
PCL vs SAP By: Mosh Hamedani

 
Sharing Code

We have two options for sharing code across different platforms in a Xamarin Forms
app:

• Portable Class Library (PCL)

• Shared Assets Project (SAP)

The recommended approach is to use the PCL as it results in cleaner and more
readable code.

Portable Class Library (PCL)

A PCL is a class library that can be ported to multiple platforms. And for this portability, it
uses a subset of .NET that is available on all these platforms. More specifically, the
version of .NET that is available to Android and iOS projects is different from the one
used by Windows projects. You’ll see this difference in the lecture called “Working with
File System” in “Data Access” section.

The code in this portable class library is bundled into a dynamically-linked library (DLL)
that each application project (e.g. Android, iOS, etc) references and binds to at run time.
If you’ve built regular desktop or web applications with C#, chances are you’ve
referenced one or more class libraries in the same solution. When you run your
application, it binds to these class libraries at runtime.

Now, there are times that we need to write platform-specific code in the PCL. For
example, on iOS, we often set 20 units padding on top of the page. We want the code
for setting the padding to run only on an iOS device. To achieve this, we use the Device
class in Xamarin Forms:

if	(Device.OS	==	TargetPlatform.iOS)	{	…	} 
else	if	(Device.OS	==	TargetPlatform.Android)	{	…	}	

�1

PCL vs SAP By: Mosh Hamedani

 
Shared Assets Project (SAP)

With SAP, we don’t have a separate class library, even though the Visual Studio solution
gives you such an illusion at first. You may think that the folder that identifies the shared
assets is a class library, but it’s not. The code we write here is included with each of the
application projects at build time. Now, if we want to write platform-specific code here,
we need to use the old (and super ugly) 70’s style C# preprocessor directives:

#if	__IOS__	 
				… 
#elif	__ANDROID__ 
				… 
#endif	

Why do we have to use these preprocessor directives? Because the same code file (e.g
MyPage.cs) is referenced by all application projects and is included at build time.
Preprocessor directives select a subset of the code for compilation depending on the
target platform. So, if we’re compiling the Droid project, the following section will be
ignored:

#if	__IOS__ 
				…	

It’s the same as commenting out the code.

�2

PCL vs SAP By: Mosh Hamedani

 
PCL vs SAP

So, the main difference between PCL and SAP is how we deal with platform-specific
code:

• PCL: Using the Device class

• SAP: Using preprocessor directives (#if, #elif, #endif)

The only downside to PCL is that here we have access to a subset of .NET. But this is
not a limitation whatsoever. First of all, the version of .NET we have here is sufficient for
most scenarios. But even in situations where we need to use parts of .NET that are not
available in the PCL, we can use interfaces to solve this problem. In the PCL, we declare
and interface, and then implement it in each application project. In the implementation,
we have access to the full .NET for that platform. You’ll learn about this technique in the
Data Access section.

So, this tiny limitation aside, PCL is the preferred way to share code across different
platforms.

�3

