

Coder Manual
 Job Hunting Handbook

Author: Rob Dey

Website: http://codermanual.com

Table of Contents
1. Have a Strategy

2. Presentation Layer

3. Job Hunting and Outreach

4. Acing the Interview

5. Further Learning

6. General Tips

7. Glossary

Preface
At this point, you’ve hopefully completed a full Coder Manual
course and have real, practical web development experience.
If so, congratulations! You’ve accomplished quite a bit and you
should be proud. You’re ready to step into the world of profes-

sional web development and you’re in for a treat. You’ll hope-
fully find that being a web developer can be a great experi-
ence - fulfilling work, high salaries, great work/life balance,
flexible companies, half-day fridays, free beer (if you’re of age)
are not uncommon on job listings, if you know where to look.

I’ve written this ebook to help you apply what you’ve learned
and earn money. I strongly recommend that you read through
it all the way through - it is full of tips and information that will
round out your understanding of being a web developer and
enable you to hang with the seasoned developers more com-
fortably. Don’t worry, this ebook is designed to be an easy,
quick read.

I. Have a Strategy
Now that you have development experience, you may be inter-
ested in a number of ways to apply your new skills. Perhaps
you want to work full-time, part-time, free-lance, or start your
own business.

This chapter will “demystify” your options and help you make
good choices as you move forward.

1

An important note: everyone’s skill level will vary based on ex-
perience and ability to absorb new concepts. The best way to
get better is to write more code. That said, a large part of a
web developer’s job is to tackle new things, i.e. solve prob-
lems they’ve never faced. You’ll hear many people say that
half of the job of a web developer is using Google to find solu-
tions. Even if you have experience building multiple applica-
tions at this point, you need to embrace the fact that, you’ll of-
ten face problems you’ve never coded solutions for - the real
skill of a programmer is to be able to make the computer work
for you no matter what task is at hand. The point I’m making is
that, while you should always be conscious of your current skill
level, be fearless in your approach to new things and under-
stand that your job will often be to solve problems you’ve
never encountered before. Don’t let it demotivate you early on
if you get stuck on problems - everyone goes through that at
some point, and you’ll get better and better with each new
problem and solution.

Also note that your learning doesn’t necessarily end as a web
developer, because of the rapid evolution of technology. Try to
be comfortable with the idea that you’ll be learning new things
fairly regularly. The benefit is that your value, and thus salary
potential, increases as you learn.

Here are a few suggested strategies for moving forward:

1. Seeking Full-Time/Part-time Work

There are two common approaches I want to point out.

a. Join a company/startup and work on a single company’s
code.

b. Join a digital agency and work on a variety of projects for
multiple companies. Digital agencies are basically outsour-
ced teams that do web/programming/marketing work for mul-
tiple companies at the same time. Hashrocket
(http://hashrocket.com) is a well known shop that might fall
under this category.

c. Find and connect with recruiters and let them do the work of
getting you hired (e.g. http://www.cybercoders.com).

There are pros and cons for each approach. Let’s start with
(a), joining a startup or established company. If you go with
(a), I recommend that you first choose the company based on
an alignment of interest and values (we’ll discuss how to find
these companies in a bit). What I mean is that you should
work for a company that you believe in - every company gener-
ally has a mission. Don’t just join a company for the money, or
who pays the most. Even if you’re strapped for cash, do your
best and hold out for the company that is closest aligned with
your own beliefs. The good thing is that there has been an ex-
plosion of new companies, not just in Silicon Valley (or New
York, or any of the large cities where tech is flourishing), but all
across the globe. People have caught wind of the startup
movement and the momentum is really on the move - which

2

http://hashrocket.com
http://hashrocket.com
http://www.cybercoders.com
http://www.cybercoders.com

means you have plenty of options (if you know where to look).
Tech has grown in virtually every industry, so whether you’re
interested in healthcare, helping the poor, getting rich in the fi-
nal sector, or anything in between, there’s a decent chance
that there is a job waiting for you. Take a hard look at your own
interests and try to find a company with the best match.

The reason why this is so important is that, once the excite-
ment of the new paycheck dies down, your work/life balance
and happiness at work will be based on the work you’re doing
for the company. Make it worth it for yourself - you’ll become a
better coder, and have meaning in your day-to-day work/life
balance. You’ll be happier.

You’ll also likely develop a sense of camaraderie with your
teammates so try to get to know the team before you join a
company. Try to find a team that you can learn from. Interview
them when they interview you. Get a sense for what they’ve
accomplished, who else they’ve worked for, and how sophisti-
cated their current approaches are to web development. Every
team handles things differently, and some are more sophisti-
cated than others, sheerly based on experience.

In contrast, going with (b), joining a digital agency, will at
least give you exposure to many different people and compa-
nies (who will be your clients at a digital agency), and there-
fore you’ll get exposure to many different ways to building and
maintaining web technology.

In terms of money, even as an entry level Rails developer (no
previous work experience), you should be able to find a com-
pany or startup that pays $60-$80k for full-time work. Some
companies pay even more than this for entry level program-
mers. According to the Bureau of Labor Statistics, the median
pay for software developers (programmers) in 2012 was
$93,350. If you do a Google search for things like ‘rails devel-
oper entry level salary’ or ‘rails developer average salary’ you
can sift through many sites to get a sense of the market value
of your skill set. Keep in mind, every resource gathers their
data differently, so variance will be apparent, but the BLS met-
rics are usually a good benchmark.

The main reason you should go with a digital agency is to
build experience. If you have the mindset of putting aside your
passions and values to build experience (which is totally re-
spectable), then going with a digital agency is a good choice.

Digital agencies are usually small or medium sized companies
that are hired (‘outsourced’) by small businesses to Fortune
500 companies for their technology and/or marketing needs.
You would likely join their IT staff to handle web development.
They sometimes have a team of designers who work closely
with you to create the web experience that the client is looking
for. Digital agencies also usually have a salesperson or sales
team that goes out and gets work from clients. You’ll have to
get good at ‘scoping out the work’ to estimate how many hours
each project will require before you get started, so that the
sales team can propose costs to the clients.

3

Digital agencies are abundant across the globe and are often
hiring actively or are passively on the lookout for new talent.
Since many digital agencies work on projects for Fortune 500
companies, this is a good way to get first hand experience with
that level of establishment. You’ll build a wealth of skills at an
agency since every project will probably be very different from
the last, and you’ll also get a sense for efficient work flows.

The downside here is that you’re usually not working on a pro-
ject that you’re passionate about on a personal level. On a pro-
fessional level, you may really enjoy your work, but how mean-
ingful it is will vary.

Finally, you could go with (c), connecting with a recruiter for
them to assist in placing you at a company. Sometimes if you
fill out a LinkedIn profile (you can set up a free account at
http://linkedin.com) completely and state that you have Rails
experience recruiters may contact you directly. Once you build
more experience, you’ll find recruiters contacting you regularly.
You can also reach out to recruiting firms - search Google for
things like ‘Rails recruiters’ or recruiters in the nearest big city,
you should be able to find companies. From there just be hon-
est - if you’re inexperienced let them know you want entry
level positions, but still be descriptive about what you’ve built
(i.e. e-commerce experience, HTML, CSS, and so on).

2. Become a Freelancer

You may already have a great job in a specialty outside of web
development or you may just want to get your feet wet before
you dive in and start committing larger portions of your time to
web development. If that is the case, freelancing may be per-
fect for you.

Working as a freelancer can be fulfilling because you’re still
your own boss and you have a lot more control over when you
want to work and who you want to produce a product for. It
makes for a flexible lifestyle.

The downside is that it is usually up to you to seek out the
work, and if this approach becomes your livelihood, you need
to make sure you’re able to find work regularly (we’ll cover this
in a bit).

The great thing about freelancing is that in 2015 and beyond,
almost everyone needs a website. Whether it is a local shop or
a friend, lots of people are in need of help with getting a web-
site running and most people don’t know how to do that. If you
know where to look, you can keep yourself very busy.

Being a freelancer requires a lot of organization. Not too
much, but just enough to get things done right. You’ll have to
wear many hats in your role. Freelancers will often team up
with other web developers or designers to split up the work. If
you choose this route, you should really value good, clear com-
munication. This is one of the most important parts of the job
and it really helps you in all aspects of career growth as a free-

4

lancer. You’ll also need to be conservative in your estimates of
time and scope of work (we’ll discuss this later), and only take
on work that you feel confident about producing well.

3. Start Your Own Business

If you think you’ve got a great business idea, you might want
to consider building a business. We can’t get into the full
breadth of subtopics related to starting a web business here,
but I’ll point you in the right direction. People have many differ-
ent goals and expected outcomes when starting businesses,
but since the first dot com bubble and the latest wave of
startup culture, there are a few sort of ‘universal truths’ - if you
will - that have surfaced. Personally, I’ve built my own profit-
able business (http://DJCoursesOnline.com), but not without
experiencing failure first (more on failure in a bit).

Here are some things to think about before starting a busi-
ness:

a. Be Driven by Passion (as cliché as it sounds, it’s true)

Starting a business is challenging, but if you’re truly passion-
ate about your company mission, you may increase your odds
of success. Your company needs to align with your personal
views. You should take a hard look at yourself and make sure
you’re dead-honestly passionate about what you’re doing. The
reason you need this is because you will inevitably work long
hours and this passion is literally like the fuel in your car - it is
what will keep you going. Remember that most businesses

fail. Passion will drive people to do crazy things and it takes
‘crazy’ sometimes to achieve great results.

b. Solve a Need

Your business may never get off the ground and become profit-
able if it doesn’t solve a need. Again, you need to take a hard
look and see if it really does. A good strategy is to test the po-
tential before even starting the business - survey a number of
people to get significant feedback and sentiment about your
solution to a problem. Would people pay for it? Is it scalable?
It is very easy to get a sense of momentum in your mind about
an idea that you think is cool or has potential, and that makes
it easy to convince yourself that your business will work.
Again, most businesses fail, and you need to be comfortable
with that possibility. The more your business solves a real
need that people experience, the less there’s a likelihood of
failure.

c. Growth Doesn’t Happen on its Own

Some people launch websites thinking that traffic will just
come right after launching. A physical store in a strip mall in a
small town has better odds of getting traffic than a website.
Marketing your site is a very real and necessary task in order
to see growth. You may eventually get ranked in a search en-
gine’s results list but not until you have traffic in the first place.
Search engine algorithms change regularly to become smarter
at detecting which sites people care about visiting (i.e. sites

5

http://djcoursesonline.com
http://djcoursesonline.com

with good content) vs. sites that don’t add value to people’s
day or lives. So the first step after launching a business is to
get people through the door. You should consider press as one
of your top priorities. You could pay for ads or try to market
your site all by yourself, but, press is one of the best, most
cost-effective ways to go. If you’re solving a need, the press
will naturally want to cover your product.

d. Criticism, Failure, and Adaptation (Pivoting)

Society, sometimes places very strange views on lots of
things, two of those being criticism and failure. Contrary to
what most people will say, criticism and failure are very power-
ful agents in your path to success. They are good, useful
things. You should always seek negative feedback and criti-
cism because you simply can’t look at your own product with
the same perspective as others. They will show you things that
you simply don’t see. You don’t always have to agree, but
you’re better off building a list of observations from others than
being clueless.

Regarding failure, use every single experience of failure - big
or small - as a lesson. Break it down as if you’re in a class-
room and really look at what caused the failure and how you
can do better going forward. If you become a student of your
own failures, you’ll grow personally and build better busi-
nesses. Also, if there is a chance of failure, try to let it happen
early and often. You’ll learn more up front, and you can usually
risk more earlier than later. You should get comfortable with

the fact that many ideas can or will fail and that you should
move past them quickly. It is very easy to get into the mindset
of becoming attached to a business idea, and not wanting to
let go for a year or longer. That is valuable time you could
spend learning and testing new things. Most successful entre-
preneurs you’ve heard about have had many failures before
their most popular success stories. Finding a business model
that works is like throwing things on a wall to see what sticks -
throw lots of things and something will eventually stick. It may
sound counterintuitive and fairly childish, but it is generally
true.

II. Presentation Layer
Before you start reaching out to companies, you need to have
your ‘presentation layer’ looking great. If you’re seeking work
as an employee I’m referring to four things here:

a. Résumé

b. Portfolio/Code repository

c. Cover letter

d. Web presence

Let’s start with (a). Your résumé should be short - no more
than one page unless you have 5+ years of relevant work ex-
perience that simply can’t fit on one page. If you have no prior
web development experience, focus on previous experiences

6

you’ve had that could make you a fun person to work with and
show that you can exceed expectations. Remember that being
a web developer is really like being a problem solver who uses
code as the medium for the solution. If you can show that you
will really dig to solve problems and not give up easy, you’ll be
telling employers that you have the right traits.

Regarding (b), if you’ve completed a Coder Manual course at
this point, you should already have pieces of a portfolio and
real experience building production grade aspects of applica-
tions. Having a live portfolio site that an employer can visit be-
fore or during an interview will help. Often times, employers
want to see your Github account or whichever repository site
you use. Therefore, you should take that seriously and keep
pushing public projects or small applications that you build to
your Github account - the site tracks your activity over time so
you may want to avoid a cold streak before applying to compa-
nies just to stay fresh.

In terms of (c), you should always add a cover letter when-
ever possible if you’re applying for a job. Even if there is no
place to add one in the application, find an email address of a
relevant person at the company to send it to. Try to keep it
short and snappy - just a few paragraphs. That increases the
odds that employers will read it all. The cover letter is your
chance to convey a few key things that will get you in the front
of the line before interviews even happen: you can show that
you’re a great communicator by writing well; you can use your
real speaking voice in terms of diction for employers to get a

sense of your personality; you can express interest in the com-
pany; and you can point to your best projects quickly before
they’ve reviewed your résumé.

The format I like to follow:

- Opening line after your greeting should go something like:
“I’m very interested in the Rails developer opportunity and I
want to tell you why I may be a good fit.”

- Then, the first paragraph should briefly list the relevant lan-
guages and technologies you have experience with, such as
HTML, CSS, JS, Ruby, Rails, etc. You should also mention a
quick line about your personality such as, “my friends know
me as a passionate individual” or “my colleagues think of me
as a very uplifting kind of guy/girl.” Just be honest about your
top personality trait.

- The main body paragraph should list one, maybe two, things
about the employer’s current web technology, mission, or
other reason that makes you want to join them. It could be
that they have really cool interfaces and you’re passionate
about contributing to them, or that they are a music startup
and you make music, etc. Then, you should mention some of
your projects and embed the links to those projects in the
text itself; if you struggle with finding overlap between what
you’ve built and how it would pertain to the company, try to
be creative and dig in to your coding experiences or even
your workflow and work ethic - you’ll find overlap if you look

7

hard enough. The main point is to make sure you embed hy-
perlinks to your projects. This makes the cover letter a joy for
the reader because they can click inline links to see your pro-
jects as your words describe the relevance. This creates a co-
herent experience for the employer. For example, you could
say, “I’ve built and managed an application that serves DJ
courses to paying subscribers on various subscription plans,”
where part of that sentence links out to the project your de-
scribing. Most email applications allow you to embed hyper-
links in the text and this is an elegant way to show employers
your projects. Even if you only have practice applications
built, this will help you stand out as long as you explain your
application’s capabilities descriptively.

- Finally, add a paragraph - just a line or two - that explains
that you’re looking forward to a response, and that you’re in-
terested in learning more about the team. Also provide the
best way to be reached - ideally include your phone number
to be direct. You want to make sure you state that you’re inter-
ested in ‘learning more,’ as opposed to flat out saying that
you’re ‘the one for the job,’ in most cases. This shows that
you’re experienced in that you want to make sure you like the
team and the culture before you jump in - they’ll respect that.

In terms of (d), web presence, this refers to things like your
LinkedIn profile and other social media sites. You may want to
house your résumé on its own web page at yourname.com or
yourname.org, etc. You may also want to put together a site
that showcases your best work. A good looking portfolio will im-

press employers, and there are tons of free/low cost HTML rés-
umé and portfolio templates, that are just a Google search
away. Sites like http://about.me are also great solutions for cre-
ating personal web pages that look good. Again, a Google
search will show you similar options for website builder applica-
tions. You should also have the skills to build your own fairly
quickly since it should just be based on HTML, CSS, and
maybe JS and/or Bootstrap. Just remember that your web
presence represents the impression employers will have of
you so keep it real and professional. If you’re building a free-
lancing career, a great looking website or portfolio helps. You
can add to it over time as you get more clients. As mentioned
above you should be able to find templates or build your own
site.

III. Job Hunting and Outreach
1. Seeking Full-time/Part-time Jobs

As mentioned before, you should search for jobs that are
aligned with your personal interests. If you’re talking to recruit-
ers, let them know what your interests are. The excitement of
working for a great paycheck will wear off quickly and you’ll be
left with how much you really enjoy the work. The more mean-
ingful it is to you the better. See if you can find companies with
visions that match your own set of beliefs or simply meet your
objectives. Your goal may be to build experience, or work with
a specific kind of team.

8

http://djcoursesonline.com
http://djcoursesonline.com
http://djcoursesonline.com
http://djcoursesonline.com
http://about.me
http://about.me

Don’t underestimate the number of jobs that are out there.
What you see or hear about is likely just a sliver of what is out
there - its easy to develop impressions about job markets
based on friends and discussions, but it really is a massive
market. Here are some of the best places to look for jobs:

- http://authenticjobs.com (great list of companies, allows you
to filter for things like freelance, remote, full-time, etc.)

- https://weworkremotely.com (primarily lists remote jobs)

- http://stackoverflow.com/jobs

- http://www.simplyhired.com

- http://indeed.com

- http://flexjobs.com (another list of remote jobs)

- http://jobs.rubynow.com/ (mostly Ruby/Rails jobs)

- http://www.rorjobs.com/

Also, you’ll find interesting job boards like
https://nytm.org/made (which is an excellent site that lists hun-
dreds of NYC-based startups, many of which are hiring and
are open to remote work). There could be similar job boards
for other big cities as well. Get creative with Google and
search for companies directly. You never know what you may
find. Never be afraid to reach out to a company directly and ex-
press interest, even if they don’t actively state that they are hir-

ing, because in 2015 and beyond, nearly everyone needs tech
help. And regardless of which city their office is in, it’s worth
reaching out because of how many companies offer remote
jobs for programmers.

Don’t underestimate startups - they may be young companies,
but funded startups can sometimes pay higher salaries than
Fortune 500 companies while offering a modern or radically dif-
ferent company culture.

Read job listings carefully as employers often have key require-
ments of what to include in your application. Also, be sure to
go through a number of job listings just to get a sense of what
skills are required in general. You may see an emphasis on
certain skills that you feel could be brushed up a bit more be-
fore you apply. That said, companies are often willing to train
you if you meet most of the requirements and have a great per-
sonality.

Also, don’t forget to ask around. Again, many people are cur-
rently in need of web help, so there is a good chance some-
one in your network knows of an open position.

2. Freelancers

You need to have a real strategy if you’re planning on building
up your freelance career. It can be as simple as looking
through Yelp and calling local businesses directly, or hiring
someone to help you. Obviously, someone who has great
communication/sales skills is ideal for the sales role. Since this

9

http://authenticjobs.com
http://authenticjobs.com
https://weworkremotely.com
https://weworkremotely.com
http://stackoverflow.com/jobs
http://stackoverflow.com/jobs
http://www.simplyhired.com
http://www.simplyhired.com
http://indeed.com
http://indeed.com
http://flexjobs.com
http://flexjobs.com
http://jobs.rubynow.com
http://jobs.rubynow.com
http://www.rorjobs.com
http://www.rorjobs.com
https://nytm.org/made
https://nytm.org/made

isn’t a sales guide, we won’t cover those details here, but you
shouldn’t have too much trouble finding your first contract.
Again, if you don’t want to take the manual approach to sell to
companies directly, you can always check sites like the afore-
mentioned http://authenticjobs.com and filter for contract work
only, or work with recruiters. Also, you should be able to find
some contract work on Craigslist.

You’ll also need to have a process nailed down. Once you
land a client, the first thing you need to do is:

a. Have a conversation. Your goal should be to extract as
much detail from the client about exactly what they are look-
ing to have done. Keep in mind, there will likely be a loss in
translation. What I mean is that most of your prospects and
clients typically won’t use technical jargon that you should
be used to using at this point. Clients will also often under/
over-estimate the amount of work involved. Understand this
and keep things very clear as you proceed.

b. Provide the client with a formal ‘Scope of Work’ or ‘Pro-
posal.’ Those are just formal names for a document that out-
lines the work and costs involved. You’ll need to describe,
briefly, what is involved in each step and how many hours it
will take. For example, if you’re building a contact form for
the client, you’ll want to break it down into specific sections
and give each section a time estimate like “0.5 hours - View
file. We will create the markup for your contact form and link
the form fields to a contact object using embedded Ruby.”

Be conservative in your time estimates. You always want to
exceed expectations rather than let them down, and you
never know when you’ll run into an unforeseen problem. I’ve
heard the rule of thumb is to multiply the time you think it
would take for a given task by 2x or 3x. That way the client
is happier if you get the work done quicker as opposed to
the other way around. You’ll also need to clearly display
your hourly rate and the total cost for the work (include any
costs you may have to incur like hosting, API’s, etc.). Gener-
ally freelance Rails developers in the U.S. charge between
$55-$150/hr or more depending on experience. If you’ve got
very little experience, you may want to start low and work
your way up as you gain more client experience.

c. Communicate often and clearly. The client will appreciate
this. And always we remember to remain courteous even if
the client is an @$#%*&%! They’re out there - you’ve been
warned.

d. Get paid. Write up an invoice for the work when it is com-
plete and send it over to the client. You can find high quality
invoice templates from a quick Google search, that come in
various formats like Microsoft Word or Google Docs if you
don’t have access to Word.

IV. Acing the Interview
First of all, break down whatever you’ve been told about inter-
views before. It isn’t something to get nervous or too excited

10

http://authenticjobs.com
http://authenticjobs.com

about. It is simply a step in the path between you and a com-
pany. Unless the company states otherwise, you should think
of it as a conversation, not something so formal (obviously
maintain a professional appearance), and it is just as impor-
tant that you interview the company as much as it seems all
about you.

There are at least two types of interviews in the web world.
One is the typical interview where you talk to the company and
each find out if it’s a good fit (can happen over phone, video
chat, or in person). The other is a technical interview, which
usually happens if the employers value a formal or theoretical
computer science education - basically, they’ll quiz you to see
if you can solve some programming questions. It isn’t always a
deal breaker if you have trouble answering the questions, but
your other qualities would really have to shine in that case.

The typical, conversational interview is by far the most com-
mon but every now and then you’ll run into a technical inter-
view. Here are a few pointers for the typical interview:

a. First, if you happen to have a mellow personality, try to amp
it up a notch. It is hard for people to tell how interested we
are unless we really take the enthusiasm up a notch. Obvi-
ously, be genuine in your enthusiasm, and if you followed
the strategy tips mentioned previously, this shouldn’t be a
problem since you should be talking to a company you’re ex-
cited to be a part of anyway.

b. Learn how to find and convey value in the experience you
have, no matter how much or little you do have. When de-
scribing a previous project, you could phrase it like, “I built a
Rails app that takes payments,” or you could say it more
like, “I have experience building a Rails application from
front to back. The app supports e-commerce functionality
that I integrated from scratch - my users can sign up for free
or pay a monthly fee and automatically get billed via recur-
ring charges. I also integrated the Sendgrid API to give the
application the ability to send out email notifications and I’ve
deployed the application to live Heroku servers. You’re wel-
come to interact with it here: xyz.herokuapp.com.” In other
words, the same idea can be delivered in multiple ways, so
be thorough, thoughtful and descriptive. When you have
less experience, its important to make whatever you do
have really shine. That said, be honest in your descriptions -
you don’t want to set their expectations higher than you can
meet or exceed.

c. Interview them from the start. Make it clear from the begin-
ning that you’re interested in learning more about the com-
pany during the interview and that you have questions that
need to be answered. In particular, ask them about the
team. By default, you should be interested in knowing what
the team is like, how experienced they are, how many peo-
ple are involved, who you have to report to regularly, etc.,
but explicitly asking about these things will make them re-
spect you a lot. Asking about the team is a good way to

11

show real interest because it shows you’ve thought about
how things will work out on a personal level, beyond just the
professional level. Also, ask about the company culture - put
them on the spot and ask them what the day-to-day energy
feels like or ask them to describe a typical work day.

d. Emphasize that you’re a fast learner and deliver on that
promise. You don’t have to be brilliant to follow through on
that, you just have to be persistent. Plan to take notes regu-
larly on the job, so that your teammates don’t have to repeat
things - especially in your first year, you’ll have to maintain
passwords, learn new processes, etc., so the other develop-
ers will appreciate you being eager to stay on top of things.

To prepare for technical interviews, you can search Google for
things like ‘ruby on rails interview questions’ to get a sense of
what might be asked, but note that the sites you’ll find will vary
widely in terms of what they think are common technical inter-
view questions. So don’t let those questions scare you, they
come in a wide variety of difficulty ranges. Remember, even if
you had no prior experience, if you’ve successfully completed
a Coder Manual course, you’ve got proven chops by now,
since you’ve built real, practical applications and that should
be the most important thing when you’re getting a job - not
how well you can remember a certain corner of the ruby lan-
guage. That said, you can’t always anticipate which compa-
nies will attempt to run a technical interview, but it doesn’t hurt
to brush up on your skills, especially when you’re just starting
out. Of course, with such high entry level salaries (for a Rails

developer, according to Payscale.com, that is $77,322 at the
time of this writing), why not just start by seeking an entry level
position and working your way up? You’ll be much more
stress-free if you find a job where you’re expectations are
lower, which may be a good thing if you’re just starting out.

Finally, an important note. On some level, you need to think
about the chances of getting a job, how much it will pay, and
how great the culture is, all as a numbers game. The compa-
nies you find and the interviews and outcomes you have will
be a sliver of what is out there because of pure probability. You
need to do your best to take the emotion out of this process.
Don’t get too excited or feel too let down with each win or loss.
Just keep moving and trying until the right job finds you. Once
you’re able to view it as a numbers game and pure probability,
you’ll find that you’ll reach the outcome you want more easily.
The point is that, if you keep looking, and you shouldn’t have
to look too hard or too long with the skills you have, you’ll find
what you want because this job market is in your favor right
now.

V. Further Learning
Being a web developer, your learning usually doesn’t end be-
cause of how quickly technology changes. Embrace that fact.
You’ll see job listings evolve over time as well to match these
changes. So here are some great resources to keep you sharp
and relevant (note that some links may change or stop work-
ing over time as the web changes):

12

1. RailsCasts - http://railscasts.com - Lot’s of free videos on
highly focused Rails topics.

2. Rails Guides - http://guides.rubyonrails.org - Excellent writ-
ten material on the ins and outs of Rails.

3. Ruby Koans - http://rubykoans.com - Great resource for
keeping your Ruby chops sharp. I highly recommend this,
and it may be tricky to set it up at first, but it is totally worth
it.

4. The Ruby on Rails Tutorial by Michael Hartl -
https://www.railstutorial.org - Absolutely amazing resource.
You can read the book online for free and you build a Twitter
clone along the way. This is a great way to learn Test Driven
Development, which many companies want in candidates. If
you’re serious about learning Rails, do this tutorial!

5. Codecademy - http://www.codecademy.com - A fun, easy-
to-use website where you can brush up on everything from
HTML, CSS, Javascript, jQuery, Ruby, Rails and more. I
strongly suggest that you complete their courses on all of
these topics as you should be able to fly through them
pretty quickly.

VI. General Tips
I wanted to include a few general tips to help fill out your under-
standing of web development:

a) Remember that, especially when you’re starting out, you’ll
find yourself Googling for answers and suggested solutions
to code problems you face. There is absolutely no shame in
this and many of my colleagues joke that half of the job is
Googling. A common workflow is that, whenever you run
into an error, you can copy and paste the actual error mes-
sage itself in a Google search. If it’s not an error, just Goo-
gle the key terms that describe the problem you’re facing
like ‘rails controller create params.’ You’ll find that
http://stackoverflow.com will show up in the search results
quite often. This site will be your new best friend so get com-
fortable using it often.

b) The best way to keep your skills sharp and see career
growth is to build more things. I can’t reiterate this enough. I
find that the motivation to keep building things comes from
working on projects that you find to be useful, practical, or
are passionate about. This goes back to what I mentioned
before about finding jobs that are aligned with your personal
interests. That said, you don’t always need to work for
money. Consider building projects for fun - things that you
think would be fun and useful for yourself. For example, you
could build a mini Rails application that connects to the You-
Tube API and gathers new videos about your heroes like
Elon Musk or Larry Page (or whoever your heroes are). You
could refer to the API tutorials at http://codecademy.com if
you don’t know where to begin. Also, consider contributing
to projects, especially open source projects. You can find

13

http://railscasts.com
http://railscasts.com
http://guides.rubyonrails.org
http://guides.rubyonrails.org
http://rubykoans.com
http://rubykoans.com
https://www.railstutorial.org
https://www.railstutorial.org
http://www.codecademy.com
http://www.codecademy.com
http://stackoverflow.com
http://stackoverflow.com
http://codecademy.com
http://codecademy.com

great open source projects, especially those backed with
great moral or ethical goals.

c) Something I like to do is keep an eye on job listings over
time. Checking them regularly will give you a sense of what
the market is like and what skills are in demand. You’ll also
get a sense of how other companies set up their IT architec-
ture so that you can make improvements on your own turf.

d) Keep your code clean and well written. Add comments wher-
ever relevant and be thorough. Also consider using tools
like http://www.jslint.com or http://validator.w3.org to get in-
stant feedback on your syntax quality.

e) Start exploring software design patterns. There are plenty of
books about them that are specific to each language. These
will increase your awareness on how experienced develop-
ers handle common programming problems from a theoreti-
cal standpoint that can filter down to the practical level eas-
ily.

f) Some cool links:

- CSS Tricks - http://css-tricks.com - Well written/managed re-
source for handling common CSS problems and learning
new tricks to really impress your friends!

- Chrome Experiments - http://www.chromeexperiments.com -
A site that shows some pretty amazing work from developers
around the world.

- Dribbble - https://dribbble.com - Show and tell for designers.

- Awwwards - http://www.awwwards.com - Lists high quality
web sites.

VII. Glossary
I’ve included a ‘glossary’ section to list out key terms that you
may come across as you get your career off the ground.
These are just definitions seen through my own lenses, but
I’ve done my best to keep them objective.

- app: Short for application and can refer to any software appli-
cation though it is often used to describe applications de-
signed for mobile devices like iPhones or Android phones.

- bug: An error or problem in a computer program that causes
it to produce an unexpected result.

- CSS: Cascading Style Sheets. Used for adding color, posi-
tioning, layout control, font-size, and more to markup like
HTML.

- database: An organized set of data. Common systems for
managing databases include MySQL, PostgreSQL, SAP, Ora-
cle, NoSQL, Redis, MongoDB, CouchDB, etc.

- David Heinemeier Hansson (DHH): The software developer
who created Rails. Involved with 37 Signals, a popular soft-
ware company.

14

http://www.jslint.com
http://www.jslint.com
http://validator.w3.org
http://validator.w3.org
http://css-tricks.com
http://css-tricks.com
http://www.chromeexperiments.com
http://www.chromeexperiments.com
https://dribbble.com
https://dribbble.com
http://www.awwwards.com
http://www.awwwards.com

- design patterns: Refers to reusable solutions to common
programming problems.

- Donald Knuth: An influential computer scientist, author,
mathematician and professor. His work, The Art of Computer
Programming is well known/revered by computer scientists.

- HTML: Hypertext Markup Language. Used for putting content
on a web page like text, images, or embedded videos.

- Javascript: Not to be confused with the Java programming
language, Javascript is a programming language that allows
one to control interactive properties of web pages. Javascript
has recently risen in popularity even though it has been
around since the days of Netscape, especially because it can
be used as a server-side language as well. Frameworks like
AngularJS, Backbone, Meteor, and tons more are based on
Javascript.

- jQuery: A popular library that makes writing Javascript eas-
ier.

- responsive: A term used to describe websites or web appli-
cations that are optimized to look good across browsers or
devices of any size/width. CSS media queries are one way to
control how things look across various devices.

- Rails: A framework, or a way of organizing code, which
makes building web applications with Ruby easier.

- Ruby: A programming language that is commonly used for
building web applications.

- server: A computer that is optimized to serve web page con-
tent via HTTP responses (or another protocol) for browsers
or other applications. Companies like GoDaddy, Heroku,
Rackspace, Amazon, and many more rent out servers.

- Tim Berners-Lee: The computer scientist credited for invent-
ing the World Wide Web.

- web application: Usually a term used to describe a website
that does more than just display content and actually have
functionality built in that possibly interacts with a database.
Examples are Facebook, Hulu, Dropbox, etc.

- web server: Software that resides on a server that handles
the actual delivery of the HTTP response (or other protocol).
Common web server libraries include Apache, Webrick, and
Unicorn.

- website: Usually this term refers to sites that act more like
‘brochure’ sites in that they simply just display HTML or some
other form of content without deeper functionality occurring in
the background. The term is broadly used to describe any
web property including web applications, so it can be seen as
an umbrella term, as well.

- Yukihiro Matsumoto (Matz): Chief designer of the Ruby pro-
gramming language.

15

- Fin -

http://codermanual.com

16

