

Equations of Lines

Increasing Level of Difficulty

- Show that the point with position vector $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$ lies on the line *L* that has 1. the vector equation $\vec{\mathbf{r}} = \begin{pmatrix} -1 \\ 4 \end{pmatrix} + t \begin{pmatrix} -1 \\ 3 \end{pmatrix}$. [no calculator]
- Write the equation of the line 2x+3y=7 in vector equation form of a line; that is, 2. in the form $\vec{\mathbf{r}} = \vec{\mathbf{a}} + t\vec{\mathbf{b}}$, such that the components of $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are integers. [**no** calculator]
- The two lines with vector equations $\vec{\mathbf{r}} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$ and $\vec{\mathbf{r}} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 3 \\ 5 \end{pmatrix}$ 3.

intersect at point P. Find the coordinates of P.

[**no** calculator]

Find the two points on the line with Cartesian equation $x-5 = \frac{y+4}{-4} = \frac{z-6}{3}$ 4. which are a distance of 5 units from the origin. [*no calculator*]