

Here is my solution:

Listing 6.2: Search-Insert-Delete solution (searcher)

1 searchSwitch.wait(noSearcher)

2 # critical section

3 searchSwitch.signal(noSearcher)

The only thing a searcher needs to worry about is a deleter. The first searcher
in takes noSearcher; the last one out releases it.

Listing 6.3: Search-Insert-Delete solution (inserter)

1 insertSwitch.wait(noInserter)

2 insertMutex.wait()

3 # critical section

4 insertMutex.signal()

5 insertSwitch.signal(noInserter)

Similarly, the first inserter takes noInserter and the last one out releases
it. Since searchers and inserters compete for different semaphores, they can be
in their critical section concurrently. But insertMutex ensures that only one
inserter is in the room at a time.

Listing 6.4: Search-Insert-Delete solution (deleter)

1 noSearcher.wait()

2 noInserter.wait()

3 # critical section

4 noInserter.signal()

5 noSearcher.signal()

Since the deleter holds both noSearcher and noInserter, it is guaranteed
exclusive access. Of course, any time we see a thread holding more than one
semaphore, we need to check for deadlocks. By trying out a few scenarios, you
should be able to convince yourself that this solution is deadlock free.

On the other hand, like many categorical exclusion problems, this one is
prone to starvation. As we saw in the Readers-Writers problem, we can some-
times mitigate this problem by giving priority to one category of threads ac-
cording to application-specific criteria. But in general it is difficult to write
an efficient solution (one that allows the maximum degree of concurrency) that
avoids starvation.

170 Not-so-classical problems

6.2 The unisex bathroom problem

I wrote this problem1 when a friend of mine left her position teaching physics
at Colby College and took a job at Xerox.

She was working in a cubicle in the basement of a concrete monolith, and
the nearest women’s bathroom was two floors up. She proposed to the Uberboss
that they convert the men’s bathroom on her floor to a unisex bathroom, sort
of like on Ally McBeal.

The Uberboss agreed, provided that the following synchronization con-
straints can be maintained:

• There cannot be men and women in the bathroom at the same time.

• There should never be more than three employees squandering company
time in the bathroom.

Of course the solution should avoid deadlock. For now, though, don’t worry
about starvation. You may assume that the bathroom is equipped with all the
semaphores you need.

1Later I learned that a nearly identical problem appears in Andrews’s Concurrent

Programming[1]

6.2 The unisex bathroom problem 171

6.2.1 Unisex bathroom hint

Here are the variables I used in my solution:

Listing 6.5: Unisex bathroom hint

1 empty = Semaphore(1)

2 maleSwitch = Lightswitch()

3 femaleSwitch = Lightswitch()

4 maleMultiplex = Semaphore(3)

5 femaleMultiplex = Semaphore(3)

empty is 1 if the room is empty and 0 otherwise.
maleSwitch allows men to bar women from the room. When the first male

enters, the lightswitch locks empty, barring women; When the last male ex-
its, it unlocks empty, allowing women to enter. Women do likewise using
femaleSwitch.

maleMultiplex and femaleMultiplex ensure that there are no more than
three men and three women in the system at a time.

172 Not-so-classical problems

6.2 The unisex bathroom problem 173

6.2.2 Unisex bathroom solution

Here is the female code:

Listing 6.6: Unisex bathroom solution (female)

1 femaleSwitch.lock(empty)

2 femaleMultiplex.wait()

3 # bathroom code here

4 femaleMultiplex.signal()

5 female Switch.unlock(empty)

The male code is similar.
Are there any problems with this solution?

174 Not-so-classical problems

6.2 The unisex bathroom problem 175

6.2.3 No-starve unisex bathroom problem

The problem with the previous solution is that it allows starvation. A long line
of women can arrive and enter while there is a man waiting, and vice versa.

Puzzle: fix the problem.

176 Not-so-classical problems

6.3 Baboon crossing problem 177

6.2.4 No-starve unisex bathroom solution

As we have seen before, we can use a turnstile to allow one kind of thread to
stop the flow of the other kind of thread. This time we’ll look at the male code:

Listing 6.7: No-starve unisex bathroom solution (male)

1 turnstile.wait()

2 maleSwitch.lock(empty)

3 turnstile.signal()

4
5 maleMultiplex.wait()

6 # bathroom code here

7 maleMultiplex.signal()

8
9 maleSwitch.unlock (empty)

As long as there are men in the room, new arrivals will pass through the
turnstile and enter. If there are women in the room when a male arrives, the
male will block inside the turnstile, which will bar all later arrivals (male and
female) from entering until the current occupants leave. At that point the male
in the turnstile enters, possibly allowing additional males to enter.

The female code is similar, so if there are men in the room an arriving female
will get stuck in the turnstile, barring additional men.

This solution may not be efficient. If the system is busy, then there will
often be several threads, male and female, queued on the turnstile. Each time
empty is signaled, one thread will leave the turnstile and another will enter. If
the new thread is the opposite gender, it will promptly block, barring additional
threads. Thus, there will usually be only 1-2 threads in the bathroom at a time,
and the system will not take full advantage of the available concurrency.

6.3 Baboon crossing problem

This problem is adapted from Tanenbaum’s Operating Systems: Design and

Implementation [12]. There is a deep canyon somewhere in Kruger National
Park, South Africa, and a single rope that spans the canyon. Baboons can cross
the canyon by swinging hand-over-hand on the rope, but if two baboons going in
opposite directions meet in the middle, they will fight and drop to their deaths.
Furthermore, the rope is only strong enough to hold 5 baboons. If there are
more baboons on the rope at the same time, it will break.

Assuming that we can teach the baboons to use semaphores, we would like
to design a synchronization scheme with the following properties:

• Once a baboon has begun to cross, it is guaranteed to get to the other
side without running into a baboon going the other way.

• There are never more than 5 baboons on the rope.

178 Not-so-classical problems

• A continuing stream of baboons crossing in one direction should not bar
baboons going the other way indefinitely (no starvation).

I will not include a solution to this problem for reasons that should be clear.

6.4 The Modus Hall Problem

This problem was written by Nathan Karst, one of the Olin students living in
Modus Hall2 during the winter of 2005.

After a particularly heavy snowfall this winter, the denizens of
Modus Hall created a trench-like path between their cardboard shan-
tytown and the rest of campus. Every day some of the residents walk
to and from class, food and civilization via the path; we will ignore
the indolent students who chose daily to drive to Tier 3. We will also
ignore the direction in which pedestrians are traveling. For some un-
known reason, students living in West Hall would occasionally find
it necessary to venture to the Mods.

Unfortunately, the path is not wide enough to allow two people to
walk side-by-side. If two Mods persons meet at some point on the
path, one will gladly step aside into the neck high drift to accom-
modate the other. A similar situation will occur if two ResHall
inhabitants cross paths. If a Mods heathen and a ResHall prude
meet, however, a violent skirmish will ensue with the victors deter-
mined solely by strength of numbers; that is, the faction with the
larger population will force the other to wait.

This is similar to the Baboon Crossing problem (in more ways than one),
with the added twist that control of the critical section is determined by majority
rule. This has the potential to be an efficient and starvation-fee solution to the
categorical exclusion problem.

Starvation is avoided because while one faction controls the critical section,
members of the other faction accumulate in queue until they achieve a majority.
Then they can bar new opponents from entering while they wait for the critical
section to clear. I expect this solution to be efficient because it will tend to
move threads through in batches, allowing maximum concurrency in the critical
section.

Puzzle: write code that implements categorical exclusion with majority rule.

2Modus Hall is one of several nicknames for the modular buildings, aka Mods, that some
students lived in while the second residence hall was being built.

6.4 The Modus Hall Problem 179

6.4.1 Modus Hall problem hint

Here are the variables I used in my solution.

Listing 6.8: Modus problem hint

1 heathens = 0

2 prudes = 0

3 status = ’neutral’

4 mutex = Semaphore(1)

5 modTurnstile = Semaphore(1)

6 resTurnstile = Semaphore(1)

7 modQueue = Semaphore(0)

8 resQueue = Semaphore(0)

heathens and prudes are counters, and status records the status of the
field, which can be ‘neutral’, ‘Modus rules’, ‘ResHall rules’, ‘transition to Modus’
or ‘transition to ResHall’. All three are protected by mutex in the usual score-
board pattern.

modTurnstile and resTurnstile control access to the field so that we can
bar one side or the other during a transition.

modQueue and resQueue are where threads wait after checking in and before
taking the field.

180 Not-so-classical problems

6.4 The Modus Hall Problem 181

6.4.2 Modus Hall problem solution

Here is the code for Modus Hall residents:

Listing 6.9: Modus problem solution

1 modTurnstile.wait()

2 modTurnstile.signal()

3
4 mutex.wait()

5 heathens++

6
7 if status == ’neutral’:

8 status = ’Modus rules’

9 mutex.signal()

10 elif status == ’ResHall rules’:

11 if heathens > prudes:

12 status = ’transition to Modus’

13 resTurnstile.wait()

14 mutex.signal()

15 else:

16 mutex.signal()

17 modQueue.wait()

18 elif status == ’transition to Modus’:

19 mutex.signal()

20 modQueue.wait()

21
22 # cross the field

23
24 mutex.wait()

25 heathens--

26
27 if heathens == 0:

28 if status == ’transition to ResHall’:

29 resTurnstile.signal()

30 if prudes:

31 resQueue.signal(prudes)

32 status = ’ResHall rules’

33 else:

34 status = ’neutral’

35
36 if status == ’Modus rules’:

37 if prudes > heathens:

38 status = ’transition to ResHall’

39 modTurnstile.wait()

40
41 mutex.signal()

182 Not-so-classical problems

As each student checks in, he has to consider the following cases:

• If the field is empty, the student lays claim for Modus Hall.

• If the Res Hall is currently in charge, but the new arrival has tipped
the balance, he locks the ResHall turnstile and the system switches to
transition mode.

• If the Res Hall is in charge, but the new arrival doesn’t tip the balance,
he joins the queue.

• If the system is transitioning to Mods control, the new arrival joins the
queue.

• Otherwise we conclude that either the Mods are in charge, or the system
is transitioning to ResHall control. In either case, this thread can proceed.

Similarly, as each student checks out, she has to consider several cases.

• If she is the last Mod heathen to check out, she has to consider the fol-
lowing:

– If the system is in transition, that means that the ResHall turnstile
is locked, so she has to open it.

– If there are ResHall residents waiting, she signals them and updates
status so the ResHall is in charge. If not, the new status is ’neutral’.

• If she is not the last heathen to check out, she still has to check the
possibility that her departure will tip the balance. In that case, she closes
the Modus Hall turnstile and starts the transition.

One potential difficulty of this solution is that any number of threads could
be interrupted at Line 3, where they would have passed the turnstile but not yet
checked in. Until they check in, they are not counted, so the balance of power
may not reflect the number of threads that have passed the turnstile. Also,
a transition ends when all the threads that have checked in have also checked
out. At that point, there may be threads (of both types) that have passed the
turnstile.

These behaviors may affect efficiency—this solution does not guarantee max-
imum concurrency—but they don’t affect correctness, if you accept that “ma-
jority rule” only applies to threads that have registered to vote.

Chapter 7

Not remotely classical

problems

7.1 The sushi bar problem

This problem was inspired by a problem proposed by Kenneth Reek [9]. Imagine
a sushi bar with 5 seats. If you arrive while there is an empty seat, you can take
a seat immediately. But if you arrive when all 5 seats are full, that means that
all of them are dining together, and you will have to wait for the entire party
to leave before you sit down.

Puzzle: write code for customers entering and leaving the sushi bar that
enforces these requirements.

184 Not remotely classical problems

7.1 The sushi bar problem 185

7.1.1 Sushi bar hint

Here are the variables I used:

Listing 7.1: Sushi bar hint

1 eating = waiting = 0

2 mutex = Semaphore(1)

3 block = Semaphore(0)

eating and waiting keep track of the number of threads sitting at the bar
and waiting. mutex protects both counters. If customers have to wait, they
block on block.

186 Not remotely classical problems

7.1 The sushi bar problem 187

7.1.2 Sushi bar non-solution

Here is an incorrect solution Reek uses to illustrate one of the difficulties of this
problem.

Listing 7.2: Sushi bar non-solution

1 mutex.wait()

2 if eating == 5:

3 waiting += 1

4 mutex.signal()

5 block.wait()

6
7 mutex.wait() # reacquire mutex

8 waiting -= 1

9
10 eating += 1

11 mutex.signal()

12
13 # eat sushi

14
15 mutex.wait()

16 eating -= 1

17 if eating == 0 and waiting > 0:

18 n = min(5, waiting)

19 block.signal(n)

20 mutex.signal()

Puzzle: what’s wrong with this solution?

188 Not remotely classical problems

7.1 The sushi bar problem 189

7.1.3 Sushi bar non-solution

The problem is at Line 7. If a customer arrives while the bar is full, he has to
give up the mutex while he waits so that other customers can leave. When the
last customer leaves, she signals block, which wakes up at least some of the
waiting customers.

But when the customers wake up, they have to get the mutex back, and that
means they have to compete with incoming new threads. If five new threads
arrive and get the mutex first, they could take all the seats before the waiting
threads. This is not just a question of injustice; it is possible for more than 5
threads to be in the critical section concurrently, which violates the synchro-
nization constraints.

Reek provides two solutions to this problem, which appear in the next two
sections.

Puzzle: see if you can come up with two different correct solutions!
Hint: neither solution uses any additional variables.

190 Not remotely classical problems

7.1 The sushi bar problem 191

7.1.4 Sushi bar solution #1

The only reason a waiting customer has to reacquire the mutex is to update the
state of eating and waiting, so one way to solve the problem is to make the
departing customer, who already has the mutex, do the updating.

Listing 7.3: Sushi bar solution #1

1 mutex.wait()

2 if eating == 5:

3 waiting += 1

4 mutex.signal()

5 block.wait()

6 else:

7 eating += 1

8 mutex.signal()

9
10 # eat sushi

11
12 mutex.wait()

13 eating -= 1

14 if eating == 0 and waiting:

15 n = min(5, waiting)

16 waiting -= n

17 eating += n

18 block.signal(n)

19 mutex.signal()

When the last departing customer releases the mutex, eating has already
been updated, so newly arriving customers see the right state and block if
necessary. Reek calls this pattern “I’ll do it for you,” because the departing
thread is doing work that seems, logically, to belong to the waiting threads.

A drawback of this approach is that is it a little more difficult to confirm
that the state is being updated correctly.

192 Not remotely classical problems

7.1 The sushi bar problem 193

7.1.5 Sushi bar solution #2

Reek’s alternative solution is based on the counterintuitive notion that we can
transfer a mutex from one thread to another! In other words, one thread can
acquire a lock and then another thread can release it. As long as both threads
understand that the lock has been transferred, there is nothing wrong with this.

Listing 7.4: Sushi bar solution #2

1 mutex.wait()

2 if eating == 5:

3 waiting += 1

4 mutex.signal()

5 block.wait() # when we resume, we have the mutex

6 waiting -= 1

7
8 eating += 1

9 if eating < 5 and waiting:

10 block.signal() # and pass the mutex

11 else:

12 mutex.signal()

13
14 # eat sushi

15
16 mutex.wait()

17 eating -= 1

18 if eating == 0 and waiting:

19 block.signal() # and pass the mutex

20 else:

21 mutex.signal()

If there are fewer than 5 customers at the bar and no one waiting, an entering
customer just increments eating and releases the mutex.

If there are 5 or more customers, entering customers block until the last cus-
tomer at the bar leaves and signals block. It is understood that the signaling
thread gives up the mutex and the waiting thread receives it. Keep in mind,
though, that this is an invariant understood by the programmer, and docu-
mented in the comments, but not enforced by the semantics of semaphores. It
is up to us to get it right.

When the waiting thread resumes, we understand that it has the mutex.
If there are other threads waiting, it signals block which, again, passing the
mutex to a waiting thread. This process continues, with each thread passing
the mutex to the next until there are no more chairs or no more waiting threads.
In either case, the last thread releases the mutex and goes to sit down.

Reek calls this pattern “Pass the baton,” since the mutex is being passed
from one thread to the next like a baton in a relay race. One nice thing about
this solution is that it is easy to confirm that updates to eating and waiting

194 Not remotely classical problems

are consistent. A drawback is that it is harder to confirm that the mutex is
being used correctly.

7.2 The child care problem

Max Hailperin wrote this problem for his textbook Operating Systems and Mid-

dleware [5]. At a child care center, state regulations require that there is always
one adult present for every three children.

Puzzle: Write code for child threads and adult threads that enforces this
constraint in a critical section.

7.2 The child care problem 195

7.2.1 Child care hint

Hailperin suggests that you can almost solve this problem with one semaphore.

Listing 7.5: Child care hint

1 multiplex = Semaphore(0)

multiplex counts the number of tokens available, where each token allows
a child thread to enter. As adults enter, they signal multiplex three times; as
they leave, they wait three times. But there is a problem with this solution.

Puzzle: what is the problem?

196 Not remotely classical problems

7.2 The child care problem 197

7.2.2 Child care non-solution

Here is what the adult code looks like in Hailperin’s non-solution:

Listing 7.6: Child care non-solution (adult)

1 multiplex.signal(3)

2
3 # critical section

4
5 multiplex.wait()

6 multiplex.wait()

7 multiplex.wait()

The problem is a potential deadlock. Imagine that there are three children
and two adults in the child care center. The value of multiplex is 3, so either
adult should be able to leave. But if both adults start to leave at the same time,
they might divide the available tokens between them, and both block.

Puzzle: solve this problem with a minimal change.

198 Not remotely classical problems

7.2 The child care problem 199

7.2.3 Child care solution

Adding a mutex solves the problem:

Listing 7.7: Child care solution (adult)

1 multiplex.signal(3)

2
3 # critical section

4
5 mutex.wait()

6 multiplex.wait()

7 multiplex.wait()

8 multiplex.wait()

9 mutex.signal()

Now the three wait operations are atomic. If there are three tokens available,
the thread that gets the mutex will get all three tokens and exit. If there are
fewer tokens available, the first thread will block in the mutex and subsequent
threads will queue on the mutex.

7.2.4 Extended child care problem

One feature of this solution is that an adult thread waiting to leave can prevent
child threads from entering.

Imagine that there are 4 children and two adults, so the value of the multiplex
is 2. If one of the adults tries to leave, she will take two tokens and then block
waiting for the third. If a child thread arrives, it will wait even though it would
be legal to enter. From the point of view of the adult trying to leave, that might
be just fine, but if you are trying to maximize the utilization of the child care
center, it’s not.

Puzzle: write a solution to this problem that avoids unnecessary waiting.
Hint: think about the dancers in Section 3.7.

200 Not remotely classical problems

7.2 The child care problem 201

7.2.5 Extended child care hint

Here are the variables I used in my solution:

Listing 7.8: Extended child care hint

1 children = adults = waiting = leaving = 0

2 mutex = Semaphore(1)

3 childQueue = Semaphore(0)

4 adultQueue = Semaphore(0)

children, adults, waiting and leaving keep track of the number of chil-
dren, adults, children waiting to enter, and adults waiting to leave; they are
protected by mutex.

Children wait on childQueue to enter, if necessary. Adupts wait on
adultQueue to leave.

202 Not remotely classical problems

7.2 The child care problem 203

7.2.6 Extended child care solution

This solution is more complicated than Hailperin’s elegant solution, but it is
mostly a combination of patterns we have seen before: a scoreboard, two queues,
and “I’ll do it for you”.

Here is the child code:

Listing 7.9: Extended child care solution (child)

1 mutex.wait()

2 if children < 3 * adults:

3 children++

4 mutex.signal()

5 else:

6 waiting++

7 mutex.signal()

8 childQueue.wait()

9
10 # critical section

11
12 mutex.wait()

13 children--

14 if leaving and children <= 3 * (adults-1):

15 leaving--

16 adults--

17 adultQueue.signal()

18 mutex.signal()

As children enter, they check whether there are enough adults and either (1)
increment children and enter or (2) increment waiting and block. When they
exit, they check for an adult thread waiting to leave and signal it if possible.

204 Not remotely classical problems

Here is the code for adults:

Listing 7.10: Extended child care solution (adult)

1 mutex.wait()

2 adults++

3 if waiting:

4 n = min(3, waiting)

5 childQueue.signal()

6 waiting -= n

7 children += n

8 mutex.signal()

9
10 # critical section

11
12 mutex.wait()

13 if children <= 3 * (adults-1):

14 adults--

15 mutex.signal()

16 else:

17 leaving++

18 mutex.signal()

19 adultQueue.wait()

As adults enter, they signal waiting children, if any. Before they leave, they
check whether there are enough adults left. If so, they decrement adults and
exit. Otherwise they increment leaving and block. While an adult thread
is waiting to leave, it counts as one of the adults in the critical section, so
additional children can enter.

7.3 The room party problem 205

7.3 The room party problem

I wrote this problem while I was at Colby College. One semester there was
a controversy over an allegation by a student that someone from the Dean of
Students Office had searched his room in his absence. Although the allegation
was public, the Dean of Students wasn’t able to comment on the case, so we
never found our what really happened. I wrote this problem to tease a friend
of mine, who was the Dean of Student Housing.

The following synchronization constraints apply to students and the Dean
of Students:

1. Any number of students can be in a room at the same time.

2. The Dean of Students can only enter a room if there are no students in
the room (to conduct a search) or if there are more than 50 students in
the room (to break up the party).

3. While the Dean of Students is in the room, no additional students may
enter, but students may leave.

4. The Dean of Students may not leave the room until all students have left.

5. There is only one Dean of Students, so you do not have to enforce exclusion
among multiple deans.

Puzzle: write synchronization code for students and for the Dean of Students
that enforces all of these constraints.

206 Not remotely classical problems

7.3 The room party problem 207

7.3.1 Room party hint

Listing 7.11: Room party hint

1 students = 0

2 dean = ’not here’

3 mutex = Semaphore(1)

4 clear = Semaphore(0)

5 lieIn = Semaphore(0)

students counts the number of students in the room, and dean is the state
of the Dean, which can also be “waiting” or “in the room”. mutex protects
students and dean, so this is yet another example of a scoreboard.

clear and lieIn are used as rendezvouses between a student and the Dean
(which is a whole other kind of scandal!)

208 Not remotely classical problems

7.3 The room party problem 209

7.3.2 Room party solution

This problem is hard. I worked through a lot of versions before I got to this
one. The version that appeared in the first edition was mostly correct, but
occasionally the Dean would enter the room and then find that he could neither
search nor break up the party, so he would have to skulk off in embarrassed
silence.

Matt Tesch wrote a solution that spared this humiliation, but the result was
complicated enough that we had a hard time convincing ourselves that it was
correct. But that solution led me to this one, which I am fairly sure is correct.

Listing 7.12: Room party solution (dean)

1 mutex.wait()

2 if students > 0 and students < 50:

3 dean = ’waiting’

4 mutex.signal()

5 lieIn.wait() # and get mutex from the student.

6
7 # students must be 0 or >= 50

8
9 if students >= 50:

10 dean = ’in the room’

11 breakup()

12 mutex.signal()

13 clear.wait() # and get mutex from the student.

14
15 else: # students must be 0

16 search()

17
18 dean = ’not here’

19 mutex.signal()

When the Dean arrives, there are three cases: if there are students in the
room, but not 50 or more, the Dean has to wait. If there are 50 or more, the
Dean breaks up the party and waits for the students to leave. If there are no
students, the Dean searches and leaves.

In the first two cases, the Dean has to wait for a rendezvous with a student,
so he has to give up mutex to avoid a deadlock. When the Dean wakes up, he
has to modify the scoreboard, so he needs to get the mutex back. This is similar
to the situation we saw in the Sushi Bar problem. The solution I chose is the
“Pass the baton” pattern.

210 Not remotely classical problems

Listing 7.13: Room party solution (student)

1 mutex.wait()

2 students += 1

3
4 if students == 50 and dean == ’waiting’:

5 lieIn.signal() # and pass mutex to the dean

6 else:

7 mutex.signal()

8
9 party()

10
11 mutex.wait()

12 students -= 1

13
14 if students == 0 and dean == ’waiting’:

15 lieIn.signal() # and pass mutex to the dean

16 elif students == 0 and dean == ’in the room’:

17 clear.signal() # and pass mutex to the dean

18 else:

19 mutex.signal()

There are three cases where a student might have to signal the Dean. If
the Dean is waiting, then the 50th student in or the last one out has to signal
lieIn. If the Dean is in the room (waiting for all the students to leave), the last
student out signals clear. In all three cases, it is understood that the mutex
passes from the student to the Dean.

One part of this solution that may not be obvious is how we know at Line 7
of the Dean’s code that students must be 0 or not less than 50. The key is
to realize that there are only two ways to get to this point: either the first
conditional was false, which means that students is either 0 or not less than
50; or the Dean was waiting on lieIn when a student signaled, which means,
again, that students is either 0 or not less than 50.

7.4 The Senate Bus problem 211

7.4 The Senate Bus problem

This problem was originally based on the Senate bus at Wellesley College. Riders
come to a bus stop and wait for a bus. When the bus arrives, all the waiting
riders invoke boardBus, but anyone who arrives while the bus is boarding has
to wait for the next bus. The capacity of the bus is 50 people; if there are more
than 50 people waiting, some will have to wait for the next bus.

When all the waiting riders have boarded, the bus can invoke depart. If the
bus arrives when there are no riders, it should depart immediately.

Puzzle: Write synchronization code that enforces all of these constraints.

212 Not remotely classical problems

7.4 The Senate Bus problem 213

7.4.1 Bus problem hint

Here are the variables I used in my solution:

Listing 7.14: Bus problem hint

1 riders = 0

2 mutex = Semaphore(1)

3 multiplex = Semaphore(50)

4 bus = Semaphore(0)

5 allAboard = Semaphore(0)

mutex protects riders, which keeps track of how many riders are waiting;
multiplex makes sure there are no more than 50 riders in the boarding area.

Riders wait on bus, which gets signaled when the bus arrives. The bus waits
on allAboard, which gets signaled by the last student to board.

214 Not remotely classical problems

7.4 The Senate Bus problem 215

7.4.2 Bus problem solution #1

Here is the code for the bus. Again, we are using the “Pass the baton” pattern.

Listing 7.15: Bus problem solution (bus)

1 mutex.wait()

2 if riders > 0:

3 bus.signal() # and pass the mutex

4 allAboard.wait() # and get the mutex back

5 mutex.signal()

6
7 depart()

When the bus arrives, it gets mutex, which prevents late arrivals from enter-
ing the boarding area. If there are no riders, it departs immediately. Otherwise,
it signals bus and waits for the riders to board.

Here is the code for the riders:

Listing 7.16: Bus problem solution (riders)

1 multiplex.wait()

2 mutex.wait()

3 riders += 1

4 mutex.signal()

5
6 bus.wait() # and get the mutex

7 multiplex.signal()

8
9 boardBus()

10
11 riders -= 1

12 if riders == 0:

13 allAboard.signal()

14 else:

15 bus.signal() # and pass the mutex

The multiplex controls the number of riders in the waiting area, although
strictly speaking, a rider doesn’t enter the waiting area until she increments
riders.

Riders wait on bus until the bus arrives. When a rider wakes up, it is
understood that she has the mutex. After boarding, each rider decrements
riders. If there are more riders waiting, the boarding rider signals bus and
pass the mutex to the next rider. The last rider signals allAboard and passes
the mutex back to the bus.

Finally, the bus releases the mutex and departs.
Puzzle: can you find a solution to this problem using the “I’ll do it for you”

pattern?

216 Not remotely classical problems

7.4 The Senate Bus problem 217

7.4.3 Bus problem solution #2

Grant Hutchins came up with this solution, which uses fewer variables than the
previous one, and doesn’t involve passing around any mutexes. Here are the
variables:

Listing 7.17: Bus problem solution #2 (initialization)

1 waiting = 0

2 mutex = new Semaphore(1)

3 bus = new Semaphore(0)

4 boarded = new Semaphore(0)

waiting is the number of riders in the boarding area, which is protected by
mutex. bus signals when the bus has arrived; boarded signals that a rider has
boarded.

Here is the code for the bus.

Listing 7.18: Bus problem solution (bus)

1 mutex.wait()

2 n = min(waiting, 50)

3 for i in range(n):

4 bus.signal()

5 boarded.wait()

6
7 waiting = max(waiting-50, 0)

8 mutex.signal()

9
10 depart()

The bus gets the mutex and holds it throughout the boarding process. The
loop signals each rider in turn and waits for her to board. By controlling the
number of signals, the bus prevents more than 50 riders from boarding.

When all the riders have boarded, the bus updates waiting, which is an
example of the “I’ll do it for you” pattern.

The code for the riders uses two simple patterns: a mutex and a rendezvous.

Listing 7.19: Bus problem solution (riders)

1 mutex.wait()

2 waiting += 1

3 mutex.signal()

4
5 bus.wait()

6 board()

7 boarded.signal()

Challenge: if riders arrive while the bus is boarding, they might be annoyed
if you make them wait for the next one. Can you find a solution that allows
late arrivals to board without violating the other constraints?

218 Not remotely classical problems

7.5 The Faneuil Hall problem 219

7.5 The Faneuil Hall problem

This problem was written by Grant Hutchins, who was inspired by a friend who
took her Oath of Citizenship at Faneuil Hall in Boston.

“There are three kinds of threads: immigrants, spectators, and a one judge.
Immigrants must wait in line, check in, and then sit down. At some point, the
judge enters the building. When the judge is in the building, no one may enter,
and the immigrants may not leave. Spectators may leave. Once all immigrants
check in, the judge can confirm the naturalization. After the confirmation, the
immigrants pick up their certificates of U.S. Citizenship. The judge leaves at
some point after the confirmation. Spectators may now enter as before. After
immigrants get their certificates, they may leave.”

To make these requirements more specific, let’s give the threads some func-
tions to execute, and put constraints on those functions.

• Immigrants must invoke enter, checkIn, sitDown, swear,
getCertificate and leave.

• The judge invokes enter, confirm and leave.

• Spectators invoke enter, spectate and leave.

• While the judge is in the building, no one may enter and immigrants may
not leave.

• The judge can not confirm until all immigrants who have invoked enter

have also invoked checkIn.

• Immigrants can not getCertificate until the judge has executed
confirm.

220 Not remotely classical problems

7.5 The Faneuil Hall problem 221

7.5.1 Faneuil Hall Problem Hint

Listing 7.20: Faneuil Hall problem hint

1 noJudge = Semaphore(1)

2 entered = 0

3 checked = 0

4 mutex = Semaphore(1)

5 confirmed = Semaphore(0)

noJudge acts as a turnstile for incoming immigrants and spectators; it also
protects entered, which counts the number of immigrants in the room. checked
counts the number of immigrants who have checked in; it is protected by mutex.

confirmed signals that the judge has executed confirm.

222 Not remotely classical problems

7.5 The Faneuil Hall problem 223

7.5.2 Faneuil Hall problem solution

Here is the code for immigrants:

Listing 7.21: Faneuil Hall problem solution (immigrant)

1 noJudge.wait()

2 enter()

3 entered++

4 noJudge.signal()

5
6 mutex.wait()

7 checkIn()

8 checked++

9
10 if judge = 1 and entered == checked:

11 allSignedIn.signal() # and pass the mutex

12 else:

13 mutex.signal()

14
15 sitDown()

16 confirmed.wait()

17
18 swear()

19 getCertificate()

20
21 noJudge.wait()

22 leave()

23 noJudge.signal()

Immigrants pass through a turnstile when they enter; while the judge is in
the room, the turnstile is locked.

After entering, immigrants have to get mutex to check in and update
checked. If there is a judge waiting, the last immigrant to check in signals
allSignedIn and passes the mutex to the judge.

Here is the code for the judge:

Listing 7.22: Faneuil Hall problem solution (judge)

1 noJudge.wait()

2 mutex.wait()

3
4 enter()

5 judge = 1

6
7 if entered > checked:

8 mutex.signal()

9 allSignedIn.wait() # and get the mutex back.

224 Not remotely classical problems

10
11 confirm()

12 confirmed.signal(checked)

13 entered = checked = 0

14
15 leave()

16 judge = 0

17
18 mutex.signal()

19 noJudge.signal()

The judge holds noJudge to bar immigrants and spectators from entering,
and mutex so he can access entered and checked.

If the judge arrives at an instant when everyone who has entered has also
checked in, she can proceed immediately. Otherwise, she has to give up the
mutex and wait. When the last immigrant checks in and signals allSignedIn,
it is understood that the judge will get the mutex back.

After invoking confirm, the judge signals confirmed once for every immi-
grant who has checked in, and then resets the counters (an example of “I’ll do
it for you”). Then the judge leaves and releases mutex and noJudge.

After the judge signals confirmed, immigrants invoke swear and
getCertificate concurrently, and then wait for the noJudge turnstile to open
before leaving.

The code for spectators is easy; the only constraint they have to obey is the
noJudge turnstile.

Listing 7.23: Faneuil Hall problem solution (spectator)

1 noJudge.wait()

2 enter()

3 noJudge.signal()

4
5 spectate()

6
7 leave()

Note: in this solution it is possible for immigrants to get stuck, after they
get their certificate, by another judge coming to swear in the next batch of
immigrants. If that happens, they might have to wait through another swearing
in-ceremony.

Puzzle: modify this solution to handle the additional constraint that after
the judge leaves, all immigrants who have been sworn in must leave before the
judge can enter again.

7.5 The Faneuil Hall problem 225

7.5.3 Extended Faneuil Hall Problem Hint

My solution uses the following additional variables:

Listing 7.24: Faneuil Hall problem hint

1 exit = Semaphore(0)

2 allGone = Semaphore(0)

Since the extended problem involves an additional rendezvous, we can solve
it with two semaphores.

One other hint: I found it useful to use the “pass the baton” pattern again.

226 Not remotely classical problems

7.5 The Faneuil Hall problem 227

7.5.4 Extended Faneuil Hall problem solution

The top half of this solution is the same as before. The difference starts at
Line 21. Immigrants wait here for the judge to leave.

Listing 7.25: Faneuil Hall problem solution (immigrant)

1 noJudge.wait()

2 enter()

3 entered++

4 noJudge.signal()

5
6 mutex.wait()

7 checkIn()

8 checked++

9
10 if judge = 1 and entered == checked:

11 allSignedIn.signal() # and pass the mutex

12 else:

13 mutex.signal()

14
15 sitDown()

16 confirmed.wait()

17
18 swear()

19 getCertificate()

20
21 exit.wait() # and get the mutex

22 leave()

23 checked--

24 if checked == 0:

25 allGone.signal() # and pass the mutex

26 else:

27 exit.signal() # and pass the mutex

For the judge, the difference starts at Line 18. When the judge is ready to
leave, she can’t release noJudge, because that would allow more immigrants,
and possibly another judge, to enter. Instead, she signals exit, which allows
one immigrant to leave, and passes mutex.

The immigrant that gets the signal decrements checked and then passes the
baton to the next immigrant. The last immigrant to leave signals allGone and
passes the mutex back to the judge. This pass-back is not strictly necessary,
but it has the nice feature that the judge releases both mutex and noJudge to
end the phase cleanly.

228 Not remotely classical problems

Listing 7.26: Faneuil Hall problem solution (judge)

1 noJudge.wait()

2 mutex.wait()

3
4 enter()

5 judge = 1

6
7 if entered > checked:

8 mutex.signal()

9 allSignedIn.wait() # and get the mutex back.

10
11 confirm()

12 confirmed.signal(checked)

13 entered = 0

14
15 leave()

16 judge = 0

17
18 exit.signal() # and pass the mutex

19 allGone.wait() # and get it back

20 mutex.signal()

21 noJudge.signal()

The spectator code for the extended problem is unchanged.

7.6 Dining Hall problem 229

7.6 Dining Hall problem

This problem was written by Jon Pollack during my Synchronization class at
Olin College.

Students in the dining hall invoke dine and then leave. After invoking dine

and before invoking leave a student is considered “ready to leave”.
The synchronization constraint that applies to students is that, in order to

maintain the illusion of social suave, a student may never sit at a table alone. A
student is considered to be sitting alone if everyone else who has invoked dine

invokes leave before she has finished dine.
Puzzle: write code that enforces this constraint.

230 Not remotely classical problems

7.6 Dining Hall problem 231

7.6.1 Dining Hall problem hint

Listing 7.27: Dining Hall problem hint

1 eating = 0

2 readyToLeave = 0

3 mutex = Semaphore(1)

4 okToLeave = Semaphore(0)

eating and readyToLeave are counters protected by mutex, so this is the
usual scoreboard pattern.

If a student is ready to leave, but another student would be left alone at the
table, she waits on okToLeave until another student changes the situation and
signals.

232 Not remotely classical problems

7.6 Dining Hall problem 233

7.6.2 Dining Hall problem solution

If you analyze the constraints, you will realize that there is only one situation
where a student has to wait, if there is one student eating and one student who
wants to leave. But there are two ways to get out of this situation: another
student might arrive to eat, or the dining student might finish.

In either case, the student who signals the waiting student updates the
counters, so the waiting student doesn’t have to get the mutex back. This
is another example of the the “I’ll do it for you” pattern.

Listing 7.28: Dining Hall problem solution

1 getFood()

2
3 mutex.wait()

4 eating++

5 if eating == 2 and readyToLeave == 1:

6 okToLeave.signal()

7 readyToLeave--

8 mutex.signal()

9
10 dine()

11
12 mutex.wait()

13 eating--

14 readyToLeave++

15
16 if eating == 1 and readyToLeave == 1:

17 mutex.signal()

18 okToLeave.wait()

19 elif eating == 0 and readyToLeave == 2:

20 okToLeave.signal()

21 readyToLeave -= 2

22 mutex.signal()

23 else:

24 readyToLeave--

25 mutex.signal()

26
27 leave()

When is student is checking in, if she sees one student eating and one waiting
to leave, she lets the waiter off the hook and decrements readyToLeave for him.

234 Not remotely classical problems

After dining, the student checks three cases:

• If there is only one student left eating, the departing student has to give
up the mutex and wait.

• If the departing student finds that someone is waiting for her, she signals
him and updates the counter for both of them.

• Otherwise, she just decrements readyToLeave and leaves.

7.6.3 Extended Dining Hall problem

The Dining Hall problem gets a little more challenging if we add another step.
As students come to lunch they invoke getFood, dine and then leave. After
invoking getFood and before invoking dine, a student is considered “ready to
eat”. Similarly, after invoking dine a student is considered “ready to leave”.

The same synchronization constraint applies: a student may never sit at a
table alone. A student is considered to be sitting alone if either

• She invokes dine while there is no one else at the table and no one ready
to eat, or

• everyone else who has invoked dine invokes leave before she has finished
dine.

Puzzle: write code that enforces these constraints.

7.6 Dining Hall problem 235

7.6.4 Extended Dining Hall problem hint

Here are the variables I used in my solution:

Listing 7.29: Extended Dining Hall problem hint

1 readyToEat = 0

2 eating = 0

3 readyToLeave = 0

4 mutex = Semaphore(1)

5 okToSit = Semaphore(0)

6 okToLeave = Semaphore(0)

readyToEat, eating and readyToLeave are counters, all protected by
mutex.

If a student is in a situation where she cannot proceed, she waits on okToSit

or okToLeave until another student changes the situation and signals.
I also used a per-thread variable named hasMutex to help keep track of

whether or not a thread holds the mutex.

236 Not remotely classical problems

7.6 Dining Hall problem 237

7.6.5 Extended Dining Hall problem solution

Again, if we analyze the constraints, we realize that there is only one situation
where a student who is ready to eat has to wait, if there is no one eating and
no one else ready to eat. And the only way out is if someone else arrives who is
ready to eat.

Listing 7.30: Extended Dining Hall problem solution

1 getFood()

2
3 mutex.wait()

4 readyToEat++

5 if eating == 0 and readyToEat == 1:

6 mutex.signal()

7 okToSit.wait()

8 elif eating == 0 and readyToEat == 2:

9 okToSit.signal()

10 readyToEat -= 2

11 eating += 2

12 mutex.signal()

13 else:

14 readyToEat--

15 eating++

16 if eating == 2 and readyToLeave == 1:

17 okToLeave.signal()

18 readyToLeave--

19 mutex.signal()

20
21 dine()

22
23 mutex.wait()

24 eating--

25 readyToLeave++

26 if eating == 1 and readyToLeave == 1:

27 mutex.signal()

28 okToLeave.wait()

29 elif eating == 0 and readyToLeave == 2:

30 okToLeave.signal()

31 readyToLeave -= 2

32 mutex.signal()

33 else:

34 readyToLeave--

35 mutex.signal()

36
37 leave()

238 Not remotely classical problems

As in the previous solution, I used the “I’ll do it for you” pattern so that a
waiting student doesn’t have to get the mutex back.

The primary difference between this solution and the previous one is that
the first student who arrives at an empty table has to wait, and the second
student allows both students to proceed. It either case, we don’t have to check
for students waiting to leave, since no one can leave an empty table!

Chapter 8

Synchronization in Python

By using pseudocode, we have avoided some of the ugly details of synchroniza-
tion in the real world. In this chapter we’ll look at real synchronization code in
Python; in the next chapter we’ll look at C.

Python provides a reasonably pleasant multithreading environment, com-
plete with Semaphore objects. It has a few foibles, but there is some cleanup
code in Appendix A that makes things a little better.

Here is a simple example:

1 from threading_cleanup import *

2
3 class Shared:

4 def __init__(self):

5 self.counter = 0

6
7 def child_code(shared):

8 while True:

9 shared.counter += 1

10 print shared.counter

11 time.sleep(0.5)

12
13 shared = Shared()

14 children = [Thread(child_code, shared) for i in range(2)]

15 for child in children: child.join()

The first line runs the cleanup code from Appendix A; I will leave this line
out of the other examples.

Shared defines an object type that will contain shared variables. Global
variables are also shared between threads, but we won’t use any in these exam-
ples. Threads that are local in the sense that they are declared inside a function
are also local in the sense that they are thread-specific.

The child code is an infinite loop that increments counter, prints the new
value, and then sleeps for 0.5 seconds.

240 Synchronization in Python

The parent thread creates shared and two children, then waits for the chil-
dren to exit (which in this case, they won’t).

8.1 Mutex checker problem

Diligent students of synchronization will notice that the children make unsyn-
chronized updates to counter, which is not safe! If you run this program, you
might see some errors, but you probably won’t. The nasty thing about synchro-
nization errors is that they are unpredictable, which means that even extensive
testing may not reveal them.

To detect errors, it is often necessary to automate the search. In this case,
we can detect errors by keeping track of the values of counter.

1 class Shared:

2 def __init__(self, end=10):

3 self.counter = 0

4 self.end = end

5 self.array = [0]* self.end

6
7 def child_code(shared):

8 while True:

9 if shared.counter >= shared.end: break

10 shared.array[shared.counter] += 1

11 shared.counter += 1

12
13 shared = Shared(10)

14 children = [Thread(child_code, shared) for i in range(2)]

15 for child in children: child.join()

16 print shared.array

In this example, shared contains a list (misleadingly named array) that
keeps track of the number of times each value of counter is used. Each time
through the loop, the children check counter and quit if it exceeds end. If
not, they use counter as an index into array and increment the corresponding
entry. Then they increment counter.

If everything works correctly, each entry in the array should be incremented
exactly once. When the children exit, the parent returns from join and prints
the value of array. When I ran the program, I got

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

which is disappointingly correct. If we increase the size of the array, we might
expect more errors, but it also gets harder to check the result.

8.1 Mutex checker problem 241

We can automate the checker by making a histogram of the results in the
array:

1 class Histogram(dict):

2 def __init__(self, seq=[]):

3 for item in seq:

4 self[item] = self.get(item, 0) + 1

5
6 print Histogram(shared.array)

Now when I run the program, I get

{1: 10}

which means that the value 1 appeared 10 times, as expected. No errors so far,
but if we make end bigger, things get more interesting:

end = 100, {1: 100}

end = 1000, {1: 1000}

end = 10000, {1: 10000}

end = 100000, {1: 27561, 2: 72439}

Oops! When end is big enough that there are a lot of context switches between
the children, we start to get synchronization errors. In this case, we get a lot

of errors, which suggests that the program falls into a recurring pattern where
threads are consistently interrupted in the critical section.

This example demonstrates one of the dangers of synchronization errors,
which is that they may be rare, but they are not random. If an error occurs one
time in a million, that doesn’t mean it won’t happen a million times in a row.

Puzzle: add synchronization code to this program to enforce exclusive ac-
cess to the shared variables. You can download the code in this section from
greenteapress.com/semaphores/counter.py

242 Synchronization in Python

8.1 Mutex checker problem 243

8.1.1 Mutex checker hint

Here is the version of Shared I used:

1 class Shared:

2 def __init__(self, end=10):

3 self.counter = 0

4 self.end = end

5 self.array = [0]* self.end

6 self.mutex = Semaphore(1)

The only change is the Semaphore named mutex, which should come as no
surprise.

244 Synchronization in Python

8.1 Mutex checker problem 245

8.1.2 Mutex checker solution

Here is my solution:

1 def child_code(shared):

2 while True:

3 shared.mutex.wait()

4 if shared.counter < shared.end:

5 shared.array[shared.counter] += 1

6 shared.counter += 1

7 shared.mutex.signal()

8 else:

9 shared.mutex.signal()

10 break

Although this is not the most difficult synchronization problem in this book,
you might have found it tricky to get the details right. In particular, it is easy
to forget to signal the mutex before breaking out of the loop, which would cause
a deadlock.

I ran this solution with end = 1000000, and got the following result:

{1: 1000000}

Of course, that doesn’t mean my solution is correct, but it is off to a good
start.

246 Synchronization in Python

8.2 The coke machine problem 247

8.2 The coke machine problem

The following program simulates producers and consumers adding and removing
cokes from a coke machine:

1 import random

2
3 class Shared:

4 def __init__(self, start=5):

5 self.cokes = start

6
7 def consume(shared):

8 shared.cokes -= 1

9 print shared.cokes

10
11 def produce(shared):

12 shared.cokes += 1

13 print shared.cokes

14
15 def loop(shared, f, mu=1):

16 while True:

17 t = random.expovariate(1.0/mu)

18 time.sleep(t)

19 f(shared)

20
21 shared = Shared()

22 fs = [consume]*2 + [produce]*2

23 threads = [Thread(loop, shared, f) for f in fs]

24 for thread in threads: thread.join()

The capacity is 10 cokes, and that the machine is initially half full. So the
shared variable cokes is 5.

The program creates 4 threads, two producers and two consumers. They
both run loop, but producers invoke produce and consumers invoke consume.
These functions make unsynchronized access to a shared variable, which is a
no-no.

Each time through the loop, producers and consumers sleep for a duration
chosen from an exponential distribution with mean mu. Since there are two
producers and two consumers, two cokes get added to the machine per second,
on average, and two get removed.

So on average the number of cokes is constant, but in the short run in can
vary quite widely. If you run the program for a while, you will probably see the
value of cokes dip below zero, or climb above 10. Of course, neither of these
should happen.

Puzzle: add code to this program to enforce the following synchronization
constraints:

248 Synchronization in Python

• Access to cokes should be mutually exclusive.

• If the number of cokes is zero, consumers should block until a coke is
added.

• If the number of cokes is 10, producers should block until a coke is removed.

You can download the program from greenteapress.com/semaphores/

coke.py

8.2 The coke machine problem 249

8.2.1 Coke machine hint

Here are the shared variables I used in my solution:

1 class Shared:

2 def __init__(self, start=5, capacity=10):

3 self.cokes = Semaphore(start)

4 self.slots = Semaphore(capacity-start)

5 self.mutex = Semaphore(1)

cokes is a Semaphore now (rather than a simple integer), which makes it
tricky to print its value. Of course, you should never access the value of a
Semaphore, and Python in its usual do-gooder way doesn’t provide any of the
cheater methods you see in some implementations.

But you might find it interesting to know that the value of a Semaphore
is stored in a private attribute named Semaphore value. Also, in case you
don’t know, Python doesn’t actually enforce any restriction on access to private
attributes. You should never access it, of course, but I thought you might be
interested.

Ahem.

250 Synchronization in Python

8.2 The coke machine problem 251

8.2.2 Coke machine solution

If you’ve read the rest of this book, you should have had no trouble coming up
with something at least as good as this:

1 def consume(shared):

2 shared.cokes.wait()

3 shared.mutex.wait()

4 print shared.cokes.value()

5 shared.mutex.signal()

6 shared.slots.signal()

7
8 def produce(shared):

9 shared.slots.wait()

10 shared.mutex.wait()

11 print shared.cokes._Semaphore__value

12 shared.mutex.signal()

13 shared.cokes.signal()

If you run this program for a while, you should be able to confirm that the
number of cokes in the machine is never negative or greater than 10. So this
solution seems to be correct.

So far.

252 Synchronization in Python

Chapter 9

Synchronization in C

In this section we will write a multithreaded, synchronized program in C. Ap-
pendix B provides some of the utility code I use to make the C code a little
more palatable. The examples in this section depend on that code.

9.1 Mutual exclusion

We’ll start by defining a structure that contains shared variables:

1 typedef struct {

2 int counter;

3 int end;

4 int *array;

5 } Shared;

6
7 Shared *make_shared (int end)

8 {

9 int i;

10 Shared *shared = check_malloc (sizeof (Shared));

11
12 shared->counter = 0;

13 shared->end = end;

14
15 shared->array = check_malloc (shared->end * sizeof(int));

16 for (i=0; i<shared->end; i++) {

17 shared->array[i] = 0;

18 }

19 return shared;

20 }

counter is a shared variable that will be incremented by concurrent threads
until it reaches end. We will use array to check for synchronization errors by

254 Synchronization in C

keeping track of the value of counter after each increment.

9.1.1 Parent code

Here is the code the parent thread uses to create threads and wait for them to
complete:

1 int main ()

2 {

3 int i;

4 pthread_t child[NUM_CHILDREN];

5
6 Shared *shared = make_shared (100000);

7
8 for (i=0; i<NUM_CHILDREN; i++) {

9 child[i] = make_thread (entry, shared);

10 }

11
12 for (i=0; i<NUM_CHILDREN; i++) {

13 join_thread (child[i]);

14 }

15
16 check_array (shared);

17 return 0;

18 }

The first loop creates the child threads; the second loop waits for them to
complete. When the last child has finished, the parent invokes check array to
check for errors. make thread and join thread are defined in Appendix B.

9.1.2 Child code

Here is the code that is executed by each of the children:

1 void child_code (Shared *shared)

2 {

3 while (1) {

4 shared->array[shared->counter]++;

5
6 shared->counter++;

7 if (shared->counter >= shared->end) {

8 return;

9 }

10 }

11 }

9.1 Mutual exclusion 255

Each time through the loop, the child threads use counter as an index into
array and increment the corresponding element. Then they increment counter
and check to see if they’re done.

9.1.3 Synchronization errors

If everything works correctly, each element of the array should be incremented
once. So to check for errors, we can just count the number of elements that are
not 1:

1 void check_array (Shared *shared)

2 {

3 int i, errors=0;

4
5 for (i=0; i<shared->end; i++) {

6 if (shared->array[i] != 1) errors++;

7 }

8 printf ("%d errors.\n", errors);

9 }

You can download this program (including the cleanup code) from
greenteapress.com/semaphores/counter.c

If you compile and run the program, you should see output like this:

Starting child at counter 0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Child done.

Starting child at counter 100000

Child done.

Checking...

0 errors.

Of course, the interaction of the children depends on details of your operating
system and also other programs running on your computer. In the example
shown here, one thread ran all the way from 0 to end before the other thread
got started, so it is not surprising that there were no synchronization errors.

But as end gets bigger, there are more context switches between the children.
On my system I start to see errors when end is 100,000,000.

Puzzle: use semaphores to enforce exclusive access to the shared variables
and run the program again to confirm that there are no errors.

256 Synchronization in C

9.1 Mutual exclusion 257

9.1.4 Mutual exclusion hint

Here is the version of Shared I used in my solution:

1 typedef struct {

2 int counter;

3 int end;

4 int *array;

5 Semaphore *mutex;

6 } Shared;

7
8 Shared *make_shared (int end)

9 {

10 int i;

11 Shared *shared = check_malloc (sizeof (Shared));

12
13 shared->counter = 0;

14 shared->end = end;

15
16 shared->array = check_malloc (shared->end * sizeof(int));

17 for (i=0; i<shared->end; i++) {

18 shared->array[i] = 0;

19 }

20 shared->mutex = make_semaphore(1);

21 return shared;

22 }

Line 5 declares mutex as a Semaphore; Line 20 initializes the mutex with
the value 1.

258 Synchronization in C

9.1 Mutual exclusion 259

9.1.5 Mutual exclusion solution

Here is the synchronized version of the child code:

1 void child_code (Shared *shared)

2 {

3 while (1) {

4 sem_wait(shared->mutex);

5 shared->array[shared->counter]++;

6
7 shared->counter++;

8 if (shared->counter >= shared->end) {

9 sem_signal(shared->mutex);

10 return;

11 }

12 sem_signal(shared->mutex);

13 }

14 }

There is nothing too surprising here; the only tricky thing is to remember
to release the mutex before the return statement.

You can download this solution from greenteapress.com/semaphores/

counter_mutex.c

260 Synchronization in C

9.2 Make your own semaphores 261

9.2 Make your own semaphores

The most commonly used synchronization tools for programs that use Pthreads
are mutexes and condition variables, not semaphores. For an explanation of
these tools, I recommend Butenhof’s Programming with POSIX Threads [2].

Puzzle: read about mutexes and condition variables, and then use them to
write an implementation of semaphores.

You might want to use the following utility code in your solutions. Here is
my wrapper for Pthreads mutexes:

1 typedef pthread_mutex_t Mutex;

2
3 Mutex *make_mutex ()

4 {

5 Mutex *mutex = check_malloc (sizeof(Mutex));

6 int n = pthread_mutex_init (mutex, NULL);

7 if (n != 0) perror_exit ("make_lock failed");

8 return mutex;

9 }

10
11 void mutex_lock (Mutex *mutex)

12 {

13 int n = pthread_mutex_lock (mutex);

14 if (n != 0) perror_exit ("lock failed");

15 }

16
17 void mutex_unlock (Mutex *mutex)

18 {

19 int n = pthread_mutex_unlock (mutex);

20 if (n != 0) perror_exit ("unlock failed");

21 }

262 Synchronization in C

And my wrapper for Pthread condition variables:

1 typedef pthread_cond_t Cond;

2
3 Cond *make_cond ()

4 {

5 Cond *cond = check_malloc (sizeof(Cond));

6 int n = pthread_cond_init (cond, NULL);

7 if (n != 0) perror_exit ("make_cond failed");

8 return cond;

9 }

10
11 void cond_wait (Cond *cond, Mutex *mutex)

12 {

13 int n = pthread_cond_wait (cond, mutex);

14 if (n != 0) perror_exit ("cond_wait failed");

15 }

16
17 void cond_signal (Cond *cond)

18 {

19 int n = pthread_cond_signal (cond);

20 if (n != 0) perror_exit ("cond_signal failed");

21 }

9.2 Make your own semaphores 263

9.2.1 Semaphore implementation hint

Here is the structure definition I used for my semaphores:

1 typedef struct {

2 int value, wakeups;

3 Mutex *mutex;

4 Cond *cond;

5 } Semaphore;

value is the value of the semaphore. wakeups counts the number of pending
signals; that is, the number of threads that have been woken but have not yet
resumed execution. The reason for wakeups is to make sure that our semaphores
have Property 3, described in Section 4.3.

mutex provides exclusive access to value and wakeups; cond is the condition
variable threads wait on if they wait on the semaphore.

Here is the initialization code for this structure:

1 Semaphore *make_semaphore (int value)

2 {

3 Semaphore *semaphore = check_malloc (sizeof(Semaphore));

4 semaphore->value = value;

5 semaphore->wakeups = 0;

6 semaphore->mutex = make_mutex ();

7 semaphore->cond = make_cond ();

8 return semaphore;

9 }

264 Synchronization in C

9.2 Make your own semaphores 265

9.2.2 Semaphore implementation

Here is my implementation of semaphores using Pthread’s mutexes and condi-
tion variables:

1 void sem_wait (Semaphore *semaphore)

2 {

3 mutex_lock (semaphore->mutex);

4 semaphore->value--;

5
6 if (semaphore->value < 0) {

7 do {

8 cond_wait (semaphore->cond, semaphore->mutex);

9 } while (semaphore->wakeups < 1);

10 semaphore->wakeups--;

11 }

12 mutex_unlock (semaphore->mutex);

13 }

14
15 void sem_signal (Semaphore *semaphore)

16 {

17 mutex_lock (semaphore->mutex);

18 semaphore->value++;

19
20 if (semaphore->value <= 0) {

21 semaphore->wakeups++;

22 cond_signal (semaphore->cond);

23 }

24 mutex_unlock (semaphore->mutex);

25 }

Most of this is straightforward; the only thing that might be tricky is the
do...while loop at Line 7. This is an unusual way to use a condition variable,
but in this case it is necessary.

Puzzle: why can’t we replace this do...while loop with a while loop?

266 Synchronization in C

9.2 Make your own semaphores 267

9.2.3 Semaphore implementation detail

With a while loop, this implementation would not have Property 3. It would
be possible for a thread to signal and then run around and catch its own signal.

With the do...while loop, it is guaranteed that when a thread signals, one
of the waiting threads will get the signal, even if another thread gets the mutex
at Line 3 before one of the waiting threads resumes.

268 Synchronization in C

Bibliography

[1] Gregory R. Andrews. Concurrent Programming: Principles and Practice.
Addison-Wesley, 1991.

[2] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley,
1997.

[3] Edsger Dijkstra. Cooperating sequential processes. 1965. Reprinted in
Programming Languages, F. Genuys, ed., Academic Press, New York 1968.

[4] Armando R. Gingras. Dining philosophers revisited. ACM SIGCSE Bul-

letin, 22(3):21–24, 28, September 1990.

[5] Max Hailperin. Operating Systems and Middleware: Supporting Controlled

Interaction. Thompson Course Technology, 2006.

[6] Joseph M. Morris. A starvation-free solution to the mutual exclusion prob-
lem. Information Processing Letters, 8:76–80, February 1979.

[7] David L. Parnas. On a solution to the cigarette smokers’ problem without
conditional statements. Communications of the ACM, 18:181–183, March
1975.

[8] Suhas Patil. Limitations and capabilities of dijkstra’s semaphore primitives
for coordination among processes. Technical report, MIT, 1971.

[9] Kenneth A. Reek. Design patterns for semaphores. In ACM SIGCSE, 2004.

[10] Abraham Silberschatz and Peter Baer Galvin. Operating Systems Concepts.
Addison Wesley, fifth edition, 1997.

[11] William Stallings. Operating Systems: Internals and Design Principles.
Prentice Hall, fourth edition, 2000.

[12] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, second
edition, 2001.

270 BIBLIOGRAPHY

Appendix A

Cleaning up Python threads

Compared to a lot of other threading environments, Python threads are pretty
good, but there are a couple of features that annoy me. Fortunately, you can
fix them with a little clean-up code.

A.1 Semaphore methods

First, the methods for Python semaphores are called acquire and release,
which is a perfectly reasonable choice, but after working on this book for a
couple of years, I am used to signal and wait. Fortunately, I can have it my
way by subclassing the version of Semaphore in the threading module:

Listing A.1: Semaphore name change

1 import threading

2
3 class Semaphore(threading._Semaphore):

4 wait = threading._Semaphore.acquire

5 signal = threading._Semaphore.release

Once this class is defined, you can create and manipulate Semaphores using
the syntax in this book.

Listing A.2: Semaphore example

1 mutex = Semaphore()

2 mutex.wait()

3 mutex.signal()

A.2 Creating threads

The other feature of the threading module that annoys me is the interface for
creating and starting threads. The usual way requires keyword arguments and

272 Cleaning up Python threads

two steps:

Listing A.3: Thread example (standard way)

1 import threading

2
3 def function(x, y, z):

4 print x, y, z

5
6 thread = threading.Thread(target=function, args=[1, 2, 3])

7 thread.start()

In this example, creating the thread has no immediate effect. But when
you invoke start, the new thread executes the target function with the given
arguments. This is great if you need to do something with the thread before it
starts, but I almost never do. Also, I think the keyword arguments target and
args are awkward.

Fortunately, we can solve both of these problems with four lines of code.

Listing A.4: Cleaned-up Thread class

1 class Thread(threading.Thread):

2 def __init__(self, t, *args):

3 threading.Thread.__init__(self, target=t, args=args)

4 self.start()

Now we can create threads with a nicer interface, and they start automati-
cally:

Listing A.5: Thread example (my way)

1 thread = Thread(function, 1, 2, 3)

This also lends itself to an idiom I like, which is to create multiple Threads
with a list comprehension:

Listing A.6: Multiple thread example

1 threads = [Thread(function, i, i, i) for i in range(10)]

A.3 Handling keyboard interrupts

One other problem with the threading class is that Thread.join can’t be inter-
rupted by Ctrl-C, which generates the signal SIGINT, which Python translates
into a KeyboardInterrupt.

A.3 Handling keyboard interrupts 273

So, if you write the following program:

Listing A.7: Unstoppable program

1 import threading, time

2
3 class Thread(threading.Thread):

4 def __init__(self, t, *args):

5 threading.Thread.__init__(self, target=t, args=args)

6 self.start()

7
8 def parent_code():

9 child = Thread(child_code, 10)

10 child.join()

11
12 def child_code(n=10):

13 for i in range(n):

14 print i

15 time.sleep(1)

16
17 parent_code()

You will find that it cannot be interrupted with Ctrl-C or a SIGINT1.
My workaround for this problem uses os.fork and os.wait, so it only works

on UNIX and Macintosh. Here’s how it works: before creating new threads, the
program invokes watcher, which forks a new process. The new process returns
and executes the rest of the program. The original process waits for the child
process to complete, hence the name watcher:

Listing A.8: The watcher

1 import threading, time, os, signal, sys

2
3 class Thread(threading.Thread):

4 def __init__(self, t, *args):

5 threading.Thread.__init__(self, target=t, args=args)

6 self.start()

7
8 def parent_code():

9 child = Thread(child_code, 10)

10 child.join()

11
12 def child_code(n=10):

13 for i in range(n):

14 print i

15 time.sleep(1)

1At the time of this writing, this bug had been reported and assigned number 1167930,
but it was open and unassigned (https://sourceforge.net/projects/python/).

274 Cleaning up Python threads

16
17 def watcher():

18 child = os.fork()

19 if child == 0: return

20 try:

21 os.wait()

22 except KeyboardInterrupt:

23 print ’KeyboardInterrupt’

24 os.kill(child, signal.SIGKILL)

25 sys.exit()

26
27 watcher()

28 parent_code()

If you run this version of the program, you should be able to interrupt it with
Ctrl-C. I am not sure, but I think it is guaranteed that the SIGINT is delivered
to the watcher process, so that’s one less thing the parent and child threads
have to deal with.

I keep all this code in a file named threading cleanup.py, which you can
download from greenteapress.com/semaphores/threading_cleanup.py

The examples in Chapter 8 are presented with the understanding that this
code executes prior to the example code.

Appendix B

Cleaning up POSIX threads

In this section, I present some utility code I use to make multithreading in C a
little more pleasant. The examples in Section 9 are based on this code.

Probably the most popular threading standard used with C is POSIX
Threads, or Pthreads for short. The POSIX standard defines a thread model
and an interface for creating and controlling threads. Most versions of UNIX
provide an implementation of Pthreads.

B.1 Compiling Pthread code

Using Pthreads is like using most C libraries:

• You include headers files at the beginning of your program.

• You write code that calls functions defined by Pthreads.

• When you compile the program, you link it with the Pthread library.

For my examples, I include the following headers:

Listing B.1: Headers

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <pthread.h>

4 #include <semaphore.h>

The first two are standard; the third is for Pthreads and the fourth is for
semaphores. To compile with the Pthread library in gcc, you can use the -l

option on the command line:

1 gcc -g -O2 -o array array.c -lpthread

276 Cleaning up POSIX threads

This compiles array.c with debugging info and optimization, links with the
Pthread library, and generates an executable named array.

If you are used to a language like Python that provides exception handling,
you will probably be annoyed with languages like C that require you to check
for error conditions explicitly. I often mitigate this hassle by wrapping library
function calls together with their error-checking code inside my own functions.
For example, here is a version of malloc that checks the return value.

1 void *check_malloc(int size)

2 {

3 void *p = malloc (size);

4 if (p == NULL) {

5 perror ("malloc failed");

6 exit (-1);

7 }

8 return p;

9 }

B.2 Creating threads

I’ve done the same thing with the Pthread functions I’m going to use; here’s
my wrapper for pthread create.

1 pthread_t make_thread(void *entry)(void , Shared *shared)

2 {

3 int n;

4 pthread_t thread;

5
6 n = pthread_create (&thread, NULL, entry, (void *)shared);

7 if (n != 0) {

8 perror ("pthread_create failed");

9 exit (-1);

10 }

11 return thread;

12 }

The return type from pthread create is pthread t, which you can think
of as a handle for the new thread. You shouldn’t have to worry about the
implementation of pthread t, but you do have to know that it has the semantics
of a primitive type1. That means that you can think of a thread handle as an
immutable value, so you can copy it or pass it by value without causing problems.
I point this out now because it is not true for semaphores, which I will get to
in a minute.

1Like an integer, for example, which is what a pthread t is in all the implementations I
know.

B.3 Joining threads 277

If pthread create succeeds, it returns 0 and my function returns the handle
of the new thread. If an error occurs, pthread create returns an error code
and my function prints an error message and exits.

The parameters of pthread create take some explaining. Starting with the
second, Shared is a user-defined structure that contains shared variables. The
following typedef statement creates the new type:

1 typedef struct {

2 int counter;

3 } Shared;

In this case, the only shared variable is counter. make shared allocates
space for a Shared structure and initializes the contents:

1 Shared *make_shared ()

2 {

3 int i;

4 Shared *shared = check_malloc (sizeof (Shared));

5 shared->counter = 0;

6 return shared;

7 }

Now that we have a shared data structure, let’s get back to pthread create.
The first parameter is a pointer to a function that takes a void pointer and
returns a void pointer. If the syntax for declaring this type makes your eyes
bleed, you are not alone. Anyway, the purpose of this parameter is to specify
the function where the execution of the new thread will begin. By convention,
this function is named entry:

1 void *entry (void *arg)

2 {

3 Shared *shared = (Shared *) arg;

4 child_code (shared);

5 pthread_exit (NULL);

6 }

The parameter of entry has to be declared as a void pointer, but in this
program we know that it is really a pointer to a Shared structure, so we can
typecast it accordingly and then pass it along to child code, which does the
real work.

When child code returns, we invoke pthread exit which can be used to
pass a value to any thread (usually the parent) that joins with this thread. In
this case, the child has nothing to say, so we pass NULL.

B.3 Joining threads

When one thread want to wait for another thread to complete, it invokes
pthread join. Here is my wrapper for pthread join:

278 Cleaning up POSIX threads

1 void join_thread (pthread_t thread)

2 {

3 int ret = pthread_join (thread, NULL);

4 if (ret == -1) {

5 perror ("pthread_join failed");

6 exit (-1);

7 }

8 }

The parameter is the handle of the thread you want to wait for. All my
function does is call pthread join and check the result.

B.4 Semaphores

The POSIX standard specifies an interface for semaphores. This interface is
not part of Pthreads, but most UNIXes that implement Pthreads also provide
semaphores. If you find yourself with Pthreads and without semaphores, you
can make your own; see Section 9.2.

POSIX semaphores have type sem t. You shouldn’t have to know about
the implementation of this type, but you do have to know that it has structure
semantics, which means that if you assign it to a variable you are making a copy
of the contents of a structure. Copying a semaphore is almost certainly a bad
idea. In POSIX, the behavior of the copy is undefined.

In my programs, I use capital letters to denote types with structure seman-
tics, and I always manipulate them with pointers. Fortunately, it is easy to put
a wrapper around sem t to make it behave like a proper object. Here is the
typedef and the wrapper that creates and initializes semaphores:

1 typedef sem_t Semaphore;

2
3 Semaphore *make_semaphore (int n)

4 {

5 Semaphore *sem = check_malloc (sizeof(Semaphore));

6 int ret = sem_init(sem, 0, n);

7 if (ret == -1) {

8 perror ("sem_init failed");

9 exit (-1);

10 }

11 return sem;

12 }

make semaphore takes the initial value of the semaphore as a parameter.
It allocates space for a Semaphore, initializes it, and returns a pointer to
Semaphore.

B.4 Semaphores 279

sem init uses old-style UNIX error reporting, which means that it returns
-1 if something went wrong. Once nice thing about these wrapper functions is
that we don’t have to remember which functions use which reporting style.

With these definitions, we can write C code that almost looks like a real
programming language:

1 Semaphore *mutex = make_semaphore(1);

2 sem_wait(mutex);

3 sem_post(mutex);

Annoyingly, POSIX semaphores use post instead of signal, but we can fix
that:

1 int sem_signal(Semaphore *sem)

2 {

3 return sem_post(sem);

4 }

That’s enough cleanup for now.

