

Moment of Inertia & Parallel Axis Theorem

Foundational Idea

 $KE = 1/2 \text{ mV}^2$ (Here v is a constant)

- In rotating bodies, <u>linear velocity of each particle</u> <u>varies</u> with distance from the axis.
 - Need a different approach to calculate kinetic energy in rotating bodies.
- When a rigid body rotates around an axis, <u>each</u> <u>particle</u> moves in a circle with its own radius and linear velocity
 - However, the angular velocity ω is constant for each particle

Linear Motion: v is constant

Rotation: v changes, ω is constant

- 1. Divide the body into small masses $(m_1, m_2, ..., m_n)$ each with its velocity $(v_1, v_2, ..., v_n)$.
- 2. Find KE of each particle: $KE = 1/2 m_i V_i^2$ where "i" represents any particle

i changes from 1 to n, or particle number 1 to the last particle n

3. Sum the KEs:

Total KE = $\Sigma 1/2 (m_i V_i^2)$

4. Use $v = \omega r$ to find velocity of each particle

Total KE = $\Sigma 1/2 m_i (\omega r_i)^2$.

 $KE = 1/2 \ (\Sigma \ m_i r_i^2) \ \omega^2$

Moment of Inertia "I" of a Body

 $\mathbb{I}=\Sigma\;\mathcal{M}_{i}r_{i}^{2}$

(from previous slide)

Then we can write KE in terms of I:

 $KE = 1/2 \ (I\omega^2)$

Understanding Rotational Inertia

- Depends on mass distribution relative to the axis.
- More the mass near the axis, more the I value
- Different axes yield different I values

Moment of Inertia

A. For discrete particles: $I = \Sigma m_i r_i^2$.

Example: This body is a collection of 3 discrete masses m1, m2 and m3

Example: Using Integrals to find I for a rod rotating about the center

/ The Parallel Axis Theorem

SCIENCE CUBE

If I_0 is the rotational inertia <u>about the axis through the center of mass</u>, the rotational inertia I about <u>any parallel axis</u> is:

 $I = I_0 + Mh^2$

h is the perpendicular distance between the axes.

Example: Rod Rotated About 2 Different Axes

Central Axis:

 $I_0 = (1/12) ML^2$

End Axis (Using Parallel Axis Theorem)

 $I = (1/12) ML^2 + M(L/2)^2$ $I = (1/3) ML^2$

Discus Throw: Linear & Angular Acceleration

Because of Velocity "V", pody experiences centripetal acceleration

> This component of acceleration will appear only if "v" changes with time

This would be the resultant acceleration, a vector sum of radial and tangential acceleration

Equations of Motion in Rotation

SN	Angular Equation	Equivalent Linear Equation
1	$\omega = \omega_0 + \alpha +$	$V = V_0 + at$
2	$\vartheta - \vartheta_0 = \omega_0 t + 1/2 \alpha t^2$	$x - x_0 = V_0 t + 1/2 a t^2$
3	$\omega^2 = \omega_0^2 + 2\alpha \left(\vartheta - \vartheta_0 \right)$	$v^2 = v_0^2 + 2a(x - x_0)$
4	$\vartheta - \vartheta_0 = 1/2 (\omega_0 + \omega) +$	$x - x_0 = 1/2 (v_0 + v) +$
5	$\vartheta - \vartheta_0 = \omega t - 1/2 \alpha t^2$	$x - x_0 = vt - 1/2 at^2$

ω (Angular Velocity):

The rate at which an object rotates or revolves relative to another point, i.e., how fast the angle changes.

ω_0 (Initial Angular Velocity):

The angular velocity at the initial time (t = 0).

a (Angular Acceleration): The rate of change of angular velocity.

ϑ (Angular Displacement):

The angle in radians through which a point or line has been rotated in a specified sense about a specified axis.

θ_0 (Initial Angular Position):

The initial angle at the starting time (t = 0).

Summary of Rotational Variables

Equation	When to Use	Notes / Caution
$s = \vartheta * r$	To find arc length (s) given angle (θ) and radius (r)	ϑ must be in radians.
$v = \omega * r$	To find linear velocity (v) given angular speed (w) and radius (r)	The v value would be same for all points at Radius (r)
T = (2π * r) / v	To find the period of revolution (T) given radius (r) and linear velocity (v)	Ensure v is the linear speed.
$T = 2\pi / \omega$	To find the period of revolution (T) given angular speed (ω)	ω must be constant for the body.
	To find tangential acceleration (a_t) given angular acceleration ($\!\alpha$) and radius (r)	α must be constant. Becomes zero if v is constant
	To find radial (centripetal) acceleration (ar) given linear velocity (v) and radius (r)	If v is constant, it becomes uniform circular motion.
	To find radial (centripetal) acceleration (a_r) given angular speed (ω) and radius (r)	ω must be constant for the body.

Moment of Inertia of Some Shapes

www.thesciencecube.com

Image Source: Fundamentals of Physics Halliday & Resnick 10th edition

Angles and Radian Equivalents

Angle (Degrees)	Angle (Radians)
D ^o	D
30°	π/6
45°	π/4
60°	π/3
90°	π/2
120°	2п/3
135°	3п/4
150°	5п/ф
180°	Π

Angle (Degrees)	Angle (Radians)
210°	7п/6
225°	5π/4
240°	4π/3
270°	3п/2
300°	5π/3
315°	7n/4
330°	11π/6
360°	2π